
Perl version 5.12.0 documentation - perldsc

Page 1http://perldoc.perl.org

NAME
perldsc - Perl Data Structures Cookbook

DESCRIPTION
The single feature most sorely lacking in the Perl programming language
 prior to its 5.0 release was
complex data structures. Even without direct
 language support, some valiant programmers did
manage to emulate them, but
 it was hard work and not for the faint of heart. You could occasionally

get away with the $m{$AoA,$b} notation borrowed from awk in which the
 keys are actually more like
a single concatenated string "AoAb", but
 traversal and sorting were difficult. More desperate
programmers even
 hacked Perl's internal symbol table directly, a strategy that proved hard
 to develop
and maintain--to put it mildly.

The 5.0 release of Perl let us have complex data structures. You
 may now write something like this
and all of a sudden, you'd have an array
 with three dimensions!

 for $x (1 .. 10) {
	 for $y (1 .. 10) {
	 for $z (1 .. 10) {
		 $AoA[$x][$y][$z] =
		 $x ** $y + $z;
	 }
	 }
 }

Alas, however simple this may appear, underneath it's a much more
 elaborate construct than meets
the eye!

How do you print it out? Why can't you say just print @AoA? How do
 you sort it? How can you pass
it to a function or get one of these back
 from a function? Is it an object? Can you save it to disk to
read
 back later? How do you access whole rows or columns of that matrix? Do
 all the values have to
be numeric?

As you see, it's quite easy to become confused. While some small portion
 of the blame for this can be
attributed to the reference-based
 implementation, it's really more due to a lack of existing
documentation with
 examples designed for the beginner.

This document is meant to be a detailed but understandable treatment of the
 many different sorts of
data structures you might want to develop. It
 should also serve as a cookbook of examples. That way,
when you need to
 create one of these complex data structures, you can just pinch, pilfer, or
 purloin a
drop-in example from here.

Let's look at each of these possible constructs in detail. There are separate
 sections on each of the
following:

* arrays of arrays

* hashes of arrays

* arrays of hashes

* hashes of hashes

* more elaborate constructs

But for now, let's look at general issues common to all
 these types of data structures.

REFERENCES
The most important thing to understand about all data structures in
 Perl--including multidimensional
arrays--is that even though they might
 appear otherwise, Perl @ARRAYs and %HASHes are all internally
one-dimensional. They can hold only scalar values (meaning a string,
 number, or a reference). They
cannot directly contain other arrays or
 hashes, but instead contain references to other arrays or

Perl version 5.12.0 documentation - perldsc

Page 2http://perldoc.perl.org

hashes.

You can't use a reference to an array or hash in quite the same way that you
 would a real array or
hash. For C or C++ programmers unused to
 distinguishing between arrays and pointers to the same,
this can be
 confusing. If so, just think of it as the difference between a structure
 and a pointer to a
structure.

You can (and should) read more about references in perlref.
 Briefly, references are rather like
pointers that know what they
 point to. (Objects are also a kind of reference, but we won't be needing

them right away--if ever.) This means that when you have something which
 looks to you like an
access to a two-or-more-dimensional array and/or hash,
 what's really going on is that the base type is
merely a one-dimensional entity that contains references to the next
 level. It's just that you can use it
as though it were a
 two-dimensional one. This is actually the way almost all C
 multidimensional arrays
work as well.

 $array[7][12]			 # array of arrays
 $array[7]{string}			 # array of hashes
 $hash{string}[7]			 # hash of arrays
 $hash{string}{'another string'}	 # hash of hashes

Now, because the top level contains only references, if you try to print
 out your array in with a simple
print() function, you'll get something
 that doesn't look very nice, like this:

 @AoA = ([2, 3], [4, 5, 7], [0]);
 print $AoA[1][2];
 7
 print @AoA;
 ARRAY(0x83c38)ARRAY(0x8b194)ARRAY(0x8b1d0)

That's because Perl doesn't (ever) implicitly dereference your variables.
 If you want to get at the thing
a reference is referring to, then you have
 to do this yourself using either prefix typing indicators, like
${$blah}, @{$blah}, @{$blah[$i]}, or else postfix pointer arrows,
 like $a->[3], $h->{fred},
or even $ob->method()->[3].

COMMON MISTAKES
The two most common mistakes made in constructing something like
 an array of arrays is either
accidentally counting the number of
 elements or else taking a reference to the same memory location

repeatedly. Here's the case where you just get the count instead
 of a nested array:

 for $i (1..10) {
	 @array = somefunc($i);
	 $AoA[$i] = @array;	 # WRONG!
 }

That's just the simple case of assigning an array to a scalar and getting
 its element count. If that's
what you really and truly want, then you
 might do well to consider being a tad more explicit about it,
like this:

 for $i (1..10) {
	 @array = somefunc($i);
	 $counts[$i] = scalar @array;
 }

Here's the case of taking a reference to the same memory location
 again and again:

 for $i (1..10) {
	 @array = somefunc($i);

Perl version 5.12.0 documentation - perldsc

Page 3http://perldoc.perl.org

	 $AoA[$i] = \@array;	 # WRONG!
 }

So, what's the big problem with that? It looks right, doesn't it?
 After all, I just told you that you need an
array of references, so by
 golly, you've made me one!

Unfortunately, while this is true, it's still broken. All the references
 in @AoA refer to the very same
place, and they will therefore all hold
 whatever was last in @array! It's similar to the problem
demonstrated in
 the following C program:

 #include <pwd.h>
 main() {
	 struct passwd *getpwnam(), *rp, *dp;
	 rp = getpwnam("root");
	 dp = getpwnam("daemon");

	 printf("daemon name is %s\nroot name is %s\n",
		 dp->pw_name, rp->pw_name);
 }

Which will print

 daemon name is daemon
 root name is daemon

The problem is that both rp and dp are pointers to the same location
 in memory! In C, you'd have to
remember to malloc() yourself some new
 memory. In Perl, you'll want to use the array constructor []
or the
 hash constructor {} instead. Here's the right way to do the preceding
 broken code fragments:

 for $i (1..10) {
	 @array = somefunc($i);
	 $AoA[$i] = [@array];
 }

The square brackets make a reference to a new array with a copy
 of what's in @array at the time of
the assignment. This is what
 you want.

Note that this will produce something similar, but it's
 much harder to read:

 for $i (1..10) {
	 @array = 0 .. $i;
	 @{$AoA[$i]} = @array;
 }

Is it the same? Well, maybe so--and maybe not. The subtle difference
 is that when you assign
something in square brackets, you know for sure
 it's always a brand new reference with a new copy of
the data.
 Something else could be going on in this new case with the @{$AoA[$i]}
 dereference on
the left-hand-side of the assignment. It all depends on
 whether $AoA[$i] had been undefined to
start with, or whether it
 already contained a reference. If you had already populated @AoA with

references, as in

 $AoA[3] = \@another_array;

Then the assignment with the indirection on the left-hand-side would
 use the existing reference that
was already there:

Perl version 5.12.0 documentation - perldsc

Page 4http://perldoc.perl.org

 @{$AoA[3]} = @array;

Of course, this would have the "interesting" effect of clobbering
 @another_array. (Have you ever
noticed how when a programmer says
 something is "interesting", that rather than meaning
"intriguing",
 they're disturbingly more apt to mean that it's "annoying",
 "difficult", or both? :-)

So just remember always to use the array or hash constructors with []
 or {}, and you'll be fine,
although it's not always optimally
 efficient.

Surprisingly, the following dangerous-looking construct will
 actually work out fine:

 for $i (1..10) {
 my @array = somefunc($i);
 $AoA[$i] = \@array;
 }

That's because my() is more of a run-time statement than it is a
 compile-time declaration per se. This
means that the my() variable is
 remade afresh each time through the loop. So even though it looks as

though you stored the same variable reference each time, you actually did
 not! This is a subtle
distinction that can produce more efficient code at
 the risk of misleading all but the most experienced
of programmers. So I
 usually advise against teaching it to beginners. In fact, except for
 passing
arguments to functions, I seldom like to see the gimme-a-reference
 operator (backslash) used much
at all in code. Instead, I advise
 beginners that they (and most of the rest of us) should try to use the

much more easily understood constructors [] and {} instead of
 relying upon lexical (or dynamic)
scoping and hidden reference-counting to
 do the right thing behind the scenes.

In summary:

 $AoA[$i] = [@array];	 # usually best
 $AoA[$i] = \@array;		 # perilous; just how my() was that array?
 @{ $AoA[$i] } = @array;	 # way too tricky for most programmers

CAVEAT ON PRECEDENCE
Speaking of things like @{$AoA[$i]}, the following are actually the
 same thing:

 $aref->[2][2]	 # clear
 $$aref[2][2]	 # confusing

That's because Perl's precedence rules on its five prefix dereferencers
 (which look like someone
swearing: $ @ * % &) make them bind more
 tightly than the postfix subscripting brackets or braces!
This will no
 doubt come as a great shock to the C or C++ programmer, who is quite
 accustomed to
using *a[i] to mean what's pointed to by the i'th
 element of a. That is, they first take the subscript,
and only then
 dereference the thing at that subscript. That's fine in C, but this isn't C.

The seemingly equivalent construct in Perl, $$aref[$i] first does
 the deref of $aref, making it take
$aref as a reference to an
 array, and then dereference that, and finally tell you the i'th value
 of the
array pointed to by $AoA. If you wanted the C notion, you'd have to
 write ${$AoA[$i]} to force the
$AoA[$i] to get evaluated first
 before the leading $ dereferencer.

WHY YOU SHOULD ALWAYS use strict
If this is starting to sound scarier than it's worth, relax. Perl has
 some features to help you avoid its
most common pitfalls. The best
 way to avoid getting confused is to start every program like this:

 #!/usr/bin/perl -w
 use strict;

This way, you'll be forced to declare all your variables with my() and
 also disallow accidental

Perl version 5.12.0 documentation - perldsc

Page 5http://perldoc.perl.org

"symbolic dereferencing". Therefore if you'd done
 this:

 my $aref = [
	 ["fred", "barney", "pebbles", "bambam", "dino",],
	 ["homer", "bart", "marge", "maggie",],
	 ["george", "jane", "elroy", "judy",],
];

 print $aref[2][2];

The compiler would immediately flag that as an error at compile time,
 because you were accidentally
accessing @aref, an undeclared
 variable, and it would thereby remind you to write instead:

 print $aref->[2][2]

DEBUGGING
Before version 5.002, the standard Perl debugger didn't do a very nice job of
 printing out complex
data structures. With 5.002 or above, the
 debugger includes several new features, including
command line editing as
 well as the x command to dump out complex data structures. For
 example,
given the assignment to $AoA above, here's the debugger output:

 DB<1> x $AoA
 $AoA = ARRAY(0x13b5a0)
 0 ARRAY(0x1f0a24)
	 0 'fred'
	 1 'barney'
	 2 'pebbles'
	 3 'bambam'
	 4 'dino'
 1 ARRAY(0x13b558)
	 0 'homer'
	 1 'bart'
	 2 'marge'
	 3 'maggie'
 2 ARRAY(0x13b540)
	 0 'george'
	 1 'jane'
	 2 'elroy'
	 3 'judy'

CODE EXAMPLES
Presented with little comment (these will get their own manpages someday)
 here are short code
examples illustrating access of various
 types of data structures.

ARRAYS OF ARRAYS
Declaration of an ARRAY OF ARRAYS

 @AoA = (
 ["fred", "barney"],
 ["george", "jane", "elroy"],
 ["homer", "marge", "bart"],
);

Perl version 5.12.0 documentation - perldsc

Page 6http://perldoc.perl.org

Generation of an ARRAY OF ARRAYS
 # reading from file
 while (<>) {
 push @AoA, [split];
 }

 # calling a function
 for $i (1 .. 10) {
 $AoA[$i] = [somefunc($i)];
 }

 # using temp vars
 for $i (1 .. 10) {
 @tmp = somefunc($i);
 $AoA[$i] = [@tmp];
 }

 # add to an existing row
 push @{ $AoA[0] }, "wilma", "betty";

Access and Printing of an ARRAY OF ARRAYS
 # one element
 $AoA[0][0] = "Fred";

 # another element
 $AoA[1][1] =~ s/(\w)/\u$1/;

 # print the whole thing with refs
 for $aref (@AoA) {
 print "\t [@$aref],\n";
 }

 # print the whole thing with indices
 for $i (0 .. $#AoA) {
 print "\t [@{$AoA[$i]}],\n";
 }

 # print the whole thing one at a time
 for $i (0 .. $#AoA) {
 for $j (0 .. $#{ $AoA[$i] }) {
 print "elt $i $j is $AoA[$i][$j]\n";
 }
 }

HASHES OF ARRAYS
Declaration of a HASH OF ARRAYS

 %HoA = (
 flintstones => ["fred", "barney"],
 jetsons => ["george", "jane", "elroy"],
 simpsons => ["homer", "marge", "bart"],
);

Perl version 5.12.0 documentation - perldsc

Page 7http://perldoc.perl.org

Generation of a HASH OF ARRAYS
 # reading from file
 # flintstones: fred barney wilma dino
 while (<>) {
 next unless s/^(.*?):\s*//;
 $HoA{$1} = [split];
 }

 # reading from file; more temps
 # flintstones: fred barney wilma dino
 while ($line = <>) {
 ($who, $rest) = split /:\s*/, $line, 2;
 @fields = split ' ', $rest;
 $HoA{$who} = [@fields];
 }

 # calling a function that returns a list
 for $group ("simpsons", "jetsons", "flintstones") {
 $HoA{$group} = [get_family($group)];
 }

 # likewise, but using temps
 for $group ("simpsons", "jetsons", "flintstones") {
 @members = get_family($group);
 $HoA{$group} = [@members];
 }

 # append new members to an existing family
 push @{ $HoA{"flintstones"} }, "wilma", "betty";

Access and Printing of a HASH OF ARRAYS
 # one element
 $HoA{flintstones}[0] = "Fred";

 # another element
 $HoA{simpsons}[1] =~ s/(\w)/\u$1/;

 # print the whole thing
 foreach $family (keys %HoA) {
 print "$family: @{ $HoA{$family} }\n"
 }

 # print the whole thing with indices
 foreach $family (keys %HoA) {
 print "family: ";
 foreach $i (0 .. $#{ $HoA{$family} }) {
 print " $i = $HoA{$family}[$i]";
 }
 print "\n";
 }

 # print the whole thing sorted by number of members

Perl version 5.12.0 documentation - perldsc

Page 8http://perldoc.perl.org

 foreach $family (sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA) {
 print "$family: @{ $HoA{$family} }\n"
 }

 # print the whole thing sorted by number of members and name
 foreach $family (sort {
			 @{$HoA{$b}} <=> @{$HoA{$a}}
					 ||
				 $a cmp $b
	 } keys %HoA)
 {
 print "$family: ", join(", ", sort @{ $HoA{$family} }), "\n";
 }

ARRAYS OF HASHES
Declaration of an ARRAY OF HASHES

 @AoH = (
 {
 Lead => "fred",
 Friend => "barney",
 },
 {
 Lead => "george",
 Wife => "jane",
 Son => "elroy",
 },
 {
 Lead => "homer",
 Wife => "marge",
 Son => "bart",
 }
);

Generation of an ARRAY OF HASHES
 # reading from file
 # format: LEAD=fred FRIEND=barney
 while (<>) {
 $rec = {};
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $rec->{$key} = $value;
 }
 push @AoH, $rec;
 }

 # reading from file
 # format: LEAD=fred FRIEND=barney
 # no temp
 while (<>) {
 push @AoH, { split /[\s+=]/ };
 }

 # calling a function that returns a key/value pair list, like

Perl version 5.12.0 documentation - perldsc

Page 9http://perldoc.perl.org

 # "lead","fred","daughter","pebbles"
 while (%fields = getnextpairset()) {
 push @AoH, { %fields };
 }

 # likewise, but using no temp vars
 while (<>) {
 push @AoH, { parsepairs($_) };
 }

 # add key/value to an element
 $AoH[0]{pet} = "dino";
 $AoH[2]{pet} = "santa's little helper";

Access and Printing of an ARRAY OF HASHES
 # one element
 $AoH[0]{lead} = "fred";

 # another element
 $AoH[1]{lead} =~ s/(\w)/\u$1/;

 # print the whole thing with refs
 for $href (@AoH) {
 print "{ ";
 for $role (keys %$href) {
 print "$role=$href->{$role} ";
 }
 print "}\n";
 }

 # print the whole thing with indices
 for $i (0 .. $#AoH) {
 print "$i is { ";
 for $role (keys %{ $AoH[$i] }) {
 print "$role=$AoH[$i]{$role} ";
 }
 print "}\n";
 }

 # print the whole thing one at a time
 for $i (0 .. $#AoH) {
 for $role (keys %{ $AoH[$i] }) {
 print "elt $i $role is $AoH[$i]{$role}\n";
 }
 }

HASHES OF HASHES
Declaration of a HASH OF HASHES

 %HoH = (
 flintstones => {
		 lead => "fred",
		 pal => "barney",

Perl version 5.12.0 documentation - perldsc

Page 10http://perldoc.perl.org

 },
 jetsons => {
		 lead => "george",
		 wife => "jane",
		 "his boy" => "elroy",
 },
 simpsons => {
		 lead => "homer",
		 wife => "marge",
		 kid => "bart",
	 },
);

Generation of a HASH OF HASHES
 # reading from file
 # flintstones: lead=fred pal=barney wife=wilma pet=dino
 while (<>) {
 next unless s/^(.*?):\s*//;
 $who = $1;
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $HoH{$who}{$key} = $value;
 }

 # reading from file; more temps
 while (<>) {
 next unless s/^(.*?):\s*//;
 $who = $1;
 $rec = {};
 $HoH{$who} = $rec;
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $rec->{$key} = $value;
 }
 }

 # calling a function that returns a key,value hash
 for $group ("simpsons", "jetsons", "flintstones") {
 $HoH{$group} = { get_family($group) };
 }

 # likewise, but using temps
 for $group ("simpsons", "jetsons", "flintstones") {
 %members = get_family($group);
 $HoH{$group} = { %members };
 }

 # append new members to an existing family
 %new_folks = (
 wife => "wilma",
 pet => "dino",
);

 for $what (keys %new_folks) {

Perl version 5.12.0 documentation - perldsc

Page 11http://perldoc.perl.org

 $HoH{flintstones}{$what} = $new_folks{$what};
 }

Access and Printing of a HASH OF HASHES
 # one element
 $HoH{flintstones}{wife} = "wilma";

 # another element
 $HoH{simpsons}{lead} =~ s/(\w)/\u$1/;

 # print the whole thing
 foreach $family (keys %HoH) {
 print "$family: { ";
 for $role (keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "}\n";
 }

 # print the whole thing somewhat sorted
 foreach $family (sort keys %HoH) {
 print "$family: { ";
 for $role (sort keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "}\n";
 }

 # print the whole thing sorted by number of members
 foreach $family (sort { keys %{$HoH{$b}} <=> keys %{$HoH{$a}} } keys %HoH
) {
 print "$family: { ";
 for $role (sort keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "}\n";
 }

 # establish a sort order (rank) for each role
 $i = 0;
 for (qw(lead wife son daughter pal pet)) { $rank{$_} = ++$i }

 # now print the whole thing sorted by number of members
 foreach $family (sort { keys %{ $HoH{$b} } <=> keys %{ $HoH{$a} } } keys
%HoH) {
 print "$family: { ";
 # and print these according to rank order
 for $role (sort { $rank{$a} <=> $rank{$b} } keys %{ $HoH{$family} }
) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "}\n";
 }

Perl version 5.12.0 documentation - perldsc

Page 12http://perldoc.perl.org

MORE ELABORATE RECORDS
Declaration of MORE ELABORATE RECORDS

Here's a sample showing how to create and use a record whose fields are of
 many different sorts:

 $rec = {
	 TEXT => $string,
	 SEQUENCE => [@old_values],
	 LOOKUP => { %some_table },
	 THATCODE => \&some_function,
	 THISCODE => sub { $_[0] ** $_[1] },
	 HANDLE => *STDOUT,
 };

 print $rec->{TEXT};

 print $rec->{SEQUENCE}[0];
 $last = pop @ { $rec->{SEQUENCE} };

 print $rec->{LOOKUP}{"key"};
 ($first_k, $first_v) = each %{ $rec->{LOOKUP} };

 $answer = $rec->{THATCODE}->($arg);
 $answer = $rec->{THISCODE}->($arg1, $arg2);

 # careful of extra block braces on fh ref
 print { $rec->{HANDLE} } "a string\n";

 use FileHandle;
 $rec->{HANDLE}->autoflush(1);
 $rec->{HANDLE}->print(" a string\n");

Declaration of a HASH OF COMPLEX RECORDS
 %TV = (
 flintstones => {
 series => "flintstones",
 nights => [qw(monday thursday friday)],
 members => [
 { name => "fred", role => "lead", age => 36, },
 { name => "wilma", role => "wife", age => 31, },
 { name => "pebbles", role => "kid", age => 4, },
],
 },

 jetsons => {
 series => "jetsons",
 nights => [qw(wednesday saturday)],
 members => [
 { name => "george", role => "lead", age => 41, },
 { name => "jane", role => "wife", age => 39, },
 { name => "elroy", role => "kid", age => 9, },
],
 },

Perl version 5.12.0 documentation - perldsc

Page 13http://perldoc.perl.org

 simpsons => {
 series => "simpsons",
 nights => [qw(monday)],
 members => [
 { name => "homer", role => "lead", age => 34, },
 { name => "marge", role => "wife", age => 37, },
 { name => "bart", role => "kid", age => 11, },
],
 },
);

Generation of a HASH OF COMPLEX RECORDS
 # reading from file
 # this is most easily done by having the file itself be
 # in the raw data format as shown above. perl is happy
 # to parse complex data structures if declared as data, so
 # sometimes it's easiest to do that

 # here's a piece by piece build up
 $rec = {};
 $rec->{series} = "flintstones";
 $rec->{nights} = [find_days()];

 @members = ();
 # assume this file in field=value syntax
 while (<>) {
 %fields = split /[\s=]+/;
 push @members, { %fields };
 }
 $rec->{members} = [@members];

 # now remember the whole thing
 $TV{ $rec->{series} } = $rec;

 ###
 # now, you might want to make interesting extra fields that
 # include pointers back into the same data structure so if
 # change one piece, it changes everywhere, like for example
 # if you wanted a {kids} field that was a reference
 # to an array of the kids' records without having duplicate
 # records and thus update problems.
 ###
 foreach $family (keys %TV) {
 $rec = $TV{$family}; # temp pointer
 @kids = ();
 for $person (@{ $rec->{members} }) {
 if ($person->{role} =~ /kid|son|daughter/) {
 push @kids, $person;
 }
 }
 # REMEMBER: $rec and $TV{$family} point to same data!!
 $rec->{kids} = [@kids];
 }

Perl version 5.12.0 documentation - perldsc

Page 14http://perldoc.perl.org

 # you copied the array, but the array itself contains pointers
 # to uncopied objects. this means that if you make bart get
 # older via

 $TV{simpsons}{kids}[0]{age}++;

 # then this would also change in
 print $TV{simpsons}{members}[2]{age};

 # because $TV{simpsons}{kids}[0] and $TV{simpsons}{members}[2]
 # both point to the same underlying anonymous hash table

 # print the whole thing
 foreach $family (keys %TV) {
 print "the $family";
 print " is on during @{ $TV{$family}{nights} }\n";
 print "its members are:\n";
 for $who (@{ $TV{$family}{members} }) {
 print " $who->{name} ($who->{role}), age $who->{age}\n";
 }
 print "it turns out that $TV{$family}{lead} has ";
 print scalar (@{ $TV{$family}{kids} }), " kids named ";
 print join (", ", map { $_->{name} } @{ $TV{$family}{kids} });
 print "\n";
 }

Database Ties
You cannot easily tie a multilevel data structure (such as a hash of
 hashes) to a dbm file. The first
problem is that all but GDBM and
 Berkeley DB have size limitations, but beyond that, you also have
problems
 with how references are to be represented on disk. One experimental
 module that does
partially attempt to address this need is the MLDBM
 module. Check your nearest CPAN site as
described in perlmodlib for
 source code to MLDBM.

SEE ALSO
perlref, perllol, perldata, perlobj

AUTHOR
Tom Christiansen <tchrist@perl.com>

Last update:
 Wed Oct 23 04:57:50 MET DST 1996

