
Perl version 5.12.1 documentation - perlxstut

Page 1http://perldoc.perl.org

NAME
perlXStut - Tutorial for writing XSUBs

DESCRIPTION
This tutorial will educate the reader on the steps involved in creating
 a Perl extension. The reader is
assumed to have access to perlguts, perlapi and perlxs.

This tutorial starts with very simple examples and becomes more complex,
 with each new example
adding new features. Certain concepts may not be
 completely explained until later in the tutorial in
order to slowly ease
 the reader into building extensions.

This tutorial was written from a Unix point of view. Where I know them
 to be otherwise different for
other platforms (e.g. Win32), I will list
 them. If you find something that was missed, please let me
know.

SPECIAL NOTES
make

This tutorial assumes that the make program that Perl is configured to
 use is called make. Instead of
running "make" in the examples that
 follow, you may have to substitute whatever make program Perl
has been
 configured to use. Running perl -V:make should tell you what it is.

Version caveat
When writing a Perl extension for general consumption, one should expect that
 the extension will be
used with versions of Perl different from the
 version available on your machine. Since you are reading
this document,
 the version of Perl on your machine is probably 5.005 or later, but the users
 of your
extension may have more ancient versions.

To understand what kinds of incompatibilities one may expect, and in the rare
 case that the version of
Perl on your machine is older than this document,
 see the section on "Troubleshooting these
Examples" for more information.

If your extension uses some features of Perl which are not available on older
 releases of Perl, your
users would appreciate an early meaningful warning.
 You would probably put this information into the
README file, but nowadays
 installation of extensions may be performed automatically, guided by
CPAN.pm
 module or other tools.

In MakeMaker-based installations, Makefile.PL provides the earliest
 opportunity to perform version
checks. One can put something like this
 in Makefile.PL for this purpose:

 eval { require 5.007 }
 or die <<EOD;
 ############
 ### This module uses frobnication framework which is not available
before
 ### version 5.007 of Perl. Upgrade your Perl before installing
Kara::Mba.
 ############
 EOD

Dynamic Loading versus Static Loading
It is commonly thought that if a system does not have the capability to
 dynamically load a library, you
cannot build XSUBs. This is incorrect.
 You can build them, but you must link the XSUBs subroutines
with the
 rest of Perl, creating a new executable. This situation is similar to
 Perl 4.

This tutorial can still be used on such a system. The XSUB build mechanism
 will check the system
and build a dynamically-loadable library if possible,
 or else a static library and then, optionally, a new
statically-linked
 executable with that static library linked in.

Perl version 5.12.1 documentation - perlxstut

Page 2http://perldoc.perl.org

Should you wish to build a statically-linked executable on a system which
 can dynamically load
libraries, you may, in all the following examples,
 where the command "make" with no arguments is
executed, run the command
 "make perl" instead.

If you have generated such a statically-linked executable by choice, then
 instead of saying "make
test", you should say "make test_static".
 On systems that cannot build dynamically-loadable
libraries at all, simply
 saying "make test" is sufficient.

TUTORIAL
Now let's go on with the show!

EXAMPLE 1
Our first extension will be very simple. When we call the routine in the
 extension, it will print out a
well-known message and return.

Run "h2xs -A -n Mytest". This creates a directory named Mytest,
 possibly under ext/ if that
directory exists in the current working
 directory. Several files will be created under the Mytest dir,
including
 MANIFEST, Makefile.PL, lib/Mytest.pm, Mytest.xs, t/Mytest.t, and Changes.

The MANIFEST file contains the names of all the files just created in the
 Mytest directory.

The file Makefile.PL should look something like this:

 use ExtUtils::MakeMaker;
 # See lib/ExtUtils/MakeMaker.pm for details of how to influence
 # the contents of the Makefile that is written.
 WriteMakefile(
	 NAME => 'Mytest',
	 VERSION_FROM => 'Mytest.pm', # finds $VERSION
	 LIBS => [''], # e.g., '-lm'
	 DEFINE => '', # e.g., '-DHAVE_SOMETHING'
	 INC => '', # e.g., '-I/usr/include/other'
);

The file Mytest.pm should start with something like this:

 package Mytest;

 use 5.008008;
 use strict;
 use warnings;

 require Exporter;

 our @ISA = qw(Exporter);
 our %EXPORT_TAGS = ('all' => [qw(

)]);

 our @EXPORT_OK = (@{ $EXPORT_TAGS{'all'} });

 our @EXPORT = qw(

);

Perl version 5.12.1 documentation - perlxstut

Page 3http://perldoc.perl.org

 our $VERSION = '0.01';

 require XSLoader;
 XSLoader::load('Mytest', $VERSION);

 # Preloaded methods go here.

 1;
 __END__
 # Below is the stub of documentation for your module. You better edit
it!

The rest of the .pm file contains sample code for providing documentation for
 the extension.

Finally, the Mytest.xs file should look something like this:

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 #include "ppport.h"

 MODULE = Mytest		 PACKAGE = Mytest

Let's edit the .xs file by adding this to the end of the file:

 void
 hello()
	 CODE:
	 printf("Hello, world!\n");

It is okay for the lines starting at the "CODE:" line to not be indented.
 However, for readability
purposes, it is suggested that you indent CODE:
 one level and the lines following one more level.

Now we'll run "perl Makefile.PL". This will create a real Makefile,
 which make needs. Its output
looks something like:

 % perl Makefile.PL
 Checking if your kit is complete...
 Looks good
 Writing Makefile for Mytest
 %

Now, running make will produce output that looks something like this (some
 long lines have been
shortened for clarity and some extraneous lines have
 been deleted):

 % make
 cp lib/Mytest.pm blib/lib/Mytest.pm
 perl xsubpp -typemap typemap Mytest.xs > Mytest.xsc && mv Mytest.xsc
Mytest.c
 Please specify prototyping behavior for Mytest.xs (see perlxs manual)
 cc -c Mytest.c
 Running Mkbootstrap for Mytest ()
 chmod 644 Mytest.bs
 rm -f blib/arch/auto/Mytest/Mytest.so

Perl version 5.12.1 documentation - perlxstut

Page 4http://perldoc.perl.org

 cc -shared -L/usr/local/lib Mytest.o -o
blib/arch/auto/Mytest/Mytest.so \
 \

 chmod 755 blib/arch/auto/Mytest/Mytest.so
 cp Mytest.bs blib/arch/auto/Mytest/Mytest.bs
 chmod 644 blib/arch/auto/Mytest/Mytest.bs
 Manifying blib/man3/Mytest.3pm
 %

You can safely ignore the line about "prototyping behavior" - it is
 explained in "The PROTOTYPES:
Keyword" in perlxs.

If you are on a Win32 system, and the build process fails with linker
 errors for functions in the C
library, check if your Perl is configured
 to use PerlCRT (running perl -V:libc should show you if this is
the
 case). If Perl is configured to use PerlCRT, you have to make sure
 PerlCRT.lib is copied to the
same location that msvcrt.lib lives in,
 so that the compiler can find it on its own. msvcrt.lib is usually

found in the Visual C compiler's lib directory (e.g. C:/DevStudio/VC/lib).

Perl has its own special way of easily writing test scripts, but for this
 example only, we'll create our
own test script. Create a file called hello
 that looks like this:

 #! /opt/perl5/bin/perl

 use ExtUtils::testlib;

 use Mytest;

 Mytest::hello();

Now we make the script executable (chmod +x hello), run the script
 and we should see the
following output:

 % ./hello
 Hello, world!
 %

EXAMPLE 2
Now let's add to our extension a subroutine that will take a single numeric
 argument as input and
return 0 if the number is even or 1 if the number
 is odd.

Add the following to the end of Mytest.xs:

 int
 is_even(input)
	 int input
	 CODE:
	 RETVAL = (input % 2 == 0);
	 OUTPUT:
	 RETVAL

There does not need to be whitespace at the start of the "int input"
 line, but it is useful for
improving readability. Placing a semi-colon at
 the end of that line is also optional. Any amount and
kind of whitespace
 may be placed between the "int" and "input".

Perl version 5.12.1 documentation - perlxstut

Page 5http://perldoc.perl.org

Now re-run make to rebuild our new shared library.

Now perform the same steps as before, generating a Makefile from the
 Makefile.PL file, and running
make.

In order to test that our extension works, we now need to look at the
 file Mytest.t. This file is set up to
imitate the same kind of testing
 structure that Perl itself has. Within the test script, you perform a

number of tests to confirm the behavior of the extension, printing "ok"
 when the test is correct, "not
ok" when it is not.

 use Test::More tests => 4;
 BEGIN { use_ok('Mytest') };

 #########################

 # Insert your test code below, the Test::More module is use()ed here so
 read
 # its man page (perldoc Test::More) for help writing this test
script.

 is(&Mytest::is_even(0), 1);
 is(&Mytest::is_even(1), 0);
 is(&Mytest::is_even(2), 1);

We will be calling the test script through the command "make test". You
 should see output that
looks something like this:

 %make test
 PERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-e"
"test_harness(0, 'blib/lib', 'blib/arch')" t/*.t
 t/Mytest....ok
 All tests successful.
 Files=1, Tests=4, 0 wallclock secs (0.03 cusr + 0.00 csys = 0.03
CPU)
 %

What has gone on?
The program h2xs is the starting point for creating extensions. In later
 examples we'll see how we can
use h2xs to read header files and generate
 templates to connect to C routines.

h2xs creates a number of files in the extension directory. The file
 Makefile.PL is a perl script which will
generate a true Makefile to build
 the extension. We'll take a closer look at it later.

The .pm and .xs files contain the meat of the extension. The .xs file holds
 the C routines that make up
the extension. The .pm file contains routines
 that tell Perl how to load your extension.

Generating the Makefile and running make created a directory called blib
 (which stands for "build
library") in the current working directory. This
 directory will contain the shared library that we will build.
Once we have
 tested it, we can install it into its final location.

Invoking the test script via "make test" did something very important.
 It invoked perl with all those
-I arguments so that it could find the
 various files that are part of the extension. It is very important
that
 while you are still testing extensions that you use "make test". If you
 try to run the test script all
by itself, you will get a fatal error.
 Another reason it is important to use "make test" to run your test

script is that if you are testing an upgrade to an already-existing version,
 using "make test" ensures
that you will test your new extension, not the
 already-existing version.

Perl version 5.12.1 documentation - perlxstut

Page 6http://perldoc.perl.org

When Perl sees a use extension;, it searches for a file with the same name
 as the use'd
extension that has a .pm suffix. If that file cannot be found,
 Perl dies with a fatal error. The default
search path is contained in the @INC array.

In our case, Mytest.pm tells perl that it will need the Exporter and Dynamic
 Loader extensions. It then
sets the @ISA and @EXPORT arrays and the $VERSION scalar; finally it tells perl to bootstrap the
module. Perl
 will call its dynamic loader routine (if there is one) and load the shared
 library.

The two arrays @ISA and @EXPORT are very important. The @ISA
 array contains a list of other
packages in which to search for methods (or
 subroutines) that do not exist in the current package.
This is usually
 only important for object-oriented extensions (which we will talk about
 much later), and
so usually doesn't need to be modified.

The @EXPORT array tells Perl which of the extension's variables and
 subroutines should be placed
into the calling package's namespace. Because
 you don't know if the user has already used your
variable and subroutine
 names, it's vitally important to carefully select what to export. Do not
 export
method or variable names by default without a good reason.

As a general rule, if the module is trying to be object-oriented then don't
 export anything. If it's just a
collection of functions and variables, then
 you can export them via another array, called @EXPORT_OK
. This array
 does not automatically place its subroutine and variable names into the
 namespace
unless the user specifically requests that this be done.

See perlmod for more information.

The $VERSION variable is used to ensure that the .pm file and the shared
 library are "in sync" with
each other. Any time you make changes to
 the .pm or .xs files, you should increment the value of this
variable.

Writing good test scripts
The importance of writing good test scripts cannot be over-emphasized. You
 should closely follow the
"ok/not ok" style that Perl itself uses, so that
 it is very easy and unambiguous to determine the
outcome of each test case.
 When you find and fix a bug, make sure you add a test case for it.

By running "make test", you ensure that your Mytest.t script runs and uses
 the correct version of
your extension. If you have many test cases,
 save your test files in the "t" directory and use the suffix
".t".
 When you run "make test", all of these test files will be executed.

EXAMPLE 3
Our third extension will take one argument as its input, round off that
 value, and set the argument to
the rounded value.

Add the following to the end of Mytest.xs:

	 void
	 round(arg)
		 double arg
	 CODE:
		 if (arg > 0.0) {
			 arg = floor(arg + 0.5);
		 } else if (arg < 0.0) {
			 arg = ceil(arg - 0.5);
		 } else {
			 arg = 0.0;
		 }
	 OUTPUT:
		 arg

Edit the Makefile.PL file so that the corresponding line looks like this:

Perl version 5.12.1 documentation - perlxstut

Page 7http://perldoc.perl.org

	 'LIBS' => ['-lm'], # e.g., '-lm'

Generate the Makefile and run make. Change the test number in Mytest.t to
 "9" and add the following
tests:

	 $i = -1.5; &Mytest::round($i); is($i, -2.0);
	 $i = -1.1; &Mytest::round($i); is($i, -1.0);
	 $i = 0.0; &Mytest::round($i); is($i, 0.0);
	 $i = 0.5; &Mytest::round($i); is($i, 1.0);
	 $i = 1.2; &Mytest::round($i); is($i, 1.0);

Running "make test" should now print out that all nine tests are okay.

Notice that in these new test cases, the argument passed to round was a
 scalar variable. You might
be wondering if you can round a constant or
 literal. To see what happens, temporarily add the
following line to Mytest.t:

	 &Mytest::round(3);

Run "make test" and notice that Perl dies with a fatal error. Perl won't
 let you change the value of
constants!

What's new here?
We've made some changes to Makefile.PL. In this case, we've specified an
 extra library to be
linked into the extension's shared library, the math
 library libm in this case. We'll talk later
about how to write XSUBs that
 can call every routine in a library.

The value of the function is not being passed back as the function's return
 value, but by
changing the value of the variable that was passed into the
 function. You might have guessed
that when you saw that the return value
 of round is of type "void".

Input and Output Parameters
You specify the parameters that will be passed into the XSUB on the line(s)
 after you declare the
function's return value and name. Each input parameter
 line starts with optional whitespace, and may
have an optional terminating
 semicolon.

The list of output parameters occurs at the very end of the function, just
 after the OUTPUT: directive.
The use of RETVAL tells Perl that you
 wish to send this value back as the return value of the XSUB
function. In
 Example 3, we wanted the "return value" placed in the original variable
 which we passed
in, so we listed it (and not RETVAL) in the OUTPUT: section.

The XSUBPP Program
The xsubpp program takes the XS code in the .xs file and translates it into
 C code, placing it in a file
whose suffix is .c. The C code created makes
 heavy use of the C functions within Perl.

The TYPEMAP file
The xsubpp program uses rules to convert from Perl's data types (scalar,
 array, etc.) to C's data
types (int, char, etc.). These rules are stored
 in the typemap file ($PERLLIB/ExtUtils/typemap). This
file is split into
 three parts.

The first section maps various C data types to a name, which corresponds
 somewhat with the various
Perl types. The second section contains C code
 which xsubpp uses to handle input parameters. The
third section contains
 C code which xsubpp uses to handle output parameters.

Let's take a look at a portion of the .c file created for our extension.
 The file name is Mytest.c:

	 XS(XS_Mytest_round)
	 {

Perl version 5.12.1 documentation - perlxstut

Page 8http://perldoc.perl.org

	 dXSARGS;
	 if (items != 1)
		 Perl_croak(aTHX_ "Usage: Mytest::round(arg)");
 PERL_UNUSED_VAR(cv); /* -W */
	 {
		 double arg = (double)SvNV(ST(0));	 /* XXXXX */
		 if (arg > 0.0) {
			 arg = floor(arg + 0.5);
		 } else if (arg < 0.0) {
			 arg = ceil(arg - 0.5);
		 } else {
			 arg = 0.0;
		 }
		 sv_setnv(ST(0), (double)arg);	 /* XXXXX */
 SvSETMAGIC(ST(0));
	 }
	 XSRETURN_EMPTY;
	 }

Notice the two lines commented with "XXXXX". If you check the first section
 of the typemap file, you'll
see that doubles are of type T_DOUBLE. In the
 INPUT section, an argument that is T_DOUBLE is
assigned to the variable
 arg by calling the routine SvNV on something, then casting it to double,
 then
assigned to the variable arg. Similarly, in the OUTPUT section,
 once arg has its final value, it is
passed to the sv_setnv function to
 be passed back to the calling subroutine. These two functions are
explained
 in perlguts; we'll talk more later about what that "ST(0)" means in the
 section on the
argument stack.

Warning about Output Arguments
In general, it's not a good idea to write extensions that modify their input
 parameters, as in Example 3.
Instead, you should probably return multiple
 values in an array and let the caller handle them (we'll do
this in a later
 example). However, in order to better accommodate calling pre-existing C
 routines,
which often do modify their input parameters, this behavior is
 tolerated.

EXAMPLE 4
In this example, we'll now begin to write XSUBs that will interact with
 pre-defined C libraries. To begin
with, we will build a small library of
 our own, then let h2xs write our .pm and .xs files for us.

Create a new directory called Mytest2 at the same level as the directory
 Mytest. In the Mytest2
directory, create another directory called mylib,
 and cd into that directory.

Here we'll create some files that will generate a test library. These will
 include a C source file and a
header file. We'll also create a Makefile.PL
 in this directory. Then we'll make sure that running make
at the Mytest2
 level will automatically run this Makefile.PL file and the resulting Makefile.

In the mylib directory, create a file mylib.h that looks like this:

	 #define TESTVAL	 4

	 extern double	 foo(int, long, const char*);

Also create a file mylib.c that looks like this:

	 #include <stdlib.h>
	 #include "./mylib.h"

	 double

Perl version 5.12.1 documentation - perlxstut

Page 9http://perldoc.perl.org

	 foo(int a, long b, const char *c)
	 {
		 return (a + b + atof(c) + TESTVAL);
	 }

And finally create a file Makefile.PL that looks like this:

	 use ExtUtils::MakeMaker;
	 $Verbose = 1;
	 WriteMakefile(
	 NAME => 'Mytest2::mylib',
	 SKIP => [qw(all static static_lib dynamic dynamic_lib)],
	 clean => {'FILES' => 'libmylib$(LIB_EXT)'},
);

	 sub MY::top_targets {
		 '
	 all :: static

	 pure_all :: static

	 static :: libmylib$(LIB_EXT)

	 libmylib$(LIB_EXT): $(O_FILES)
		 $(AR) cr libmylib$(LIB_EXT) $(O_FILES)
		 $(RANLIB) libmylib$(LIB_EXT)

	 ';
	 }

Make sure you use a tab and not spaces on the lines beginning with "$(AR)"
 and "$(RANLIB)". Make
will not function properly if you use spaces.
 It has also been reported that the "cr" argument to $(AR)
is unnecessary
 on Win32 systems.

We will now create the main top-level Mytest2 files. Change to the directory
 above Mytest2 and run
the following command:

	 % h2xs -O -n Mytest2 ./Mytest2/mylib/mylib.h

This will print out a warning about overwriting Mytest2, but that's okay.
 Our files are stored in
Mytest2/mylib, and will be untouched.

The normal Makefile.PL that h2xs generates doesn't know about the mylib
 directory. We need to tell it
that there is a subdirectory and that we
 will be generating a library in it. Let's add the argument
MYEXTLIB to
 the WriteMakefile call so that it looks like this:

	 WriteMakefile(
	 'NAME' => 'Mytest2',
	 'VERSION_FROM' => 'Mytest2.pm', # finds $VERSION
	 'LIBS' => [''], # e.g., '-lm'
	 'DEFINE' => '', # e.g., '-DHAVE_SOMETHING'
	 'INC' => '', # e.g., '-I/usr/include/other'
	 'MYEXTLIB' => 'mylib/libmylib$(LIB_EXT)',
);

Perl version 5.12.1 documentation - perlxstut

Page 10http://perldoc.perl.org

and then at the end add a subroutine (which will override the pre-existing
 subroutine). Remember to
use a tab character to indent the line beginning
 with "cd"!

	 sub MY::postamble {
	 '
	 $(MYEXTLIB): mylib/Makefile
		 cd mylib && $(MAKE) $(PASSTHRU)
	 ';
	 }

Let's also fix the MANIFEST file so that it accurately reflects the contents
 of our extension. The single
line that says "mylib" should be replaced by
 the following three lines:

	 mylib/Makefile.PL
	 mylib/mylib.c
	 mylib/mylib.h

To keep our namespace nice and unpolluted, edit the .pm file and change
 the variable @EXPORT to
@EXPORT_OK. Finally, in the
 .xs file, edit the #include line to read:

	 #include "mylib/mylib.h"

And also add the following function definition to the end of the .xs file:

	 double
	 foo(a,b,c)
		 int a
		 long b
		 const char * c
	 OUTPUT:
		 RETVAL

Now we also need to create a typemap file because the default Perl doesn't
 currently support the
const char * type. Create a file called typemap in
 the Mytest2 directory and place the following in it:

	 const char *	 T_PV

Now run perl on the top-level Makefile.PL. Notice that it also created a
 Makefile in the mylib directory.
Run make and watch that it does cd into
 the mylib directory and run make in there as well.

Now edit the Mytest2.t script and change the number of tests to "4",
 and add the following lines to the
end of the script:

	 is(&Mytest2::foo(1, 2, "Hello, world!"), 7);
	 is(&Mytest2::foo(1, 2, "0.0"), 7);
	 ok(abs(&Mytest2::foo(0, 0, "-3.4") - 0.6) <= 0.01);

(When dealing with floating-point comparisons, it is best to not check for
 equality, but rather that the
difference between the expected and actual
 result is below a certain amount (called epsilon) which is
0.01 in this case)

Run "make test" and all should be well. There are some warnings on missing tests
 for the
Mytest2::mylib extension, but you can ignore them.

What has happened here?
Unlike previous examples, we've now run h2xs on a real include file. This
 has caused some extra
goodies to appear in both the .pm and .xs files.

Perl version 5.12.1 documentation - perlxstut

Page 11http://perldoc.perl.org

In the .xs file, there's now a #include directive with the absolute path to
 the mylib.h header file.
We changed this to a relative path so that we
 could move the extension directory if we wanted
to.

There's now some new C code that's been added to the .xs file. The purpose
 of the
constant routine is to make the values that are #define'd in the
 header file accessible by the
Perl script (by calling either TESTVAL or &Mytest2::TESTVAL). There's also some XS code
to allow calls to the constant routine.

The .pm file originally exported the name TESTVAL in the @EXPORT array.
 This could lead to
name clashes. A good rule of thumb is that if the #define
 is only going to be used by the C
routines themselves, and not by the user,
 they should be removed from the @EXPORT array.
Alternately, if you don't
 mind using the "fully qualified name" of a variable, you could move
most
 or all of the items from the @EXPORT array into the @EXPORT_OK array.

If our include file had contained #include directives, these would not have
 been processed by
h2xs. There is no good solution to this right now.

We've also told Perl about the library that we built in the mylib
 subdirectory. That required only
the addition of the MYEXTLIB variable
 to the WriteMakefile call and the replacement of the
postamble subroutine
 to cd into the subdirectory and run make. The Makefile.PL for the
 library
is a bit more complicated, but not excessively so. Again we
 replaced the postamble subroutine
to insert our own code. This code
 simply specified that the library to be created here was a
static archive
 library (as opposed to a dynamically loadable library) and provided the

commands to build it.

Anatomy of .xs file
The .xs file of EXAMPLE 4 contained some new elements. To understand
 the meaning of these
elements, pay attention to the line which reads

	 MODULE = Mytest2		 PACKAGE = Mytest2

Anything before this line is plain C code which describes which headers
 to include, and defines some
convenience functions. No translations are
 performed on this part, apart from having embedded POD
documentation
 skipped over (see perlpod) it goes into the generated output C file as is.

Anything after this line is the description of XSUB functions.
 These descriptions are translated by
xsubpp into C code which
 implements these functions using Perl calling conventions, and which

makes these functions visible from Perl interpreter.

Pay a special attention to the function constant. This name appears
 twice in the generated .xs file:
once in the first part, as a static C
 function, then another time in the second part, when an XSUB
interface to
 this static C function is defined.

This is quite typical for .xs files: usually the .xs file provides
 an interface to an existing C function.
Then this C function is defined
 somewhere (either in an external library, or in the first part of .xs file),

and a Perl interface to this function (i.e. "Perl glue") is described in the
 second part of .xs file. The
situation in EXAMPLE 1, EXAMPLE 2,
 and EXAMPLE 3, when all the work is done inside the "Perl
glue", is
 somewhat of an exception rather than the rule.

Getting the fat out of XSUBs
In EXAMPLE 4 the second part of .xs file contained the following
 description of an XSUB:

	 double
	 foo(a,b,c)
		 int a
		 long b
		 const char * c
	 OUTPUT:

Perl version 5.12.1 documentation - perlxstut

Page 12http://perldoc.perl.org

		 RETVAL

Note that in contrast with EXAMPLE 1, EXAMPLE 2 and EXAMPLE 3,
 this description does not
contain the actual code for what is done
 is done during a call to Perl function foo(). To understand
what is going
 on here, one can add a CODE section to this XSUB:

	 double
	 foo(a,b,c)
		 int a
		 long b
		 const char * c
	 CODE:
		 RETVAL = foo(a,b,c);
	 OUTPUT:
		 RETVAL

However, these two XSUBs provide almost identical generated C code: xsubpp
 compiler is smart
enough to figure out the CODE: section from the first
 two lines of the description of XSUB. What about
OUTPUT: section? In
 fact, that is absolutely the same! The OUTPUT: section can be removed
 as well,
as far as CODE: section or PPCODE: section is not
 specified: xsubpp can see that it needs to
generate a function call
 section, and will autogenerate the OUTPUT section too. Thus one can

shortcut the XSUB to become:

	 double
	 foo(a,b,c)
		 int a
		 long b
		 const char * c

Can we do the same with an XSUB

	 int
	 is_even(input)
		 int	 input
	 CODE:
		 RETVAL = (input % 2 == 0);
	 OUTPUT:
		 RETVAL

of EXAMPLE 2? To do this, one needs to define a C function int
 is_even(int input). As we
saw in Anatomy of .xs file, a proper place
 for this definition is in the first part of .xs file. In fact a C
function

	 int
	 is_even(int arg)
	 {
		 return (arg % 2 == 0);
	 }

is probably overkill for this. Something as simple as a #define will
 do too:

	 #define is_even(arg)	 ((arg) % 2 == 0)

After having this in the first part of .xs file, the "Perl glue" part becomes
 as simple as

	 int

Perl version 5.12.1 documentation - perlxstut

Page 13http://perldoc.perl.org

	 is_even(input)
		 int	 input

This technique of separation of the glue part from the workhorse part has
 obvious tradeoffs: if you
want to change a Perl interface, you need to
 change two places in your code. However, it removes a
lot of clutter,
 and makes the workhorse part independent from idiosyncrasies of Perl calling

convention. (In fact, there is nothing Perl-specific in the above description,
 a different version of
xsubpp might have translated this to TCL glue or
 Python glue as well.)

More about XSUB arguments
With the completion of Example 4, we now have an easy way to simulate some
 real-life libraries
whose interfaces may not be the cleanest in the world.
 We shall now continue with a discussion of the
arguments passed to the xsubpp compiler.

When you specify arguments to routines in the .xs file, you are really
 passing three pieces of
information for each argument listed. The first
 piece is the order of that argument relative to the others
(first, second,
 etc). The second is the type of argument, and consists of the type
 declaration of the
argument (e.g., int, char*, etc). The third piece is
 the calling convention for the argument in the call to
the library function.

While Perl passes arguments to functions by reference,
 C passes arguments by value; to implement a
C function which modifies data
 of one of the "arguments", the actual argument of this C function
would be
 a pointer to the data. Thus two C functions with declarations

	 int string_length(char *s);
	 int upper_case_char(char *cp);

may have completely different semantics: the first one may inspect an array
 of chars pointed by s,
and the second one may immediately dereference cp
 and manipulate *cp only (using the return
value as, say, a success
 indicator). From Perl one would use these functions in
 a completely different
manner.

One conveys this info to xsubpp by replacing * before the
 argument by &. & means that the argument
should be passed to a library
 function by its address. The above two function may be XSUB-ified as

	 int
	 string_length(s)
		 char *	 s

	 int
	 upper_case_char(cp)
		 char	 &cp

For example, consider:

	 int
	 foo(a,b)
		 char	 &a
		 char *	 b

The first Perl argument to this function would be treated as a char and assigned
 to the variable a, and
its address would be passed into the function foo.
 The second Perl argument would be treated as a
string pointer and assigned to the
 variable b. The value of b would be passed into the function foo.
The
 actual call to the function foo that xsubpp generates would look like this:

	 foo(&a, b);

Perl version 5.12.1 documentation - perlxstut

Page 14http://perldoc.perl.org

xsubpp will parse the following function argument lists identically:

	 char	 &a
	 char&a
	 char	 & a

However, to help ease understanding, it is suggested that you place a "&"
 next to the variable name
and away from the variable type), and place a
 "*" near the variable type, but away from the variable
name (as in the
 call to foo above). By doing so, it is easy to understand exactly what
 will be passed to
the C function; it will be whatever is in the "last
 column".

You should take great pains to try to pass the function the type of variable
 it wants, when possible. It
will save you a lot of trouble in the long run.

The Argument Stack
If we look at any of the C code generated by any of the examples except
 example 1, you will notice a
number of references to ST(n), where n is
 usually 0. "ST" is actually a macro that points to the n'th
argument
 on the argument stack. ST(0) is thus the first argument on the stack and
 therefore the first
argument passed to the XSUB, ST(1) is the second
 argument, and so on.

When you list the arguments to the XSUB in the .xs file, that tells xsubpp
 which argument
corresponds to which of the argument stack (i.e., the first
 one listed is the first argument, and so on).
You invite disaster if you
 do not list them in the same order as the function expects them.

The actual values on the argument stack are pointers to the values passed
 in. When an argument is
listed as being an OUTPUT value, its corresponding
 value on the stack (i.e., ST(0) if it was the first
argument) is changed.
 You can verify this by looking at the C code generated for Example 3.
 The
code for the round() XSUB routine contains lines that look like this:

	 double arg = (double)SvNV(ST(0));
	 /* Round the contents of the variable arg */
	 sv_setnv(ST(0), (double)arg);

The arg variable is initially set by taking the value from ST(0), then is
 stored back into ST(0) at the
end of the routine.

XSUBs are also allowed to return lists, not just scalars. This must be
 done by manipulating stack
values ST(0), ST(1), etc, in a subtly
 different way. See perlxs for details.

XSUBs are also allowed to avoid automatic conversion of Perl function arguments
 to C function
arguments. See perlxs for details. Some people prefer
 manual conversion by inspecting ST(i) even
in the cases when automatic
 conversion will do, arguing that this makes the logic of an XSUB call
clearer.
 Compare with Getting the fat out of XSUBs for a similar tradeoff of
 a complete separation of
"Perl glue" and "workhorse" parts of an XSUB.

While experts may argue about these idioms, a novice to Perl guts may
 prefer a way which is as little
Perl-guts-specific as possible, meaning
 automatic conversion and automatic call generation, as in
Getting the fat out of XSUBs. This approach has the additional
 benefit of protecting the XSUB writer
from future changes to the Perl API.

Extending your Extension
Sometimes you might want to provide some extra methods or subroutines
 to assist in making the
interface between Perl and your extension simpler
 or easier to understand. These routines should live
in the .pm file.
 Whether they are automatically loaded when the extension itself is loaded
 or only
loaded when called depends on where in the .pm file the subroutine
 definition is placed. You can also
consult AutoLoader for an alternate
 way to store and load your extra subroutines.

Perl version 5.12.1 documentation - perlxstut

Page 15http://perldoc.perl.org

Documenting your Extension
There is absolutely no excuse for not documenting your extension.
 Documentation belongs in the .pm
file. This file will be fed to pod2man,
 and the embedded documentation will be converted to the
manpage format,
 then placed in the blib directory. It will be copied to Perl's
 manpage directory when
the extension is installed.

You may intersperse documentation and Perl code within the .pm file.
 In fact, if you want to use
method autoloading, you must do this,
 as the comment inside the .pm file explains.

See perlpod for more information about the pod format.

Installing your Extension
Once your extension is complete and passes all its tests, installing it
 is quite simple: you simply run
"make install". You will either need
 to have write permission into the directories where Perl is installed,
or ask your system administrator to run the make for you.

Alternately, you can specify the exact directory to place the extension's
 files by placing a
"PREFIX=/destination/directory" after the make install.
 (or in between the make and install if you have
a brain-dead version of make).
 This can be very useful if you are building an extension that will
eventually
 be distributed to multiple systems. You can then just archive the files in
 the destination
directory and distribute them to your destination systems.

EXAMPLE 5
In this example, we'll do some more work with the argument stack. The
 previous examples have all
returned only a single value. We'll now
 create an extension that returns an array.

This extension is very Unix-oriented (struct statfs and the statfs system
 call). If you are not running on
a Unix system, you can substitute for
 statfs any other function that returns multiple values, you can
hard-code
 values to be returned to the caller (although this will be a bit harder
 to test the error case),
or you can simply not do this example. If you
 change the XSUB, be sure to fix the test cases to match
the changes.

Return to the Mytest directory and add the following code to the end of
 Mytest.xs:

	 void
	 statfs(path)
		 char * path
	 INIT:
		 int i;
		 struct statfs buf;

	 PPCODE:
		 i = statfs(path, &buf);
		 if (i == 0) {
			 XPUSHs(sv_2mortal(newSVnv(buf.f_bavail)));
			 XPUSHs(sv_2mortal(newSVnv(buf.f_bfree)));
			 XPUSHs(sv_2mortal(newSVnv(buf.f_blocks)));
			 XPUSHs(sv_2mortal(newSVnv(buf.f_bsize)));
			 XPUSHs(sv_2mortal(newSVnv(buf.f_ffree)));
			 XPUSHs(sv_2mortal(newSVnv(buf.f_files)));
			 XPUSHs(sv_2mortal(newSVnv(buf.f_type)));
		 } else {
			 XPUSHs(sv_2mortal(newSVnv(errno)));
		 }

You'll also need to add the following code to the top of the .xs file, just
 after the include of "XSUB.h":

Perl version 5.12.1 documentation - perlxstut

Page 16http://perldoc.perl.org

	 #include <sys/vfs.h>

Also add the following code segment to Mytest.t while incrementing the "9"
 tests to "11":

	 @a = &Mytest::statfs("/blech");
	 ok(scalar(@a) == 1 && $a[0] == 2);
	 @a = &Mytest::statfs("/");
	 is(scalar(@a), 7);

New Things in this Example
This example added quite a few new concepts. We'll take them one at a time.

The INIT: directive contains code that will be placed immediately after
 the argument stack is
decoded. C does not allow variable declarations at
 arbitrary locations inside a function,
 so this
is usually the best way to declare local variables needed by the XSUB.
 (Alternatively, one
could put the whole PPCODE: section into braces, and
 put these declarations on top.)

This routine also returns a different number of arguments depending on the
 success or failure
of the call to statfs. If there is an error, the error
 number is returned as a single-element array.
If the call is successful,
 then a 9-element array is returned. Since only one argument is passed
into
 this function, we need room on the stack to hold the 9 values which may be
 returned.

We do this by using the PPCODE: directive, rather than the CODE: directive.
 This tells
xsubpp that we will be managing the return values that will be
 put on the argument stack by
ourselves.

When we want to place values to be returned to the caller onto the stack,
 we use the series of
macros that begin with "XPUSH". There are five
 different versions, for placing integers,
unsigned integers, doubles,
 strings, and Perl scalars on the stack. In our example, we placed
a
 Perl scalar onto the stack. (In fact this is the only macro which
 can be used to return multiple
values.)

The XPUSH* macros will automatically extend the return stack to prevent
 it from being
overrun. You push values onto the stack in the order you
 want them seen by the calling
program.

The values pushed onto the return stack of the XSUB are actually mortal SV's.
 They are made
mortal so that once the values are copied by the calling
 program, the SV's that held the
returned values can be deallocated.
 If they were not mortal, then they would continue to exist
after the XSUB
 routine returned, but would not be accessible. This is a memory leak.

If we were interested in performance, not in code compactness, in the success
 branch we
would not use XPUSHs macros, but PUSHs macros, and would
 pre-extend the stack before
pushing the return values:

	 EXTEND(SP, 7);

The tradeoff is that one needs to calculate the number of return values
 in advance (though
overextending the stack will not typically hurt
 anything but memory consumption).

Similarly, in the failure branch we could use PUSHs without extending
 the stack: the Perl
function reference comes to an XSUB on the stack, thus
 the stack is always large enough to
take one return value.

EXAMPLE 6
In this example, we will accept a reference to an array as an input
 parameter, and return a reference
to an array of hashes. This will
 demonstrate manipulation of complex Perl data types from an XSUB.

This extension is somewhat contrived. It is based on the code in
 the previous example. It calls the
statfs function multiple times,
 accepting a reference to an array of filenames as input, and returning
 a

Perl version 5.12.1 documentation - perlxstut

Page 17http://perldoc.perl.org

reference to an array of hashes containing the data for each of the
 filesystems.

Return to the Mytest directory and add the following code to the end of
 Mytest.xs:

 SV *
 multi_statfs(paths)
	 SV * paths
	 INIT:
	 AV * results;
	 I32 numpaths = 0;
	 int i, n;
	 struct statfs buf;

	 if ((!SvROK(paths))
		 || (SvTYPE(SvRV(paths)) != SVt_PVAV)
		 || ((numpaths = av_len((AV *)SvRV(paths))) < 0))
	 {
		 XSRETURN_UNDEF;
	 }
	 results = (AV *)sv_2mortal((SV *)newAV());
	 CODE:
	 for (n = 0; n <= numpaths; n++) {
		 HV * rh;
		 STRLEN l;
		 char * fn = SvPV(*av_fetch((AV *)SvRV(paths), n, 0), l);

		 i = statfs(fn, &buf);
		 if (i != 0) {
		 av_push(results, newSVnv(errno));
		 continue;
		 }

		 rh = (HV *)sv_2mortal((SV *)newHV());

		 hv_store(rh, "f_bavail", 8, newSVnv(buf.f_bavail), 0);
		 hv_store(rh, "f_bfree", 7, newSVnv(buf.f_bfree), 0);
		 hv_store(rh, "f_blocks", 8, newSVnv(buf.f_blocks), 0);
		 hv_store(rh, "f_bsize", 7, newSVnv(buf.f_bsize), 0);
		 hv_store(rh, "f_ffree", 7, newSVnv(buf.f_ffree), 0);
		 hv_store(rh, "f_files", 7, newSVnv(buf.f_files), 0);
		 hv_store(rh, "f_type", 6, newSVnv(buf.f_type), 0);

		 av_push(results, newRV((SV *)rh));
	 }
	 RETVAL = newRV((SV *)results);
	 OUTPUT:
	 RETVAL

And add the following code to Mytest.t, while incrementing the "11"
 tests to "13":

	 $results = Mytest::multi_statfs(['/', '/blech']);
	 ok(ref $results->[0]));
	 ok(! ref $results->[1]);

Perl version 5.12.1 documentation - perlxstut

Page 18http://perldoc.perl.org

New Things in this Example
There are a number of new concepts introduced here, described below:

This function does not use a typemap. Instead, we declare it as accepting
 one SV* (scalar)
parameter, and returning an SV* value, and we take care of
 populating these scalars within
the code. Because we are only returning
 one value, we don't need a PPCODE: directive -
instead, we use CODE:
 and OUTPUT: directives.

When dealing with references, it is important to handle them with caution.
 The INIT: block
first checks that SvROK returns true, which indicates that paths is a valid reference. It
 then
verifies that the object referenced by paths is an array, using SvRV
 to dereference paths, and
SvTYPE to discover its type. As an added test,
 it checks that the array referenced by paths is
non-empty, using the av_len
 function (which returns -1 if the array is empty). The
XSRETURN_UNDEF macro
 is used to abort the XSUB and return the undefined value
whenever all three of
 these conditions are not met.

We manipulate several arrays in this XSUB. Note that an array is represented
 internally by an
AV* pointer. The functions and macros for manipulating
 arrays are similar to the functions in
Perl: av_len returns the highest
 index in an AV*, much like $#array; av_fetch fetches a
single scalar value
 from an array, given its index; av_push pushes a scalar value onto the

end of the array, automatically extending the array as necessary.

Specifically, we read pathnames one at a time from the input array, and
 store the results in an
output array (results) in the same order. If
 statfs fails, the element pushed onto the return
array is the value of
 errno after the failure. If statfs succeeds, though, the value pushed
 onto
the return array is a reference to a hash containing some of the
 information in the statfs
structure.

As with the return stack, it would be possible (and a small performance win)
 to pre-extend the
return array before pushing data into it, since we know
 how many elements we will return:

	 av_extend(results, numpaths);

We are performing only one hash operation in this function, which is storing
 a new scalar
under a key using hv_store. A hash is represented by an HV*
 pointer. Like arrays, the
functions for manipulating hashes from an XSUB
 mirror the functionality available from Perl.
See perlguts and perlapi
 for details.

To create a reference, we use the newRV function. Note that you can
 cast an AV* or an HV* to
type SV* in this case (and many others). This
 allows you to take references to arrays, hashes
and scalars with the same
 function. Conversely, the SvRV function always returns an SV*,
which may
 need to be cast to the appropriate type if it is something other than a
 scalar (check
with SvTYPE).

At this point, xsubpp is doing very little work - the differences between
 Mytest.xs and Mytest.c
are minimal.

EXAMPLE 7 (Coming Soon)
XPUSH args AND set RETVAL AND assign return value to array

EXAMPLE 8 (Coming Soon)
Setting $!

EXAMPLE 9 Passing open files to XSes
You would think passing files to an XS is difficult, with all the
 typeglobs and stuff. Well, it isn't.

Suppose that for some strange reason we need a wrapper around the
 standard C library function
fputs(). This is all we need:

	 #define PERLIO_NOT_STDIO 0

Perl version 5.12.1 documentation - perlxstut

Page 19http://perldoc.perl.org

	 #include "EXTERN.h"
	 #include "perl.h"
	 #include "XSUB.h"

	 #include <stdio.h>

	 int
	 fputs(s, stream)
		 char * s
		 FILE *	 stream

The real work is done in the standard typemap.

But you loose all the fine stuff done by the perlio layers. This
 calls the stdio function fputs(), which
knows nothing about them.

The standard typemap offers three variants of PerlIO *: InputStream (T_IN), InOutStream
(T_INOUT) and OutputStream
 (T_OUT). A bare PerlIO * is considered a T_INOUT. If it matters

in your code (see below for why it might) #define or typedef
 one of the specific names and use that as
the argument or result
 type in your XS file.

The standard typemap does not contain PerlIO * before perl 5.7,
 but it has the three stream variants.
Using a PerlIO * directly
 is not backwards compatible unless you provide your own typemap.

For streams coming from perl the main difference is that OutputStream will get the output PerlIO * -
which may make
 a difference on a socket. Like in our example...

For streams being handed to perl a new file handle is created
 (i.e. a reference to a new glob) and
associated with the PerlIO *
 provided. If the read/write state of the PerlIO * is not correct then you

may get errors or warnings from when the file handle is used.
 So if you opened the PerlIO * as "w" it
should really be an OutputStream if open as "r" it should be an InputStream.

Now, suppose you want to use perlio layers in your XS. We'll use the
 perlio PerlIO_puts() function
as an example.

In the C part of the XS file (above the first MODULE line) you
 have

	 #define OutputStream	 PerlIO *
 or
	 typedef PerlIO *	 OutputStream;

And this is the XS code:

	 int
	 perlioputs(s, stream)
		 char * s
		 OutputStream	 stream
	 CODE:
		 RETVAL = PerlIO_puts(stream, s);
	 OUTPUT:
		 RETVAL

We have to use a CODE section because PerlIO_puts() has the arguments
 reversed compared to
fputs(), and we want to keep the arguments the same.

Wanting to explore this thoroughly, we want to use the stdio fputs()
 on a PerlIO *. This means we
have to ask the perlio system for a stdio FILE *:

Perl version 5.12.1 documentation - perlxstut

Page 20http://perldoc.perl.org

	 int
	 perliofputs(s, stream)
		 char * s
		 OutputStream	 stream
	 PREINIT:
		 FILE *fp = PerlIO_findFILE(stream);
	 CODE:
		 if (fp != (FILE*) 0) {
			 RETVAL = fputs(s, fp);
		 } else {
			 RETVAL = -1;
		 }
	 OUTPUT:
		 RETVAL

Note: PerlIO_findFILE() will search the layers for a stdio
 layer. If it can't find one, it will call
PerlIO_exportFILE() to
 generate a new stdio FILE. Please only call PerlIO_exportFILE() if

you want a new FILE. It will generate one on each call and push a
 new stdio layer. So don't call it
repeatedly on the same
 file. PerlIO()_findFILE will retrieve the stdio layer once it has been

generated by PerlIO_exportFILE().

This applies to the perlio system only. For versions before 5.7, PerlIO_exportFILE() is equivalent
to PerlIO_findFILE().

Troubleshooting these Examples
As mentioned at the top of this document, if you are having problems with
 these example extensions,
you might see if any of these help you.

In versions of 5.002 prior to the gamma version, the test script in Example
 1 will not function
properly. You need to change the "use lib" line to
 read:

	 use lib './blib';

In versions of 5.002 prior to version 5.002b1h, the test.pl file was not
 automatically created by
h2xs. This means that you cannot say "make test"
 to run the test script. You will need to add
the following line before the
 "use extension" statement:

	 use lib './blib';

In versions 5.000 and 5.001, instead of using the above line, you will need
 to use the following
line:

	 BEGIN { unshift(@INC, "./blib") }

This document assumes that the executable named "perl" is Perl version 5.
 Some systems
may have installed Perl version 5 as "perl5".

See also
For more information, consult perlguts, perlapi, perlxs, perlmod,
 and perlpod.

Author
Jeff Okamoto <okamoto@corp.hp.com>

Reviewed and assisted by Dean Roehrich, Ilya Zakharevich, Andreas Koenig,
 and Tim Bunce.

PerlIO material contributed by Lupe Christoph, with some clarification
 by Nick Ing-Simmons.

Changes for h2xs as of Perl 5.8.x by Renee Baecker

Perl version 5.12.1 documentation - perlxstut

Page 21http://perldoc.perl.org

Last Changed
2007/10/11

