
Perl version 5.12.0 documentation - perlxs

Page 1http://perldoc.perl.org

NAME
perlxs - XS language reference manual

DESCRIPTION
Introduction

XS is an interface description file format used to create an extension
 interface between Perl and C
code (or a C library) which one wishes
 to use with Perl. The XS interface is combined with the library
to
 create a new library which can then be either dynamically loaded
 or statically linked into perl. The
XS interface description is
 written in the XS language and is the core component of the Perl
 extension
interface.

An XSUB forms the basic unit of the XS interface. After compilation
 by the xsubpp compiler, each
XSUB amounts to a C function definition
 which will provide the glue between Perl calling conventions
and C
 calling conventions.

The glue code pulls the arguments from the Perl stack, converts these
 Perl values to the formats
expected by a C function, call this C function,
 transfers the return values of the C function back to
Perl.
 Return values here may be a conventional C return value or any C
 function arguments that may
serve as output parameters. These return
 values may be passed back to Perl either by putting them
on the
 Perl stack, or by modifying the arguments supplied from the Perl side.

The above is a somewhat simplified view of what really happens. Since
 Perl allows more flexible
calling conventions than C, XSUBs may do much
 more in practice, such as checking input
parameters for validity,
 throwing exceptions (or returning undef/empty list) if the return value
 from the
C function indicates failure, calling different C functions
 based on numbers and types of the
arguments, providing an object-oriented
 interface, etc.

Of course, one could write such glue code directly in C. However, this
 would be a tedious task,
especially if one needs to write glue for
 multiple C functions, and/or one is not familiar enough with the
Perl
 stack discipline and other such arcana. XS comes to the rescue here:
 instead of writing this glue
C code in long-hand, one can write
 a more concise short-hand description of what should be done by

the glue, and let the XS compiler xsubpp handle the rest.

The XS language allows one to describe the mapping between how the C
 routine is used, and how
the corresponding Perl routine is used. It
 also allows creation of Perl routines which are directly
translated to
 C code and which are not related to a pre-existing C function. In cases
 when the C
interface coincides with the Perl interface, the XSUB
 declaration is almost identical to a declaration of
a C function (in K&R
 style). In such circumstances, there is another tool called h2xs
 that is able to
translate an entire C header file into a corresponding
 XS file that will provide glue to the
functions/macros described in
 the header file.

The XS compiler is called xsubpp. This compiler creates
 the constructs necessary to let an XSUB
manipulate Perl values, and
 creates the glue necessary to let Perl call the XSUB. The compiler
 uses
typemaps to determine how to map C function parameters
 and output values to Perl values and
back. The default typemap
 (which comes with Perl) handles many common C types. A supplementary
typemap may also be needed to handle any special structures and types
 for the library being linked.

A file in XS format starts with a C language section which goes until the
 first MODULE = directive.
Other XS directives and XSUB definitions
 may follow this line. The "language" used in this part of the
file
 is usually referred to as the XS language. xsubpp recognizes and
 skips POD (see perlpod) in
both the C and XS language sections, which
 allows the XS file to contain embedded documentation.

See perlxstut for a tutorial on the whole extension creation process.

Note: For some extensions, Dave Beazley's SWIG system may provide a
 significantly more
convenient mechanism for creating the extension
 glue code. See http://www.swig.org/ for more
information.

Perl version 5.12.0 documentation - perlxs

Page 2http://perldoc.perl.org

On The Road
Many of the examples which follow will concentrate on creating an interface
 between Perl and the
ONC+ RPC bind library functions. The rpcb_gettime()
 function is used to demonstrate many features
of the XS language. This
 function has two parameters; the first is an input parameter and the second

is an output parameter. The function also returns a status value.

	 bool_t rpcb_gettime(const char *host, time_t *timep);

From C this function will be called with the following
 statements.

 #include <rpc/rpc.h>
 bool_t status;
 time_t timep;
 status = rpcb_gettime("localhost", &timep);

If an XSUB is created to offer a direct translation between this function
 and Perl, then this XSUB will
be used from Perl with the following code.
 The $status and $timep variables will contain the output of
the function.

 use RPC;
 $status = rpcb_gettime("localhost", $timep);

The following XS file shows an XS subroutine, or XSUB, which
 demonstrates one possible interface
to the rpcb_gettime()
 function. This XSUB represents a direct translation between
 C and Perl and so
preserves the interface even from Perl.
 This XSUB will be invoked from Perl with the usage shown

above. Note that the first three #include statements, for EXTERN.h, perl.h, and XSUB.h, will always
be present at the
 beginning of an XS file. This approach and others will be
 expanded later in this
document.

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"
 #include <rpc/rpc.h>

 MODULE = RPC PACKAGE = RPC

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
 OUTPUT:
 timep

Any extension to Perl, including those containing XSUBs,
 should have a Perl module to serve as the
bootstrap which
 pulls the extension into Perl. This module will export the
 extension's functions and
variables to the Perl program and
 will cause the extension's XSUBs to be linked into Perl.
 The
following module will be used for most of the examples
 in this document and should be used from Perl
with the use
 command as shown earlier. Perl modules are explained in
 more detail later in this
document.

 package RPC;

 require Exporter;
 require DynaLoader;
 @ISA = qw(Exporter DynaLoader);

Perl version 5.12.0 documentation - perlxs

Page 3http://perldoc.perl.org

 @EXPORT = qw(rpcb_gettime);

 bootstrap RPC;
 1;

Throughout this document a variety of interfaces to the rpcb_gettime()
 XSUB will be explored. The
XSUBs will take their parameters in different
 orders or will take different numbers of parameters. In
each case the
 XSUB is an abstraction between Perl and the real C rpcb_gettime()
 function, and the
XSUB must always ensure that the real rpcb_gettime()
 function is called with the correct parameters.
This abstraction will
 allow the programmer to create a more Perl-like interface to the C
 function.

The Anatomy of an XSUB
The simplest XSUBs consist of 3 parts: a description of the return
 value, the name of the XSUB
routine and the names of its arguments,
 and a description of types or formats of the arguments.

The following XSUB allows a Perl program to access a C library function
 called sin(). The XSUB will
imitate the C function which takes a single
 argument and returns a single value.

 double
 sin(x)
 double x

Optionally, one can merge the description of types and the list of
 argument names, rewriting this as

 double
 sin(double x)

This makes this XSUB look similar to an ANSI C declaration. An optional
 semicolon is allowed after
the argument list, as in

 double
 sin(double x);

Parameters with C pointer types can have different semantic: C functions
 with similar declarations

 bool string_looks_as_a_number(char *s);
 bool make_char_uppercase(char *c);

are used in absolutely incompatible manner. Parameters to these functions
 could be described
xsubpp like this:

 char * s
 char &c

Both these XS declarations correspond to the char* C type, but they have
 different semantics, see
The & Unary Operator.

It is convenient to think that the indirection operator * should be considered as a part of the type and
the address operator &
 should be considered part of the variable. See The Typemap
 for more info
about handling qualifiers and unary operators in C types.

The function name and the return type must be placed on
 separate lines and should be flush
left-adjusted.

 INCORRECT CORRECT

Perl version 5.12.0 documentation - perlxs

Page 4http://perldoc.perl.org

 double sin(x) double
 double x sin(x)
				 double x

The rest of the function description may be indented or left-adjusted. The
 following example shows a
function with its body left-adjusted. Most
 examples in this document will indent the body for better
readability.

 CORRECT

 double
 sin(x)
 double x

More complicated XSUBs may contain many other sections. Each section of
 an XSUB starts with the
corresponding keyword, such as INIT: or CLEANUP:.
 However, the first two lines of an XSUB always
contain the same data:
 descriptions of the return type and the names of the function and its

parameters. Whatever immediately follows these is considered to be
 an INPUT: section unless
explicitly marked with another keyword.
 (See The INPUT: Keyword.)

An XSUB section continues until another section-start keyword is found.

The Argument Stack
The Perl argument stack is used to store the values which are
 sent as parameters to the XSUB and to
store the XSUB's
 return value(s). In reality all Perl functions (including non-XSUB
 ones) keep their
values on this stack all the same time, each limited
 to its own range of positions on the stack. In this
document the
 first position on that stack which belongs to the active
 function will be referred to as
position 0 for that function.

XSUBs refer to their stack arguments with the macro ST(x), where x
 refers to a position in this
XSUB's part of the stack. Position 0 for that
 function would be known to the XSUB as ST(0). The
XSUB's incoming
 parameters and outgoing return values always begin at ST(0). For many
 simple
cases the xsubpp compiler will generate the code necessary to
 handle the argument stack by
embedding code fragments found in the
 typemaps. In more complex cases the programmer must
supply the code.

The RETVAL Variable
The RETVAL variable is a special C variable that is declared automatically
 for you. The C type of
RETVAL matches the return type of the C library
 function. The xsubpp compiler will declare this
variable in each XSUB
 with non-void return type. By default the generated C function
 will use
RETVAL to hold the return value of the C library function being
 called. In simple cases the value of
RETVAL will be placed in ST(0) of
 the argument stack where it can be received by Perl as the return
value
 of the XSUB.

If the XSUB has a return type of void then the compiler will
 not declare a RETVAL variable for that
function. When using
 a PPCODE: section no manipulation of the RETVAL variable is required, the

section may use direct stack manipulation to place output values on the stack.

If PPCODE: directive is not used, void return value should be used
 only for subroutines which do not
return a value, even if CODE:
 directive is used which sets ST(0) explicitly.

Older versions of this document recommended to use void return
 value in such cases. It was
discovered that this could lead to
 segfaults in cases when XSUB was truly void. This practice is
 now
deprecated, and may be not supported at some future version. Use
 the return value SV * in such
cases. (Currently xsubpp contains
 some heuristic code which tries to disambiguate between
"truly-void"
 and "old-practice-declared-as-void" functions. Hence your code is at
 mercy of this
heuristics unless you use SV * as return value.)

Perl version 5.12.0 documentation - perlxs

Page 5http://perldoc.perl.org

Returning SVs, AVs and HVs through RETVAL
When you're using RETVAL to return an SV *, there's some magic
 going on behind the scenes that
should be mentioned. When you're
 manipulating the argument stack using the ST(x) macro, for
example,
 you usually have to pay special attention to reference counts. (For
 more about reference
counts, see perlguts.) To make your life
 easier, the typemap file automatically makes RETVAL mortal
when
 you're returning an SV *. Thus, the following two XSUBs are more
 or less equivalent:

 void
 alpha()
 PPCODE:
 ST(0) = newSVpv("Hello World",0);
 sv_2mortal(ST(0));
 XSRETURN(1);

 SV *
 beta()
 CODE:
 RETVAL = newSVpv("Hello World",0);
 OUTPUT:
 RETVAL

This is quite useful as it usually improves readability. While
 this works fine for an SV *, it's
unfortunately not as easy
 to have AV * or HV * as a return value. You should be
 able to write:

 AV *
 array()
 CODE:
 RETVAL = newAV();
 /* do something with RETVAL */
 OUTPUT:
 RETVAL

But due to an unfixable bug (fixing it would break lots of existing
 CPAN modules) in the typemap file,
the reference count of the AV *
 is not properly decremented. Thus, the above XSUB would leak
memory
 whenever it is being called. The same problem exists for HV *.

When you're returning an AV * or a HV *, you have to make sure
 their reference count is
decremented by making the AV or HV mortal:

 AV *
 array()
 CODE:
 RETVAL = newAV();
 sv_2mortal((SV*)RETVAL);
 /* do something with RETVAL */
 OUTPUT:
 RETVAL

And also remember that you don't have to do this for an SV *.

The MODULE Keyword
The MODULE keyword is used to start the XS code and to specify the package
 of the functions which
are being defined. All text preceding the first
 MODULE keyword is considered C code and is passed
through to the output with
 POD stripped, but otherwise untouched. Every XS module will have a

bootstrap function which is used to hook the XSUBs into Perl. The package
 name of this bootstrap
function will match the value of the last MODULE
 statement in the XS source files. The value of

Perl version 5.12.0 documentation - perlxs

Page 6http://perldoc.perl.org

MODULE should always remain
 constant within the same XS file, though this is not required.

The following example will start the XS code and will place
 all functions in a package named RPC.

 MODULE = RPC

The PACKAGE Keyword
When functions within an XS source file must be separated into packages
 the PACKAGE keyword
should be used. This keyword is used with the MODULE
 keyword and must follow immediately after it
when used.

 MODULE = RPC PACKAGE = RPC

 [XS code in package RPC]

 MODULE = RPC PACKAGE = RPCB

 [XS code in package RPCB]

 MODULE = RPC PACKAGE = RPC

 [XS code in package RPC]

The same package name can be used more than once, allowing for
 non-contiguous code. This is
useful if you have a stronger ordering
 principle than package names.

Although this keyword is optional and in some cases provides redundant
 information it should always
be used. This keyword will ensure that the
 XSUBs appear in the desired package.

The PREFIX Keyword
The PREFIX keyword designates prefixes which should be
 removed from the Perl function names. If
the C function is rpcb_gettime() and the PREFIX value is rpcb_ then Perl will
 see this function as
gettime().

This keyword should follow the PACKAGE keyword when used.
 If PACKAGE is not used then
PREFIX should follow the MODULE
 keyword.

 MODULE = RPC PREFIX = rpc_

 MODULE = RPC PACKAGE = RPCB PREFIX = rpcb_

The OUTPUT: Keyword
The OUTPUT: keyword indicates that certain function parameters should be
 updated (new values
made visible to Perl) when the XSUB terminates or that
 certain values should be returned to the
calling Perl function. For
 simple functions which have no CODE: or PPCODE: section,
 such as the
sin() function above, the RETVAL variable is
 automatically designated as an output value. For more
complex functions
 the xsubpp compiler will need help to determine which variables are output

variables.

This keyword will normally be used to complement the CODE: keyword.
 The RETVAL variable is not
recognized as an output variable when the
 CODE: keyword is present. The OUTPUT: keyword is
used in this
 situation to tell the compiler that RETVAL really is an output
 variable.

The OUTPUT: keyword can also be used to indicate that function parameters
 are output variables.
This may be necessary when a parameter has been
 modified within the function and the programmer

Perl version 5.12.0 documentation - perlxs

Page 7http://perldoc.perl.org

would like the update to
 be seen by Perl.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
 OUTPUT:
 timep

The OUTPUT: keyword will also allow an output parameter to
 be mapped to a matching piece of code
rather than to a
 typemap.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
 OUTPUT:
 timep sv_setnv(ST(1), (double)timep);

xsubpp emits an automatic SvSETMAGIC() for all parameters in the
 OUTPUT section of the XSUB,
except RETVAL. This is the usually desired
 behavior, as it takes care of properly invoking 'set' magic
on output
 parameters (needed for hash or array element parameters that must be
 created if they
didn't exist). If for some reason, this behavior is
 not desired, the OUTPUT section may contain a
SETMAGIC: DISABLE line
 to disable it for the remainder of the parameters in the OUTPUT section.

Likewise, SETMAGIC: ENABLE can be used to reenable it for the
 remainder of the OUTPUT section.
See perlguts for more details
 about 'set' magic.

The NO_OUTPUT Keyword
The NO_OUTPUT can be placed as the first token of the XSUB. This keyword
 indicates that while the
C subroutine we provide an interface to has
 a non-void return type, the return value of this C
subroutine should not
 be returned from the generated Perl subroutine.

With this keyword present The RETVAL Variable is created, and in the
 generated call to the
subroutine this variable is assigned to, but the value
 of this variable is not going to be used in the
auto-generated code.

This keyword makes sense only if RETVAL is going to be accessed by the
 user-supplied code. It is
especially useful to make a function interface
 more Perl-like, especially when the C return value is just
an error condition
 indicator. For example,

 NO_OUTPUT int
 delete_file(char *name)
 POSTCALL:
 if (RETVAL != 0)
	 croak("Error %d while deleting file '%s'", RETVAL, name);

Here the generated XS function returns nothing on success, and will die()
 with a meaningful error
message on error.

The CODE: Keyword
This keyword is used in more complicated XSUBs which require
 special handling for the C function.
The RETVAL variable is
 still declared, but it will not be returned unless it is specified
 in the OUTPUT:
section.

The following XSUB is for a C function which requires special handling of
 its parameters. The Perl
usage is given first.

Perl version 5.12.0 documentation - perlxs

Page 8http://perldoc.perl.org

 $status = rpcb_gettime("localhost", $timep);

The XSUB follows.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t timep
 CODE:
 RETVAL = rpcb_gettime(host, &timep);
 OUTPUT:
 timep
 RETVAL

The INIT: Keyword
The INIT: keyword allows initialization to be inserted into the XSUB before
 the compiler generates the
call to the C function. Unlike the CODE: keyword
 above, this keyword does not affect the way the
compiler handles RETVAL.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
	 INIT:
	 printf("# Host is %s\n", host);
 OUTPUT:
 timep

Another use for the INIT: section is to check for preconditions before
 making a call to the C function:

 long long
 lldiv(a,b)
	 long long a
	 long long b
 INIT:
	 if (a == 0 && b == 0)
	 XSRETURN_UNDEF;
	 if (b == 0)
	 croak("lldiv: cannot divide by 0");

The NO_INIT Keyword
The NO_INIT keyword is used to indicate that a function
 parameter is being used only as an output
value. The xsubpp
 compiler will normally generate code to read the values of
 all function parameters
from the argument stack and assign
 them to C variables upon entry to the function. NO_INIT
 will tell
the compiler that some parameters will be used for
 output rather than for input and that they will be
handled
 before the function terminates.

The following example shows a variation of the rpcb_gettime() function.
 This function uses the timep
variable only as an output variable and does
 not care about its initial contents.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep = NO_INIT
 OUTPUT:
 timep

Perl version 5.12.0 documentation - perlxs

Page 9http://perldoc.perl.org

Initializing Function Parameters
C function parameters are normally initialized with their values from
 the argument stack (which in turn
contains the parameters that were
 passed to the XSUB from Perl). The typemaps contain the
 code
segments which are used to translate the Perl values to
 the C parameters. The programmer,
however, is allowed to
 override the typemaps and supply alternate (or additional)
 initialization code.
Initialization code starts with the first =, ; or + on a line in the INPUT: section. The only
 exception
happens if this ; terminates the line, then this ;
 is quietly ignored.

The following code demonstrates how to supply initialization code for
 function parameters. The
initialization code is eval'ed within double
 quotes by the compiler before it is added to the output so
anything
 which should be interpreted literally [mainly $, @, or \\]
 must be protected with backslashes.
The variables $var, $arg,
 and $type can be used as in typemaps.

 bool_t
 rpcb_gettime(host,timep)
 char *host = (char *)SvPV_nolen($arg);
 time_t &timep = 0;
 OUTPUT:
 timep

This should not be used to supply default values for parameters. One
 would normally use this when a
function parameter must be processed by
 another library function before it can be used. Default
parameters are
 covered in the next section.

If the initialization begins with =, then it is output in
 the declaration for the input variable, replacing the
initialization
 supplied by the typemap. If the initialization
 begins with ; or +, then it is performed after

all of the input variables have been declared. In the ;
 case the initialization normally supplied by the
typemap is not performed.
 For the + case, the declaration for the variable will include the
 initialization
from the typemap. A global
 variable, %v, is available for the truly rare case where
 information from
one initialization is needed in another
 initialization.

Here's a truly obscure example:

 bool_t
 rpcb_gettime(host,timep)
 time_t &timep; /* \$v{timep}=@{[$v{timep}=$arg]} */
 char *host + SvOK($v{timep}) ? SvPV_nolen($arg) : NULL;
 OUTPUT:
 timep

The construct \$v{timep}=@{[$v{timep}=$arg]} used in the above
 example has a two-fold
purpose: first, when this line is processed by xsubpp, the Perl snippet $v{timep}=$arg is
evaluated. Second,
 the text of the evaluated snippet is output into the generated C file
 (inside a C
comment)! During the processing of char *host line,
 $arg will evaluate to ST(0), and $v{timep}
will evaluate to ST(1).

Default Parameter Values
Default values for XSUB arguments can be specified by placing an
 assignment statement in the
parameter list. The default value may
 be a number, a string or the special string NO_INIT. Defaults
should
 always be used on the right-most parameters only.

To allow the XSUB for rpcb_gettime() to have a default host
 value the parameters to the XSUB could
be rearranged. The
 XSUB will then call the real rpcb_gettime() function with
 the parameters in the
correct order. This XSUB can be called
 from Perl with either of the following statements:

 $status = rpcb_gettime($timep, $host);

Perl version 5.12.0 documentation - perlxs

Page 10http://perldoc.perl.org

 $status = rpcb_gettime($timep);

The XSUB will look like the code which follows. A CODE:
 block is used to call the real rpcb_gettime()
function with
 the parameters in the correct order for that function.

 bool_t
 rpcb_gettime(timep,host="localhost")
 char *host
 time_t timep = NO_INIT
 CODE:
 RETVAL = rpcb_gettime(host, &timep);
 OUTPUT:
 timep
 RETVAL

The PREINIT: Keyword
The PREINIT: keyword allows extra variables to be declared immediately
 before or after the
declarations of the parameters from the INPUT: section
 are emitted.

If a variable is declared inside a CODE: section it will follow any typemap
 code that is emitted for the
input parameters. This may result in the
 declaration ending up after C code, which is C syntax error.
Similar
 errors may happen with an explicit ;-type or +-type initialization of
 parameters is used (see
Initializing Function Parameters). Declaring
 these variables in an INIT: section will not help.

In such cases, to force an additional variable to be declared together
 with declarations of other
variables, place the declaration into a
 PREINIT: section. The PREINIT: keyword may be used one or
more times
 within an XSUB.

The following examples are equivalent, but if the code is using complex
 typemaps then the first
example is safer.

 bool_t
 rpcb_gettime(timep)
 time_t timep = NO_INIT
	 PREINIT:
 char *host = "localhost";
 CODE:
	 RETVAL = rpcb_gettime(host, &timep);
 OUTPUT:
 timep
 RETVAL

For this particular case an INIT: keyword would generate the
 same C code as the PREINIT: keyword.
Another correct, but error-prone example:

 bool_t
 rpcb_gettime(timep)
 time_t timep = NO_INIT
	 CODE:
 char *host = "localhost";
	 RETVAL = rpcb_gettime(host, &timep);
 OUTPUT:
 timep
 RETVAL

Another way to declare host is to use a C block in the CODE: section:

Perl version 5.12.0 documentation - perlxs

Page 11http://perldoc.perl.org

 bool_t
 rpcb_gettime(timep)
 time_t timep = NO_INIT
	 CODE:
	 {
 char *host = "localhost";
	 RETVAL = rpcb_gettime(host, &timep);
	 }
 OUTPUT:
 timep
 RETVAL

The ability to put additional declarations before the typemap entries are
 processed is very handy in
the cases when typemap conversions manipulate
 some global state:

 MyObject
 mutate(o)
	 PREINIT:
	 MyState st = global_state;
	 INPUT:
	 MyObject o;
	 CLEANUP:
	 reset_to(global_state, st);

Here we suppose that conversion to MyObject in the INPUT: section and from
 MyObject when
processing RETVAL will modify a global variable global_state.
 After these conversions are
performed, we restore the old value of global_state (to avoid memory leaks, for example).

There is another way to trade clarity for compactness: INPUT sections allow
 declaration of C
variables which do not appear in the parameter list of
 a subroutine. Thus the above code for mutate()
can be rewritten as

 MyObject
 mutate(o)
	 MyState st = global_state;
	 MyObject o;
	 CLEANUP:
	 reset_to(global_state, st);

and the code for rpcb_gettime() can be rewritten as

 bool_t
 rpcb_gettime(timep)
	 time_t timep = NO_INIT
	 char *host = "localhost";
	 C_ARGS:
	 host, &timep
	 OUTPUT:
 timep
 RETVAL

The SCOPE: Keyword
The SCOPE: keyword allows scoping to be enabled for a particular XSUB. If
 enabled, the XSUB will
invoke ENTER and LEAVE automatically.

To support potentially complex type mappings, if a typemap entry used
 by an XSUB contains a

Perl version 5.12.0 documentation - perlxs

Page 12http://perldoc.perl.org

comment like /*scope*/ then scoping will
 be automatically enabled for that XSUB.

To enable scoping:

 SCOPE: ENABLE

To disable scoping:

 SCOPE: DISABLE

The INPUT: Keyword
The XSUB's parameters are usually evaluated immediately after entering the
 XSUB. The INPUT:
keyword can be used to force those parameters to be
 evaluated a little later. The INPUT: keyword can
be used multiple times
 within an XSUB and can be used to list one or more input variables. This

keyword is used with the PREINIT: keyword.

The following example shows how the input parameter timep can be
 evaluated late, after a PREINIT.

 bool_t
 rpcb_gettime(host,timep)
 char *host
	 PREINIT:
	 time_t tt;
	 INPUT:
 time_t timep
 CODE:
 RETVAL = rpcb_gettime(host, &tt);
	 timep = tt;
 OUTPUT:
 timep
 RETVAL

The next example shows each input parameter evaluated late.

 bool_t
 rpcb_gettime(host,timep)
	 PREINIT:
	 time_t tt;
	 INPUT:
 char *host
	 PREINIT:
	 char *h;
	 INPUT:
 time_t timep
 CODE:
	 h = host;
	 RETVAL = rpcb_gettime(h, &tt);
	 timep = tt;
 OUTPUT:
 timep
 RETVAL

Since INPUT sections allow declaration of C variables which do not appear
 in the parameter list of a
subroutine, this may be shortened to:

 bool_t
 rpcb_gettime(host,timep)

Perl version 5.12.0 documentation - perlxs

Page 13http://perldoc.perl.org

	 time_t tt;
 char *host;
	 char *h = host;
 time_t timep;
 CODE:
	 RETVAL = rpcb_gettime(h, &tt);
	 timep = tt;
 OUTPUT:
 timep
 RETVAL

(We used our knowledge that input conversion for char * is a "simple" one,
 thus host is initialized
on the declaration line, and our assignment h = host is not performed too early. Otherwise one
would need to have the
 assignment h = host in a CODE: or INIT: section.)

The IN/OUTLIST/IN_OUTLIST/OUT/IN_OUT Keywords
In the list of parameters for an XSUB, one can precede parameter names
 by the IN/OUTLIST/
IN_OUTLIST/OUT/IN_OUT keywords. IN keyword is the default, the other keywords indicate how the
Perl
 interface should differ from the C interface.

Parameters preceded by OUTLIST/IN_OUTLIST/OUT/IN_OUT
 keywords are considered to be used
by the C subroutine via
 pointers. OUTLIST/OUT keywords indicate that the C subroutine
 does not
inspect the memory pointed by this parameter, but will write
 through this pointer to provide additional
return values.

Parameters preceded by OUTLIST keyword do not appear in the usage
 signature of the generated
Perl function.

Parameters preceded by IN_OUTLIST/IN_OUT/OUT do appear as
 parameters to the Perl function.
With the exception of OUT-parameters, these parameters are converted to the corresponding
 C type,
then pointers to these data are given as arguments to the C
 function. It is expected that the C function
will write through these
 pointers.

The return list of the generated Perl function consists of the C return value
 from the function (unless
the XSUB is of void return type or The NO_OUTPUT Keyword was used) followed by all the
OUTLIST
 and IN_OUTLIST parameters (in the order of appearance). On the
 return from the XSUB
the IN_OUT/OUT Perl parameter will be
 modified to have the values written by the C function.

For example, an XSUB

 void
 day_month(OUTLIST day, IN unix_time, OUTLIST month)
 int day
 int unix_time
 int month

should be used from Perl as

 my ($day, $month) = day_month(time);

The C signature of the corresponding function should be

 void day_month(int *day, int unix_time, int *month);

The IN/OUTLIST/IN_OUTLIST/IN_OUT/OUT keywords can be
 mixed with ANSI-style declarations, as
in

 void

Perl version 5.12.0 documentation - perlxs

Page 14http://perldoc.perl.org

 day_month(OUTLIST int day, int unix_time, OUTLIST int month)

(here the optional IN keyword is omitted).

The IN_OUT parameters are identical with parameters introduced with The & Unary Operator and put
into the OUTPUT: section (see The OUTPUT: Keyword). The IN_OUTLIST parameters are very
similar,
 the only difference being that the value C function writes through the
 pointer would not modify
the Perl parameter, but is put in the output
 list.

The OUTLIST/OUT parameter differ from IN_OUTLIST/IN_OUT
 parameters only by the initial value of
the Perl parameter not
 being read (and not being given to the C function - which gets some
 garbage
instead). For example, the same C function as above can be
 interfaced with as

 void day_month(OUT int day, int unix_time, OUT int month);

or

 void
 day_month(day, unix_time, month)
 int &day = NO_INIT
 int unix_time
 int &month = NO_INIT
 OUTPUT:
 day
 month

However, the generated Perl function is called in very C-ish style:

 my ($day, $month);
 day_month($day, time, $month);

The length(NAME) Keyword
If one of the input arguments to the C function is the length of a string
 argument NAME, one can
substitute the name of the length-argument by length(NAME) in the XSUB declaration. This
argument must be omitted when
 the generated Perl function is called. E.g.,

 void
 dump_chars(char *s, short l)
 {
 short n = 0;
 while (n < l) {
 printf("s[%d] = \"\\%#03o\"\n", n, (int)s[n]);
 n++;
 }
 }

 MODULE = x		 PACKAGE = x

 void dump_chars(char *s, short length(s))

should be called as dump_chars($string).

This directive is supported with ANSI-type function declarations only.

Perl version 5.12.0 documentation - perlxs

Page 15http://perldoc.perl.org

Variable-length Parameter Lists
XSUBs can have variable-length parameter lists by specifying an ellipsis (...) in the parameter list.
This use of the ellipsis is similar to that
 found in ANSI C. The programmer is able to determine the
number of
 arguments passed to the XSUB by examining the items variable which the xsubpp
compiler supplies for all XSUBs. By using this mechanism one can
 create an XSUB which accepts a
list of parameters of unknown length.

The host parameter for the rpcb_gettime() XSUB can be
 optional so the ellipsis can be used to
indicate that the
 XSUB will take a variable number of parameters. Perl should
 be able to call this
XSUB with either of the following statements.

 $status = rpcb_gettime($timep, $host);

 $status = rpcb_gettime($timep);

The XS code, with ellipsis, follows.

 bool_t
 rpcb_gettime(timep, ...)
 time_t timep = NO_INIT
	 PREINIT:
 char *host = "localhost";
 CODE:
	 if(items > 1)
	 host = (char *)SvPV_nolen(ST(1));
	 RETVAL = rpcb_gettime(host, &timep);
 OUTPUT:
 timep
 RETVAL

The C_ARGS: Keyword
The C_ARGS: keyword allows creating of XSUBS which have different
 calling sequence from Perl
than from C, without a need to write
 CODE: or PPCODE: section. The contents of the C_ARGS:
paragraph is
 put as the argument to the called C function without any change.

For example, suppose that a C function is declared as

 symbolic nth_derivative(int n, symbolic function, int flags);

and that the default flags are kept in a global C variable default_flags. Suppose that you want to
create an interface which
 is called as

 $second_deriv = $function->nth_derivative(2);

To do this, declare the XSUB as

 symbolic
 nth_derivative(function, n)
	 symbolic	 function
	 int		 n
 C_ARGS:
	 n, function, default_flags

Perl version 5.12.0 documentation - perlxs

Page 16http://perldoc.perl.org

The PPCODE: Keyword
The PPCODE: keyword is an alternate form of the CODE: keyword and is used
 to tell the xsubpp
compiler that the programmer is supplying the code to
 control the argument stack for the XSUBs
return values. Occasionally one
 will want an XSUB to return a list of values rather than a single value.

In these cases one must use PPCODE: and then explicitly push the list of
 values on the stack. The
PPCODE: and CODE: keywords should not be used
 together within the same XSUB.

The actual difference between PPCODE: and CODE: sections is in the
 initialization of SP macro
(which stands for the current Perl
 stack pointer), and in the handling of data on the stack when
returning
 from an XSUB. In CODE: sections SP preserves the value which was on
 entry to the XSUB:
SP is on the function pointer (which follows the
 last parameter). In PPCODE: sections SP is moved
backward to the
 beginning of the parameter list, which allows PUSH*() macros
 to place output values
in the place Perl expects them to be when
 the XSUB returns back to Perl.

The generated trailer for a CODE: section ensures that the number of return
 values Perl will see is
either 0 or 1 (depending on the voidness of the
 return value of the C function, and heuristics
mentioned in The RETVAL Variable). The trailer generated for a PPCODE: section
 is based on the
number of return values and on the number of times SP was updated by [X]PUSH*() macros.

Note that macros ST(i), XST_m*() and XSRETURN*() work equally
 well in CODE: sections and
PPCODE: sections.

The following XSUB will call the C rpcb_gettime() function
 and will return its two output values, timep
and status, to
 Perl as a single list.

 void
 rpcb_gettime(host)
 char *host
	 PREINIT:
 time_t timep;
 bool_t status;
 PPCODE:
 status = rpcb_gettime(host, &timep);
 EXTEND(SP, 2);
 PUSHs(sv_2mortal(newSViv(status)));
 PUSHs(sv_2mortal(newSViv(timep)));

Notice that the programmer must supply the C code necessary
 to have the real rpcb_gettime()
function called and to have
 the return values properly placed on the argument stack.

The void return type for this function tells the xsubpp compiler that
 the RETVAL variable is not
needed or used and that it should not be created.
 In most scenarios the void return type should be
used with the PPCODE:
 directive.

The EXTEND() macro is used to make room on the argument
 stack for 2 return values. The
PPCODE: directive causes the xsubpp compiler to create a stack pointer available as SP, and it
 is
this pointer which is being used in the EXTEND() macro.
 The values are then pushed onto the stack
with the PUSHs()
 macro.

Now the rpcb_gettime() function can be used from Perl with
 the following statement.

 ($status, $timep) = rpcb_gettime("localhost");

When handling output parameters with a PPCODE section, be sure to handle
 'set' magic properly.
See perlguts for details about 'set' magic.

Perl version 5.12.0 documentation - perlxs

Page 17http://perldoc.perl.org

Returning Undef And Empty Lists
Occasionally the programmer will want to return simply undef or an empty list if a function fails rather
than a
 separate status value. The rpcb_gettime() function offers
 just this situation. If the function
succeeds we would like
 to have it return the time and if it fails we would like to
 have undef returned. In
the following Perl code the value
 of $timep will either be undef or it will be a valid time.

 $timep = rpcb_gettime("localhost");

The following XSUB uses the SV * return type as a mnemonic only,
 and uses a CODE: block to
indicate to the compiler
 that the programmer has supplied all the necessary code. The

sv_newmortal() call will initialize the return value to undef, making that
 the default return value.

 SV *
 rpcb_gettime(host)
 char * host
	 PREINIT:
 time_t timep;
 bool_t x;
 CODE:
 ST(0) = sv_newmortal();
 if(rpcb_gettime(host, &timep))
 sv_setnv(ST(0), (double)timep);

The next example demonstrates how one would place an explicit undef in the
 return value, should the
need arise.

 SV *
 rpcb_gettime(host)
 char * host
	 PREINIT:
 time_t timep;
 bool_t x;
 CODE:
 if(rpcb_gettime(host, &timep)){
 ST(0) = sv_newmortal();
 sv_setnv(ST(0), (double)timep);
 }
 else{
 ST(0) = &PL_sv_undef;
 }

To return an empty list one must use a PPCODE: block and
 then not push return values on the stack.

 void
 rpcb_gettime(host)
 char *host
	 PREINIT:
 time_t timep;
 PPCODE:
 if(rpcb_gettime(host, &timep))
 PUSHs(sv_2mortal(newSViv(timep)));
 else{
	 /* Nothing pushed on stack, so an empty
	 * list is implicitly returned. */
 }

Perl version 5.12.0 documentation - perlxs

Page 18http://perldoc.perl.org

Some people may be inclined to include an explicit return in the above
 XSUB, rather than letting
control fall through to the end. In those
 situations XSRETURN_EMPTY should be used, instead. This
will ensure that
 the XSUB stack is properly adjusted. Consult perlapi for other XSRETURN macros.

Since XSRETURN_* macros can be used with CODE blocks as well, one can
 rewrite this example as:

 int
 rpcb_gettime(host)
 char *host
	 PREINIT:
 time_t timep;
 CODE:
 RETVAL = rpcb_gettime(host, &timep);
	 if (RETVAL == 0)
		 XSRETURN_UNDEF;
	 OUTPUT:
	 RETVAL

In fact, one can put this check into a POSTCALL: section as well. Together
 with PREINIT:
simplifications, this leads to:

 int
 rpcb_gettime(host)
 char *host
 time_t timep;
	 POSTCALL:
	 if (RETVAL == 0)
		 XSRETURN_UNDEF;

The REQUIRE: Keyword
The REQUIRE: keyword is used to indicate the minimum version of the xsubpp compiler needed to
compile the XS module. An XS module which
 contains the following statement will compile with only
xsubpp version
 1.922 or greater:

	 REQUIRE: 1.922

The CLEANUP: Keyword
This keyword can be used when an XSUB requires special cleanup procedures
 before it terminates.
When the CLEANUP: keyword is used it must follow
 any CODE:, PPCODE:, or OUTPUT: blocks
which are present in the XSUB. The
 code specified for the cleanup block will be added as the last
statements
 in the XSUB.

The POSTCALL: Keyword
This keyword can be used when an XSUB requires special procedures
 executed after the C
subroutine call is performed. When the POSTCALL:
 keyword is used it must precede OUTPUT: and
CLEANUP: blocks which are
 present in the XSUB.

See examples in The NO_OUTPUT Keyword and Returning Undef And Empty Lists.

The POSTCALL: block does not make a lot of sense when the C subroutine
 call is supplied by user
by providing either CODE: or PPCODE: section.

The BOOT: Keyword
The BOOT: keyword is used to add code to the extension's bootstrap
 function. The bootstrap function
is generated by the xsubpp compiler and
 normally holds the statements necessary to register any
XSUBs with Perl.
 With the BOOT: keyword the programmer can tell the compiler to add extra

Perl version 5.12.0 documentation - perlxs

Page 19http://perldoc.perl.org

statements to the bootstrap function.

This keyword may be used any time after the first MODULE keyword and should
 appear on a line by
itself. The first blank line after the keyword will
 terminate the code block.

 BOOT:
 # The following message will be printed when the
 # bootstrap function executes.
 printf("Hello from the bootstrap!\n");

The VERSIONCHECK: Keyword
The VERSIONCHECK: keyword corresponds to xsubpp's -versioncheck and -noversioncheck
options. This keyword overrides the command line
 options. Version checking is enabled by default.
When version checking is
 enabled the XS module will attempt to verify that its version matches the

version of the PM module.

To enable version checking:

 VERSIONCHECK: ENABLE

To disable version checking:

 VERSIONCHECK: DISABLE

Note that if the version of the PM module is an NV (a floating point
 number), it will be stringified with a
possible loss of precision
 (currently chopping to nine decimal places) so that it may not match
 the
version of the XS module anymore. Quoting the $VERSION declaration
 to make it a string is
recommended if long version numbers are used.

The PROTOTYPES: Keyword
The PROTOTYPES: keyword corresponds to xsubpp's -prototypes and -noprototypes
options. This keyword overrides the command line options.
 Prototypes are enabled by default. When
prototypes are enabled XSUBs will
 be given Perl prototypes. This keyword may be used multiple
times in an XS
 module to enable and disable prototypes for different parts of the module.

To enable prototypes:

 PROTOTYPES: ENABLE

To disable prototypes:

 PROTOTYPES: DISABLE

The PROTOTYPE: Keyword
This keyword is similar to the PROTOTYPES: keyword above but can be used to
 force xsubpp to use
a specific prototype for the XSUB. This keyword
 overrides all other prototype options and keywords
but affects only the
 current XSUB. Consult "Prototypes" in perlsub for information about Perl

prototypes.

 bool_t
 rpcb_gettime(timep, ...)
 time_t timep = NO_INIT
	 PROTOTYPE: $;$
	 PREINIT:
 char *host = "localhost";
 CODE:
		 if(items > 1)

Perl version 5.12.0 documentation - perlxs

Page 20http://perldoc.perl.org

		 host = (char *)SvPV_nolen(ST(1));
		 RETVAL = rpcb_gettime(host, &timep);
 OUTPUT:
 timep
 RETVAL

If the prototypes are enabled, you can disable it locally for a given
 XSUB as in the following example:

 void
 rpcb_gettime_noproto()
 PROTOTYPE: DISABLE
 ...

The ALIAS: Keyword
The ALIAS: keyword allows an XSUB to have two or more unique Perl names
 and to know which of
those names was used when it was invoked. The Perl
 names may be fully-qualified with package
names. Each alias is given an
 index. The compiler will setup a variable called ix which contain the

index of the alias which was used. When the XSUB is called with its
 declared name ix will be 0.

The following example will create aliases FOO::gettime() and BAR::getit() for this function.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
	 ALIAS:
	 FOO::gettime = 1
	 BAR::getit = 2
	 INIT:
	 printf("# ix = %d\n", ix);
 OUTPUT:
 timep

The OVERLOAD: Keyword
Instead of writing an overloaded interface using pure Perl, you
 can also use the OVERLOAD keyword
to define additional Perl names
 for your functions (like the ALIAS: keyword above). However, the

overloaded functions must be defined with three parameters (except
 for the nomethod() function
which needs four parameters). If any
 function has the OVERLOAD: keyword, several additional lines

will be defined in the c file generated by xsubpp in order to register with the overload magic.

Since blessed objects are actually stored as RV's, it is useful
 to use the typemap features to
preprocess parameters and extract
 the actual SV stored within the blessed RV. See the sample for

T_PTROBJ_SPECIAL below.

To use the OVERLOAD: keyword, create an XS function which takes
 three input parameters (or use
the c style '...' definition) like
 this:

 SV *
 cmp (lobj, robj, swap)
 My_Module_obj lobj
 My_Module_obj robj
 IV swap
 OVERLOAD: cmp <=>
 { /* function defined here */}

In this case, the function will overload both of the three way
 comparison operators. For all overload

Perl version 5.12.0 documentation - perlxs

Page 21http://perldoc.perl.org

operations using non-alpha
 characters, you must type the parameter without quoting, separating

multiple overloads with whitespace. Note that "" (the stringify overload) should be entered as \"\" (i.e.
escaped).

The FALLBACK: Keyword
In addition to the OVERLOAD keyword, if you need to control how
 Perl autogenerates missing
overloaded operators, you can set the
 FALLBACK keyword in the module header section, like this:

 MODULE = RPC PACKAGE = RPC

 FALLBACK: TRUE
 ...

where FALLBACK can take any of the three values TRUE, FALSE, or
 UNDEF. If you do not set any
FALLBACK value when using OVERLOAD,
 it defaults to UNDEF. FALLBACK is not used except
when one or more functions using OVERLOAD have been defined. Please see "Fallback" in overload
for more details.

The INTERFACE: Keyword
This keyword declares the current XSUB as a keeper of the given
 calling signature. If some text
follows this keyword, it is
 considered as a list of functions which have this signature, and
 should be
attached to the current XSUB.

For example, if you have 4 C functions multiply(), divide(), add(),
 subtract() all having the signature:

 symbolic f(symbolic, symbolic);

you can make them all to use the same XSUB using this:

 symbolic
 interface_s_ss(arg1, arg2)
	 symbolic	 arg1
	 symbolic	 arg2
 INTERFACE:
	 multiply divide
	 add subtract

(This is the complete XSUB code for 4 Perl functions!) Four generated
 Perl function share names with
corresponding C functions.

The advantage of this approach comparing to ALIAS: keyword is that there
 is no need to code a
switch statement, each Perl function (which shares
 the same XSUB) knows which C function it should
call. Additionally, one
 can attach an extra function remainder() at runtime by using

 CV *mycv = newXSproto("Symbolic::remainder",
			 XS_Symbolic_interface_s_ss, __FILE__, "$$");
 XSINTERFACE_FUNC_SET(mycv, remainder);

say, from another XSUB. (This example supposes that there was no
 INTERFACE_MACRO: section,
otherwise one needs to use something else instead of XSINTERFACE_FUNC_SET, see the next
section.)

The INTERFACE_MACRO: Keyword
This keyword allows one to define an INTERFACE using a different way
 to extract a function pointer
from an XSUB. The text which follows
 this keyword should give the name of macros which would
extract/set a
 function pointer. The extractor macro is given return type, CV*,
 and XSANY.any_dptr

Perl version 5.12.0 documentation - perlxs

Page 22http://perldoc.perl.org

for this CV*. The setter macro is given cv,
 and the function pointer.

The default value is XSINTERFACE_FUNC and XSINTERFACE_FUNC_SET.
 An INTERFACE keyword
with an empty list of functions can be omitted if
 INTERFACE_MACRO keyword is used.

Suppose that in the previous example functions pointers for multiply(), divide(), add(), subtract() are
kept in a global C array fp[] with offsets being multiply_off, divide_off, add_off,
subtract_off. Then one can use

 #define XSINTERFACE_FUNC_BYOFFSET(ret,cv,f) \
	 ((XSINTERFACE_CVT_ANON(ret))fp[CvXSUBANY(cv).any_i32])
 #define XSINTERFACE_FUNC_BYOFFSET_set(cv,f) \
	 CvXSUBANY(cv).any_i32 = CAT2(f, _off)

in C section,

 symbolic
 interface_s_ss(arg1, arg2)
	 symbolic	 arg1
	 symbolic	 arg2
 INTERFACE_MACRO:
	 XSINTERFACE_FUNC_BYOFFSET
	 XSINTERFACE_FUNC_BYOFFSET_set
 INTERFACE:
	 multiply divide
	 add subtract

in XSUB section.

The INCLUDE: Keyword
This keyword can be used to pull other files into the XS module. The other
 files may have XS code.
INCLUDE: can also be used to run a command to
 generate the XS code to be pulled into the module.

The file Rpcb1.xsh contains our rpcb_gettime() function:

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
 OUTPUT:
 timep

The XS module can use INCLUDE: to pull that file into it.

 INCLUDE: Rpcb1.xsh

If the parameters to the INCLUDE: keyword are followed by a pipe (|) then
 the compiler will interpret
the parameters as a command.

 INCLUDE: cat Rpcb1.xsh |

The CASE: Keyword
The CASE: keyword allows an XSUB to have multiple distinct parts with each
 part acting as a virtual
XSUB. CASE: is greedy and if it is used then all
 other XS keywords must be contained within a
CASE:. This means nothing may
 precede the first CASE: in the XSUB and anything following the last
CASE: is
 included in that case.

Perl version 5.12.0 documentation - perlxs

Page 23http://perldoc.perl.org

A CASE: might switch via a parameter of the XSUB, via the ix ALIAS:
 variable (see The ALIAS:
Keyword), or maybe via the items variable
 (see Variable-length Parameter Lists). The last CASE:
becomes the default case if it is not associated with a conditional. The following
 example shows
CASE switched via ix with a function rpcb_gettime()
 having an alias x_gettime(). When the
function is called as rpcb_gettime() its parameters are the usual (char *host, time_t
*timep),
 but when the function is called as x_gettime() its parameters are
 reversed, (time_t
*timep, char *host).

 long
 rpcb_gettime(a,b)
 CASE: ix == 1
	 ALIAS:
	 x_gettime = 1
	 INPUT:
	 # 'a' is timep, 'b' is host
 char *b
 time_t a = NO_INIT
 CODE:
 RETVAL = rpcb_gettime(b, &a);
 OUTPUT:
 a
 RETVAL
 CASE:
	 # 'a' is host, 'b' is timep
 char *a
 time_t &b = NO_INIT
 OUTPUT:
 b
 RETVAL

That function can be called with either of the following statements. Note
 the different argument lists.

	 $status = rpcb_gettime($host, $timep);

	 $status = x_gettime($timep, $host);

The & Unary Operator
The & unary operator in the INPUT: section is used to tell xsubpp
 that it should convert a Perl value
to/from C using the C type to the left
 of &, but provide a pointer to this value when the C function is
called.

This is useful to avoid a CODE: block for a C function which takes a parameter
 by reference.
Typically, the parameter should be not a pointer type (an int or long but not an int* or long*).

The following XSUB will generate incorrect C code. The xsubpp compiler will
 turn this into code
which calls rpcb_gettime() with parameters (char
 *host, time_t timep), but the real
rpcb_gettime() wants the timep
 parameter to be of type time_t* rather than time_t.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t timep
 OUTPUT:
 timep

That problem is corrected by using the & operator. The xsubpp compiler
 will now turn this into code

Perl version 5.12.0 documentation - perlxs

Page 24http://perldoc.perl.org

which calls rpcb_gettime() correctly with
 parameters (char *host, time_t *timep). It does
this by carrying the & through, so the function call looks like rpcb_gettime(host, &timep).

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
 OUTPUT:
 timep

Inserting POD, Comments and C Preprocessor Directives
C preprocessor directives are allowed within BOOT:, PREINIT: INIT:, CODE:,
 PPCODE:,
POSTCALL:, and CLEANUP: blocks, as well as outside the functions.
 Comments are allowed
anywhere after the MODULE keyword. The compiler will
 pass the preprocessor directives through
untouched and will remove the
 commented lines. POD documentation is allowed at any point, both in
the
 C and XS language sections. POD must be terminated with a =cut command; xsubpp will exit
with an error if it does not. It is very unlikely that
 human generated C code will be mistaken for POD,
as most indenting styles
 result in whitespace in front of any line starting with =. Machine
 generated
XS files may fall into this trap unless care is taken to
 ensure that a space breaks the sequence "\n=".

Comments can be added to XSUBs by placing a # as the first
 non-whitespace of a line. Care should
be taken to avoid making the
 comment look like a C preprocessor directive, lest it be interpreted as

such. The simplest way to prevent this is to put whitespace in front of
 the #.

If you use preprocessor directives to choose one of two
 versions of a function, use

 #if ... version1
 #else /* ... version2 */
 #endif

and not

 #if ... version1
 #endif
 #if ... version2
 #endif

because otherwise xsubpp will believe that you made a duplicate
 definition of the function. Also, put
a blank line before the
 #else/#endif so it will not be seen as part of the function body.

Using XS With C++
If an XSUB name contains ::, it is considered to be a C++ method.
 The generated Perl function will
assume that
 its first argument is an object pointer. The object pointer
 will be stored in a variable called
THIS. The object should
 have been created by C++ with the new() function and should
 be blessed by
Perl with the sv_setref_pv() macro. The
 blessing of the object by Perl can be handled by a typemap.
An example
 typemap is shown at the end of this section.

If the return type of the XSUB includes static, the method is considered
 to be a static method. It will
call the C++
 function using the class::method() syntax. If the method is not static
 the function will be
called using the THIS->method() syntax.

The next examples will use the following C++ class.

 class color {
 public:
 color();
 ~color();

Perl version 5.12.0 documentation - perlxs

Page 25http://perldoc.perl.org

 int blue();
 void set_blue(int);

 private:
 int c_blue;
 };

The XSUBs for the blue() and set_blue() methods are defined with the class
 name but the parameter
for the object (THIS, or "self") is implicit and is
 not listed.

 int
 color::blue()

 void
 color::set_blue(val)
 int val

Both Perl functions will expect an object as the first parameter. In the generated C++ code the object
is called THIS, and the method call will
 be performed on this object. So in the C++ code the blue()
and set_blue()
 methods will be called as this:

 RETVAL = THIS->blue();

 THIS->set_blue(val);

You could also write a single get/set method using an optional argument:

 int
 color::blue(val = NO_INIT)
 int val
 PROTOTYPE $;$
 CODE:
 if (items > 1)
 THIS->set_blue(val);
 RETVAL = THIS->blue();
 OUTPUT:
 RETVAL

If the function's name is DESTROY then the C++ delete function will be
 called and THIS will be
given as its parameter. The generated C++ code for

 void
 color::DESTROY()

will look like this:

 color *THIS = ...;	 // Initialized as in typemap

 delete THIS;

If the function's name is new then the C++ new function will be called
 to create a dynamic C++ object.
The XSUB will expect the class name, which
 will be kept in a variable called CLASS, to be given as
the first
 argument.

 color *

Perl version 5.12.0 documentation - perlxs

Page 26http://perldoc.perl.org

 color::new()

The generated C++ code will call new.

 RETVAL = new color();

The following is an example of a typemap that could be used for this C++
 example.

 TYPEMAP
 color *		 O_OBJECT

 OUTPUT
 # The Perl object is blessed into 'CLASS', which should be a
 # char* having the name of the package for the blessing.
 O_OBJECT
 	 sv_setref_pv($arg, CLASS, (void*)$var);

 INPUT
 O_OBJECT
 	 if(sv_isobject($arg) && (SvTYPE(SvRV($arg)) == SVt_PVMG))
 		 $var = ($type)SvIV((SV*)SvRV($arg));
 	 else{
 		 warn(\"${Package}::$func_name() -- $var is not a blessed SV
reference\");
 		 XSRETURN_UNDEF;
 	 }

Interface Strategy
When designing an interface between Perl and a C library a straight
 translation from C to XS (such as
created by h2xs -x) is often sufficient.
 However, sometimes the interface will look
 very C-like and
occasionally nonintuitive, especially when the C function
 modifies one of its parameters, or returns
failure inband (as in "negative
 return values mean failure"). In cases where the programmer wishes to

create a more Perl-like interface the following strategy may help to
 identify the more critical parts of
the interface.

Identify the C functions with input/output or output parameters. The XSUBs for
 these functions may be
able to return lists to Perl.

Identify the C functions which use some inband info as an indication
 of failure. They may be

candidates to return undef or an empty list in case of failure. If the
 failure may be detected without a
call to the C function, you may want to use
 an INIT: section to report the failure. For failures
detectable after the C
 function returns one may want to use a POSTCALL: section to process the

failure. In more complicated cases use CODE: or PPCODE: sections.

If many functions use the same failure indication based on the return value,
 you may want to create a
special typedef to handle this situation. Put

 typedef int negative_is_failure;

near the beginning of XS file, and create an OUTPUT typemap entry
 for negative_is_failure
which converts negative values to undef, or
 maybe croak()s. After this the return value of type
negative_is_failure
 will create more Perl-like interface.

Identify which values are used by only the C and XSUB functions
 themselves, say, when a parameter
to a function should be a contents of a
 global variable. If Perl does not need to access the contents of
the value
 then it may not be necessary to provide a translation for that value
 from C to Perl.

Perl version 5.12.0 documentation - perlxs

Page 27http://perldoc.perl.org

Identify the pointers in the C function parameter lists and return
 values. Some pointers may be used
to implement input/output or
 output parameters, they can be handled in XS with the & unary operator,

and, possibly, using the NO_INIT keyword.
 Some others will require handling of types like int *, and
one needs
 to decide what a useful Perl translation will do in such a case. When
 the semantic is clear,
it is advisable to put the translation into a typemap
 file.

Identify the structures used by the C functions. In many
 cases it may be helpful to use the T_PTROBJ
typemap for
 these structures so they can be manipulated by Perl as
 blessed objects. (This is handled
automatically by h2xs -x.)

If the same C type is used in several different contexts which require
 different translations, typedef
several new types mapped to this C type,
 and create separate typemap entries for these new types.
Use these
 types in declarations of return type and parameters to XSUBs.

Perl Objects And C Structures
When dealing with C structures one should select either T_PTROBJ or T_PTRREF for the XS type.
Both types are
 designed to handle pointers to complex objects. The
 T_PTRREF type will allow the
Perl object to be unblessed
 while the T_PTROBJ type requires that the object be blessed.
 By using
T_PTROBJ one can achieve a form of type-checking
 because the XSUB will attempt to verify that the
Perl object
 is of the expected type.

The following XS code shows the getnetconfigent() function which is used
 with ONC+ TIRPC. The
getnetconfigent() function will return a pointer to a
 C structure and has the C prototype shown below.
The example will
 demonstrate how the C pointer will become a Perl reference. Perl will
 consider this
reference to be a pointer to a blessed object and will
 attempt to call a destructor for the object. A
destructor will be
 provided in the XS source to free the memory used by getnetconfigent().

Destructors in XS can be created by specifying an XSUB function whose name
 ends with the word
DESTROY. XS destructors can be used to free memory
 which may have been malloc'd by another
XSUB.

 struct netconfig *getnetconfigent(const char *netid);

A typedef will be created for struct netconfig. The Perl
 object will be blessed in a class
matching the name of the C
 type, with the tag Ptr appended, and the name should not
 have
embedded spaces if it will be a Perl package name. The
 destructor will be placed in a class
corresponding to the
 class of the object and the PREFIX keyword will be used to
 trim the name to the
word DESTROY as Perl will expect.

 typedef struct netconfig Netconfig;

 MODULE = RPC PACKAGE = RPC

 Netconfig *
 getnetconfigent(netid)
 char *netid

 MODULE = RPC PACKAGE = NetconfigPtr PREFIX = rpcb_

 void
 rpcb_DESTROY(netconf)
 Netconfig *netconf
 CODE:
 printf("Now in NetconfigPtr::DESTROY\n");
 free(netconf);

This example requires the following typemap entry. Consult the typemap
 section for more information

Perl version 5.12.0 documentation - perlxs

Page 28http://perldoc.perl.org

about adding new typemaps for an extension.

 TYPEMAP
 Netconfig * T_PTROBJ

This example will be used with the following Perl statements.

 use RPC;
 $netconf = getnetconfigent("udp");

When Perl destroys the object referenced by $netconf it will send the
 object to the supplied XSUB
DESTROY function. Perl cannot determine, and
 does not care, that this object is a C struct and not a
Perl object. In
 this sense, there is no difference between the object created by the
 getnetconfigent()
XSUB and an object created by a normal Perl subroutine.

The Typemap
The typemap is a collection of code fragments which are used by the xsubpp
 compiler to map C
function parameters and values to Perl values. The
 typemap file may consist of three sections
labelled TYPEMAP, INPUT, and OUTPUT. An unlabelled initial section is assumed to be a TYPEMAP

section. The INPUT section tells
 the compiler how to translate Perl values
 into variables of certain C
types. The OUTPUT section tells the compiler
 how to translate the values from certain C types into
values Perl can
 understand. The TYPEMAP section tells the compiler which of the INPUT and

OUTPUT code fragments should be used to map a given C type to a Perl value.
 The section labels
TYPEMAP, INPUT, or OUTPUT must begin
 in the first column on a line by themselves, and must be in
uppercase.

The default typemap in the lib/ExtUtils directory of the Perl source
 contains many useful types
which can be used by Perl extensions. Some
 extensions define additional typemaps which they keep
in their own directory.
 These additional typemaps may reference INPUT and OUTPUT maps in the
main
 typemap. The xsubpp compiler will allow the extension's own typemap to
 override any
mappings which are in the default typemap.

Most extensions which require a custom typemap will need only the TYPEMAP
 section of the
typemap file. The custom typemap used in the
 getnetconfigent() example shown earlier demonstrates
what may be the typical
 use of extension typemaps. That typemap is used to equate a C structure

with the T_PTROBJ typemap. The typemap used by getnetconfigent() is shown
 here. Note that the C
type is separated from the XS type with a tab and
 that the C unary operator * is considered to be a
part of the C type name.

	 TYPEMAP
	 Netconfig *<tab>T_PTROBJ

Here's a more complicated example: suppose that you wanted struct
 netconfig to be blessed
into the class Net::Config. One way to do
 this is to use underscores (_) to separate package
names, as follows:

 typedef struct netconfig * Net_Config;

And then provide a typemap entry T_PTROBJ_SPECIAL that maps underscores to
 double-colons (::),
and declare Net_Config to be of that type:

 TYPEMAP
 Net_Config T_PTROBJ_SPECIAL

 INPUT
 T_PTROBJ_SPECIAL
 if (sv_derived_from($arg, \"${(my

Perl version 5.12.0 documentation - perlxs

Page 29http://perldoc.perl.org

$ntt=$ntype)=~s/_/::/g;\$ntt}\")) {
 IV tmp = SvIV((SV*)SvRV($arg));
 $var = INT2PTR($type, tmp);
 }
 else
 croak(\"$var is not of type ${(my
$ntt=$ntype)=~s/_/::/g;\$ntt}\")

 OUTPUT
 T_PTROBJ_SPECIAL
 sv_setref_pv($arg, \"${(my $ntt=$ntype)=~s/_/::/g;\$ntt}\",
 (void*)$var);

The INPUT and OUTPUT sections substitute underscores for double-colons
 on the fly, giving the
desired effect. This example demonstrates some
 of the power and versatility of the typemap facility.

The INT2PTR macro (defined in perl.h) casts an integer to a pointer, of a given type, taking care of
the possible different size of integers
 and pointers. There are also PTR2IV, PTR2UV, PTR2NV
macros,
 to map the other way, which may be useful in OUTPUT sections.

Safely Storing Static Data in XS
Starting with Perl 5.8, a macro framework has been defined to allow
 static data to be safely stored in
XS modules that will be accessed from
 a multi-threaded Perl.

Although primarily designed for use with multi-threaded Perl, the macros
 have been designed so that
they will work with non-threaded Perl as well.

It is therefore strongly recommended that these macros be used by all
 XS modules that make use of
static data.

The easiest way to get a template set of macros to use is by specifying
 the -g (--global) option
with h2xs (see h2xs).

Below is an example module that makes use of the macros.

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 /* Global Data */

 #define MY_CXT_KEY "BlindMice::_guts" XS_VERSION

 typedef struct {
 int count;
 char name[3][100];
 } my_cxt_t;

 START_MY_CXT

 MODULE = BlindMice PACKAGE = BlindMice

 BOOT:
 {
 MY_CXT_INIT;

Perl version 5.12.0 documentation - perlxs

Page 30http://perldoc.perl.org

 MY_CXT.count = 0;
 strcpy(MY_CXT.name[0], "None");
 strcpy(MY_CXT.name[1], "None");
 strcpy(MY_CXT.name[2], "None");
 }

 int
 newMouse(char * name)
 char * name;
 PREINIT:
 dMY_CXT;
 CODE:
 if (MY_CXT.count >= 3) {
 warn("Already have 3 blind mice");
 RETVAL = 0;
 }
 else {
 RETVAL = ++ MY_CXT.count;
 strcpy(MY_CXT.name[MY_CXT.count - 1], name);
 }

 char *
 get_mouse_name(index)
 int index
 CODE:
 dMY_CXT;
 RETVAL = MY_CXT.lives ++;
 if (index > MY_CXT.count)
 croak("There are only 3 blind mice.");
 else
 RETVAL = newSVpv(MY_CXT.name[index - 1]);

 void
 CLONE(...)
	 CODE:
	 MY_CXT_CLONE;

REFERENCE

MY_CXT_KEY

This macro is used to define a unique key to refer to the static data
 for an XS module. The
suggested naming scheme, as used by h2xs, is to
 use a string that consists of the module
name, the string "::_guts"
 and the module version number.

 #define MY_CXT_KEY "MyModule::_guts" XS_VERSION

typedef my_cxt_t

This struct typedef must always be called my_cxt_t. The other CXT* macros assume the
existence of the my_cxt_t typedef name.

Declare a typedef named my_cxt_t that is a structure that contains
 all the data that needs
to be interpreter-local.

 typedef struct {
 int some_value;
 } my_cxt_t;

Perl version 5.12.0 documentation - perlxs

Page 31http://perldoc.perl.org

START_MY_CXT

Always place the START_MY_CXT macro directly after the declaration
 of my_cxt_t.

MY_CXT_INIT

The MY_CXT_INIT macro initialises storage for the my_cxt_t struct.

It must be called exactly once, typically in a BOOT: section. If you
 are maintaining multiple
interpreters, it should be called once in each
 interpreter instance, except for interpreters
cloned from existing ones.
 (But see MY_CXT_CLONE below.)

dMY_CXT

Use the dMY_CXT macro (a declaration) in all the functions that access
 MY_CXT.

MY_CXT

Use the MY_CXT macro to access members of the my_cxt_t struct. For
 example, if
my_cxt_t is

 typedef struct {
 int index;
 } my_cxt_t;

then use this to access the index member

 dMY_CXT;
 MY_CXT.index = 2;

aMY_CXT/pMY_CXT

dMY_CXT may be quite expensive to calculate, and to avoid the overhead
 of invoking it in
each function it is possible to pass the declaration
 onto other functions using the aMY_CXT/
pMY_CXT macros, eg

 void sub1() {
	 dMY_CXT;
	 MY_CXT.index = 1;
	 sub2(aMY_CXT);
 }

 void sub2(pMY_CXT) {
	 MY_CXT.index = 2;
 }

Analogously to pTHX, there are equivalent forms for when the macro is the
 first or last in
multiple arguments, where an underscore represents a
 comma, i.e. _aMY_CXT, aMY_CXT_,
_pMY_CXT and pMY_CXT_.

MY_CXT_CLONE

By default, when a new interpreter is created as a copy of an existing one
 (eg via
threads->create()), both interpreters share the same physical
 my_cxt_t structure.
Calling MY_CXT_CLONE (typically via the package's CLONE() function), causes a
byte-for-byte copy of the structure to be
 taken, and any future dMY_CXT will cause the copy
to be accessed instead.

MY_CXT_INIT_INTERP(my_perl)

dMY_CXT_INTERP(my_perl)

These are versions of the macros which take an explicit interpreter as an
 argument.

Note that these macros will only work together within the same source
 file; that is, a dMY_CTX in one
source file will access a different structure
 than a dMY_CTX in another source file.

Perl version 5.12.0 documentation - perlxs

Page 32http://perldoc.perl.org

Thread-aware system interfaces
Starting from Perl 5.8, in C/C++ level Perl knows how to wrap
 system/library interfaces that have
thread-aware versions
 (e.g. getpwent_r()) into frontend macros (e.g. getpwent()) that
 correctly handle
the multithreaded interaction with the Perl
 interpreter. This will happen transparently, the only thing

you need to do is to instantiate a Perl interpreter.

This wrapping happens always when compiling Perl core source
 (PERL_CORE is defined) or the Perl
core extensions (PERL_EXT is
 defined). When compiling XS code outside of Perl core the wrapping

does not take place. Note, however, that intermixing the _r-forms
 (as Perl compiled for multithreaded
operation will do) and the _r-less
 forms is neither well-defined (inconsistent results, data corruption,
 or
even crashes become more likely), nor is it very portable.

EXAMPLES
File RPC.xs: Interface to some ONC+ RPC bind library functions.

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 #include <rpc/rpc.h>

 typedef struct netconfig Netconfig;

 MODULE = RPC PACKAGE = RPC

 SV *
 rpcb_gettime(host="localhost")
 char *host
	 PREINIT:
 time_t timep;
 CODE:
 ST(0) = sv_newmortal();
 if(rpcb_gettime(host, &timep))
 sv_setnv(ST(0), (double)timep);

 Netconfig *
 getnetconfigent(netid="udp")
 char *netid

 MODULE = RPC PACKAGE = NetconfigPtr PREFIX = rpcb_

 void
 rpcb_DESTROY(netconf)
 Netconfig *netconf
 CODE:
 printf("NetconfigPtr::DESTROY\n");
 free(netconf);

File typemap: Custom typemap for RPC.xs.

 TYPEMAP
 Netconfig * T_PTROBJ

File RPC.pm: Perl module for the RPC extension.

Perl version 5.12.0 documentation - perlxs

Page 33http://perldoc.perl.org

 package RPC;

 require Exporter;
 require DynaLoader;
 @ISA = qw(Exporter DynaLoader);
 @EXPORT = qw(rpcb_gettime getnetconfigent);

 bootstrap RPC;
 1;

File rpctest.pl: Perl test program for the RPC extension.

 use RPC;

 $netconf = getnetconfigent();
 $a = rpcb_gettime();
 print "time = $a\n";
 print "netconf = $netconf\n";

 $netconf = getnetconfigent("tcp");
 $a = rpcb_gettime("poplar");
 print "time = $a\n";
 print "netconf = $netconf\n";

XS VERSION
This document covers features supported by xsubpp 1.935.

AUTHOR
Originally written by Dean Roehrich <roehrich@cray.com>.

Maintained since 1996 by The Perl Porters <perlbug@perl.org>.

