
Perl version 5.10.0 documentation - version

Page 1http://perldoc.perl.org

NAME
version - Perl extension for Version Objects

SYNOPSIS
 use version;
 $version = version->new("12.2.1"); # must be quoted for Perl < 5.8.1
 print $version; 		 # v12.2.1
 print $version->numify; 	 # 12.002001
 if ($version gt "12.2")	 # true

 $alphaver = version->new("1.02_03"); # must be quoted!
 print $alphaver;		 # 1.02_0300
 print $alphaver->is_alpha(); # true

 $ver = qv("1.2.0"); # v1.2.0

 $perlver = version->new(5.005_03); # must not be quoted!
 print $perlver;		 # 5.005030

DESCRIPTION
Overloaded version objects for all modern versions of Perl. This module
 implements all of the features
of version objects which are part
 of Perl 5.10.0. All previous releases (i.e. before 0.74) are deprecated
and should not be used due to incompatible API changes. If you 'use
 version' in your code, you are
strongly urged to set a minimum, e.g.

 use version 0.74; # to remain compatible with Perl v5.10.0

BEST PRACTICES
If you intend for your module to be used by different releases of Perl,
 and/or for your $VERSION
scalar to mean what you think it means, there are a few simple rules to follow:

* Be consistent

Whichever of the two types of version objects that you choose to employ, you should stick to
either Numeric Versions or Extended Versions
 and not mix them together. While this is
possible, it is very confusing to the average user.

If you intend to use Extended Versions, you are strongly encouraged to use the qv() operator
with a quoted term, e.g.:

 use version; our $VERSION = qv("1.2.3");

on a single line as above.

At the very least, decide on which of the several ways to initialize your version objects you
prefer and stick with it. It is also best to be explicit about what value you intend to assign your
version object and to not rely on hidden behavior of the parser.

* Be careful

If you are using Module::Build or ExtUtils::MakeMaker, so that you can
 release your module to
CPAN, you have to recognize that neither of those
 programs completely handles version
objects natively (yet). If you use
 version objects with Module::Build, you should add an explicit
dependency
 to the release of version.pm in your Build.PL:

 my $builder = Module::Build->new(
 ...
 requires => {

Perl version 5.10.0 documentation - version

Page 2http://perldoc.perl.org

 ... ,
 'version' => 0.50,
	 ...,
 },
 ...
);

and it should Just Work(TM). Module::Build will [hopefully soon] include full support for version
objects; there are no current plans to patch ExtUtils::MakeMaker to support version objects.

Using modules that use version.pm
As much as possible, the version.pm module remains compatible with all
 current code. However, if
your module is using a module that has defined $VERSION using the version class, there are a couple
of things to be
 aware of. For purposes of discussion, we will assume that we have the
 following
module installed:

 package Example;
 use version; $VERSION = qv('1.2.2');
 ...module code here...
 1;

Numeric versions always work

Code of the form:

 use Example 1.002003;

will always work correctly. The use will perform an automatic $VERSION comparison using
the floating point number given as the first
 term after the module name (e.g. above 1.002.003).
In this case, the
 installed module is too old for the requested line, so you would see an
 error
like:

 Example version 1.002003 (v1.2.3) required--this is only version
1.002002 (v1.2.2)...

Extended version work sometimes

With Perl >= 5.6.2, you can also use a line like this:

 use Example 1.2.3;

and it will again work (i.e. give the error message as above), even with
 releases of Perl which
do not normally support v-strings (see What about v-strings below). This has to do with that
fact that use only checks
 to see if the second term looks like a number and passes that to the

replacement UNIVERSAL::VERSION. This is not true in Perl 5.005_04,
 however, so you are
strongly encouraged to always use a numeric version
 in your code, even for those versions
of Perl which support the extended
 version.

What IS a version
For the purposes of this module, a version "number" is a sequence of
 positive integer values
separated by one or more decimal points and optionally a single underscore. This corresponds to
what Perl itself uses for a version, as well as extending the "version as number" that is discussed in
the various editions of the Camel book.

There are actually two distinct kinds of version objects:

* Numeric Versions

Any initial parameter which "looks like a number", see Numeric Versions. This also covers
versions with a single decimal point and
 a single embedded underscore, see Numeric Alpha

Perl version 5.10.0 documentation - version

Page 3http://perldoc.perl.org

Versions, even though
 these must be quoted to preserve the underscore formatting.

* Extended Versions

Any initial parameter which contains more than one decimal point
 and an optional embedded
underscore, see Extended Versions. This is what is commonly used in most open source
software as the "external"
 version (the one used as part of the tag or tarfile name). The use
 of
the exported qv() function also produces this kind of version
 object.

Both of these methods will produce similar version objects, in that
 the default stringification will yield
the version Normal Form only if required:

 $v = version->new(1.002); # 1.002, but compares like 1.2.0
 $v = version->new(1.002003); # 1.002003
 $v2 = version->new("1.2.3"); # v1.2.3

In specific, version numbers initialized as Numeric Versions will
 stringify as they were originally
created (i.e. the same string that was
 passed to new(). Version numbers initialized as Extended
Versions
 will be stringified as Normal Form.

Numeric Versions
These correspond to historical versions of Perl itself prior to 5.6.0,
 as well as all other modules which
follow the Camel rules for the
 $VERSION scalar. A numeric version is initialized with what looks like
 a
floating point number. Leading zeros are significant and trailing
 zeros are implied so that a minimum
of three places is maintained
 between subversions. What this means is that any subversion (digits
 to
the right of the decimal place) that contains less than three digits
 will have trailing zeros added to
make up the difference, but only for
 purposes of comparison with other version objects. For example:

 # Prints Equivalent to
 $v = version->new(1.2); # 1.2 v1.200.0
 $v = version->new(1.02); # 1.02 v1.20.0
 $v = version->new(1.002); # 1.002 v1.2.0
 $v = version->new(1.0023); # 1.0023 v1.2.300
 $v = version->new(1.00203); # 1.00203 v1.2.30
 $v = version->new(1.002003); # 1.002003 v1.2.3

All of the preceding examples are true whether or not the input value is quoted. The important feature
is that the input value contains only a single decimal. See also Alpha Versions for how to handle

IMPORTANT NOTE: As shown above, if your numeric version contains more than 3 significant digits
after the decimal place, it will be split on each multiple of 3, so 1.0003 is equivalent to v1.0.300, due to
the need to remain compatible with Perl's own 5.005_03 == 5.5.30 interpretation. Any trailing zeros
are ignored for mathematical comparison purposes.

Extended Versions
These are the newest form of versions, and correspond to Perl's own
 version style beginning with
5.6.0. Starting with Perl 5.10.0,
 and most likely Perl 6, this is likely to be the preferred form. This

method normally requires that the input parameter be quoted, although Perl's after 5.8.1 can use
v-strings as a special form of quoting, but
 this is highly discouraged.

Unlike Numeric Versions, Extended Versions have more than
 a single decimal point, e.g.:

 # Prints
 $v = version->new("v1.200"); # v1.200.0
 $v = version->new("v1.20.0"); # v1.20.0
 $v = qv("v1.2.3"); # v1.2.3
 $v = qv("1.2.3"); # v1.2.3
 $v = qv("1.20"); # v1.20.0

Perl version 5.10.0 documentation - version

Page 4http://perldoc.perl.org

In general, Extended Versions permit the greatest amount of freedom
 to specify a version, whereas
Numeric Versions enforce a certain
 uniformity. See also New Operator for an additional method of

initializing version objects.

Just like Numeric Versions, Extended Versions can be used as Alpha Versions.

Numeric Alpha Versions
The one time that a numeric version must be quoted is when a alpha form is
 used with an otherwise
numeric version (i.e. a single decimal point). This
 is commonly used for CPAN releases, where CPAN
or CPANPLUS will ignore alpha
 versions for automatic updating purposes. Since some developers
have used
 only two significant decimal places for their non-alpha releases, the
 version object will
automatically take that into account if the initializer
 is quoted. For example Module::Example was
released to CPAN with the
 following sequence of $VERSION's:

 # $VERSION Stringified
 0.01 0.01
 0.02 0.02
 0.02_01 0.02_01
 0.02_02 0.02_02
 0.03 0.03
 etc.

The stringified form of numeric versions will always be the same string
 that was used to initialize the
version object.

Object Methods
Overloading has been used with version objects to provide a natural
 interface for their use. All
mathematical operations are forbidden,
 since they don't make any sense for base version objects.
Consequently,
 there is no overloaded numification available. If you want to use a
 version object in a
numeric context for some reason, see the numify
 object method.

* New Operator

Like all OO interfaces, the new() operator is used to initialize
 version objects. One way to
increment versions when programming is to
 use the CVS variable $Revision, which is
automatically incremented by
 CVS every time the file is committed to the repository.

In order to facilitate this feature, the following
 code can be employed:

 $VERSION = version->new(qw$Revision: 2.7 $);

and the version object will be created as if the following code
 were used:

 $VERSION = version->new("v2.7");

In other words, the version will be automatically parsed out of the
 string, and it will be quoted
to preserve the meaning CVS normally
 carries for versions. The CVS $Revision$ increments
differently from
 numeric versions (i.e. 1.10 follows 1.9), so it must be handled as if
 it were a
Extended Version.

A new version object can be created as a copy of an existing version
 object, either as a class
method:

 $v1 = version->new(12.3);
 $v2 = version->new($v1);

or as an object method:

 $v1 = version->new(12.3);
 $v2 = $v1->new(12.3);

Perl version 5.10.0 documentation - version

Page 5http://perldoc.perl.org

and in each case, $v1 and $v2 will be identical. NOTE: if you create
 a new object using an
existing object like this:

 $v2 = $v1->new();

the new object will not be a clone of the existing object. In the
 example case, $v2 will be an
empty object of the same type as $v1.

* qv()

An alternate way to create a new version object is through the exported
 qv() sub. This is not
strictly like other q? operators (like qq, qw),
 in that the only delimiters supported are
parentheses (or spaces). It is
 the best way to initialize a short version without triggering the
floating
 point interpretation. For example:

 $v1 = qv(1.2); # 1.2.0
 $v2 = qv("1.2"); # also 1.2.0

As you can see, either a bare number or a quoted string can usually be used interchangably,
except in the case of a trailing zero, which
 must be quoted to be converted properly. For this
reason, it is strongly
 recommended that all initializers to qv() be quoted strings instead of
 bare
numbers.

To prevent the qv() function from being exported to the caller's namespace,
 either use
version with a null parameter:

 use version ();

or just require version, like this:

 require version;

Both methods will prevent the import() method from firing and exporting the qv() sub. This is
true of subclasses of version as well, see SUBCLASSING for details.

For the subsequent examples, the following three objects will be used:

 $ver = version->new("1.2.3.4"); # see "Quoting" below
 $alpha = version->new("1.2.3_4"); # see "Alpha versions" below
 $nver = version->new(1.002); # see "Numeric Versions" above

* Normal Form

For any version object which is initialized with multiple decimal
 places (either quoted or if
possible v-string), or initialized using
 the qv() operator, the stringified representation is
returned in
 a normalized or reduced form (no extraneous zeros), and with a leading 'v':

 print $ver->normal; # prints as v1.2.3.4
 print $ver->stringify; # ditto
 print $ver; # ditto
 print $nver->normal; # prints as v1.2.0
 print $nver->stringify; # prints as 1.002, see
"Stringification"

In order to preserve the meaning of the processed version, the normalized representation will
always contain at least three sub terms.
 In other words, the following is guaranteed to always
be true:

 my $newver = version->new($ver->stringify);
 if ($newver eq $ver) # always true
 {...}

Perl version 5.10.0 documentation - version

Page 6http://perldoc.perl.org

* Numification

Although all mathematical operations on version objects are forbidden
 by default, it is possible
to retrieve a number which corresponds to the version object through the use of the
$obj->numify
 method. For formatting purposes, when displaying a number which
 corresponds
a version object, all sub versions are assumed to have
 three decimal places. So for example:

 print $ver->numify; # prints 1.002003004
 print $nver->numify; # prints 1.002

Unlike the stringification operator, there is never any need to append
 trailing zeros to preserve
the correct version value.

* Stringification

The default stringification for version objects returns exactly the same
 string as was used to
create it, whether you used new() or qv(),
 with one exception. The sole exception is if the
object was created using qv() and the initializer did not have two decimal places or a leading

'v' (both optional), then the stringified form will have a leading 'v'
 prepended, in order to
support round-trip processing.

For example:

 Initialized as Stringifies to
 ============== ==============
 version->new("1.2") 1.2
 version->new("v1.2") v1.2
 qv("1.2.3") 1.2.3
 qv("v1.3.5") v1.3.5
 qv("1.2") v1.2 ### exceptional case

See also UNIVERSAL::VERSION, as this also returns the stringified form
 when used as a
class method.

IMPORTANT NOTE: There is one exceptional cases shown in the above table
 where the
"initializer" is not stringwise equivalent to the stringified
 representation. If you use the qv()
operator on a version without a
 leading 'v' and with only a single decimal place, the stringified
output
 will have a leading 'v', to preserve the sense. See the qv() operator
 for more details.

IMPORTANT NOTE 2: Attempting to bypass the normal stringification rules by
 manually
applying numify() and normal() will sometimes yield
 surprising results:

 print version->new(version->new("v1.0")->numify)->normal; # v1.0.0

The reason for this is that the numify() operator will turn "v1.0"
 into the equivalent string
"1.000000". Forcing the outer version object
 to normal() form will display the mathematically
equivalent "v1.0.0".

As the example in new() shows, you can always create a copy of an
 existing version object
with the same value by the very compact:

 $v2 = $v1->new($v1);

and be assured that both $v1 and $v2 will be completely equivalent,
 down to the same
internal representation as well as stringification.

* Comparison operators

Both cmp and <=> operators perform the same comparison between
 terms (upgrading to a
version object automatically). Perl automatically
 generates all of the other comparison
operators based on those two.
 In addition to the obvious equalities listed below, appending a
single
 trailing 0 term does not change the value of a version for comparison
 purposes. In other
words "v1.2" and "1.2.0" will compare as identical.

For example, the following relations hold:

Perl version 5.10.0 documentation - version

Page 7http://perldoc.perl.org

 As Number As String Truth Value
 ------------- ---------------- -----------
 $ver > 1.0 $ver gt "1.0" true
 $ver < 2.5 $ver lt true
 $ver != 1.3 $ver ne "1.3" true
 $ver == 1.2 $ver eq "1.2" false
 $ver == 1.2.3.4 $ver eq "1.2.3.4" see discussion below

It is probably best to chose either the numeric notation or the string
 notation and stick with it,
to reduce confusion. Perl6 version objects may only support numeric comparisons. See also
Quoting.

WARNING: Comparing version with unequal numbers of decimal points (whether
 explicitly or
implicitly initialized), may yield unexpected results at
 first glance. For example, the following
inequalities hold:

 version->new(0.96) > version->new(0.95); # 0.960.0 > 0.950.0
 version->new("0.96.1") < version->new(0.95); # 0.096.1 < 0.950.0

For this reason, it is best to use either exclusively Numeric Versions or Extended Versions
with multiple decimal points.

* Logical Operators

If you need to test whether a version object
 has been initialized, you can simply test it directly:

 $vobj = version->new($something);
 if ($vobj) # true only if $something was non-blank

You can also test whether a version object is an Alpha version, for
 example to prevent the use
of some feature not present in the main
 release:

 $vobj = version->new("1.2_3"); # MUST QUOTE
 ...later...
 if ($vobj->is_alpha) # True

Quoting
Because of the nature of the Perl parsing and tokenizing routines,
 certain initialization values must be
quoted in order to correctly
 parse as the intended version, especially when using the qv() operator.
 In
all cases, a floating point number passed to version->new() will be
 identically converted whether or
not the value itself is quoted. This is
 not true for qv(), however, when trailing zeros would be stripped
on
 an unquoted input, which would result in a very different version object.

In addition, in order to be compatible with earlier Perl version styles,
 any use of versions of the form
5.006001 will be translated as v5.6.1. In other words, a version with a single decimal point will be
parsed as
 implicitly having three digits between subversions, but only for internal
 comparison
purposes.

The complicating factor is that in bare numbers (i.e. unquoted), the
 underscore is a legal numeric
character and is automatically stripped
 by the Perl tokenizer before the version code is called.
However, if
 a number containing one or more decimals and an underscore is quoted, i.e.
 not bare,
that is considered a Alpha Version and the underscore is
 significant.

If you use a mathematic formula that resolves to a floating point number,
 you are dependent on Perl's
conversion routines to yield the version you
 expect. You are pretty safe by dividing by a power of 10,
for example,
 but other operations are not likely to be what you intend. For example:

 $VERSION = version->new((qw$Revision: 1.4)[1]/10);
 print $VERSION; # yields 0.14
 $V2 = version->new(100/9); # Integer overflow in decimal number

Perl version 5.10.0 documentation - version

Page 8http://perldoc.perl.org

 print $V2; # yields something like 11.111.111.100

Perl 5.8.1 and beyond will be able to automatically quote v-strings but
 that is not possible in earlier
versions of Perl. In other words:

 $version = version->new("v2.5.4"); # legal in all versions of Perl
 $newvers = version->new(v2.5.4); # legal only in Perl >= 5.8.1

What about v-strings?
Beginning with Perl 5.6.0, an alternate method to code arbitrary strings
 of bytes was introduced,
called v-strings. They were intended to be an
 easy way to enter, for example, Unicode strings (which
contain two bytes
 per character). Some programs have used them to encode printer control

characters (e.g. CRLF). They were also intended to be used for $VERSION,
 but their use as such has
been problematic from the start.

There are two ways to enter v-strings: a bare number with two or more
 decimal points, or a bare
number with one or more decimal points and a leading 'v' character (also bare). For example:

 $vs1 = 1.2.3; # encoded as \1\2\3
 $vs2 = v1.2; # encoded as \1\2

However, the use of bare v-strings to initialize version objects is strongly discouraged in all
circumstances (especially the leading 'v' style), since the meaning will change depending on which
Perl you are running. It is better to directly use Extended Versions to ensure the proper interpretation.

If you insist on using bare v-strings with Perl > 5.6.0, be aware of the following limitations:

1) For Perl releases 5.6.0 through 5.8.0, the v-string code merely guesses, based on some
characteristics of v-strings. You must use a three part
 version, e.g. 1.2.3 or v1.2.3 in order for this
heuristic to be successful.

2) For Perl releases 5.8.1 and later, v-strings have changed in the Perl
 core to be magical, which
means that the version.pm code can automatically
 determine whether the v-string encoding was
used.

3) In all cases, a version created using v-strings will have a stringified
 form that has a leading 'v'
character, for the simple reason that sometimes
 it is impossible to tell whether one was present
initially.

Types of Versions Objects
There are two types of Version Objects:

* Ordinary versions

These are the versions that normal modules will use. Can contain as
 many subversions as
required. In particular, those using RCS/CVS can
 use the following:

 $VERSION = version->new(qw$Revision: 2.7 $);

and the current RCS Revision for that file will be inserted
 automatically. If the file has been
moved to a branch, the Revision
 will have three or more elements; otherwise, it will have only
two.
 This allows you to automatically increment your module version by
 using the Revision
number from the primary file in a distribution, see "VERSION_FROM" in ExtUtils::MakeMaker.

* Alpha Versions

For module authors using CPAN, the convention has been to note
 unstable releases with an
underscore in the version string, see CPAN. Alpha releases will test as being newer than the
more recent
 stable release, and less than the next stable release. For example:

Perl version 5.10.0 documentation - version

Page 9http://perldoc.perl.org

 $alphaver = version->new("12.03_01"); # must be quoted

obeys the relationship

 12.03 < $alphaver < 12.04

Alpha versions with a single decimal point will be treated exactly as if
 they were Numeric
Versions, for parsing and output purposes. The
 underscore will be output when an alpha
version is stringified, in the same
 place as it was when input.

Alpha versions with more than a single decimal point will be treated exactly as if they were
Extended Versions, and will display without any
 trailing (or leading) zeros, in the Version
Normal form. For example,

 $newver = version->new("12.3.1_1");
 print $newver; # v12.3.1_1

Replacement UNIVERSAL::VERSION
In addition to the version objects, this modules also replaces the core
 UNIVERSAL::VERSION
function with one that uses version objects for its
 comparisons. The return from this operator is always
the stringified form,
 but the warning message generated includes either the stringified form or
 the
normal form, depending on how it was called.

For example:

 package Foo;
 $VERSION = 1.2;

 package Bar;
 $VERSION = "1.3.5"; # works with all Perl's (since it is quoted)

 package main;
 use version;

 print $Foo::VERSION; # prints 1.2

 print $Bar::VERSION; # prints 1.003005

 eval "use foo 10";
 print $@; # prints "foo version 10 required..."
 eval "use foo 1.3.5; # work in Perl 5.6.1 or better
 print $@; # prints "foo version 1.3.5 required..."

 eval "use bar 1.3.6";
 print $@; # prints "bar version 1.3.6 required..."
 eval "use bar 1.004"; # note numeric version
 print $@; # prints "bar version 1.004 required..."

IMPORTANT NOTE: This may mean that code which searches for a specific
 string (to determine
whether a given module is available) may need to be
 changed. It is always better to use the built-in
comparison implicit in use or require, rather than manually poking at class-VERSION>
 and then
doing a comparison yourself.

The replacement UNIVERSAL::VERSION, when used as a function, like this:

 print $module->VERSION;

Perl version 5.10.0 documentation - version

Page 10http://perldoc.perl.org

will also exclusively return the stringified form. See Stringification
 for more details.

SUBCLASSING
This module is specifically designed and tested to be easily subclassed.
 In practice, you only need to
override the methods you want to change, but
 you have to take some care when overriding new()
(since that is where all
 of the parsing takes place). For example, this is a perfect acceptable
 derived
class:

 package myversion;
 use base version;
 sub new {
 my($self,$n)=@_;
 my $obj;
 # perform any special input handling here
 $obj = $self->SUPER::new($n);
 # and/or add additional hash elements here
 return $obj;
 }

See also version::AlphaBeta on CPAN for an alternate representation of
 version strings.

NOTE: Although the qv operator is not a true class method, but rather a
 function exported into the
caller's namespace, a subclass of version will inherit an import() function which will perform the
correct magic on behalf
 of the subclass.

EXPORT
qv - Extended Version initialization operator

AUTHOR
John Peacock <jpeacock@cpan.org>

SEE ALSO
perl.

