
Perl version 5.12.1 documentation - charnames

Page 1http://perldoc.perl.org

NAME
charnames - define character names for \N{named} string literal escapes

SYNOPSIS
 use charnames ':full';
 print "\N{GREEK SMALL LETTER SIGMA} is called sigma.\n";

 use charnames ':short';
 print "\N{greek:Sigma} is an upper-case sigma.\n";

 use charnames qw(cyrillic greek);
 print "\N{sigma} is Greek sigma, and \N{be} is Cyrillic b.\n";

 use charnames ":full", ":alias" => {
 e_ACUTE => "LATIN SMALL LETTER E WITH ACUTE",
 };
 print "\N{e_ACUTE} is a small letter e with an acute.\n";

 use charnames ();
 print charnames::viacode(0x1234); # prints "ETHIOPIC SYLLABLE SEE"
 printf "%04X", charnames::vianame("GOTHIC LETTER AHSA"); # prints "10330"

DESCRIPTION
Pragma use charnames supports arguments :full, :short, script
 names and customized
aliases. If :full is present, for expansion of \N{CHARNAME}, the string CHARNAME is first looked up
in the list of
 standard Unicode character names. If :short is present, and CHARNAME has the form
SCRIPT:CNAME, then CNAME is looked up
 as a letter in script SCRIPT. If pragma use charnames is
used
 with script name arguments, then for \N{CHARNAME} the name CHARNAME is looked up as a
letter in the given scripts (in the
 specified order). Customized aliases are explained in CUSTOM
ALIASES.

For lookup of CHARNAME inside a given script SCRIPTNAME
 this pragma looks for the names

 SCRIPTNAME CAPITAL LETTER CHARNAME
 SCRIPTNAME SMALL LETTER CHARNAME
 SCRIPTNAME LETTER CHARNAME

in the table of standard Unicode names. If CHARNAME is lowercase,
 then the CAPITAL variant is
ignored, otherwise the SMALL variant
 is ignored.

Note that \N{...} is compile-time, it's a special form of string
 constant used inside double-quoted
strings: in other words, you cannot
 use variables inside the \N{...}. If you want similar run-time

functionality, use charnames::vianame().

For the C0 and C1 control characters (U+0000..U+001F, U+0080..U+009F)
 as of Unicode 3.1, there
are no official Unicode names but you can use
 instead the ISO 6429 names (LINE FEED, ESCAPE,
and so forth). In
 Unicode 3.2 (as of Perl 5.8) some naming changes take place ISO 6429
 has been
updated, see ALIASES. Also note that the U+UU80, U+0081,
 U+0084, and U+0099 do not have
names even in ISO 6429.

Since the Unicode standard uses "U+HHHH", so can you: "\N{U+263a}"
 is the Unicode smiley face, or
"\N{WHITE SMILING FACE}".

Perl version 5.12.1 documentation - charnames

Page 2http://perldoc.perl.org

ALIASES
A few aliases have been defined for convenience: instead of having
 to use the official names

 LINE FEED (LF)
 FORM FEED (FF)
 CARRIAGE RETURN (CR)
 NEXT LINE (NEL)

(yes, with parentheses) one can use

 LINE FEED
 FORM FEED
 CARRIAGE RETURN
 NEXT LINE
 LF
 FF
 CR
 NEL

One can also use

 BYTE ORDER MARK
 BOM

and

 ZWNJ
 ZWJ

for ZERO WIDTH NON-JOINER and ZERO WIDTH JOINER.

For backward compatibility one can use the old names for
 certain C0 and C1 controls

 old new

 HORIZONTAL TABULATION CHARACTER TABULATION
 VERTICAL TABULATION LINE TABULATION
 FILE SEPARATOR INFORMATION SEPARATOR FOUR
 GROUP SEPARATOR INFORMATION SEPARATOR THREE
 RECORD SEPARATOR INFORMATION SEPARATOR TWO
 UNIT SEPARATOR INFORMATION SEPARATOR ONE
 PARTIAL LINE DOWN PARTIAL LINE FORWARD
 PARTIAL LINE UP PARTIAL LINE BACKWARD

but the old names in addition to giving the character
 will also give a warning about being deprecated.

CUSTOM ALIASES
This version of charnames supports three mechanisms of adding local
 or customized aliases to
standard Unicode naming conventions (:full).

Note that an alias should not be something that is a legal curly
 brace-enclosed quantifier (see
"QUANTIFIERS" in perlreref). For example \N{123} means to match 123 non-newline characters,
and is not treated as an
 alias. Aliases are discouraged from beginning with anything other than an

alphabetic character and from containing anything other than alphanumerics,
 spaces, dashes, colons,
parentheses, and underscores. Currently they must be
 ASCII.

Perl version 5.12.1 documentation - charnames

Page 3http://perldoc.perl.org

Anonymous hashes
 use charnames ":full", ":alias" => {
 e_ACUTE => "LATIN SMALL LETTER E WITH ACUTE",
 };
 my $str = "\N{e_ACUTE}";

Alias file
 use charnames ":full", ":alias" => "pro";

 will try to read "unicore/pro_alias.pl" from the @INC path. This
 file should return a list in plain perl:

 (
 A_GRAVE => "LATIN CAPITAL LETTER A WITH GRAVE",
 A_CIRCUM => "LATIN CAPITAL LETTER A WITH CIRCUMFLEX",
 A_DIAERES => "LATIN CAPITAL LETTER A WITH DIAERESIS",
 A_TILDE => "LATIN CAPITAL LETTER A WITH TILDE",
 A_BREVE => "LATIN CAPITAL LETTER A WITH BREVE",
 A_RING => "LATIN CAPITAL LETTER A WITH RING ABOVE",
 A_MACRON => "LATIN CAPITAL LETTER A WITH MACRON",
);

Alias shortcut
 use charnames ":alias" => ":pro";

 works exactly the same as the alias pairs, only this time,
 ":full" is inserted automatically as first argument (if no
 other argument is given).

charnames::viacode(code)
Returns the full name of the character indicated by the numeric code.
 The example

 print charnames::viacode(0x2722);

prints "FOUR TEARDROP-SPOKED ASTERISK".

Returns undef if no name is known for the code.

This works only for the standard names, and does not yet apply
 to custom translators.

Notice that the name returned for of U+FEFF is "ZERO WIDTH NO-BREAK
 SPACE", not "BYTE
ORDER MARK".

charnames::vianame(name)
Returns the code point indicated by the name.
 The example

 printf "%04X", charnames::vianame("FOUR TEARDROP-SPOKED ASTERISK");

prints "2722".

Returns undef if the name is unknown.

This works only for the standard names, and does not yet apply
 to custom translators.

Perl version 5.12.1 documentation - charnames

Page 4http://perldoc.perl.org

CUSTOM TRANSLATORS
The mechanism of translation of \N{...} escapes is general and not
 hardwired into charnames.pm.
A module can install custom
 translations (inside the scope which uses the module) with the
 following
magic incantation:

 sub import {
	 shift;
	 $^H{charnames} = \&translator;
 }

Here translator() is a subroutine which takes CHARNAME as an
 argument, and returns text to insert into
the string instead of the \N{CHARNAME} escape. Since the text to insert should be different
 in bytes
mode and out of it, the function should check the current
 state of bytes-flag as in:

 use bytes ();			 # for $bytes::hint_bits
 sub translator {
	 if ($^H & $bytes::hint_bits) {
	 return bytes_translator(@_);
	 }
	 else {
	 return utf8_translator(@_);
	 }
 }

See CUSTOM ALIASES above for restrictions on CHARNAME.

ILLEGAL CHARACTERS
If you ask by name for a character that does not exist, a warning is given and
 the Unicode
replacement character "\x{FFFD}" is returned.

If you ask by code for a character that is unassigned, no warning is
 given and undef is returned.
(Though if you ask for a code point
 past U+10FFFF you do get a warning.) See BUGS below.

BUGS
viacode should return an empty string for unassigned in-range Unicode code
 points, as that is their
correct current name.

viacode(0) doesn't return NULL, but undef

vianame returns a chr if the input name is of the form U+..., and an ord
 otherwise. It is planned to
change this to always return an ord.

None of the functions work on almost all the Hangul syllable and CJK Unicode
 characters that have
their code points as part of their names.

Names must be ASCII characters only.

Unicode standard named sequences are not recognized, such as LATIN CAPITAL LETTER A
WITH MACRON AND GRAVE
 (which should mean LATIN CAPITAL LETTER A WITH MACRON with
an additional COMBINING GRAVE ACCENT).

Since evaluation of the translation function happens in the middle of
 compilation (of a string literal),
the translation function should not
 do any evals or requires. This restriction should be lifted in
 a
future version of Perl.

