
Perl version 5.12.1 documentation - Term::ANSIColor

Page 1http://perldoc.perl.org

NAME
Term::ANSIColor - Color screen output using ANSI escape sequences

SYNOPSIS
 use Term::ANSIColor;
 print color 'bold blue';
 print "This text is bold blue.\n";
 print color 'reset';
 print "This text is normal.\n";
 print colored ("Yellow on magenta.", 'yellow on_magenta'), "\n";
 print "This text is normal.\n";
 print colored ['yellow on_magenta'], 'Yellow on magenta.';
 print "\n";

 use Term::ANSIColor qw(uncolor);
 print uncolor ('01;31'), "\n";

 use Term::ANSIColor qw(colorstrip);
 print colorstrip '\e[1mThis is bold\e[0m', "\n";

 use Term::ANSIColor qw(colorvalid);
 my $valid = colorvalid ('blue bold', 'on_magenta');
 print "Color string is ", $valid ? "valid\n" : "invalid\n";

 use Term::ANSIColor qw(:constants);
 print BOLD, BLUE, "This text is in bold blue.\n", RESET;

 use Term::ANSIColor qw(:constants);
 {
 local $Term::ANSIColor::AUTORESET = 1;
 print BOLD BLUE "This text is in bold blue.\n";
 print "This text is normal.\n";
 }

 use Term::ANSIColor qw(:pushpop);
 print PUSHCOLOR RED ON_GREEN "This text is red on green.\n";
 print PUSHCOLOR BLUE "This text is blue on green.\n";
 print RESET BLUE "This text is just blue.\n";
 print POPCOLOR "Back to red on green.\n";
 print LOCALCOLOR GREEN ON_BLUE "This text is green on blue.\n";
 print "This text is red on green.\n";
 {
 local $Term::ANSIColor::AUTOLOCAL = 1;
 print ON_BLUE "This text is red on blue.\n";
 print "This text is red on green.\n";
 }
 print POPCOLOR "Back to whatever we started as.\n";

DESCRIPTION
This module has two interfaces, one through color() and colored() and the
 other through constants. It
also offers the utility functions uncolor(),
 colorstrip(), and colorvalid(), which have to be explicitly
imported to be
 used (see SYNOPSIS).

Perl version 5.12.1 documentation - Term::ANSIColor

Page 2http://perldoc.perl.org

Function Interface
color() takes any number of strings as arguments and considers them to be
 space-separated lists of
attributes. It then forms and returns the escape
 sequence to set those attributes. It doesn't print it out,
just returns
 it, so you'll have to print it yourself if you want to (this is so that
 you can save it as a string,
pass it to something else, send it to a file
 handle, or do anything else with it that you might care to).
color()
 throws an exception if given an invalid attribute, so you can also use it
 to check attribute
names for validity (see EXAMPLES).

uncolor() performs the opposite translation, turning escape sequences
 into a list of strings.

colorstrip() removes all color escape sequences from the provided strings,
 returning the modified
strings separately in array context or joined
 together in scalar context. Its arguments are not modified.

colorvalid() takes attribute strings the same as color() and returns true
 if all attributes are known and
false otherwise.

The recognized non-color attributes are clear, reset, bold, dark, faint,
 underline, underscore, blink,
reverse, and concealed. Clear and reset
 (reset to default attributes), dark and faint (dim and
saturated), and
 underline and underscore are equivalent, so use whichever is the most
 intuitive to
you. The recognized foreground color attributes are black,
 red, green, yellow, blue, magenta, cyan,
and white. The recognized
 background color attributes are on_black, on_red, on_green, on_yellow,

on_blue, on_magenta, on_cyan, and on_white. Case is not significant.

Note that not all attributes are supported by all terminal types, and some
 terminals may not support
any of these sequences. Dark and faint, blink,
 and concealed in particular are frequently not
implemented.

Attributes, once set, last until they are unset (by sending the attribute clear or reset). Be careful to
do this, or otherwise your attribute
 will last after your script is done running, and people get very
annoyed
 at having their prompt and typing changed to weird colors.

As an aid to help with this, colored() takes a scalar as the first
 argument and any number of attribute
strings as the second argument and
 returns the scalar wrapped in escape codes so that the attributes
will be
 set as requested before the string and reset to normal after the string.
 Alternately, you can
pass a reference to an array as the first argument,
 and then the contents of that array will be taken as
attributes and color
 codes and the remainder of the arguments as text to colorize.

Normally, colored() just puts attribute codes at the beginning and end of
 the string, but if you set
$Term::ANSIColor::EACHLINE to some string, that
 string will be considered the line delimiter and the
attribute will be set
 at the beginning of each line of the passed string and reset at the end of
 each line.
This is often desirable if the output contains newlines and
 you're using background colors, since a
background color that persists
 across a newline is often interpreted by the terminal as providing the

default background color for the next line. Programs like pagers can also
 be confused by attributes
that span lines. Normally you'll want to set
 $Term::ANSIColor::EACHLINE to "\n" to use this feature.

Constant Interface
Alternately, if you import :constants, you can use the constants CLEAR,
 RESET, BOLD, DARK,
FAINT, UNDERLINE, UNDERSCORE, BLINK, REVERSE,
 CONCEALED, BLACK, RED, GREEN,
YELLOW, BLUE, MAGENTA, CYAN, WHITE,
 ON_BLACK, ON_RED, ON_GREEN, ON_YELLOW,
ON_BLUE, ON_MAGENTA, ON_CYAN, and
 ON_WHITE directly. These are the same as
color('attribute') and can be
 used if you prefer typing:

 print BOLD BLUE ON_WHITE "Text", RESET, "\n";

to

 print colored ("Text", 'bold blue on_white'), "\n";

Perl version 5.12.1 documentation - Term::ANSIColor

Page 3http://perldoc.perl.org

(Note that the newline is kept separate to avoid confusing the terminal as
 described above since a
background color is being used.)

When using the constants, if you don't want to have to remember to add the , RESET at the end of
each print line, you can set
 $Term::ANSIColor::AUTORESET to a true value. Then, the display mode
will
 automatically be reset if there is no comma after the constant. In other
 words, with that variable
set:

 print BOLD BLUE "Text\n";

will reset the display mode afterward, whereas:

 print BOLD, BLUE, "Text\n";

will not. If you are using background colors, you will probably want to
 print the newline with a separate
print statement to avoid confusing the
 terminal.

The subroutine interface has the advantage over the constants interface in
 that only two subroutines
are exported into your namespace, versus
 twenty-two in the constants interface. On the flip side, the
constants
 interface has the advantage of better compile time error checking, since
 misspelled names
of colors or attributes in calls to color() and colored()
 won't be caught until runtime whereas misspelled
names of constants will
 be caught at compile time. So, pollute your namespace with almost two
 dozen
subroutines that you may not even use that often, or risk a silly
 bug by mistyping an attribute. Your
choice, TMTOWTDI after all.

The Color Stack
As of Term::ANSIColor 2.0, you can import :pushpop and maintain a stack
 of colors using
PUSHCOLOR, POPCOLOR, and LOCALCOLOR. PUSHCOLOR takes the
 attribute string that starts
its argument and pushes it onto a stack of
 attributes. POPCOLOR removes the top of the stack and
restores the
 previous attributes set by the argument of a prior PUSHCOLOR. LOCALCOLOR

surrounds its argument in a PUSHCOLOR and POPCOLOR so that the color
 resets afterward.

When using PUSHCOLOR, POPCOLOR, and LOCALCOLOR, it's particularly
 important to not put
commas between the constants.

 print PUSHCOLOR BLUE "Text\n";

will correctly push BLUE onto the top of the stack.

 print PUSHCOLOR, BLUE, "Text\n"; # wrong!

will not, and a subsequent pop won't restore the correct attributes.
 PUSHCOLOR pushes the
attributes set by its argument, which is normally a
 string of color constants. It can't ask the terminal
what the current
 attributes are.

DIAGNOSTICS
Bad escape sequence %s

(F) You passed an invalid ANSI escape sequence to uncolor().

Bareword "%s" not allowed while "strict subs" in use

(F) You probably mistyped a constant color name such as:

 $Foobar = FOOBAR . "This line should be blue\n";

or:

 @Foobar = FOOBAR, "This line should be blue\n";

Perl version 5.12.1 documentation - Term::ANSIColor

Page 4http://perldoc.perl.org

This will only show up under use strict (another good reason to run under
 use strict).

Invalid attribute name %s

(F) You passed an invalid attribute name to either color() or colored().

Name "%s" used only once: possible typo

(W) You probably mistyped a constant color name such as:

 print FOOBAR "This text is color FOOBAR\n";

It's probably better to always use commas after constant names in order to
 force the next
error.

No comma allowed after filehandle

(F) You probably mistyped a constant color name such as:

 print FOOBAR, "This text is color FOOBAR\n";

Generating this fatal compile error is one of the main advantages of using
 the constants
interface, since you'll immediately know if you mistype a
 color name.

No name for escape sequence %s

(F) The ANSI escape sequence passed to uncolor() contains escapes which
 aren't recognized
and can't be translated to names.

ENVIRONMENT
ANSI_COLORS_DISABLED

If this environment variable is set, all of the functions defined by this
 module (color(), colored(),
and all of the constants not previously used
 in the program) will not output any escape
sequences and instead will just
 return the empty string or pass through the original text as
appropriate.
 This is intended to support easy use of scripts using this module on
 platforms that
don't support ANSI escape sequences.

For it to have its proper effect, this environment variable must be set
 before any color
constants are used in the program.

RESTRICTIONS
It would be nice if one could leave off the commas around the constants
 entirely and just say:

 print BOLD BLUE ON_WHITE "Text\n" RESET;

but the syntax of Perl doesn't allow this. You need a comma after the
 string. (Of course, you may
consider it a bug that commas between all the
 constants aren't required, in which case you may feel
free to insert
 commas unless you're using $Term::ANSIColor::AUTORESET or

PUSHCOLOR/POPCOLOR.)

For easier debugging, you may prefer to always use the commas when not
 setting
$Term::ANSIColor::AUTORESET or PUSHCOLOR/POPCOLOR so that you'll
 get a fatal compile
error rather than a warning.

NOTES
The codes generated by this module are standard terminal control codes,
 complying with ECMA-048
and ISO 6429 (generally referred to as "ANSI
 color" for the color codes). The non-color control codes
(bold, dark,
 italic, underline, and reverse) are part of the earlier ANSI X3.64
 standard for control
sequences for video terminals and peripherals.

Note that not all displays are ISO 6429-compliant, or even X3.64-compliant
 (or are even attempting to
be so). This module will not work as expected
 on displays that do not honor these escape sequences,

Perl version 5.12.1 documentation - Term::ANSIColor

Page 5http://perldoc.perl.org

such as cmd.exe,
 4nt.exe, and command.com under either Windows NT or Windows 2000. They
 may
just be ignored, or they may display as an ESC character followed by
 some apparent garbage.

Jean Delvare provided the following table of different common terminal
 emulators and their support
for the various attributes and others have
 helped me flesh it out:

 clear bold faint under blink reverse conceal
 --
 xterm yes yes no yes yes yes yes
 linux yes yes yes bold yes yes no
 rxvt yes yes no yes bold/black yes no
 dtterm yes yes yes yes reverse yes yes
 teraterm yes reverse no yes rev/red yes no
 aixterm kinda normal no yes no yes yes
 PuTTY yes color no yes no yes no
 Windows yes no no no no yes no
 Cygwin SSH yes yes no color color color yes
 Mac Terminal yes yes no yes yes yes yes

Windows is Windows telnet, Cygwin SSH is the OpenSSH implementation under
 Cygwin on Windows
NT, and Mac Terminal is the Terminal application in Mac
 OS X. Where the entry is other than yes or
no, that emulator displays the
 given attribute as something else instead. Note that on an aixterm,
clear
 doesn't reset colors; you have to explicitly set the colors back to what
 you want. More entries in
this table are welcome.

Note that codes 3 (italic), 6 (rapid blink), and 9 (strike-through) are
 specified in ANSI X3.64 and
ECMA-048 but are not commonly supported by
 most displays and emulators and therefore aren't
supported by this module
 at the present time. ECMA-048 also specifies a large number of other

attributes, including a sequence of attributes for font changes, Fraktur
 characters, double-underlining,
framing, circling, and overlining. As
 none of these attributes are widely supported or useful, they also
aren't
 currently supported by this module.

SEE ALSO
ECMA-048 is available on-line (at least at the time of this writing) at
http://www.ecma-international.org/publications/standards/ECMA-048.HTM.

ISO 6429 is available from ISO for a charge; the author of this module
 does not own a copy of it.
Since the source material for ISO 6429 was
 ECMA-048 and the latter is available for free, there
seems little reason
 to obtain the ISO standard.

The current version of this module is always available from its web site
 at
http://www.eyrie.org/~eagle/software/ansicolor/. It is also part of
 the Perl core distribution as of 5.6.0.

AUTHORS
Original idea (using constants) by Zenin, reimplemented using subs by Russ
 Allbery
<rra@stanford.edu>, and then combined with the original idea by
 Russ with input from Zenin. Russ
Allbery now maintains this module.

COPYRIGHT AND LICENSE
Copyright 1996, 1997, 1998, 2000, 2001, 2002, 2005, 2006, 2008, 2009 Russ
 Allbery
<rra@stanford.edu> and Zenin. This program is free software; you
 may redistribute it and/or modify it
under the same terms as Perl itself.

PUSHCOLOR, POPCOLOR, and LOCALCOLOR were contributed by openmethods.com
 voice
solutions.

