
Perl version 5.12.2 documentation - Class::Struct

Page 1http://perldoc.perl.org

NAME
Class::Struct - declare struct-like datatypes as Perl classes

SYNOPSIS
 use Class::Struct;
 # declare struct, based on array:
 struct(CLASS_NAME => [ELEMENT_NAME => ELEMENT_TYPE, ...]);
 # declare struct, based on hash:
 struct(CLASS_NAME => { ELEMENT_NAME => ELEMENT_TYPE, ... });

 package CLASS_NAME;
 use Class::Struct;
 # declare struct, based on array, implicit class name:
 struct(ELEMENT_NAME => ELEMENT_TYPE, ...);

 # Declare struct at compile time
 use Class::Struct CLASS_NAME => [ELEMENT_NAME => ELEMENT_TYPE, ...];
 use Class::Struct CLASS_NAME => { ELEMENT_NAME => ELEMENT_TYPE, ... };

 # declare struct at compile time, based on array, implicit class name:
 package CLASS_NAME;
 use Class::Struct ELEMENT_NAME => ELEMENT_TYPE, ... ;

 package Myobj;
 use Class::Struct;
 # declare struct with four types of elements:
 struct(s => '$', a => '@', h => '%', c => 'My_Other_Class');

 $obj = new Myobj; # constructor

 # scalar type accessor:
 $element_value = $obj->s; # element value
 $obj->s('new value'); # assign to element

 # array type accessor:
 $ary_ref = $obj->a; # reference to whole array
 $ary_element_value = $obj->a(2); # array element value
 $obj->a(2, 'new value'); # assign to array element

 # hash type accessor:
 $hash_ref = $obj->h; # reference to whole hash
 $hash_element_value = $obj->h('x'); # hash element value
 $obj->h('x', 'new value'); # assign to hash element

 # class type accessor:
 $element_value = $obj->c; # object reference
 $obj->c->method(...); # call method of object
 $obj->c(new My_Other_Class); # assign a new object

DESCRIPTION
Class::Struct exports a single function, struct.
 Given a list of element names and types, and
optionally
 a class name, struct creates a Perl 5 class that implements
 a "struct-like" data structure.

Perl version 5.12.2 documentation - Class::Struct

Page 2http://perldoc.perl.org

The new class is given a constructor method, new, for creating
 struct objects.

Each element in the struct data has an accessor method, which is
 used to assign to the element and
to fetch its value. The
 default accessor can be overridden by declaring a sub of the
 same name in the
package. (See Example 2.)

Each element's type can be scalar, array, hash, or class.

The struct() function
The struct function has three forms of parameter-list.

 struct(CLASS_NAME => [ELEMENT_LIST]);
 struct(CLASS_NAME => { ELEMENT_LIST });
 struct(ELEMENT_LIST);

The first and second forms explicitly identify the name of the
 class being created. The third form
assumes the current package
 name as the class name.

An object of a class created by the first and third forms is
 based on an array, whereas an object of a
class created by the
 second form is based on a hash. The array-based forms will be
 somewhat faster
and smaller; the hash-based forms are more
 flexible.

The class created by struct must not be a subclass of another
 class other than UNIVERSAL.

It can, however, be used as a superclass for other classes. To facilitate
 this, the generated
constructor method uses a two-argument blessing.
 Furthermore, if the class is hash-based, the key of
each element is
 prefixed with the class name (see Perl Cookbook, Recipe 13.12).

A function named new must not be explicitly defined in a class
 created by struct.

The ELEMENT_LIST has the form

 NAME => TYPE, ...

Each name-type pair declares one element of the struct. Each
 element name will be defined as an
accessor method unless a
 method by that name is explicitly defined; in the latter case, a
 warning is
issued if the warning flag (-w) is set.

Class Creation at Compile Time
Class::Struct can create your class at compile time. The main reason
 for doing this is obvious, so
your class acts like every other class in
 Perl. Creating your class at compile time will make the order
of events
 similar to using any other class (or Perl module).

There is no significant speed gain between compile time and run time
 class creation, there is just a
new, more standard order of events.

Element Types and Accessor Methods
The four element types -- scalar, array, hash, and class -- are
 represented by strings -- '$', '@', '%'
, and a class name --
 optionally preceded by a '*'.

The accessor method provided by struct for an element depends
 on the declared type of the
element.

Scalar ('$' or '*$')

The element is a scalar, and by default is initialized to undef
 (but see Initializing with new).

The accessor's argument, if any, is assigned to the element.

If the element type is '$', the value of the element (after
 assignment) is returned. If the
element type is '*$', a reference
 to the element is returned.

Perl version 5.12.2 documentation - Class::Struct

Page 3http://perldoc.perl.org

Array ('@' or '*@')

The element is an array, initialized by default to ().

With no argument, the accessor returns a reference to the
 element's whole array (whether or
not the element was
 specified as '@' or '*@').

With one or two arguments, the first argument is an index
 specifying one element of the array;
the second argument, if
 present, is assigned to the array element. If the element type
 is '@',
the accessor returns the array element value. If the
 element type is '*@', a reference to the
array element is
 returned.

As a special case, when the accessor is called with an array reference
 as the sole argument,
this causes an assignment of the whole array element.
 The object reference is returned.

Hash ('%' or '*%')

The element is a hash, initialized by default to ().

With no argument, the accessor returns a reference to the
 element's whole hash (whether or
not the element was
 specified as '%' or '*%').

With one or two arguments, the first argument is a key specifying
 one element of the hash; the
second argument, if present, is
 assigned to the hash element. If the element type is '%', the

accessor returns the hash element value. If the element type is '*%', a reference to the hash
element is returned.

As a special case, when the accessor is called with a hash reference
 as the sole argument,
this causes an assignment of the whole hash element.
 The object reference is returned.

Class ('Class_Name' or '*Class_Name')

The element's value must be a reference blessed to the named
 class or to one of its
subclasses. The element is not initialized
 by default.

The accessor's argument, if any, is assigned to the element. The
 accessor will croak if this is
not an appropriate object
 reference.

If the element type does not start with a '*', the accessor
 returns the element value (after
assignment). If the element type
 starts with a '*', a reference to the element itself is returned.

Initializing with new
struct always creates a constructor called new. That constructor
 may take a list of initializers for the
various elements of the new
 struct.

Each initializer is a pair of values: element name => value.
 The initializer value for a scalar element is
just a scalar value. The initializer for an array element is an array reference. The initializer
 for a hash
is a hash reference.

The initializer for a class element is an object of the corresponding class,
 or of one of it's subclasses,
or a reference to a hash containing named arguments to be passed to the element's constructor.

See Example 3 below for an example of initialization.

EXAMPLES
Example 1

Giving a struct element a class type that is also a struct is how
 structs are nested. Here,
Timeval represents a time (seconds and
 microseconds), and Rusage has two elements,
each of which is of
 type Timeval.

 use Class::Struct;

 struct(Rusage => {
 ru_utime => 'Timeval', # user time used
 ru_stime => 'Timeval', # system time used

Perl version 5.12.2 documentation - Class::Struct

Page 4http://perldoc.perl.org

 });

 struct(Timeval => [
 tv_secs => '$', # seconds
 tv_usecs => '$', # microseconds
]);

 # create an object:
 my $t = Rusage->new(ru_utime=>Timeval->new(),
ru_stime=>Timeval->new());

 # $t->ru_utime and $t->ru_stime are objects of type Timeval.
 # set $t->ru_utime to 100.0 sec and $t->ru_stime to 5.0 sec.
 $t->ru_utime->tv_secs(100);
 $t->ru_utime->tv_usecs(0);
 $t->ru_stime->tv_secs(5);
 $t->ru_stime->tv_usecs(0);

Example 2

An accessor function can be redefined in order to provide
 additional checking of values, etc.
Here, we want the count
 element always to be nonnegative, so we redefine the count

accessor accordingly.

 package MyObj;
 use Class::Struct;

 # declare the struct
 struct ('MyObj', { count => '$', stuff => '%' });

 # override the default accessor method for 'count'
 sub count {
 my $self = shift;
 if (@_) {
 die 'count must be nonnegative' if $_[0] < 0;
 $self->{'MyObj::count'} = shift;
 warn "Too many args to count" if @_;
 }
 return $self->{'MyObj::count'};
 }

 package main;
 $x = new MyObj;
 print "\$x->count(5) = ", $x->count(5), "\n";
 # prints '$x->count(5) = 5'

 print "\$x->count = ", $x->count, "\n";
 # prints '$x->count = 5'

 print "\$x->count(-5) = ", $x->count(-5), "\n";
 # dies due to negative argument!

Example 3

The constructor of a generated class can be passed a list
 of element=>value pairs, with which
to initialize the struct.
 If no initializer is specified for a particular element, its default
 initialization
is performed instead. Initializers for non-existent
 elements are silently ignored.

Perl version 5.12.2 documentation - Class::Struct

Page 5http://perldoc.perl.org

Note that the initializer for a nested class may be specified as
 an object of that class, or as a
reference to a hash of initializers
 that are passed on to the nested struct's constructor.

 use Class::Struct;

 struct Breed =>
 {
 name => '$',
 cross => '$',
 };

 struct Cat =>
 [
 name => '$',
 kittens => '@',
 markings => '%',
 breed => 'Breed',
];

 my $cat = Cat->new(name => 'Socks',
 kittens => ['Monica', 'Kenneth'],
 markings => { socks=>1, blaze=>"white" },
 breed => Breed->new(name=>'short-hair',
cross=>1),
 or: breed => {name=>'short-hair', cross=>1},
);

 print "Once a cat called ", $cat->name, "\n";
 print "(which was a ", $cat->breed->name, ")\n";
 print "had two kittens: ", join(' and ', @{$cat->kittens}), "\n";

Author and Modification History
Modified by Damian Conway, 2001-09-10, v0.62.

 Modified implicit construction of nested objects.
 Now will also take an object ref instead of requiring a hash ref.
 Also default initializes nested object attributes to undef, rather
 than calling object constructor without args
 Original over-helpfulness was fraught with problems:
 * the class's constructor might not be called 'new'
 * the class might not have a hash-like-arguments constructor
 * the class might not have a no-argument constructor
 * "recursive" data structures didn't work well:
 package Person;
 struct { mother => 'Person', father => 'Person'};

Modified by Casey West, 2000-11-08, v0.59.

 Added the ability for compile time class creation.

Modified by Damian Conway, 1999-03-05, v0.58.

 Added handling of hash-like arg list to class ctor.

 Changed to two-argument blessing in ctor to support
 derivation from created classes.

Perl version 5.12.2 documentation - Class::Struct

Page 6http://perldoc.perl.org

 Added classname prefixes to keys in hash-based classes
 (refer to "Perl Cookbook", Recipe 13.12 for rationale).

 Corrected behaviour of accessors for '*@' and '*%' struct
 elements. Package now implements documented behaviour when
 returning a reference to an entire hash or array element.
 Previously these were returned as a reference to a reference
 to the element.

Renamed to Class::Struct and modified by Jim Miner, 1997-04-02.

 members() function removed.
 Documentation corrected and extended.
 Use of struct() in a subclass prohibited.
 User definition of accessor allowed.
 Treatment of '*' in element types corrected.
 Treatment of classes as element types corrected.
 Class name to struct() made optional.
 Diagnostic checks added.

Originally Class::Template by Dean Roehrich.

 # Template.pm --- struct/member template builder
 # 12mar95
 # Dean Roehrich
 #
 # changes/bugs fixed since 28nov94 version:
 # - podified
 # changes/bugs fixed since 21nov94 version:
 # - Fixed examples.
 # changes/bugs fixed since 02sep94 version:
 # - Moved to Class::Template.
 # changes/bugs fixed since 20feb94 version:
 # - Updated to be a more proper module.
 # - Added "use strict".
 # - Bug in build_methods, was using @var when @$var needed.
 # - Now using my() rather than local().
 #
 # Uses perl5 classes to create nested data types.
 # This is offered as one implementation of Tom Christiansen's
"structs.pl"
 # idea.

