
Perl version 5.12.0 documentation - Math::Complex

Page 1http://perldoc.perl.org

NAME
Math::Complex - complex numbers and associated mathematical functions

SYNOPSIS
	 use Math::Complex;

	 $z = Math::Complex->make(5, 6);
	 $t = 4 - 3*i + $z;
	 $j = cplxe(1, 2*pi/3);

DESCRIPTION
This package lets you create and manipulate complex numbers. By default, Perl limits itself to real
numbers, but an extra use statement brings
 full complex support, along with a full set of mathematical
functions
 typically associated with and/or extended to complex numbers.

If you wonder what complex numbers are, they were invented to be able to solve
 the following
equation:

	 x*x = -1

and by definition, the solution is noted i (engineers use j instead since i usually denotes an intensity,
but the name does not matter). The number i is a pure imaginary number.

The arithmetics with pure imaginary numbers works just like you would expect
 it with real numbers...
you just have to remember that

	 i*i = -1

so you have:

	 5i + 7i = i * (5 + 7) = 12i
	 4i - 3i = i * (4 - 3) = i
	 4i * 2i = -8
	 6i / 2i = 3
	 1 / i = -i

Complex numbers are numbers that have both a real part and an imaginary
 part, and are usually
noted:

	 a + bi

where a is the real part and b is the imaginary part. The
 arithmetic with complex numbers is
straightforward. You have to
 keep track of the real and the imaginary parts, but otherwise the
 rules
used for real numbers just apply:

	 (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
	 (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i

A graphical representation of complex numbers is possible in a plane
 (also called the complex plane,
but it's really a 2D plane).
 The number

	 z = a + bi

is the point whose coordinates are (a, b). Actually, it would
 be the vector originating from (0, 0) to (a,
b). It follows that the addition
 of two complex numbers is a vectorial addition.

Perl version 5.12.0 documentation - Math::Complex

Page 2http://perldoc.perl.org

Since there is a bijection between a point in the 2D plane and a complex
 number (i.e. the mapping is
unique and reciprocal), a complex number
 can also be uniquely identified with polar coordinates:

	 [rho, theta]

where rho is the distance to the origin, and theta the angle between
 the vector and the x axis.
There is a notation for this using the
 exponential form, which is:

	 rho * exp(i * theta)

where i is the famous imaginary number introduced above. Conversion
 between this form and the
cartesian form a + bi is immediate:

	 a = rho * cos(theta)
	 b = rho * sin(theta)

which is also expressed by this formula:

	 z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)

In other words, it's the projection of the vector onto the x and y
 axes. Mathematicians call rho the
norm or modulus and theta
 the argument of the complex number. The norm of z is
 marked here as
abs(z).

The polar notation (also known as the trigonometric representation) is
 much more handy for
performing multiplications and divisions of
 complex numbers, whilst the cartesian notation is better
suited for
 additions and subtractions. Real numbers are on the x axis, and
 therefore y or theta is zero
or pi.

All the common operations that can be performed on a real number have
 been defined to work on
complex numbers as well, and are merely extensions of the operations defined on real numbers. This
means
 they keep their natural meaning when there is no imaginary part, provided
 the number is within
their definition set.

For instance, the sqrt routine which computes the square root of
 its argument is only defined for
non-negative real numbers and yields a
 non-negative real number (it is an application from R+ to R+).
If we allow it to return a complex number, then it can be extended to
 negative real numbers to
become an application from R to C (the
 set of complex numbers):

	 sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i

It can also be extended to be an application from C to C,
 whilst its restriction to R behaves as defined
above by using
 the following definition:

	 sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)

Indeed, a negative real number can be noted [x,pi] (the modulus x is always non-negative, so
[x,pi] is really -x, a negative
 number) and the above definition states that

	 sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i

which is exactly what we had defined for negative real numbers above.
 The sqrt returns only one of
the solutions: if you want the both,
 use the root function.

All the common mathematical functions defined on real numbers that
 are extended to complex
numbers share that same property of working as usual when the imaginary part is zero (otherwise, it
would not
 be called an extension, would it?).

Perl version 5.12.0 documentation - Math::Complex

Page 3http://perldoc.perl.org

A new operation possible on a complex number that is
 the identity for real numbers is called the
conjugate, and is noted
 with a horizontal bar above the number, or ~z here.

	 z = a + bi
	 ~z = a - bi

Simple... Now look:

	 z * ~z = (a + bi) * (a - bi) = a*a + b*b

We saw that the norm of z was noted abs(z) and was defined as the
 distance to the origin, also
known as:

	 rho = abs(z) = sqrt(a*a + b*b)

so

	 z * ~z = abs(z) ** 2

If z is a pure real number (i.e. b == 0), then the above yields:

	 a * a = abs(a) ** 2

which is true (abs has the regular meaning for real number, i.e. stands
 for the absolute value). This
example explains why the norm of z is
 noted abs(z): it extends the abs function to complex
numbers, yet
 is the regular abs we know when the complex number actually has no
 imaginary part...
This justifies a posteriori our use of the abs
 notation for the norm.

OPERATIONS
Given the following notations:

	 z1 = a + bi = r1 * exp(i * t1)
	 z2 = c + di = r2 * exp(i * t2)
	 z = <any complex or real number>

the following (overloaded) operations are supported on complex numbers:

	 z1 + z2 = (a + c) + i(b + d)
	 z1 - z2 = (a - c) + i(b - d)
	 z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
	 z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
	 z1 ** z2 = exp(z2 * log z1)
	 ~z = a - bi
	 abs(z) = r1 = sqrt(a*a + b*b)
	 sqrt(z) = sqrt(r1) * exp(i * t/2)
	 exp(z) = exp(a) * exp(i * b)
	 log(z) = log(r1) + i*t
	 sin(z) = 1/2i (exp(i * z1) - exp(-i * z))
	 cos(z) = 1/2 (exp(i * z1) + exp(-i * z))
	 atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order.

The definition used for complex arguments of atan2() is

 -i log((x + iy)/sqrt(x*x+y*y))

Note that atan2(0, 0) is not well-defined.

Perl version 5.12.0 documentation - Math::Complex

Page 4http://perldoc.perl.org

The following extra operations are supported on both real and complex
 numbers:

	 Re(z) = a
	 Im(z) = b
	 arg(z) = t
	 abs(z) = r

	 cbrt(z) = z ** (1/3)
	 log10(z) = log(z) / log(10)
	 logn(z, n) = log(z) / log(n)

	 tan(z) = sin(z) / cos(z)

	 csc(z) = 1 / sin(z)
	 sec(z) = 1 / cos(z)
	 cot(z) = 1 / tan(z)

	 asin(z) = -i * log(i*z + sqrt(1-z*z))
	 acos(z) = -i * log(z + i*sqrt(1-z*z))
	 atan(z) = i/2 * log((i+z) / (i-z))

	 acsc(z) = asin(1 / z)
	 asec(z) = acos(1 / z)
	 acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i))

	 sinh(z) = 1/2 (exp(z) - exp(-z))
	 cosh(z) = 1/2 (exp(z) + exp(-z))
	 tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))

	 csch(z) = 1 / sinh(z)
	 sech(z) = 1 / cosh(z)
	 coth(z) = 1 / tanh(z)

	 asinh(z) = log(z + sqrt(z*z+1))
	 acosh(z) = log(z + sqrt(z*z-1))
	 atanh(z) = 1/2 * log((1+z) / (1-z))

	 acsch(z) = asinh(1 / z)
	 asech(z) = acosh(1 / z)
	 acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1))

arg, abs, log, csc, cot, acsc, acot, csch, coth, acosech, acotanh, have aliases rho, theta, ln, cosec,
cotan, acosec, acotan, cosech, cotanh, acosech, acotanh, respectively. Re, Im, arg, abs, rho, and
theta can be used also as mutators. The cbrt
 returns only one of the solutions: if you want all
three, use the root function.

The root function is available to compute all the n
 roots of some complex, where n is a strictly positive
integer.
 There are exactly n such roots, returned as a list. Getting the
 number mathematicians call j
such that:

	 1 + j + j*j = 0;

is a simple matter of writing:

Perl version 5.12.0 documentation - Math::Complex

Page 5http://perldoc.perl.org

	 $j = ((root(1, 3))[1];

The kth root for z = [r,t] is given by:

	 (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)

You can return the kth root directly by root(z, n, k),
 indexing starting from zero and ending at n -
1.

The spaceship numeric comparison operator, <=>, is also
 defined. In order to ensure its restriction to
real numbers is conform
 to what you would expect, the comparison is run on the real part of
 the
complex number first, and imaginary parts are compared only when
 the real parts match.

CREATION
To create a complex number, use either:

	 $z = Math::Complex->make(3, 4);
	 $z = cplx(3, 4);

if you know the cartesian form of the number, or

	 $z = 3 + 4*i;

if you like. To create a number using the polar form, use either:

	 $z = Math::Complex->emake(5, pi/3);
	 $x = cplxe(5, pi/3);

instead. The first argument is the modulus, the second is the angle
 (in radians, the full circle is 2*pi).
(Mnemonic: e is used as a
 notation for complex numbers in the polar form).

It is possible to write:

	 $x = cplxe(-3, pi/4);

but that will be silently converted into [3,-3pi/4], since the
 modulus must be non-negative (it
represents the distance to the origin
 in the complex plane).

It is also possible to have a complex number as either argument of the make, emake, cplx, and
cplxe: the appropriate component of
 the argument will be used.

	 $z1 = cplx(-2, 1);
	 $z2 = cplx($z1, 4);

The new, make, emake, cplx, and cplxe will also
 understand a single (string) argument of the forms

 	 2-3i
 	 -3i
	 [2,3]
	 [2,-3pi/4]
	 [2]

in which case the appropriate cartesian and exponential components
 will be parsed from the string
and used to create new complex numbers.
 The imaginary component and the theta, respectively, will
default to zero.

The new, make, emake, cplx, and cplxe will also
 understand the case of no arguments: this means

Perl version 5.12.0 documentation - Math::Complex

Page 6http://perldoc.perl.org

plain zero or (0, 0).

DISPLAYING
When printed, a complex number is usually shown under its cartesian
 style a+bi, but there are
legitimate cases where the polar style [r,t] is more appropriate. The process of converting the complex
number into a string that can be displayed is known as stringification.

By calling the class method Math::Complex::display_format and
 supplying either "polar" or
"cartesian" as an argument, you
 override the default display style, which is "cartesian". Not

supplying any argument returns the current settings.

This default can be overridden on a per-number basis by calling the display_format method
instead. As before, not supplying any argument
 returns the current display style for this number.
Otherwise whatever you
 specify will be the new display style for this particular number.

For instance:

	 use Math::Complex;

	 Math::Complex::display_format('polar');
	 $j = (root(1, 3))[1];
	 print "j = $j\n";		 # Prints "j = [1,2pi/3]"
	 $j->display_format('cartesian');
	 print "j = $j\n";		 # Prints "j = -0.5+0.866025403784439i"

The polar style attempts to emphasize arguments like k*pi/n
 (where n is a positive integer and k an
integer within [-9, +9]),
 this is called polar pretty-printing.

For the reverse of stringifying, see the make and emake.

CHANGED IN PERL 5.6
The display_format class method and the corresponding display_format object method can
now be called using
 a parameter hash instead of just a one parameter.

The old display format style, which can have values "cartesian" or "polar", can be changed
using the "style" parameter.

	 $j->display_format(style => "polar");

The one parameter calling convention also still works.

	 $j->display_format("polar");

There are two new display parameters.

The first one is "format", which is a sprintf()-style format string
 to be used for both numeric parts of
the complex number(s). The is
 somewhat system-dependent but most often it corresponds to
"%.15g".
 You can revert to the default by setting the format to undef.

	 # the $j from the above example

	 $j->display_format('format' => '%.5f');
	 print "j = $j\n";		 # Prints "j = -0.50000+0.86603i"
	 $j->display_format('format' => undef);
	 print "j = $j\n";		 # Prints "j = -0.5+0.86603i"

Notice that this affects also the return values of the display_format methods: in list context the

Perl version 5.12.0 documentation - Math::Complex

Page 7http://perldoc.perl.org

whole parameter hash
 will be returned, as opposed to only the style parameter value.
 This is a
potential incompatibility with earlier versions if you
 have been calling the display_format method
in list context.

The second new display parameter is "polar_pretty_print", which can
 be set to true or false,
the default being true. See the previous
 section for what this means.

USAGE
Thanks to overloading, the handling of arithmetics with complex numbers
 is simple and almost
transparent.

Here are some examples:

	 use Math::Complex;

	 $j = cplxe(1, 2*pi/3);	 # $j ** 3 == 1
	 print "j = $j, j**3 = ", $j ** 3, "\n";
	 print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";

	 $z = -16 + 0*i;			 # Force it to be a complex
	 print "sqrt($z) = ", sqrt($z), "\n";

	 $k = exp(i * 2*pi/3);
	 print "$j - $k = ", $j - $k, "\n";

	 $z->Re(3);			 # Re, Im, arg, abs,
	 $j->arg(2);			 # (the last two aka rho, theta)
					 # can be used also as mutators.

CONSTANTS
PI

The constant pi and some handy multiples of it (pi2, pi4,
 and pip2 (pi/2) and pip4 (pi/4)) are also
available if separately
 exported:

 use Math::Complex ':pi';
 $third_of_circle = pi2 / 3;

Inf
The floating point infinity can be exported as a subroutine Inf():

 use Math::Complex qw(Inf sinh);
 my $AlsoInf = Inf() + 42;
 my $AnotherInf = sinh(1e42);
 print "$AlsoInf is $AnotherInf\n" if $AlsoInf == $AnotherInf;

Note that the stringified form of infinity varies between platforms:
 it can be for example any of

 inf
 infinity
 INF
 1.#INF

or it can be something else.

Also note that in some platforms trying to use the infinity in
 arithmetic operations may result in Perl

Perl version 5.12.0 documentation - Math::Complex

Page 8http://perldoc.perl.org

crashing because using
 an infinity causes SIGFPE or its moral equivalent to be sent.
 The way to
ignore this is

 local $SIG{FPE} = sub { };

ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO
The division (/) and the following functions

	 log	 ln	 log10	 logn
	 tan	 sec	 csc	 cot
	 atan	 asec	 acsc	 acot
	 tanh	 sech	 csch	 coth
	 atanh	 asech	 acsch	 acoth

cannot be computed for all arguments because that would mean dividing
 by zero or taking logarithm
of zero. These situations cause fatal
 runtime errors looking like this

	 cot(0): Division by zero.
	 (Because in the definition of cot(0), the divisor sin(0) is 0)
	 Died at ...

or

	 atanh(-1): Logarithm of zero.
	 Died at...

For the csc, cot, asec, acsc, acot, csch, coth, asech, acsch, the argument cannot be 0 (zero).
For the
 logarithmic functions and the atanh, acoth, the argument cannot
 be 1 (one). For the atanh,
acoth, the argument cannot be -1 (minus one). For the atan, acot, the argument cannot be i (the
imaginary unit). For the atan, acoth, the argument
 cannot be -i (the negative imaginary unit). For
the tan, sec, tanh, the argument cannot be pi/2 + k * pi, where k
 is any integer. atan2(0, 0) is
undefined, and if the complex arguments
 are used for atan2(), a division by zero will happen if
z1**2+z2**2 == 0.

Note that because we are operating on approximations of real numbers,
 these errors can happen
when merely `too close' to the singularities
 listed above.

ERRORS DUE TO INDIGESTIBLE ARGUMENTS
The make and emake accept both real and complex arguments.
 When they cannot recognize the
arguments they will die with error
 messages like the following

 Math::Complex::make: Cannot take real part of ...
 Math::Complex::make: Cannot take real part of ...
 Math::Complex::emake: Cannot take rho of ...
 Math::Complex::emake: Cannot take theta of ...

BUGS
Saying use Math::Complex; exports many mathematical routines in the
 caller environment and
even overrides some (sqrt, log, atan2).
 This is construed as a feature by the Authors, actually... ;-)

All routines expect to be given real or complex numbers. Don't attempt to
 use BigFloat, since Perl has
currently no rule to disambiguate a '+'
 operation (for instance) between two overloaded entities.

In Cray UNICOS there is some strange numerical instability that results
 in root(), cos(), sin(), cosh(),
sinh(), losing accuracy fast. Beware.
 The bug may be in UNICOS math libs, in UNICOS C compiler, in
Math::Complex.
 Whatever it is, it does not manifest itself anywhere else where Perl runs.

Perl version 5.12.0 documentation - Math::Complex

Page 9http://perldoc.perl.org

SEE ALSO
Math::Trig

AUTHORS
Daniel S. Lewart <lewart!at!uiuc.edu>
 Jarkko Hietaniemi <jhi!at!iki.fi>
 Raphael Manfredi <
Raphael_Manfredi!at!pobox.com>

LICENSE
This library is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

