
Perl version 5.12.1 documentation - DB_File

Page 1http://perldoc.perl.org

NAME
DB_File - Perl5 access to Berkeley DB version 1.x

SYNOPSIS
 use DB_File;

 [$X =] tie %hash, 'DB_File', [$filename, $flags, $mode, $DB_HASH] ;
 [$X =] tie %hash, 'DB_File', $filename, $flags, $mode, $DB_BTREE ;
 [$X =] tie @array, 'DB_File', $filename, $flags, $mode, $DB_RECNO ;

 $status = $X->del($key [, $flags]) ;
 $status = $X->put($key, $value [, $flags]) ;
 $status = $X->get($key, $value [, $flags]) ;
 $status = $X->seq($key, $value, $flags) ;
 $status = $X->sync([$flags]) ;
 $status = $X->fd ;

 # BTREE only
 $count = $X->get_dup($key) ;
 @list = $X->get_dup($key) ;
 %list = $X->get_dup($key, 1) ;
 $status = $X->find_dup($key, $value) ;
 $status = $X->del_dup($key, $value) ;

 # RECNO only
 $a = $X->length;
 $a = $X->pop ;
 $X->push(list);
 $a = $X->shift;
 $X->unshift(list);
 @r = $X->splice(offset, length, elements);

 # DBM Filters
 $old_filter = $db->filter_store_key (sub { ... }) ;
 $old_filter = $db->filter_store_value(sub { ... }) ;
 $old_filter = $db->filter_fetch_key (sub { ... }) ;
 $old_filter = $db->filter_fetch_value(sub { ... }) ;

 untie %hash ;
 untie @array ;

DESCRIPTION
DB_File is a module which allows Perl programs to make use of the
 facilities provided by Berkeley
DB version 1.x (if you have a newer
 version of DB, see Using DB_File with Berkeley DB version 2 or
greater).
 It is assumed that you have a copy of the Berkeley DB manual pages at
 hand when reading
this documentation. The interface defined here
 mirrors the Berkeley DB interface closely.

Berkeley DB is a C library which provides a consistent interface to a
 number of database formats.
DB_File provides an interface to all
 three of the database types currently supported by Berkeley DB.

The file types are:

DB_HASH

This database type allows arbitrary key/value pairs to be stored in data
 files. This is

Perl version 5.12.1 documentation - DB_File

Page 2http://perldoc.perl.org

equivalent to the functionality provided by other
 hashing packages like DBM, NDBM, ODBM,
GDBM, and SDBM. Remember though,
 the files created using DB_HASH are not
compatible with any of the
 other packages mentioned.

A default hashing algorithm, which will be adequate for most
 applications, is built into
Berkeley DB. If you do need to use your own
 hashing algorithm it is possible to write your
own in Perl and have DB_File use it instead.

DB_BTREE

The btree format allows arbitrary key/value pairs to be stored in a
 sorted, balanced binary
tree.

As with the DB_HASH format, it is possible to provide a user defined
 Perl routine to perform
the comparison of keys. By default, though, the
 keys are stored in lexical order.

DB_RECNO

DB_RECNO allows both fixed-length and variable-length flat text files
 to be manipulated
using the same key/value pair interface as in DB_HASH
 and DB_BTREE. In this case the
key will consist of a record (line)
 number.

Using DB_File with Berkeley DB version 2 or greater
Although DB_File is intended to be used with Berkeley DB version 1,
 it can also be used with version
2, 3 or 4. In this case the interface is
 limited to the functionality provided by Berkeley DB 1.x.
Anywhere the
 version 2 or greater interface differs, DB_File arranges for it to work
 like version 1. This
feature allows DB_File scripts that were built
 with version 1 to be migrated to version 2 or greater
without any changes.

If you want to make use of the new features available in Berkeley DB
 2.x or greater, use the Perl
module BerkeleyDB instead.

Note: The database file format has changed multiple times in Berkeley
 DB version 2, 3 and 4. If you
cannot recreate your databases, you
 must dump any existing databases with either the db_dump or
the db_dump185 utility that comes with Berkeley DB.
 Once you have rebuilt DB_File to use Berkeley
DB version 2 or greater,
 your databases can be recreated using db_load. Refer to the Berkeley DB

documentation for further details.

Please read COPYRIGHT before using version 2.x or greater of Berkeley
 DB with DB_File.

Interface to Berkeley DB
DB_File allows access to Berkeley DB files using the tie() mechanism
 in Perl 5 (for full details, see
"tie()" in perlfunc). This facility
 allows DB_File to access Berkeley DB files using either an
 associative
array (for DB_HASH & DB_BTREE file types) or an ordinary
 array (for the DB_RECNO file type).

In addition to the tie() interface, it is also possible to access most
 of the functions provided in the
Berkeley DB API directly.
 See THE API INTERFACE.

Opening a Berkeley DB Database File
Berkeley DB uses the function dbopen() to open or create a database.
 Here is the C prototype for
dbopen():

 DB*
 dbopen (const char * file, int flags, int mode,
 DBTYPE type, const void * openinfo)

The parameter type is an enumeration which specifies which of the 3
 interface methods (DB_HASH,
DB_BTREE or DB_RECNO) is to be used.
 Depending on which of these is actually chosen, the final
parameter, openinfo points to a data structure which allows tailoring of the
 specific interface method.

This interface is handled slightly differently in DB_File. Here is
 an equivalent call using DB_File:

Perl version 5.12.1 documentation - DB_File

Page 3http://perldoc.perl.org

 tie %array, 'DB_File', $filename, $flags, $mode, $DB_HASH ;

The filename, flags and mode parameters are the direct
 equivalent of their dbopen() counterparts.
The final parameter $DB_HASH
 performs the function of both the type and openinfo parameters in
dbopen().

In the example above $DB_HASH is actually a pre-defined reference to a
 hash object. DB_File has
three of these pre-defined references.
 Apart from $DB_HASH, there is also $DB_BTREE and
$DB_RECNO.

The keys allowed in each of these pre-defined references is limited to
 the names used in the
equivalent C structure. So, for example, the
 $DB_HASH reference will only allow keys called bsize,
cachesize, ffactor, hash, lorder and nelem.

To change one of these elements, just assign to it like this:

	 $DB_HASH->{'cachesize'} = 10000 ;

The three predefined variables $DB_HASH, $DB_BTREE and $DB_RECNO are
 usually adequate for
most applications. If you do need to create extra
 instances of these objects, constructors are available
for each file
 type.

Here are examples of the constructors and the valid options available
 for DB_HASH, DB_BTREE and
DB_RECNO respectively.

 $a = new DB_File::HASHINFO ;
 $a->{'bsize'} ;
 $a->{'cachesize'} ;
 $a->{'ffactor'};
 $a->{'hash'} ;
 $a->{'lorder'} ;
 $a->{'nelem'} ;

 $b = new DB_File::BTREEINFO ;
 $b->{'flags'} ;
 $b->{'cachesize'} ;
 $b->{'maxkeypage'} ;
 $b->{'minkeypage'} ;
 $b->{'psize'} ;
 $b->{'compare'} ;
 $b->{'prefix'} ;
 $b->{'lorder'} ;

 $c = new DB_File::RECNOINFO ;
 $c->{'bval'} ;
 $c->{'cachesize'} ;
 $c->{'psize'} ;
 $c->{'flags'} ;
 $c->{'lorder'} ;
 $c->{'reclen'} ;
 $c->{'bfname'} ;

The values stored in the hashes above are mostly the direct equivalent
 of their C counterpart. Like
their C counterparts, all are set to a
 default values - that means you don't have to set all of the
 values
when you only want to change one. Here is an example:

 $a = new DB_File::HASHINFO ;

Perl version 5.12.1 documentation - DB_File

Page 4http://perldoc.perl.org

 $a->{'cachesize'} = 12345 ;
 tie %y, 'DB_File', "filename", $flags, 0777, $a ;

A few of the options need extra discussion here. When used, the C
 equivalent of the keys hash,
compare and prefix store pointers
 to C functions. In DB_File these keys are used to store
references
 to Perl subs. Below are templates for each of the subs:

 sub hash
 {
 my ($data) = @_ ;
 ...
 # return the hash value for $data
	 return $hash ;
 }

 sub compare
 {
	 my ($key, $key2) = @_ ;
 ...
 # return 0 if $key1 eq $key2
 # -1 if $key1 lt $key2
 # 1 if $key1 gt $key2
 return (-1 , 0 or 1) ;
 }

 sub prefix
 {
	 my ($key, $key2) = @_ ;
 ...
 # return number of bytes of $key2 which are
 # necessary to determine that it is greater than $key1
 return $bytes ;
 }

See Changing the BTREE sort order for an example of using the compare template.

If you are using the DB_RECNO interface and you intend making use of bval, you should check out
The 'bval' Option.

Default Parameters
It is possible to omit some or all of the final 4 parameters in the
 call to tie and let them take default
values. As DB_HASH is the most
 common file format used, the call:

 tie %A, "DB_File", "filename" ;

is equivalent to:

 tie %A, "DB_File", "filename", O_CREAT|O_RDWR, 0666, $DB_HASH ;

It is also possible to omit the filename parameter as well, so the
 call:

 tie %A, "DB_File" ;

is equivalent to:

 tie %A, "DB_File", undef, O_CREAT|O_RDWR, 0666, $DB_HASH ;

Perl version 5.12.1 documentation - DB_File

Page 5http://perldoc.perl.org

See In Memory Databases for a discussion on the use of undef
 in place of a filename.

In Memory Databases
Berkeley DB allows the creation of in-memory databases by using NULL
 (that is, a (char *)0 in C)
in place of the filename. DB_File
 uses undef instead of NULL to provide this functionality.

DB_HASH
The DB_HASH file format is probably the most commonly used of the three
 file formats that DB_File
supports. It is also very straightforward
 to use.

A Simple Example
This example shows how to create a database, add key/value pairs to the
 database, delete
keys/value pairs and finally how to enumerate the
 contents of the database.

 use warnings ;
 use strict ;
 use DB_File ;
 our (%h, $k, $v) ;

 unlink "fruit" ;
 tie %h, "DB_File", "fruit", O_RDWR|O_CREAT, 0666, $DB_HASH
 or die "Cannot open file 'fruit': $!\n";

 # Add a few key/value pairs to the file
 $h{"apple"} = "red" ;
 $h{"orange"} = "orange" ;
 $h{"banana"} = "yellow" ;
 $h{"tomato"} = "red" ;

 # Check for existence of a key
 print "Banana Exists\n\n" if $h{"banana"} ;

 # Delete a key/value pair.
 delete $h{"apple"} ;

 # print the contents of the file
 while (($k, $v) = each %h)
 { print "$k -> $v\n" }

 untie %h ;

here is the output:

 Banana Exists

 orange -> orange
 tomato -> red
 banana -> yellow

Note that the like ordinary associative arrays, the order of the keys
 retrieved is in an apparently
random order.

Perl version 5.12.1 documentation - DB_File

Page 6http://perldoc.perl.org

DB_BTREE
The DB_BTREE format is useful when you want to store data in a given
 order. By default the keys will
be stored in lexical order, but as you
 will see from the example shown in the next section, it is very
easy to
 define your own sorting function.

Changing the BTREE sort order
This script shows how to override the default sorting algorithm that
 BTREE uses. Instead of using the
normal lexical ordering, a case
 insensitive compare function will be used.

 use warnings ;
 use strict ;
 use DB_File ;

 my %h ;

 sub Compare
 {
 my ($key1, $key2) = @_ ;
 "\L$key1" cmp "\L$key2" ;
 }

 # specify the Perl sub that will do the comparison
 $DB_BTREE->{'compare'} = \&Compare ;

 unlink "tree" ;
 tie %h, "DB_File", "tree", O_RDWR|O_CREAT, 0666, $DB_BTREE
 or die "Cannot open file 'tree': $!\n" ;

 # Add a key/value pair to the file
 $h{'Wall'} = 'Larry' ;
 $h{'Smith'} = 'John' ;
 $h{'mouse'} = 'mickey' ;
 $h{'duck'} = 'donald' ;

 # Delete
 delete $h{"duck"} ;

 # Cycle through the keys printing them in order.
 # Note it is not necessary to sort the keys as
 # the btree will have kept them in order automatically.
 foreach (keys %h)
 { print "$_\n" }

 untie %h ;

Here is the output from the code above.

 mouse
 Smith
 Wall

There are a few point to bear in mind if you want to change the
 ordering in a BTREE database:

Perl version 5.12.1 documentation - DB_File

Page 7http://perldoc.perl.org

1. The new compare function must be specified when you create the database.

2. You cannot change the ordering once the database has been created. Thus
 you must use
the same compare function every time you access the
 database.

3 Duplicate keys are entirely defined by the comparison function.
 In the case-insensitive
example above, the keys: 'KEY' and 'key'
 would be considered duplicates, and assigning to
the second one
 would overwrite the first. If duplicates are allowed for (with the
 R_DUP flag
discussed below), only a single copy of duplicate keys
 is stored in the database --- so (again
with example above) assigning
 three values to the keys: 'KEY', 'Key', and 'key' would leave
just
 the first key: 'KEY' in the database with three values. For some
 situations this results in
information loss, so care should be taken
 to provide fully qualified comparison functions
when necessary.
 For example, the above comparison routine could be modified to

additionally compare case-sensitively if two keys are equal in the
 case insensitive
comparison:

 sub compare {
 my($key1, $key2) = @_;
 lc $key1 cmp lc $key2 ||
 $key1 cmp $key2;
 }

And now you will only have duplicates when the keys themselves
 are truly the same. (note:
in versions of the db library prior to
 about November 1996, such duplicate keys were
retained so it was
 possible to recover the original keys in sets of keys that
 compared as
equal).

Handling Duplicate Keys
The BTREE file type optionally allows a single key to be associated
 with an arbitrary number of
values. This option is enabled by setting
 the flags element of $DB_BTREE to R_DUP when creating
the database.

There are some difficulties in using the tied hash interface if you
 want to manipulate a BTREE
database with duplicate keys. Consider this
 code:

 use warnings ;
 use strict ;
 use DB_File ;

 my ($filename, %h) ;

 $filename = "tree" ;
 unlink $filename ;

 # Enable duplicate records
 $DB_BTREE->{'flags'} = R_DUP ;

 tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
	 or die "Cannot open $filename: $!\n";

 # Add some key/value pairs to the file
 $h{'Wall'} = 'Larry' ;
 $h{'Wall'} = 'Brick' ; # Note the duplicate key
 $h{'Wall'} = 'Brick' ; # Note the duplicate key and value
 $h{'Smith'} = 'John' ;

Perl version 5.12.1 documentation - DB_File

Page 8http://perldoc.perl.org

 $h{'mouse'} = 'mickey' ;

 # iterate through the associative array
 # and print each key/value pair.
 foreach (sort keys %h)
 { print "$_ -> $h{$_}\n" }

 untie %h ;

Here is the output:

 Smith -> John
 Wall -> Larry
 Wall -> Larry
 Wall -> Larry
 mouse -> mickey

As you can see 3 records have been successfully created with key Wall
 - the only thing is, when they
are retrieved from the database they seem to have the same value, namely Larry. The problem is
caused
 by the way that the associative array interface works. Basically, when
 the associative array
interface is used to fetch the value associated
 with a given key, it will only ever retrieve the first value.

Although it may not be immediately obvious from the code above, the
 associative array interface can
be used to write values with duplicate
 keys, but it cannot be used to read them back from the
database.

The way to get around this problem is to use the Berkeley DB API method
 called seq. This method
allows sequential access to key/value
 pairs. See THE API INTERFACE for details of both the seq
method
 and the API in general.

Here is the script above rewritten using the seq API method.

 use warnings ;
 use strict ;
 use DB_File ;

 my ($filename, $x, %h, $status, $key, $value) ;

 $filename = "tree" ;
 unlink $filename ;

 # Enable duplicate records
 $DB_BTREE->{'flags'} = R_DUP ;

 $x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
	 or die "Cannot open $filename: $!\n";

 # Add some key/value pairs to the file
 $h{'Wall'} = 'Larry' ;
 $h{'Wall'} = 'Brick' ; # Note the duplicate key
 $h{'Wall'} = 'Brick' ; # Note the duplicate key and value
 $h{'Smith'} = 'John' ;
 $h{'mouse'} = 'mickey' ;

Perl version 5.12.1 documentation - DB_File

Page 9http://perldoc.perl.org

 # iterate through the btree using seq
 # and print each key/value pair.
 $key = $value = 0 ;
 for ($status = $x->seq($key, $value, R_FIRST) ;
 $status == 0 ;
 $status = $x->seq($key, $value, R_NEXT))
 { print "$key -> $value\n" }

 undef $x ;
 untie %h ;

that prints:

 Smith -> John
 Wall -> Brick
 Wall -> Brick
 Wall -> Larry
 mouse -> mickey

This time we have got all the key/value pairs, including the multiple
 values associated with the key
Wall.

To make life easier when dealing with duplicate keys, DB_File comes with a few utility methods.

The get_dup() Method
The get_dup method assists in
 reading duplicate values from BTREE databases. The method can
take the
 following forms:

 $count = $x->get_dup($key) ;
 @list = $x->get_dup($key) ;
 %list = $x->get_dup($key, 1) ;

In a scalar context the method returns the number of values associated
 with the key, $key.

In list context, it returns all the values which match $key. Note
 that the values will be returned in an
apparently random order.

In list context, if the second parameter is present and evaluates
 TRUE, the method returns an
associative array. The keys of the
 associative array correspond to the values that matched in the
BTREE
 and the values of the array are a count of the number of times that
 particular value occurred
in the BTREE.

So assuming the database created above, we can use get_dup like
 this:

 use warnings ;
 use strict ;
 use DB_File ;

 my ($filename, $x, %h) ;

 $filename = "tree" ;

 # Enable duplicate records
 $DB_BTREE->{'flags'} = R_DUP ;

 $x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE

Perl version 5.12.1 documentation - DB_File

Page 10http://perldoc.perl.org

	 or die "Cannot open $filename: $!\n";

 my $cnt = $x->get_dup("Wall") ;
 print "Wall occurred $cnt times\n" ;

 my %hash = $x->get_dup("Wall", 1) ;
 print "Larry is there\n" if $hash{'Larry'} ;
 print "There are $hash{'Brick'} Brick Walls\n" ;

 my @list = sort $x->get_dup("Wall") ;
 print "Wall =>	 [@list]\n" ;

 @list = $x->get_dup("Smith") ;
 print "Smith =>	 [@list]\n" ;

 @list = $x->get_dup("Dog") ;
 print "Dog =>	 [@list]\n" ;

and it will print:

 Wall occurred 3 times
 Larry is there
 There are 2 Brick Walls
 Wall =>	 [Brick Brick Larry]
 Smith =>	 [John]
 Dog =>	 []

The find_dup() Method
 $status = $X->find_dup($key, $value) ;

This method checks for the existence of a specific key/value pair. If the
 pair exists, the cursor is left
pointing to the pair and the method returns 0. Otherwise the method returns a non-zero value.

Assuming the database from the previous example:

 use warnings ;
 use strict ;
 use DB_File ;

 my ($filename, $x, %h, $found) ;

 $filename = "tree" ;

 # Enable duplicate records
 $DB_BTREE->{'flags'} = R_DUP ;

 $x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
	 or die "Cannot open $filename: $!\n";

 $found = ($x->find_dup("Wall", "Larry") == 0 ? "" : "not") ;
 print "Larry Wall is $found there\n" ;

Perl version 5.12.1 documentation - DB_File

Page 11http://perldoc.perl.org

 $found = ($x->find_dup("Wall", "Harry") == 0 ? "" : "not") ;
 print "Harry Wall is $found there\n" ;

 undef $x ;
 untie %h ;

prints this

 Larry Wall is there
 Harry Wall is not there

The del_dup() Method
 $status = $X->del_dup($key, $value) ;

This method deletes a specific key/value pair. It returns
 0 if they exist and have been deleted
successfully.
 Otherwise the method returns a non-zero value.

Again assuming the existence of the tree database

 use warnings ;
 use strict ;
 use DB_File ;

 my ($filename, $x, %h, $found) ;

 $filename = "tree" ;

 # Enable duplicate records
 $DB_BTREE->{'flags'} = R_DUP ;

 $x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
	 or die "Cannot open $filename: $!\n";

 $x->del_dup("Wall", "Larry") ;

 $found = ($x->find_dup("Wall", "Larry") == 0 ? "" : "not") ;
 print "Larry Wall is $found there\n" ;

 undef $x ;
 untie %h ;

prints this

 Larry Wall is not there

Matching Partial Keys
The BTREE interface has a feature which allows partial keys to be
 matched. This functionality is only
available when the seq method
 is used along with the R_CURSOR flag.

 $x->seq($key, $value, R_CURSOR) ;

Here is the relevant quote from the dbopen man page where it defines
 the use of the R_CURSOR

Perl version 5.12.1 documentation - DB_File

Page 12http://perldoc.perl.org

flag with seq:

 Note, for the DB_BTREE access method, the returned key is not
 necessarily an exact match for the specified key. The returned key
 is the smallest key greater than or equal to the specified key,
 permitting partial key matches and range searches.

In the example script below, the match sub uses this feature to find
 and print the first matching
key/value pair given a partial key.

 use warnings ;
 use strict ;
 use DB_File ;
 use Fcntl ;

 my ($filename, $x, %h, $st, $key, $value) ;

 sub match
 {
 my $key = shift ;
 my $value = 0;
 my $orig_key = $key ;
 $x->seq($key, $value, R_CURSOR) ;
 print "$orig_key\t-> $key\t-> $value\n" ;
 }

 $filename = "tree" ;
 unlink $filename ;

 $x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
 or die "Cannot open $filename: $!\n";

 # Add some key/value pairs to the file
 $h{'mouse'} = 'mickey' ;
 $h{'Wall'} = 'Larry' ;
 $h{'Walls'} = 'Brick' ;
 $h{'Smith'} = 'John' ;

 $key = $value = 0 ;
 print "IN ORDER\n" ;
 for ($st = $x->seq($key, $value, R_FIRST) ;
	 $st == 0 ;
 $st = $x->seq($key, $value, R_NEXT))

 { print "$key	 -> $value\n" }

 print "\nPARTIAL MATCH\n" ;

 match "Wa" ;
 match "A" ;
 match "a" ;

 undef $x ;

Perl version 5.12.1 documentation - DB_File

Page 13http://perldoc.perl.org

 untie %h ;

Here is the output:

 IN ORDER
 Smith -> John
 Wall -> Larry
 Walls -> Brick
 mouse -> mickey

 PARTIAL MATCH
 Wa -> Wall -> Larry
 A -> Smith -> John
 a -> mouse -> mickey

DB_RECNO
DB_RECNO provides an interface to flat text files. Both variable and
 fixed length records are
supported.

In order to make RECNO more compatible with Perl, the array offset for
 all RECNO arrays begins at 0
rather than 1 as in Berkeley DB.

As with normal Perl arrays, a RECNO array can be accessed using
 negative indexes. The index -1
refers to the last element of the array,
 -2 the second last, and so on. Attempting to access an element
before
 the start of the array will raise a fatal run-time error.

The 'bval' Option
The operation of the bval option warrants some discussion. Here is the
 definition of bval from the
Berkeley DB 1.85 recno manual page:

 The delimiting byte to be used to mark the end of a
 record for variable-length records, and the pad charac-
 ter for fixed-length records. If no value is speci-
 fied, newlines (``\n'') are used to mark the end of
 variable-length records and fixed-length records are
 padded with spaces.

The second sentence is wrong. In actual fact bval will only default to "\n" when the openinfo
parameter in dbopen is NULL. If a non-NULL
 openinfo parameter is used at all, the value that
happens to be in bval
 will be used. That means you always have to specify bval when making
 use of
any of the options in the openinfo parameter. This documentation
 error will be fixed in the next
release of Berkeley DB.

That clarifies the situation with regards Berkeley DB itself. What
 about DB_File? Well, the behavior
defined in the quote above is
 quite useful, so DB_File conforms to it.

That means that you can specify other options (e.g. cachesize) and
 still have bval default to "\n" for
variable length records, and
 space for fixed length records.

Also note that the bval option only allows you to specify a single byte
 as a delimiter.

A Simple Example
Here is a simple example that uses RECNO (if you are using a version of Perl earlier than 5.004_57
this example won't work -- see Extra RECNO Methods for a workaround).

 use warnings ;
 use strict ;

Perl version 5.12.1 documentation - DB_File

Page 14http://perldoc.perl.org

 use DB_File ;

 my $filename = "text" ;
 unlink $filename ;

 my @h ;
 tie @h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_RECNO
 or die "Cannot open file 'text': $!\n" ;

 # Add a few key/value pairs to the file
 $h[0] = "orange" ;
 $h[1] = "blue" ;
 $h[2] = "yellow" ;

 push @h, "green", "black" ;

 my $elements = scalar @h ;
 print "The array contains $elements entries\n" ;

 my $last = pop @h ;
 print "popped $last\n" ;

 unshift @h, "white" ;
 my $first = shift @h ;
 print "shifted $first\n" ;

 # Check for existence of a key
 print "Element 1 Exists with value $h[1]\n" if $h[1] ;

 # use a negative index
 print "The last element is $h[-1]\n" ;
 print "The 2nd last element is $h[-2]\n" ;

 untie @h ;

Here is the output from the script:

 The array contains 5 entries
 popped black
 shifted white
 Element 1 Exists with value blue
 The last element is green
 The 2nd last element is yellow

Extra RECNO Methods
If you are using a version of Perl earlier than 5.004_57, the tied
 array interface is quite limited. In the
example script above push, pop, shift, unshift
 or determining the array length will not work with
a tied array.

To make the interface more useful for older versions of Perl, a number
 of methods are supplied with
DB_File to simulate the missing array
 operations. All these methods are accessed via the object
returned from
 the tie call.

Perl version 5.12.1 documentation - DB_File

Page 15http://perldoc.perl.org

Here are the methods:

$X->push(list) ;

Pushes the elements of list to the end of the array.

$value = $X->pop ;

Removes and returns the last element of the array.

$X->shift

Removes and returns the first element of the array.

$X->unshift(list) ;

Pushes the elements of list to the start of the array.

$X->length

Returns the number of elements in the array.

$X->splice(offset, length, elements);

Returns a splice of the array.

Another Example
Here is a more complete example that makes use of some of the methods
 described above. It also
makes use of the API interface directly (see THE API INTERFACE).

 use warnings ;
 use strict ;
 my (@h, $H, $file, $i) ;
 use DB_File ;
 use Fcntl ;

 $file = "text" ;

 unlink $file ;

 $H = tie @h, "DB_File", $file, O_RDWR|O_CREAT, 0666, $DB_RECNO
 or die "Cannot open file $file: $!\n" ;

 # first create a text file to play with
 $h[0] = "zero" ;
 $h[1] = "one" ;
 $h[2] = "two" ;
 $h[3] = "three" ;
 $h[4] = "four" ;

 # Print the records in order.
 #
 # The length method is needed here because evaluating a tied
 # array in a scalar context does not return the number of
 # elements in the array.

 print "\nORIGINAL\n" ;
 foreach $i (0 .. $H->length - 1) {
 print "$i: $h[$i]\n" ;
 }

Perl version 5.12.1 documentation - DB_File

Page 16http://perldoc.perl.org

 # use the push & pop methods
 $a = $H->pop ;
 $H->push("last") ;
 print "\nThe last record was [$a]\n" ;

 # and the shift & unshift methods
 $a = $H->shift ;
 $H->unshift("first") ;
 print "The first record was [$a]\n" ;

 # Use the API to add a new record after record 2.
 $i = 2 ;
 $H->put($i, "Newbie", R_IAFTER) ;

 # and a new record before record 1.
 $i = 1 ;
 $H->put($i, "New One", R_IBEFORE) ;

 # delete record 3
 $H->del(3) ;

 # now print the records in reverse order
 print "\nREVERSE\n" ;
 for ($i = $H->length - 1 ; $i >= 0 ; -- $i)
 { print "$i: $h[$i]\n" }

 # same again, but use the API functions instead
 print "\nREVERSE again\n" ;
 my ($s, $k, $v) = (0, 0, 0) ;
 for ($s = $H->seq($k, $v, R_LAST) ;
 $s == 0 ;
 $s = $H->seq($k, $v, R_PREV))
 { print "$k: $v\n" }

 undef $H ;
 untie @h ;

and this is what it outputs:

 ORIGINAL
 0: zero
 1: one
 2: two
 3: three
 4: four

 The last record was [four]
 The first record was [zero]

 REVERSE
 5: last
 4: three
 3: Newbie

Perl version 5.12.1 documentation - DB_File

Page 17http://perldoc.perl.org

 2: one
 1: New One
 0: first

 REVERSE again
 5: last
 4: three
 3: Newbie
 2: one
 1: New One
 0: first

Notes:

1. Rather than iterating through the array, @h like this:

 foreach $i (@h)

it is necessary to use either this:

 foreach $i (0 .. $H->length - 1)

or this:

 for ($a = $H->get($k, $v, R_FIRST) ;
 $a == 0 ;
 $a = $H->get($k, $v, R_NEXT))

2. Notice that both times the put method was used the record index was
 specified using a
variable, $i, rather than the literal value
 itself. This is because put will return the record
number of the
 inserted line via that parameter.

THE API INTERFACE
As well as accessing Berkeley DB using a tied hash or array, it is also
 possible to make direct use of
most of the API functions defined in the
 Berkeley DB documentation.

To do this you need to store a copy of the object returned from the tie.

	 $db = tie %hash, "DB_File", "filename" ;

Once you have done that, you can access the Berkeley DB API functions
 as DB_File methods
directly like this:

	 $db->put($key, $value, R_NOOVERWRITE) ;

Important: If you have saved a copy of the object returned from tie, the underlying database file will
not be closed until both
 the tied variable is untied and all copies of the saved object are
 destroyed.

 use DB_File ;
 $db = tie %hash, "DB_File", "filename"
 or die "Cannot tie filename: $!" ;
 ...
 undef $db ;
 untie %hash ;

See The untie() Gotcha for more details.

All the functions defined in dbopen are available except for
 close() and dbopen() itself. The DB_File

Perl version 5.12.1 documentation - DB_File

Page 18http://perldoc.perl.org

method interface to the
 supported functions have been implemented to mirror the way Berkeley DB

works whenever possible. In particular note that:

The methods return a status value. All return 0 on success.
 All return -1 to signify an error
and set $! to the exact
 error code. The return code 1 generally (but not always) means that
the
 key specified did not exist in the database.

Other return codes are defined. See below and in the Berkeley DB
 documentation for
details. The Berkeley DB documentation should be used
 as the definitive source.

Whenever a Berkeley DB function returns data via one of its parameters,
 the equivalent
DB_File method does exactly the same.

If you are careful, it is possible to mix API calls with the tied
 hash/array interface in the same
piece of code. Although only a few of
 the methods used to implement the tied interface
currently make use of
 the cursor, you should always assume that the cursor has been
changed
 any time the tied hash/array interface is used. As an example, this
 code will
probably not do what you expect:

 $X = tie %x, 'DB_File', $filename, O_RDWR|O_CREAT, 0777,
$DB_BTREE
 or die "Cannot tie $filename: $!" ;

 # Get the first key/value pair and set the cursor
 $X->seq($key, $value, R_FIRST) ;

 # this line will modify the cursor
 $count = scalar keys %x ;

 # Get the second key/value pair.
 # oops, it didn't, it got the last key/value pair!
 $X->seq($key, $value, R_NEXT) ;

The code above can be rearranged to get around the problem, like this:

 $X = tie %x, 'DB_File', $filename, O_RDWR|O_CREAT, 0777,
$DB_BTREE
 or die "Cannot tie $filename: $!" ;

 # this line will modify the cursor
 $count = scalar keys %x ;

 # Get the first key/value pair and set the cursor
 $X->seq($key, $value, R_FIRST) ;

 # Get the second key/value pair.
 # worked this time.
 $X->seq($key, $value, R_NEXT) ;

All the constants defined in dbopen for use in the flags parameters
 in the methods defined below are
also available. Refer to the Berkeley
 DB documentation for the precise meaning of the flags values.

Below is a list of the methods available.

$status = $X->get($key, $value [, $flags]) ;

Given a key ($key) this method reads the value associated with it
 from the database. The
value read from the database is returned in the $value parameter.

If the key does not exist the method returns 1.

Perl version 5.12.1 documentation - DB_File

Page 19http://perldoc.perl.org

No flags are currently defined for this method.

$status = $X->put($key, $value [, $flags]) ;

Stores the key/value pair in the database.

If you use either the R_IAFTER or R_IBEFORE flags, the $key parameter
 will have the
record number of the inserted key/value pair set.

Valid flags are R_CURSOR, R_IAFTER, R_IBEFORE, R_NOOVERWRITE and

R_SETCURSOR.

$status = $X->del($key [, $flags]) ;

Removes all key/value pairs with key $key from the database.

A return code of 1 means that the requested key was not in the
 database.

R_CURSOR is the only valid flag at present.

$status = $X->fd ;

Returns the file descriptor for the underlying database.

See Locking: The Trouble with fd for an explanation for why you should
 not use fd to lock
your database.

$status = $X->seq($key, $value, $flags) ;

This interface allows sequential retrieval from the database. See dbopen for full details.

Both the $key and $value parameters will be set to the key/value
 pair read from the
database.

The flags parameter is mandatory. The valid flag values are R_CURSOR,
 R_FIRST,
R_LAST, R_NEXT and R_PREV.

$status = $X->sync([$flags]) ;

Flushes any cached buffers to disk.

R_RECNOSYNC is the only valid flag at present.

DBM FILTERS
A DBM Filter is a piece of code that is be used when you always
 want to make the same
transformation to all keys and/or values in a
 DBM database.

There are four methods associated with DBM Filters. All work identically,
 and each is used to install
(or uninstall) a single DBM Filter. Each
 expects a single parameter, namely a reference to a sub. The
only
 difference between them is the place that the filter is installed.

To summarise:

filter_store_key

If a filter has been installed with this method, it will be invoked
 every time you write a key to
a DBM database.

filter_store_value

If a filter has been installed with this method, it will be invoked
 every time you write a value
to a DBM database.

filter_fetch_key

If a filter has been installed with this method, it will be invoked
 every time you read a key
from a DBM database.

filter_fetch_value

If a filter has been installed with this method, it will be invoked
 every time you read a value

Perl version 5.12.1 documentation - DB_File

Page 20http://perldoc.perl.org

from a DBM database.

You can use any combination of the methods, from none, to all four.

All filter methods return the existing filter, if present, or undef
 in not.

To delete a filter pass undef to it.

The Filter
When each filter is called by Perl, a local copy of $_ will contain
 the key or value to be filtered.
Filtering is achieved by modifying
 the contents of $_. The return code from the filter is ignored.

An Example -- the NULL termination problem.
Consider the following scenario. You have a DBM database
 that you need to share with a third-party
C application. The C application
 assumes that all keys and values are NULL terminated.
Unfortunately
 when Perl writes to DBM databases it doesn't use NULL termination, so
 your Perl
application will have to manage NULL termination itself. When
 you write to the database you will have
to use something like this:

 $hash{"$key\0"} = "$value\0" ;

Similarly the NULL needs to be taken into account when you are considering
 the length of existing
keys/values.

It would be much better if you could ignore the NULL terminations issue
 in the main application code
and have a mechanism that automatically
 added the terminating NULL to all keys and values
whenever you write to
 the database and have them removed when you read from the database. As
I'm
 sure you have already guessed, this is a problem that DBM Filters can
 fix very easily.

 use warnings ;
 use strict ;
 use DB_File ;

 my %hash ;
 my $filename = "filt" ;
 unlink $filename ;

 my $db = tie %hash, 'DB_File', $filename, O_CREAT|O_RDWR, 0666,
$DB_HASH
 or die "Cannot open $filename: $!\n" ;

 # Install DBM Filters
 $db->filter_fetch_key (sub { s/\0$// }) ;
 $db->filter_store_key (sub { $_ .= "\0" }) ;
 $db->filter_fetch_value(sub { s/\0$// }) ;
 $db->filter_store_value(sub { $_ .= "\0" }) ;

 $hash{"abc"} = "def" ;
 my $a = $hash{"ABC"} ;
 # ...
 undef $db ;
 untie %hash ;

Hopefully the contents of each of the filters should be
 self-explanatory. Both "fetch" filters remove the
terminating NULL,
 and both "store" filters add a terminating NULL.

Perl version 5.12.1 documentation - DB_File

Page 21http://perldoc.perl.org

Another Example -- Key is a C int.
Here is another real-life example. By default, whenever Perl writes to
 a DBM database it always
writes the key and value as strings. So when
 you use this:

 $hash{12345} = "something" ;

the key 12345 will get stored in the DBM database as the 5 byte string
 "12345". If you actually want
the key to be stored in the DBM database
 as a C int, you will have to use pack when writing, and
unpack
 when reading.

Here is a DBM Filter that does it:

 use warnings ;
 use strict ;
 use DB_File ;
 my %hash ;
 my $filename = "filt" ;
 unlink $filename ;

 my $db = tie %hash, 'DB_File', $filename, O_CREAT|O_RDWR, 0666,
$DB_HASH
 or die "Cannot open $filename: $!\n" ;

 $db->filter_fetch_key (sub { $_ = unpack("i", $_) }) ;
 $db->filter_store_key (sub { $_ = pack ("i", $_) }) ;
 $hash{123} = "def" ;
 # ...
 undef $db ;
 untie %hash ;

This time only two filters have been used -- we only need to manipulate
 the contents of the key, so it
wasn't necessary to install any value
 filters.

HINTS AND TIPS
Locking: The Trouble with fd

Until version 1.72 of this module, the recommended technique for locking DB_File databases was to
flock the filehandle returned from the "fd"
 function. Unfortunately this technique has been shown to be
fundamentally
 flawed (Kudos to David Harris for tracking this down). Use it at your own
 peril!

The locking technique went like this.

 $db = tie(%db, 'DB_File', 'foo.db', O_CREAT|O_RDWR, 0644)
 || die "dbcreat foo.db $!";
 $fd = $db->fd;
 open(DB_FH, "+<&=$fd") || die "dup $!";
 flock (DB_FH, LOCK_EX) || die "flock: $!";
 ...
 $db{"Tom"} = "Jerry" ;
 ...
 flock(DB_FH, LOCK_UN);
 undef $db;
 untie %db;
 close(DB_FH);

In simple terms, this is what happens:

Perl version 5.12.1 documentation - DB_File

Page 22http://perldoc.perl.org

1. Use "tie" to open the database.

2. Lock the database with fd & flock.

3. Read & Write to the database.

4. Unlock and close the database.

Here is the crux of the problem. A side-effect of opening the DB_File
 database in step 2 is that an
initial block from the database will get
 read from disk and cached in memory.

To see why this is a problem, consider what can happen when two processes,
 say "A" and "B", both
want to update the same DB_File database
 using the locking steps outlined above. Assume process
"A" has already
 opened the database and has a write lock, but it hasn't actually updated
 the database
yet (it has finished step 2, but not started step 3 yet). Now
 process "B" tries to open the same
database - step 1 will succeed,
 but it will block on step 2 until process "A" releases the lock. The

important thing to notice here is that at this point in time both
 processes will have cached identical
initial blocks from the database.

Now process "A" updates the database and happens to change some of the
 data held in the initial
buffer. Process "A" terminates, flushing
 all cached data to disk and releasing the database lock. At
this point
 the database on disk will correctly reflect the changes made by process
 "A".

With the lock released, process "B" can now continue. It also updates the
 database and unfortunately
it too modifies the data that was in its
 initial buffer. Once that data gets flushed to disk it will overwrite

some/all of the changes process "A" made to the database.

The result of this scenario is at best a database that doesn't contain
 what you expect. At worst the
database will corrupt.

The above won't happen every time competing process update the same DB_File database, but it
does illustrate why the technique should
 not be used.

Safe ways to lock a database
Starting with version 2.x, Berkeley DB has internal support for locking.
 The companion module to this
one, BerkeleyDB, provides an interface
 to this locking functionality. If you are serious about locking

Berkeley DB databases, I strongly recommend using BerkeleyDB.

If using BerkeleyDB isn't an option, there are a number of modules
 available on CPAN that can be
used to implement locking. Each one
 implements locking differently and has different goals in mind. It
is
 therefore worth knowing the difference, so that you can pick the right
 one for your application. Here
are the three locking wrappers:

Tie::DB_Lock

A DB_File wrapper which creates copies of the database file for
 read access, so that you
have a kind of a multiversioning concurrent read
 system. However, updates are still serial.
Use for databases where reads
 may be lengthy and consistency problems may occur.

Tie::DB_LockFile

A DB_File wrapper that has the ability to lock and unlock the database
 while it is being
used. Avoids the tie-before-flock problem by simply
 re-tie-ing the database when you get or
drop a lock. Because of the
 flexibility in dropping and re-acquiring the lock in the middle of a

session, this can be massaged into a system that will work with long
 updates and/or reads if
the application follows the hints in the POD
 documentation.

DB_File::Lock

An extremely lightweight DB_File wrapper that simply flocks a lockfile
 before tie-ing the
database and drops the lock after the untie. Allows
 one to use the same lockfile for multiple

Perl version 5.12.1 documentation - DB_File

Page 23http://perldoc.perl.org

databases to avoid deadlock
 problems, if desired. Use for databases where updates are
reads are
 quick and simple flock locking semantics are enough.

Sharing Databases With C Applications
There is no technical reason why a Berkeley DB database cannot be
 shared by both a Perl and a C
application.

The vast majority of problems that are reported in this area boil down
 to the fact that C strings are
NULL terminated, whilst Perl strings are
 not. See DBM FILTERS for a generic way to work around
this problem.

Here is a real example. Netscape 2.0 keeps a record of the locations you
 visit along with the time you
last visited them in a DB_HASH database.
 This is usually stored in the file ~/.netscape/history.db. The
key
 field in the database is the location string and the value field is the
 time the location was last
visited stored as a 4 byte binary value.

If you haven't already guessed, the location string is stored with a
 terminating NULL. This means you
need to be careful when accessing the
 database.

Here is a snippet of code that is loosely based on Tom Christiansen's ggh script (available from your
nearest CPAN archive in authors/id/TOMC/scripts/nshist.gz).

 use warnings ;
 use strict ;
 use DB_File ;
 use Fcntl ;

 my ($dotdir, $HISTORY, %hist_db, $href, $binary_time, $date) ;
 $dotdir = $ENV{HOME} || $ENV{LOGNAME};

 $HISTORY = "$dotdir/.netscape/history.db";

 tie %hist_db, 'DB_File', $HISTORY
 or die "Cannot open $HISTORY: $!\n" ;;

 # Dump the complete database
 while (($href, $binary_time) = each %hist_db) {

 # remove the terminating NULL
 $href =~ s/\x00$// ;

 # convert the binary time into a user friendly string
 $date = localtime unpack("V", $binary_time);
 print "$date $href\n" ;
 }

 # check for the existence of a specific key
 # remember to add the NULL
 if ($binary_time = $hist_db{"http://mox.perl.com/\x00"}) {
 $date = localtime unpack("V", $binary_time) ;
 print "Last visited mox.perl.com on $date\n" ;
 }
 else {
 print "Never visited mox.perl.com\n"
 }

Perl version 5.12.1 documentation - DB_File

Page 24http://perldoc.perl.org

 untie %hist_db ;

The untie() Gotcha
If you make use of the Berkeley DB API, it is very strongly
 recommended that you read "The untie
Gotcha" in perltie.

Even if you don't currently make use of the API interface, it is still
 worth reading it.

Here is an example which illustrates the problem from a DB_File
 perspective:

 use DB_File ;
 use Fcntl ;

 my %x ;
 my $X ;

 $X = tie %x, 'DB_File', 'tst.fil' , O_RDWR|O_TRUNC
 or die "Cannot tie first time: $!" ;

 $x{123} = 456 ;

 untie %x ;

 tie %x, 'DB_File', 'tst.fil' , O_RDWR|O_CREAT
 or die "Cannot tie second time: $!" ;

 untie %x ;

When run, the script will produce this error message:

 Cannot tie second time: Invalid argument at bad.file line 14.

Although the error message above refers to the second tie() statement
 in the script, the source of the
problem is really with the untie()
 statement that precedes it.

Having read perltie you will probably have already guessed that the
 error is caused by the extra copy
of the tied object stored in $X.
 If you haven't, then the problem boils down to the fact that the DB_File
destructor, DESTROY, will not be called until all
 references to the tied object are destroyed. Both the
tied variable, %x, and $X above hold a reference to the object. The call to
 untie() will destroy the first,
but $X still holds a valid
 reference, so the destructor will not get called and the database file tst.fil will
remain open. The fact that Berkeley DB then reports the
 attempt to open a database that is already
open via the catch-all
 "Invalid argument" doesn't help.

If you run the script with the -w flag the error message becomes:

 untie attempted while 1 inner references still exist at bad.file line
12.
 Cannot tie second time: Invalid argument at bad.file line 14.

which pinpoints the real problem. Finally the script can now be
 modified to fix the original problem by
destroying the API object
 before the untie:

 ...
 $x{123} = 456 ;

Perl version 5.12.1 documentation - DB_File

Page 25http://perldoc.perl.org

 undef $X ;
 untie %x ;

 $X = tie %x, 'DB_File', 'tst.fil' , O_RDWR|O_CREAT
 ...

COMMON QUESTIONS
Why is there Perl source in my database?

If you look at the contents of a database file created by DB_File,
 there can sometimes be part of a
Perl script included in it.

This happens because Berkeley DB uses dynamic memory to allocate
 buffers which will subsequently
be written to the database file. Being
 dynamic, the memory could have been used for anything before
DB
 malloced it. As Berkeley DB doesn't clear the memory once it has been
 allocated, the unused
portions will contain random junk. In the case
 where a Perl script gets written to the database, the
random junk will
 correspond to an area of dynamic memory that happened to be used during
 the
compilation of the script.

Unless you don't like the possibility of there being part of your Perl
 scripts embedded in a database
file, this is nothing to worry about.

How do I store complex data structures with DB_File?
Although DB_File cannot do this directly, there is a module which
 can layer transparently over
DB_File to accomplish this feat.

Check out the MLDBM module, available on CPAN in the directory modules/by-module/MLDBM.

What does "Invalid Argument" mean?
You will get this error message when one of the parameters in the tie call is wrong. Unfortunately
there are quite a few parameters to
 get wrong, so it can be difficult to figure out which one it is.

Here are a couple of possibilities:

1. Attempting to reopen a database without closing it.

2. Using the O_WRONLY flag.

What does "Bareword 'DB_File' not allowed" mean?
You will encounter this particular error message when you have the strict 'subs' pragma (or the
full strict pragma) in your script.
 Consider this script:

 use warnings ;
 use strict ;
 use DB_File ;
 my %x ;
 tie %x, DB_File, "filename" ;

Running it produces the error in question:

 Bareword "DB_File" not allowed while "strict subs" in use

To get around the error, place the word DB_File in either single or
 double quotes, like this:

 tie %x, "DB_File", "filename" ;

Although it might seem like a real pain, it is really worth the effort
 of having a use strict in all your
scripts.

Perl version 5.12.1 documentation - DB_File

Page 26http://perldoc.perl.org

REFERENCES
Articles that are either about DB_File or make use of it.

1. Full-Text Searching in Perl, Tim Kientzle (tkientzle@ddj.com),
 Dr. Dobb's Journal, Issue
295, January 1999, pp 34-41

HISTORY
Moved to the Changes file.

BUGS
Some older versions of Berkeley DB had problems with fixed length
 records using the RECNO file
format. This problem has been fixed since
 version 1.85 of Berkeley DB.

I am sure there are bugs in the code. If you do find any, or can
 suggest any enhancements, I would
welcome your comments.

AVAILABILITY
DB_File comes with the standard Perl source distribution. Look in
 the directory ext/DB_File. Given
the amount of time between releases
 of Perl the version that ships with Perl is quite likely to be out of

date, so the most recent version can always be found on CPAN (see "CPAN" in perlmodlib for
details), in the directory modules/by-module/DB_File.

This version of DB_File will work with either version 1.x, 2.x or
 3.x of Berkeley DB, but is limited to the
functionality provided by
 version 1.

The official web site for Berkeley DB is
http://www.oracle.com/technology/products/berkeley-db/db/index.html.
 All versions of Berkeley DB
are available there.

Alternatively, Berkeley DB version 1 is available at your nearest CPAN
 archive in
src/misc/db.1.85.tar.gz.

If you are running IRIX, then get Berkeley DB version 1 from http://reality.sgi.com/ariel. It has the
patches necessary to
 compile properly on IRIX 5.3.

COPYRIGHT
Copyright (c) 1995-2007 Paul Marquess. All rights reserved. This program
 is free software; you can
redistribute it and/or modify it under the
 same terms as Perl itself.

Although DB_File is covered by the Perl license, the library it
 makes use of, namely Berkeley DB, is
not. Berkeley DB has its own
 copyright and its own license. Please take the time to read it.

Here are are few words taken from the Berkeley DB FAQ (at
http://www.oracle.com/technology/products/berkeley-db/db/index.html) regarding the license:

 Do I have to license DB to use it in Perl scripts?

 No. The Berkeley DB license requires that software that uses
 Berkeley DB be freely redistributable. In the case of Perl, that
 software is Perl, and not your scripts. Any Perl scripts that you
 write are your property, including scripts that make use of
 Berkeley DB. Neither the Perl license nor the Berkeley DB license
 place any restriction on what you may do with them.

If you are in any doubt about the license situation, contact either the
 Berkeley DB authors or the
author of DB_File. See AUTHOR for details.

Perl version 5.12.1 documentation - DB_File

Page 27http://perldoc.perl.org

SEE ALSO
perl, dbopen(3), hash(3), recno(3), btree(3), perldbmfilter

AUTHOR
The DB_File interface was written by Paul Marquess <pmqs@cpan.org>.

