
Perl version 5.12.1 documentation - Module::Build

Page 1http://perldoc.perl.org

NAME
Module::Build - Build and install Perl modules

SYNOPSIS
Standard process for building & installing modules:

 perl Build.PL
 ./Build
 ./Build test
 ./Build install

Or, if you're on a platform (like DOS or Windows) that doesn't require
 the "./" notation, you can do this:

 perl Build.PL
 Build
 Build test
 Build install

DESCRIPTION
Module::Build is a system for building, testing, and installing
 Perl modules. It is meant to be an
alternative to ExtUtils::MakeMaker. Developers may alter the behavior of the
 module through
subclassing in a much more straightforward way than
 with MakeMaker. It also does not require a
make on your system
 - most of the Module::Build code is pure-perl and written in a very

cross-platform way. In fact, you don't even need a shell, so even
 platforms like MacOS (traditional)
can use it fairly easily. Its only
 prerequisites are modules that are included with perl 5.6.0, and it
 works
fine on perl 5.005 if you can install a few additional modules.

See MOTIVATIONS for more comparisons between ExtUtils::MakeMaker
 and Module::Build.

To install Module::Build, and any other module that uses Module::Build for its installation
process, do the following:

 perl Build.PL # 'Build.PL' script creates the 'Build' script
 ./Build # Need ./ to ensure we're using this "Build" script
 ./Build test # and not another one that happens to be in the PATH
 ./Build install

This illustrates initial configuration and the running of three
 'actions'. In this case the actions run are
'build' (the default
 action), 'test', and 'install'. Other actions defined so far include:

<action_list>

You can run the 'help' action for a complete list of actions.

GUIDE TO DOCUMENTATION
The documentation for Module::Build is broken up into three sections:

General Usage (Module::Build)

This is the document you are currently reading. It describes basic
 usage and background
information. Its main purpose is to assist the
 user who wants to learn how to invoke and
control Module::Build
 scripts at the command line.

Authoring Reference (Module::Build::Authoring)

This document describes the structure and organization of Module::Build, and the relevant
concepts needed by authors who are
 writing Build.PL scripts for a distribution or controlling
Module::Build processes programmatically.

Perl version 5.12.1 documentation - Module::Build

Page 2http://perldoc.perl.org

API Reference (Module::Build::API)

This is a reference to the Module::Build API.

Cookbook (Module::Build::Cookbook)

This document demonstrates how to accomplish many common tasks. It
 covers general
command line usage and authoring of Build.PL
 scripts. Includes working examples.

ACTIONS
There are some general principles at work here. First, each task when
 building a module is called an
"action". These actions are listed
 above; they correspond to the building, testing, installing,
 packaging,
etc., tasks.

Second, arguments are processed in a very systematic way. Arguments
 are always key=value pairs.
They may be specified at perl Build.PL
 time (i.e. perl Build.PL
destdir=/my/secret/place), in which case
 their values last for the lifetime of the Build script.
They may
 also be specified when executing a particular action (i.e. Build test verbose=1), in
which case their values last only for the
 lifetime of that command. Per-action command line
parameters take
 precedence over parameters specified at perl Build.PL time.

The build process also relies heavily on the Config.pm module.
 If the user wishes to override any of
the
 values in Config.pm, she may specify them like so:

 perl Build.PL --config cc=gcc --config ld=gcc

The following build actions are provided by default.

build

[version 0.01]

If you run the Build script without any arguments, it runs the build action, which in turn runs
the code and docs actions.

This is analogous to the MakeMaker make all target.

clean

[version 0.01]

This action will clean up any files that the build process may have
 created, including the
blib/ directory (but not including the _build/ directory and the Build script itself).

code

[version 0.20]

This action builds your code base.

By default it just creates a blib/ directory and copies any .pm
 and .pod files from your
lib/ directory into the blib/
 directory. It also compiles any .xs files from lib/ and places

them in blib/. Of course, you need a working C compiler (probably
 the same one that built
perl itself) for the compilation to work
 properly.

The code action also runs any .PL files in your lib/
 directory. Typically these create other
files, named the same but
 without the .PL ending. For example, a file lib/Foo/Bar.pm.PL
 could
create the file lib/Foo/Bar.pm. The .PL files are
 processed first, so any .pm files (or other
kinds that we deal
 with) will get copied correctly.

config_data

[version 0.26]

...

diff

Perl version 5.12.1 documentation - Module::Build

Page 3http://perldoc.perl.org

[version 0.14]

This action will compare the files about to be installed with their
 installed counterparts. For .pm
and .pod files, a diff will be shown
 (this currently requires a 'diff' program to be in your PATH).
For
 other files like compiled binary files, we simply report whether they
 differ.

A flags parameter may be passed to the action, which will be passed
 to the 'diff' program.
Consult your 'diff' documentation for the
 parameters it will accept - a good one is -u:

 ./Build diff flags=-u

dist

[version 0.02]

This action is helpful for module authors who want to package up their
 module for source
distribution through a medium like CPAN. It will create a
 tarball of the files listed in MANIFEST
and compress the tarball using
 GZIP compression.

By default, this action will use the Archive::Tar module. However, you can
 force it to use
binary "tar" and "gzip" executables by supplying an explicit tar (and optional gzip)
parameter:

 ./Build dist --tar C:\path\to\tar.exe --gzip C:\path\to\zip.exe

distcheck

[version 0.05]

Reports which files are in the build directory but not in the MANIFEST file, and vice versa.
(See manifest for details.)

distclean

[version 0.05]

Performs the 'realclean' action and then the 'distcheck' action.

distdir

[version 0.05]

Creates a "distribution directory" named $dist_name-$dist_version
 (if that directory
already exists, it will be removed first), then
 copies all the files listed in the MANIFEST file to
that directory.
 This directory is what the distribution tarball is created from.

distmeta

[version 0.21]

Creates the META.yml file that describes the distribution.

META.yml is a file containing various bits of metadata about the
 distribution. The metadata
includes the distribution name, version,
 abstract, prerequisites, license, and various other data
about the
 distribution. This file is created as META.yml in YAML format.
 It is recommended
that the YAML::Tiny module be installed to create it.
 If the YAML::Tiny module is not
installed, an internal module supplied
 with Module::Build will be used to write the META.yml
file, and this
 will most likely be fine.

META.yml file must also be listed in MANIFEST - if it's not, a
 warning will be issued.

The current version of the META.yml specification can be found at
http://module-build.sourceforge.net/META-spec-current.html

distsign

[version 0.16]

Uses Module::Signature to create a SIGNATURE file for your
 distribution, and adds the
SIGNATURE file to the distribution's
 MANIFEST.

Perl version 5.12.1 documentation - Module::Build

Page 4http://perldoc.perl.org

disttest

[version 0.05]

Performs the 'distdir' action, then switches into that directory and
 runs a perl Build.PL,
followed by the 'build' and 'test' actions in
 that directory.

docs

[version 0.20]

This will generate documentation (e.g. Unix man pages and HTML
 documents) for any
installable items under blib/ that
 contain POD. If there are no bindoc or libdoc installation

targets defined (as will be the case on systems that don't support
 Unix manpages) no action is
taken for manpages. If there are no binhtml or libhtml installation targets defined no
action is
 taken for HTML documents.

fakeinstall

[version 0.02]

This is just like the install action, but it won't actually do
 anything, it will just report what it
would have done if you had
 actually run the install action.

help

[version 0.03]

This action will simply print out a message that is meant to help you
 use the build process. It
will show you a list of available build
 actions too.

With an optional argument specifying an action name (e.g. Build help
 test), the 'help'
action will show you any POD documentation it can
 find for that action.

html

[version 0.26]

This will generate HTML documentation for any binary or library files
 under blib/ that contain
POD. The HTML documentation will only be
 installed if the install paths can be determined
from values in Config.pm. You can also supply or override install paths on the
 command line
by specifying install_path values for the binhtml
 and/or libhtml installation targets.

install

[version 0.01]

This action will use ExtUtils::Install to install the files from blib/ into the system. See
INSTALL PATHS
 for details about how Module::Build determines where to install
 things, and
how to influence this process.

If you want the installation process to look around in @INC for
 other versions of the stuff you're
installing and try to delete it,
 you can use the uninst parameter, which tells
ExtUtils::Install to
 do so:

 ./Build install uninst=1

This can be a good idea, as it helps prevent multiple versions of a
 module from being present
on your system, which can be a confusing
 situation indeed.

installdeps

[version 0.36]

This action will use the cpan_client parameter as a command to install
 missing
prerequisites. You will be prompted whether to install
 optional dependencies.

The cpan_client option defaults to 'cpan' but can be set as an option or in .modulebuildrc. It
must be a shell command that takes a list of modules to
 install as arguments (e.g. 'cpanp -i' for
CPANPLUS). If the program part is a
 relative path (e.g. 'cpan' or 'cpanp'), it will be located

Perl version 5.12.1 documentation - Module::Build

Page 5http://perldoc.perl.org

relative to the perl
 program that executed Build.PL.

 /opt/perl/5.8.9/bin/perl Build.PL
 ./Build installdeps --cpan_client 'cpanp -i'
 # installs to 5.8.9

manifest

[version 0.05]

This is an action intended for use by module authors, not people
 installing modules. It will
bring the MANIFEST up to date with the
 files currently present in the distribution. You may use
a MANIFEST.SKIP file to exclude certain files or directories from
 inclusion in the MANIFEST.
MANIFEST.SKIP should contain a bunch
 of regular expressions, one per line. If a file in the
distribution
 directory matches any of the regular expressions, it won't be included
 in the
MANIFEST.

The following is a reasonable MANIFEST.SKIP starting point, you can
 add your own stuff to it:

 ^_build
 ^Build$
 ^blib
 ~$
 \.bak$
 ^MANIFEST\.SKIP$
 CVS

See the distcheck and skipcheck actions if you want to find out
 what the manifest action
would do, without actually doing anything.

manpages

[version 0.28]

This will generate man pages for any binary or library files under blib/ that contain POD. The
man pages will only be installed if the
 install paths can be determined from values in
Config.pm. You can
 also supply or override install paths by specifying there values on
 the
command line with the bindoc and libdoc installation
 targets.

pardist

[version 0.2806]

Generates a PAR binary distribution for use with PAR or PAR::Dist.

It requires that the PAR::Dist module (version 0.17 and up) is
 installed on your system.

ppd

[version 0.20]

Build a PPD file for your distribution.

This action takes an optional argument codebase which is used in
 the generated PPD file to
specify the (usually relative) URL of the
 distribution. By default, this value is the distribution
name without
 any path information.

Example:

 ./Build ppd --codebase
"MSWin32-x86-multi-thread/Module-Build-0.21.tar.gz"

ppmdist

[version 0.23]

Generates a PPM binary distribution and a PPD description file. This
 action also invokes the
ppd action, so it can accept the same codebase argument described under that action.

Perl version 5.12.1 documentation - Module::Build

Page 6http://perldoc.perl.org

This uses the same mechanism as the dist action to tar & zip its
 output, so you can supply
tar and/or gzip parameters to affect
 the result.

prereq_data

[version 0.32]

This action prints out a Perl data structure of all prerequisites and the versions
 required. The
output can be loaded again using eval(). This can be useful for
 external tools that wish to
query a Build script for prerequisites.

prereq_report

[version 0.28]

This action prints out a list of all prerequisites, the versions required, and
 the versions actually
installed. This can be useful for reviewing the
 configuration of your system prior to a build, or
when compiling data to send
 for a bug report.

pure_install

[version 0.28]

This action is identical to the install action. In the future,
 though, when install starts
writing to the file $(INSTALLARCHLIB)/perllocal.pod, pure_install won't, and that
 will be
the only difference between them.

realclean

[version 0.01]

This action is just like the clean action, but also removes the _build directory and the
Build script. If you run the realclean action, you are essentially starting over, so you will

have to re-create the Build script again.

retest

[version 0.2806]

This is just like the test action, but doesn't actually build the
 distribution first, and doesn't add
blib/ to the load path, and
 therefore will test against a previously installed version of the

distribution. This can be used to verify that a certain installed
 distribution still works, or to see
whether newer versions of a
 distribution still pass the old regression tests, and so on.

skipcheck

[version 0.05]

Reports which files are skipped due to the entries in the MANIFEST.SKIP file (See manifest
for details)

test

[version 0.01]

This will use Test::Harness or TAP::Harness to run any regression
 tests and report their
results. Tests can be defined in the standard
 places: a file called test.pl in the top-level
directory, or several
 files ending with .t in a t/ directory.

If you want tests to be 'verbose', i.e. show details of test execution
 rather than just summary
information, pass the argument verbose=1.

If you want to run tests under the perl debugger, pass the argument debugger=1.

If you want to have Module::Build find test files with different file
 name extensions, pass the
test_file_exts argument with an array
 of extensions, such as [qw(.t .s .z)].

If you want test to be run by TAP::Harness, rather than Test::Harness,
 pass the
argument tap_harness_args as an array reference of arguments to
 pass to the
TAP::Harness constructor.

Perl version 5.12.1 documentation - Module::Build

Page 7http://perldoc.perl.org

In addition, if a file called visual.pl exists in the top-level
 directory, this file will be executed
as a Perl script and its output
 will be shown to the user. This is a good place to put speed tests
or
 other tests that don't use the Test::Harness format for output.

To override the choice of tests to run, you may pass a test_files
 argument whose value is
a whitespace-separated list of test scripts to
 run. This is especially useful in development,
when you only want to
 run a single test to see whether you've squashed a certain bug yet:

 ./Build test --test_files t/something_failing.t

You may also pass several test_files arguments separately:

 ./Build test --test_files t/one.t --test_files t/two.t

or use a glob()-style pattern:

 ./Build test --test_files 't/01-*.t'

testall

[version 0.2807]

[Note: the 'testall' action and the code snippets below are currently
 in alpha stage, see
http://www.nntp.perl.org/group/perl.module.build/2007/03/msg584.html]

Runs the test action plus each of the test$type actions defined by
 the keys of the
test_types parameter.

Currently, you need to define the ACTION_test$type method yourself and
 enumerate them in
the test_types parameter.

 my $mb = Module::Build->subclass(
 code => q(
 sub ACTION_testspecial { shift->generic_test(type =>
'special'); }
 sub ACTION_testauthor { shift->generic_test(type => 'author');
 }
)
)->new(
 ...
 test_types => {
 special => '.st',
 author => ['.at', '.pt'],
 },
 ...

testcover

[version 0.26]

Runs the test action using Devel::Cover, generating a
 code-coverage report showing
which parts of the code were actually
 exercised during the tests.

To pass options to Devel::Cover, set the $DEVEL_COVER_OPTIONS
 environment variable:

 DEVEL_COVER_OPTIONS=-ignore,Build ./Build testcover

testdb

[version 0.05]

This is a synonym for the 'test' action with the debugger=1
 argument.

testpod

[version 0.25]

Perl version 5.12.1 documentation - Module::Build

Page 8http://perldoc.perl.org

This checks all the files described in the docs action and
 produces Test::Harness-style
output. If you are a module author,
 this is useful to run before creating a new release.

testpodcoverage

[version 0.28]

This checks the pod coverage of the distribution and
 produces Test::Harness-style output.
If you are a module author,
 this is useful to run before creating a new release.

versioninstall

[version 0.16]

** Note: since only.pm is so new, and since we just recently added
 support for it here too,
this feature is to be considered
 experimental. **

If you have the only.pm module installed on your system, you can
 use this action to install a
module into the version-specific library
 trees. This means that you can have several versions
of the same
 module installed and use a specific one like this:

 use only MyModule => 0.55;

To override the default installation libraries in only::config,
 specify the versionlib
parameter when you run the Build.PL script:

 perl Build.PL --versionlib /my/version/place/

To override which version the module is installed as, specify the versionlib parameter
when you run the Build.PL script:

 perl Build.PL --version 0.50

See the only.pm documentation for more information on
 version-specific installs.

OPTIONS
Command Line Options

The following options can be used during any invocation of Build.PL
 or the Build script, during any
action. For information on other
 options specific to an action, see the documentation for the
 respective
action.

NOTE: There is some preliminary support for options to use the more
 familiar long option style. Most
options can be preceded with the -- long option prefix, and the underscores changed to dashes
 (e.g.
--use-rcfile). Additionally, the argument to boolean options is
 optional, and boolean options can
be negated by prefixing them with no or no- (e.g. --noverbose or --no-verbose).

quiet

Suppress informative messages on output.

verbose

Display extra information about the Build on output.

cpan_client

Sets the cpan_client command for use with the installdeps action.
 See installdeps
for more details.

use_rcfile

Load the ~/.modulebuildrc option file. This option can be set to
 false to prevent the custom
resource file from being loaded.

allow_mb_mismatch

Suppresses the check upon startup that the version of Module::Build
 we're now running under

Perl version 5.12.1 documentation - Module::Build

Page 9http://perldoc.perl.org

is the same version that was initially invoked
 when building the distribution (i.e. when the
Build.PL script was
 first run). As of 0.3601, a mismatch results in a warning instead of
 a
fatal error, so this option effectively just suppresses the warning.

debug

Prints Module::Build debugging information to STDOUT, such as a trace of
 executed build
actions.

Default Options File (.modulebuildrc)
[version 0.28]

When Module::Build starts up, it will look first for a file, $ENV{HOME}/.modulebuildrc. If it's not found
there, it will look
 in the the .modulebuildrc file in the directories referred to by
 the environment
variables HOMEDRIVE + HOMEDIR, USERPROFILE, APPDATA, WINDIR, SYS$LOGIN. If the file exists,
the options
 specified there will be used as defaults, as if they were typed on the
 command line. The
defaults can be overridden by specifying new values
 on the command line.

The action name must come at the beginning of the line, followed by any
 amount of whitespace and
then the options. Options are given the same
 as they would be on the command line. They can be
separated by any
 amount of whitespace, including newlines, as long there is whitespace at
 the
beginning of each continued line. Anything following a hash mark (#)
 is considered a comment, and is
stripped before parsing. If more than
 one line begins with the same action name, those lines are
merged into
 one set of options.

Besides the regular actions, there are two special pseudo-actions: the
 key * (asterisk) denotes any
global options that should be applied
 to all actions, and the key 'Build_PL' specifies options to be
applied
 when you invoke perl Build.PL.

 * verbose=1 # global options
 diff flags=-u
 install --install_base /home/ken
 --install_path html=/home/ken/docs/html
 installdeps --cpan_client 'cpanp -i'

If you wish to locate your resource file in a different location, you
 can set the environment variable
MODULEBUILDRC to the complete
 absolute path of the file containing your options.

Environment variables
MODULEBUILDRC

[version 0.28]

Specifies an alternate location for a default options file as described above.

PERL_MB_OPT

[version 0.36]

Command line options that are applied to Build.PL or any Build action. The
 string is split as
the shell would (e.g. whitespace) and the result is
 prepended to any actual command-line
arguments.

INSTALL PATHS
[version 0.19]

When you invoke Module::Build's build action, it needs to figure
 out where to install things. The
nutshell version of how this works
 is that default installation locations are determined from Config.pm,
and they may be overridden by using the install_path
 parameter. An install_base parameter
lets you specify an
 alternative installation root like /home/foo, and a destdir lets
 you specify a
temporary installation directory like /tmp/install in
 case you want to create bundled-up installable

Perl version 5.12.1 documentation - Module::Build

Page 10http://perldoc.perl.org

packages.Natively, Module::Build provides default installation locations for
 the following types of
installable items:

lib

Usually pure-Perl module files ending in .pm.

arch

"Architecture-dependent" module files, usually produced by compiling
 XS, Inline, or similar
code.

script

Programs written in pure Perl. In order to improve reuse, try to make
 these as small as
possible - put the code into modules whenever
 possible.

bin

"Architecture-dependent" executable programs, i.e. compiled C code or
 something. Pretty rare
to see this in a perl distribution, but it
 happens.

bindoc

Documentation for the stuff in script and bin. Usually
 generated from the POD in those
files. Under Unix, these are manual
 pages belonging to the 'man1' category.

libdoc

Documentation for the stuff in lib and arch. This is usually
 generated from the POD in .pm
files. Under Unix, these are manual
 pages belonging to the 'man3' category.

binhtml

This is the same as bindoc above, but applies to HTML documents.

libhtml

This is the same as bindoc above, but applies to HTML documents.

Four other parameters let you control various aspects of how
 installation paths are determined:

installdirs

The default destinations for these installable things come from
 entries in your system's
Config.pm. You can select from three
 different sets of default locations by setting the
installdirs
 parameter as follows:

 'installdirs' set to:
 core site vendor

 uses the following defaults from Config.pm:

 lib => installprivlib installsitelib installvendorlib
 arch => installarchlib installsitearch installvendorarch
 script => installscript installsitebin installvendorbin
 bin => installbin installsitebin installvendorbin
 bindoc => installman1dir installsiteman1dir installvendorman1dir
 libdoc => installman3dir installsiteman3dir installvendorman3dir
 binhtml => installhtml1dir installsitehtml1dir
installvendorhtml1dir [*]
 libhtml => installhtml3dir installsitehtml3dir
installvendorhtml3dir [*]

 * Under some OS (eg. MSWin32) the destination for HTML documents is
 determined by the C<Config.pm> entry C<installhtmldir>.

Perl version 5.12.1 documentation - Module::Build

Page 11http://perldoc.perl.org

The default value of installdirs is "site". If you're creating
 vendor distributions of module
packages, you may want to do something
 like this:

 perl Build.PL --installdirs vendor

or

 ./Build install --installdirs vendor

If you're installing an updated version of a module that was included
 with perl itself (i.e. a "core
module"), then you may set installdirs to "core" to overwrite the module in its present

location.

(Note that the 'script' line is different from MakeMaker -
 unfortunately there's no such thing as
"installsitescript" or
 "installvendorscript" entry in Config.pm, so we use the
 "installsitebin" and
"installvendorbin" entries to at least get the
 general location right. In the future, if Config.pm
adds some more
 appropriate entries, we'll start using those.)

install_path

Once the defaults have been set, you can override them.

On the command line, that would look like this:

 perl Build.PL --install_path lib=/foo/lib --install_path
arch=/foo/lib/arch

or this:

 ./Build install --install_path lib=/foo/lib --install_path
arch=/foo/lib/arch

install_base

You can also set the whole bunch of installation paths by supplying the install_base
parameter to point to a directory on your system. For
 instance, if you set install_base to
"/home/ken" on a Linux
 system, you'll install as follows:

 lib => /home/ken/lib/perl5
 arch => /home/ken/lib/perl5/i386-linux
 script => /home/ken/bin
 bin => /home/ken/bin
 bindoc => /home/ken/man/man1
 libdoc => /home/ken/man/man3
 binhtml => /home/ken/html
 libhtml => /home/ken/html

Note that this is different from how MakeMaker's PREFIX
 parameter works. install_base
just gives you a default layout under the
 directory you specify, which may have little to do with
the installdirs=site layout.

The exact layout under the directory you specify may vary by system -
 we try to do the
"sensible" thing on each platform.

destdir

If you want to install everything into a temporary directory first
 (for instance, if you want to
create a directory tree that a package
 manager like rpm or dpkg could create a package
from), you can
 use the destdir parameter:

 perl Build.PL --destdir /tmp/foo

or

 ./Build install --destdir /tmp/foo

Perl version 5.12.1 documentation - Module::Build

Page 12http://perldoc.perl.org

This will effectively install to "/tmp/foo/$sitelib",
 "/tmp/foo/$sitearch", and the like, except that it
will use File::Spec to make the pathnames work correctly on whatever
 platform you're
installing on.

prefix

Provided for compatibility with ExtUtils::MakeMaker's PREFIX argument. prefix should
be used when you wish Module::Build to install your
 modules, documentation and scripts in
the same place ExtUtils::MakeMaker does.

The following are equivalent.

 perl Build.PL --prefix /tmp/foo
 perl Makefile.PL PREFIX=/tmp/foo

Because of the very complex nature of the prefixification logic, the
 behavior of PREFIX in
MakeMaker has changed subtly over time.
 Module::Build's --prefix logic is equivalent to the
PREFIX logic found
 in ExtUtils::MakeMaker 6.30.

If you do not need to retain compatibility with ExtUtils::MakeMaker or
 are starting a fresh
Perl installation we recommend you use install_base instead (and INSTALL_BASE in
ExtUtils::MakeMaker).
 See "Instaling in the same location as ExtUtils::MakeMaker" in
Module::Build::Cookbook for further information.

MOTIVATIONS
There are several reasons I wanted to start over, and not just fix
 what I didn't like about MakeMaker:

I don't like the core idea of MakeMaker, namely that make should be
 involved in the build
process. Here are my reasons:

+

When a person is installing a Perl module, what can you assume about
 their
environment? Can you assume they have make? No, but you can
 assume they have
some version of Perl.

+

When a person is writing a Perl module for intended distribution, can
 you assume that
they know how to build a Makefile, so they can
 customize their build process? No, but
you can assume they know Perl,
 and could customize that way.

For years, these things have been a barrier to people getting the
 build/install process to do
what they want.

There are several architectural decisions in MakeMaker that make it
 very difficult to customize
its behavior. For instance, when using MakeMaker you do use ExtUtils::MakeMaker, but
the object created in WriteMakefile() is actually blessed into a package name that's

created on the fly, so you can't simply subclass ExtUtils::MakeMaker. There is a
workaround MY package that lets
 you override certain MakeMaker methods, but only certain
explicitly
 preselected (by MakeMaker) methods can be overridden. Also, the method
 of
customization is very crude: you have to modify a string containing
 the Makefile text for the
particular target. Since these strings
 aren't documented, and can't be documented (they take
on different
 values depending on the platform, version of perl, version of MakeMaker, etc.),
you have no guarantee that your modifications will
 work on someone else's machine or after
an upgrade of MakeMaker or
 perl.

It is risky to make major changes to MakeMaker, since it does so many
 things, is so
important, and generally works. Module::Build is an
 entirely separate package so that I
can work on it all I want, without
 worrying about backward compatibility.

Finally, Perl is said to be a language for system administration.
 Could it really be the case that
Perl isn't up to the task of building
 and installing software? Even if that software is a bunch of

Perl version 5.12.1 documentation - Module::Build

Page 13http://perldoc.perl.org

stupid
 little .pm files that just need to be copied from one place to
 another? My sense was that
we could design a system to accomplish
 this in a flexible, extensible, and friendly manner. Or
die trying.

TO DO
The current method of relying on time stamps to determine whether a
 derived file is out of date isn't
likely to scale well, since it
 requires tracing all dependencies backward, it runs into problems on
 NFS,
and it's just generally flimsy. It would be better to use an MD5
 signature or the like, if available. See
cons for an example.

 - append to perllocal.pod
 - add a 'plugin' functionality

AUTHOR
Ken Williams <kwilliams@cpan.org>

Development questions, bug reports, and patches should be sent to the
 Module-Build mailing list at
<module-build@perl.org>.

Bug reports are also welcome at
 <http://rt.cpan.org/NoAuth/Bugs.html?Dist=Module-Build>.

The latest development version is available from the Subversion
 repository at
<https://svn.perl.org/modules/Module-Build/trunk/>

COPYRIGHT
Copyright (c) 2001-2006 Ken Williams. All rights reserved.

This library is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

SEE ALSO
perl(1), Module::Build::Cookbook, Module::Build::Authoring, Module::Build::API, ExtUtils::MakeMaker,
YAML::Tiny

META.yml Specification: http://module-build.sourceforge.net/META-spec-current.html

http://www.dsmit.com/cons/

http://search.cpan.org/dist/PerlBuildSystem/

