
Perl version 5.12.1 documentation - perlfork

Page 1http://perldoc.perl.org

NAME
perlfork - Perl's fork() emulation

SYNOPSIS
    NOTE:  As of the 5.8.0 release, fork() emulation has considerably
    matured.  However, there are still a few known bugs and differences
    from real fork() that might affect you.  See the "BUGS" and
    "CAVEATS AND LIMITATIONS" sections below.

Perl provides a fork() keyword that corresponds to the Unix system call
 of the same name. On most 
Unix-like platforms where the fork() system
 call is available, Perl's fork() simply calls it.

On some platforms such as Windows where the fork() system call is not
 available, Perl can be built to 
emulate fork() at the interpreter level.
 While the emulation is designed to be as compatible as possible
with the
 real fork() at the level of the Perl program, there are certain
 important differences that stem 
from the fact that all the pseudo child
 "processes" created this way live in the same real process as 
far as the
 operating system is concerned.

This document provides a general overview of the capabilities and
 limitations of the fork() emulation. 
Note that the issues discussed here
 are not applicable to platforms where a real fork() is available and
Perl
 has been configured to use it.

DESCRIPTION
The fork() emulation is implemented at the level of the Perl interpreter.
 What this means in general is 
that running fork() will actually clone the
 running interpreter and all its state, and run the cloned 
interpreter in
 a separate thread, beginning execution in the new thread just after the
 point where the 
fork() was called in the parent. We will refer to the
 thread that implements this child "process" as the 
pseudo-process.

To the Perl program that called fork(), all this is designed to be
 transparent. The parent returns from 
the fork() with a pseudo-process
 ID that can be subsequently used in any process manipulation 
functions;
 the child returns from the fork() with a value of 0 to signify that
 it is the child 
pseudo-process.

Behavior of other Perl features in forked pseudo-processes
Most Perl features behave in a natural way within pseudo-processes.

$$ or $PROCESS_ID

This special variable is correctly set to the pseudo-process ID.
 It can be used to 
identify pseudo-processes within a particular
 session. Note that this value is subject to 
recycling if any
 pseudo-processes are launched after others have been wait()-ed on.

%ENV

Each pseudo-process maintains its own virtual environment. Modifications
 to %ENV 
affect the virtual environment, and are only visible within that
 pseudo-process, and in 
any processes (or pseudo-processes) launched from
 it.

chdir() and all other builtins that accept filenames

Each pseudo-process maintains its own virtual idea of the current directory.

Modifications to the current directory using chdir() are only visible within
 that 
pseudo-process, and in any processes (or pseudo-processes) launched from
 it. All file 
and directory accesses from the pseudo-process will correctly
 map the virtual working 
directory to the real working directory appropriately.

wait() and waitpid()

wait() and waitpid() can be passed a pseudo-process ID returned by fork().
 These calls



Perl version 5.12.1 documentation - perlfork

Page 2http://perldoc.perl.org

will properly wait for the termination of the pseudo-process
 and return its status.

kill()

kill() can be used to terminate a pseudo-process by passing it the ID returned
 by fork().
This should not be used except under dire circumstances, because
 the operating 
system may not guarantee integrity of the process resources
 when a running thread is 
terminated. Note that using kill() on a
 pseudo-process() may typically cause memory 
leaks, because the thread that
 implements the pseudo-process does not get a chance 
to clean up its resources.

exec()

Calling exec() within a pseudo-process actually spawns the requested
 executable in a 
separate process and waits for it to complete before
 exiting with the same exit status 
as that process. This means that the
 process ID reported within the running executable
will be different from
 what the earlier Perl fork() might have returned. Similarly, any 
process
 manipulation functions applied to the ID returned by fork() will affect the

waiting pseudo-process that called exec(), not the real process it is
 waiting for after the
exec().

When exec() is called inside a pseudo-process then DESTROY methods and
 END 
blocks will still be called after the external process returns.

exit()

exit() always exits just the executing pseudo-process, after automatically
 wait()-ing for 
any outstanding child pseudo-processes. Note that this means
 that the process as a 
whole will not exit unless all running pseudo-processes
 have exited. See below for 
some limitations with open filehandles.

Open handles to files, directories and network sockets

All open handles are dup()-ed in pseudo-processes, so that closing
 any handles in one
process does not affect the others. See below for
 some limitations.

Resource limits
In the eyes of the operating system, pseudo-processes created via the fork()
 emulation are simply 
threads in the same process. This means that any
 process-level limits imposed by the operating 
system apply to all
 pseudo-processes taken together. This includes any limits imposed by the

operating system on the number of open file, directory and socket handles,
 limits on disk space 
usage, limits on memory size, limits on CPU utilization
 etc.

Killing the parent process
If the parent process is killed (either using Perl's kill() builtin, or
 using some external means) all the 
pseudo-processes are killed as well,
 and the whole process exits.

Lifetime of the parent process and pseudo-processes
During the normal course of events, the parent process and every
 pseudo-process started by it will 
wait for their respective pseudo-children
 to complete before they exit. This means that the parent and 
every
 pseudo-child created by it that is also a pseudo-parent will only exit
 after their pseudo-children 
have exited.

A way to mark a pseudo-processes as running detached from their parent (so
 that the parent would 
not have to wait() for them if it doesn't want to)
 will be provided in future.

CAVEATS AND LIMITATIONS
BEGIN blocks

The fork() emulation will not work entirely correctly when called from
 within a BEGIN 
block. The forked copy will run the contents of the
 BEGIN block, but will not continue 
parsing the source stream after the
 BEGIN block. For example, consider the following 



Perl version 5.12.1 documentation - perlfork

Page 3http://perldoc.perl.org

code:    BEGIN {
        fork and exit;		 # fork child and exit the parent
	 print "inner\n";
    }
    print "outer\n";

This will print:

    inner

rather than the expected:

    inner
    outer

This limitation arises from fundamental technical difficulties in
 cloning and restarting 
the stacks used by the Perl parser in the
 middle of a parse.

Open filehandles

Any filehandles open at the time of the fork() will be dup()-ed. Thus,
 the files can be 
closed independently in the parent and child, but beware
 that the dup()-ed handles will 
still share the same seek pointer. Changing
 the seek position in the parent will change 
it in the child and vice-versa.
 One can avoid this by opening files that need distinct 
seek pointers
 separately in the child.

On some operating systems, notably Solaris and Unixware, calling exit()
 from a 
child process will flush and close open filehandles in the parent,
 thereby corrupting the 
filehandles. On these systems, calling _exit()
 is suggested instead. _exit() is 
available in Perl through the POSIX module. Please consult your systems manpages 
for more information
 on this.

Forking pipe open() not yet implemented

The open(FOO, "|-") and open(BAR, "-|") constructs are not yet
 implemented.
This limitation can be easily worked around in new code
 by creating a pipe explicitly. 
The following example shows how to
 write to a forked child:

    # simulate open(FOO, "|-")
    sub pipe_to_fork ($) {
	 my $parent = shift;
	 pipe my $child, $parent or die;
	 my $pid = fork();
	 die "fork() failed: $!" unless defined $pid;
	 if ($pid) {
	    close $child;
	 }
	 else {
	    close $parent;
	    open(STDIN, "<&=" . fileno($child)) or die;
	 }
	 $pid;
    }

    if (pipe_to_fork('FOO')) {
	 # parent
	 print FOO "pipe_to_fork\n";
	 close FOO;
    }
    else {
	 # child



Perl version 5.12.1 documentation - perlfork

Page 4http://perldoc.perl.org

	 while (<STDIN>) { print; }
	 exit(0);
    }

And this one reads from the child:

    # simulate open(FOO, "-|")
    sub pipe_from_fork ($) {
	 my $parent = shift;
	 pipe $parent, my $child or die;
	 my $pid = fork();
	 die "fork() failed: $!" unless defined $pid;
	 if ($pid) {
	    close $child;
	 }
	 else {
	    close $parent;
	    open(STDOUT, ">&=" . fileno($child)) or die;
	 }
	 $pid;
    }

    if (pipe_from_fork('BAR')) {
	 # parent
	 while (<BAR>) { print; }
	 close BAR;
    }
    else {
	 # child
	 print "pipe_from_fork\n";
	 exit(0);
    }

Forking pipe open() constructs will be supported in future.

Global state maintained by XSUBs

External subroutines (XSUBs) that maintain their own global state may
 not work 
correctly. Such XSUBs will either need to maintain locks to
 protect simultaneous 
access to global data from different pseudo-processes,
 or maintain all their state on 
the Perl symbol table, which is copied
 naturally when fork() is called. A callback 
mechanism that provides
 extensions an opportunity to clone their state will be provided
in the
 near future.

Interpreter embedded in larger application

The fork() emulation may not behave as expected when it is executed in an
 application
which embeds a Perl interpreter and calls Perl APIs that can
 evaluate bits of Perl code.
This stems from the fact that the emulation
 only has knowledge about the Perl 
interpreter's own data structures and
 knows nothing about the containing application's 
state. For example, any
 state carried on the application's own call stack is out of reach.

Thread-safety of extensions

Since the fork() emulation runs code in multiple threads, extensions
 calling into 
non-thread-safe libraries may not work reliably when
 calling fork(). As Perl's threading 
support gradually becomes more
 widely adopted even on platforms with a native 
fork(), such extensions
 are expected to be fixed for thread-safety.



Perl version 5.12.1 documentation - perlfork

Page 5http://perldoc.perl.org

BUGS
Having pseudo-process IDs be negative integers breaks down for the integer -1 
because the wait() and waitpid() functions treat this number as
 being special. The tacit 
assumption in the current implementation is that
 the system never allocates a thread 
ID of 1 for user threads. A better
 representation for pseudo-process IDs will be 
implemented in future.

In certain cases, the OS-level handles created by the pipe(), socket(),
 and accept() 
operators are apparently not duplicated accurately in
 pseudo-processes. This only 
happens in some situations, but where it
 does happen, it may result in deadlocks 
between the read and write ends
 of pipe handles, or inability to send or receive data 
across socket
 handles.

This document may be incomplete in some respects.

AUTHOR
Support for concurrent interpreters and the fork() emulation was implemented
 by ActiveState, with 
funding from Microsoft Corporation.

This document is authored and maintained by Gurusamy Sarathy <gsar@activestate.com>.

SEE ALSO
"fork" in perlfunc, perlipc


