
Perl version 5.12.1 documentation - Text::Balanced

Page 1http://perldoc.perl.org

NAME
Text::Balanced - Extract delimited text sequences from strings.

SYNOPSIS
 use Text::Balanced qw (
			 extract_delimited
			 extract_bracketed
			 extract_quotelike
			 extract_codeblock
			 extract_variable
			 extract_tagged
			 extract_multiple
			 gen_delimited_pat
			 gen_extract_tagged
);

 # Extract the initial substring of $text that is delimited by
 # two (unescaped) instances of the first character in $delim.

	 ($extracted, $remainder) = extract_delimited($text,$delim);

 # Extract the initial substring of $text that is bracketed
 # with a delimiter(s) specified by $delim (where the string
 # in $delim contains one or more of '(){}[]<>').

	 ($extracted, $remainder) = extract_bracketed($text,$delim);

 # Extract the initial substring of $text that is bounded by
 # an XML tag.

	 ($extracted, $remainder) = extract_tagged($text);

 # Extract the initial substring of $text that is bounded by
 # a C<BEGIN>...C<END> pair. Don't allow nested C<BEGIN> tags

	 ($extracted, $remainder) =
		 extract_tagged($text,"BEGIN","END",undef,{bad=>["BEGIN"]});

 # Extract the initial substring of $text that represents a
 # Perl "quote or quote-like operation"

	 ($extracted, $remainder) = extract_quotelike($text);

 # Extract the initial substring of $text that represents a block
 # of Perl code, bracketed by any of character(s) specified by $delim
 # (where the string $delim contains one or more of '(){}[]<>').

	 ($extracted, $remainder) = extract_codeblock($text,$delim);

 # Extract the initial substrings of $text that would be extracted by
 # one or more sequential applications of the specified functions

Perl version 5.12.1 documentation - Text::Balanced

Page 2http://perldoc.perl.org

 # or regular expressions

	 @extracted = extract_multiple($text,
				 [\&extract_bracketed,
					 \&extract_quotelike,
					 \&some_other_extractor_sub,
					 qr/[xyz]*/,
					 'literal',
]);

Create a string representing an optimized pattern (a la Friedl)
 # that matches a substring delimited
by any of the specified characters
 # (in this case: any type of quote or a slash)

	 $patstring = gen_delimited_pat(q{'"`/});

Generate a reference to an anonymous sub that is just like extract_tagged
 # but pre-compiled and
optimized for a specific pair of tags, and consequently
 # much faster (i.e. 3 times faster). It uses qr//
for better performance on
 # repeated calls, so it only works under Perl 5.005 or later.

	 $extract_head = gen_extract_tagged('<HEAD>','</HEAD>');

	 ($extracted, $remainder) = $extract_head->($text);

DESCRIPTION
The various extract_... subroutines may be used to
 extract a delimited substring, possibly after
skipping a
 specified prefix string. By default, that prefix is
 optional whitespace (/\s*/), but you can
change it to whatever
 you wish (see below).

The substring to be extracted must appear at the
 current pos location of the string's variable
 (or at
index zero, if no pos position is defined).
 In other words, the extract_... subroutines don't
 extract
the first occurrence of a substring anywhere
 in a string (like an unanchored regex would). Rather,
 they
extract an occurrence of the substring appearing
 immediately at the current matching position in the

string (like a \G-anchored regex would).

General behaviour in list contexts
In a list context, all the subroutines return a list, the first three
 elements of which are always:

[0]

The extracted string, including the specified delimiters.
 If the extraction fails undef is
returned.

[1]

The remainder of the input string (i.e. the characters after the
 extracted string). On failure, the
entire string is returned.

[2]

The skipped prefix (i.e. the characters before the extracted string).
 On failure, undef is
returned.

Note that in a list context, the contents of the original input text (the first
 argument) are not modified in
any way.

However, if the input text was passed in a variable, that variable's pos value is updated to point at the
first character after the
 extracted text. That means that in a list context the various
 subroutines can be
used much like regular expressions. For example:

Perl version 5.12.1 documentation - Text::Balanced

Page 3http://perldoc.perl.org

	 while ($next = (extract_quotelike($text))[0])
	 {
		 # process next quote-like (in $next)
	 }

General behaviour in scalar and void contexts
In a scalar context, the extracted string is returned, having first been
 removed from the input text.
Thus, the following code also processes
 each quote-like operation, but actually removes them from
$text:

	 while ($next = extract_quotelike($text))
	 {
		 # process next quote-like (in $next)
	 }

Note that if the input text is a read-only string (i.e. a literal),
 no attempt is made to remove the
extracted text.

In a void context the behaviour of the extraction subroutines is
 exactly the same as in a scalar
context, except (of course) that the
 extracted substring is not returned.

A note about prefixes
Prefix patterns are matched without any trailing modifiers (/gimsox etc.)
 This can bite you if you're
expecting a prefix specification like
 '.*?(?=<H1>)' to skip everything up to the first <H1> tag. Such a
prefix
 pattern will only succeed if the <H1> tag is on the current line, since
 . normally doesn't match
newlines.

To overcome this limitation, you need to turn on /s matching within
 the prefix pattern, using the (?s)
directive: '(?s).*?(?=<H1>)'

extract_delimited
The extract_delimited function formalizes the common idiom
 of extracting a
single-character-delimited substring from the start of
 a string. For example, to extract a single-quote
delimited string, the
 following code is typically used:

	 ($remainder = $text) =~ s/\A('(\\.|[^'])*')//s;
	 $extracted = $1;

but with extract_delimited it can be simplified to:

	 ($extracted,$remainder) = extract_delimited($text, "'");

extract_delimited takes up to four scalars (the input text, the
 delimiters, a prefix pattern to be
skipped, and any escape characters)
 and extracts the initial substring of the text that
 is appropriately
delimited. If the delimiter string has multiple
 characters, the first one encountered in the text is taken
to delimit
 the substring.
 The third argument specifies a prefix pattern that is to be skipped
 (but must
be present!) before the substring is extracted.
 The final argument specifies the escape character to be
used for each
 delimiter.

All arguments are optional. If the escape characters are not specified,
 every delimiter is escaped with
a backslash (\).
 If the prefix is not specified, the
 pattern '\s*' - optional whitespace - is used. If the
delimiter set
 is also not specified, the set /["'`]/ is used. If the text to be processed
 is not specified
either, $_ is used.

In list context, extract_delimited returns a array of three
 elements, the extracted substring (
including the surrounding
 delimiters), the remainder of the text, and the skipped prefix (if
 any). If a
suitable delimited substring is not found, the first
 element of the array is the empty string, the second

Perl version 5.12.1 documentation - Text::Balanced

Page 4http://perldoc.perl.org

is the complete
 original text, and the prefix returned in the third element is an
 empty string.

In a scalar context, just the extracted substring is returned. In
 a void context, the extracted substring
(and any prefix) are simply
 removed from the beginning of the first argument.

Examples:

	 # Remove a single-quoted substring from the very beginning of $text:

		 $substring = extract_delimited($text, "'", '');

	 # Remove a single-quoted Pascalish substring (i.e. one in which
	 # doubling the quote character escapes it) from the very
	 # beginning of $text:

		 $substring = extract_delimited($text, "'", '', "'");

	 # Extract a single- or double- quoted substring from the
	 # beginning of $text, optionally after some whitespace
	 # (note the list context to protect $text from modification):

		 ($substring) = extract_delimited $text, q{"'};

	 # Delete the substring delimited by the first '/' in $text:

		 $text = join '', (extract_delimited($text,'/','[^/]*')[2,1];

Note that this last example is not the same as deleting the first
 quote-like pattern. For instance, if
$text contained the string:

	 "if ('./cmd' =~ m/$UNIXCMD/s) { $cmd = $1; }"

then after the deletion it would contain:

	 "if ('.$UNIXCMD/s) { $cmd = $1; }"

not:

	 "if ('./cmd' =~ ms) { $cmd = $1; }"

See extract_quotelike for a (partial) solution to this problem.

extract_bracketed
Like "extract_delimited", the extract_bracketed function takes
 up to three optional scalar
arguments: a string to extract from, a delimiter
 specifier, and a prefix pattern. As before, a missing
prefix defaults to
 optional whitespace and a missing text defaults to $_. However, a missing
 delimiter
specifier defaults to '{}()[]<>' (see below).

extract_bracketed extracts a balanced-bracket-delimited
 substring (using any one (or more) of
the user-specified delimiter
 brackets: '(..)', '{..}', '[..]', or '<..>'). Optionally it will also
 respect quoted
unbalanced brackets (see below).

A "delimiter bracket" is a bracket in list of delimiters passed as extract_bracketed's second
argument. Delimiter brackets are
 specified by giving either the left or right (or both!) versions
 of the
required bracket(s). Note that the order in which
 two or more delimiter brackets are specified is not

Perl version 5.12.1 documentation - Text::Balanced

Page 5http://perldoc.perl.org

significant.A "balanced-bracket-delimited substring" is a substring bounded by
 matched brackets,
such that any other (left or right) delimiter
 bracket within the substring is also matched by an opposite

(right or left) delimiter bracket at the same level of nesting. Any
 type of bracket not in the delimiter list
is treated as an ordinary
 character.

In other words, each type of bracket specified as a delimiter must be
 balanced and correctly nested
within the substring, and any other kind of
 ("non-delimiter") bracket in the substring is ignored.

For example, given the string:

	 $text = "{ an '[irregularly :-(] {} parenthesized >:-)' string }";

then a call to extract_bracketed in a list context:

	 @result = extract_bracketed($text, '{}');

would return:

	 ("{ an '[irregularly :-(] {} parenthesized >:-)' string }" , "" , "")

since both sets of '{..}' brackets are properly nested and evenly balanced.
 (In a scalar context just
the first element of the array would be returned. In
 a void context, $text would be replaced by an
empty string.)

Likewise the call in:

	 @result = extract_bracketed($text, '{[');

would return the same result, since all sets of both types of specified
 delimiter brackets are correctly
nested and balanced.

However, the call in:

	 @result = extract_bracketed($text, '{([<');

would fail, returning:

	 (undef , "{ an '[irregularly :-(] {} parenthesized >:-)' string }");

because the embedded pairs of '(..)'s and '[..]'s are "cross-nested" and
 the embedded '>' is
unbalanced. (In a scalar context, this call would
 return an empty string. In a void context, $text
would be unchanged.)

Note that the embedded single-quotes in the string don't help in this
 case, since they have not been
specified as acceptable delimiters and are
 therefore treated as non-delimiter characters (and
ignored).

However, if a particular species of quote character is included in the
 delimiter specification, then that
type of quote will be correctly handled.
 for example, if $text is:

	 $text = '>>>">link';

then

	 @result = extract_bracketed($text, '<">');

returns:

Perl version 5.12.1 documentation - Text::Balanced

Page 6http://perldoc.perl.org

	 ('>>>">', 'link', "")

as expected. Without the specification of " as an embedded quoter:

	 @result = extract_bracketed($text, '<>');

the result would be:

	 ('', '>>>">link', "")

In addition to the quote delimiters ', ", and `, full Perl quote-like
 quoting (i.e. q{string}, qq{string}, etc)
can be specified by including the
 letter 'q' as a delimiter. Hence:

	 @result = extract_bracketed($text, '<q>');

would correctly match something like this:

	 $text = '<leftop: conj /and/ conj>';

See also: "extract_quotelike" and "extract_codeblock".

extract_variable
extract_variable extracts any valid Perl variable or
 variable-involved expression, including
scalars, arrays, hashes, array
 accesses, hash look-ups, method calls through objects, subroutine
calls
 through subroutine references, etc.

The subroutine takes up to two optional arguments:

1. A string to be processed ($_ if the string is omitted or undef)

2. A string specifying a pattern to be matched as a prefix (which is to be
 skipped). If omitted,
optional whitespace is skipped.

On success in a list context, an array of 3 elements is returned. The
 elements are:

[0]

the extracted variable, or variablish expression

[1]

the remainder of the input text,

[2]

the prefix substring (if any),

On failure, all of these values (except the remaining text) are undef.

In a scalar context, extract_variable returns just the complete
 substring that matched a
variablish expression. undef is returned on
 failure. In addition, the original input text has the returned
substring
 (and any prefix) removed from it.

In a void context, the input text just has the matched substring (and
 any specified prefix) removed.

extract_tagged
extract_tagged extracts and segments text between (balanced)
 specified tags.

The subroutine takes up to five optional arguments:

1. A string to be processed ($_ if the string is omitted or undef)

Perl version 5.12.1 documentation - Text::Balanced

Page 7http://perldoc.perl.org

2. A string specifying a pattern to be matched as the opening tag.
 If the pattern string is omitted
(or undef) then a pattern
 that matches any standard XML tag is used.

3. A string specifying a pattern to be matched at the closing tag. If the pattern string is omitted (or
undef) then the closing
 tag is constructed by inserting a / after any leading bracket

characters in the actual opening tag that was matched (not the pattern
 that matched the tag).
For example, if the opening tag pattern
 is specified as '{{\w+}}' and actually matched the
opening tag "{{DATA}}", then the constructed closing tag would be "{{/DATA}}".

4. A string specifying a pattern to be matched as a prefix (which is to be
 skipped). If omitted,
optional whitespace is skipped.

5. A hash reference containing various parsing options (see below)

The various options that can be specified are:

reject => $listref

The list reference contains one or more strings specifying patterns
 that must not appear within
the tagged text.

For example, to extract
 an HTML link (which should not contain nested links) use:

 extract_tagged($text, '<A>', '', undef, {reject =>
['<A>']});

ignore => $listref

The list reference contains one or more strings specifying patterns
 that are not be be treated
as nested tags within the tagged text
 (even if they would match the start tag pattern).

For example, to extract an arbitrary XML tag, but ignore "empty" elements:

 extract_tagged($text, undef, undef, undef, {ignore =>
['<[^>]*/>']});

(also see gen_delimited_pat below).

fail => $str

The fail option indicates the action to be taken if a matching end
 tag is not encountered (i.e.
before the end of the string or some reject pattern matches). By default, a failure to match a
closing
 tag causes extract_tagged to immediately fail.

However, if the string value associated with <reject> is "MAX", then extract_tagged
returns the complete text up to the point of failure.
 If the string is "PARA", extract_tagged
returns only the first paragraph
 after the tag (up to the first line that is either empty or contains

only whitespace characters).
 If the string is "", the the default behaviour (i.e. failure) is
reinstated.

For example, suppose the start tag "/para" introduces a paragraph, which then
 continues until
the next "/endpara" tag or until another "/para" tag is
 encountered:

 $text = "/para line 1\n\nline 3\n/para line 4";

 extract_tagged($text, '/para', '/endpara', undef,
 {reject => '/para', fail => MAX);

 # EXTRACTED: "/para line 1\n\nline 3\n"

Suppose instead, that if no matching "/endpara" tag is found, the "/para"
 tag refers only to the
immediately following paragraph:

 $text = "/para line 1\n\nline 3\n/para line 4";

Perl version 5.12.1 documentation - Text::Balanced

Page 8http://perldoc.perl.org

 extract_tagged($text, '/para', '/endpara', undef,
 {reject => '/para', fail => MAX);

 # EXTRACTED: "/para line 1\n"

Note that the specified fail behaviour applies to nested tags as well.

On success in a list context, an array of 6 elements is returned. The elements are:

[0]

the extracted tagged substring (including the outermost tags),

[1]

the remainder of the input text,

[2]

the prefix substring (if any),

[3]

the opening tag

[4]

the text between the opening and closing tags

[5]

the closing tag (or "" if no closing tag was found)

On failure, all of these values (except the remaining text) are undef.

In a scalar context, extract_tagged returns just the complete
 substring that matched a tagged text
(including the start and end
 tags). undef is returned on failure. In addition, the original input
 text has
the returned substring (and any prefix) removed from it.

In a void context, the input text just has the matched substring (and
 any specified prefix) removed.

gen_extract_tagged
(Note: This subroutine is only available under Perl5.005)

gen_extract_tagged generates a new anonymous subroutine which
 extracts text between
(balanced) specified tags. In other words,
 it generates a function identical in function to
extract_tagged.

The difference between extract_tagged and the anonymous
 subroutines generated by
gen_extract_tagged, is that those generated subroutines:

do not have to reparse tag specification or parsing options every time
 they are called (whereas
extract_tagged has to effectively rebuild
 its tag parser on every call);

make use of the new qr// construct to pre-compile the regexes they use
 (whereas
extract_tagged uses standard string variable interpolation to create tag-matching
patterns).

The subroutine takes up to four optional arguments (the same set as extract_tagged except for
the string to be processed). It returns
 a reference to a subroutine which in turn takes a single
argument (the text to
 be extracted from).

In other words, the implementation of extract_tagged is exactly
 equivalent to:

 sub extract_tagged
 {

Perl version 5.12.1 documentation - Text::Balanced

Page 9http://perldoc.perl.org

 my $text = shift;
 $extractor = gen_extract_tagged(@_);
 return $extractor->($text);
 }

(although extract_tagged is not currently implemented that way, in order
 to preserve pre-5.005
compatibility).

Using gen_extract_tagged to create extraction functions for specific tags is a good idea if those
functions are going to be called more than once, since
 their performance is typically twice as good as
the more general-purpose extract_tagged.

extract_quotelike
extract_quotelike attempts to recognize, extract, and segment any
 one of the various Perl
quotes and quotelike operators (see perlop(3)) Nested backslashed delimiters, embedded balanced
bracket
 delimiters (for the quotelike operators), and trailing modifiers are
 all caught. For example, in:

 extract_quotelike 'q # an octothorpe: \# (not the end of the q!) #'

 extract_quotelike ' "You said, \"Use sed\"." '

 extract_quotelike ' s{([A-Z]{1,8}\.[A-Z]{3})} /\L$1\E/; '

 extract_quotelike ' tr/\\\/\\\\/\\\//ds; '

the full Perl quotelike operations are all extracted correctly.

Note too that, when using the /x modifier on a regex, any comment
 containing the current pattern
delimiter will cause the regex to be
 immediately terminated. In other words:

 'm /
 (?i) # CASE INSENSITIVE
 [a-z_] # LEADING ALPHABETIC/UNDERSCORE
 [a-z0-9]* # FOLLOWED BY ANY NUMBER OF ALPHANUMERICS
 /x'

will be extracted as if it were:

 'm /
 (?i) # CASE INSENSITIVE
 [a-z_] # LEADING ALPHABETIC/'

This behaviour is identical to that of the actual compiler.

extract_quotelike takes two arguments: the text to be processed and
 a prefix to be matched at
the very beginning of the text. If no prefix is specified, optional whitespace is the default. If no text is
given, $_ is used.

In a list context, an array of 11 elements is returned. The elements are:

[0]

the extracted quotelike substring (including trailing modifiers),

[1]

the remainder of the input text,

Perl version 5.12.1 documentation - Text::Balanced

Page 10http://perldoc.perl.org

[2]

the prefix substring (if any),

[3]

the name of the quotelike operator (if any),

[4]

the left delimiter of the first block of the operation,

[5]

the text of the first block of the operation
 (that is, the contents of
 a quote, the regex of a match
or substitution or the target list of a
 translation),

[6]

the right delimiter of the first block of the operation,

[7]

the left delimiter of the second block of the operation
 (that is, if it is a s, tr, or y),

[8]

the text of the second block of the operation (that is, the replacement of a substitution or the
translation list
 of a translation),

[9]

the right delimiter of the second block of the operation (if any),

[10]

the trailing modifiers on the operation (if any).

For each of the fields marked "(if any)" the default value on success is
 an empty string.
 On failure, all
of these values (except the remaining text) are undef.

In a scalar context, extract_quotelike returns just the complete substring
 that matched a
quotelike operation (or undef on failure). In a scalar or
 void context, the input text has the same
substring (and any specified
 prefix) removed.

Examples:

 # Remove the first quotelike literal that appears in text

 $quotelike = extract_quotelike($text,'.*?');

 # Replace one or more leading whitespace-separated quotelike
 # literals in $_ with "<QLL>"

 do { $_ = join '<QLL>', (extract_quotelike)[2,1] } until
$@;

 # Isolate the search pattern in a quotelike operation from $text

 ($op,$pat) = (extract_quotelike $text)[3,5];
 if ($op =~ /[ms]/)
 {
 print "search pattern: $pat\n";
 }

Perl version 5.12.1 documentation - Text::Balanced

Page 11http://perldoc.perl.org

 else
 {
 print "$op is not a pattern matching operation\n";
 }

extract_quotelike and "here documents"
extract_quotelike can successfully extract "here documents" from an input
 string, but with an
important caveat in list contexts.

Unlike other types of quote-like literals, a here document is rarely
 a contiguous substring. For
example, a typical piece of code using
 here document might look like this:

 <<'EOMSG' || die;
 This is the message.
 EOMSG
 exit;

Given this as an input string in a scalar context, extract_quotelike
 would correctly return the
string "<<'EOMSG'\nThis is the message.\nEOMSG",
 leaving the string " || die;\nexit;" in the original
variable. In other words,
 the two separate pieces of the here document are successfully extracted and
concatenated.

In a list context, extract_quotelike would return the list

[0]

"<<'EOMSG'\nThis is the message.\nEOMSG\n" (i.e. the full extracted here document,

including fore and aft delimiters),

[1]

" || die;\nexit;" (i.e. the remainder of the input text, concatenated),

[2]

"" (i.e. the prefix substring -- trivial in this case),

[3]

"<<" (i.e. the "name" of the quotelike operator)

[4]

"'EOMSG'" (i.e. the left delimiter of the here document, including any quotes),

[5]

"This is the message.\n" (i.e. the text of the here document),

[6]

"EOMSG" (i.e. the right delimiter of the here document),

[7..10]

"" (a here document has no second left delimiter, second text, second right
 delimiter, or trailing
modifiers).

However, the matching position of the input variable would be set to
 "exit;" (i.e. after the closing
delimiter of the here document),
 which would cause the earlier " || die;\nexit;" to be skipped in any

sequence of code fragment extractions.

To avoid this problem, when it encounters a here document whilst
 extracting from a modifiable string,
extract_quotelike silently
 rearranges the string to an equivalent piece of Perl:

Perl version 5.12.1 documentation - Text::Balanced

Page 12http://perldoc.perl.org

 <<'EOMSG'
 This is the message.
 EOMSG
 || die;
 exit;

in which the here document is contiguous. It still leaves the
 matching position after the here
document, but now the rest of the line
 on which the here document starts is not skipped.

To prevent <extract_quotelike> from mucking about with the input in this way
 (this is the only case
where a list-context extract_quotelike does so),
 you can pass the input variable as an
interpolated literal:

 $quotelike = extract_quotelike("$var");

extract_codeblock
extract_codeblock attempts to recognize and extract a balanced
 bracket delimited substring that
may contain unbalanced brackets
 inside Perl quotes or quotelike operations. That is,
extract_codeblock
 is like a combination of "extract_bracketed" and
"extract_quotelike".

extract_codeblock takes the same initial three parameters as extract_bracketed:
 a text to
process, a set of delimiter brackets to look for, and a prefix to
 match first. It also takes an optional
fourth parameter, which allows the
 outermost delimiter brackets to be specified separately (see
below).

Omitting the first argument (input text) means process $_ instead.
 Omitting the second argument
(delimiter brackets) indicates that only '{' is to be used.
 Omitting the third argument (prefix
argument) implies optional whitespace at the start.
 Omitting the fourth argument (outermost delimiter
brackets) indicates that the
 value of the second argument is to be used for the outermost delimiters.

Once the prefix an dthe outermost opening delimiter bracket have been
 recognized, code blocks are
extracted by stepping through the input text and
 trying the following alternatives in sequence:

1. Try and match a closing delimiter bracket. If the bracket was the same
 species as the last
opening bracket, return the substring to that
 point. If the bracket was mismatched, return an
error.

2. Try to match a quote or quotelike operator. If found, call extract_quotelike to eat it. If
extract_quotelike fails, return
 the error it returned. Otherwise go back to step 1.

3. Try to match an opening delimiter bracket. If found, call extract_codeblock recursively to
eat the embedded block. If the
 recursive call fails, return an error. Otherwise, go back to step
1.

4. Unconditionally match a bareword or any other single character, and
 then go back to step 1.

Examples:

 # Find a while loop in the text

 if ($text =~ s/.*?while\s*\{/{/)
 {
 $loop = "while " . extract_codeblock($text);
 }

 # Remove the first round-bracketed list (which may include
 # round- or curly-bracketed code blocks or quotelike operators)

Perl version 5.12.1 documentation - Text::Balanced

Page 13http://perldoc.perl.org

 extract_codeblock $text, "(){}", '[^(]*';

The ability to specify a different outermost delimiter bracket is useful
 in some circumstances. For
example, in the Parse::RecDescent module,
 parser actions which are to be performed only on a
successful parse
 are specified using a <defer:...> directive. For example:

 sentence: subject verb object
 <defer: {$::theVerb = $item{verb}} >

Parse::RecDescent uses extract_codeblock($text, '{}<>') to extract the code
 within the <
defer:...> directive, but there's a problem.

A deferred action like this:

 <defer: {if ($count>10) {$count--}} >

will be incorrectly parsed as:

 <defer: {if ($count>

because the "less than" operator is interpreted as a closing delimiter.

But, by extracting the directive using extract_codeblock($text, '{}', undef, '<>')
 the '>'
character is only treated as a delimited at the outermost
 level of the code block, so the directive is
parsed correctly.

extract_multiple
The extract_multiple subroutine takes a string to be processed and a list of extractors
(subroutines or regular expressions) to apply to that string.

In an array context extract_multiple returns an array of substrings
 of the original string, as
extracted by the specified extractors.
 In a scalar context, extract_multiple returns the first

substring successfully extracted from the original string. In both
 scalar and void contexts the original
string has the first successfully
 extracted substring removed from it. In all contexts
extract_multiple starts at the current pos of the string, and
 sets that pos appropriately after it
matches.

Hence, the aim of of a call to extract_multiple in a list context
 is to split the processed string into
as many non-overlapping fields as
 possible, by repeatedly applying each of the specified extractors
 to
the remainder of the string. Thus extract_multiple is
 a generalized form of Perl's split
subroutine.

The subroutine takes up to four optional arguments:

1. A string to be processed ($_ if the string is omitted or undef)

2. A reference to a list of subroutine references and/or qr// objects and/or
 literal strings and/or
hash references, specifying the extractors
 to be used to split the string. If this argument is
omitted (or undef) the list:

 [
 sub { extract_variable($_[0], '') },
 sub { extract_quotelike($_[0],'') },
 sub { extract_codeblock($_[0],'{}','') },
]

is used.

3. An number specifying the maximum number of fields to return. If this
 argument is omitted (or

Perl version 5.12.1 documentation - Text::Balanced

Page 14http://perldoc.perl.org

undef), split continues as long as possible.

If the third argument is N, then extraction continues until N fields
 have been successfully
extracted, or until the string has been completely processed.

Note that in scalar and void contexts the value of this argument is automatically reset to 1
(under -w, a warning is issued if the argument has to be reset).

4. A value indicating whether unmatched substrings (see below) within the
 text should be
skipped or returned as fields. If the value is true,
 such substrings are skipped. Otherwise, they
are returned.

The extraction process works by applying each extractor in
 sequence to the text string.

If the extractor is a subroutine it is called in a list context and is
 expected to return a list of a single
element, namely the extracted
 text. It may optionally also return two further arguments: a string

representing the text left after extraction (like $' for a pattern
 match), and a string representing any
prefix skipped before the
 extraction (like $` in a pattern match). Note that this is designed
 to facilitate
the use of other Text::Balanced subroutines with extract_multiple. Note too that the value
returned by an extractor
 subroutine need not bear any relationship to the corresponding substring
 of
the original text (see examples below).

If the extractor is a precompiled regular expression or a string,
 it is matched against the text in a
scalar context with a leading
 '\G' and the gc modifiers enabled. The extracted value is either
 $1 if that
variable is defined after the match, or else the
 complete match (i.e. $&).

If the extractor is a hash reference, it must contain exactly one element.
 The value of that element is
one of the
 above extractor types (subroutine reference, regular expression, or string).
 The key of that
element is the name of a class into which the successful
 return value of the extractor will be blessed.

If an extractor returns a defined value, that value is immediately
 treated as the next extracted field and
pushed onto the list of fields.
 If the extractor was specified in a hash reference, the field is also

blessed into the appropriate class,

If the extractor fails to match (in the case of a regex extractor), or returns an empty list or an
undefined value (in the case of a subroutine extractor), it is
 assumed to have failed to extract.
 If none
of the extractor subroutines succeeds, then one
 character is extracted from the start of the text and
the extraction
 subroutines reapplied. Characters which are thus removed are accumulated and

eventually become the next field (unless the fourth argument is true, in which
 case they are
discarded).

For example, the following extracts substrings that are valid Perl variables:

 @fields = extract_multiple($text,
 [sub { extract_variable($_[0]) }],
 undef, 1);

This example separates a text into fields which are quote delimited,
 curly bracketed, and anything
else. The delimited and bracketed
 parts are also blessed to identify them (the "anything else" is
unblessed):

 @fields = extract_multiple($text,
 [
 { Delim => sub { extract_delimited($_[0],q{'"}) }
},
 { Brack => sub { extract_bracketed($_[0],'{}') } },
]);

This call extracts the next single substring that is a valid Perl quotelike
 operator (and removes it from
$text):

Perl version 5.12.1 documentation - Text::Balanced

Page 15http://perldoc.perl.org

 $quotelike = extract_multiple($text,
 [
 sub { extract_quotelike($_[0]) },
], undef, 1);

Finally, here is yet another way to do comma-separated value parsing:

 @fields = extract_multiple($csv_text,
 [
 sub {
extract_delimited($_[0],q{'"}) },
 qr/([^,]+)(.*)/,
],
 undef,1);

The list in the second argument means: "Try and extract a ' or " delimited string, otherwise extract
anything up to a comma...".
 The undef third argument means: "...as many times as possible...",
 and
the true value in the fourth argument means "...discarding anything else that appears (i.e. the
commas)".

If you wanted the commas preserved as separate fields (i.e. like split
 does if your split pattern has
capturing parentheses), you would
 just make the last parameter undefined (or remove it).

gen_delimited_pat
The gen_delimited_pat subroutine takes a single (string) argument and
 > builds a Friedl-style
optimized regex that matches a string delimited
 by any one of the characters in the single argument.
For example:

 gen_delimited_pat(q{'"})

returns the regex:

 (?:\"(?:\\\"|(?!\").)*\"|\'(?:\\\'|(?!\').)*\')

Note that the specified delimiters are automatically quotemeta'd.

A typical use of gen_delimited_pat would be to build special purpose tags
 for extract_tagged.
For example, to properly ignore "empty" XML elements
 (which might contain quoted strings):

 my $empty_tag = '<(' . gen_delimited_pat(q{'"}) . '|.)+/>';

 extract_tagged($text, undef, undef, undef, {ignore => [$empty_tag]}
);

gen_delimited_pat may also be called with an optional second argument,
 which specifies the
"escape" character(s) to be used for each delimiter.
 For example to match a Pascal-style string
(where ' is the delimiter
 and '' is a literal ' within the string):

 gen_delimited_pat(q{'},q{'});

Different escape characters can be specified for different delimiters.
 For example, to specify that '/' is
the escape for single quotes
 and '%' is the escape for double quotes:

 gen_delimited_pat(q{'"},q{/%});

If more delimiters than escape chars are specified, the last escape char
 is used for the remaining

Perl version 5.12.1 documentation - Text::Balanced

Page 16http://perldoc.perl.org

delimiters.
 If no escape char is specified for a given specified delimiter, '\' is used.

delimited_pat
Note that gen_delimited_pat was previously called delimited_pat.
 That name may still be
used, but is now deprecated.

DIAGNOSTICS
In a list context, all the functions return (undef,$original_text)
 on failure. In a scalar context,
failure is indicated by returning undef
 (in this case the input text is not modified in any way).

In addition, on failure in any context, the $@ variable is set.
 Accessing $@->{error} returns one of
the error diagnostics listed
 below.
 Accessing $@->{pos} returns the offset into the original string at

which the error was detected (although not necessarily where it occurred!)
 Printing $@ directly
produces the error message, with the offset appended.
 On success, the $@ variable is guaranteed to
be undef.

The available diagnostics are:

Did not find a suitable bracket: "%s"

The delimiter provided to extract_bracketed was not one of '()[]<>{}'.

Did not find prefix: /%s/

A non-optional prefix was specified but wasn't found at the start of the text.

Did not find opening bracket after prefix: "%s"

extract_bracketed or extract_codeblock was expecting a
 particular kind of bracket at
the start of the text, and didn't find it.

No quotelike operator found after prefix: "%s"

extract_quotelike didn't find one of the quotelike operators q, qq, qw, qx, s, tr or y at
the start of the substring
 it was extracting.

Unmatched closing bracket: "%c"

extract_bracketed, extract_quotelike or extract_codeblock encountered
 a
closing bracket where none was expected.

Unmatched opening bracket(s): "%s"

extract_bracketed, extract_quotelike or extract_codeblock ran out of
characters in the text before closing one or more levels of nested
 brackets.

Unmatched embedded quote (%s)

extract_bracketed attempted to match an embedded quoted substring, but
 failed to find a
closing quote to match it.

Did not find closing delimiter to match '%s'

extract_quotelike was unable to find a closing delimiter to match the
 one that opened
the quote-like operation.

Mismatched closing bracket: expected "%c" but found "%s"

extract_bracketed, extract_quotelike or extract_codeblock found
 a valid
bracket delimiter, but it was the wrong species. This usually
 indicates a nesting error, but may
indicate incorrect quoting or escaping.

No block delimiter found after quotelike "%s"

extract_quotelike or extract_codeblock found one of the
 quotelike operators q, qq,
qw, qx, s, tr or y
 without a suitable block after it.

Perl version 5.12.1 documentation - Text::Balanced

Page 17http://perldoc.perl.org

Did not find leading dereferencer

extract_variable was expecting one of '$', '@', or '%' at the start of
 a variable, but didn't
find any of them.

Bad identifier after dereferencer

extract_variable found a '$', '@', or '%' indicating a variable, but that
 character was not
followed by a legal Perl identifier.

Did not find expected opening bracket at %s

extract_codeblock failed to find any of the outermost opening brackets
 that were
specified.

Improperly nested codeblock at %s

A nested code block was found that started with a delimiter that was specified
 as being only to
be used as an outermost bracket.

Missing second block for quotelike "%s"

extract_codeblock or extract_quotelike found one of the
 quotelike operators s, tr
or y followed by only one block.

No match found for opening bracket

extract_codeblock failed to find a closing bracket to match the outermost
 opening
bracket.

Did not find opening tag: /%s/

extract_tagged did not find a suitable opening tag (after any specified
 prefix was
removed).

Unable to construct closing tag to match: /%s/

extract_tagged matched the specified opening tag and tried to
 modify the matched text to
produce a matching closing tag (because
 none was specified). It failed to generate the closing
tag, almost
 certainly because the opening tag did not start with a
 bracket of some kind.

Found invalid nested tag: %s

extract_tagged found a nested tag that appeared in the "reject" list
 (and the failure mode
was not "MAX" or "PARA").

Found unbalanced nested tag: %s

extract_tagged found a nested opening tag that was not matched by a
 corresponding
nested closing tag (and the failure mode was not "MAX" or "PARA").

Did not find closing tag

extract_tagged reached the end of the text without finding a closing tag
 to match the
original opening tag (and the failure mode was not
 "MAX" or "PARA").

AUTHOR
Damian Conway (damian@conway.org)

BUGS AND IRRITATIONS
There are undoubtedly serious bugs lurking somewhere in this code, if
 only because parts of it give
the impression of understanding a great deal
 more about Perl than they really do.

Bug reports and other feedback are most welcome.

Perl version 5.12.1 documentation - Text::Balanced

Page 18http://perldoc.perl.org

COPYRIGHT
Copyright 1997 - 2001 Damian Conway. All Rights Reserved.

Some (minor) parts copyright 2009 Adam Kennedy.

This module is free software. It may be used, redistributed
 and/or modified under the same terms as
Perl itself.

