
Perl version 5.12.0 documentation - perlrecharclass

Page 1http://perldoc.perl.org

NAME
perlrecharclass - Perl Regular Expression Character Classes

DESCRIPTION
The top level documentation about Perl regular expressions
 is found in perlre.

This manual page discusses the syntax and use of character
 classes in Perl Regular Expressions.

A character class is a way of denoting a set of characters,
 in such a way that one character of the set
is matched.
 It's important to remember that matching a character class
 consumes exactly one
character in the source string. (The source
 string is the string the regular expression is matched
against.)

There are three types of character classes in Perl regular
 expressions: the dot, backslashed
sequences, and the form enclosed in square
 brackets. Keep in mind, though, that often the term
"character class" is used
 to mean just the bracketed form. This is true in other Perl documentation.

The dot
The dot (or period), . is probably the most used, and certainly
 the most well-known character class.
By default, a dot matches any
 character, except for the newline. The default can be changed to
 add
matching the newline with the single line modifier: either
 for the entire regular expression using the /s
modifier, or
 locally using (?s).

Here are some examples:

 "a" =~ /./ # Match
 "." =~ /./ # Match
 "" =~ /./ # No match (dot has to match a character)
 "\n" =~ /./ # No match (dot does not match a newline)
 "\n" =~ /./s # Match (global 'single line' modifier)
 "\n" =~ /(?s:.)/ # Match (local 'single line' modifier)
 "ab" =~ /^.$/ # No match (dot matches one character)

Backslashed sequences
Perl regular expressions contain many backslashed sequences that
 constitute a character class. That
is, they will match a single
 character, if that character belongs to a specific set of characters
 (defined
by the sequence). A backslashed sequence is a sequence of
 characters starting with a backslash.
Not all backslashed sequences
 are character classes; for a full list, see perlrebackslash.

Here's a list of the backslashed sequences that are character classes. They
 are discussed in more
detail below.

 \d Match a digit character.
 \D Match a non-digit character.
 \w Match a "word" character.
 \W Match a non-"word" character.
 \s Match a whitespace character.
 \S Match a non-whitespace character.
 \h Match a horizontal whitespace character.
 \H Match a character that isn't horizontal whitespace.
 \N Match a character that isn't newline. Experimental.
 \v Match a vertical whitespace character.
 \V Match a character that isn't vertical whitespace.
 \pP, \p{Prop} Match a character matching a Unicode property.
 \PP, \P{Prop} Match a character that doesn't match a Unicode property.

Perl version 5.12.0 documentation - perlrecharclass

Page 2http://perldoc.perl.org

Digits

\d matches a single character that is considered to be a digit. What is
 considered a digit depends on
the internal encoding of the source string and
 the locale that is in effect. If the source string is in
UTF-8 format, \d
 not only matches the digits '0' - '9', but also Arabic, Devanagari and digits
 from other
languages. Otherwise, if there is a locale in effect, it will match
 whatever characters the locale
considers digits. Without a locale, \d
 matches the digits '0' to '9'. See Locale, EBCDIC, Unicode and
UTF-8.

Any character that isn't matched by \d will be matched by \D.

Word characters

A \w matches a single alphanumeric character (an alphabetic character, or a
 decimal digit) or an
underscore (_), not a whole word. Use \w+ to match
 a string of Perl-identifier characters (which isn't
the same as matching an
 English word). What is considered a word character depends on the internal
encoding of the string and the locale or EBCDIC code page that is in effect. If
 it's in UTF-8 format, \w
matches those characters that are considered word
 characters in the Unicode database. That is, it not
only matches ASCII letters,
 but also Thai letters, Greek letters, etc. If the source string isn't in UTF-8

format, \w matches those characters that are considered word characters by
 the current locale or
EBCDIC code page. Without a locale or EBCDIC code page, \w matches the ASCII letters, digits and
the underscore.
 See Locale, EBCDIC, Unicode and UTF-8.

Any character that isn't matched by \w will be matched by \W.

Whitespace

\s matches any single character that is considered whitespace. In the ASCII
 range, \s matches the
horizontal tab (\t), the new line (\n), the form
 feed (\f), the carriage return (\r), and the space. (The
vertical tab, \cK is not matched by \s.) The exact set of characters matched by \s
 depends on
whether the source string is in UTF-8 format and the locale or
 EBCDIC code page that is in effect. If
it's in UTF-8 format, \s matches what
 is considered whitespace in the Unicode database; the
complete list is in the
 table below. Otherwise, if there is a locale or EBCDIC code page in effect, \s
matches whatever is considered whitespace by the current locale or EBCDIC
 code page. Without a
locale or EBCDIC code page, \s matches the five
 characters mentioned in the beginning of this
paragraph. Perhaps the most
 notable possible surprise is that \s matches a non-breaking space only
if
 the non-breaking space is in a UTF-8 encoded string or the locale or EBCDIC
 code page that is in
effect has that character.
 See Locale, EBCDIC, Unicode and UTF-8.

Any character that isn't matched by \s will be matched by \S.

\h will match any character that is considered horizontal whitespace;
 this includes the space and the
tab characters and 17 other characters that are
 listed in the table below. \H will match any character

that is not considered horizontal whitespace.

\N is new in 5.12, and is experimental. It, like the dot, will match any
 character that is not a newline.
The difference is that \N will not be
 influenced by the single line /s regular expression modifier. Note
that
 there is a second meaning of \N when of the form \N{...}. This form is
 for named characters.
See charnames for those. If \N is followed by an
 opening brace and something that is not a quantifier,
perl will assume that a
 character name is coming, and not this meaning of \N. For example, \N{3}

means to match 3 non-newlines; \N{5,} means to match 5 or more non-newlines,
 but \N{4F} and
\N{F4} are not legal quantifiers, and will cause perl to
 look for characters named 4F or F4,
respectively (and won't find them,
 thus raising an error, unless they have been defined using custom
names).

\v will match any character that is considered vertical whitespace;
 this includes the carriage return
and line feed characters (newline) plus 5
 other characters listed in the table below. \V will match any
character that is not considered vertical whitespace.

\R matches anything that can be considered a newline under Unicode
 rules. It's not a character class,
as it can match a multi-character
 sequence. Therefore, it cannot be used inside a bracketed character

Perl version 5.12.0 documentation - perlrecharclass

Page 3http://perldoc.perl.org

class; use \v instead (vertical whitespace).
 Details are discussed in perlrebackslash.

Note that unlike \s, \d and \w, \h and \v always match
 the same characters, regardless whether
the source string is in UTF-8
 format or not. The set of characters they match is also not influenced
 by
locale nor EBCDIC code page.

One might think that \s is equivalent to [\h\v]. This is not true. The
 vertical tab ("\x0b") is not
matched by \s, it is however considered
 vertical whitespace. Furthermore, if the source string is not
in UTF-8 format,
 and any locale or EBCDIC code page that is in effect doesn't include them, the
 next
line ("\x85") and the no-break space ("\xA0") characters are not
 matched by \s, but are by \v
and \h respectively. If the source
 string is in UTF-8 format, both the next line and the no-break space
are
 matched by \s.

The following table is a complete listing of characters matched by \s, \h and \v as of Unicode 5.2.

The first column gives the code point of the character (in hex format),
 the second column gives the
(Unicode) name. The third column indicates
 by which class(es) the character is matched (assuming
no locale or EBCDIC code
 page is in effect that changes the \s matching).

 0x00009 CHARACTER TABULATION h s
 0x0000a LINE FEED (LF) vs
 0x0000b LINE TABULATION v
 0x0000c FORM FEED (FF) vs
 0x0000d CARRIAGE RETURN (CR) vs
 0x00020 SPACE h s
 0x00085 NEXT LINE (NEL) vs [1]
 0x000a0 NO-BREAK SPACE h s [1]
 0x01680 OGHAM SPACE MARK h s
 0x0180e MONGOLIAN VOWEL SEPARATOR h s
 0x02000 EN QUAD h s
 0x02001 EM QUAD h s
 0x02002 EN SPACE h s
 0x02003 EM SPACE h s
 0x02004 THREE-PER-EM SPACE h s
 0x02005 FOUR-PER-EM SPACE h s
 0x02006 SIX-PER-EM SPACE h s
 0x02007 FIGURE SPACE h s
 0x02008 PUNCTUATION SPACE h s
 0x02009 THIN SPACE h s
 0x0200a HAIR SPACE h s
 0x02028 LINE SEPARATOR vs
 0x02029 PARAGRAPH SEPARATOR vs
 0x0202f NARROW NO-BREAK SPACE h s
 0x0205f MEDIUM MATHEMATICAL SPACE h s
 0x03000 IDEOGRAPHIC SPACE h s

[1]

NEXT LINE and NO-BREAK SPACE only match \s if the source string is in
 UTF-8 format, or
the locale or EBCDIC code page that is in effect includes them.

It is worth noting that \d, \w, etc, match single characters, not
 complete numbers or words. To match
a number (that consists of integers),
 use \d+; to match a word, use \w+.

Unicode Properties

\pP and \p{Prop} are character classes to match characters that fit given
 Unicode properties. One
letter property names can be used in the \pP form,
 with the property name following the \p,
otherwise, braces are required.
 When using braces, there is a single form, which is just the property

Perl version 5.12.0 documentation - perlrecharclass

Page 4http://perldoc.perl.org

name
 enclosed in the braces, and a compound form which looks like \p{name=value},
 which
means to match if the property "name" for the character has the particular
 "value".
 For instance, a
match for a number can be written as /\pN/ or as /\p{Number}/, or as /\p{Number=True}/.

Lowercase letters are matched by the property Lowercase_Letter which
 has as short form Ll. They
need the braces, so are written as /\p{Ll}/ or /\p{Lowercase_Letter}/, or
/\p{General_Category=Lowercase_Letter}/
 (the underscores are optional). /\pLl/ is valid,
but means something different.
 It matches a two character string: a letter (Unicode property \pL),

followed by a lowercase l.

For more details, see "Unicode Character Properties" in perlunicode; for a
 complete list of possible
properties, see "Properties accessible through \p{} and \P{}" in perluniprops.
 It is also possible to
define your own properties. This is discussed in "User-Defined Character Properties" in perlunicode.

Examples

 "a" =~ /\w/ # Match, "a" is a 'word' character.
 "7" =~ /\w/ # Match, "7" is a 'word' character as well.
 "a" =~ /\d/ # No match, "a" isn't a digit.
 "7" =~ /\d/ # Match, "7" is a digit.
 " " =~ /\s/ # Match, a space is whitespace.
 "a" =~ /\D/ # Match, "a" is a non-digit.
 "7" =~ /\D/ # No match, "7" is not a non-digit.
 " " =~ /\S/ # No match, a space is not non-whitespace.

 " " =~ /\h/ # Match, space is horizontal whitespace.
 " " =~ /\v/ # No match, space is not vertical whitespace.
 "\r" =~ /\v/ # Match, a return is vertical whitespace.

 "a" =~ /\pL/ # Match, "a" is a letter.
 "a" =~ /\p{Lu}/ # No match, /\p{Lu}/ matches upper case letters.

 "\x{0e0b}" =~ /\p{Thai}/ # Match, \x{0e0b} is the character
 # 'THAI CHARACTER SO SO', and that's in
 # Thai Unicode class.
 "a" =~ /\P{Lao}/ # Match, as "a" is not a Laotian character.

Bracketed Character Classes
The third form of character class you can use in Perl regular expressions
 is the bracketed form. In its
simplest form, it lists the characters
 that may be matched, surrounded by square brackets, like this:
[aeiou].
 This matches one of a, e, i, o or u. Like the other
 character classes, exactly one character
will be matched. To match
 a longer string consisting of characters mentioned in the character
 class,
follow the character class with a quantifier. For instance, [aeiou]+ matches a string of one or more
lowercase ASCII vowels.

Repeating a character in a character class has no
 effect; it's considered to be in the set only once.

Examples:

 "e" =~ /[aeiou]/ # Match, as "e" is listed in the class.
 "p" =~ /[aeiou]/ # No match, "p" is not listed in the class.
 "ae" =~ /^[aeiou]$/ # No match, a character class only matches
 # a single character.
 "ae" =~ /^[aeiou]+$/ # Match, due to the quantifier.

Perl version 5.12.0 documentation - perlrecharclass

Page 5http://perldoc.perl.org

Special Characters Inside a Bracketed Character Class

Most characters that are meta characters in regular expressions (that
 is, characters that carry a
special meaning like ., *, or () lose
 their special meaning and can be used inside a character class
without
 the need to escape them. For instance, [()] matches either an opening
 parenthesis, or a
closing parenthesis, and the parens inside the character
 class don't group or capture.

Characters that may carry a special meaning inside a character class are: \, ^, -, [and], and are
discussed below. They can be
 escaped with a backslash, although this is sometimes not needed, in
which
 case the backslash may be omitted.

The sequence \b is special inside a bracketed character class. While
 outside the character class \b
is an assertion indicating a point
 that does not have either two word characters or two non-word
characters
 on either side, inside a bracketed character class, \b matches a
 backspace character.

The sequences \a, \c, \e, \f, \n, \N{NAME}, \N{U+wide hex char}, \r, \t,
 and \x
 are also
special and have the same meanings as they do outside a bracketed character
 class.

Also, a backslash followed by two or three octal digits is considered an octal
 number.

A [is not special inside a character class, unless it's the start
 of a POSIX character class (see
below). It normally does not need escaping.

A] is normally either the end of a POSIX character class (see below), or it
 signals the end of the
bracketed character class. If you want to include a] in the set of characters, you must generally
escape it.
 However, if the] is the first (or the second if the first
 character is a caret) character of a
bracketed character class, it
 does not denote the end of the class (as you cannot have an empty
class)
 and is considered part of the set of characters that can be matched without
 escaping.

Examples:

 "+" =~ /[+?*]/ # Match, "+" in a character class is not special.
 "\cH" =~ /[\b]/ # Match, \b inside in a character class
 # is equivalent to a backspace.
 "]" =~ /[][]/ # Match, as the character class contains.
 # both [and].
 "[]" =~ /[[]]/ # Match, the pattern contains a character class
 # containing just], and the character class is
 # followed by a].

Character Ranges

It is not uncommon to want to match a range of characters. Luckily, instead
 of listing all the characters
in the range, one may use the hyphen (-).
 If inside a bracketed character class you have two
characters separated
 by a hyphen, it's treated as if all the characters between the two are in
 the
class. For instance, [0-9] matches any ASCII digit, and [a-m]
 matches any lowercase letter from
the first half of the ASCII alphabet.

Note that the two characters on either side of the hyphen are not
 necessary both letters or both digits.
Any character is possible,
 although not advisable. ['-?] contains a range of characters, but
 most
people will not know which characters that will be. Furthermore,
 such ranges may lead to portability
problems if the code has to run on
 a platform that uses a different character set, such as EBCDIC.

If a hyphen in a character class cannot syntactically be part of a range, for
 instance because it is the
first or the last character of the character class,
 or if it immediately follows a range, the hyphen isn't
special, and will be
 considered a character that may be matched literally. You have to escape the

hyphen with a backslash if you want to have a hyphen in your set of characters
 to be matched, and its
position in the class is such that it could be
 considered part of a range.

Examples:

Perl version 5.12.0 documentation - perlrecharclass

Page 6http://perldoc.perl.org

 [a-z] # Matches a character that is a lower case ASCII letter.
 [a-fz] # Matches any letter between 'a' and 'f' (inclusive) or
 # the letter 'z'.
 [-z] # Matches either a hyphen ('-') or the letter 'z'.
 [a-f-m] # Matches any letter between 'a' and 'f' (inclusive), the
 # hyphen ('-'), or the letter 'm'.
 ['-?] # Matches any of the characters '()*+,-./0123456789:;<=>?
 # (But not on an EBCDIC platform).

Negation

It is also possible to instead list the characters you do not want to
 match. You can do so by using a
caret (^) as the first character in the
 character class. For instance, [^a-z] matches a character that
is not a
 lowercase ASCII letter.

This syntax make the caret a special character inside a bracketed character
 class, but only if it is the
first character of the class. So if you want
 to have the caret as one of the characters you want to
match, you either
 have to escape the caret, or not list it first.

Examples:

 "e" =~ /[^aeiou]/ # No match, the 'e' is listed.
 "x" =~ /[^aeiou]/ # Match, as 'x' isn't a lowercase vowel.
 "^" =~ /[^^]/ # No match, matches anything that isn't a caret.
 "^" =~ /[x^]/ # Match, caret is not special here.

Backslash Sequences

You can put any backslash sequence character class (with the exception of \N) inside a bracketed
character class, and it will act just
 as if you put all the characters matched by the backslash sequence
inside the
 character class. For instance, [a-f\d] will match any digit, or any of the
 lowercase letters
between 'a' and 'f' inclusive.

\N within a bracketed character class must be of the forms \N{name} or \N{U+wide hex char}
for the same reason that a dot . inside a
 bracketed character class loses its special meaning: it
matches nearly
 anything, which generally isn't what you want to happen.

Examples:

 /[\p{Thai}\d]/ # Matches a character that is either a Thai
 # character, or a digit.
 /[^\p{Arabic}()]/ # Matches a character that is neither an Arabic
 # character, nor a parenthesis.

Backslash sequence character classes cannot form one of the endpoints
 of a range.

Posix Character Classes

Posix character classes have the form [:class:], where class is
 name, and the [: and :]
delimiters. Posix character classes only appear inside bracketed character classes, and are a
convenient and descriptive
 way of listing a group of characters, though they currently suffer from

portability issues (see below and Locale, EBCDIC, Unicode and UTF-8). Be
 careful about the syntax,

 # Correct:
 $string =~ /[[:alpha:]]/

 # Incorrect (will warn):
 $string =~ /[:alpha:]/

Perl version 5.12.0 documentation - perlrecharclass

Page 7http://perldoc.perl.org

The latter pattern would be a character class consisting of a colon,
 and the letters a, l, p and h.

These character classes can be part of a larger bracketed character class. For
 example,

 [01[:alpha:]%]

is valid and matches '0', '1', any alphabetic character, and the percent sign.

Perl recognizes the following POSIX character classes:

 alpha Any alphabetical character ("[A-Za-z]").
 alnum Any alphanumerical character. ("[A-Za-z0-9]")
 ascii Any character in the ASCII character set.
 blank A GNU extension, equal to a space or a horizontal tab ("\t").
 cntrl Any control character. See Note [2] below.
 digit Any decimal digit ("[0-9]"), equivalent to "\d".
 graph Any printable character, excluding a space. See Note [3] below.
 lower Any lowercase character ("[a-z]").
 print Any printable character, including a space. See Note [4] below.
 punct Any graphical character excluding "word" characters. Note [5].
 space Any whitespace character. "\s" plus the vertical tab ("\cK").
 upper Any uppercase character ("[A-Z]").
 word A Perl extension ("[A-Za-z0-9_]"), equivalent to "\w".
 xdigit Any hexadecimal digit ("[0-9a-fA-F]").

Most POSIX character classes have two Unicode-style \p property
 counterparts. (They are not official
Unicode properties, but Perl extensions
 derived from official Unicode properties.) The table below
shows the relation
 between POSIX character classes and these counterparts.

One counterpart, in the column labelled "ASCII-range Unicode" in
 the table will only match characters
in the ASCII range. (On EBCDIC platforms,
 they match those characters which have ASCII
equivalents.)

The other counterpart, in the column labelled "Full-range Unicode", matches any
 appropriate
characters in the full Unicode character set. For example, \p{Alpha} will match not just the ASCII
alphabetic characters, but any
 character in the entire Unicode character set that is considered to be

alphabetic.

(Each of the counterparts has various synonyms as well. "Properties accessible through \p{} and \P{}"
in perluniprops lists all the
 synonyms, plus all the characters matched by each of the ASCII-range

properties. For example \p{AHex} is a synonym for \p{ASCII_Hex_Digit},
 and any \p property
name can be prefixed with "Is" such as \p{IsAlpha}.)

Both the \p forms are unaffected by any locale that is in effect, or whether
 the string is in UTF-8
format or not, or whether the platform is EBCDIC or not.
 In contrast, the POSIX character classes are
affected. If the source string is
 in UTF-8 format, the POSIX classes (with the exception of
[[:punct:]], see
 Note [5]) behave like their "Full-range" Unicode counterparts. If the source
 string
is not in UTF-8 format, and no locale is in effect, and the platform is
 not EBCDIC, all the POSIX
classes behave like their ASCII-range counterparts.
 Otherwise, they behave based on the rules of the
locale or EBCDIC code page.
 It is proposed to change this behavior in a future release of Perl so that
the
 the UTF8ness of the source string will be irrelevant to the behavior of the
 POSIX character
classes. This means they will always behave in strict
 accordance with the official POSIX standard.
That is, if either locale or
 EBCDIC code page is present, they will behave in accordance with those; if

absent, the classes will match only their ASCII-range counterparts. If you
 disagree with this proposal,
send email to perl5-porters@perl.org.

 [[:...:]] ASCII-range Full-range backslash Note
 Unicode Unicode sequence

Perl version 5.12.0 documentation - perlrecharclass

Page 8http://perldoc.perl.org

 alpha \p{PosixAlpha} \p{Alpha}
 alnum \p{PosixAlnum} \p{Alnum}
 ascii \p{ASCII}
 blank \p{PosixBlank} \p{Blank} = [1]
 \p{HorizSpace} \h [1]
 cntrl \p{PosixCntrl} \p{Cntrl} [2]
 digit \p{PosixDigit} \p{Digit} \d
 graph \p{PosixGraph} \p{Graph} [3]
 lower \p{PosixLower} \p{Lower}
 print \p{PosixPrint} \p{Print} [4]
 punct \p{PosixPunct} \p{Punct} [5]
 \p{PerlSpace} \p{SpacePerl} \s [6]
 space \p{PosixSpace} \p{Space} [6]
 upper \p{PosixUpper} \p{Upper}
 word \p{PerlWord} \p{Word} \w
 xdigit \p{ASCII_Hex_Digit} \p{XDigit}

[1]

\p{Blank} and \p{HorizSpace} are synonyms.

[2]

Control characters don't produce output as such, but instead usually control
 the terminal
somehow: for example newline and backspace are control characters.
 In the ASCII range,
characters whose ordinals are between 0 and 31 inclusive,
 plus 127 (DEL) are control
characters.

On EBCDIC platforms, it is likely that the code page will define [[:cntrl:]]
 to be the
EBCDIC equivalents of the ASCII controls, plus the controls
 that in Unicode have ordinals
from 128 through 139.

[3]

Any character that is graphical, that is, visible. This class consists
 of all the alphanumerical
characters and all punctuation characters.

[4]

All printable characters, which is the set of all the graphical characters
 plus whitespace
characters that are not also controls.

[5]

\p{PosixPunct} and [[:punct:]] in the ASCII range match all the
 non-controls,
non-alphanumeric, non-space characters: [-!"#$%&'()*+,./:;<=>?@[\\\]^_`{|}~]
(although if a locale is in effect,
 it could alter the behavior of [[:punct:]]).

When the matching string is in UTF-8 format, [[:punct:]] matches the above
 set, plus
what \p{Punct} matches. This is different than strictly matching
 according to \p{Punct},
because the above set includes characters that aren't
 considered punctuation by Unicode, but
rather "symbols". Another way to say it
 is that for a UTF-8 string, [[:punct:]] matches all
the characters that
 Unicode considers to be punctuation, plus all the ASCII-range characters
that
 Unicode considers to be symbols.

[6]

\p{SpacePerl} and \p{Space} differ only in that \p{Space} additionally
 matches the
vertical tab, \cK. Same for the two ASCII-only range forms.

Negation

A Perl extension to the POSIX character class is the ability to
 negate it. This is done by prefixing the
class name with a caret (^).
 Some examples:

Perl version 5.12.0 documentation - perlrecharclass

Page 9http://perldoc.perl.org

 POSIX ASCII-range Full-range backslash
 Unicode Unicode sequence

 [[:^digit:]] \P{PosixDigit} \P{Digit} \D
 [[:^space:]] \P{PosixSpace} \P{Space}
 \P{PerlSpace} \P{SpacePerl} \S
 [[:^word:]] \P{PerlWord} \P{Word} \W

[= =] and [. .]

Perl will recognize the POSIX character classes [=class=], and [.class.], but does not (yet?)
support them. Use of
 such a construct will lead to an error.

Examples

 /[[:digit:]]/ # Matches a character that is a digit.
 /[01[:lower:]]/ # Matches a character that is either a
 # lowercase letter, or '0' or '1'.
 /[[:digit:][:^xdigit:]]/ # Matches a character that can be anything
			 # except the letters 'a' to 'f'. This is
			 # because the main character class is composed
			 # of two POSIX character classes that are ORed
			 # together, one that matches any digit, and
			 # the other that matches anything that isn't a
			 # hex digit. The result matches all
			 # characters except the letters 'a' to 'f' and
			 # 'A' to 'F'.

Locale, EBCDIC, Unicode and UTF-8
Some of the character classes have a somewhat different behaviour depending
 on the internal
encoding of the source string, and the locale that is
 in effect, and if the program is running on an
EBCDIC platform.

\w, \d, \s and the POSIX character classes (and their negations,
 including \W, \D, \S) suffer from
this behaviour. (Since the backslash
 sequences \b and \B are defined in terms of \w and \W, they
also are
 affected.)

The rule is that if the source string is in UTF-8 format, the character
 classes match according to the
Unicode properties. If the source string
 isn't, then the character classes match according to whatever
locale or EBCDIC
 code page is in effect. If there is no locale nor EBCDIC, they match the ASCII

defaults (52 letters, 10 digits and underscore for \w; 0 to 9 for \d;
 etc.).

This usually means that if you are matching against characters whose ord()
 values are between 128
and 255 inclusive, your character class may match
 or not depending on the current locale or EBCDIC
code page, and whether the
 source string is in UTF-8 format. The string will be in UTF-8 format if it

contains characters whose ord() value exceeds 255. But a string may be in
 UTF-8 format without it
having such characters. See "The "Unicode Bug"" in perluniprops.

For portability reasons, it may be better to not use \w, \d, \s
 or the POSIX character classes, and
use the Unicode properties instead.

Examples

 $str = "\xDF"; # $str is not in UTF-8 format.
 $str =~ /^\w/; # No match, as $str isn't in UTF-8 format.
 $str .= "\x{0e0b}"; # Now $str is in UTF-8 format.
 $str =~ /^\w/; # Match! $str is now in UTF-8 format.
 chop $str;
 $str =~ /^\w/; # Still a match! $str remains in UTF-8 format.

Perl version 5.12.0 documentation - perlrecharclass

Page 10http://perldoc.perl.org

