
Perl version 5.12.0 documentation - App::Prove

Page 1http://perldoc.perl.org

NAME
App::Prove - Implements the prove command.

VERSION
Version 3.17

DESCRIPTION
Test::Harness provides a command, prove, which runs a TAP based
 test suite and prints a report.
The prove command is a minimal
 wrapper around an instance of this module.

SYNOPSIS
 use App::Prove;

 my $app = App::Prove->new;
 $app->process_args(@ARGV);
 $app->run;

METHODS
Class Methods
new

Create a new App::Prove. Optionally a hash ref of attribute
 initializers may be passed.

state_class

Getter/setter for the name of the class used for maintaining state. This
 class should either subclass
from App::Prove::State or provide an identical
 interface.

state_manager

Getter/setter for the instance of the state_class.

add_rc_file

 $prove->add_rc_file('myproj/.proverc');

Called before process_args to prepend the contents of an rc file to
 the options.

process_args

 $prove->process_args(@args);

Processes the command-line arguments. Attributes will be set
 appropriately. Any filenames may be
found in the argv attribute.

Dies on invalid arguments.

run

Perform whatever actions the command line args specified. The prove
 command line tool consists of
the following code:

 use App::Prove;

 my $app = App::Prove->new;
 $app->process_args(@ARGV);
 exit($app->run ? 0 : 1); # if you need the exit code

Perl version 5.12.0 documentation - App::Prove

Page 2http://perldoc.perl.org

require_harness

Load a harness replacement class.

 $prove->require_harness($for => $class_name);

print_version

Display the version numbers of the loaded TAP::Harness and the
 current Perl.

Attributes
After command line parsing the following attributes reflect the values
 of the corresponding command
line switches. They may be altered before
 calling run.

archive

argv

backwards

blib

color

directives

dry

exec

extension

failures

comments

formatter

harness

ignore_exit

includes

jobs

lib

merge

modules

parse

plugins

quiet

really_quiet

recurse

rules

show_count

show_help

show_man

show_version

shuffle

state

state_class

taint_fail

Perl version 5.12.0 documentation - App::Prove

Page 3http://perldoc.perl.org

taint_warn

test_args

timer

verbose

warnings_fail

warnings_warn

PLUGINS
App::Prove provides support for 3rd-party plugins. These are currently
 loaded at run-time, after
arguments have been parsed (so you can not
 change the way arguments are processed, sorry),
typically with the -Pplugin switch, eg:

 prove -PMyPlugin

This will search for a module named App::Prove::Plugin::MyPlugin, or failing
 that, MyPlugin.
If the plugin can't be found, prove will complain & exit.

You can pass an argument to your plugin by appending an = after the plugin
 name, eg
-PMyPlugin=foo. You can pass multiple arguments using commas:

 prove -PMyPlugin=foo,bar,baz

These are passed in to your plugin's load() class method (if it has one),
 along with a reference to
the App::Prove object that is invoking your plugin:

 sub load {
 my ($class, $p) = @_;

 my @args = @{ $p->{args} };
 # @args will contain ('foo', 'bar', 'baz')
 $p->{app_prove}->do_something;
 ...
 }

Note that the user's arguments are also passed to your plugin's import()
 function as a list, eg:

 sub import {
 my ($class, @args) = @_;
 # @args will contain ('foo', 'bar', 'baz')
 ...
 }

This is for backwards compatibility, and may be deprecated in the future.

Sample Plugin
Here's a sample plugin, for your reference:

 package App::Prove::Plugin::Foo;

 # Sample plugin, try running with:
 # prove -PFoo=bar -r -j3
 # prove -PFoo -Q
 # prove -PFoo=bar,My::Formatter

Perl version 5.12.0 documentation - App::Prove

Page 4http://perldoc.perl.org

 use strict;
 use warnings;

 sub load {
 my ($class, $p) = @_;
 my @args = @{ $p->{args} };
 my $app = $p->{app_prove};

 print "loading plugin: $class, args: ", join(', ', @args), "\n";

 # turn on verbosity
 $app->verbose(1);

 # set the formatter?
 $app->formatter($args[1]) if @args > 1;

 # print some of App::Prove's state:
 for my $attr (qw(jobs quiet really_quiet recurse verbose)) {
 my $val = $app->$attr;
 $val = 'undef' unless defined($val);
 print "$attr: $val\n";
 }

 return 1;
 }

 1;

SEE ALSO
prove, TAP::Harness

