
Perl version 5.12.1 documentation - perldebtut

Page 1http://perldoc.perl.org

NAME
perldebtut - Perl debugging tutorial

DESCRIPTION
A (very) lightweight introduction in the use of the perl debugger, and a
 pointer to existing, deeper
sources of information on the subject of debugging
 perl programs.

There's an extraordinary number of people out there who don't appear to know
 anything about using
the perl debugger, though they use the language every
 day. This is for them.

use strict
First of all, there's a few things you can do to make your life a lot more
 straightforward when it comes
to debugging perl programs, without using the
 debugger at all. To demonstrate, here's a simple script,
named "hello", with
 a problem:

	 #!/usr/bin/perl

	 $var1 = 'Hello World'; # always wanted to do that :-)
	 $var2 = "$varl\n";

	 print $var2;
	 exit;

While this compiles and runs happily, it probably won't do what's expected,
 namely it doesn't print
"Hello World\n" at all; It will on the other hand do
 exactly what it was told to do, computers being a bit
that way inclined. That
 is, it will print out a newline character, and you'll get what looks like a
 blank
line. It looks like there's 2 variables when (because of the typo)
 there's really 3:

	 $var1 = 'Hello World';
	 $varl = undef;
	 $var2 = "\n";

To catch this kind of problem, we can force each variable to be declared
 before use by pulling in the
strict module, by putting 'use strict;' after the
 first line of the script.

Now when you run it, perl complains about the 3 undeclared variables and we
 get four error
messages because one variable is referenced twice:

 Global symbol "$var1" requires explicit package name at ./t1 line 4.
 Global symbol "$var2" requires explicit package name at ./t1 line 5.
 Global symbol "$varl" requires explicit package name at ./t1 line 5.
 Global symbol "$var2" requires explicit package name at ./t1 line 7.
 Execution of ./hello aborted due to compilation errors.

Luvverly! and to fix this we declare all variables explicitly and now our
 script looks like this:

	 #!/usr/bin/perl
	 use strict;

	 my $var1 = 'Hello World';
	 my $varl = undef;
	 my $var2 = "$varl\n";

	 print $var2;
	 exit;

Perl version 5.12.1 documentation - perldebtut

Page 2http://perldoc.perl.org

We then do (always a good idea) a syntax check before we try to run it again:

	 > perl -c hello
	 hello syntax OK

And now when we run it, we get "\n" still, but at least we know why. Just
 getting this script to compile
has exposed the '$varl' (with the letter 'l')
 variable, and simply changing $varl to $var1 solves the
problem.

Looking at data and -w and v
Ok, but how about when you want to really see your data, what's in that
 dynamic variable, just before
using it?

	 #!/usr/bin/perl
	 use strict;

	 my $key = 'welcome';
	 my %data = (
		 'this' => qw(that),
		 'tom' => qw(and jerry),
		 'welcome' => q(Hello World),
		 'zip' => q(welcome),
);
	 my @data = keys %data;

	 print "$data{$key}\n";
	 exit;

Looks OK, after it's been through the syntax check (perl -c scriptname), we
 run it and all we get is a
blank line again! Hmmmm.

One common debugging approach here, would be to liberally sprinkle a few print
 statements, to add a
check just before we print out our data, and another just
 after:

	 print "All OK\n" if grep($key, keys %data);
	 print "$data{$key}\n";
	 print "done: '$data{$key}'\n";

And try again:

	 > perl data
	 All OK

	 done: ''

After much staring at the same piece of code and not seeing the wood for the
 trees for some time, we
get a cup of coffee and try another approach. That
 is, we bring in the cavalry by giving perl the '-d'
switch on the command
 line:

	 > perl -d data
	 Default die handler restored.

	 Loading DB routines from perl5db.pl version 1.07
	 Editor support available.

Perl version 5.12.1 documentation - perldebtut

Page 3http://perldoc.perl.org

	 Enter h or `h h' for help, or `man perldebug' for more help.

	 main::(./data:4): my $key = 'welcome';

Now, what we've done here is to launch the built-in perl debugger on our
 script. It's stopped at the first
line of executable code and is waiting for
 input.

Before we go any further, you'll want to know how to quit the debugger: use
 just the letter 'q', not the
words 'quit' or 'exit':

	 DB<1> q
	 >

That's it, you're back on home turf again.

help
Fire the debugger up again on your script and we'll look at the help menu. There's a couple of ways of
calling help: a simple 'h' will get the summary help list, '|h' (pipe-h) will pipe the help through your
pager (which is (probably 'more' or 'less'), and finally, 'h h' (h-space-h) will give you the entire help
screen. Here is the summary page:

D1h

 List/search source lines: Control script execution:
 l [ln|sub] List source code T Stack trace
 - or . List previous/current line s [expr] Single step [in expr]
 v [line] View around line n [expr] Next, steps over subs
 f filename View source in file <CR/Enter> Repeat last n or s
 /pattern/ ?patt? Search forw/backw r Return from
subroutine
 M Show module versions c [ln|sub] Continue until
position
 Debugger controls: L List
break/watch/actions
 o [...] Set debugger options t [expr] Toggle trace [trace
expr]
 <[<]|{[{]|>[>] [cmd] Do pre/post-prompt b [ln|event|sub] [cnd] Set
breakpoint
 ! [N|pat] Redo a previous command B ln|* Delete a/all
breakpoints
 H [-num] Display last num commands a [ln] cmd Do cmd before line
 = [a val] Define/list an alias A ln|* Delete a/all actions
 h [db_cmd] Get help on command w expr Add a watch
expression
 h h Complete help page W expr|* Delete a/all watch
exprs
 |[|]db_cmd Send output to pager ![!] syscmd Run cmd in a
subprocess
 q or ^D Quit R Attempt a restart
 Data Examination: expr Execute perl code, also see: s,n,t expr
 x|m expr Evals expr in list context, dumps the result or lists
methods.
 p expr Print expression (uses script's current package).
 S [[!]pat] List subroutine names [not] matching pattern
 V [Pk [Vars]] List Variables in Package. Vars can be ~pattern or
!pattern.

Perl version 5.12.1 documentation - perldebtut

Page 4http://perldoc.perl.org

 X [Vars] Same as "V current_package [Vars]".
 y [n [Vars]] List lexicals in higher scope <n>. Vars same as V.
 For more help, type h cmd_letter, or run man perldebug for all docs.

More confusing options than you can shake a big stick at! It's not as bad as
 it looks and it's very
useful to know more about all of it, and fun too!

There's a couple of useful ones to know about straight away. You wouldn't
 think we're using any
libraries at all at the moment, but 'M' will show
 which modules are currently loaded, and their version
number, while 'm' will show the methods, and 'S' shows all subroutines (by pattern) as shown below. '
V' and 'X' show variables in the program by package scope and can be constrained by pattern.

	 DB<2>S str
	 dumpvar::stringify
	 strict::bits
	 strict::import
	 strict::unimport

Using 'X' and cousins requires you not to use the type identifiers ($@%), just
 the 'name':

	 DM<3>X ~err
	 FileHandle(stderr) => fileno(2)

Remember we're in our tiny program with a problem, we should have a look at
 where we are, and
what our data looks like. First of all let's view some code at our present position (the first line of code
in this case), via 'v':

	 DB<4> v
	 1 #!/usr/bin/perl
	 2: use strict;
	 3
	 4==> my $key = 'welcome';
	 5: my %data = (
	 6 'this' => qw(that),
	 7 'tom' => qw(and jerry),
	 8 'welcome' => q(Hello World),
	 9 'zip' => q(welcome),
	 10);

At line number 4 is a helpful pointer, that tells you where you are now. To
 see more code, type 'v'
again:

	 DB<4> v
	 8 'welcome' => q(Hello World),
	 9 'zip' => q(welcome),
	 10);
	 11: my @data = keys %data;
	 12: print "All OK\n" if grep($key, keys %data);
	 13: print "$data{$key}\n";
	 14: print "done: '$data{$key}'\n";
	 15: exit;

And if you wanted to list line 5 again, type 'l 5', (note the space):

	 DB<4> l 5
	 5: my %data = (

Perl version 5.12.1 documentation - perldebtut

Page 5http://perldoc.perl.org

In this case, there's not much to see, but of course normally there's pages of
 stuff to wade through,
and 'l' can be very useful. To reset your view to the
 line we're about to execute, type a lone period '.':

	 DB<5> .
	 main::(./data_a:4): my $key = 'welcome';

The line shown is the one that is about to be executed next, it hasn't
 happened yet. So while we can
print a variable with the letter 'p', at
 this point all we'd get is an empty (undefined) value back. What
we need to
 do is to step through the next executable statement with an 's':

	 DB<6> s
	 main::(./data_a:5): my %data = (
	 main::(./data_a:6): 'this' => qw(that),
	 main::(./data_a:7): 'tom' => qw(and jerry),
	 main::(./data_a:8): 'welcome' => q(Hello World),
	 main::(./data_a:9): 'zip' => q(welcome),
	 main::(./data_a:10):);

Now we can have a look at that first ($key) variable:

	 DB<7> p $key
	 welcome

line 13 is where the action is, so let's continue down to there via the letter
 'c', which by the way,
inserts a 'one-time-only' breakpoint at the given
 line or sub routine:

	 DB<8> c 13
	 All OK
	 main::(./data_a:13): print "$data{$key}\n";

We've gone past our check (where 'All OK' was printed) and have stopped just
 before the meat of our
task. We could try to print out a couple of variables
 to see what is happening:

	 DB<9> p $data{$key}

Not much in there, lets have a look at our hash:

	 DB<10> p %data
	 Hello Worldziptomandwelcomejerrywelcomethisthat

	 DB<11> p keys %data
	 Hello Worldtomwelcomejerrythis

Well, this isn't very easy to read, and using the helpful manual (h h), the
 'x' command looks
promising:

	 DB<12> x %data
	 0 'Hello World'
	 1 'zip'
	 2 'tom'
	 3 'and'
	 4 'welcome'
	 5 undef
	 6 'jerry'
	 7 'welcome'
	 8 'this'

Perl version 5.12.1 documentation - perldebtut

Page 6http://perldoc.perl.org

	 9 'that'

That's not much help, a couple of welcomes in there, but no indication of
 which are keys, and which
are values, it's just a listed array dump and, in
 this case, not particularly helpful. The trick here, is to
use a reference
 to the data structure:

	 DB<13> x \%data
	 0 HASH(0x8194bc4)
	 'Hello World' => 'zip'
	 'jerry' => 'welcome'
	 'this' => 'that'
	 'tom' => 'and'
	 'welcome' => undef

The reference is truly dumped and we can finally see what we're dealing with. Our quoting was
perfectly valid but wrong for our purposes, with 'and jerry'
 being treated as 2 separate words rather
than a phrase, thus throwing the
 evenly paired hash structure out of alignment.

The '-w' switch would have told us about this, had we used it at the start,
 and saved us a lot of
trouble:

	 > perl -w data
	 Odd number of elements in hash assignment at ./data line 5.

We fix our quoting: 'tom' => q(and jerry), and run it again, this time we get
 our expected output:

	 > perl -w data
	 Hello World

While we're here, take a closer look at the 'x' command, it's really useful
 and will merrily dump out
nested references, complete objects, partial objects
 - just about whatever you throw at it:

Let's make a quick object and x-plode it, first we'll start the debugger:
 it wants some form of input from
STDIN, so we give it something non-committal,
 a zero:

	 > perl -de 0
	 Default die handler restored.

	 Loading DB routines from perl5db.pl version 1.07
	 Editor support available.

	 Enter h or `h h' for help, or `man perldebug' for more help.

	 main::(-e:1): 0

Now build an on-the-fly object over a couple of lines (note the backslash):

	 DB<1> $obj = bless({'unique_id'=>'123', 'attr'=> \
	 cont: 	 {'col' => 'black', 'things' => [qw(this that etc)]}}, 'MY_class')

And let's have a look at it:

 	 DB<2> x $obj
	 0 MY_class=HASH(0x828ad98)
 		 'attr' => HASH(0x828ad68)
 	 'col' => 'black'

Perl version 5.12.1 documentation - perldebtut

Page 7http://perldoc.perl.org

 	 'things' => ARRAY(0x828abb8)
 	 0 'this'
 	 1 'that'
 	 2 'etc'
 		 'unique_id' => 123
 	 DB<3>

Useful, huh? You can eval nearly anything in there, and experiment with bits
 of code or regexes until
the cows come home:

	 DB<3> @data = qw(this that the other atheism leather theory scythe)

	 DB<4> p 'saw -> '.($cnt += map { print "\t:\t$_\n" } grep(/the/, sort
@data))
	 atheism
	 leather
	 other
	 scythe
	 the
	 theory
	 saw -> 6

If you want to see the command History, type an 'H':

	 DB<5> H
	 4: p 'saw -> '.($cnt += map { print "\t:\t$_\n" } grep(/the/, sort @data))
	 3: @data = qw(this that the other atheism leather theory scythe)
	 2: x $obj
	 1: $obj = bless({'unique_id'=>'123', 'attr'=>
	 {'col' => 'black', 'things' => [qw(this that etc)]}}, 'MY_class')
	 DB<5>

And if you want to repeat any previous command, use the exclamation: '!':

	 DB<5> !4
	 p 'saw -> '.($cnt += map { print "$_\n" } grep(/the/, sort @data))
	 atheism
	 leather
	 other
	 scythe
	 the
	 theory
	 saw -> 12

For more on references see perlref and perlreftut

Stepping through code
Here's a simple program which converts between Celsius and Fahrenheit, it too
 has a problem:

	 #!/usr/bin/perl -w
	 use strict;

	 my $arg = $ARGV[0] || '-c20';

	 if ($arg =~ /^\-(c|f)((\-|\+)*\d+(\.\d+)*)$/) {

Perl version 5.12.1 documentation - perldebtut

Page 8http://perldoc.perl.org

		 my ($deg, $num) = ($1, $2);
		 my ($in, $out) = ($num, $num);
		 if ($deg eq 'c') {
			 $deg = 'f';
			 $out = &c2f($num);
		 } else {
			 $deg = 'c';
			 $out = &f2c($num);
		 }
		 $out = sprintf('%0.2f', $out);
		 $out =~ s/^((\-|\+)*\d+)\.0+$/$1/;
		 print "$out $deg\n";
	 } else {
		 print "Usage: $0 -[c|f] num\n";
	 }
	 exit;

	 sub f2c {
		 my $f = shift;
		 my $c = 5 * $f - 32 / 9;
		 return $c;
	 }

	 sub c2f {
		 my $c = shift;
		 my $f = 9 * $c / 5 + 32;
		 return $f;
	 }

For some reason, the Fahrenheit to Celsius conversion fails to return the
 expected output. This is
what it does:

	 > temp -c0.72
	 33.30 f

	 > temp -f33.3
	 162.94 c

Not very consistent! We'll set a breakpoint in the code manually and run it
 under the debugger to see
what's going on. A breakpoint is a flag, to which
 the debugger will run without interruption, when it
reaches the breakpoint, it
 will stop execution and offer a prompt for further interaction. In normal
 use,
these debugger commands are completely ignored, and they are safe - if a
 little messy, to leave in
production code.

	 my ($in, $out) = ($num, $num);
	 $DB::single=2; # insert at line 9!
	 if ($deg eq 'c')
		 ...

	 > perl -d temp -f33.3
	 Default die handler restored.

	 Loading DB routines from perl5db.pl version 1.07
	 Editor support available.

Perl version 5.12.1 documentation - perldebtut

Page 9http://perldoc.perl.org

	 Enter h or `h h' for help, or `man perldebug' for more help.

	 main::(temp:4): my $arg = $ARGV[0] || '-c100';

We'll simply continue down to our pre-set breakpoint with a 'c':

 	 DB<1> c
	 main::(temp:10): if ($deg eq 'c') {

Followed by a view command to see where we are:

	 DB<1> v
	 7: my ($deg, $num) = ($1, $2);
	 8: my ($in, $out) = ($num, $num);
	 9: $DB::single=2;
	 10==> if ($deg eq 'c') {
	 11: $deg = 'f';
	 12: $out = &c2f($num);
	 13 } else {
	 14: $deg = 'c';
	 15: $out = &f2c($num);
	 16 }

And a print to show what values we're currently using:

	 DB<1> p $deg, $num
	 f33.3

We can put another break point on any line beginning with a colon, we'll use
 line 17 as that's just as
we come out of the subroutine, and we'd like to
 pause there later on:

	 DB<2> b 17

There's no feedback from this, but you can see what breakpoints are set by
 using the list 'L'
command:

	 DB<3> L
	 temp:
 		 17: print "$out $deg\n";
 		 break if (1)

Note that to delete a breakpoint you use 'd' or 'D'.

Now we'll continue down into our subroutine, this time rather than by line
 number, we'll use the
subroutine name, followed by the now familiar 'v':

	 DB<3> c f2c
	 main::f2c(temp:30): my $f = shift;

	 DB<4> v
	 24: exit;
	 25
	 26 sub f2c {
	 27==> my $f = shift;
	 28: my $c = 5 * $f - 32 / 9;
	 29: return $c;

Perl version 5.12.1 documentation - perldebtut

Page 10http://perldoc.perl.org

	 30 }
	 31
	 32 sub c2f {
	 33: my $c = shift;

Note that if there was a subroutine call between us and line 29, and we wanted
 to single-step
through it, we could use the 's' command, and to step
 over it we would use 'n' which would execute
the sub, but not descend into
 it for inspection. In this case though, we simply continue down to line 29:

	 DB<4> c 29
	 main::f2c(temp:29): return $c;

And have a look at the return value:

	 DB<5> p $c
	 162.944444444444

This is not the right answer at all, but the sum looks correct. I wonder if
 it's anything to do with
operator precedence? We'll try a couple of other
 possibilities with our sum:

	 DB<6> p (5 * $f - 32 / 9)
	 162.944444444444

	 DB<7> p 5 * $f - (32 / 9)
	 162.944444444444

	 DB<8> p (5 * $f) - 32 / 9
	 162.944444444444

	 DB<9> p 5 * ($f - 32) / 9
	 0.722222222222221

:-) that's more like it! Ok, now we can set our return variable and we'll
 return out of the sub with an 'r':

	 DB<10> $c = 5 * ($f - 32) / 9

	 DB<11> r
	 scalar context return from main::f2c: 0.722222222222221

Looks good, let's just continue off the end of the script:

	 DB<12> c
	 0.72 c
	 Debugged program terminated. Use q to quit or R to restart,
 	 use O inhibit_exit to avoid stopping after program termination,
 	 h q, h R or h O to get additional info.

A quick fix to the offending line (insert the missing parentheses) in the
 actual program and we're
finished.

Placeholder for a, w, t, T
Actions, watch variables, stack traces etc.: on the TODO list.

	 a

Perl version 5.12.1 documentation - perldebtut

Page 11http://perldoc.perl.org

	 w

	 t

	 T

REGULAR EXPRESSIONS
Ever wanted to know what a regex looked like? You'll need perl compiled with
 the DEBUGGING flag
for this one:

	 > perl -Dr -e '/^pe(a)*rl$/i'
	 Compiling REx `^pe(a)*rl$'
	 size 17 first at 2
	 rarest char
	 at 0
	 1: BOL(2)
	 2: EXACTF <pe>(4)
	 4: CURLYN[1] {0,32767}(14)
	 6: NOTHING(8)
	 8: EXACTF <a>(0)
	 12: WHILEM(0)
	 13: NOTHING(14)
	 14: EXACTF <rl>(16)
	 16: EOL(17)
	 17: END(0)
	 floating `'$ at 4..2147483647 (checking floating) stclass `EXACTF <pe>'
anchored(BOL) minlen 4
	 Omitting $` $& $' support.

	 EXECUTING...

	 Freeing REx: `^pe(a)*rl$'

Did you really want to know? :-)
 For more gory details on getting regular expressions to work, have a
look at perlre, perlretut, and to decode the mysterious labels (BOL and CURLYN,
 etc. above), see
perldebguts.

OUTPUT TIPS
To get all the output from your error log, and not miss any messages via
 helpful operating system
buffering, insert a line like this, at the start of
 your script:

	 $|=1;

To watch the tail of a dynamically growing logfile, (from the command line):

	 tail -f $error_log

Wrapping all die calls in a handler routine can be useful to see how, and from
 where, they're being
called, perlvar has more information:

	 BEGIN { $SIG{__DIE__} = sub { require Carp; Carp::confess(@_) } }

Various useful techniques for the redirection of STDOUT and STDERR filehandles
 are explained in
perlopentut and perlfaq8.

Perl version 5.12.1 documentation - perldebtut

Page 12http://perldoc.perl.org

CGI
Just a quick hint here for all those CGI programmers who can't figure out how
 on earth to get past that
'waiting for input' prompt, when running their CGI
 script from the command-line, try something like
this:

	 > perl -d my_cgi.pl -nodebug

Of course CGI and perlfaq9 will tell you more.

GUIs
The command line interface is tightly integrated with an emacs extension
 and there's a vi interface
too.

You don't have to do this all on the command line, though, there are a few GUI
 options out there. The
nice thing about these is you can wave a mouse over a
 variable and a dump of its data will appear in
an appropriate window, or in a
 popup balloon, no more tiresome typing of 'x $varname' :-)

In particular have a hunt around for the following:

ptkdb perlTK based wrapper for the built-in debugger

ddd data display debugger

PerlDevKit and PerlBuilder are NT specific

NB. (more info on these and others would be appreciated).

SUMMARY
We've seen how to encourage good coding practices with use strict and -w. We can run the perl
debugger perl -d scriptname to inspect your
 data from within the perl debugger with the p and x
commands. You can
 walk through your code, set breakpoints with b and step through that code
 with s
or n, continue with c and return from a sub with r. Fairly
 intuitive stuff when you get down to it.

There is of course lots more to find out about, this has just scratched the
 surface. The best way to
learn more is to use perldoc to find out more about
 the language, to read the on-line help (perldebug
is probably the next
 place to go), and of course, experiment.

SEE ALSO
perldebug, perldebguts, perldiag, dprofpp, perlrun

AUTHOR
Richard Foley <richard.foley@rfi.net> Copyright (c) 2000

CONTRIBUTORS
Various people have made helpful suggestions and contributions, in particular:

Ronald J Kimball <rjk@linguist.dartmouth.edu>

Hugo van der Sanden <hv@crypt0.demon.co.uk>

Peter Scott <Peter@PSDT.com>

