
Perl version 5.12.1 documentation - CPAN

Page 1http://perldoc.perl.org

NAME
CPAN - query, download and build perl modules from CPAN sites

SYNOPSIS
Interactive mode:

 perl -MCPAN -e shell

--or--

 cpan

Basic commands:

 # Modules:

 cpan> install Acme::Meta # in the shell

 CPAN::Shell->install("Acme::Meta"); # in perl

 # Distributions:

 cpan> install NWCLARK/Acme-Meta-0.02.tar.gz # in the shell

 CPAN::Shell->
 install("NWCLARK/Acme-Meta-0.02.tar.gz"); # in perl

 # module objects:

 $mo = CPAN::Shell->expandany($mod);
 $mo = CPAN::Shell->expand("Module",$mod); # same thing

 # distribution objects:

 $do = CPAN::Shell->expand("Module",$mod)->distribution;
 $do = CPAN::Shell->expandany($distro); # same thing
 $do = CPAN::Shell->expand("Distribution",
 $distro); # same thing

DESCRIPTION
The CPAN module automates or at least simplifies the make and install
 of perl modules and
extensions. It includes some primitive searching
 capabilities and knows how to use Net::FTP, LWP,
and certain external
 download clients to fetch distributions from the net.

These are fetched from one or more mirrored CPAN (Comprehensive
 Perl Archive Network) sites and
unpacked in a dedicated directory.

The CPAN module also supports named and versioned bundles of modules. Bundles simplify
handling of sets of
 related modules. See Bundles below.

The package contains a session manager and a cache manager. The
 session manager keeps track
of what has been fetched, built, and
 installed in the current session. The cache manager keeps track
of the
 disk space occupied by the make processes and deletes excess space
 using a simple FIFO

Perl version 5.12.1 documentation - CPAN

Page 2http://perldoc.perl.org

mechanism.All methods provided are accessible in a programmer style and in an
 interactive shell
style.

CPAN::shell([$prompt, $command]) Starting Interactive Mode
Enter interactive mode by running

 perl -MCPAN -e shell

or

 cpan

which puts you into a readline interface. If Term::ReadKey and
 either of Term::ReadLine::Perl
or Term::ReadLine::Gnu are installed,
 history and command completion are supported.

Once at the command line, type h for one-page help
 screen; the rest should be self-explanatory.

The function call shell takes two optional arguments: one the
 prompt, the second the default initial
command line (the latter
 only works if a real ReadLine interface module is installed).

The most common uses of the interactive modes are

Searching for authors, bundles, distribution files and modules

There are corresponding one-letter commands a, b, d, and m
 for each of the four categories and
another, i for any of the
 mentioned four. Each of the four entities is implemented as a class
 with
slightly differing methods for displaying an object.

Arguments to these commands are either strings exactly matching
 the identification string of an
object, or regular expressions matched case-insensitively against various attributes of the
 objects.
The parser only recognizes a regular expression when you
 enclose it with slashes.

The principle is that the number of objects found influences how an
 item is displayed. If the search
finds one item, the result is
 displayed with the rather verbose method as_string, but if more
than one is found, each object is displayed with the terse method as_glimpse.

Examples:

 cpan> m Acme::MetaSyntactic
 Module id = Acme::MetaSyntactic
 CPAN_USERID BOOK (Philippe Bruhat (BooK) <[...]>)
 CPAN_VERSION 0.99
 CPAN_FILE B/BO/BOOK/Acme-MetaSyntactic-0.99.tar.gz
 UPLOAD_DATE 2006-11-06
 MANPAGE Acme::MetaSyntactic - Themed metasyntactic variables
names
 INST_FILE /usr/local/lib/perl/5.10.0/Acme/MetaSyntactic.pm
 INST_VERSION 0.99
 cpan> a BOOK
 Author id = BOOK
 EMAIL [...]
 FULLNAME Philippe Bruhat (BooK)
 cpan> d BOOK/Acme-MetaSyntactic-0.99.tar.gz
 Distribution id = B/BO/BOOK/Acme-MetaSyntactic-0.99.tar.gz
 CPAN_USERID BOOK (Philippe Bruhat (BooK) <[...]>)
 CONTAINSMODS Acme::MetaSyntactic Acme::MetaSyntactic::Alias [...]
 UPLOAD_DATE 2006-11-06
 cpan> m /lorem/
 Module = Acme::MetaSyntactic::loremipsum
(BOOK/Acme-MetaSyntactic-0.99.tar.gz)
 Module Text::Lorem (ADEOLA/Text-Lorem-0.3.tar.gz)

Perl version 5.12.1 documentation - CPAN

Page 3http://perldoc.perl.org

 Module Text::Lorem::More (RKRIMEN/Text-Lorem-More-0.12.tar.gz)
 Module Text::Lorem::More::Source
(RKRIMEN/Text-Lorem-More-0.12.tar.gz)
 cpan> i /berlin/
 Distribution BEATNIK/Filter-NumberLines-0.02.tar.gz
 Module = DateTime::TimeZone::Europe::Berlin
(DROLSKY/DateTime-TimeZone-0.7904.tar.gz)
 Module Filter::NumberLines
(BEATNIK/Filter-NumberLines-0.02.tar.gz)
 Author [...]

The examples illustrate several aspects: the first three queries
 target modules, authors, or distros
directly and yield exactly one
 result. The last two use regular expressions and yield several

results. The last one targets all of bundles, modules, authors, and
 distros simultaneously. When
more than one result is available, they
 are printed in one-line format.

get, make, test, install, clean modules or distributions

These commands take any number of arguments and investigate what is
 necessary to perform
the action. Argument processing is as follows:

 known module name in format Foo/Bar.pm module
 other embedded slash distribution
 - with trailing slash dot directory
 enclosing slashes regexp
 known module name in format Foo::Bar module

If the argument is a distribution file name (recognized by embedded
 slashes), it is processed. If it
is a module, CPAN determines the
 distribution file in which this module is included and processes
that,
 following any dependencies named in the module's META.yml or
 Makefile.PL (this behavior
is controlled by the configuration
 parameter prerequisites_policy). If an argument is
enclosed in
 slashes it is treated as a regular expression: it is expanded and if
 the result is a single
object (distribution, bundle or module), this
 object is processed.

Example:

 install Dummy::Perl # installs the module
 install AUXXX/Dummy-Perl-3.14.tar.gz # installs that distribution
 install /Dummy-Perl-3.14/ # same if the regexp is
unambiguous

get downloads a distribution file and untars or unzips it, make
 builds it, test runs the test suite,
and install installs it.

Any make or test is run unconditionally. An

 install <distribution_file>

is also run unconditionally. But for

 install <module>

CPAN checks whether an install is needed and prints module up to date if the distribution file
containing
 the module doesn't need updating.

CPAN also keeps track of what it has done within the current session
 and doesn't try to build a
package a second time regardless of whether it
 succeeded or not. It does not repeat a test run if
the test
 has been run successfully before. Same for install runs.

The force pragma may precede another command (currently: get, make, test, or install) to
execute the command from scratch
 and attempt to continue past certain errors. See the section
below on
 the force and the fforce pragma.

Perl version 5.12.1 documentation - CPAN

Page 4http://perldoc.perl.org

The notest pragma skips the test part in the build
 process.

Example:

 cpan> notest install Tk

A clean command results in a

 make clean

being executed within the distribution file's working directory.

readme, perldoc, look module or distribution

readme displays the README file of the associated distribution. Look gets and untars (if not yet
done) the distribution file,
 changes to the appropriate directory and opens a subshell process in

that directory. perldoc displays the module's pod documentation in html or plain text format.

ls author

ls globbing_expression

The first form lists all distribution files in and below an author's
 CPAN directory as stored in the
CHECKUMS files distributed on
 CPAN. The listing recurses into subdirectories.

The second form limits or expands the output with shell
 globbing as in the following examples:

 ls JV/make*
 ls GSAR/*make*
 ls */*make*

The last example is very slow and outputs extra progress indicators
 that break the alignment of
the result.

Note that globbing only lists directories explicitly asked for, for
 example FOO/* will not list
FOO/bar/Acme-Sthg-n.nn.tar.gz. This may be
 regarded as a bug that may be changed in some
future version.

failed

The failed command reports all distributions that failed on one of make, test or install for
some reason in the currently
 running shell session.

Persistence between sessions

If the YAML or the YAML::Syck module is installed a record of
 the internal state of all modules is
written to disk after each step.
 The files contain a signature of the currently running perl version

for later perusal.

If the configurations variable build_dir_reuse is set to a true
 value, then CPAN.pm reads the
collected YAML files. If the stored
 signature matches the currently running perl, the stored state is

loaded into memory such that persistence between sessions
 is effectively established.

The force and the fforce pragma

To speed things up in complex installation scenarios, CPAN.pm keeps
 track of what it has already
done and refuses to do some things a
 second time. A get, a make, and an install are not
repeated.
 A test is repeated only if the previous test was unsuccessful. The
 diagnostic message
when CPAN.pm refuses to do something a second time
 is one of Has already been
unwrapped|made|tested successfully or
 something similar. Another situation where
CPAN refuses to act is an install if the corresponding test was not successful.

In all these cases, the user can override this stubborn behaviour by
 prepending the command with
the word force, for example:

 cpan> force get Foo
 cpan> force make AUTHOR/Bar-3.14.tar.gz
 cpan> force test Baz

Perl version 5.12.1 documentation - CPAN

Page 5http://perldoc.perl.org

 cpan> force install Acme::Meta

Each forced command is executed with the corresponding part of its
 memory erased.

The fforce pragma is a variant that emulates a force get which
 erases the entire memory
followed by the action specified, effectively
 restarting the whole get/make/test/install procedure
from scratch.

Lockfile

Interactive sessions maintain a lockfile, by default ~/.cpan/.lock.
 Batch jobs can run without a
lockfile and not disturb each other.

The shell offers to run in downgraded mode when another process is
 holding the lockfile. This is
an experimental feature that is not yet
 tested very well. This second shell then does not write the
history
 file, does not use the metadata file, and has a different prompt.

Signals

CPAN.pm installs signal handlers for SIGINT and SIGTERM. While you are
 in the cpan-shell, it is
intended that you can press ^C anytime and
 return to the cpan-shell prompt. A SIGTERM will
cause the cpan-shell
 to clean up and leave the shell loop. You can emulate the effect of a

SIGTERM by sending two consecutive SIGINTs, which usually means by
 pressing ^C twice.

CPAN.pm ignores SIGPIPE. If the user sets inactivity_timeout, a
 SIGALRM is used during
the run of the perl Makefile.PL or perl
 Build.PL subprocess. A SIGALRM is also used
during module version
 parsing, and is controlled by version_timeout.

CPAN::Shell
The commands available in the shell interface are methods in
 the package CPAN::Shell. If you enter
the shell command, your
 input is split by the Text::ParseWords::shellwords() routine, which
 acts like
most shells do. The first word is interpreted as the
 method to be invoked, and the rest of the words
are treated as the method's arguments.
 Continuation lines are supported by ending a line with a
 literal
backslash.

autobundle
autobundle writes a bundle file into the $CPAN::Config->{cpan_home}/Bundle directory. The
file contains
 a list of all modules that are both available from CPAN and currently
 installed within
@INC. The name of the bundle file is based on the
 current date and a counter.

hosts
Note: this feature is still in alpha state and may change in future
 versions of CPAN.pm

This commands provides a statistical overview over recent download
 activities. The data for this is
collected in the YAML file FTPstats.yml in your cpan_home directory. If no YAML module is

configured or YAML not installed, no stats are provided.

mkmyconfig
mkmyconfig() writes your own CPAN::MyConfig file into your ~/.cpan/
 directory so that you can
save your own preferences instead of the
 system-wide ones.

recent ***EXPERIMENTAL COMMAND***
The recent command downloads a list of recent uploads to CPAN and
 displays them slowly. While
the command is running, a $SIG{INT} exits the loop after displaying the current item.

Note: This command requires XML::LibXML installed.

Note: This whole command currently is just a hack and will
 probably change in future versions of
CPAN.pm, but the general
 approach will likely remain.

Note: See also smoke

Perl version 5.12.1 documentation - CPAN

Page 6http://perldoc.perl.org

recompile
recompile() is a special command that takes no argument and
 runs the make/test/install cycle with
brute force over all installed
 dynamically loadable extensions (aka XS modules) with 'force' in
 effect.
The primary purpose of this command is to finish a network
 installation. Imagine you have a common
source tree for two different
 architectures. You decide to do a completely independent fresh

installation. You start on one architecture with the help of a Bundle
 file produced earlier. CPAN installs
the whole Bundle for you, but
 when you try to repeat the job on the second architecture, CPAN

responds with a "Foo up to date" message for all modules. So you
 invoke CPAN's recompile on
the second architecture and you're done.

Another popular use for recompile is to act as a rescue in case your
 perl breaks binary
compatibility. If one of the modules that CPAN uses
 is in turn depending on binary compatibility (so
you cannot run CPAN
 commands), then you should try the CPAN::Nox module for recovery.

report Bundle|Distribution|Module
The report command temporarily turns on the test_report config
 variable, then runs the force
test command with the given
 arguments. The force pragma reruns the tests and repeats
 every
step that might have failed before.

smoke ***EXPERIMENTAL COMMAND***
*** WARNING: this command downloads and executes software from CPAN to
 your computer
of completely unknown status. You should never do
 this with your normal account and better
have a dedicated well
 separated and secured machine to do this. ***

The smoke command takes the list of recent uploads to CPAN as
 provided by the recent command
and tests them all. While the
 command is running $SIG{INT} is defined to mean that the current item

shall be skipped.

Note: This whole command currently is just a hack and will
 probably change in future versions of
CPAN.pm, but the general
 approach will likely remain.

Note: See also recent

upgrade [Module|/Regex/]...
The upgrade command first runs an r command with the given
 arguments and then installs the
newest versions of all modules that
 were listed by that.

The four CPAN::* Classes: Author, Bundle, Module, Distribution
Although it may be considered internal, the class hierarchy does matter
 for both users and
programmer. CPAN.pm deals with the four
 classes mentioned above, and those classes all share a
set of methods. Classical
 single polymorphism is in effect. A metaclass object registers all
 objects of
all kinds and indexes them with a string. The strings
 referencing objects have a separated namespace
(well, not completely
 separated):

 Namespace Class

 words containing a "/" (slash) Distribution
 words starting with Bundle:: Bundle
 everything else Module or Author

Modules know their associated Distribution objects. They always refer
 to the most recent official
release. Developers may mark their releases
 as unstable development versions (by inserting an
underbar into the
 module version number which will also be reflected in the distribution
 name when
you run 'make dist'), so the really hottest and newest
 distribution is not always the default. If a module
Foo circulates
 on CPAN in both version 1.23 and 1.23_90, CPAN.pm offers a convenient
 way to
install version 1.23 by saying

Perl version 5.12.1 documentation - CPAN

Page 7http://perldoc.perl.org

 install Foo

This would install the complete distribution file (say
 BAR/Foo-1.23.tar.gz) with all accompanying
material. But if you would
 like to install version 1.23_90, you need to know where the
 distribution file
resides on CPAN relative to the authors/id/
 directory. If the author is BAR, this might be
BAR/Foo-1.23_90.tar.gz;
 so you would have to say

 install BAR/Foo-1.23_90.tar.gz

The first example will be driven by an object of the class
 CPAN::Module, the second by an object of
class CPAN::Distribution.

Integrating local directories
Note: this feature is still in alpha state and may change in future
 versions of CPAN.pm

Distribution objects are normally distributions from the CPAN, but
 there is a slightly degenerate case
for Distribution objects, too, of
 projects held on the local disk. These distribution objects have the

same name as the local directory and end with a dot. A dot by itself
 is also allowed for the current
directory at the time CPAN.pm was
 used. All actions such as make, test, and install are applied

directly to that directory. This gives the command cpan . an
 interesting touch: while the normal
mantra of installing a CPAN module
 without CPAN.pm is one of

 perl Makefile.PL perl Build.PL
 (go and get prerequisites)
 make ./Build
 make test ./Build test
 make install ./Build install

the command cpan . does all of this at once. It figures out which
 of the two mantras is appropriate,
fetches and installs all
 prerequisites, takes care of them recursively, and finally finishes the
 installation
of the module in the current directory, be it a CPAN
 module or not.

The typical usage case is for private modules or working copies of
 projects from remote repositories
on the local disk.

Redirection
The usual shell redirection symbols | and > are recognized
 by the cpan shell only when
surrounded by whitespace. So piping to
 pager or redirecting output into a file works somewhat as in
a normal
 shell, with the stipulation that you must type extra spaces.

CONFIGURATION
When the CPAN module is used for the first time, a configuration
 dialogue tries to determine a couple
of site specific options. The
 result of the dialog is stored in a hash reference $CPAN::Config
 in a
file CPAN/Config.pm.

Default values defined in the CPAN/Config.pm file can be
 overridden in a user specific file:
CPAN/MyConfig.pm. Such a file is
 best placed in $HOME/.cpan/CPAN/MyConfig.pm, because
$HOME/.cpan is
 added to the search path of the CPAN module before the use() or
 require()
statements. The mkmyconfig command writes this file for you.

The o conf command has various bells and whistles:

completion support

If you have a ReadLine module installed, you can hit TAB at any point
 of the commandline
and o conf will offer you completion for the
 built-in subcommands and/or config variable
names.

Perl version 5.12.1 documentation - CPAN

Page 8http://perldoc.perl.org

displaying some help: o conf help

Displays a short help

displaying current values: o conf [KEY]

Displays the current value(s) for this config variable. Without KEY,
 displays all subcommands
and config variables.

Example:

 o conf shell

If KEY starts and ends with a slash, the string in between is
 treated as a regular expression
and only keys matching this regex
 are displayed

Example:

 o conf /color/

changing of scalar values: o conf KEY VALUE

Sets the config variable KEY to VALUE. The empty string can be
 specified as usual in shells,
with '' or ""

Example:

 o conf wget /usr/bin/wget

changing of list values: o conf KEY SHIFT|UNSHIFT|PUSH|POP|SPLICE|LIST

If a config variable name ends with list, it is a list. o conf
 KEY shift removes the first
element of the list, o conf KEY pop
 removes the last element of the list. o conf KEYS
unshift LIST
 prepends a list of values to the list, o conf KEYS push LIST
 appends a
list of valued to the list.

Likewise, o conf KEY splice LIST passes the LIST to the corresponding
 splice
command.

Finally, any other list of arguments is taken as a new list value for
 the KEY variable discarding
the previous value.

Examples:

 o conf urllist unshift http://cpan.dev.local/CPAN
 o conf urllist splice 3 1
 o conf urllist http://cpan1.local http://cpan2.local
ftp://ftp.perl.org

reverting to saved: o conf defaults

Reverts all config variables to the state in the saved config file.

saving the config: o conf commit

Saves all config variables to the current config file (CPAN/Config.pm
 or CPAN/MyConfig.pm
that was loaded at start).

The configuration dialog can be started any time later again by
 issuing the command o conf init
 in the CPAN shell. A subset of
 the configuration dialog can be run by issuing o conf init WORD

where WORD is any valid config variable or a regular expression.

Config Variables
The following keys in the hash reference $CPAN::Config are
 currently defined:

 applypatch path to external prg
 auto_commit commit all changes to config variables to disk

Perl version 5.12.1 documentation - CPAN

Page 9http://perldoc.perl.org

 build_cache size of cache for directories to build modules
 build_dir locally accessible directory to build modules
 build_dir_reuse boolean if distros in build_dir are persistent
 build_requires_install_policy
 to install or not to install when a module is
 only needed for building. yes|no|ask/yes|ask/no
 bzip2 path to external prg
 cache_metadata use serializer to cache metadata
 check_sigs if signatures should be verified
 colorize_debug Term::ANSIColor attributes for debugging output
 colorize_output boolean if Term::ANSIColor should colorize output
 colorize_print Term::ANSIColor attributes for normal output
 colorize_warn Term::ANSIColor attributes for warnings
 commandnumber_in_prompt
 boolean if you want to see current command number
 commands_quote preferred character to use for quoting external
 commands when running them. Defaults to double
 quote on Windows, single tick everywhere else;
 can be set to space to disable quoting
 connect_to_internet_ok
 whether to ask if opening a connection is ok before
 urllist is specified
 cpan_home local directory reserved for this package
 curl path to external prg
 dontload_hash DEPRECATED
 dontload_list arrayref: modules in the list will not be
 loaded by the CPAN::has_inst() routine
 ftp path to external prg
 ftp_passive if set, the envariable FTP_PASSIVE is set for
downloads
 ftp_proxy proxy host for ftp requests
 ftpstats_period max number of days to keep download statistics
 ftpstats_size max number of items to keep in the download statistics
 getcwd see below
 gpg path to external prg
 gzip location of external program gzip
 halt_on_failure stop processing after the first failure of queued
 items or dependencies
 histfile file to maintain history between sessions
 histsize maximum number of lines to keep in histfile
 http_proxy proxy host for http requests
 inactivity_timeout breaks interactive Makefile.PLs or Build.PLs
 after this many seconds inactivity. Set to 0 to
 disable timeouts.
 index_expire refetch index files after this many days
 inhibit_startup_message
 if true, suppress the startup message
 keep_source_where directory in which to keep the source (if we do)
 load_module_verbosity
 report loading of optional modules used by CPAN.pm
 lynx path to external prg
 make location of external make program
 make_arg arguments that should always be passed to 'make'
 make_install_make_command
 the make command for running 'make install', for
 example 'sudo make'

Perl version 5.12.1 documentation - CPAN

Page 10http://perldoc.perl.org

 make_install_arg same as make_arg for 'make install'
 makepl_arg arguments passed to 'perl Makefile.PL'
 mbuild_arg arguments passed to './Build'
 mbuild_install_arg arguments passed to './Build install'
 mbuild_install_build_command
 command to use instead of './Build' when we are
 in the install stage, for example 'sudo ./Build'
 mbuildpl_arg arguments passed to 'perl Build.PL'
 ncftp path to external prg
 ncftpget path to external prg
 no_proxy don't proxy to these hosts/domains (comma separated
list)
 pager location of external program more (or any pager)
 password your password if you CPAN server wants one
 patch path to external prg
 patches_dir local directory containing patch files
 perl5lib_verbosity verbosity level for PERL5LIB additions
 prefer_installer legal values are MB and EUMM: if a module comes
 with both a Makefile.PL and a Build.PL, use the
 former (EUMM) or the latter (MB); if the module
 comes with only one of the two, that one will be
 used no matter the setting
 prerequisites_policy
 what to do if you are missing module prerequisites
 ('follow' automatically, 'ask' me, or 'ignore')
 For 'follow', also sets PERL_AUTOINSTALL and
 PERL_EXTUTILS_AUTOINSTALL for "--defaultdeps" if
 not already set
 prefs_dir local directory to store per-distro build options
 proxy_user username for accessing an authenticating proxy
 proxy_pass password for accessing an authenticating proxy
 randomize_urllist add some randomness to the sequence of the urllist
 scan_cache controls scanning of cache ('atstart' or 'never')
 shell your favorite shell
 show_unparsable_versions
 boolean if r command tells which modules are
versionless
 show_upload_date boolean if commands should try to determine upload
date
 show_zero_versions boolean if r command tells for which modules
$version==0
 tar location of external program tar
 tar_verbosity verbosity level for the tar command
 term_is_latin deprecated: if true Unicode is translated to
ISO-8859-1
 (and nonsense for characters outside latin range)
 term_ornaments boolean to turn ReadLine ornamenting on/off
 test_report email test reports (if CPAN::Reporter is installed)
 trust_test_report_history
 skip testing when previously tested ok (according to
 CPAN::Reporter history)
 unzip location of external program unzip
 urllist arrayref to nearby CPAN sites (or equivalent
locations)
 use_sqlite use CPAN::SQLite for metadata storage (fast and lean)
 username your username if you CPAN server wants one

Perl version 5.12.1 documentation - CPAN

Page 11http://perldoc.perl.org

 version_timeout stops version parsing after this many seconds.
 Default is 15 secs. Set to 0 to disable.
 wait_list arrayref to a wait server to try (See CPAN::WAIT)
 wget path to external prg
 yaml_load_code enable YAML code deserialisation via
CPAN::DeferredCode
 yaml_module which module to use to read/write YAML files

You can set and query each of these options interactively in the cpan
 shell with the o conf or the o
conf init command as specified below.

o conf <scalar option>

prints the current value of the scalar option

o conf <scalar option> <value>

Sets the value of the scalar option to value

o conf <list option>

prints the current value of the list option in MakeMaker's
 neatvalue format.

o conf <list option> [shift|pop]

shifts or pops the array in the list option variable

o conf <list option> [unshift|push|splice] <list>

works like the corresponding perl commands.

interactive editing: o conf init [MATCH|LIST]

Runs an interactive configuration dialog for matching variables.
 Without argument runs the dialog
over all supported config variables.
 To specify a MATCH the argument must be enclosed by
slashes.

Examples:

 o conf init ftp_passive ftp_proxy
 o conf init /color/

Note: this method of setting config variables often provides more
 explanation about the
functioning of a variable than the manpage.

CPAN::anycwd($path): Note on config variable getcwd
CPAN.pm changes the current working directory often and needs to
 determine its own current
working directory. By default it uses
 Cwd::cwd, but if for some reason this doesn't work on your
system,
 configure alternatives according to the following table:

cwd

Calls Cwd::cwd

getcwd

Calls Cwd::getcwd

fastcwd

Calls Cwd::fastcwd

backtickcwd

Calls the external command cwd.

Perl version 5.12.1 documentation - CPAN

Page 12http://perldoc.perl.org

Note on the format of the urllist parameter
urllist parameters are URLs according to RFC 1738. We do a little
 guessing if your URL is not
compliant, but if you have problems with file URLs, please try the correct format. Either:

 file://localhost/whatever/ftp/pub/CPAN/

or

 file:///home/ftp/pub/CPAN/

The urllist parameter has CD-ROM support
The urllist parameter of the configuration table contains a list of
 URLs used for downloading. If the
list contains any file URLs, CPAN always tries there first. This
 feature is disabled for index files. So
the recommendation for the
 owner of a CD-ROM with CPAN contents is: include your local, possibly

outdated CD-ROM as a file URL at the end of urllist, e.g.

 o conf urllist push file://localhost/CDROM/CPAN

CPAN.pm will then fetch the index files from one of the CPAN sites
 that come at the beginning of
urllist. It will later check for each
 module to see whether there is a local copy of the most recent
version.

Another peculiarity of urllist is that the site that we could
 successfully fetch the last file from
automatically gets a preference
 token and is tried as the first site for the next request. So if you
 add a
new site at runtime it may happen that the previously preferred
 site will be tried another time. This
means that if you want to disallow
 a site for the next transfer, it must be explicitly removed from
 urllist.

Maintaining the urllist parameter
If you have YAML.pm (or some other YAML module configured in yaml_module) installed, CPAN.pm
collects a few statistical data
 about recent downloads. You can view the statistics with the hosts

command or inspect them directly by looking into the FTPstats.yml
 file in your cpan_home
directory.

To get some interesting statistics, it is recommended that randomize_urllist be set; this
introduces some amount of
 randomness into the URL selection.

The requires and build_requires dependency declarations
Since CPAN.pm version 1.88_51 modules declared as build_requires by
 a distribution are
treated differently depending on the config
 variable build_requires_install_policy. By setting
build_requires_install_policy to no, such a module is not installed. It is only built and
tested, and then kept in the list of
 tested but uninstalled modules. As such, it is available during the

build of the dependent module by integrating the path to the blib/arch and blib/lib directories in
the environment variable
 PERL5LIB. If build_requires_install_policy is set ti yes, then
 both
modules declared as requires and those declared as build_requires are treated alike. By
setting to ask/yes or ask/no, CPAN.pm asks the user and sets the default accordingly.

Configuration for individual distributions (Distroprefs)
(Note: This feature has been introduced in CPAN.pm 1.8854 and is
 still considered beta quality)

Distributions on CPAN usually behave according to what we call the
 CPAN mantra. Or since the
advent of Module::Build we should talk about
 two mantras:

 perl Makefile.PL perl Build.PL
 make ./Build
 make test ./Build test
 make install ./Build install

Perl version 5.12.1 documentation - CPAN

Page 13http://perldoc.perl.org

But some modules cannot be built with this mantra. They try to get
 some extra data from the user via
the environment, extra arguments, or
 interactively--thus disturbing the installation of large bundles like
Phalanx100 or modules with many dependencies like Plagger.

The distroprefs system of CPAN.pm addresses this problem by
 allowing the user to specify extra
informations and recipes in YAML
 files to either

pass additional arguments to one of the four commands,

set environment variables

instantiate an Expect object that reads from the console, waits for
 some regular expressions
and enters some answers

temporarily override assorted CPAN.pm configuration variables

specify dependencies the original maintainer forgot

disable the installation of an object altogether

See the YAML and Data::Dumper files that come with the CPAN.pm
 distribution in the
distroprefs/ directory for examples.

Filenames
The YAML files themselves must have the .yml extension; all other
 files are ignored (for two
exceptions see Fallback Data::Dumper and
 Storable below). The containing directory can be specified
in CPAN.pm in the prefs_dir config variable. Try o conf init
 prefs_dir in the CPAN shell to
set and activate the distroprefs
 system.

Every YAML file may contain arbitrary documents according to the YAML
 specification, and every
document is treated as an entity that
 can specify the treatment of a single distribution.

Filenames can be picked arbitrarily; CPAN.pm always reads
 all files (in alphabetical order) and takes
the key match (see
 below in Language Specs) as a hashref containing match criteria
 that determine
if the current distribution matches the YAML document
 or not.

Fallback Data::Dumper and Storable
If neither your configured yaml_module nor YAML.pm is installed,
 CPAN.pm falls back to using
Data::Dumper and Storable and looks for
 files with the extensions .dd or .st in the prefs_dir

directory. These files are expected to contain one or more hashrefs.
 For Data::Dumper generated
files, this is expected to be done with by
 defining $VAR1, $VAR2, etc. The YAML shell would produce
these
 with the command

 ysh < somefile.yml > somefile.dd

For Storable files the rule is that they must be constructed such that Storable::retrieve(file)
returns an array reference and the array
 elements represent one distropref object each. The
conversion from
 YAML would look like so:

 perl -MYAML=LoadFile -MStorable=nstore -e '
 @y=LoadFile(shift);
 nstore(\@y, shift)' somefile.yml somefile.st

In bootstrapping situations it is usually sufficient to translate only
 a few YAML files to Data::Dumper
for crucial modules like YAML::Syck, YAML.pm and Expect.pm. If you prefer Storable
 over
Data::Dumper, remember to pull out a Storable version that writes
 an older format than all the other
Storable versions that will need to
 read them.

Perl version 5.12.1 documentation - CPAN

Page 14http://perldoc.perl.org

Blueprint
The following example contains all supported keywords and structures
 with the exception of eexpect
which can be used instead of expect.

 comment: "Demo"
 match:
 module: "Dancing::Queen"
 distribution: "^CHACHACHA/Dancing-"
 not_distribution: "\.zip$"
 perl: "/usr/local/cariba-perl/bin/perl"
 perlconfig:
 archname: "freebsd"
 not_cc: "gcc"
 env:
 DANCING_FLOOR: "Shubiduh"
 disabled: 1
 cpanconfig:
 make: gmake
 pl:
 args:
 - "--somearg=specialcase"

 env: {}

 expect:
 - "Which is your favorite fruit"
 - "apple\n"

 make:
 args:
 - all
 - extra-all

 env: {}

 expect: []

 commandline: "echo SKIPPING make"

 test:
 args: []

 env: {}

 expect: []

 install:
 args: []

 env:
 WANT_TO_INSTALL: YES

Perl version 5.12.1 documentation - CPAN

Page 15http://perldoc.perl.org

 expect:
 - "Do you really want to install"
 - "y\n"

 patches:
 - "ABCDE/Fedcba-3.14-ABCDE-01.patch"

 depends:
 configure_requires:
 LWP: 5.8
 build_requires:
 Test::Exception: 0.25
 requires:
 Spiffy: 0.30

Language Specs
Every YAML document represents a single hash reference. The valid keys
 in this hash are as follows:

comment [scalar]

A comment

cpanconfig [hash]

Temporarily override assorted CPAN.pm configuration variables.

Supported are: build_requires_install_policy, check_sigs, make,
make_install_make_command, prefer_installer, test_report. Please report as a
bug when you need another one
 supported.

depends [hash] *** EXPERIMENTAL FEATURE ***

All three types, namely configure_requires, build_requires, and requires are
supported in the way specified in the META.yml
 specification. The current implementation
merges the specified
 dependencies with those declared by the package maintainer. In a
 future
implementation this may be changed to override the original
 declaration.

disabled [boolean]

Specifies that this distribution shall not be processed at all.

features [array] *** EXPERIMENTAL FEATURE ***

Experimental implementation to deal with optional_features from
 META.yml. Still needs
coordination with installer software and
 currently works only for META.yml declaring
dynamic_config=0. Use
 with caution.

goto [string]

The canonical name of a delegate distribution to install
 instead. Useful when a new version,
although it tests OK itself,
 breaks something else or a developer release or a fork is already

uploaded that is better than the last released version.

install [hash]

Processing instructions for the make install or ./Build install
 phase of the CPAN
mantra. See below under Processing Instructions.

make [hash]

Processing instructions for the make or ./Build phase of the
 CPAN mantra. See below
under Processing Instructions.

match [hash]

Perl version 5.12.1 documentation - CPAN

Page 16http://perldoc.perl.org

A hashref with one or more of the keys distribution, modules, perl, perlconfig, and
env that specify whether a document is
 targeted at a specific CPAN distribution or installation.
Keys prefixed with not_ negates the corresponding match.

The corresponding values are interpreted as regular expressions. The distribution related
one will be matched against the canonical
 distribution name, e.g.
"AUTHOR/Foo-Bar-3.14.tar.gz".

The module related one will be matched against all modules
 contained in the distribution until
one module matches.

The perl related one will be matched against $^X (but with the
 absolute path).

The value associated with perlconfig is itself a hashref that is
 matched against
corresponding values in the %Config::Config hash
 living in the Config.pm module.
 Keys
prefixed with not_ negates the corresponding match.

The value associated with env is itself a hashref that is
 matched against corresponding values
in the %ENV hash.
 Keys prefixed with not_ negates the corresponding match.

If more than one restriction of module, distribution, etc. is
 specified, the results of the
separately computed match values must
 all match. If so, the hashref represented by the

YAML document is returned as the preference structure for the current
 distribution.

patches [array]

An array of patches on CPAN or on the local disk to be applied in
 order via an external patch
program. If the value for the -p
 parameter is 0 or 1 is determined by reading the patch

beforehand. The path to each patch is either an absolute path on the
 local filesystem or
relative to a patch directory specified in the patches_dir configuration variable or in the
format of a canonical
 distroname. For examples please consult the distroprefs/ directory in
 the
CPAN.pm distribution (these examples are not installed by
 default).

Note: if the applypatch program is installed and CPAN::Config
 knows about it and a
patch is written by the makepatch program,
 then CPAN.pm lets applypatch apply the
patch. Both makepatch
 and applypatch are available from CPAN in the JV/makepatch-*
distribution.

pl [hash]

Processing instructions for the perl Makefile.PL or perl
 Build.PL phase of the CPAN
mantra. See below under Processing
 Instructions.

test [hash]

Processing instructions for the make test or ./Build test phase
 of the CPAN mantra.
See below under Processing Instructions.

Processing Instructions
args [array]

Arguments to be added to the command line

commandline

A full commandline to run via system().
 During execution, the environment variable PERL is
set
 to $^X (but with an absolute path). If commandline is specified, args is not used.

eexpect [hash]

Extended expect. This is a hash reference with four allowed keys, mode, timeout, reuse,
and talk.

You must install the Expect module to use eexpect. CPAN.pm
 does not install it for you.

mode may have the values deterministic for the case where all
 questions come in the
order written down and anyorder for the case
 where the questions may come in any order.
The default mode is deterministic.

Perl version 5.12.1 documentation - CPAN

Page 17http://perldoc.perl.org

timeout denotes a timeout in seconds. Floating-point timeouts are
 OK. With
mode=deterministic, the timeout denotes the
 timeout per question; with mode=anyorder
it denotes the
 timeout per byte received from the stream or questions.

talk is a reference to an array that contains alternating questions
 and answers. Questions
are regular expressions and answers are literal
 strings. The Expect module watches the
stream from the
 execution of the external program (perl Makefile.PL, perl
 Build.PL,
make, etc.).

For mode=deterministic, the CPAN.pm injects the
 corresponding answer as soon as the
stream matches the regular expression.

For mode=anyorder CPAN.pm answers a question as soon
 as the timeout is reached for the
next byte in the input stream. In
 this mode you can use the reuse parameter to decide what
will
 happen with a question-answer pair after it has been used. In the
 default case (reuse=0) it
is removed from the array, avoiding being
 used again accidentally. If you want to answer the

question Do you really want to do that several times, then it must
 be included in the
array at least as often as you want this answer to
 be given. Setting the parameter reuse to 1
makes this repetition
 unnecessary.

env [hash]

Environment variables to be set during the command

expect [array]

You must install the Expect module to use expect. CPAN.pm
 does not install it for you.

expect: <array> is a short notation for this eexpect:

	 eexpect:
		 mode: deterministic
		 timeout: 15
		 talk: <array>

Schema verification with Kwalify
If you have the Kwalify module installed (which is part of the
 Bundle::CPANxxl), then all your
distroprefs files are checked for
 syntactic correctness.

Example Distroprefs Files
CPAN.pm comes with a collection of example YAML files. Note that these
 are really just examples and
should not be used without care because
 they cannot fit everybody's purpose. After all, the authors of
the
 packages that ask questions had a need to ask, so you should watch
 their questions and adjust
the examples to your environment and your
 needs. You have been warned:-)

PROGRAMMER'S INTERFACE
If you do not enter the shell, shell commands are available both as methods (CPAN::Shell->
install(...)) and as
 functions in the calling package (install(...)). Before calling low-level

commands, it makes sense to initialize components of CPAN you need, e.g.:

 CPAN::HandleConfig->load;
 CPAN::Shell::setup_output;
 CPAN::Index->reload;

High-level commands do such initializations automatically.

There's currently only one class that has a stable interface -
 CPAN::Shell. All commands that are
available in the CPAN shell are
 methods of the class CPAN::Shell. Each of the commands that
produce
 listings of modules (r, autobundle, u) also return a list of
 the IDs of all modules within the
list.

Perl version 5.12.1 documentation - CPAN

Page 18http://perldoc.perl.org

expand($type,@things)

The IDs of all objects available within a program are strings that can
 be expanded to the
corresponding real objects with the CPAN::Shell->expand("Module",@things) method.
Expand returns a
 list of CPAN::Module objects according to the @things arguments
 given. In
scalar context, it returns only the first element of the
 list.

expandany(@things)

Like expand, but returns objects of the appropriate type, i.e.
 CPAN::Bundle objects for bundles,
CPAN::Module objects for modules, and
 CPAN::Distribution objects for distributions. Note: it does
not expand
 to CPAN::Author objects.

Programming Examples

This enables the programmer to do operations that combine
 functionalities that are available in
the shell.

 # install everything that is outdated on my disk:
 perl -MCPAN -e 'CPAN::Shell->install(CPAN::Shell->r)'

 # install my favorite programs if necessary:
 for $mod (qw(Net::FTP Digest::SHA Data::Dumper)) {
 CPAN::Shell->install($mod);
 }

 # list all modules on my disk that have no VERSION number
 for $mod (CPAN::Shell->expand("Module","/./")) {
 next unless $mod->inst_file;
 # MakeMaker convention for undefined $VERSION:
 next unless $mod->inst_version eq "undef";
 print "No VERSION in ", $mod->id, "\n";
 }

 # find out which distribution on CPAN contains a module:
 print CPAN::Shell->expand("Module","Apache::Constants")->cpan_file

Or if you want to schedule a cron job to watch CPAN, you could list
 all modules that need
updating. First a quick and dirty way:

 perl -e 'use CPAN; CPAN::Shell->r;'

If you don't want any output should all modules be
 up to date, parse the output of above
command for the regular
 expression /modules are up to date/ and decide to mail the
output
 only if it doesn't match.

If you prefer to do it more in a programmerish style in one single
 process, something like this may
better suit you:

 # list all modules on my disk that have newer versions on CPAN
 for $mod (CPAN::Shell->expand("Module","/./")) {
 next unless $mod->inst_file;
 next if $mod->uptodate;
 printf "Module %s is installed as %s, could be updated to %s from
CPAN\n",
 $mod->id, $mod->inst_version, $mod->cpan_version;
 }

If that gives too much output every day, you may want to
 watch only for three modules. You can
write

 for $mod (CPAN::Shell->expand("Module","/Apache|LWP|CGI/")) {

Perl version 5.12.1 documentation - CPAN

Page 19http://perldoc.perl.org

as the first line instead. Or you can combine some of the above
 tricks:

 # watch only for a new mod_perl module
 $mod = CPAN::Shell->expand("Module","mod_perl");
 exit if $mod->uptodate;
 # new mod_perl arrived, let me know all update recommendations
 CPAN::Shell->r;

Methods in the other Classes
CPAN::Author::as_glimpse()

Returns a one-line description of the author

CPAN::Author::as_string()

Returns a multi-line description of the author

CPAN::Author::email()

Returns the author's email address

CPAN::Author::fullname()

Returns the author's name

CPAN::Author::name()

An alias for fullname

CPAN::Bundle::as_glimpse()

Returns a one-line description of the bundle

CPAN::Bundle::as_string()

Returns a multi-line description of the bundle

CPAN::Bundle::clean()

Recursively runs the clean method on all items contained in the bundle.

CPAN::Bundle::contains()

Returns a list of objects' IDs contained in a bundle. The associated
 objects may be bundles,
modules or distributions.

CPAN::Bundle::force($method,@args)

Forces CPAN to perform a task that it normally would have refused to
 do. Force takes as
arguments a method name to be called and any number
 of additional arguments that should
be passed to the called method.
 The internals of the object get the needed changes so that
CPAN.pm
 does not refuse to take the action. The force is passed recursively
 to all contained
objects. See also the section above on the force
 and the fforce pragma.

CPAN::Bundle::get()

Recursively runs the get method on all items contained in the bundle

CPAN::Bundle::inst_file()

Returns the highest installed version of the bundle in either @INC or
$CPAN::Config->{cpan_home}. Note that this is different from
 CPAN::Module::inst_file.

CPAN::Bundle::inst_version()

Like CPAN::Bundle::inst_file, but returns the $VERSION

CPAN::Bundle::uptodate()

Returns 1 if the bundle itself and all its members are uptodate.

Perl version 5.12.1 documentation - CPAN

Page 20http://perldoc.perl.org

CPAN::Bundle::install()

Recursively runs the install method on all items contained in the bundle

CPAN::Bundle::make()

Recursively runs the make method on all items contained in the bundle

CPAN::Bundle::readme()

Recursively runs the readme method on all items contained in the bundle

CPAN::Bundle::test()

Recursively runs the test method on all items contained in the bundle

CPAN::Distribution::as_glimpse()

Returns a one-line description of the distribution

CPAN::Distribution::as_string()

Returns a multi-line description of the distribution

CPAN::Distribution::author

Returns the CPAN::Author object of the maintainer who uploaded this
 distribution

CPAN::Distribution::pretty_id()

Returns a string of the form "AUTHORID/TARBALL", where AUTHORID is the
 author's
PAUSE ID and TARBALL is the distribution filename.

CPAN::Distribution::base_id()

Returns the distribution filename without any archive suffix. E.g
 "Foo-Bar-0.01"

CPAN::Distribution::clean()

Changes to the directory where the distribution has been unpacked and
 runs make clean
there.

CPAN::Distribution::containsmods()

Returns a list of IDs of modules contained in a distribution file.
 Works only for distributions
listed in the 02packages.details.txt.gz
 file. This typically means that just most recent version of
a
 distribution is covered.

CPAN::Distribution::cvs_import()

Changes to the directory where the distribution has been unpacked and
 runs something like

 cvs -d $cvs_root import -m $cvs_log $cvs_dir $userid v$version

there.

CPAN::Distribution::dir()

Returns the directory into which this distribution has been unpacked.

CPAN::Distribution::force($method,@args)

Forces CPAN to perform a task that it normally would have refused to
 do. Force takes as
arguments a method name to be called and any number
 of additional arguments that should
be passed to the called method.
 The internals of the object get the needed changes so that
CPAN.pm
 does not refuse to take the action. See also the section above on the force and
the fforce pragma.

CPAN::Distribution::get()

Downloads the distribution from CPAN and unpacks it. Does nothing if
 the distribution has

Perl version 5.12.1 documentation - CPAN

Page 21http://perldoc.perl.org

already been downloaded and unpacked within the
 current session.

CPAN::Distribution::install()

Changes to the directory where the distribution has been unpacked and
 runs the external
command make install there. If make has not
 yet been run, it will be run first. A make
test is issued in
 any case and if this fails, the install is cancelled. The
 cancellation can be
avoided by letting force run the install for
 you.

This install method only has the power to install the distribution if
 there are no dependencies in
the way. To install an object along with all its dependencies, use CPAN::Shell->install.

Note that install() gives no meaningful return value. See uptodate().

CPAN::Distribution::install_tested()

Install all distributions that have tested sucessfully but
 not yet installed. See also is_tested.

CPAN::Distribution::isa_perl()

Returns 1 if this distribution file seems to be a perl distribution.
 Normally this is derived from
the file name only, but the index from
 CPAN can contain a hint to achieve a return value of
true for other
 filenames too.

CPAN::Distribution::look()

Changes to the directory where the distribution has been unpacked and
 opens a subshell
there. Exiting the subshell returns.

CPAN::Distribution::make()

First runs the get method to make sure the distribution is
 downloaded and unpacked.
Changes to the directory where the
 distribution has been unpacked and runs the external
commands perl
 Makefile.PL or perl Build.PL and make there.

CPAN::Distribution::perldoc()

Downloads the pod documentation of the file associated with a
 distribution (in HTML format)
and runs it through the external
 command lynx specified in $CPAN::Config->{lynx}. If
lynx
 isn't available, it converts it to plain text with the external
 command html2text and runs it
through the pager specified
 in $CPAN::Config->{pager}.

CPAN::Distribution::prefs()

Returns the hash reference from the first matching YAML file that the
 user has deposited in
the prefs_dir/ directory. The first
 succeeding match wins. The files in the prefs_dir/ are
processed
 alphabetically, and the canonical distroname (e.g.
 AUTHOR/Foo-Bar-3.14.tar.gz) is
matched against the regular expressions
 stored in the $root->{match}{distribution} attribute
value.
 Additionally all module names contained in a distribution are matched
 against the
regular expressions in the $root->{match}{module} attribute
 value. The two match values are
ANDed together. Each of the two
 attributes are optional.

CPAN::Distribution::prereq_pm()

Returns the hash reference that has been announced by a distribution
 as the requires and
build_requires elements. These can be
 declared either by the META.yml (if authoritative)
or can be
 deposited after the run of Build.PL in the file ./_build/prereqs
 or after the run
of Makfile.PL written as the PREREQ_PM hash in
 a comment in the produced Makefile.
Note: this method only works
 after an attempt has been made to make the distribution.
Returns
 undef otherwise.

CPAN::Distribution::readme()

Downloads the README file associated with a distribution and runs it
 through the pager
specified in $CPAN::Config->{pager}.

CPAN::Distribution::reports()

Perl version 5.12.1 documentation - CPAN

Page 22http://perldoc.perl.org

Downloads report data for this distribution from www.cpantesters.org
 and displays a subset of
them.

CPAN::Distribution::read_yaml()

Returns the content of the META.yml of this distro as a hashref. Note:
 works only after an
attempt has been made to make the distribution.
 Returns undef otherwise. Also returns undef
if the content of META.yml
 is not authoritative. (The rules about what exactly makes the
content
 authoritative are still in flux.)

CPAN::Distribution::test()

Changes to the directory where the distribution has been unpacked and
 runs make test
there.

CPAN::Distribution::uptodate()

Returns 1 if all the modules contained in the distribution are
 uptodate. Relies on
containsmods.

CPAN::Index::force_reload()

Forces a reload of all indices.

CPAN::Index::reload()

Reloads all indices if they have not been read for more than
$CPAN::Config->{index_expire} days.

CPAN::InfoObj::dump()

CPAN::Author, CPAN::Bundle, CPAN::Module, and CPAN::Distribution
 inherit this method. It
prints the data structure associated with an
 object. Useful for debugging. Note: the data
structure is considered
 internal and thus subject to change without notice.

CPAN::Module::as_glimpse()

Returns a one-line description of the module in four columns: The
 first column contains the
word Module, the second column consists
 of one character: an equals sign if this module is
already installed
 and uptodate, a less-than sign if this module is installed but can be
 upgraded,
and a space if the module is not installed. The third column
 is the name of the module and the
fourth column gives maintainer or
 distribution information.

CPAN::Module::as_string()

Returns a multi-line description of the module

CPAN::Module::clean()

Runs a clean on the distribution associated with this module.

CPAN::Module::cpan_file()

Returns the filename on CPAN that is associated with the module.

CPAN::Module::cpan_version()

Returns the latest version of this module available on CPAN.

CPAN::Module::cvs_import()

Runs a cvs_import on the distribution associated with this module.

CPAN::Module::description()

Returns a 44 character description of this module. Only available for
 modules listed in The
Module List (CPAN/modules/00modlist.long.html
 or 00modlist.long.txt.gz)

CPAN::Module::distribution()

Perl version 5.12.1 documentation - CPAN

Page 23http://perldoc.perl.org

Returns the CPAN::Distribution object that contains the current
 version of this module.

CPAN::Module::dslip_status()

Returns a hash reference. The keys of the hash are the letters D, S, L, I, and <P>, for
development status, support level,
 language, interface and public licence respectively. The
data for the
 DSLIP status are collected by pause.perl.org when authors register
 their
namespaces. The values of the 5 hash elements are one-character
 words whose meaning is
described in the table below. There are also 5
 hash elements DV, SV, LV, IV, and <PV> that
carry a more
 verbose value of the 5 status variables.

Where the 'DSLIP' characters have the following meanings:

 D - Development Stage (Note: *NO IMPLIED TIMESCALES*):
 i - Idea, listed to gain consensus or as a placeholder
 c - under construction but pre-alpha (not yet released)
 a/b - Alpha/Beta testing
 R - Released
 M - Mature (no rigorous definition)
 S - Standard, supplied with Perl 5

 S - Support Level:
 m - Mailing-list
 d - Developer
 u - Usenet newsgroup comp.lang.perl.modules
 n - None known, try comp.lang.perl.modules
 a - abandoned; volunteers welcome to take over maintainance

 L - Language Used:
 p - Perl-only, no compiler needed, should be platform
independent
 c - C and perl, a C compiler will be needed
 h - Hybrid, written in perl with optional C code, no compiler
needed
 + - C++ and perl, a C++ compiler will be needed
 o - perl and another language other than C or C++

 I - Interface Style
 f - plain Functions, no references used
 h - hybrid, object and function interfaces available
 n - no interface at all (huh?)
 r - some use of unblessed References or ties
 O - Object oriented using blessed references and/or inheritance

 P - Public License
 p - Standard-Perl: user may choose between GPL and Artistic
 g - GPL: GNU General Public License
 l - LGPL: "GNU Lesser General Public License" (previously known
 as
 "GNU Library General Public License")
 b - BSD: The BSD License
 a - Artistic license alone
 2 - Artistic license 2.0 or later
 o - open source: appoved by www.opensource.org
 d - allows distribution without restrictions
 r - restricted distribtion
 n - no license at all

Perl version 5.12.1 documentation - CPAN

Page 24http://perldoc.perl.org

CPAN::Module::force($method,@args)

Forces CPAN to perform a task it would normally refuse to
 do. Force takes as arguments a
method name to be invoked and any number
 of additional arguments to pass that method.

The internals of the object get the needed changes so that CPAN.pm
 does not refuse to take
the action. See also the section above on the force and the fforce pragma.

CPAN::Module::get()

Runs a get on the distribution associated with this module.

CPAN::Module::inst_file()

Returns the filename of the module found in @INC. The first file found
 is reported, just as perl
itself stops searching @INC once it finds a
 module.

CPAN::Module::available_file()

Returns the filename of the module found in PERL5LIB or @INC. The
 first file found is
reported. The advantage of this method over inst_file is that modules that have been
tested but not yet
 installed are included because PERL5LIB keeps track of tested modules.

CPAN::Module::inst_version()

Returns the version number of the installed module in readable format.

CPAN::Module::available_version()

Returns the version number of the available module in readable format.

CPAN::Module::install()

Runs an install on the distribution associated with this module.

CPAN::Module::look()

Changes to the directory where the distribution associated with this
 module has been
unpacked and opens a subshell there. Exiting the
 subshell returns.

CPAN::Module::make()

Runs a make on the distribution associated with this module.

CPAN::Module::manpage_headline()

If module is installed, peeks into the module's manpage, reads the
 headline, and returns it.
Moreover, if the module has been downloaded
 within this session, does the equivalent on the
downloaded module even
 if it hasn't been installed yet.

CPAN::Module::perldoc()

Runs a perldoc on this module.

CPAN::Module::readme()

Runs a readme on the distribution associated with this module.

CPAN::Module::reports()

Calls the reports() method on the associated distribution object.

CPAN::Module::test()

Runs a test on the distribution associated with this module.

CPAN::Module::uptodate()

Returns 1 if the module is installed and up-to-date.

CPAN::Module::userid()

Returns the author's ID of the module.

Perl version 5.12.1 documentation - CPAN

Page 25http://perldoc.perl.org

Cache Manager
Currently the cache manager only keeps track of the build directory
 ($CPAN::Config->{build_dir}). It is
a simple FIFO mechanism that
 deletes complete directories below build_dir as soon as the size of
all directories there gets bigger than $CPAN::Config->{build_cache}
 (in MB). The contents of this
cache may be used for later
 re-installations that you intend to do manually, but will never be
 trusted
by CPAN itself. This is due to the fact that the user might
 use these directories for building modules
on different architectures.

There is another directory ($CPAN::Config->{keep_source_where}) where
 the original distribution files
are kept. This directory is not
 covered by the cache manager and must be controlled by the user. If

you choose to have the same directory as build_dir and as
 keep_source_where directory, then your
sources will be deleted with
 the same fifo mechanism.

Bundles
A bundle is just a perl module in the namespace Bundle:: that does not
 define any functions or
methods. It usually only contains documentation.

It starts like a perl module with a package declaration and a $VERSION
 variable. After that the pod
section looks like any other pod with the
 only difference being that one special pod section exists
starting with
 (verbatim):

 =head1 CONTENTS

In this pod section each line obeys the format

 Module_Name [Version_String] [- optional text]

The only required part is the first field, the name of a module
 (e.g. Foo::Bar, ie. not the name of the
distribution file). The rest
 of the line is optional. The comment part is delimited by a dash just
 as in the
man page header.

The distribution of a bundle should follow the same convention as
 other distributions.

Bundles are treated specially in the CPAN package. If you say 'install
 Bundle::Tkkit' (assuming such a
bundle exists), CPAN will install all
 the modules in the CONTENTS section of the pod. You can install
your
 own Bundles locally by placing a conformant Bundle file somewhere into
 your @INC path. The
autobundle() command which is available in the
 shell interface does that for you by including all
currently installed
 modules in a snapshot bundle file.

PREREQUISITES
The CPAN program is trying to depend on as little as possible so the
 user can use it in hostile
enviroment. It works better the more goodies
 the environment provides. For example if you try in the
CPAN shell

 install Bundle::CPAN

or

 install Bundle::CPANxxl

you will find the shell more convenient than the bare shell before.

If you have a local mirror of CPAN and can access all files with
 "file:" URLs, then you only need a perl
later than perl5.003 to run
 this module. Otherwise Net::FTP is strongly recommended. LWP may be

required for non-UNIX systems, or if your nearest CPAN site is
 associated with a URL that is not
ftp:.

If you have neither Net::FTP nor LWP, there is a fallback mechanism
 implemented for an external ftp

Perl version 5.12.1 documentation - CPAN

Page 26http://perldoc.perl.org

command or for an external lynx
 command.

UTILITIES
Finding packages and VERSION

This module presumes that all packages on CPAN

declare their $VERSION variable in an easy to parse manner. This
 prerequisite can hardly be
relaxed because it consumes far too much
 memory to load all packages into the running program
just to determine
 the $VERSION variable. Currently all programs that are dealing with
 version use
something like this

 perl -MExtUtils::MakeMaker -le \
 'print MM->parse_version(shift)' filename

If you are author of a package and wonder if your $VERSION can be
 parsed, please try the above
method.

come as compressed or gzipped tarfiles or as zip files and contain a Makefile.PL or Build.PL
(well, we try to handle a bit more, but
 with little enthusiasm).

Debugging
Debugging this module is more than a bit complex due to interference from
 the software producing
the indices on CPAN, the mirroring process on CPAN,
 packaging, configuration, synchronicity, and
even (gasp!) due to bugs
 within the CPAN.pm module itself.

For debugging the code of CPAN.pm itself in interactive mode, some debugging aid can be turned on
for most packages within
 CPAN.pm with one of

o debug package...

sets debug mode for packages.

o debug -package...

unsets debug mode for packages.

o debug all

turns debugging on for all packages.

o debug number

which sets the debugging packages directly. Note that o debug 0
 turns debugging off.

What seems a successful strategy is the combination of reload
 cpan and the debugging switches.
Add a new debug statement while
 running in the shell and then issue a reload cpan and see the
new
 debugging messages immediately without losing the current context.

o debug without an argument lists the valid package names and the
 current set of packages in
debugging mode. o debug has built-in
 completion support.

For debugging of CPAN data there is the dump command which takes
 the same arguments as
make/test/install and outputs each object's
 Data::Dumper dump. If an argument looks like a perl
variable and
 contains one of $, @ or %, it is eval()ed and fed to
 Data::Dumper directly.

Floppy, Zip, Offline Mode
CPAN.pm works nicely without network access, too. If you maintain machines
 that are not networked
at all, you should consider working with file:
 URLs. You'll have to collect your modules somewhere
first. So
 you might use CPAN.pm to put together all you need on a networked
 machine. Then copy the
$CPAN::Config->{keep_source_where} (but not
 $CPAN::Config->{build_dir}) directory on a floppy.
This floppy is kind
 of a personal CPAN. CPAN.pm on the non-networked machines works nicely
 with
this floppy. See also below the paragraph about CD-ROM support.

Perl version 5.12.1 documentation - CPAN

Page 27http://perldoc.perl.org

Basic Utilities for Programmers
has_inst($module)

Returns true if the module is installed. Used to load all modules into
 the running CPAN.pm that
are considered optional. The config variable dontload_list intercepts the has_inst() call
such
 that an optional module is not loaded despite being available. For
 example, the following
command will prevent YAML.pm from being
 loaded:

 cpan> o conf dontload_list push YAML

See the source for details.

has_usable($module)

Returns true if the module is installed and in a usable state. Only
 useful for a handful of modules
that are used internally. See the
 source for details.

instance($module)

The constructor for all the singletons used to represent modules,
 distributions, authors, and
bundles. If the object already exists, this
 method returns the object; otherwise, it calls the
constructor.

SECURITY
There's no strong security layer in CPAN.pm. CPAN.pm helps you to
 install foreign, unmasked,
unsigned code on your machine. We compare
 to a checksum that comes from the net just as the
distribution file
 itself. But we try to make it easy to add security on demand:

Cryptographically signed modules
Since release 1.77, CPAN.pm has been able to verify cryptographically
 signed module distributions
using Module::Signature. The CPAN modules
 can be signed by their authors, thus giving more
security. The simple
 unsigned MD5 checksums that were used before by CPAN protect mainly

against accidental file corruption.

You will need to have Module::Signature installed, which in turn
 requires that you have at least one of
Crypt::OpenPGP module or the
 command-line gpg tool installed.

You will also need to be able to connect over the Internet to the public
 keyservers, like pgp.mit.edu,
and their port 11731 (the HKP protocol).

The configuration parameter check_sigs is there to turn signature
 checking on or off.

EXPORT
Most functions in package CPAN are exported by default. The reason
 for this is that the primary use
is intended for the cpan shell or for
 one-liners.

ENVIRONMENT
When the CPAN shell enters a subshell via the look command, it sets
 the environment
CPAN_SHELL_LEVEL to 1, or increments that variable if it is
 already set.

When CPAN runs, it sets the environment variable PERL5_CPAN_IS_RUNNING
 to the ID of the
running process. It also sets
 PERL5_CPANPLUS_IS_RUNNING to prevent runaway processes which
could
 happen with older versions of Module::Install.

When running perl Makefile.PL, the environment variable PERL5_CPAN_IS_EXECUTING is set
to the full path of the Makefile.PL that is being executed. This prevents runaway processes
 with
newer versions of Module::Install.

When the config variable ftp_passive is set, all downloads will be run
 with the environment variable
FTP_PASSIVE set to this value. This is
 in general a good idea as it influences both Net::FTP and
LWP based
 connections. The same effect can be achieved by starting the cpan
 shell with this

Perl version 5.12.1 documentation - CPAN

Page 28http://perldoc.perl.org

environment variable set. For Net::FTP alone, one can
 also always set passive mode by running
libnetcfg.

POPULATE AN INSTALLATION WITH LOTS OF MODULES
Populating a freshly installed perl with one's favorite modules is pretty
 easy if you maintain a private
bundle definition file. To get a useful
 blueprint of a bundle definition file, the command autobundle can
be used
 on the CPAN shell command line. This command writes a bundle definition
 file for all
modules installed for the current perl
 interpreter. It's recommended to run this command once only,
and from then
 on maintain the file manually under a private name, say
 Bundle/my_bundle.pm. With a
clever bundle file you can then simply say

 cpan> install Bundle::my_bundle

then answer a few questions and go out for coffee (possibly
 even in a different city).

Maintaining a bundle definition file means keeping track of two
 things: dependencies and interactivity.
CPAN.pm sometimes fails on
 calculating dependencies because not all modules define all
MakeMaker
 attributes correctly, so a bundle definition file should specify
 prerequisites as early as
possible. On the other hand, it's annoying that so many distributions need some interactive
configuring. So
 what you can try to accomplish in your private bundle file is to have the
 packages that
need to be configured early in the file and the gentle
 ones later, so you can go out for cofeee after a
few minutes and leave CPAN.pm
 to churn away untended.

WORKING WITH CPAN.pm BEHIND FIREWALLS
Thanks to Graham Barr for contributing the following paragraphs about
 the interaction between perl,
and various firewall configurations. For
 further information on firewalls, it is recommended to consult
the
 documentation that comes with the ncftp program. If you are unable to
 go through the firewall with
a simple Perl setup, it is likely
 that you can configure ncftp so that it works through your firewall.

Three basic types of firewalls
Firewalls can be categorized into three basic types.

http firewall

This is when the firewall machine runs a web server, and to access the
 outside world, you
must do so via that web server. If you set environment
 variables like http_proxy or ftp_proxy to
values beginning with http://,
 or in your web browser you've proxy information set, then you
know
 you are running behind an http firewall.

To access servers outside these types of firewalls with perl (even for
 ftp), you need LWP.

ftp firewall

This where the firewall machine runs an ftp server. This kind of
 firewall will only let you access
ftp servers outside the firewall.
 This is usually done by connecting to the firewall with ftp, then

entering a username like "user@outside.host.com".

To access servers outside these type of firewalls with perl, you
 need Net::FTP.

One-way visibility

One-way visibility means these firewalls try to make themselves invisible to users inside the
firewall. An FTP data connection is
 normally created by sending your IP address to the remote
server and then
 listening for the return connection. But the remote server will not be able to

connect to you because of the firewall. For these types of firewall,
 FTP connections need to be
done in a passive mode.

There are two that I can think off.

SOCKS

If you are using a SOCKS firewall, you will need to compile perl and link
 it with the
SOCKS library. This is what is normally called a 'socksified'
 perl. With this executable

Perl version 5.12.1 documentation - CPAN

Page 29http://perldoc.perl.org

you will be able to connect to servers outside
 the firewall as if it were not there.

IP Masquerade

This is when the firewall implemented in the kernel (via NAT, or networking
 address
translation), it allows you to hide a complete network behind one
 IP address. With this
firewall no special compiling is needed as you can
 access hosts directly.

For accessing ftp servers behind such firewalls you usually need to
 set the
environment variable FTP_PASSIVE or the config variable
 ftp_passive to a true value.

Configuring lynx or ncftp for going through a firewall
If you can go through your firewall with e.g. lynx, presumably with a
 command such as

 /usr/local/bin/lynx -pscott:tiger

then you would configure CPAN.pm with the command

 o conf lynx "/usr/local/bin/lynx -pscott:tiger"

That's all. Similarly for ncftp or ftp, you would configure something
 like

 o conf ncftp "/usr/bin/ncftp -f /home/scott/ncftplogin.cfg"

Your mileage may vary...

FAQ
1)

I installed a new version of module X but CPAN keeps saying,
 I have the old version installed

Probably you do have the old version installed. This can
 happen if a module installs itself into
a different directory in the
 @INC path than it was previously installed. This is not really a

CPAN.pm problem, you would have the same problem when installing the
 module manually.
The easiest way to prevent this behaviour is to add
 the argument UNINST=1 to the make
install call, and that is why
 many people add this argument permanently by configuring

 o conf make_install_arg UNINST=1

2)

So why is UNINST=1 not the default?

Because there are people who have their precise expectations about who
 may install where in
the @INC path and who uses which @INC array. In
 fine tuned environments UNINST=1 can
cause damage.

3)

I want to clean up my mess, and install a new perl along with
 all modules I have. How do I go
about it?

Run the autobundle command for your old perl and optionally rename the
 resulting bundle file
(e.g. Bundle/mybundle.pm), install the new perl
 with the Configure option prefix, e.g.

 ./Configure -Dprefix=/usr/local/perl-5.6.78.9

Install the bundle file you produced in the first step with something like

 cpan> install Bundle::mybundle

and you're done.

4)

Perl version 5.12.1 documentation - CPAN

Page 30http://perldoc.perl.org

When I install bundles or multiple modules with one command
 there is too much output to
keep track of.

You may want to configure something like

 o conf make_arg "| tee -ai /root/.cpan/logs/make.out"
 o conf make_install_arg "| tee -ai
/root/.cpan/logs/make_install.out"

so that STDOUT is captured in a file for later inspection.

5)

I am not root, how can I install a module in a personal directory?

First of all, you will want to use your own configuration, not the one
 that your root user
installed. If you do not have permission to write
 in the cpan directory that root has configured,
you will be asked if
 you want to create your own config. Answering "yes" will bring you into

CPAN's configuration stage, using the system config for all defaults except
 things that have to
do with CPAN's work directory, saving your choices to
 your MyConfig.pm file.

You can also manually initiate this process with the following command:

 % perl -MCPAN -e 'mkmyconfig'

or by running

 mkmyconfig

from the CPAN shell.

You will most probably also want to configure something like this:

 o conf makepl_arg "LIB=~/myperl/lib \
 INSTALLMAN1DIR=~/myperl/man/man1 \
 INSTALLMAN3DIR=~/myperl/man/man3 \
 INSTALLSCRIPT=~/myperl/bin \
 INSTALLBIN=~/myperl/bin"

and then the equivalent command for Module::Build, which is

 o conf mbuildpl_arg "--lib=~/myperl/lib \
 --installman1dir=~/myperl/man/man1 \
 --installman3dir=~/myperl/man/man3 \
 --installscript=~/myperl/bin \
 --installbin=~/myperl/bin"

You can make this setting permanent like all o conf settings with o conf commit or by
setting auto_commit beforehand.

You will have to add ~/myperl/man to the MANPATH environment variable
 and also tell your
perl programs to look into ~/myperl/lib, e.g. by
 including

 use lib "$ENV{HOME}/myperl/lib";

or setting the PERL5LIB environment variable.

While we're speaking about $ENV{HOME}, it might be worth mentioning,
 that for Windows we
use the File::HomeDir module that provides an
 equivalent to the concept of the home directory
on Unix.

Another thing you should bear in mind is that the UNINST parameter can
 be dangerous when
you are installing into a private area because you
 might accidentally remove modules that
other people depend on that are
 not using the private area.

6)

Perl version 5.12.1 documentation - CPAN

Page 31http://perldoc.perl.org

How to get a package, unwrap it, and make a change before building it?

Have a look at the look (!) command.

7)

I installed a Bundle and had a couple of fails. When I
 retried, everything resolved nicely. Can
this be fixed to work
 on first try?

The reason for this is that CPAN does not know the dependencies of all
 modules when it
starts out. To decide about the additional items to
 install, it just uses data found in the
META.yml file or the generated
 Makefile. An undetected missing piece breaks the process.
But it may
 well be that your Bundle installs some prerequisite later than some
 depending item
and thus your second try is able to resolve everything.
 Please note, CPAN.pm does not know
the dependency tree in advance and
 cannot sort the queue of things to install in a
topologically correct
 order. It resolves perfectly well if all modules declare the
 prerequisites
correctly with the PREREQ_PM attribute to MakeMaker or
 the requires stanza of
Module::Build. For bundles which fail and
 you need to install often, it is recommended to sort
the Bundle
 definition file manually.

8)

In our intranet, we have many modules for internal use. How
 can I integrate these modules
with CPAN.pm but without uploading
 the modules to CPAN?

Have a look at the CPAN::Site module.

9)

When I run CPAN's shell, I get an error message about things in my /etc/inputrc (or
~/.inputrc) file.

These are readline issues and can only be fixed by studying readline
 configuration on your
architecture and adjusting the referenced file
 accordingly. Please make a backup of the
/etc/inputrc or ~/.inputrc
 and edit them. Quite often harmless changes like
uppercasing or
 lowercasing some arguments solves the problem.

10)

Some authors have strange characters in their names.

Internally CPAN.pm uses the UTF-8 charset. If your terminal is
 expecting ISO-8859-1 charset,
a converter can be activated by setting
 term_is_latin to a true value in your config file. One
way of doing so
 would be

 cpan> o conf term_is_latin 1

If other charset support is needed, please file a bugreport against
 CPAN.pm at rt.cpan.org and
describe your needs. Maybe we can extend
 the support or maybe UTF-8 terminals become
widely available.

Note: this config variable is deprecated and will be removed in a
 future version of CPAN.pm. It
will be replaced with the conventions
 around the family of $LANG and $LC_* environment
variables.

11)

When an install fails for some reason and then I correct the error
 condition and retry,
CPAN.pm refuses to install the module, saying Already tried without success.

Use the force pragma like so

 force install Foo::Bar

Or you can use

 look Foo::Bar

Perl version 5.12.1 documentation - CPAN

Page 32http://perldoc.perl.org

and then make install directly in the subshell.

12)

How do I install a "DEVELOPER RELEASE" of a module?

By default, CPAN will install the latest non-developer release of a
 module. If you want to install
a dev release, you have to specify the
 partial path starting with the author id to the tarball you
wish to
 install, like so:

 cpan> install KWILLIAMS/Module-Build-0.27_07.tar.gz

Note that you can use the ls command to get this path listed.

13)

How do I install a module and all its dependencies from the commandline,
 without being
prompted for anything, despite my CPAN configuration
 (or lack thereof)?

CPAN uses ExtUtils::MakeMaker's prompt() function to ask its questions, so
 if you set the
PERL_MM_USE_DEFAULT environment variable, you shouldn't be
 asked any questions at all
(assuming the modules you are installing are
 nice about obeying that variable as well):

 % PERL_MM_USE_DEFAULT=1 perl -MCPAN -e 'install My::Module'

14)

How do I create a Module::Build based Build.PL derived from an
 ExtUtils::MakeMaker focused
Makefile.PL?

http://search.cpan.org/dist/Module-Build-Convert/

15)

I'm frequently irritated with the CPAN shell's inability to help me
 select a good mirror.

The urllist config parameter is yours. You can add and remove sites at
 will. You should find
out which sites have the best uptodateness,
 bandwidth, reliability, etc. and are topologically
close to you. Some
 people prefer fast downloads, others uptodateness, others reliability.
 You
decide which to try in which order.

Henk P. Penning maintains a site that collects data about CPAN sites:

 http://www.cs.uu.nl/people/henkp/mirmon/cpan.html

Also, feel free to play with experimental features. Run

 o conf init randomize_urllist ftpstats_period ftpstats_size

and choose your favorite parameters. After a few downloads running the hosts command will
probably assist you in choosing the best mirror
 sites.

16)

Why do I get asked the same questions every time I start the shell?

You can make your configuration changes permanent by calling the
 command o conf
commit. Alternatively set the auto_commit
 variable to true by running o conf init
auto_commit and answering
 the following question with yes.

17)

Older versions of CPAN.pm had the original root directory of all
 tarballs in the build directory.
Now there are always random
 characters appended to these directory names. Why was this
done?

The random characters are provided by File::Temp and ensure that each
 module's individual
build directory is unique. This makes running
 CPAN.pm in concurrent processes
simultaneously safe.

Perl version 5.12.1 documentation - CPAN

Page 33http://perldoc.perl.org

18)

Speaking of the build directory. Do I have to clean it up myself?

You have the choice to set the config variable scan_cache to never. Then you must clean it
up yourself. The other possible
 value, atstart only cleans up the build directory when you
start
 the CPAN shell. If you never start up the CPAN shell, you probably
 also have to clean up
the build directory yourself.

COMPATIBILITY
OLD PERL VERSIONS

CPAN.pm is regularly tested to run under 5.004, 5.005, and assorted
 newer versions. It is getting
more and more difficult to get the
 minimal prerequisites working on older perls. It is close to

impossible to get the whole Bundle::CPAN working there. If you're in
 the position to have only these
old versions, be advised that CPAN is
 designed to work fine without the Bundle::CPAN installed.

To get things going, note that GBARR/Scalar-List-Utils-1.18.tar.gz is
 compatible with ancient perls
and that File::Temp is listed as a
 prerequisite but CPAN has reasonable workarounds if it is missing.

CPANPLUS
This module and its competitor, the CPANPLUS module, are both much
 cooler than the other.
CPAN.pm is older. CPANPLUS was designed to be
 more modular, but it was never intended to be
compatible with CPAN.pm.

SECURITY ADVICE
This software enables you to upgrade software on your computer and so
 is inherently dangerous
because the newly installed software may
 contain bugs and may alter the way your computer works
or even make it
 unusable. Please consider backing up your data before every upgrade.

BUGS
Please report bugs via http://rt.cpan.org/

Before submitting a bug, please make sure that the traditional method
 of building a Perl module
package from a shell by following the
 installation instructions of that package still works in your

environment.

AUTHOR
Andreas Koenig <andk@cpan.org>

LICENSE
This program is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

See http://www.perl.com/perl/misc/Artistic.html

TRANSLATIONS
Kawai,Takanori provides a Japanese translation of a very old version
 of this manpage at
http://homepage3.nifty.com/hippo2000/perltips/CPAN.htm

SEE ALSO
Many people enter the CPAN shell by running the cpan utility
 program which is installed in the same
directory as perl itself. So if
 you have this directory in your PATH variable (or some equivalent in
 your
operating system) then typing cpan in a console window will
 work for you as well. Above that the
utility provides several
 commandline shortcuts.

