
Perl version 5.12.0 documentation - Math::BigInt::Calc

Page 1http://perldoc.perl.org

NAME
Math::BigInt::Calc - Pure Perl module to support Math::BigInt

SYNOPSIS
Provides support for big integer calculations. Not intended to be used by other
 modules. Other
modules which sport the same functions can also be used to support
 Math::BigInt, like
Math::BigInt::GMP or Math::BigInt::Pari.

DESCRIPTION
In order to allow for multiple big integer libraries, Math::BigInt was
 rewritten to use library modules for
core math routines. Any module which
 follows the same API as this can be used instead by using the
following:

	 use Math::BigInt lib => 'libname';

'libname' is either the long name ('Math::BigInt::Pari'), or only the short
 version like 'Pari'.

STORAGE
METHODS

The following functions MUST be defined in order to support the use by
 Math::BigInt v1.70 or later:

	 api_version()	 return API version, 1 for v1.70, 2 for v1.83
	 _new(string)	 return ref to new object from ref to decimal string
	 _zero()		 return a new object with value 0
	 _one()		 return a new object with value 1
	 _two()		 return a new object with value 2
	 _ten()		 return a new object with value 10

	 _str(obj)	 return ref to a string representing the object
	 _num(obj)	 returns a Perl integer/floating point number
			 NOTE: because of Perl numeric notation defaults,
			 the _num'ified obj may lose accuracy due to
			 machine-dependent floating point size limitations

	 _add(obj,obj)	 Simple addition of two objects
	 _mul(obj,obj)	 Multiplication of two objects
	 _div(obj,obj)	 Division of the 1st object by the 2nd
			 In list context, returns (result,remainder).
			 NOTE: this is integer math, so no
			 fractional part will be returned.
			 The second operand will be not be 0, so no need to
			 check for that.
	 _sub(obj,obj)	 Simple subtraction of 1 object from another
			 a third, optional parameter indicates that the params
			 are swapped. In this case, the first param needs to
			 be preserved, while you can destroy the second.
			 sub (x,y,1) => return x - y and keep x intact!
	 _dec(obj)	 decrement object by one (input is guaranteed to be > 0)
	 _inc(obj)	 increment object by one

	 _acmp(obj,obj)	 <=> operator for objects (return -1, 0 or 1)

	 _len(obj)	 returns count of the decimal digits of the object
	 _digit(obj,n)	 returns the n'th decimal digit of object

Perl version 5.12.0 documentation - Math::BigInt::Calc

Page 2http://perldoc.perl.org

	 _is_one(obj)	 return true if argument is 1
	 _is_two(obj)	 return true if argument is 2
	 _is_ten(obj)	 return true if argument is 10
	 _is_zero(obj)	 return true if argument is 0
	 _is_even(obj)	 return true if argument is even (0,2,4,6..)
	 _is_odd(obj)	 return true if argument is odd (1,3,5,7..)

	 _copy		 return a ref to a true copy of the object

	 _check(obj)	 check whether internal representation is still intact
			 return 0 for ok, otherwise error message as string

	 _from_hex(str)	 return new object from a hexadecimal string
	 _from_bin(str)	 return new object from a binary string
	 _from_oct(str)	 return new object from an octal string

	 _as_hex(str)	 return string containing the value as
			 unsigned hex string, with the '0x' prepended.
			 Leading zeros must be stripped.
	 _as_bin(str)	 Like as_hex, only as binary string containing only
			 zeros and ones. Leading zeros must be stripped and a
			 '0b' must be prepended.

	 _rsft(obj,N,B)	 shift object in base B by N 'digits' right
	 _lsft(obj,N,B)	 shift object in base B by N 'digits' left

	 _xor(obj1,obj2)	 XOR (bit-wise) object 1 with object 2
			 Note: XOR, AND and OR pad with zeros if size mismatches
	 _and(obj1,obj2)	 AND (bit-wise) object 1 with object 2
	 _or(obj1,obj2)	 OR (bit-wise) object 1 with object 2

	 _mod(obj1,obj2)	 Return remainder of div of the 1st by the 2nd object
	 _sqrt(obj)	 return the square root of object (truncated to int)
	 _root(obj)	 return the n'th (n >= 3) root of obj (truncated to int)
	 _fac(obj)	 return factorial of object 1 (1*2*3*4..)
	 _pow(obj1,obj2)	 return object 1 to the power of object 2
			 return undef for NaN
	 _zeros(obj)	 return number of trailing decimal zeros
	 _modinv		 return inverse modulus
	 _modpow		 return modulus of power ($x ** $y) % $z
	 _log_int(X,N)	 calculate integer log() of X in base N
			 X >= 0, N >= 0 (return undef for NaN)
			 returns (RESULT, EXACT) where EXACT is:
			 1 : result is exactly RESULT
			 0 : result was truncated to RESULT
			 undef : unknown whether result is exactly RESULT
 _gcd(obj,obj)	 return Greatest Common Divisor of two objects

The following functions are REQUIRED for an api_version of 2 or greater:

	 _1ex($x)	 create the number 1Ex where x >= 0
	 _alen(obj)	 returns approximate count of the decimal digits of the
			 object. This estimate MUST always be greater or equal
			 to what _len() returns.

Perl version 5.12.0 documentation - Math::BigInt::Calc

Page 3http://perldoc.perl.org

 _nok(n,k)	 calculate n over k (binomial coefficient)

The following functions are optional, and can be defined if the underlying lib
 has a fast way to do
them. If undefined, Math::BigInt will use pure Perl (hence
 slow) fallback routines to emulate these:

	 _signed_or
	 _signed_and
	 _signed_xor

Input strings come in as unsigned but with prefix (i.e. as '123', '0xabc'
 or '0b1101').

So the library needs only to deal with unsigned big integers. Testing of input
 parameter validity is
done by the caller, so you need not worry about
 underflow (f.i. in _sub(), _dec()) nor about division
by zero or similar
 cases.

The first parameter can be modified, that includes the possibility that you
 return a reference to a
completely different object instead. Although keeping
 the reference and just changing its contents is
preferred over creating and
 returning a different reference.

Return values are always references to objects, strings, or true/false for
 comparison routines.

WRAP YOUR OWN
If you want to port your own favourite c-lib for big numbers to the
 Math::BigInt interface, you can take
any of the already existing modules as
 a rough guideline. You should really wrap up the latest BigInt
and BigFloat
 testsuites with your module, and replace in them any of the following:

	 use Math::BigInt;

by this:

	 use Math::BigInt lib => 'yourlib';

This way you ensure that your library really works 100% within Math::BigInt.

LICENSE
This program is free software; you may redistribute it and/or modify it under
 the same terms as Perl
itself.

AUTHORS
Original math code by Mark Biggar, rewritten by Tels http://bloodgate.com/
 in late 2000.
 Seperated
from BigInt and shaped API with the help of John Peacock.

Fixed, speed-up, streamlined and enhanced by Tels 2001 - 2007.

SEE ALSO
Math::BigInt, Math::BigFloat, Math::BigInt::GMP, Math::BigInt::FastCalc and Math::BigInt::Pari.

