
Perl version 5.12.1 documentation - File::Spec::Mac

Page 1http://perldoc.perl.org

NAME
File::Spec::Mac - File::Spec for Mac OS (Classic)

SYNOPSIS
 require File::Spec::Mac; # Done internally by File::Spec if needed

DESCRIPTION
Methods for manipulating file specifications.

METHODS
canonpath

On Mac OS, there's nothing to be done. Returns what it's given.

catdir()

Concatenate two or more directory names to form a path separated by colons
 (":") ending with a
directory. Resulting paths are relative by default,
 but can be forced to be absolute (but avoid this,
see below). Automatically
 puts a trailing ":" on the end of the complete path, because that's what's
done in MacPerl's environment and helps to distinguish a file path from a
 directory path.

IMPORTANT NOTE: Beginning with version 1.3 of this module, the resulting
 path is relative by
default and not absolute. This decision was made due
 to portability reasons. Since File::Spec-
>catdir() returns relative paths
 on all other operating systems, it will now also follow this
convention on Mac
 OS. Note that this may break some existing scripts.

The intended purpose of this routine is to concatenate directory names.
 But because of the nature
of Macintosh paths, some additional possibilities
 are allowed to make using this routine give
reasonable results for some
 common situations. In other words, you are also allowed to
concatenate paths instead of directory names (strictly speaking, a string like ":a"
 is a path, but not
a name, since it contains a punctuation character ":").

So, beside calls like

 catdir("a") = ":a:"
 catdir("a","b") = ":a:b:"
 catdir() = "" (special case)

calls like the following

 catdir(":a:") = ":a:"
 catdir(":a","b") = ":a:b:"
 catdir(":a:","b") = ":a:b:"
 catdir(":a:",":b:") = ":a:b:"
 catdir(":") = ":"

are allowed.

Here are the rules that are used in catdir(); note that we try to be as
 compatible as possible to
Unix:

1. The resulting path is relative by default, i.e. the resulting path will have a
 leading colon.

2. A trailing colon is added automatically to the resulting path, to denote a
 directory.

3. Generally, each argument has one leading ":" and one trailing ":"
 removed (if any). They are
then joined together by a ":". Special
 treatment applies for arguments denoting updir paths like
"::lib:",
 see (4), or arguments consisting solely of colons ("colon paths"),
 see (5).

4. When an updir path like ":::lib::" is passed as argument, the number
 of directories to climb up
is handled correctly, not removing leading
 or trailing colons when necessary. E.g.

 catdir(":::a","::b","c") = ":::a::b:c:"

Perl version 5.12.1 documentation - File::Spec::Mac

Page 2http://perldoc.perl.org

 catdir(":::a::","::b","c") = ":::a:::b:c:"

5. Adding a colon ":" or empty string "" to a path at any position
 doesn't alter the path, i.e. these
arguments are ignored. (When a ""
 is passed as the first argument, it has a special meaning,
see
 (6)). This way, a colon ":" is handled like a "." (curdir) on Unix,
 while an empty string "" is
generally ignored (see Unix->canonpath()). Likewise, a "::" is handled like a ".."
 (updir),
and a ":::" is handled like a "../.." etc. E.g.

 catdir("a",":",":","b") = ":a:b:"
 catdir("a",":","::",":b") = ":a::b:"

6. If the first argument is an empty string "" or is a volume name, i.e. matches
 the pattern /^[^:]+:/,
the resulting path is absolute.

7. Passing an empty string "" as the first argument to catdir() is
 like passingFile::Spec->
rootdir() as the first argument, i.e.

 catdir("","a","b") is the same as

 catdir(rootdir(),"a","b").

This is true on Unix, where catdir("","a","b") yields "/a/b" and rootdir() is "/". Note
that rootdir() on Mac OS is the startup
 volume, which is the closest in concept to Unix' "/".
This should help
 to run existing scripts originally written for Unix.

8. For absolute paths, some cleanup is done, to ensure that the volume
 name isn't immediately
followed by updirs. This is invalid, because
 this would go beyond "root". Generally, these
cases are handled like
 their Unix counterparts:

 Unix:
 Unix->catdir("","") = "/"
 Unix->catdir("",".") = "/"
 Unix->catdir("","..") = "/" # can't
go beyond root
 Unix->catdir("",".","..","..","a") = "/a"
 Mac:
 Mac->catdir("","") = rootdir() # (e.g.
"HD:")
 Mac->catdir("",":") = rootdir()
 Mac->catdir("","::") = rootdir() # can't
go beyond root
 Mac->catdir("",":","::","::","a") = rootdir() . "a:" # (e.g.
"HD:a:")

However, this approach is limited to the first arguments following
 "root" (again, see Unix->
canonpath()). If there are more
 arguments that move up the directory tree, an invalid path
going
 beyond root can be created.

As you've seen, you can force catdir() to create an absolute path
 by passing either an empty
string or a path that begins with a volume
 name as the first argument. However, you are strongly
encouraged not
 to do so, since this is done only for backward compatibility. Newer
 versions of
File::Spec come with a method called catpath() (see
 below), that is designed to offer a portable
solution for the creation
 of absolute paths. It takes volume, directory and file portions and
 returns
an entire path. While catdir() is still suitable for the
 concatenation of directory names, you are
encouraged to use catpath() to concatenate volume names and directory
 paths. E.g.

 $dir = File::Spec->catdir("tmp","sources");
 $abs_path = File::Spec->catpath("MacintoshHD:", $dir,"");

Perl version 5.12.1 documentation - File::Spec::Mac

Page 3http://perldoc.perl.org

yields

 "MacintoshHD:tmp:sources:" .

catfile

Concatenate one or more directory names and a filename to form a
 complete path ending with a
filename. Resulting paths are relative
 by default, but can be forced to be absolute (but avoid this).

IMPORTANT NOTE: Beginning with version 1.3 of this module, the
 resulting path is relative by
default and not absolute. This
 decision was made due to portability reasons. Since File::Spec-
>catfile() returns relative paths on all other
 operating systems, it will now also follow this
convention on Mac OS.
 Note that this may break some existing scripts.

The last argument is always considered to be the file portion. Since catfile() uses catdir()
(see above) for the concatenation of the
 directory portions (if any), the following with regard to
relative and
 absolute paths is true:

 catfile("") = ""
 catfile("file") = "file"

but

 catfile("","") = rootdir() # (e.g. "HD:")
 catfile("","file") = rootdir() . file # (e.g. "HD:file")
 catfile("HD:","file") = "HD:file"

This means that catdir() is called only when there are two or more
 arguments, as one might
expect.

Note that the leading ":" is removed from the filename, so that

 catfile("a","b","file") = ":a:b:file" and

 catfile("a","b",":file") = ":a:b:file"

give the same answer.

To concatenate volume names, directory paths and filenames,
 you are encouraged to use
catpath() (see below).

curdir

Returns a string representing the current directory. On Mac OS, this is ":".

devnull

Returns a string representing the null device. On Mac OS, this is "Dev:Null".

rootdir

Returns a string representing the root directory. Under MacPerl,
 returns the name of the startup
volume, since that's the closest in
 concept, although other volumes aren't rooted there. The name
has a
 trailing ":", because that's the correct specification for a volume
 name on Mac OS.

If Mac::Files could not be loaded, the empty string is returned.

tmpdir

Returns the contents of $ENV{TMPDIR}, if that directory exits or the
 current working directory
otherwise. Under MacPerl, $ENV{TMPDIR} will
 contain a path like "MacintoshHD:Temporary
Items:", which is a hidden
 directory on your startup volume.

updir

Returns a string representing the parent directory. On Mac OS, this is "::".

file_name_is_absolute

Perl version 5.12.1 documentation - File::Spec::Mac

Page 4http://perldoc.perl.org

Takes as argument a path and returns true, if it is an absolute path.
 If the path has a leading ":",
it's a relative path. Otherwise, it's an
 absolute path, unless the path doesn't contain any colons,
i.e. it's a name
 like "a". In this particular case, the path is considered to be relative
 (i.e. it is
considered to be a filename). Use ":" in the appropriate place
 in the path if you want to distinguish
unambiguously. As a special case,
 the filename '' is always considered to be absolute. Note that
with version
 1.2 of File::Spec::Mac, this does no longer consult the local filesystem.

E.g.

 File::Spec->file_name_is_absolute("a"); # false
(relative)
 File::Spec->file_name_is_absolute(":a:b:"); # false
(relative)
 File::Spec->file_name_is_absolute("MacintoshHD:"); # true
(absolute)
 File::Spec->file_name_is_absolute(""); # true
(absolute)

path

Returns the null list for the MacPerl application, since the concept is
 usually meaningless under
Mac OS. But if you're using the MacPerl tool under
 MPW, it gives back $ENV{Commands}
suitably split, as is done in
 :lib:ExtUtils:MM_Mac.pm.

splitpath

 ($volume,$directories,$file) = File::Spec->splitpath($path);
 ($volume,$directories,$file) = File::Spec->splitpath($path,
$no_file);

Splits a path into volume, directory, and filename portions.

On Mac OS, assumes that the last part of the path is a filename unless
 $no_file is true or a trailing
separator ":" is present.

The volume portion is always returned with a trailing ":". The directory portion
 is always returned
with a leading (to denote a relative path) and a trailing ":"
 (to denote a directory). The file portion is
always returned without a leading ":".
 Empty portions are returned as empty string ''.

The results can be passed to catpath() to get back a path equivalent to
 (usually identical to)
the original path.

splitdir

The opposite of catdir().

 @dirs = File::Spec->splitdir($directories);

$directories should be only the directory portion of the path on systems
 that have the concept of a
volume or that have path syntax that differentiates
 files from directories. Consider using
splitpath() otherwise.

Unlike just splitting the directories on the separator, empty directory names
 ("") can be returned.
Since catdir() on Mac OS always appends a trailing
 colon to distinguish a directory path from a
file path, a single trailing colon
 will be ignored, i.e. there's no empty directory name after it.

Hence, on Mac OS, both

 File::Spec->splitdir(":a:b::c:"); and
 File::Spec->splitdir(":a:b::c");

yield:

 ("a", "b", "::", "c")

Perl version 5.12.1 documentation - File::Spec::Mac

Page 5http://perldoc.perl.org

while

 File::Spec->splitdir(":a:b::c::");

yields:

 ("a", "b", "::", "c", "::")

catpath

 $path = File::Spec->catpath($volume,$directory,$file);

Takes volume, directory and file portions and returns an entire path. On Mac OS,
 $volume,
$directory and $file are concatenated. A ':' is inserted if need be. You
 may pass an empty string
for each portion. If all portions are empty, the empty
 string is returned. If $volume is empty, the
result will be a relative path,
 beginning with a ':'. If $volume and $directory are empty, a leading ":"
(if any)
 is removed form $file and the remainder is returned. If $file is empty, the
 resulting path will
have a trailing ':'.

abs2rel

Takes a destination path and an optional base path and returns a relative path
 from the base path
to the destination path:

 $rel_path = File::Spec->abs2rel($path) ;
 $rel_path = File::Spec->abs2rel($path, $base) ;

Note that both paths are assumed to have a notation that distinguishes a
 directory path (with
trailing ':') from a file path (without trailing ':').

If $base is not present or '', then the current working directory is used.
 If $base is relative, then it is
converted to absolute form using rel2abs().
 This means that it is taken to be relative to the
current working directory.

If $path and $base appear to be on two different volumes, we will not
 attempt to resolve the two
paths, and we will instead simply return
 $path. Note that previous versions of this module ignored
the volume
 of $base, which resulted in garbage results part of the time.

If $base doesn't have a trailing colon, the last element of $base is
 assumed to be a filename. This
filename is ignored. Otherwise all path
 components are assumed to be directories.

If $path is relative, it is converted to absolute form using rel2abs().
 This means that it is taken
to be relative to the current working directory.

Based on code written by Shigio Yamaguchi.

rel2abs

Converts a relative path to an absolute path:

 $abs_path = File::Spec->rel2abs($path) ;
 $abs_path = File::Spec->rel2abs($path, $base) ;

Note that both paths are assumed to have a notation that distinguishes a
 directory path (with
trailing ':') from a file path (without trailing ':').

If $base is not present or '', then $base is set to the current working
 directory. If $base is relative,
then it is converted to absolute form
 using rel2abs(). This means that it is taken to be relative
to the
 current working directory.

If $base doesn't have a trailing colon, the last element of $base is
 assumed to be a filename. This
filename is ignored. Otherwise all path
 components are assumed to be directories.

If $path is already absolute, it is returned and $base is ignored.

Based on code written by Shigio Yamaguchi.

Perl version 5.12.1 documentation - File::Spec::Mac

Page 6http://perldoc.perl.org

AUTHORS
See the authors list in File::Spec. Mac OS support by Paul Schinder
 <schinder@pobox.com> and
Thomas Wegner <wegner_thomas@yahoo.com>.

COPYRIGHT
Copyright (c) 2004 by the Perl 5 Porters. All rights reserved.

This program is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

SEE ALSO
See File::Spec and File::Spec::Unix. This package overrides the
 implementation of these methods,
not the semantics.

