
Perl version 5.12.1 documentation - Encode::Guess

Page 1http://perldoc.perl.org

NAME
Encode::Guess -- Guesses encoding from data

SYNOPSIS
 # if you are sure $data won't contain anything bogus

 use Encode;
 use Encode::Guess qw/euc-jp shiftjis 7bit-jis/;
 my $utf8 = decode("Guess", $data);
 my $data = encode("Guess", $utf8); # this doesn't work!

 # more elaborate way
 use Encode::Guess;
 my $enc = guess_encoding($data, qw/euc-jp shiftjis 7bit-jis/);
 ref($enc) or die "Can't guess: $enc"; # trap error this way
 $utf8 = $enc->decode($data);
 # or
 $utf8 = decode($enc->name, $data)

ABSTRACT
Encode::Guess enables you to guess in what encoding a given data is
 encoded, or at least tries to.

DESCRIPTION
By default, it checks only ascii, utf8 and UTF-16/32 with BOM.

 use Encode::Guess; # ascii/utf8/BOMed UTF

To use it more practically, you have to give the names of encodings to
 check (suspects as follows).
The name of suspects can either be
 canonical names or aliases.

CAVEAT: Unlike UTF-(16|32), BOM in utf8 is NOT AUTOMATICALLY STRIPPED.

 # tries all major Japanese Encodings as well
 use Encode::Guess qw/euc-jp shiftjis 7bit-jis/;

If the $Encode::Guess::NoUTFAutoGuess variable is set to a true
 value, no heuristics will be
applied to UTF8/16/32, and the result
 will be limited to the suspects and ascii.

Encode::Guess->set_suspects

You can also change the internal suspects list via set_suspects
 method.

 use Encode::Guess;
 Encode::Guess->set_suspects(qw/euc-jp shiftjis 7bit-jis/);

Encode::Guess->add_suspects

Or you can use add_suspects method. The difference is that set_suspects flushes the
current suspects list while add_suspects adds.

 use Encode::Guess;
 Encode::Guess->add_suspects(qw/euc-jp shiftjis 7bit-jis/);
 # now the suspects are euc-jp,shiftjis,7bit-jis, AND
 # euc-kr,euc-cn, and big5-eten
 Encode::Guess->add_suspects(qw/euc-kr euc-cn big5-eten/);

Encode::decode("Guess" ...)

Perl version 5.12.1 documentation - Encode::Guess

Page 2http://perldoc.perl.org

When you are content with suspects list, you can now

 my $utf8 = Encode::decode("Guess", $data);

Encode::Guess->guess($data)

But it will croak if:

Two or more suspects remain

No suspects left

So you should instead try this;

 my $decoder = Encode::Guess->guess($data);

On success, $decoder is an object that is documented in Encode::Encoding. So you can now
do this;

 my $utf8 = $decoder->decode($data);

On failure, $decoder now contains an error message so the whole thing
 would be as follows;

 my $decoder = Encode::Guess->guess($data);
 die $decoder unless ref($decoder);
 my $utf8 = $decoder->decode($data);

guess_encoding($data, [, list of suspects])

You can also try guess_encoding function which is exported by
 default. It takes $data to
check and it also takes the list of
 suspects by option. The optional suspect list is not reflected
to
 the internal suspects list.

 my $decoder = guess_encoding($data, qw/euc-jp euc-kr euc-cn/);
 die $decoder unless ref($decoder);
 my $utf8 = $decoder->decode($data);
 # check only ascii and utf8
 my $decoder = guess_encoding($data);

CAVEATS
Because of the algorithm used, ISO-8859 series and other single-byte
 encodings do not work
well unless either one of ISO-8859 is the only
 one suspect (besides ascii and utf8).

 use Encode::Guess;
 # perhaps ok
 my $decoder = guess_encoding($data, 'latin1');
 # definitely NOT ok
 my $decoder = guess_encoding($data, qw/latin1 greek/);

The reason is that Encode::Guess guesses encoding by trial and error.
 It first splits $data into
lines and tries to decode the line for each
 suspect. It keeps it going until all but one encoding
is eliminated
 out of suspects list. ISO-8859 series is just too successful for most
 cases
(because it fills almost all code points in \x00-\xff).

Do not mix national standard encodings and the corresponding vendor
 encodings.

 # a very bad idea
 my $decoder
 = guess_encoding($data, qw/shiftjis MacJapanese cp932/);

The reason is that vendor encoding is usually a superset of national
 standard so it becomes
too ambiguous for most cases.

Perl version 5.12.1 documentation - Encode::Guess

Page 3http://perldoc.perl.org

On the other hand, mixing various national standard encodings
 automagically works unless
$data is too short to allow for guessing.

 # This is ok if $data is long enough
 my $decoder =
 guess_encoding($data, qw/euc-cn
 euc-jp shiftjis 7bit-jis
 euc-kr
 big5-eten/);

DO NOT PUT TOO MANY SUSPECTS! Don't you try something like this!

 my $decoder = guess_encoding($data,
 Encode->encodings(":all"));

It is, after all, just a guess. You should alway be explicit when it
 comes to encodings. But there are
some, especially Japanese,
 environment that guess-coding is a must. Use this module with care.

TO DO
Encode::Guess does not work on EBCDIC platforms.

SEE ALSO
Encode, Encode::Encoding

