
Perl version 5.12.0 documentation - File::Temp

Page 1http://perldoc.perl.org

NAME
File::Temp - return name and handle of a temporary file safely

PORTABILITY
This section is at the top in order to provide easier access to
 porters. It is not expected to be rendered
by a standard pod
 formatting tool. Please skip straight to the SYNOPSIS section if you
 are not trying
to port this module to a new platform.

This module is designed to be portable across operating systems and it
 currently supports Unix, VMS,
DOS, OS/2, Windows and Mac OS
 (Classic). When porting to a new OS there are generally three
main
 issues that have to be solved:

Can the OS unlink an open file? If it can not then the _can_unlink_opened_file method
should be modified.

Are the return values from stat reliable? By default all the
 return values from stat are
compared when unlinking a temporary
 file using the filename and the handle. Operating
systems other than
 unix do not always have valid entries in all fields. If unlink0 fails
 then the
stat comparison should be modified accordingly.

Security. Systems that can not support a test for the sticky bit
 on a directory can not use the
MEDIUM and HIGH security tests.
 The _can_do_level method should be modified
accordingly.

SYNOPSIS
 use File::Temp qw/ tempfile tempdir /;

 $fh = tempfile();
 ($fh, $filename) = tempfile();

 ($fh, $filename) = tempfile($template, DIR => $dir);
 ($fh, $filename) = tempfile($template, SUFFIX => '.dat');
 ($fh, $filename) = tempfile($template, TMPDIR => 1);

 binmode($fh, ":utf8");

 $dir = tempdir(CLEANUP => 1);
 ($fh, $filename) = tempfile(DIR => $dir);

Object interface:

 require File::Temp;
 use File::Temp ();
 use File::Temp qw/ :seekable /;

 $fh = File::Temp->new();
 $fname = $fh->filename;

 $fh = File::Temp->new(TEMPLATE => $template);
 $fname = $fh->filename;

 $tmp = File::Temp->new(UNLINK => 0, SUFFIX => '.dat');
 print $tmp "Some data\n";
 print "Filename is $tmp\n";
 $tmp->seek(0, SEEK_END);

Perl version 5.12.0 documentation - File::Temp

Page 2http://perldoc.perl.org

The following interfaces are provided for compatibility with
 existing APIs. They should not be used in
new code.

MkTemp family:

 use File::Temp qw/ :mktemp /;

 ($fh, $file) = mkstemp("tmpfileXXXXX");
 ($fh, $file) = mkstemps("tmpfileXXXXXX", $suffix);

 $tmpdir = mkdtemp($template);

 $unopened_file = mktemp($template);

POSIX functions:

 use File::Temp qw/ :POSIX /;

 $file = tmpnam();
 $fh = tmpfile();

 ($fh, $file) = tmpnam();

Compatibility functions:

 $unopened_file = File::Temp::tempnam($dir, $pfx);

DESCRIPTION
File::Temp can be used to create and open temporary files in a safe
 way. There is both a function
interface and an object-oriented
 interface. The File::Temp constructor or the tempfile() function can
 be
used to return the name and the open filehandle of a temporary
 file. The tempdir() function can be
used to create a temporary
 directory.

The security aspect of temporary file creation is emphasized such that
 a filehandle and filename are
returned together. This helps guarantee
 that a race condition can not occur where the temporary file
is
 created by another process between checking for the existence of the
 file and its opening.
Additional security levels are provided to
 check, for example, that the sticky bit is set on world writable
directories. See safe_level for more information.

For compatibility with popular C library functions, Perl implementations of
 the mkstemp() family of
functions are provided. These are, mkstemp(),
 mkstemps(), mkdtemp() and mktemp().

Additionally, implementations of the standard POSIX
 tmpnam() and tmpfile() functions are provided if
required.

Implementations of mktemp(), tmpnam(), and tempnam() are provided,
 but should be used with
caution since they return only a filename
 that was valid when function was called, so cannot
guarantee
 that the file will not exist by the time the caller opens the filename.

Filehandles returned by these functions support the seekable methods.

OBJECT-ORIENTED INTERFACE
This is the primary interface for interacting with File::Temp. Using the OO interface a temporary file
can be created
 when the object is constructed and the file can be removed when the
 object is no
longer required.

Perl version 5.12.0 documentation - File::Temp

Page 3http://perldoc.perl.org

Note that there is no method to obtain the filehandle from the File::Temp object. The object itself
acts as a filehandle. Also,
 the object is configured such that it stringifies to the name of the
 temporary
file, and can be compared to a filename directly. The object
 isa IO::Handle and isa IO::Seekable
so all those methods are
 available.

new

Create a temporary file object.

 my $tmp = File::Temp->new();

by default the object is constructed as if tempfile
 was called without options, but with the
additional behaviour
 that the temporary file is removed by the object destructor
 if UNLINK is
set to true (the default).

Supported arguments are the same as for tempfile: UNLINK
 (defaulting to true), DIR,
EXLOCK and SUFFIX. Additionally, the filename
 template is specified using the TEMPLATE
option. The OPEN option
 is not supported (the file is always opened).

 $tmp = File::Temp->new(TEMPLATE => 'tempXXXXX',
 DIR => 'mydir',
 SUFFIX => '.dat');

Arguments are case insensitive.

Can call croak() if an error occurs.

newdir

Create a temporary directory using an object oriented interface.

 $dir = File::Temp->newdir();

By default the directory is deleted when the object goes out of scope.

Supports the same options as the tempdir function. Note that directories
 created with this
method default to CLEANUP => 1.

 $dir = File::Temp->newdir($template, %options);

filename

Return the name of the temporary file associated with this object
 (if the object was created
using the "new" constructor).

 $filename = $tmp->filename;

This method is called automatically when the object is used as
 a string.

dirname

Return the name of the temporary directory associated with this
 object (if the object was
created using the "newdir" constructor).

 $dirname = $tmpdir->dirname;

This method is called automatically when the object is used in string context.

unlink_on_destroy

Control whether the file is unlinked when the object goes out of scope.
 The file is removed if
this value is true and $KEEP_ALL is not.

 $fh->unlink_on_destroy(1);

Default is for the file to be removed.

Perl version 5.12.0 documentation - File::Temp

Page 4http://perldoc.perl.org

DESTROY

When the object goes out of scope, the destructor is called. This
 destructor will attempt to
unlink the file (using unlink1)
 if the constructor was called with UNLINK set to 1 (the default
state
 if UNLINK is not specified).

No error is given if the unlink fails.

If the object has been passed to a child process during a fork, the
 file will be deleted when the
object goes out of scope in the parent.

For a temporary directory object the directory will be removed
 unless the CLEANUP argument
was used in the constructor (and set to
 false) or unlink_on_destroy was modified after
creation.

If the global variable $KEEP_ALL is true, the file or directory
 will not be removed.

FUNCTIONS
This section describes the recommended interface for generating
 temporary files and directories.

tempfile

This is the basic function to generate temporary files.
 The behaviour of the file can be
changed using various options:

 $fh = tempfile();
 ($fh, $filename) = tempfile();

Create a temporary file in the directory specified for temporary
 files, as specified by the
tmpdir() function in File::Spec.

 ($fh, $filename) = tempfile($template);

Create a temporary file in the current directory using the supplied
 template. Trailing `X'
characters are replaced with random letters to
 generate the filename. At least four `X'
characters must be present
 at the end of the template.

 ($fh, $filename) = tempfile($template, SUFFIX => $suffix)

Same as previously, except that a suffix is added to the template
 after the `X' translation.
Useful for ensuring that a temporary
 filename has a particular extension when needed by
other applications.
 But see the WARNING at the end.

 ($fh, $filename) = tempfile($template, DIR => $dir);

Translates the template as before except that a directory name
 is specified.

 ($fh, $filename) = tempfile($template, TMPDIR => 1);

Equivalent to specifying a DIR of "File::Spec->tmpdir", writing the file
 into the same temporary
directory as would be used if no template was
 specified at all.

 ($fh, $filename) = tempfile($template, UNLINK => 1);

Return the filename and filehandle as before except that the file is
 automatically removed
when the program exits (dependent on
 $KEEP_ALL). Default is for the file to be removed if a
file handle is
 requested and to be kept if the filename is requested. In a scalar
 context (where
no filename is returned) the file is always deleted
 either (depending on the operating system)
on exit or when it is
 closed (unless $KEEP_ALL is true when the temp file is created).

Use the object-oriented interface if fine-grained control of when
 a file is removed is required.

If the template is not specified, a template is always
 automatically generated. This temporary
file is placed in tmpdir()
 (File::Spec) unless a directory is specified explicitly with the
 DIR
option.

Perl version 5.12.0 documentation - File::Temp

Page 5http://perldoc.perl.org

 $fh = tempfile(DIR => $dir);

If called in scalar context, only the filehandle is returned and the
 file will automatically be
deleted when closed on operating systems
 that support this (see the description of tmpfile()
elsewhere in this
 document). This is the preferred mode of operation, as if you only
 have a
filehandle, you can never create a race condition by fumbling
 with the filename. On systems
that can not unlink an open file or can
 not mark a file as temporary when it is opened (for
example, Windows
 NT uses the O_TEMPORARY flag) the file is marked for deletion when
 the
program ends (equivalent to setting UNLINK to 1). The UNLINK
 flag is ignored if present.

 (undef, $filename) = tempfile($template, OPEN => 0);

This will return the filename based on the template but
 will not open this file. Cannot be used
in conjunction with
 UNLINK set to true. Default is to always open the file
 to protect from
possible race conditions. A warning is issued
 if warnings are turned on. Consider using the
tmpnam()
 and mktemp() functions described elsewhere in this document
 if opening the file is
not required.

If the operating system supports it (for example BSD derived systems), the filehandle will be
opened with O_EXLOCK (open with exclusive file lock). This can sometimes cause problems
if the intention is to pass the filename to another system that expects to take an exclusive lock
itself (such as DBD::SQLite) whilst ensuring that the tempfile is not reused. In this situation the
"EXLOCK" option can be passed to tempfile. By default EXLOCK will be true (this retains
compatibility with earlier releases).

 ($fh, $filename) = tempfile($template, EXLOCK => 0);

Options can be combined as required.

Will croak() if there is an error.

tempdir

This is the recommended interface for creation of temporary
 directories. By default the
directory will not be removed on exit
 (that is, it won't be temporary; this behaviour can not be
changed
 because of issues with backwards compatibility). To enable removal
 either use the
CLEANUP option which will trigger removal on program
 exit, or consider using the "newdir"
method in the object interface which
 will allow the directory to be cleaned up when the object
goes out of
 scope.

The behaviour of the function depends on the arguments:

 $tempdir = tempdir();

Create a directory in tmpdir() (see File::Spec).

 $tempdir = tempdir($template);

Create a directory from the supplied template. This template is
 similar to that described for
tempfile(). `X' characters at the end
 of the template are replaced with random letters to
construct the
 directory name. At least four `X' characters must be in the template.

 $tempdir = tempdir (DIR => $dir);

Specifies the directory to use for the temporary directory.
 The temporary directory name is
derived from an internal template.

 $tempdir = tempdir ($template, DIR => $dir);

Prepend the supplied directory name to the template. The template
 should not include parent
directory specifications itself. Any parent
 directory specifications are removed from the
template before
 prepending the supplied directory.

 $tempdir = tempdir ($template, TMPDIR => 1);

Perl version 5.12.0 documentation - File::Temp

Page 6http://perldoc.perl.org

Using the supplied template, create the temporary directory in
 a standard location for
temporary files. Equivalent to doing

 $tempdir = tempdir ($template, DIR => File::Spec->tmpdir);

but shorter. Parent directory specifications are stripped from the
 template itself. The TMPDIR
option is ignored if DIR is set
 explicitly. Additionally, TMPDIR is implied if neither a template

nor a directory are supplied.

 $tempdir = tempdir($template, CLEANUP => 1);

Create a temporary directory using the supplied template, but
 attempt to remove it (and all
files inside it) when the program
 exits. Note that an attempt will be made to remove all files
from
 the directory even if they were not created by this module (otherwise
 why ask to clean it
up?). The directory removal is made with
 the rmtree() function from the File::Path module.
 Of
course, if the template is not specified, the temporary directory
 will be created in tmpdir() and
will also be removed at program exit.

Will croak() if there is an error.

MKTEMP FUNCTIONS
The following functions are Perl implementations of the
 mktemp() family of temp file generation
system calls.

mkstemp

Given a template, returns a filehandle to the temporary file and the name
 of the file.

 ($fh, $name) = mkstemp($template);

In scalar context, just the filehandle is returned.

The template may be any filename with some number of X's appended
 to it, for example
/tmp/temp.XXXX. The trailing X's are replaced
 with unique alphanumeric combinations.

Will croak() if there is an error.

mkstemps

Similar to mkstemp(), except that an extra argument can be supplied
 with a suffix to be
appended to the template.

 ($fh, $name) = mkstemps($template, $suffix);

For example a template of testXXXXXX and suffix of .dat
 would generate a file similar to
testhGji_w.dat.

Returns just the filehandle alone when called in scalar context.

Will croak() if there is an error.

mkdtemp

Create a directory from a template. The template must end in
 X's that are replaced by the
routine.

 $tmpdir_name = mkdtemp($template);

Returns the name of the temporary directory created.

Directory must be removed by the caller.

Will croak() if there is an error.

mktemp

Returns a valid temporary filename but does not guarantee
 that the file will not be opened by
someone else.

Perl version 5.12.0 documentation - File::Temp

Page 7http://perldoc.perl.org

 $unopened_file = mktemp($template);

Template is the same as that required by mkstemp().

Will croak() if there is an error.

POSIX FUNCTIONS
This section describes the re-implementation of the tmpnam()
 and tmpfile() functions described in
POSIX
 using the mkstemp() from this module.

Unlike the POSIX implementations, the directory used
 for the temporary file is not specified in a
system include
 file (P_tmpdir) but simply depends on the choice of tmpdir()
 returned by File::Spec.
On some implementations this
 location can be set using the TMPDIR environment variable, which

may not be secure.
 If this is a problem, simply use mkstemp() and specify a template.

tmpnam

When called in scalar context, returns the full name (including path)
 of a temporary file (uses
mktemp()). The only check is that the file does
 not already exist, but there is no guarantee that
that condition will
 continue to apply.

 $file = tmpnam();

When called in list context, a filehandle to the open file and
 a filename are returned. This is
achieved by calling mkstemp()
 after constructing a suitable template.

 ($fh, $file) = tmpnam();

If possible, this form should be used to prevent possible
 race conditions.

See "tmpdir" in File::Spec for information on the choice of temporary
 directory for a particular
operating system.

Will croak() if there is an error.

tmpfile

Returns the filehandle of a temporary file.

 $fh = tmpfile();

The file is removed when the filehandle is closed or when the program
 exits. No access to the
filename is provided.

If the temporary file can not be created undef is returned.
 Currently this command will
probably not work when the temporary
 directory is on an NFS file system.

Will croak() if there is an error.

ADDITIONAL FUNCTIONS
These functions are provided for backwards compatibility
 with common tempfile generation C library
functions.

They are not exported and must be addressed using the full package
 name.

tempnam

Return the name of a temporary file in the specified directory
 using a prefix. The file is
guaranteed not to exist at the time
 the function was called, but such guarantees are good for
one
 clock tick only. Always use the proper form of sysopen
 with O_CREAT | O_EXCL if you
must open such a filename.

 $filename = File::Temp::tempnam($dir, $prefix);

Equivalent to running mktemp() with $dir/$prefixXXXXXXXX
 (using unix file convention as an
example)

Perl version 5.12.0 documentation - File::Temp

Page 8http://perldoc.perl.org

Because this function uses mktemp(), it can suffer from race conditions.

Will croak() if there is an error.

UTILITY FUNCTIONS
Useful functions for dealing with the filehandle and filename.

unlink0

Given an open filehandle and the associated filename, make a safe
 unlink. This is achieved by
first checking that the filename and
 filehandle initially point to the same file and that the
number of
 links to the file is 1 (all fields returned by stat() are compared).
 Then the filename is
unlinked and the filehandle checked once again to
 verify that the number of links on that file is
now 0. This is the
 closest you can come to making sure that the filename unlinked was the

same as the file whose descriptor you hold.

 unlink0($fh, $path)
 or die "Error unlinking file $path safely";

Returns false on error but croaks() if there is a security
 anomaly. The filehandle is not closed
since on some occasions this is
 not required.

On some platforms, for example Windows NT, it is not possible to
 unlink an open file (the file
must be closed first). On those
 platforms, the actual unlinking is deferred until the program
ends and
 good status is returned. A check is still performed to make sure that
 the filehandle
and filename are pointing to the same thing (but not at
 the time the end block is executed
since the deferred removal may not
 have access to the filehandle).

Additionally, on Windows NT not all the fields returned by stat() can
 be compared. For
example, the dev and rdev fields seem to be
 different. Also, it seems that the size of the file
returned by stat()
 does not always agree, with stat(FH) being more accurate than
stat(filename), presumably because of caching issues even when
 using autoflush (this is
usually overcome by waiting a while after
 writing to the tempfile before attempting to unlink0
it).

Finally, on NFS file systems the link count of the file handle does
 not always go to zero
immediately after unlinking. Currently, this
 command is expected to fail on NFS disks.

This function is disabled if the global variable $KEEP_ALL is true
 and an unlink on open file is
supported. If the unlink is to be deferred
 to the END block, the file is still registered for
removal.

This function should not be called if you are using the object oriented
 interface since the it will
interfere with the object destructor deleting
 the file.

cmpstat

Compare stat of filehandle with stat of provided filename. This
 can be used to check that
the filename and filehandle initially point
 to the same file and that the number of links to the file
is 1 (all
 fields returned by stat() are compared).

 cmpstat($fh, $path)
 or die "Error comparing handle with file";

Returns false if the stat information differs or if the link count is
 greater than 1. Calls croak if
there is a security anomaly.

On certain platforms, for example Windows, not all the fields returned by stat()
 can be
compared. For example, the dev and rdev fields seem to be
 different in Windows. Also, it
seems that the size of the file
 returned by stat() does not always agree, with stat(FH) being
more
 accurate than stat(filename), presumably because of caching issues
 even when
using autoflush (this is usually overcome by waiting a while
 after writing to the tempfile before
attempting to unlink0 it).

Not exported by default.

Perl version 5.12.0 documentation - File::Temp

Page 9http://perldoc.perl.org

unlink1

Similar to unlink0 except after file comparison using cmpstat, the
 filehandle is closed prior to
attempting to unlink the file. This
 allows the file to be removed without using an END block, but
does
 mean that the post-unlink comparison of the filehandle state provided
 by unlink0 is not
available.

 unlink1($fh, $path)
 or die "Error closing and unlinking file";

Usually called from the object destructor when using the OO interface.

Not exported by default.

This function is disabled if the global variable $KEEP_ALL is true.

Can call croak() if there is a security anomaly during the stat()
 comparison.

cleanup

Calling this function will cause any temp files or temp directories
 that are registered for
removal to be removed. This happens automatically
 when the process exits but can be
triggered manually if the caller is sure
 that none of the temp files are required. This method
can be registered as
 an Apache callback.

On OSes where temp files are automatically removed when the temp file
 is closed, calling this
function will have no effect other than to remove
 temporary directories (which may include
temporary files).

 File::Temp::cleanup();

Not exported by default.

PACKAGE VARIABLES
These functions control the global state of the package.

safe_level

Controls the lengths to which the module will go to check the safety of the
 temporary file or
directory before proceeding.
 Options are:

STANDARD

Do the basic security measures to ensure the directory exists and is
 writable,
that temporary files are opened only if they do not already
 exist, and that
possible race conditions are avoided. Finally the unlink0 function is used to
remove files safely.

MEDIUM

In addition to the STANDARD security, the output directory is checked
 to make
sure that it is owned either by root or the user running the
 program. If the
directory is writable by group or by other, it is then
 checked to make sure that
the sticky bit is set.

Will not work on platforms that do not support the -k test
 for sticky bit.

HIGH

In addition to the MEDIUM security checks, also check for the
 possibility of
``chown() giveaway'' using the POSIX
 sysconf() function. If this is a possibility,
each directory in the
 path is checked in turn for safeness, recursively walking
back to the
 root directory.

For platforms that do not support the POSIX _PC_CHOWN_RESTRICTED
symbol (for example, Windows NT) it is
 assumed that ``chown() giveaway'' is
possible and the recursive test
 is performed.

Perl version 5.12.0 documentation - File::Temp

Page 10http://perldoc.perl.org

The level can be changed as follows:

 File::Temp->safe_level(File::Temp::HIGH);

The level constants are not exported by the module.

Currently, you must be running at least perl v5.6.0 in order to
 run with MEDIUM or HIGH
security. This is simply because the
 safety tests use functions from Fcntl that are not
 available
in older versions of perl. The problem is that the version
 number for Fcntl is the same in perl
5.6.0 and in 5.005_03 even though
 they are different versions.

On systems that do not support the HIGH or MEDIUM safety levels
 (for example Win NT or
OS/2) any attempt to change the level will
 be ignored. The decision to ignore rather than raise
an exception
 allows portable programs to be written with high security in mind
 for the systems
that can support this without those programs failing
 on systems where the extra tests are
irrelevant.

If you really need to see whether the change has been accepted
 simply examine the return
value of safe_level.

 $newlevel = File::Temp->safe_level(File::Temp::HIGH);
 die "Could not change to high security"
 if $newlevel != File::Temp::HIGH;

TopSystemUID

This is the highest UID on the current system that refers to a root
 UID. This is used to make
sure that the temporary directory is
 owned by a system UID (root, bin, sys etc) rather than

simply by root.

This is required since on many unix systems /tmp is not owned
 by root.

Default is to assume that any UID less than or equal to 10 is a root
 UID.

 File::Temp->top_system_uid(10);
 my $topid = File::Temp->top_system_uid;

This value can be adjusted to reduce security checking if required.
 The value is only relevant
when safe_level is set to MEDIUM or higher.

$KEEP_ALL

Controls whether temporary files and directories should be retained
 regardless of any
instructions in the program to remove them
 automatically. This is useful for debugging but
should not be used in
 production code.

 $File::Temp::KEEP_ALL = 1;

Default is for files to be removed as requested by the caller.

In some cases, files will only be retained if this variable is true
 when the file is created. This
means that you can not create a temporary
 file, set this variable and expect the temp file to
still be around
 when the program exits.

$DEBUG

Controls whether debugging messages should be enabled.

 $File::Temp::DEBUG = 1;

Default is for debugging mode to be disabled.

WARNING
For maximum security, endeavour always to avoid ever looking at,
 touching, or even imputing the
existence of the filename. You do not
 know that that filename is connected to the same file as the
handle
 you have, and attempts to check this can only trigger more race
 conditions. It's far more

Perl version 5.12.0 documentation - File::Temp

Page 11http://perldoc.perl.org

secure to use the filehandle alone and
 dispense with the filename altogether.

If you need to pass the handle to something that expects a filename
 then, on a unix system, use
"/dev/fd/" . fileno($fh) for arbitrary
 programs, or more generally "+<=&" . fileno($fh)
for Perl
 programs. You will have to clear the close-on-exec bit on that file
 descriptor before passing it
to another process.

 use Fcntl qw/F_SETFD F_GETFD/;
 fcntl($tmpfh, F_SETFD, 0)
 or die "Can't clear close-on-exec flag on temp fh: $!\n";

Temporary files and NFS
Some problems are associated with using temporary files that reside
 on NFS file systems and it is
recommended that a local filesystem
 is used whenever possible. Some of the security tests will most
probably
 fail when the temp file is not local. Additionally, be aware that
 the performance of I/O
operations over NFS will not be as good as for
 a local disk.

Forking
In some cases files created by File::Temp are removed from within an
 END block. Since END blocks
are triggered when a child process exits
 (unless POSIX::_exit() is used by the child) File::Temp
takes care
 to only remove those temp files created by a particular process ID. This
 means that a child
will not attempt to remove temp files created by the
 parent process.

If you are forking many processes in parallel that are all creating
 temporary files, you may need to
reset the random number seed using
 srand(EXPR) in each child else all the children will attempt to
walk
 through the same set of random file names and may well cause
 themselves to give up if they
exceed the number of retry attempts.

Directory removal
Note that if you have chdir'ed into the temporary directory and it is
 subsequently cleaned up (either in
the END block or as part of object
 destruction), then you will get a warning from File::Path::rmtree().

BINMODE
The file returned by File::Temp will have been opened in binary mode
 if such a mode is available. If
that is not correct, use the binmode()
 function to change the mode of the filehandle.

Note that you can modify the encoding of a file opened by File::Temp
 also by using binmode().

HISTORY
Originally began life in May 1999 as an XS interface to the system
 mkstemp() function. In March
2000, the OpenBSD mkstemp() code was
 translated to Perl for total control of the code's
 security
checking, to ensure the presence of the function regardless of
 operating system and to help with
portability. The module was shipped
 as a standard part of perl from v5.6.1.

SEE ALSO
"tmpnam" in POSIX, "tmpfile" in POSIX, File::Spec, File::Path

See IO::File and File::MkTemp, Apache::TempFile for
 different implementations of temporary file
handling.

See File::Tempdir for an alternative object-oriented wrapper for
 the tempdir function.

AUTHOR
Tim Jenness <tjenness@cpan.org>

Copyright (C) 2007-2009 Tim Jenness.
 Copyright (C) 1999-2007 Tim Jenness and the UK Particle
Physics and
 Astronomy Research Council. All Rights Reserved. This program is free
 software; you
can redistribute it and/or modify it under the same
 terms as Perl itself.

Perl version 5.12.0 documentation - File::Temp

Page 12http://perldoc.perl.org

Original Perl implementation loosely based on the OpenBSD C code for
 mkstemp(). Thanks to Tom
Christiansen for suggesting that this module
 should be written and providing ideas for code
improvements and
 security enhancements.

