
Perl version 5.12.0 documentation - AutoLoader

Page 1http://perldoc.perl.org

NAME
AutoLoader - load subroutines only on demand

SYNOPSIS
 package Foo;
 use AutoLoader 'AUTOLOAD'; # import the default AUTOLOAD subroutine

 package Bar;
 use AutoLoader; # don't import AUTOLOAD, define our own
 sub AUTOLOAD {
 ...
 $AutoLoader::AUTOLOAD = "...";
 goto &AutoLoader::AUTOLOAD;
 }

DESCRIPTION
The AutoLoader module works with the AutoSplit module and the __END__ token to defer the
loading of some subroutines until they are
 used rather than loading them all at once.

To use AutoLoader, the author of a module has to place the
 definitions of subroutines to be
autoloaded after an __END__ token.
 (See perldata.) The AutoSplit module can then be run manually
to
 extract the definitions into individual files auto/funcname.al.

AutoLoader implements an AUTOLOAD subroutine. When an undefined
 subroutine in is called in a
client module of AutoLoader, AutoLoader's AUTOLOAD subroutine attempts to locate the
subroutine in a
 file with a name related to the location of the file from which the
 client module was
read. As an example, if POSIX.pm is located in /usr/local/lib/perl5/POSIX.pm, AutoLoader will look
for perl
 subroutines POSIX in /usr/local/lib/perl5/auto/POSIX/*.al, where
 the .al file has the same
name as the subroutine, sans package. If
 such a file exists, AUTOLOAD will read and evaluate it,

thus (presumably) defining the needed subroutine. AUTOLOAD will then goto the newly defined
subroutine.

Once this process completes for a given function, it is defined, so
 future calls to the subroutine will
bypass the AUTOLOAD mechanism.

Subroutine Stubs
In order for object method lookup and/or prototype checking to operate
 correctly even when methods
have not yet been defined it is necessary to
 "forward declare" each subroutine (as in sub NAME;).
See "SYNOPSIS" in perlsub. Such forward declaration creates "subroutine
 stubs", which are place
holders with no code.

The AutoSplit and AutoLoader modules automate the creation of forward
 declarations. The AutoSplit
module creates an 'index' file containing
 forward declarations of all the AutoSplit subroutines. When
the
 AutoLoader module is 'use'd it loads these declarations into its callers
 package.

Because of this mechanism it is important that AutoLoader is always used and not required.

Using AutoLoader's AUTOLOAD Subroutine
In order to use AutoLoader's AUTOLOAD subroutine you must
 explicitly import it:

 use AutoLoader 'AUTOLOAD';

Overriding AutoLoader's AUTOLOAD Subroutine
Some modules, mainly extensions, provide their own AUTOLOAD subroutines.
 They typically need to
check for some special cases (such as constants)
 and then fallback to AutoLoader's AUTOLOAD for
the rest.

Perl version 5.12.0 documentation - AutoLoader

Page 2http://perldoc.perl.org

Such modules should not import AutoLoader's AUTOLOAD subroutine.
 Instead, they should define
their own AUTOLOAD subroutines along these
 lines:

 use AutoLoader;
 use Carp;

 sub AUTOLOAD {
 my $sub = $AUTOLOAD;
 (my $constname = $sub) =~ s/.*:://;
 my $val = constant($constname, @_ ? $_[0] : 0);
 if ($! != 0) {
 if ($! =~ /Invalid/ || $!{EINVAL}) {
 $AutoLoader::AUTOLOAD = $sub;
 goto &AutoLoader::AUTOLOAD;
 }
 else {
 croak "Your vendor has not defined constant $constname";
 }
 }
 *$sub = sub { $val }; # same as: eval "sub $sub { $val }";
 goto &$sub;
 }

If any module's own AUTOLOAD subroutine has no need to fallback to the
 AutoLoader's AUTOLOAD
subroutine (because it doesn't have any AutoSplit
 subroutines), then that module should not use
AutoLoader at all.

Package Lexicals
Package lexicals declared with my in the main block of a package
 using AutoLoader will not be
visible to auto-loaded subroutines, due to
 the fact that the given scope ends at the __END__ marker.
A module
 using such variables as package globals will not work properly under the AutoLoader.

The vars pragma (see "vars" in perlmod) may be used in such
 situations as an alternative to
explicitly qualifying all globals with
 the package namespace. Variables pre-declared with this pragma
will be
 visible to any autoloaded routines (but will not be invisible outside
 the package, unfortunately).

Not Using AutoLoader
You can stop using AutoLoader by simply

	 no AutoLoader;

AutoLoader vs. SelfLoader
The AutoLoader is similar in purpose to SelfLoader: both delay the
 loading of subroutines.

SelfLoader uses the __DATA__ marker rather than __END__.
 While this avoids the use of a
hierarchy of disk files and the
 associated open/close for each routine loaded, SelfLoader suffers a

startup speed disadvantage in the one-time parsing of the lines after __DATA__, after which routines
are cached. SelfLoader can also
 handle multiple packages in a file.

AutoLoader only reads code as it is requested, and in many cases
 should be faster, but requires a
mechanism like AutoSplit be used to
 create the individual files. ExtUtils::MakeMaker will invoke
AutoSplit automatically if AutoLoader is used in a module source
 file.

CAVEATS
AutoLoaders prior to Perl 5.002 had a slightly different interface. Any
 old modules which use
AutoLoader should be changed to the new calling
 style. Typically this just means changing a require

Perl version 5.12.0 documentation - AutoLoader

Page 3http://perldoc.perl.org

to a use, adding
 the explicit 'AUTOLOAD' import if needed, and removing AutoLoader
 from @ISA.

On systems with restrictions on file name length, the file corresponding
 to a subroutine may have a
shorter name that the routine itself. This
 can lead to conflicting file names. The AutoSplit package
warns of
 these potential conflicts when used to split a module.

AutoLoader may fail to find the autosplit files (or even find the wrong
 ones) in cases where @INC
contains relative paths, and the program
 does chdir.

SEE ALSO
SelfLoader - an autoloader that doesn't use external files.

AUTHOR
AutoLoader is maintained by the perl5-porters. Please direct
 any questions to the canonical mailing
list. Anything that
 is applicable to the CPAN release can be sent to its maintainer,
 though.

Author and Maintainer: The Perl5-Porters <perl5-porters@perl.org>

Maintainer of the CPAN release: Steffen Mueller <smueller@cpan.org>

COPYRIGHT AND LICENSE
This package has been part of the perl core since the first release
 of perl5. It has been released
separately to CPAN so older installations
 can benefit from bug fixes.

This package has the same copyright and license as the perl core:

 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
 by Larry Wall and others

			 All rights reserved.

 This program is free software; you can redistribute it and/or modify
 it under the terms of either:

	 a) the GNU General Public License as published by the Free
	 Software Foundation; either version 1, or (at your option) any
	 later version, or

	 b) the "Artistic License" which comes with this Kit.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See either
 the GNU General Public License or the Artistic License for more
details.

 You should have received a copy of the Artistic License with this
 Kit, in the file named "Artistic". If not, I'll be glad to provide
one.

 You should also have received a copy of the GNU General Public License
 along with this program in the file named "Copying". If not, write to
the
 Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
 02111-1307, USA or visit their web page on the internet at

Perl version 5.12.0 documentation - AutoLoader

Page 4http://perldoc.perl.org

 http://www.gnu.org/copyleft/gpl.html.

 For those of you that choose to use the GNU General Public License,
 my interpretation of the GNU General Public License is that no Perl
 script falls under the terms of the GPL unless you explicitly put
 said script under the terms of the GPL yourself. Furthermore, any
 object code linked with perl does not automatically fall under the
 terms of the GPL, provided such object code only adds definitions
 of subroutines and variables, and does not otherwise impair the
 resulting interpreter from executing any standard Perl script. I
 consider linking in C subroutines in this manner to be the moral
 equivalent of defining subroutines in the Perl language itself. You
 may sell such an object file as proprietary provided that you provide
 or offer to provide the Perl source, as specified by the GNU General
 Public License. (This is merely an alternate way of specifying input
 to the program.) You may also sell a binary produced by the dumping of
 a running Perl script that belongs to you, provided that you provide or
 offer to provide the Perl source as specified by the GPL. (The
 fact that a Perl interpreter and your code are in the same binary file
 is, in this case, a form of mere aggregation.) This is my
interpretation
 of the GPL. If you still have concerns or difficulties understanding
 my intent, feel free to contact me. Of course, the Artistic License
 spells all this out for your protection, so you may prefer to use that.

