
Perl version 5.12.1 documentation - perlfaq7

Page 1http://perldoc.perl.org

NAME
perlfaq7 - General Perl Language Issues

DESCRIPTION
This section deals with general Perl language issues that don't
 clearly fit into any of the other
sections.

Can I get a BNF/yacc/RE for the Perl language?
There is no BNF, but you can paw your way through the yacc grammar in
 perly.y in the source
distribution if you're particularly brave. The
 grammar relies on very smart tokenizing code, so be
prepared to
 venture into toke.c as well.

In the words of Chaim Frenkel: "Perl's grammar can not be reduced to BNF.
 The work of parsing perl
is distributed between yacc, the lexer, smoke
 and mirrors."

What are all these $@%&* punctuation signs, and how do I know when to use them?
They are type specifiers, as detailed in perldata:

	 $ for scalar values (number, string or reference)
	 @ for arrays
	 % for hashes (associative arrays)
	 & for subroutines (aka functions, procedures, methods)
	 * for all types of that symbol name. In version 4 you used them like
	 pointers, but in modern perls you can just use references.

There are couple of other symbols that you're likely to encounter that aren't
 really type specifiers:

	 <> are used for inputting a record from a filehandle.
	 \ takes a reference to something.

Note that <FILE> is neither the type specifier for files
 nor the name of the handle. It is the <> operator
applied
 to the handle FILE. It reads one line (well, record--see "$/" in perlvar) from the handle FILE in
scalar context, or all lines
 in list context. When performing open, close, or any other operation
 besides
<> on files, or even when talking about the handle, do not use the brackets. These are correct:
eof(FH), seek(FH, 0,
 2) and "copying from STDIN to FILE".

Do I always/never have to quote my strings or use semicolons and commas?
Normally, a bareword doesn't need to be quoted, but in most cases
 probably should be (and must be
under use strict). But a hash key
 consisting of a simple word (that isn't the name of a defined

subroutine) and the left-hand operand to the => operator both
 count as though they were quoted:

	 This is like this
	 ------------ ---------------
	 $foo{line} $foo{'line'}
	 bar => stuff 'bar' => stuff

The final semicolon in a block is optional, as is the final comma in a
 list. Good style (see perlstyle)
says to put them in except for
 one-liners:

	 if ($whoops) { exit 1 }
	 @nums = (1, 2, 3);

	 if ($whoops) {
		 exit 1;
	 }

Perl version 5.12.1 documentation - perlfaq7

Page 2http://perldoc.perl.org

	 @lines = (
	 "There Beren came from mountains cold",
	 "And lost he wandered under leaves",
);

How do I skip some return values?
One way is to treat the return values as a list and index into it:

	 $dir = (getpwnam($user))[7];

Another way is to use undef as an element on the left-hand-side:

	 ($dev, $ino, undef, undef, $uid, $gid) = stat($file);

You can also use a list slice to select only the elements that
 you need:

	 ($dev, $ino, $uid, $gid) = (stat($file))[0,1,4,5];

How do I temporarily block warnings?
If you are running Perl 5.6.0 or better, the use warnings pragma
 allows fine control of what warning
are produced.
 See perllexwarn for more details.

	 {
	 no warnings; # temporarily turn off warnings
	 $a = $b + $c; # I know these might be undef
	 }

Additionally, you can enable and disable categories of warnings.
 You turn off the categories you want
to ignore and you can still
 get other categories of warnings. See perllexwarn for the
 complete details,
including the category names and hierarchy.

	 {
	 no warnings 'uninitialized';
	 $a = $b + $c;
	 }

If you have an older version of Perl, the $^W variable (documented
 in perlvar) controls runtime
warnings for a block:

	 {
	 local $^W = 0; # temporarily turn off warnings
	 $a = $b + $c; # I know these might be undef
	 }

Note that like all the punctuation variables, you cannot currently
 use my() on $^W, only local().

What's an extension?
An extension is a way of calling compiled C code from Perl. Reading perlxstut is a good place to learn
more about extensions.

Why do Perl operators have different precedence than C operators?
Actually, they don't. All C operators that Perl copies have the same
 precedence in Perl as they do in
C. The problem is with operators that C
 doesn't have, especially functions that give a list context to
everything
 on their right, eg. print, chmod, exec, and so on. Such functions are
 called "list operators"
and appear as such in the precedence table in perlop.

Perl version 5.12.1 documentation - perlfaq7

Page 3http://perldoc.perl.org

A common mistake is to write:

	 unlink $file || die "snafu";

This gets interpreted as:

	 unlink ($file || die "snafu");

To avoid this problem, either put in extra parentheses or use the
 super low precedence or operator:

	 (unlink $file) || die "snafu";
	 unlink $file or die "snafu";

The "English" operators (and, or, xor, and not)
 deliberately have precedence lower than that of list
operators for
 just such situations as the one above.

Another operator with surprising precedence is exponentiation. It
 binds more tightly even than unary
minus, making -2**2 produce a
 negative not a positive four. It is also right-associating, meaning
 that
2**3**2 is two raised to the ninth power, not eight squared.

Although it has the same precedence as in C, Perl's ?: operator
 produces an lvalue. This assigns $x
to either $a or $b, depending
 on the trueness of $maybe:

	 ($maybe ? $a : $b) = $x;

How do I declare/create a structure?
In general, you don't "declare" a structure. Just use a (probably
 anonymous) hash reference. See
perlref and perldsc for details.
 Here's an example:

	 $person = {}; # new anonymous hash
	 $person->{AGE} = 24; # set field AGE to 24
	 $person->{NAME} = "Nat"; # set field NAME to "Nat"

If you're looking for something a bit more rigorous, try perltoot.

How do I create a module?
(contributed by brian d foy)

perlmod, perlmodlib, perlmodstyle explain modules
 in all the gory details. perlnewmod gives a brief

overview of the process along with a couple of suggestions
 about style.

If you need to include C code or C library interfaces in
 your module, you'll need h2xs. h2xs will create
the module
 distribution structure and the initial interface files
 you'll need. perlxs and perlxstut explain
the details.

If you don't need to use C code, other tools such as
 ExtUtils::ModuleMaker and Module::Starter, can
help you
 create a skeleton module distribution.

You may also want to see Sam Tregar's "Writing Perl Modules
 for CPAN" (
http://apress.com/book/bookDisplay.html?bID=14)
 which is the best hands-on guide to creating
module
 distributions.

How do I adopt or take over a module already on CPAN?
(contributed by brian d foy)

The easiest way to take over a module is to have the current
 module maintainer either make you a
co-maintainer or transfer
 the module to you.

Perl version 5.12.1 documentation - perlfaq7

Page 4http://perldoc.perl.org

If you can't reach the author for some reason (e.g. email bounces),
 the PAUSE admins at
modules@perl.org can help. The PAUSE admins
 treat each case individually.

Get a login for the Perl Authors Upload Server (PAUSE) if you don't
 already have one:
http://pause.perl.org

Write to modules@perl.org explaining what you did to contact the
 current maintainer. The
PAUSE admins will also try to reach the
 maintainer.

Post a public message in a heavily trafficked site announcing your
 intention to take over the
module.

Wait a bit. The PAUSE admins don't want to act too quickly in case
 the current maintainer is
on holiday. If there's no response to
 private communication or the public post, a PAUSE admin
can transfer
 it to you.

How do I create a class?
(contributed by brian d foy)

In Perl, a class is just a package, and methods are just subroutines.
 Perl doesn't get more formal than
that and lets you set up the package
 just the way that you like it (that is, it doesn't set up anything for

you).

The Perl documentation has several tutorials that cover class
 creation, including perlboot (Barnyard
Object Oriented Tutorial), perltoot (Tom's Object Oriented Tutorial), perlbot (Bag o'
 Object Tricks), and
perlobj.

How can I tell if a variable is tainted?
You can use the tainted() function of the Scalar::Util module, available
 from CPAN (or included with
Perl since release 5.8.0).
 See also "Laundering and Detecting Tainted Data" in perlsec.

What's a closure?
Closures are documented in perlref.

Closure is a computer science term with a precise but
 hard-to-explain meaning. Usually, closures are
implemented in Perl as
 anonymous subroutines with lasting references to lexical variables
 outside
their own scopes. These lexicals magically refer to the
 variables that were around when the
subroutine was defined (deep
 binding).

Closures are most often used in programming languages where you can
 have the return value of a
function be itself a function, as you can
 in Perl. Note that some languages provide anonymous
functions but are
 not capable of providing proper closures: the Python language, for
 example. For
more information on closures, check out any textbook on
 functional programming. Scheme is a
language that not only supports
 but encourages closures.

Here's a classic non-closure function-generating function:

	 sub add_function_generator {
		 return sub { shift() + shift() };
		 }

	 $add_sub = add_function_generator();
	 $sum = $add_sub->(4,5); # $sum is 9 now.

The anonymous subroutine returned by add_function_generator() isn't
 technically a closure because
it refers to no lexicals outside its own
 scope. Using a closure gives you a function template with some

customization slots left out to be filled later.

Contrast this with the following make_adder() function, in which the
 returned anonymous function

Perl version 5.12.1 documentation - perlfaq7

Page 5http://perldoc.perl.org

contains a reference to a lexical variable
 outside the scope of that function itself. Such a reference
requires
 that Perl return a proper closure, thus locking in for all time the
 value that the lexical had
when the function was created.

	 sub make_adder {
		 my $addpiece = shift;
		 return sub { shift() + $addpiece };
	 }

	 $f1 = make_adder(20);
	 $f2 = make_adder(555);

Now &$f1($n) is always 20 plus whatever $n you pass in, whereas &$f2($n) is always 555 plus
whatever $n you pass in. The $addpiece
 in the closure sticks around.

Closures are often used for less esoteric purposes. For example, when
 you want to pass in a bit of
code into a function:

	 my $line;
	 timeout(30, sub { $line = <STDIN> });

If the code to execute had been passed in as a string, '$line = <STDIN>', there would have been
no way for the
 hypothetical timeout() function to access the lexical variable
 $line back in its caller's
scope.

Another use for a closure is to make a variable private to a
 named subroutine, e.g. a counter that gets
initialized at creation
 time of the sub and can only be modified from within the sub.
 This is sometimes
used with a BEGIN block in package files to make
 sure a variable doesn't get meddled with during the
lifetime of the
 package:

	 BEGIN {
		 my $id = 0;
		 sub next_id { ++$id }
	 }

This is discussed in more detail in perlsub, see the entry on Persistent Private Variables.

What is variable suicide and how can I prevent it?
This problem was fixed in perl 5.004_05, so preventing it means upgrading
 your version of perl. ;)

Variable suicide is when you (temporarily or permanently) lose the value
 of a variable. It is caused by
scoping through my() and local()
 interacting with either closures or aliased foreach() iterator variables

and subroutine arguments. It used to be easy to inadvertently lose a
 variable's value this way, but
now it's much harder. Take this code:

	 my $f = 'foo';
	 sub T {
		 while ($i++ < 3) { my $f = $f; $f .= "bar"; print $f, "\n" }
		 }

	 T;
	 print "Finally $f\n";

If you are experiencing variable suicide, that my $f in the subroutine
 doesn't pick up a fresh copy of
the $f whose value is <foo>. The output
 shows that inside the subroutine the value of $f leaks
through when it
 shouldn't, as in this output:

Perl version 5.12.1 documentation - perlfaq7

Page 6http://perldoc.perl.org

	 foobar
	 foobarbar
	 foobarbarbar
	 Finally foo

The $f that has "bar" added to it three times should be a new $f my $f should create a new lexical
variable each time through the loop.
 The expected output is:

	 foobar
	 foobar
	 foobar
	 Finally foo

How can I pass/return a {Function, FileHandle, Array, Hash, Method, Regex}?
With the exception of regexes, you need to pass references to these
 objects. See "Pass by
Reference" in perlsub for this particular
 question, and perlref for information on references.

See "Passing Regexes", later in perlfaq7, for information on
 passing regular expressions.

Passing Variables and Functions

Regular variables and functions are quite easy to pass: just pass in a
 reference to an existing
or anonymous variable or function:

	 func(\$some_scalar);

	 func(\@some_array);
	 func([1 .. 10]);

	 func(\%some_hash);
	 func({ this => 10, that => 20 });

	 func(\&some_func);
	 func(sub { $_[0] ** $_[1] });

Passing Filehandles

As of Perl 5.6, you can represent filehandles with scalar variables
 which you treat as any other
scalar.

	 open my $fh, $filename or die "Cannot open $filename! $!";
	 func($fh);

	 sub func {
		 my $passed_fh = shift;

		 my $line = <$passed_fh>;
		 }

Before Perl 5.6, you had to use the *FH or *FH notations.
 These are "typeglobs"--see
"Typeglobs and Filehandles" in perldata
 and especially "Pass by Reference" in perlsub for
more information.

Passing Regexes

To pass regexes around, you'll need to be using a release of Perl
 sufficiently recent as to
support the qr// construct, pass around
 strings and use an exception-trapping eval, or else
be very, very clever.

Here's an example of how to pass in a string to be regex compared
 using qr//:

Perl version 5.12.1 documentation - perlfaq7

Page 7http://perldoc.perl.org

	 sub compare($$) {
		 my ($val1, $regex) = @_;
		 my $retval = $val1 =~ /$regex/;
	 return $retval;
	 }
	 $match = compare("old McDonald", qr/d.*D/i);

Passing Methods

To pass an object method into a subroutine, you can do this:

	 call_a_lot(10, $some_obj, "methname")
	 sub call_a_lot {
		 my ($count, $widget, $trick) = @_;
		 for (my $i = 0; $i < $count; $i++) {
			 $widget->$trick();
		 }
	 }

Or, you can use a closure to bundle up the object, its
 method call, and arguments:

	 my $whatnot = sub { $some_obj->obfuscate(@args) };
	 func($whatnot);
	 sub func {
		 my $code = shift;
		 &$code();
	 }

You could also investigate the can() method in the UNIVERSAL class
 (part of the standard
perl distribution).

How do I create a static variable?
(contributed by brian d foy)

In Perl 5.10, declare the variable with state. The state
 declaration creates the lexical variable that
persists between calls
 to the subroutine:

	 sub counter { state $count = 1; $counter++ }

You can fake a static variable by using a lexical variable which goes
 out of scope. In this example,
you define the subroutine counter, and
 it uses the lexical variable $count. Since you wrap this in a
BEGIN
 block, $count is defined at compile-time, but also goes out of
 scope at the end of the BEGIN
block. The BEGIN block also ensures that
 the subroutine and the value it uses is defined at
compile-time so the
 subroutine is ready to use just like any other subroutine, and you can
 put this
code in the same place as other subroutines in the program
 text (i.e. at the end of the code, typically).
The subroutine counter still has a reference to the data, and is the only way you
 can access the
value (and each time you do, you increment the value).
 The data in chunk of memory defined by
$count is private to counter.

	 BEGIN {
		 my $count = 1;
		 sub counter { $count++ }
	 }

	 my $start = counter();

	 # code that calls counter();

Perl version 5.12.1 documentation - perlfaq7

Page 8http://perldoc.perl.org

	 my $end = counter();

In the previous example, you created a function-private variable
 because only one function
remembered its reference. You could define
 multiple functions while the variable is in scope, and
each function
 can share the "private" variable. It's not really "static" because you
 can access it outside
the function while the lexical variable is in
 scope, and even create references to it. In this example,
increment_count and return_count share the variable. One
 function adds to the value and the
other simply returns the value.
 They can both access $count, and since it has gone out of scope,

there is no other way to access it.

	 BEGIN {
		 my $count = 1;
		 sub increment_count { $count++ }
		 sub return_count { $count }
	 }

To declare a file-private variable, you still use a lexical variable.
 A file is also a scope, so a lexical
variable defined in the file
 cannot be seen from any other file.

See "Persistent Private Variables" in perlsub for more information.
 The discussion of closures in
perlref may help you even though we
 did not use anonymous subroutines in this answer. See
"Persistent Private Variables" in perlsub for details.

What's the difference between dynamic and lexical (static) scoping? Between local() and my()?
local($x) saves away the old value of the global variable $x
 and assigns a new value for the
duration of the subroutine which is
 visible in other functions called from that subroutine. This is done

at run-time, so is called dynamic scoping. local() always affects global
 variables, also called package
variables or dynamic variables.

my($x) creates a new variable that is only visible in the current
 subroutine. This is done at
compile-time, so it is called lexical or
 static scoping. my() always affects private variables, also called

lexical variables or (improperly) static(ly scoped) variables.

For instance:

	 sub visible {
		 print "var has value $var\n";
		 }

	 sub dynamic {
		 local $var = 'local';	 # new temporary value for the still-global
		 visible(); # variable called $var
		 }

	 sub lexical {
		 my $var = 'private'; # new private variable, $var
		 visible(); # (invisible outside of sub scope)
		 }

	 $var = 'global';

	 visible(); 		 # prints global
	 dynamic(); 		 # prints local
	 lexical(); 		 # prints global

Perl version 5.12.1 documentation - perlfaq7

Page 9http://perldoc.perl.org

Notice how at no point does the value "private" get printed. That's
 because $var only has that value
within the block of the lexical()
 function, and it is hidden from called subroutine.

In summary, local() doesn't make what you think of as private, local
 variables. It gives a global
variable a temporary value. my() is
 what you're looking for if you want private variables.

See "Private Variables via my()" in perlsub and "Temporary Values via local()" in perlsub for
excruciating details.

How can I access a dynamic variable while a similarly named lexical is in scope?
If you know your package, you can just mention it explicitly, as in
 $Some_Pack::var. Note that the
notation $::var is not the dynamic $var
 in the current package, but rather the one in the "main"
package, as
 though you had written $main::var.

	 use vars '$var';
	 local $var = "global";
	 my $var = "lexical";

	 print "lexical is $var\n";
	 print "global is $main::var\n";

Alternatively you can use the compiler directive our() to bring a
 dynamic variable into the current
lexical scope.

	 require 5.006; # our() did not exist before 5.6
	 use vars '$var';

	 local $var = "global";
	 my $var = "lexical";

	 print "lexical is $var\n";

	 {
		 our $var;
		 print "global is $var\n";
	 }

What's the difference between deep and shallow binding?
In deep binding, lexical variables mentioned in anonymous subroutines
 are the same ones that were
in scope when the subroutine was created.
 In shallow binding, they are whichever variables with the
same names
 happen to be in scope when the subroutine is called. Perl always uses
 deep binding of
lexical variables (i.e., those created with my()).
 However, dynamic variables (aka global, local, or
package variables)
 are effectively shallowly bound. Consider this just one more reason
 not to use
them. See the answer to What's a closure?.

Why doesn't "my($foo) = <FILE>;" work right?
my() and local() give list context to the right hand side
 of =. The <FH> read operation, like so
many of Perl's
 functions and operators, can tell which context it was called in and
 behaves
appropriately. In general, the scalar() function can help.
 This function does nothing to the data itself
(contrary to popular myth)
 but rather tells its argument to behave in whatever its scalar fashion is.
 If
that function doesn't have a defined scalar behavior, this of course
 doesn't help you (such as with
sort()).

To enforce scalar context in this particular case, however, you need
 merely omit the parentheses:

	 local($foo) = <FILE>;	 # WRONG

Perl version 5.12.1 documentation - perlfaq7

Page 10http://perldoc.perl.org

	 local($foo) = scalar(<FILE>); # ok
	 local $foo = <FILE>;	 # right

You should probably be using lexical variables anyway, although the
 issue is the same here:

	 my($foo) = <FILE>;	 # WRONG
	 my $foo = <FILE>;	 # right

How do I redefine a builtin function, operator, or method?
Why do you want to do that? :-)

If you want to override a predefined function, such as open(),
 then you'll have to import the new
definition from a different
 module. See "Overriding Built-in Functions" in perlsub. There's
 also an
example in "Class::Template" in perltoot.

If you want to overload a Perl operator, such as + or **,
 then you'll want to use the use overload
pragma, documented
 in overload.

If you're talking about obscuring method calls in parent classes,
 see "Overridden Methods" in perltoot.

What's the difference between calling a function as &foo and foo()?
(contributed by brian d foy)

Calling a subroutine as &foo with no trailing parentheses ignores
 the prototype of foo and passes it
the current value of the argument
 list, @_. Here's an example; the bar subroutine calls &foo,
 which
prints its arguments list:

	 sub bar { &foo }

	 sub foo { print "Args in foo are: @_\n" }

	 bar(qw(a b c));

When you call bar with arguments, you see that foo got the same @_:

	 Args in foo are: a b c

Calling the subroutine with trailing parentheses, with or without arguments,
 does not use the current
@_ and respects the subroutine prototype. Changing
 the example to put parentheses after the call to
foo changes the program:

	 sub bar { &foo() }

	 sub foo { print "Args in foo are: @_\n" }

	 bar(qw(a b c));

Now the output shows that foo doesn't get the @_ from its caller.

	 Args in foo are:

The main use of the @_ pass-through feature is to write subroutines
 whose main job it is to call other
subroutines for you. For further
 details, see perlsub.

Perl version 5.12.1 documentation - perlfaq7

Page 11http://perldoc.perl.org

How do I create a switch or case statement?
In Perl 5.10, use the given-when construct described in perlsyn:

	 use 5.010;

	 given ($string) {
		 when('Fred') { say "I found Fred!" }
		 when('Barney') { say "I found Barney!" }
		 when(/Bamm-?Bamm/) { say "I found Bamm-Bamm!" }
		 default { say "I don't recognize the name!" }
		 };

If one wants to use pure Perl and to be compatible with Perl versions
 prior to 5.10, the general answer
is to use if-elsif-else:

	 for ($variable_to_test) {
		 if (/pat1/) { } # do something
		 elsif (/pat2/) { } # do something else
		 elsif (/pat3/) { } # do something else
		 else { } # default
		 }

Here's a simple example of a switch based on pattern matching,
 lined up in a way to make it look
more like a switch statement.
 We'll do a multiway conditional based on the type of reference stored
 in
$whatchamacallit:

 SWITCH: for (ref $whatchamacallit) {

	 /^$/		 && die "not a reference";

	 /SCALAR/	 && do {
				 print_scalar($$ref);
				 last SWITCH;
			 };

	 /ARRAY/		 && do {
				 print_array(@$ref);
				 last SWITCH;
			 };

	 /HASH/		 && do {
				 print_hash(%$ref);
				 last SWITCH;
			 };

	 /CODE/		 && do {
				 warn "can't print function ref";
				 last SWITCH;
			 };

	 # DEFAULT

	 warn "User defined type skipped";

Perl version 5.12.1 documentation - perlfaq7

Page 12http://perldoc.perl.org

 }

See perlsyn for other examples in this style.

Sometimes you should change the positions of the constant and the variable.
 For example, let's say
you wanted to test which of many answers you were
 given, but in a case-insensitive way that also
allows abbreviations.
 You can use the following technique if the strings all start with
 different
characters or if you want to arrange the matches so that
 one takes precedence over another, as
"SEND" has precedence over "STOP" here:

	 chomp($answer = <>);
	 if ("SEND" =~ /^\Q$answer/i) { print "Action is send\n" }
	 elsif ("STOP" =~ /^\Q$answer/i) { print "Action is stop\n" }
	 elsif ("ABORT" =~ /^\Q$answer/i) { print "Action is abort\n" }
	 elsif ("LIST" =~ /^\Q$answer/i) { print "Action is list\n" }
	 elsif ("EDIT" =~ /^\Q$answer/i) { print "Action is edit\n" }

A totally different approach is to create a hash of function references.

	 my %commands = (
		 "happy" => \&joy,
		 "sad", => \&sullen,
		 "done" => sub { die "See ya!" },
		 "mad" => \&angry,
);

	 print "How are you? ";
	 chomp($string = <STDIN>);
	 if ($commands{$string}) {
		 $commands{$string}->();
	 } else {
		 print "No such command: $string\n";
	 }

Starting from Perl 5.8, a source filter module, Switch, can also be
 used to get switch and case. Its
use is now discouraged, because it's
 not fully compatible with the native switch of Perl 5.10, and
because,
 as it's implemented as a source filter, it doesn't always work as intended
 when complex
syntax is involved.

How can I catch accesses to undefined variables, functions, or methods?
The AUTOLOAD method, discussed in "Autoloading" in perlsub and "AUTOLOAD: Proxy Methods" in
perltoot, lets you capture calls to
 undefined functions and methods.

When it comes to undefined variables that would trigger a warning
 under use warnings, you can
promote the warning to an error.

	 use warnings FATAL => qw(uninitialized);

Why can't a method included in this same file be found?
Some possible reasons: your inheritance is getting confused, you've
 misspelled the method name, or
the object is of the wrong type. Check
 out perltoot for details about any of the above cases. You may

also use print ref($object) to find out the class $object was
 blessed into.

Another possible reason for problems is because you've used the
 indirect object syntax (eg, find
Guru "Samy") on a class name
 before Perl has seen that such a package exists. It's wisest to make

sure your packages are all defined before you start using them, which
 will be taken care of if you use

Perl version 5.12.1 documentation - perlfaq7

Page 13http://perldoc.perl.org

the use statement instead of require. If not, make sure to use arrow notation (eg.,
Guru->find("Samy")) instead. Object notation is explained in perlobj.

Make sure to read about creating modules in perlmod and
 the perils of indirect objects in "Method
Invocation" in perlobj.

How can I find out my current or calling package?
(contributed by brian d foy)

To find the package you are currently in, use the special literal __PACKAGE__, as documented in
perldata. You can only use the
 special literals as separate tokens, so you can't interpolate them
 into
strings like you can with variables:

	 my $current_package = __PACKAGE__;
	 print "I am in package $current_package\n";

This is different from finding out the package an object is blessed
 into, which might not be the current
package. For that, use blessed
 from Scalar::Util, part of the Standard Library since Perl 5.8:

	 use Scalar::Util qw(blessed);
	 my $object_package = blessed($object);

Most of the time, you shouldn't care what package an object is blessed
 into, however, as long as it
claims to inherit from that class:

	 my $is_right_class = eval { $object->isa($package) }; # true or false

If you want to find the package calling your code, perhaps to give better
 diagnostics as Carp does,
use the caller built-in:

	 sub foo {
		 my @args = ...;
		 my($package, $filename, $line) = caller;

		 print "I was called from package $package\n";
);

By default, your program starts in package main, so you should
 always be in some package unless
someone uses the package built-in
 with no namespace. See the package entry in perlfunc for the

details of empty packages.

How can I comment out a large block of Perl code?
(contributed by brian d foy)

The quick-and-dirty way to comment out more than one line of Perl is
 to surround those lines with Pod
directives. You have to put these
 directives at the beginning of the line and somewhere where Perl

expects a new statement (so not in the middle of statements like the #
 comments). You end the
comment with =cut, ending the Pod section:

	 =pod

	 my $object = NotGonnaHappen->new();

	 ignored_sub();

	 $wont_be_assigned = 37;

Perl version 5.12.1 documentation - perlfaq7

Page 14http://perldoc.perl.org

	 =cut

The quick-and-dirty method only works well when you don't plan to leave the commented code in the
source. If a Pod parser comes along,
 you're multiline comment is going to show up in the Pod
translation.
 A better way hides it from Pod parsers as well.

The =begin directive can mark a section for a particular purpose.
 If the Pod parser doesn't want to
handle it, it just ignores it. Label
 the comments with comment. End the comment using =end with the

same label. You still need the =cut to go back to Perl code from
 the Pod comment:

	 =begin comment

	 my $object = NotGonnaHappen->new();

	 ignored_sub();

	 $wont_be_assigned = 37;

	 =end comment

	 =cut

For more information on Pod, check out perlpod and perlpodspec.

How do I clear a package?
Use this code, provided by Mark-Jason Dominus:

	 sub scrub_package {
		 no strict 'refs';
		 my $pack = shift;
		 die "Shouldn't delete main package"
			 if $pack eq "" || $pack eq "main";
		 my $stash = *{$pack . '::'}{HASH};
		 my $name;
		 foreach $name (keys %$stash) {
			 my $fullname = $pack . '::' . $name;
			 # Get rid of everything with that name.
			 undef $$fullname;
			 undef @$fullname;
			 undef %$fullname;
			 undef &$fullname;
			 undef *$fullname;
	 }
	 }

Or, if you're using a recent release of Perl, you can
 just use the Symbol::delete_package() function
instead.

How can I use a variable as a variable name?
Beginners often think they want to have a variable contain the name
 of a variable.

	 $fred = 23;
	 $varname = "fred";
	 ++$$varname; # $fred now 24

Perl version 5.12.1 documentation - perlfaq7

Page 15http://perldoc.perl.org

This works sometimes, but it is a very bad idea for two reasons.

The first reason is that this technique only works on global
 variables. That means that if $fred is a
lexical variable created
 with my() in the above example, the code wouldn't work at all: you'd

accidentally access the global and skip right over the private lexical
 altogether. Global variables are
bad because they can easily collide
 accidentally and in general make for non-scalable and confusing
code.

Symbolic references are forbidden under the use strict pragma.
 They are not true references and
consequently are not reference counted
 or garbage collected.

The other reason why using a variable to hold the name of another
 variable is a bad idea is that the
question often stems from a lack of
 understanding of Perl data structures, particularly hashes. By
using
 symbolic references, you are just using the package's symbol-table hash
 (like %main::)
instead of a user-defined hash. The solution is to
 use your own hash or a real reference instead.

	 $USER_VARS{"fred"} = 23;
	 $varname = "fred";
	 $USER_VARS{$varname}++; # not $$varname++

There we're using the %USER_VARS hash instead of symbolic references.
 Sometimes this comes up
in reading strings from the user with variable
 references and wanting to expand them to the values of
your perl
 program's variables. This is also a bad idea because it conflates the
 program-addressable
namespace and the user-addressable one. Instead of
 reading a string and expanding it to the actual
contents of your program's
 own variables:

	 $str = 'this has a $fred and $barney in it';
	 $str =~ s/(\$\w+)/$1/eeg;		 # need double eval

it would be better to keep a hash around like %USER_VARS and have
 variable references actually
refer to entries in that hash:

	 $str =~ s/\$(\w+)/$USER_VARS{$1}/g; # no /e here at all

That's faster, cleaner, and safer than the previous approach. Of course,
 you don't need to use a dollar
sign. You could use your own scheme to
 make it less confusing, like bracketed percent symbols, etc.

	 $str = 'this has a %fred% and %barney% in it';
	 $str =~ s/%(\w+)%/$USER_VARS{$1}/g; # no /e here at all

Another reason that folks sometimes think they want a variable to
 contain the name of a variable is
because they don't know how to build
 proper data structures using hashes. For example, let's say
they
 wanted two hashes in their program: %fred and %barney, and that they
 wanted to use another
scalar variable to refer to those by name.

	 $name = "fred";
	 $$name{WIFE} = "wilma"; # set %fred

	 $name = "barney";
	 $$name{WIFE} = "betty";	 # set %barney

This is still a symbolic reference, and is still saddled with the
 problems enumerated above. It would be
far better to write:

	 $folks{"fred"}{WIFE} = "wilma";
	 $folks{"barney"}{WIFE} = "betty";

Perl version 5.12.1 documentation - perlfaq7

Page 16http://perldoc.perl.org

And just use a multilevel hash to start with.

The only times that you absolutely must use symbolic references are
 when you really must refer to
the symbol table. This may be because it's
 something that can't take a real reference to, such as a
format name.
 Doing so may also be important for method calls, since these always go
 through the
symbol table for resolution.

In those cases, you would turn off strict 'refs' temporarily so you
 can play around with the
symbol table. For example:

	 @colors = qw(red blue green yellow orange purple violet);
	 for my $name (@colors) {
		 no strict 'refs'; # renege for the block
		 *$name = sub { "@_" };
	 }

All those functions (red(), blue(), green(), etc.) appear to be separate,
 but the real code in the closure
actually was compiled only once.

So, sometimes you might want to use symbolic references to directly
 manipulate the symbol table.
This doesn't matter for formats, handles, and
 subroutines, because they are always global--you can't
use my() on them.
 For scalars, arrays, and hashes, though--and usually for subroutines--
 you
probably only want to use hard references.

What does "bad interpreter" mean?
(contributed by brian d foy)

The "bad interpreter" message comes from the shell, not perl. The
 actual message may vary
depending on your platform, shell, and locale
 settings.

If you see "bad interpreter - no such file or directory", the first
 line in your perl script (the "shebang"
line) does not contain the
 right path to perl (or any other program capable of running scripts).

Sometimes this happens when you move the script from one machine to
 another and each machine
has a different path to perl--/usr/bin/perl
 versus /usr/local/bin/perl for instance. It may also indicate
 that
the source machine has CRLF line terminators and the
 destination machine has LF only: the shell
tries to find
 /usr/bin/perl<CR>, but can't.

If you see "bad interpreter: Permission denied", you need to make your
 script executable.

In either case, you should still be able to run the scripts with perl
 explicitly:

	 % perl script.pl

If you get a message like "perl: command not found", perl is not in
 your PATH, which might also mean
that the location of perl is not
 where you expect it so you need to adjust your shebang line.

AUTHOR AND COPYRIGHT
Copyright (c) 1997-2010 Tom Christiansen, Nathan Torkington, and
 other authors as noted. All rights
reserved.

This documentation is free; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Irrespective of its distribution, all code examples in this file
 are hereby placed into the public domain.
You are permitted and
 encouraged to use this code in your own programs for fun
 or for profit as you
see fit. A simple comment in the code giving
 credit would be courteous but is not required.

