
Perl version 5.12.1 documentation - perlfaq6

Page 1http://perldoc.perl.org

NAME
perlfaq6 - Regular Expressions

DESCRIPTION
This section is surprisingly small because the rest of the FAQ is
 littered with answers involving regular
expressions. For example,
 decoding a URL and checking whether something is a number are
handled
 with regular expressions, but those answers are found elsewhere in
 this document (in
perlfaq9: "How do I decode or create those %-encodings
 on the web" and perlfaq4: "How do I
determine whether a scalar is
 a number/whole/integer/float", to be precise).

How can I hope to use regular expressions without creating illegible and unmaintainable code?
Three techniques can make regular expressions maintainable and
 understandable.

Comments Outside the Regex

Describe what you're doing and how you're doing it, using normal Perl
 comments.

	 # turn the line into the first word, a colon, and the
	 # number of characters on the rest of the line
	 s/^(\w+)(.*)/ lc($1) . ":" . length($2) /meg;

Comments Inside the Regex

The /x modifier causes whitespace to be ignored in a regex pattern
 (except in a character
class and a few other places), and also allows you to
 use normal comments there, too. As you
can imagine, whitespace and comments
 help a lot.

/x lets you turn this:

	 s{<(?:[^>'"]*|".*?"|'.*?')+>}{}gs;

into this:

	 s{ < # opening angle bracket
		 (?: # Non-backreffing grouping paren
			 [^>'"] * # 0 or more things that are neither > nor ' nor "
				 | # or else
			 ".*?" # a section between double quotes (stingy match)
				 | # or else
			 '.*?' # a section between single quotes (stingy match)
) + # all occurring one or more times
		 > # closing angle bracket
	 }{}gsx; # replace with nothing, i.e. delete

It's still not quite so clear as prose, but it is very useful for
 describing the meaning of each part
of the pattern.

Different Delimiters

While we normally think of patterns as being delimited with /
 characters, they can be delimited
by almost any character. perlre
 describes this. For example, the s/// above uses braces as

delimiters. Selecting another delimiter can avoid quoting the
 delimiter within the pattern:

	 s/\/usr\/local/\/usr\/share/g;	 # bad delimiter choice
	 s#/usr/local#/usr/share#g;		 # better

I'm having trouble matching over more than one line. What's wrong?
Either you don't have more than one line in the string you're looking
 at (probably), or else you aren't
using the correct modifier(s) on
 your pattern (possibly).

There are many ways to get multiline data into a string. If you want
 it to happen automatically while

Perl version 5.12.1 documentation - perlfaq6

Page 2http://perldoc.perl.org

reading input, you'll want to set $/
 (probably to '' for paragraphs or undef for the whole file) to
 allow
you to read more than one line at a time.

Read perlre to help you decide which of /s and /m (or both)
 you might want to use: /s allows dot to
include newline, and /m
 allows caret and dollar to match next to a newline, not just at the
 end of the
string. You do need to make sure that you've actually
 got a multiline string in there.

For example, this program detects duplicate words, even when they span
 line breaks (but not
paragraph ones). For this example, we don't need /s because we aren't using dot in a regular
expression that we want
 to cross line boundaries. Neither do we need /m because we aren't
 wanting
caret or dollar to match at any point inside the record next
 to newlines. But it's imperative that $/ be
set to something other
 than the default, or else we won't actually ever have a multiline
 record read in.

	 $/ = ''; 		 # read in whole paragraph, not just one line
	 while (<>) {
		 while (/\b([\w'-]+)(\s+\1)+\b/gi) { 	 # word starts alpha
			 print "Duplicate $1 at paragraph $.\n";
		 }
	 }

Here's code that finds sentences that begin with "From " (which would
 be mangled by many mailers):

	 $/ = ''; 		 # read in whole paragraph, not just one line
	 while (<>) {
		 while (/^From /gm) { # /m makes ^ match next to \n
		 print "leading from in paragraph $.\n";
		 }
	 }

Here's code that finds everything between START and END in a paragraph:

	 undef $/; 		 # read in whole file, not just one line or paragraph
	 while (<>) {
		 while (/START(.*?)END/sgm) { # /s makes . cross line boundaries
		 print "$1\n";
		 }
	 }

How can I pull out lines between two patterns that are themselves on different lines?
You can use Perl's somewhat exotic .. operator (documented in perlop):

	 perl -ne 'print if /START/ .. /END/' file1 file2 ...

If you wanted text and not lines, you would use

	 perl -0777 -ne 'print "$1\n" while /START(.*?)END/gs' file1 file2 ...

But if you want nested occurrences of START through END, you'll
 run up against the problem
described in the question in this section
 on matching balanced text.

Here's another example of using ..:

	 while (<>) {
		 $in_header = 1 .. /^$/;
		 $in_body = /^$/ .. eof;
	 # now choose between them
	 } continue {

Perl version 5.12.1 documentation - perlfaq6

Page 3http://perldoc.perl.org

		 $. = 0 if eof;	 # fix $.
	 }

How do I match XML, HTML, or other nasty, ugly things with a regex?
(contributed by brian d foy)

If you just want to get work done, use a module and forget about the
 regular expressions. The
XML::Parser and HTML::Parser modules
 are good starts, although each namespace has other
parsing modules
 specialized for certain tasks and different ways of doing it. Start at
 CPAN Search (
http://search.cpan.org) and wonder at all the work people
 have done for you already! :)

The problem with things such as XML is that they have balanced text
 containing multiple levels of
balanced text, but sometimes it isn't
 balanced text, as in an empty tag (
, for instance). Even
then,
 things can occur out-of-order. Just when you think you've got a
 pattern that matches your input,
someone throws you a curveball.

If you'd like to do it the hard way, scratching and clawing your way
 toward a right answer but
constantly being disappointed, besieged by
 bug reports, and weary from the inordinate amount of
time you have to
 spend reinventing a triangular wheel, then there are several things
 you can try
before you give up in frustration:

* Solve the balanced text problem from another question in perlfaq6

* Try the recursive regex features in Perl 5.10 and later. See perlre

* Try defining a grammar using Perl 5.10's (?DEFINE) feature.

* Break the problem down into sub-problems instead of trying to use a single regex

* Convince everyone not to use XML or HTML in the first place

Good luck!

I put a regular expression into $/ but it didn't work. What's wrong?
$/ has to be a string. You can use these examples if you really need to
 do this.

If you have File::Stream, this is easy.

	 use File::Stream;

	 my $stream = File::Stream->new(
		 $filehandle,
		 separator => qr/\s*,\s*/,
);

	 print "$_\n" while <$stream>;

If you don't have File::Stream, you have to do a little more work.

You can use the four-argument form of sysread to continually add to
 a buffer. After you add to the
buffer, you check if you have a
 complete line (using your regular expression).

	 local $_ = "";
	 while(sysread FH, $_, 8192, length) {
		 while(s/^((?s).*?)your_pattern//) {
			 my $record = $1;
			 # do stuff here.
		 }
	 }

Perl version 5.12.1 documentation - perlfaq6

Page 4http://perldoc.perl.org

You can do the same thing with foreach and a match using the
 c flag and the \G anchor, if you do not
mind your entire file
 being in memory at the end.

	 local $_ = "";
	 while(sysread FH, $_, 8192, length) {
		 foreach my $record (m/\G((?s).*?)your_pattern/gc) {
			 # do stuff here.
		 }
	 substr($_, 0, pos) = "" if pos;
	 }

How do I substitute case insensitively on the LHS while preserving case on the RHS?
Here's a lovely Perlish solution by Larry Rosler. It exploits
 properties of bitwise xor on ASCII strings.

	 $_= "this is a TEsT case";

	 $old = 'test';
	 $new = 'success';

	 s{(\Q$old\E)}
	 { uc $new | (uc $1 ^ $1) .
		 (uc(substr $1, -1) ^ substr $1, -1) x
		 (length($new) - length $1)
	 }egi;

	 print;

And here it is as a subroutine, modeled after the above:

	 sub preserve_case($$) {
		 my ($old, $new) = @_;
		 my $mask = uc $old ^ $old;

		 uc $new | $mask .
			 substr($mask, -1) x (length($new) - length($old))
 }

	 $string = "this is a TEsT case";
	 $string =~ s/(test)/preserve_case($1, "success")/egi;
	 print "$string\n";

This prints:

	 this is a SUcCESS case

As an alternative, to keep the case of the replacement word if it is
 longer than the original, you can
use this code, by Jeff Pinyan:

	 sub preserve_case {
		 my ($from, $to) = @_;
		 my ($lf, $lt) = map length, @_;

		 if ($lt < $lf) { $from = substr $from, 0, $lt }
		 else { $from .= substr $to, $lf }

Perl version 5.12.1 documentation - perlfaq6

Page 5http://perldoc.perl.org

		 return uc $to | ($from ^ uc $from);
		 }

This changes the sentence to "this is a SUcCess case."

Just to show that C programmers can write C in any programming language,
 if you prefer a more
C-like solution, the following script makes the
 substitution have the same case, letter by letter, as the
original.
 (It also happens to run about 240% slower than the Perlish solution runs.)
 If the substitution
has more characters than the string being substituted,
 the case of the last character is used for the
rest of the substitution.

	 # Original by Nathan Torkington, massaged by Jeffrey Friedl
	 #
	 sub preserve_case($$)
	 {
		 my ($old, $new) = @_;
		 my ($state) = 0; # 0 = no change; 1 = lc; 2 = uc
		 my ($i, $oldlen, $newlen, $c) = (0, length($old), length($new));
		 my ($len) = $oldlen < $newlen ? $oldlen : $newlen;

		 for ($i = 0; $i < $len; $i++) {
			 if ($c = substr($old, $i, 1), $c =~ /[\W\d_]/) {
				 $state = 0;
			 } elsif (lc $c eq $c) {
				 substr($new, $i, 1) = lc(substr($new, $i, 1));
				 $state = 1;
			 } else {
				 substr($new, $i, 1) = uc(substr($new, $i, 1));
				 $state = 2;
			 }
		 }
		 # finish up with any remaining new (for when new is longer than old)
		 if ($newlen > $oldlen) {
			 if ($state == 1) {
				 substr($new, $oldlen) = lc(substr($new, $oldlen));
			 } elsif ($state == 2) {
				 substr($new, $oldlen) = uc(substr($new, $oldlen));
			 }
		 }
		 return $new;
	 }

How can I make \w match national character sets?
Put use locale; in your script. The \w character class is taken
 from the current locale.

See perllocale for details.

How can I match a locale-smart version of /[a-zA-Z]/?
You can use the POSIX character class syntax /[[:alpha:]]/
 documented in perlre.

No matter which locale you are in, the alphabetic characters are
 the characters in \w without the digits
and the underscore.
 As a regex, that looks like /[^\W\d_]/. Its complement,
 the non-alphabetics, is
then everything in \W along with
 the digits and the underscore, or /[\W\d_]/.

Perl version 5.12.1 documentation - perlfaq6

Page 6http://perldoc.perl.org

How can I quote a variable to use in a regex?
The Perl parser will expand $variable and @variable references in
 regular expressions unless the
delimiter is a single quote. Remember,
 too, that the right-hand side of a s/// substitution is
considered
 a double-quoted string (see perlop for more details). Remember
 also that any regex
special characters will be acted on unless you
 precede the substitution with \Q. Here's an example:

	 $string = "Placido P. Octopus";
	 $regex = "P.";

	 $string =~ s/$regex/Polyp/;
	 # $string is now "Polypacido P. Octopus"

Because . is special in regular expressions, and can match any
 single character, the regex P. here
has matched the <Pl> in the
 original string.

To escape the special meaning of ., we use \Q:

	 $string = "Placido P. Octopus";
	 $regex = "P.";

	 $string =~ s/\Q$regex/Polyp/;
	 # $string is now "Placido Polyp Octopus"

The use of \Q causes the <.> in the regex to be treated as a
 regular character, so that P. matches a
P followed by a dot.

What is /o really for?
(contributed by brian d foy)

The /o option for regular expressions (documented in perlop and perlreref) tells Perl to compile the
regular expression only once.
 This is only useful when the pattern contains a variable. Perls 5.6
 and
later handle this automatically if the pattern does not change.

Since the match operator m//, the substitution operator s///,
 and the regular expression quoting
operator qr// are double-quotish
 constructs, you can interpolate variables into the pattern. See the

answer to "How can I quote a variable to use in a regex?" for more
 details.

This example takes a regular expression from the argument list and
 prints the lines of input that match
it:

	 my $pattern = shift @ARGV;

	 while(<>) {
		 print if m/$pattern/;
		 }

Versions of Perl prior to 5.6 would recompile the regular expression
 for each iteration, even if
$pattern had not changed. The /o
 would prevent this by telling Perl to compile the pattern the first

time, then reuse that for subsequent iterations:

	 my $pattern = shift @ARGV;

	 while(<>) {
		 print if m/$pattern/o; # useful for Perl < 5.6
		 }

Perl version 5.12.1 documentation - perlfaq6

Page 7http://perldoc.perl.org

In versions 5.6 and later, Perl won't recompile the regular expression
 if the variable hasn't changed,
so you probably don't need the /o
 option. It doesn't hurt, but it doesn't help either. If you want any

version of Perl to compile the regular expression only once even if
 the variable changes (thus, only
using its initial value), you still
 need the /o.

You can watch Perl's regular expression engine at work to verify for
 yourself if Perl is recompiling a
regular expression. The use re
 'debug' pragma (comes with Perl 5.005 and later) shows the
details.
 With Perls before 5.6, you should see re reporting that its
 compiling the regular expression on
each iteration. With Perl 5.6 or
 later, you should only see re report that for the first iteration.

	 use re 'debug';

	 $regex = 'Perl';
	 foreach (qw(Perl Java Ruby Python)) {
		 print STDERR "-" x 73, "\n";
		 print STDERR "Trying $_...\n";
		 print STDERR "\t$_ is good!\n" if m/$regex/;
		 }

How do I use a regular expression to strip C style comments from a file?
While this actually can be done, it's much harder than you'd think.
 For example, this one-liner

	 perl -0777 -pe 's{/*.*?*/}{}gs' foo.c

will work in many but not all cases. You see, it's too simple-minded for
 certain kinds of C programs, in
particular, those with what appear to be
 comments in quoted strings. For that, you'd need something
like this,
 created by Jeffrey Friedl and later modified by Fred Curtis.

	 $/ = undef;
	 $_ = <>;
	
s#/*[^*]**+([^/*][^*]**+)*/|("(\\.|[^"\\])*"|'(\\.|[^'\\])*'|.[^/"'\\]*)
#defined $2 ? $2 : ""#gse;
	 print;

This could, of course, be more legibly written with the /x modifier, adding
 whitespace and comments.
Here it is expanded, courtesy of Fred Curtis.

 s{
 /* ## Start of /* ... */ comment
 [^*]**+ ## Non-* followed by 1-or-more *'s
 (
 [^/*][^*]**+
)* ## 0-or-more things which don't start with /
 ## but do end with '*'
 / ## End of /* ... */ comment

 | ## OR various things which aren't comments:

 (
 " ## Start of " ... " string
 (
 \\. ## Escaped char
 | ## OR
 [^"\\] ## Non "\

Perl version 5.12.1 documentation - perlfaq6

Page 8http://perldoc.perl.org

)*
 " ## End of " ... " string

 | ## OR

 ' ## Start of ' ... ' string
 (
 \\. ## Escaped char
 | ## OR
 [^'\\] ## Non '\
)*
 ' ## End of ' ... ' string

 | ## OR

 . ## Anything other char
 [^/"'\\]* ## Chars which doesn't start a comment, string or
escape
)
 }{defined $2 ? $2 : ""}gxse;

A slight modification also removes C++ comments, possibly spanning multiple lines
 using a
continuation character:

s#/*[^*]**+([^/*][^*]**+)*/|//([^\\]|[^\n][\n]?)*?\n|("(\\.|[^"\\])*"|'(
\\.|[^'\\])*'|.[^/"'\\]*)#defined $3 ? $3 : ""#gse;

Can I use Perl regular expressions to match balanced text?
(contributed by brian d foy)

Your first try should probably be the Text::Balanced module, which
 is in the Perl standard library
since Perl 5.8. It has a variety of
 functions to deal with tricky text. The Regexp::Common module can

also help by providing canned patterns you can use.

As of Perl 5.10, you can match balanced text with regular expressions
 using recursive patterns.
Before Perl 5.10, you had to resort to
 various tricks such as using Perl code in (??{}) sequences.

Here's an example using a recursive regular expression. The goal is to
 capture all of the text within
angle brackets, including the text in
 nested angle brackets. This sample text has two "major" groups:
a
 group with one level of nesting and a group with two levels of
 nesting. There are five total groups in
angle brackets:

	 I have some <brackets in <nested brackets> > and
	 <another group <nested once <nested twice> > >
	 and that's it.

The regular expression to match the balanced text uses two new (to
 Perl 5.10) regular expression
features. These are covered in perlre
 and this example is a modified version of one in that
documentation.

First, adding the new possessive + to any quantifier finds the
 longest match and does not backtrack.
That's important since you want
 to handle any angle brackets through the recursion, not backtracking.
The group [^<>]++ finds one or more non-angle brackets without
 backtracking.

Second, the new (?PARNO) refers to the sub-pattern in the
 particular capture buffer given by PARNO.

Perl version 5.12.1 documentation - perlfaq6

Page 9http://perldoc.perl.org

In the following regex,
 the first capture buffer finds (and remembers) the balanced text, and
 you need
that same pattern within the first buffer to get past the
 nested text. That's the recursive part. The (?1)
uses the pattern
 in the outer capture buffer as an independent part of the regex.

Putting it all together, you have:

	 #!/usr/local/bin/perl5.10.0

	 my $string =<<"HERE";
	 I have some <brackets in <nested brackets> > and
	 <another group <nested once <nested twice> > >
	 and that's it.
	 HERE

	 my @groups = $string =~ m/
			 (# start of capture buffer 1
			 < # match an opening angle bracket
				 (?:
					 [^<>]++ # one or more non angle brackets, non backtracking
					 |
					 (?1) # found < or >, so recurse to capture buffer 1
)*
			 > # match a closing angle bracket
) # end of capture buffer 1
			 /xg;

	 $" = "\n\t";
	 print "Found:\n\t@groups\n";

The output shows that Perl found the two major groups:

	 Found:
		 <brackets in <nested brackets> >
		 <another group <nested once <nested twice> > >

With a little extra work, you can get the all of the groups in angle
 brackets even if they are in other
angle brackets too. Each time you
 get a balanced match, remove its outer delimiter (that's the one
you
 just matched so don't match it again) and add it to a queue of strings
 to process. Keep doing that
until you get no matches:

	 #!/usr/local/bin/perl5.10.0

	 my @queue =<<"HERE";
	 I have some <brackets in <nested brackets> > and
	 <another group <nested once <nested twice> > >
	 and that's it.
	 HERE

	 my $regex = qr/
			 (# start of bracket 1
			 < # match an opening angle bracket
				 (?:
					 [^<>]++ # one or more non angle brackets, non backtracking
					 |
					 (?1) # recurse to bracket 1

Perl version 5.12.1 documentation - perlfaq6

Page 10http://perldoc.perl.org

)*
			 > # match a closing angle bracket
) # end of bracket 1
			 /x;

	 $" = "\n\t";

	 while(@queue)
		 {
		 my $string = shift @queue;

		 my @groups = $string =~ m/$regex/g;
		 print "Found:\n\t@groups\n\n" if @groups;

		 unshift @queue, map { s/^<//; s/>$//; $_ } @groups;
		 }

The output shows all of the groups. The outermost matches show up
 first and the nested matches so
up later:

	 Found:
		 <brackets in <nested brackets> >
		 <another group <nested once <nested twice> > >

	 Found:
		 <nested brackets>

	 Found:
		 <nested once <nested twice> >

	 Found:
		 <nested twice>

What does it mean that regexes are greedy? How can I get around it?
Most people mean that greedy regexes match as much as they can.
 Technically speaking, it's actually
the quantifiers (?, *, +, {}) that are greedy rather than the whole pattern; Perl prefers local
 greed and
immediate gratification to overall greed. To get non-greedy
 versions of the same quantifiers, use (??,
*?, +?, {}?).

An example:

	 $s1 = $s2 = "I am very very cold";
	 $s1 =~ s/ve.*y //; # I am cold
	 $s2 =~ s/ve.*?y //; # I am very cold

Notice how the second substitution stopped matching as soon as it
 encountered "y ". The *?
quantifier effectively tells the regular
 expression engine to find a match as quickly as possible and
pass
 control on to whatever is next in line, like you would if you were
 playing hot potato.

How do I process each word on each line?
Use the split function:

	 while (<>) {
		 foreach $word (split) {

Perl version 5.12.1 documentation - perlfaq6

Page 11http://perldoc.perl.org

			 # do something with $word here
		 }
	 }

Note that this isn't really a word in the English sense; it's just
 chunks of consecutive non-whitespace
characters.

To work with only alphanumeric sequences (including underscores), you
 might consider

	 while (<>) {
		 foreach $word (m/(\w+)/g) {
			 # do something with $word here
		 }
	 }

How can I print out a word-frequency or line-frequency summary?
To do this, you have to parse out each word in the input stream. We'll
 pretend that by word you mean
chunk of alphabetics, hyphens, or
 apostrophes, rather than the non-whitespace chunk idea of a word
given
 in the previous question:

	 while (<>) {
		 while (/(\b[^\W_\d][\w'-]+\b)/g) { # misses "`sheep'"
			 $seen{$1}++;
		 }
	 }

	 while (($word, $count) = each %seen) {
		 print "$count $word\n";
		 }

If you wanted to do the same thing for lines, you wouldn't need a
 regular expression:

	 while (<>) {
		 $seen{$_}++;
		 }

	 while (($line, $count) = each %seen) {
		 print "$count $line";
	 }

If you want these output in a sorted order, see perlfaq4: "How do I
 sort a hash (optionally by value
instead of key)?".

How can I do approximate matching?
See the module String::Approx available from CPAN.

How do I efficiently match many regular expressions at once?
(contributed by brian d foy)

Avoid asking Perl to compile a regular expression every time
 you want to match it. In this example,
perl must recompile
 the regular expression for every iteration of the foreach
 loop since it has no way
to know what $pattern will be.

	 @patterns = qw(foo bar baz);

Perl version 5.12.1 documentation - perlfaq6

Page 12http://perldoc.perl.org

	 LINE: while(<DATA>)
		 {
		 foreach $pattern (@patterns)
			 {
			 if(/\b$pattern\b/i)
				 {
				 print;
				 next LINE;
				 }
			 }
		 }

The qr// operator showed up in perl 5.005. It compiles a
 regular expression, but doesn't apply it.
When you use the
 pre-compiled version of the regex, perl does less work. In
 this example, I inserted a
map to turn each pattern into
 its pre-compiled form. The rest of the script is the same,
 but faster.

	 @patterns = map { qr/\b$_\b/i } qw(foo bar baz);

	 LINE: while(<>)
		 {
		 foreach $pattern (@patterns)
			 {
			 if(/$pattern/)
				 {
				 print;
				 next LINE;
				 }
			 }
		 }

In some cases, you may be able to make several patterns into
 a single regular expression. Beware of
situations that require
 backtracking though.

	 $regex = join '|', qw(foo bar baz);

	 LINE: while(<>)
		 {
		 print if /\b(?:$regex)\b/i;
		 }

For more details on regular expression efficiency, see Mastering
 Regular Expressions by Jeffrey
Freidl. He explains how regular
 expressions engine work and why some patterns are surprisingly

inefficient. Once you understand how perl applies regular
 expressions, you can tune them for
individual situations.

Why don't word-boundary searches with \b work for me?
(contributed by brian d foy)

Ensure that you know what \b really does: it's the boundary between a
 word character, \w, and
something that isn't a word character. That
 thing that isn't a word character might be \W, but it can
also be the
 start or end of the string.

It's not (not!) the boundary between whitespace and non-whitespace,
 and it's not the stuff between
words we use to create sentences.

In regex speak, a word boundary (\b) is a "zero width assertion",
 meaning that it doesn't represent a

Perl version 5.12.1 documentation - perlfaq6

Page 13http://perldoc.perl.org

character in the string, but a
 condition at a certain position.

For the regular expression, /\bPerl\b/, there has to be a word
 boundary before the "P" and after the "l".
As long as something other
 than a word character precedes the "P" and succeeds the "l", the
 pattern
will match. These strings match /\bPerl\b/.

	 "Perl" # no word char before P or after l
	 "Perl " # same as previous (space is not a word char)
	 "'Perl'" # the ' char is not a word char
	 "Perl's" # no word char before P, non-word char after "l"

These strings do not match /\bPerl\b/.

	 "Perl_" # _ is a word char!
	 "Perler" # no word char before P, but one after l

You don't have to use \b to match words though. You can look for
 non-word characters surrounded by
word characters. These strings
 match the pattern /\b'\b/.

	 "don't" # the ' char is surrounded by "n" and "t"
	 "qep'a'" # the ' char is surrounded by "p" and "a"

These strings do not match /\b'\b/.

	 "foo'" # there is no word char after non-word '

You can also use the complement of \b, \B, to specify that there
 should not be a word boundary.

In the pattern /\Bam\B/, there must be a word character before the "a"
 and after the "m". These
patterns match /\Bam\B/:

	 "llama" # "am" surrounded by word chars
	 "Samuel" # same

These strings do not match /\Bam\B/

	 "Sam" # no word boundary before "a", but one after "m"
	 "I am Sam" # "am" surrounded by non-word chars

Why does using $&, $`, or $' slow my program down?
(contributed by Anno Siegel)

Once Perl sees that you need one of these variables anywhere in the
 program, it provides them on
each and every pattern match. That means
 that on every pattern match the entire string will be
copied, part of it
 to $`, part to $&, and part to $'. Thus the penalty is most severe with
 long strings and
patterns that match often. Avoid $&, $', and $` if you
 can, but if you can't, once you've used them at
all, use them at will
 because you've already paid the price. Remember that some algorithms
 really
appreciate them. As of the 5.005 release, the $& variable is no
 longer "expensive" the way the other
two are.

Since Perl 5.6.1 the special variables @- and @+ can functionally replace
 $`, $& and $'. These arrays
contain pointers to the beginning and end
 of each match (see perlvar for the full story), so they give
you
 essentially the same information, but without the risk of excessive
 string copying.

Perl 5.10 added three specials, ${^MATCH}, ${^PREMATCH}, and ${^POSTMATCH} to do the same
job but without the global performance
 penalty. Perl 5.10 only sets these variables if you compile or
execute the
 regular expression with the /p modifier.

Perl version 5.12.1 documentation - perlfaq6

Page 14http://perldoc.perl.org

What good is \G in a regular expression?
You use the \G anchor to start the next match on the same
 string where the last match left off. The
regular
 expression engine cannot skip over any characters to find
 the next match with this anchor, so
\G is similar to the
 beginning of string anchor, ^. The \G anchor is typically
 used with the g flag. It
uses the value of pos()
 as the position to start the next match. As the match
 operator makes
successive matches, it updates pos() with the
 position of the next character past the last match (or
the
 first character of the next match, depending on how you like
 to look at it). Each string has its own
pos() value.

Suppose you want to match all of consecutive pairs of digits
 in a string like "1122a44" and stop
matching when you
 encounter non-digits. You want to match 11 and 22 but
 the letter <a> shows up
between 22 and 44 and you want
 to stop at a. Simply matching pairs of digits skips over
 the a and
still matches 44.

	 $_ = "1122a44";
	 my @pairs = m/(\d\d)/g; # qw(11 22 44)

If you use the \G anchor, you force the match after 22 to
 start with the a. The regular expression
cannot match
 there since it does not find a digit, so the next match
 fails and the match operator
returns the pairs it already
 found.

	 $_ = "1122a44";
	 my @pairs = m/\G(\d\d)/g; # qw(11 22)

You can also use the \G anchor in scalar context. You
 still need the g flag.

	 $_ = "1122a44";
	 while(m/\G(\d\d)/g)
		 {
		 print "Found $1\n";
		 }

After the match fails at the letter a, perl resets pos()
 and the next match on the same string starts at
the beginning.

	 $_ = "1122a44";
	 while(m/\G(\d\d)/g)
		 {
		 print "Found $1\n";
		 }

	 print "Found $1 after while" if m/(\d\d)/g; # finds "11"

You can disable pos() resets on fail with the c flag, documented
 in perlop and perlreref. Subsequent
matches start where the last
 successful match ended (the value of pos()) even if a match on the

same string has failed in the meantime. In this case, the match after
 the while() loop starts at the a
(where the last match stopped),
 and since it does not use any anchor it can skip over the a to find 44.

	 $_ = "1122a44";
	 while(m/\G(\d\d)/gc)
		 {
		 print "Found $1\n";
		 }

	 print "Found $1 after while" if m/(\d\d)/g; # finds "44"

Perl version 5.12.1 documentation - perlfaq6

Page 15http://perldoc.perl.org

Typically you use the \G anchor with the c flag
 when you want to try a different match if one fails,

such as in a tokenizer. Jeffrey Friedl offers this example
 which works in 5.004 or later.

	 while (<>) {
		 chomp;
		 PARSER: {
			 m/ \G(\d+\b)/gcx && do { print "number: $1\n"; redo; };
			 m/ \G(\w+)/gcx && do { print "word: $1\n"; redo; };
			 m/ \G(\s+)/gcx && do { print "space: $1\n"; redo; };
			 m/ \G([^\w\d]+)/gcx && do { print "other: $1\n"; redo; };
		 }
	 }

For each line, the PARSER loop first tries to match a series
 of digits followed by a word boundary. This
match has to
 start at the place the last match left off (or the beginning
 of the string on the first match).
Since m/ \G(\d+\b
)/gcx uses the c flag, if the string does not match that
 regular expression,
perl does not reset pos() and the next
 match starts at the same position to try a different
 pattern.

Are Perl regexes DFAs or NFAs? Are they POSIX compliant?
While it's true that Perl's regular expressions resemble the DFAs
 (deterministic finite automata) of the
egrep(1) program, they are in
 fact implemented as NFAs (non-deterministic finite automata) to allow

backtracking and backreferencing. And they aren't POSIX-style either,
 because those guarantee
worst-case behavior for all cases. (It seems
 that some people prefer guarantees of consistency, even
when what's
 guaranteed is slowness.) See the book "Mastering Regular Expressions"
 (from O'Reilly)
by Jeffrey Friedl for all the details you could ever
 hope to know on these matters (a full citation
appears in perlfaq2).

What's wrong with using grep in a void context?
The problem is that grep builds a return list, regardless of the context.
 This means you're making Perl
go to the trouble of building a list that
 you then just throw away. If the list is large, you waste both time
and space.
 If your intent is to iterate over the list, then use a for loop for this
 purpose.

In perls older than 5.8.1, map suffers from this problem as well.
 But since 5.8.1, this has been fixed,
and map is context aware - in void
 context, no lists are constructed.

How can I match strings with multibyte characters?
Starting from Perl 5.6 Perl has had some level of multibyte character
 support. Perl 5.8 or later is
recommended. Supported multibyte
 character repertoires include Unicode, and legacy encodings

through the Encode module. See perluniintro, perlunicode,
 and Encode.

If you are stuck with older Perls, you can do Unicode with the Unicode::String module, and
character conversions using the Unicode::Map8 and Unicode::Map modules. If you are using

Japanese encodings, you might try using the jperl 5.005_03.

Finally, the following set of approaches was offered by Jeffrey
 Friedl, whose article in issue #5 of The
Perl Journal talks about
 this very matter.

Let's suppose you have some weird Martian encoding where pairs of
 ASCII uppercase letters encode
single Martian letters (i.e. the two
 bytes "CV" make a single Martian letter, as do the two bytes "SG",

"VS", "XX", etc.). Other bytes represent single characters, just like
 ASCII.

So, the string of Martian "I am CVSGXX!" uses 12 bytes to encode the
 nine characters 'I', ' ', 'a', 'm', ' ',
'CV', 'SG', 'XX', '!'.

Now, say you want to search for the single character /GX/. Perl
 doesn't know about Martian, so it'll
find the two bytes "GX" in the "I
 am CVSGXX!" string, even though that character isn't there: it just

looks like it is because "SG" is next to "XX", but there's no real
 "GX". This is a big problem.

Perl version 5.12.1 documentation - perlfaq6

Page 16http://perldoc.perl.org

Here are a few ways, all painful, to deal with it:

	 # Make sure adjacent "martian" bytes are no longer adjacent.
	 $martian =~ s/([A-Z][A-Z])/ $1 /g;

	 print "found GX!\n" if $martian =~ /GX/;

Or like this:

	 @chars = $martian =~ m/([A-Z][A-Z]|[^A-Z])/g;
	 # above is conceptually similar to: @chars = $text =~ m/(.)/g;
	 #
	 foreach $char (@chars) {
	 print "found GX!\n", last if $char eq 'GX';
	 }

Or like this:

	 while ($martian =~ m/\G([A-Z][A-Z]|.)/gs) { # \G probably unneeded
		 print "found GX!\n", last if $1 eq 'GX';
		 }

Here's another, slightly less painful, way to do it from Benjamin
 Goldberg, who uses a zero-width
negative look-behind assertion.

	 print "found GX!\n" if	 $martian =~ m/
		 (?<![A-Z])
		 (?:[A-Z][A-Z])*?
		 GX
		 /x;

This succeeds if the "martian" character GX is in the string, and fails
 otherwise. If you don't like using
(?<!), a zero-width negative
 look-behind assertion, you can replace (?<![A-Z]) with (?:^|[^A-Z]).

It does have the drawback of putting the wrong thing in $-[0] and $+[0],
 but this usually can be worked
around.

How do I match a regular expression that's in a variable?
 ,
(contributed by brian d foy)

We don't have to hard-code patterns into the match operator (or
 anything else that works with regular
expressions). We can put the
 pattern in a variable for later use.

The match operator is a double quote context, so you can interpolate
 your variable just like a double
quoted string. In this case, you
 read the regular expression as user input and store it in $regex.

Once you have the pattern in $regex, you use that variable in the
 match operator.

	 chomp(my $regex = <STDIN>);

	 if($string =~ m/$regex/) { ... }

Any regular expression special characters in $regex are still
 special, and the pattern still has to be
valid or Perl will complain.
 For instance, in this pattern there is an unpaired parenthesis.

	 my $regex = "Unmatched (paren";

Perl version 5.12.1 documentation - perlfaq6

Page 17http://perldoc.perl.org

	 "Two parens to bind them all" =~ m/$regex/;

When Perl compiles the regular expression, it treats the parenthesis
 as the start of a memory match.
When it doesn't find the closing
 parenthesis, it complains:

	 Unmatched (in regex; marked by <-- HERE in m/Unmatched (<-- HERE paren/
 at script line 3.

You can get around this in several ways depending on our situation.
 First, if you don't want any of the
characters in the string to be
 special, you can escape them with quotemeta before you use the
string.

	 chomp(my $regex = <STDIN>);
	 $regex = quotemeta($regex);

	 if($string =~ m/$regex/) { ... }

You can also do this directly in the match operator using the \Q
 and \E sequences. The \Q tells Perl
where to start escaping
 special characters, and the \E tells it where to stop (see perlop
 for more
details).

	 chomp(my $regex = <STDIN>);

	 if($string =~ m/\Q$regex\E/) { ... }

Alternately, you can use qr//, the regular expression quote operator (see perlop for more details). It
quotes and perhaps compiles the pattern,
 and you can apply regular expression flags to the pattern.

	 chomp(my $input = <STDIN>);

	 my $regex = qr/$input/is;

	 $string =~ m/$regex/ # same as m/$input/is;

You might also want to trap any errors by wrapping an eval block
 around the whole thing.

	 chomp(my $input = <STDIN>);

	 eval {
		 if($string =~ m/\Q$input\E/) { ... }
		 };
	 warn $@ if $@;

Or...

	 my $regex = eval { qr/$input/is };
	 if(defined $regex) {
		 $string =~ m/$regex/;
		 }
	 else {
		 warn $@;
		 }

Perl version 5.12.1 documentation - perlfaq6

Page 18http://perldoc.perl.org

AUTHOR AND COPYRIGHT
Copyright (c) 1997-2010 Tom Christiansen, Nathan Torkington, and
 other authors as noted. All rights
reserved.

This documentation is free; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Irrespective of its distribution, all code examples in this file
 are hereby placed into the public domain.
You are permitted and
 encouraged to use this code in your own programs for fun
 or for profit as you
see fit. A simple comment in the code giving
 credit would be courteous but is not required.

