
Perl version 5.12.1 documentation - fields

Page 1http://perldoc.perl.org

NAME
fields - compile-time class fields

SYNOPSIS
 {
 package Foo;
 use fields qw(foo bar _Foo_private);
 sub new {
 my Foo $self = shift;
 unless (ref $self) {
 $self = fields::new($self);
 $self->{_Foo_private} = "this is Foo's secret";
 }
 $self->{foo} = 10;
 $self->{bar} = 20;
 return $self;
 }
 }

 my $var = Foo->new;
 $var->{foo} = 42;

 # this will generate an error
 $var->{zap} = 42;

 # subclassing
 {
 package Bar;
 use base 'Foo';
 use fields qw(baz _Bar_private); # not shared with Foo
 sub new {
 my $class = shift;
 my $self = fields::new($class);
 $self->SUPER::new(); # init base fields
 $self->{baz} = 10; # init own fields
 $self->{_Bar_private} = "this is Bar's secret";
 return $self;
 }
 }

DESCRIPTION
The fields pragma enables compile-time verified class fields.

NOTE: The current implementation keeps the declared fields in the %FIELDS
 hash of the calling
package, but this may change in future versions.
 Do not update the %FIELDS hash directly, because
it must be created
 at compile-time for it to be fully useful, as is done by this pragma.

Only valid for perl before 5.9.0:

If a typed lexical variable holding a reference is used to access a
 hash element and a package with
the same name as the type has
 declared class fields using this pragma, then the operation is
 turned
into an array access at compile time.

The related base pragma will combine fields from base classes and any
 fields declared using the
fields pragma. This enables field
 inheritance to work properly.

Perl version 5.12.1 documentation - fields

Page 2http://perldoc.perl.org

Field names that start with an underscore character are made private to
 the class and are not visible
to subclasses. Inherited fields can be
 overridden but will generate a warning if used together with the
-w
 switch.

Only valid for perls before 5.9.0:

The effect of all this is that you can have objects with named
 fields which are as compact and as fast
arrays to access. This only
 works as long as the objects are accessed through properly typed

variables. If the objects are not typed, access is only checked at
 run time.

The following functions are supported:

new

 perl before 5.9.0: fields::new() creates and blesses a
 pseudo-hash comprised of the fields
declared using the fields
 pragma into the specified class.

 perl 5.9.0 and higher: fields::new() creates and blesses a
 restricted-hash comprised of the
fields declared using the fields
 pragma into the specified class.

This function is usable with or without pseudo-hashes. It is the
 recommended way to construct
a fields-based object.

This makes it possible to write a constructor like this:

 package Critter::Sounds;
 use fields qw(cat dog bird);

 sub new {
 my $self = shift;
 $self = fields::new($self) unless ref $self;
 $self->{cat} = 'meow'; # scalar
element
 @$self{'dog','bird'} = ('bark','tweet'); # slice
 return $self;
 }

phash

 before perl 5.9.0:

fields::phash() can be used to create and initialize a plain (unblessed)
 pseudo-hash. This
function should always be used instead of creating
 pseudo-hashes directly.

If the first argument is a reference to an array, the pseudo-hash will
 be created with keys from
that array. If a second argument is supplied,
 it must also be a reference to an array whose
elements will be used as
 the values. If the second array contains less elements than the first,

the trailing elements of the pseudo-hash will not be initialized.
 This makes it particularly useful
for creating a pseudo-hash from
 subroutine arguments:

 sub dogtag {
 my $tag = fields::phash([qw(name rank ser_num)], [@_]);
 }

fields::phash() also accepts a list of key-value pairs that will
 be used to construct the pseudo
hash. Examples:

 my $tag = fields::phash(name => "Joe",
 rank => "captain",
 ser_num => 42);

 my $pseudohash = fields::phash(%args);

 perl 5.9.0 and higher:

Perl version 5.12.1 documentation - fields

Page 3http://perldoc.perl.org

Pseudo-hashes have been removed from Perl as of 5.10. Consider using
 restricted hashes or
fields::new() instead. Using fields::phash()
 will cause an error.

SEE ALSO
base

