
Perl version 5.12.0 documentation - perlfaq1

Page 1http://perldoc.perl.org

NAME
perlfaq1 - General Questions About Perl

DESCRIPTION
This section of the FAQ answers very general, high-level questions
 about Perl.

What is Perl?
Perl is a high-level programming language with an eclectic heritage
 written by Larry Wall and a cast of
thousands. It derives from the
 ubiquitous C programming language and to a lesser extent from sed,

awk, the Unix shell, and at least a dozen other tools and languages.
 Perl's process, file, and text
manipulation facilities make it
 particularly well-suited for tasks involving quick prototyping, system

utilities, software tools, system management tasks, database access,
 graphical programming,
networking, and world wide web programming.
 These strengths make it especially popular with
system administrators
 and CGI script authors, but mathematicians, geneticists, journalists,
 and even
managers also use Perl. Maybe you should, too.

Who supports Perl? Who develops it? Why is it free?
The original culture of the pre-populist Internet and the deeply-held
 beliefs of Perl's author, Larry Wall,
gave rise to the free and open
 distribution policy of perl. Perl is supported by its users. The
 core, the
standard Perl library, the optional modules, and the
 documentation you're reading now were all written
by volunteers. See
 the personal note at the end of the README file in the perl source
 distribution for
more details. See perlhist (new as of 5.005)
 for Perl's milestone releases.

In particular, the core development team (known as the Perl Porters)
 are a rag-tag band of highly
altruistic individuals committed to
 producing better software for free than you could hope to purchase
for
 money. You may snoop on pending developments via the archives at

http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/
 and
http://archive.develooper.com/perl5-porters@perl.org/
 or the news gateway
nntp://nntp.perl.org/perl.perl5.porters or
 its web interface at http://nntp.perl.org/group/perl.perl5.porters
,
 or read the faq at http://dev.perl.org/perl5/docs/p5p-faq.html ,
 or you can subscribe to the mailing list
by sending
 perl5-porters-request@perl.org a subscription request
 (an empty message with no subject
is fine).

While the GNU project includes Perl in its distributions, there's no
 such thing as "GNU Perl". Perl is
not produced nor maintained by the
 Free Software Foundation. Perl's licensing terms are also more
open
 than GNU software's tend to be.

You can get commercial support of Perl if you wish, although for most
 users the informal support will
more than suffice. See the answer to
 "Where can I buy a commercial version of perl?" for more
information.

Which version of Perl should I use?
(contributed by brian d foy)

There is often a matter of opinion and taste, and there isn't any one
 answer that fits everyone. In
general, you want to use either the current
 stable release, or the stable release immediately prior to
that one.
 Currently, those are perl5.10.x and perl5.8.x, respectively.

Beyond that, you have to consider several things and decide which is best
 for you.

If things aren't broken, upgrading perl may break them (or at least issue
 new warnings).

The latest versions of perl have more bug fixes.

The Perl community is geared toward supporting the most recent releases,
 so you'll have an
easier time finding help for those.

Versions prior to perl5.004 had serious security problems with buffer
 overflows, and in some
cases have CERT advisories (for instance,
 http://www.cert.org/advisories/CA-1997-17.html).

Perl version 5.12.0 documentation - perlfaq1

Page 2http://perldoc.perl.org

The latest versions are probably the least deployed and widely tested, so
 you may want to
wait a few months after their release and see what
 problems others have if you are risk
averse.

The immediate, previous releases (i.e. perl5.8.x) are usually maintained
 for a while, although
not at the same level as the current releases.

No one is actively supporting Perl 4. Five years ago it was a dead
 camel carcass (according to
this document). Now it's barely a skeleton
 as its whitewashed bones have fractured or eroded.

There is no Perl 6 release scheduled, but it will be available when
 it's ready. Stay tuned, but
don't worry that you'll have to change
 major versions of Perl; no one is going to take Perl 5
away from you.

There are really two tracks of perl development: a maintenance version
 and an experimental
version. The maintenance versions are stable, and
 have an even number as the minor release
(i.e. perl5.10.x, where 10 is the
 minor release). The experimental versions may include
features that
 don't make it into the stable versions, and have an odd number as the
 minor
release (i.e. perl5.9.x, where 9 is the minor release).

What are Perl 4, Perl 5, or Perl 6?
(contributed by brian d foy)

In short, Perl 4 is the past, Perl 5 is the present, and Perl 6 is the
 future.

The number after perl (i.e. the 5 after Perl 5) is the major release
 of the perl interpreter as well as the
version of the language. Each
 major version has significant differences that earlier versions cannot

support.

The current major release of Perl is Perl 5, and was released in 1994.
 It can run scripts from the
previous major release, Perl 4 (March 1991),
 but has significant differences. It introduced the concept
of references,
 complex data structures, and modules. The Perl 5 interpreter was a
 complete re-write
of the previous perl sources.

Perl 6 is the next major version of Perl, but it's still in development
 in both its syntax and design. The
work started in 2002 and is still
 ongoing. Many of the most interesting features have shown up in the

latest versions of Perl 5, and some Perl 5 modules allow you to use some
 Perl 6 syntax in your
programs. You can learn more about Perl 6 at
 http://dev.perl.org/perl6/ .

See perlhist for a history of Perl revisions.

What was Ponie?
(contributed by brian d foy)

Ponie stands for "Perl On the New Internal Engine", started by Arthur
 Bergman from Fotango in 2003,
and subsequently run as a project of The
 Perl Foundation. It was abandoned in 2006
 (
http://www.nntp.perl.org/group/perl.ponie.dev/487).

Instead of using the current Perl internals, Ponie aimed to create a
 new one that would provide a
translation path from Perl 5 to Perl 6
 (or anything else that targets Parrot, actually). You would have
been
 able to just keep using Perl 5 with Parrot, the virtual machine which
 will compile and run Perl 6
bytecode.

What is Perl 6?
At The Second O'Reilly Open Source Software Convention, Larry Wall
 announced Perl 6
development would begin in earnest. Perl 6 was an oft
 used term for Chip Salzenberg's project to
rewrite Perl in C++ named
 Topaz. However, Topaz provided valuable insights to the next version
 of
Perl and its implementation, but was ultimately abandoned.

If you want to learn more about Perl 6, or have a desire to help in
 the crusade to make Perl a better

Perl version 5.12.0 documentation - perlfaq1

Page 3http://perldoc.perl.org

place then read the Perl 6 developers
 page at http://dev.perl.org/perl6/ and get involved.

Perl 6 is not scheduled for release yet, and Perl 5 will still be supported
 for quite awhile after its
release. Do not wait for Perl 6 to do whatever
 you need to do.

"We're really serious about reinventing everything that needs reinventing."
 --Larry Wall

How stable is Perl?
Production releases, which incorporate bug fixes and new functionality,
 are widely tested before
release. Since the 5.000 release, we have
 averaged only about one production release per year.

Larry and the Perl development team occasionally make changes to the
 internal core of the language,
but all possible efforts are made toward
 backward compatibility. While not quite all Perl 4 scripts run
flawlessly
 under Perl 5, an update to perl should nearly never invalidate a program
 written for an
earlier version of perl (barring accidental bug fixes
 and the rare new keyword).

Is Perl difficult to learn?
No, Perl is easy to start learning--and easy to keep learning. It looks
 like most programming
languages you're likely to have experience
 with, so if you've ever written a C program, an awk script,
a shell
 script, or even a BASIC program, you're already partway there.

Most tasks only require a small subset of the Perl language. One of
 the guiding mottos for Perl
development is "there's more than one way
 to do it" (TMTOWTDI, sometimes pronounced "tim
toady"). Perl's
 learning curve is therefore shallow (easy to learn) and long (there's
 a whole lot you can
do if you really want).

Finally, because Perl is frequently (but not always, and certainly not by
 definition) an interpreted
language, you can write your programs and test
 them without an intermediate compilation step,
allowing you to experiment
 and test/debug quickly and easily. This ease of experimentation flattens

the learning curve even more.

Things that make Perl easier to learn: Unix experience, almost any kind
 of programming experience,
an understanding of regular expressions, and
 the ability to understand other people's code. If there's
something you
 need to do, then it's probably already been done, and a working example is
 usually
available for free. Don't forget Perl modules, either.
 They're discussed in Part 3 of this FAQ, along
with CPAN, which is
 discussed in Part 2.

How does Perl compare with other languages like Java, Python, REXX, Scheme, or Tcl?
Favorably in some areas, unfavorably in others. Precisely which areas
 are good and bad is often a
personal choice, so asking this question
 on Usenet runs a strong risk of starting an unproductive Holy
War.

Probably the best thing to do is try to write equivalent code to do a
 set of tasks. These languages
have their own newsgroups in which you
 can learn about (but hopefully not argue about) them.

Some comparison documents can be found at http://www.perl.com/doc/FMTEYEWTK/versus/
 if you
really can't stop yourself.

Can I do [task] in Perl?
Perl is flexible and extensible enough for you to use on virtually any
 task, from one-line file-processing
tasks to large, elaborate systems.
 For many people, Perl serves as a great replacement for shell
scripting.
 For others, it serves as a convenient, high-level replacement for most of
 what they'd
program in low-level languages like C or C++. It's ultimately
 up to you (and possibly your
management) which tasks you'll use Perl
 for and which you won't.

If you have a library that provides an API, you can make any component
 of it available as just another
Perl function or variable using a Perl
 extension written in C or C++ and dynamically linked into your
main
 perl interpreter. You can also go the other direction, and write your
 main program in C or C++,
and then link in some Perl code on the fly,
 to create a powerful application. See perlembed.

Perl version 5.12.0 documentation - perlfaq1

Page 4http://perldoc.perl.org

That said, there will always be small, focused, special-purpose
 languages dedicated to a specific
problem domain that are simply more
 convenient for certain kinds of problems. Perl tries to be all
things
 to all people, but nothing special to anyone. Examples of specialized
 languages that come to
mind include prolog and matlab.

When shouldn't I program in Perl?
When your manager forbids it--but do consider replacing them :-).

Actually, one good reason is when you already have an existing
 application written in another
language that's all done (and done
 well), or you have an application language specifically designed
for a
 certain task (e.g. prolog, make).

For various reasons, Perl is probably not well-suited for real-time
 embedded systems, low-level
operating systems development work like
 device drivers or context-switching code, complex
multi-threaded
 shared-memory applications, or extremely large applications. You'll
 notice that perl is
not itself written in Perl.

Perl remains fundamentally a dynamically typed language, not
 a statically typed one. You certainly
won't be chastised if you don't
 trust nuclear-plant or brain-surgery monitoring code to it. And Larry
 will
sleep easier, too--Wall Street programs not withstanding. :-)

What's the difference between "perl" and "Perl"?
One bit. Oh, you weren't talking ASCII? :-) Larry now uses "Perl" to
 signify the language proper and
"perl" the implementation of it, i.e.
 the current interpreter. Hence Tom's quip that "Nothing but perl can
parse Perl."

Before the first edition of Programming perl, people commonly
 referred to the language as "perl", and
its name appeared that way in
 the title because it referred to the interpreter. In the book, Randal

Schwartz capitalised the language's name to make it stand out better
 when typeset. This convention
was adopted by the community, and the
 second edition became Programming Perl, using the
capitalized
 version of the name to refer to the language.

You may or may not choose to follow this usage. For example,
 parallelism means "awk and perl" and
"Python and Perl" look good, while
 "awk and Perl" and "Python and perl" do not. But never write
"PERL",
 because perl is not an acronym, apocryphal folklore and post-facto
 expansions
notwithstanding.

Is it a Perl program or a Perl script?
Larry doesn't really care. He says (half in jest) that "a script is
 what you give the actors. A program is
what you give the audience."

Originally, a script was a canned sequence of normally interactive
 commands--that is, a chat script.
Something like a UUCP or PPP chat
 script or an expect script fits the bill nicely, as do configuration

scripts run by a program at its start up, such .cshrc or .ircrc,
 for example. Chat scripts were just
drivers for existing programs,
 not stand-alone programs in their own right.

A computer scientist will correctly explain that all programs are
 interpreted and that the only question
is at what level. But if you
 ask this question of someone who isn't a computer scientist, they might
 tell
you that a program has been compiled to physical machine code
 once and can then be run multiple
times, whereas a script must be
 translated by a program each time it's used.

Now that "script" and "scripting" are terms that have been seized by
 unscrupulous or unknowing
marketeers for their own nefarious purposes,
 they have begun to take on strange and often pejorative
meanings,
 like "non serious" or "not real programming". Consequently, some Perl
 programmers prefer
to avoid them altogether.

What is a JAPH?
(contributed by brian d foy)

Perl version 5.12.0 documentation - perlfaq1

Page 5http://perldoc.perl.org

JAPH stands for "Just another Perl hacker,", which Randal Schwartz used
 to sign email and usenet
messages starting in the late 1980s. He
 previously used the phrase with many subjects ("Just another
x hacker,"),
 so to distinguish his JAPH, he started to write them as Perl programs:

	 print "Just another Perl hacker,";

Other people picked up on this and started to write clever or obfuscated
 programs to produce the
same output, spinning things quickly out of
 control while still providing hours of amusement for their
creators and
 readers.

CPAN has several JAPH programs at http://www.cpan.org/misc/japh .

Where can I get a list of Larry Wall witticisms?
(contributed by brian d foy)

Google "larry wall quotes"! You might even try the "I feel lucky" button.
 :)

Wikiquote has the witticisms from Larry along with their source,
 including his usenet postings and
source code comments.

If you want a plain text file, try
 http://www.cpan.org/misc/lwall-quotes.txt.gz .

How can I convince others to use Perl?
(contributed by brian d foy)

Appeal to their self interest! If Perl is new (and thus scary) to them,
 find something that Perl can do to
solve one of their problems. That
 might mean that Perl either saves them something (time,
headaches, money)
 or gives them something (flexibility, power, testability).

In general, the benefit of a language is closely related to the skill of
 the people using that language. If
you or your team can be more faster,
 better, and stronger through Perl, you'll deliver more value.
Remember,
 people often respond better to what they get out of it. If you run
 into resistance, figure out
what those people get out of the other
 choice and how Perl might satisfy that requirement.

You don't have to worry about finding or paying for Perl; it's freely
 available and several popular
operating systems come with Perl. Community
 support in places such as Perlmonks (
http://www.perlmonks.com)
 and the various Perl mailing lists (http://lists.perl.org) means that
 you
can usually get quick answers to your problems.

Finally, keep in mind that Perl might not be the right tool for every
 job. You're a much better advocate
if your claims are reasonable and
 grounded in reality. Dogmatically advocating anything tends to
make
 people discount your message. Be honest about possible disadvantages
 to your choice of Perl
since any choice has trade-offs.

You might find these links useful:

* http://perltraining.com.au/whyperl.html

* http://www.perl.org/advocacy/whyperl.html

AUTHOR AND COPYRIGHT
Copyright (c) 1997-2010 Tom Christiansen, Nathan Torkington, and
 other authors as noted. All rights
reserved.

This documentation is free; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Irrespective of its distribution, all code examples here are in the public
 domain. You are permitted and
encouraged to use this code and any
 derivatives thereof in your own programs for fun or for profit as
you
 see fit. A simple comment in the code giving credit to the FAQ would
 be courteous but is not
required.

