
Perl version 5.12.1 documentation - perl595delta

Page 1http://perldoc.perl.org

NAME
perl595delta - what is new for perl v5.9.5

DESCRIPTION
This document describes differences between the 5.9.4 and the 5.9.5
 development releases. See
perl590delta, perl591delta, perl592delta, perl593delta and perl594delta for the differences
 between
5.8.0 and 5.9.4.

Incompatible Changes
Tainting and printf

When perl is run under taint mode, printf() and sprintf() will now
 reject any tainted format
argument. (Rafael Garcia-Suarez)

undef and signal handlers
Undefining or deleting a signal handler via undef $SIG{FOO} is now
 equivalent to setting it to
'DEFAULT'. (Rafael)

strictures and array/hash dereferencing in defined()
defined @$foo and defined %$bar are now subject to strict 'refs'
 (that is, $foo and
$bar shall be proper references there.)
 (Nicholas Clark)

(However, defined(@foo) and defined(%bar) are discouraged constructs
 anyway.)

(?p{}) has been removed
The regular expression construct (?p{}), which was deprecated in perl
 5.8, has been removed. Use
(??{}) instead. (Rafael)

Pseudo-hashes have been removed
Support for pseudo-hashes has been removed from Perl 5.9. (The fields
 pragma remains here, but
uses an alternate implementation.)

Removal of the bytecode compiler and of perlcc
perlcc, the byteloader and the supporting modules (B::C, B::CC,
 B::Bytecode, etc.) are no longer
distributed with the perl sources. Those
 experimental tools have never worked reliably, and, due to
the lack of
 volunteers to keep them in line with the perl interpreter developments, it
 was decided to
remove them instead of shipping a broken version of those.
 The last version of those modules can be
found with perl 5.9.4.

However the B compiler framework stays supported in the perl core, as with
 the more useful modules
it has permitted (among others, B::Deparse and
 B::Concise).

Removal of the JPL
The JPL (Java-Perl Linguo) has been removed from the perl sources tarball.

Recursive inheritance detected earlier
Perl will now immediately throw an exception if you modify any package's @ISA in such a way that it
would cause recursive inheritance.

Previously, the exception would not occur until Perl attempted to make
 use of the recursive
inheritance while resolving a method or doing a $foo->isa($bar) lookup.

Core Enhancements
Regular expressions

Recursive Patterns

It is now possible to write recursive patterns without using the (??{})
 construct. This new
way is more efficient, and in many cases easier to
 read.

Perl version 5.12.1 documentation - perl595delta

Page 2http://perldoc.perl.org

Each capturing parenthesis can now be treated as an independent pattern
 that can be entered
by using the (?PARNO) syntax (PARNO standing for
 "parenthesis number"). For example, the
following pattern will match
 nested balanced angle brackets:

 /
 ^ # start of line
 (# start capture buffer 1
	 < # match an opening angle bracket
	 (?: # match one of:
	 (?> # don't backtrack over the inside of this
group
		 [^<>]+ # one or more non angle brackets
) # end non backtracking group
	 | # ... or ...
	 (?1) # recurse to bracket 1 and try it again
)* # 0 or more times.
	 > # match a closing angle bracket
) # end capture buffer one
 $ # end of line
 /x

Note, users experienced with PCRE will find that the Perl implementation
 of this feature differs
from the PCRE one in that it is possible to
 backtrack into a recursed pattern, whereas in
PCRE the recursion is
 atomic or "possessive" in nature. (Yves Orton)

Named Capture Buffers

It is now possible to name capturing parenthesis in a pattern and refer to
 the captured
contents by name. The naming syntax is (?<NAME>....).
 It's possible to backreference to a
named buffer with the \k<NAME>
 syntax. In code, the new magical hashes %+ and %- can be
used to
 access the contents of the capture buffers.

Thus, to replace all doubled chars, one could write

 s/(?<letter>.)\k<letter>/$+{letter}/g

Only buffers with defined contents will be "visible" in the %+ hash, so
 it's possible to do
something like

 foreach my $name (keys %+) {
 print "content of buffer '$name' is $+{$name}\n";
 }

The %- hash is a bit more complete, since it will contain array refs
 holding values from all
capture buffers similarly named, if there should
 be many of them.

%+ and %- are implemented as tied hashes through the new module
Tie::Hash::NamedCapture.

Users exposed to the .NET regex engine will find that the perl
 implementation differs in that
the numerical ordering of the buffers
 is sequential, and not "unnamed first, then named". Thus
in the pattern

 /(A)(?B)(C)(?<D>D)/

$1 will be 'A', $2 will be 'B', $3 will be 'C' and $4 will be 'D' and not
 $1 is 'A', $2 is 'C' and $3 is
'B' and $4 is 'D' that a .NET programmer
 would expect. This is considered a feature. :-) (Yves
Orton)

Possessive Quantifiers

Perl now supports the "possessive quantifier" syntax of the "atomic match"
 pattern. Basically a
possessive quantifier matches as much as it can and never
 gives any back. Thus it can be

Perl version 5.12.1 documentation - perl595delta

Page 3http://perldoc.perl.org

used to control backtracking. The syntax is
 similar to non-greedy matching, except instead of
using a '?' as the modifier
 the '+' is used. Thus ?+, *+, ++, {min,max}+ are now legal

quantifiers. (Yves Orton)

Backtracking control verbs

The regex engine now supports a number of special-purpose backtrack
 control verbs:
(*THEN), (*PRUNE), (*MARK), (*SKIP), (*COMMIT), (*FAIL)
 and (*ACCEPT). See perlre for
their descriptions. (Yves Orton)

Relative backreferences

A new syntax \g{N} or \gN where "N" is a decimal integer allows a
 safer form of
back-reference notation as well as allowing relative
 backreferences. This should make it
easier to generate and embed patterns
 that contain backreferences. See "Capture buffers" in
perlre. (Yves Orton)

\K escape

The functionality of Jeff Pinyan's module Regexp::Keep has been added to
 the core. You can
now use in regular expressions the special escape \K
 as a way to do something like floating
length positive lookbehind. It is
 also useful in substitutions like:

 s/(foo)bar/$1/g

that can now be converted to

 s/foo\Kbar//g

which is much more efficient. (Yves Orton)

Vertical and horizontal whitespace, and linebreak

Regular expressions now recognize the \v and \h escapes, that match
 vertical and horizontal
whitespace, respectively. \V and \H
 logically match their complements.

\R matches a generic linebreak, that is, vertical whitespace, plus
 the multi-character
sequence "\x0D\x0A".

The _ prototype
A new prototype character has been added. _ is equivalent to $ (it
 denotes a scalar), but defaults to
$_ if the corresponding argument
 isn't supplied. Due to the optional nature of the argument, you can
only
 use it at the end of a prototype, or before a semicolon.

This has a small incompatible consequence: the prototype() function has
 been adjusted to return _ for
some built-ins in appropriate cases (for
 example, prototype('CORE::rmdir')). (Rafael)

UNITCHECK blocks
UNITCHECK, a new special code block has been introduced, in addition to BEGIN, CHECK, INIT and
END.

CHECK and INIT blocks, while useful for some specialized purposes,
 are always executed at the
transition between the compilation and the
 execution of the main program, and thus are useless
whenever code is
 loaded at runtime. On the other hand, UNITCHECK blocks are executed
 just after
the unit which defined them has been compiled. See perlmod
 for more information. (Alex Gough)

readpipe() is now overridable
The built-in function readpipe() is now overridable. Overriding it permits
 also to override its operator
counterpart, qx// (a.k.a. ``).
 Moreover, it now defaults to $_ if no argument is provided. (Rafael)

default argument for readline()
readline() now defaults to *ARGV if no argument is provided. (Rafael)

Perl version 5.12.1 documentation - perl595delta

Page 4http://perldoc.perl.org

UCD 5.0.0
The copy of the Unicode Character Database included in Perl 5.9 has
 been updated to version 5.0.0.

Smart match
The smart match operator (~~) is now available by default (you don't
 need to enable it with use
feature any longer). (Michael G Schwern)

Implicit loading of feature
The feature pragma is now implicitly loaded when you require a minimal
 perl version (with the use
VERSION construct) greater than, or equal
 to, 5.9.5.

Modules and Pragmas
New Pragma, mro

A new pragma, mro (for Method Resolution Order) has been added. It
 permits to switch, on a
per-class basis, the algorithm that perl uses to
 find inherited methods in case of a multiple inheritance
hierarchy. The
 default MRO hasn't changed (DFS, for Depth First Search). Another MRO is
 available:
the C3 algorithm. See mro for more information.
 (Brandon Black)

Note that, due to changes in the implementation of class hierarchy search,
 code that used to undef
the *ISA glob will most probably break. Anyway,
 undef'ing *ISA had the side-effect of removing the
magic on the @ISA
 array and should not have been done in the first place.

bignum, bigint, bigrat
The three numeric pragmas bignum, bigint and bigrat are now
 lexically scoped. (Tels)

Math::BigInt/Math::BigFloat
Many bugs have been fixed; noteworthy are comparisons with NaN, which
 no longer warn about
undef values.

The following things are new:

config()

The config() method now also supports the calling-style config('lib') in addition to
config()->{'lib'}.

import()

Upon import, using lib => 'Foo' now warns if the low-level library
 cannot be found. To
suppress the warning, you can use try => 'Foo'
 instead. To convert the warning into a
die, use only => 'Foo'
 instead.

roundmode common

A rounding mode of common is now supported.

Also, support for the following methods has been added:

bpi(), bcos(), bsin(), batan(), batan2()

bmuladd()

bexp(), bnok()

from_hex(), from_oct(), and from_bin()

as_oct()

In addition, the default math-backend (Calc (Perl) and FastCalc (XS)) now
 support storing numbers in
parts with 9 digits instead of 7 on Perls with
 either 64bit integer or long double support. This means
math operations
 scale better and are thus faster for really big numbers.

Perl version 5.12.1 documentation - perl595delta

Page 5http://perldoc.perl.org

New Core Modules
Locale::Maketext::Simple, needed by CPANPLUS, is a simple wrapper around
Locale::Maketext::Lexicon. Note that Locale::Maketext::Lexicon isn't
 included
in the perl core; the behaviour of Locale::Maketext::Simple
 gracefully degrades when
the later isn't present.

Params::Check implements a generic input parsing/checking mechanism. It
 is used by
CPANPLUS.

Term::UI simplifies the task to ask questions at a terminal prompt.

Object::Accessor provides an interface to create per-object accessors.

Module::Pluggable is a simple framework to create modules that accept
 pluggable
sub-modules.

Module::Load::Conditional provides simple ways to query and possibly
 load installed
modules.

Time::Piece provides an object oriented interface to time functions,
 overriding the built-ins
localtime() and gmtime().

IPC::Cmd helps to find and run external commands, possibly
 interactively.

File::Fetch provide a simple generic file fetching mechanism.

Log::Message and Log::Message::Simple are used by the log facility
 of CPANPLUS.

Archive::Extract is a generic archive extraction mechanism
 for .tar (plain, gziped or
bzipped) or .zip files.

CPANPLUS provides an API and a command-line tool to access the CPAN
 mirrors.

Module changes
assertions

The assertions pragma, its submodules assertions::activate and
assertions::compat and the -A command-line switch have been removed.
 The interface
was not judged mature enough for inclusion in a stable
 release.

base

The base pragma now warns if a class tries to inherit from itself.
 (Curtis "Ovid" Poe)

strict and warnings

strict and warnings will now complain loudly if they are loaded via
 incorrect casing (as in
use Strict;). (Johan Vromans)

warnings

The warnings pragma doesn't load Carp anymore. That means that code
 that used Carp
routines without having loaded it at compile time might
 need to be adjusted; typically, the
following (faulty) code won't work
 anymore, and will require parentheses to be added after the
function name:

 use warnings;
 require Carp;
 Carp::confess "argh";

less

less now does something useful (or at least it tries to). In fact, it
 has been turned into a
lexical pragma. So, in your modules, you can now
 test whether your users have requested to

Perl version 5.12.1 documentation - perl595delta

Page 6http://perldoc.perl.org

use less CPU, or less memory,
 less magic, or maybe even less fat. See less for more.
(Joshua ben
 Jore)

Attribute::Handlers

Attribute::Handlers can now report the caller's file and line number.
 (David Feldman)

B::Lint

B::Lint is now based on Module::Pluggable, and so can be extended
 with plugins.
(Joshua ben Jore)

B

It's now possible to access the lexical pragma hints (%^H) by using the
 method
B::COP::hints_hash(). It returns a B::RHE object, which in turn
 can be used to get a hash
reference via the method B::RHE::HASH(). (Joshua
 ben Jore)

Thread

As the old 5005thread threading model has been removed, in favor of the
 ithreads scheme,
the Thread module is now a compatibility wrapper, to
 be used in old code only. It has been
removed from the default list of
 dynamic extensions.

Utility Changes
cpanp

cpanp, the CPANPLUS shell, has been added. (cpanp-run-perl, an
 helper for CPANPLUS
operation, has been added too, but isn't intended for
 direct use).

cpan2dist
cpan2dist is a new utility, that comes with CPANPLUS. It's a tool to
 create distributions (or
packages) from CPAN modules.

pod2html
The output of pod2html has been enhanced to be more customizable via
 CSS. Some formatting
problems were also corrected. (Jari Aalto)

Documentation
New manpage, perlunifaq

A new manual page, perlunifaq (the Perl Unicode FAQ), has been added
 (Juerd Waalboer).

Installation and Configuration Improvements
C++ compatibility

Efforts have been made to make perl and the core XS modules compilable
 with various C++
compilers (although the situation is not perfect with
 some of the compilers on some of the platforms
tested.)

Visual C++
Perl now can be compiled with Microsoft Visual C++ 2005.

Static build on Win32
It's now possible to build a perl-static.exe that doesn't depend
 on perl59.dll on Win32. See
the Win32 makefiles for details.
 (Vadim Konovalov)

win32 builds
All win32 builds (MS-Win, WinCE) have been merged and cleaned up.

Perl version 5.12.1 documentation - perl595delta

Page 7http://perldoc.perl.org

d_pseudofork and d_printf_format_null
A new configuration variable, available as $Config{d_pseudofork} in
 the Config module, has
been added, to distinguish real fork() support
 from fake pseudofork used on Windows platforms.

A new configuration variable, d_printf_format_null, has been added, to see if printf-like formats
are allowed to be NULL.

Help
Configure -h has been extended with the most used option.

Much less 'Whoa there' messages.

64bit systems
Better detection of 64bit(only) systems, and setting all the (library)
 paths accordingly.

Ports
Perl has been reported to work on MidnightBSD.

Support for Cray XT4 Catamount/Qk has been added.

Vendor patches have been merged for RedHat and GenToo.

Selected Bug Fixes
PerlIO::scalar will now prevent writing to read-only scalars. Moreover,
 seek() is now supported with
PerlIO::scalar-based filehandles, the
 underlying string being zero-filled as needed. (Rafael, Jarkko
Hietaniemi)

study() never worked for UTF-8 strings, but could lead to false results.
 It's now a no-op on UTF-8
data. (Yves Orton)

The signals SIGILL, SIGBUS and SIGSEGV are now always delivered in an
 "unsafe" manner
(contrary to other signals, that are deferred until the
 perl interpreter reaches a reasonably stable state;
see "Deferred Signals (Safe Signals)" in perlipc). (Rafael)

When a module or a file is loaded through an @INC-hook, and when this hook
 has set a filename
entry in %INC, __FILE__ is now set for this module
 accordingly to the contents of that %INC entry.
(Rafael)

The -w and -t switches can now be used together without messing
 up what categories of warnings
are activated or not. (Rafael)

Duping a filehandle which has the :utf8 PerlIO layer set will now
 properly carry that layer on the
duped filehandle. (Rafael)

Localizing an hash element whose key was given as a variable didn't work
 correctly if the variable
was changed while the local() was in effect (as
 in local $h{$x}; ++$x). (Bo Lindbergh)

New or Changed Diagnostics
Deprecations

Two deprecation warnings have been added: (Rafael)

 Opening dirhandle %s also as a file
 Opening filehandle %s also as a directory

Changed Internals
The anonymous hash and array constructors now take 1 op in the optree
 instead of 3, now that
pp_anonhash and pp_anonlist return a reference to
 an hash/array when the op is flagged with
OPf_SPECIAL (Nicholas Clark).

Perl version 5.12.1 documentation - perl595delta

Page 8http://perldoc.perl.org

Reporting Bugs
If you find what you think is a bug, you might check the articles
 recently posted to the
comp.lang.perl.misc newsgroup and the perl
 bug database at http://rt.perl.org/rt3/ . There may also be
information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug
 program included with your
release. Be sure to trim your bug down
 to a tiny but sufficient test case. Your bug report, along with
the
 output of perl -V, will be sent off to perlbug@perl.org to be
 analysed by the Perl porting team.

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

