
Perl version 5.12.1 documentation - IPC::Open2

Page 1http://perldoc.perl.org

NAME
IPC::Open2 - open a process for both reading and writing using open2()

SYNOPSIS
 use IPC::Open2;

 $pid = open2(*CHLD_OUT, *CHLD_IN, 'some cmd and args');
 # or without using the shell
 $pid = open2(*CHLD_OUT, *CHLD_IN, 'some', 'cmd', 'and', 'args');

 # or with handle autovivification
 my($chld_out, $chld_in);
 $pid = open2($chld_out, $chld_in, 'some cmd and args');
 # or without using the shell
 $pid = open2($chld_out, $chld_in, 'some', 'cmd', 'and', 'args');

 waitpid($pid, 0);
 my $child_exit_status = $? >> 8;

DESCRIPTION
The open2() function runs the given $cmd and connects $chld_out for
 reading and $chld_in for
writing. It's what you think should work when you try

 $pid = open(HANDLE, "|cmd args|");

The write filehandle will have autoflush turned on.

If $chld_out is a string (that is, a bareword filehandle rather than a glob
 or a reference) and it begins
with >&, then the child will send output
 directly to that file handle. If $chld_in is a string that begins
with <&, then $chld_in will be closed in the parent, and the child will
 read from it directly. In both
cases, there will be a dup(2) instead of a
 pipe(2) made.

If either reader or writer is the null string, this will be replaced
 by an autogenerated filehandle. If so,
you must pass a valid lvalue
 in the parameter slot so it can be overwritten in the caller, or
 an
exception will be raised.

open2() returns the process ID of the child process. It doesn't return on
 failure: it just raises an
exception matching /^open2:/. However, exec failures in the child are not detected. You'll have to

trap SIGPIPE yourself.

open2() does not wait for and reap the child process after it exits.
 Except for short programs where it's
acceptable to let the operating system
 take care of this, you need to do this yourself. This is normally
as
 simple as calling waitpid $pid, 0 when you're done with the process.
 Failing to do this can
result in an accumulation of defunct or "zombie"
 processes. See "waitpid" in perlfunc for more
information.

This whole affair is quite dangerous, as you may block forever. It
 assumes it's going to talk to
something like bc, both writing
 to it and reading from it. This is presumably safe because you
 "know"
that commands like bc will read a line at a time and
 output a line at a time. Programs like sort that
read their
 entire input stream first, however, are quite apt to cause deadlock.

The big problem with this approach is that if you don't have control over source code being run in the
child process, you can't control
 what it does with pipe buffering. Thus you can't just open a pipe to
cat -v and continually read and write a line from it.

The IO::Pty and Expect modules from CPAN can help with this, as they
 provide a real tty (well, a

Perl version 5.12.1 documentation - IPC::Open2

Page 2http://perldoc.perl.org

pseudo-tty, actually), which gets you
 back to line buffering in the invoked command again.

WARNING
The order of arguments differs from that of open3().

SEE ALSO
See IPC::Open3 for an alternative that handles STDERR as well. This
 function is really just a wrapper
around open3().

