
Perl version 5.12.2 documentation - Net::FTP

Page 1http://perldoc.perl.org

NAME
Net::FTP - FTP Client class

SYNOPSIS
 use Net::FTP;

 $ftp = Net::FTP->new("some.host.name", Debug => 0)
 or die "Cannot connect to some.host.name: $@";

 $ftp->login("anonymous",'-anonymous@')
 or die "Cannot login ", $ftp->message;

 $ftp->cwd("/pub")
 or die "Cannot change working directory ", $ftp->message;

 $ftp->get("that.file")
 or die "get failed ", $ftp->message;

 $ftp->quit;

DESCRIPTION
Net::FTP is a class implementing a simple FTP client in Perl as
 described in RFC959. It provides
wrappers for a subset of the RFC959
 commands.

OVERVIEW
FTP stands for File Transfer Protocol. It is a way of transferring
 files between networked machines.
The protocol defines a client
 (whose commands are provided by this module) and a server (not

implemented in this module). Communication is always initiated by the
 client, and the server responds
with a message and a status code (and
 sometimes with data).

The FTP protocol allows files to be sent to or fetched from the
 server. Each transfer involves a local
file (on the client) and a remote file (on the server). In this module, the same file name
 will be used
for both local and remote if only one is specified. This
 means that transferring remote file
/path/to/file will try to put
 that file in /path/to/file locally, unless you specify a local file

name.

The protocol also defines several standard translations which the
 file can undergo during transfer.
These are ASCII, EBCDIC, binary,
 and byte. ASCII is the default type, and indicates that the sender
of
 files will translate the ends of lines to a standard representation
 which the receiver will then
translate back into their local
 representation. EBCDIC indicates the file being transferred is in
 EBCDIC
format. Binary (also known as image) format sends the data as
 a contiguous bit stream. Byte format
transfers the data as bytes, the
 values of which remain the same regardless of differences in byte size
between the two machines (in theory - in practice you should only use
 this if you really know what
you're doing).

CONSTRUCTOR
new ([HOST] [, OPTIONS])

This is the constructor for a new Net::FTP object. HOST is the
 name of the remote host to
which an FTP connection is required.

HOST is optional. If HOST is not given then it may instead be
 passed as the Host option
described below.

OPTIONS are passed in a hash like fashion, using key and value pairs.
 Possible options are:

Host - FTP host to connect to. It may be a single scalar, as defined for
 the PeerAddr option

Perl version 5.12.2 documentation - Net::FTP

Page 2http://perldoc.perl.org

in IO::Socket::INET, or a reference to
 an array with hosts to try in turn. The host method will
return the value
 which was used to connect to the host.

Firewall - The name of a machine which acts as an FTP firewall. This can be
 overridden by
an environment variable FTP_FIREWALL. If specified, and the
 given host cannot be directly
connected to, then the
 connection is made to the firewall machine and the string @hostname
is
 appended to the login identifier. This kind of setup is also referred to
 as an ftp proxy.

FirewallType - The type of firewall running on the machine indicated by Firewall. This can be
overridden by an environment variable FTP_FIREWALL_TYPE. For a list of permissible types,
see the description of
 ftp_firewall_type in Net::Config.

BlockSize - This is the block size that Net::FTP will use when doing
 transfers. (defaults to
10240)

Port - The port number to connect to on the remote machine for the
 FTP connection

Timeout - Set a timeout value (defaults to 120)

Debug - debug level (see the debug method in Net::Cmd)

Passive - If set to a non-zero value then all data transfers will
 be done using passive mode. If
set to zero then data transfers will be
 done using active mode. If the machine is connected to
the Internet
 directly, both passive and active mode should work equally well.
 Behind most
firewall and NAT configurations passive mode has a better
 chance of working. However, in
some rare firewall configurations,
 active mode actually works when passive mode doesn't.
Some really old
 FTP servers might not implement passive transfers. If not specified,
 then the
transfer mode is set by the environment variable FTP_PASSIVE or if that one is not set by the
settings done by the libnetcfg utility. If none of these apply then passive mode is
 used.

Hash - If given a reference to a file handle (e.g., *STDERR),
 print hash marks (#) on that
filehandle every 1024 bytes. This
 simply invokes the hash() method for you, so that hash
marks
 are displayed for all transfers. You can, of course, call hash()
 explicitly whenever
you'd like.

LocalAddr - Local address to use for all socket connections, this
 argument will be passed to
IO::Socket::INET

If the constructor fails undef will be returned and an error message will
 be in $@

METHODS
Unless otherwise stated all methods return either a true or false
 value, with true meaning that the
operation was a success. When a method
 states that it returns a value, failure will be returned as
undef or an
 empty list.

login ([LOGIN [,PASSWORD [, ACCOUNT]]])

Log into the remote FTP server with the given login information. If
 no arguments are given
then the Net::FTP uses the Net::Netrc
 package to lookup the login information for the
connected host.
 If no information is found then a login of anonymous is used.
 If no password
is given and the login is anonymous then anonymous@
 will be used for password.

If the connection is via a firewall then the authorize method will
 be called with no
arguments.

authorize ([AUTH [, RESP]])

This is a protocol used by some firewall ftp proxies. It is used
 to authorise the user to send
data out. If both arguments are not specified
 then authorize uses Net::Netrc to do a
lookup.

site (ARGS)

Send a SITE command to the remote server and wait for a response.

Returns most significant digit of the response code.

Perl version 5.12.2 documentation - Net::FTP

Page 3http://perldoc.perl.org

ascii

Transfer file in ASCII. CRLF translation will be done if required

binary

Transfer file in binary mode. No transformation will be done.

Hint: If both server and client machines use the same line ending for
 text files, then it will be
faster to transfer all files in binary mode.

rename (OLDNAME, NEWNAME)

Rename a file on the remote FTP server from OLDNAME to NEWNAME. This
 is done by sending
the RNFR and RNTO commands.

delete (FILENAME)

Send a request to the server to delete FILENAME.

cwd ([DIR])

Attempt to change directory to the directory given in $dir. If $dir is "..", the FTP CDUP
command is used to attempt to
 move up one directory. If no directory is given then an attempt
is made
 to change the directory to the root directory.

cdup ()

Change directory to the parent of the current directory.

pwd ()

Returns the full pathname of the current directory.

restart (WHERE)

Set the byte offset at which to begin the next data transfer. Net::FTP simply
 records this value
and uses it when during the next data transfer. For this
 reason this method will not return an
error, but setting it may cause
 a subsequent data transfer to fail.

rmdir (DIR [, RECURSE])

Remove the directory with the name DIR. If RECURSE is true then rmdir will attempt to delete
everything inside the directory.

mkdir (DIR [, RECURSE])

Create a new directory with the name DIR. If RECURSE is true then mkdir will attempt to
create all the directories in the given path.

Returns the full pathname to the new directory.

alloc (SIZE [, RECORD_SIZE])

The alloc command allows you to give the ftp server a hint about the size
 of the file about to
be transferred using the ALLO ftp command. Some storage
 systems use this to make
intelligent decisions about how to store the file.
 The SIZE argument represents the size of the
file in bytes. The RECORD_SIZE argument indicates a maximum record or page size for files

sent with a record or page structure.

The size of the file will be determined, and sent to the server
 automatically for normal files so
that this method need only be called if
 you are transferring data from a socket, named pipe, or
other stream not
 associated with a normal file.

ls ([DIR])

Get a directory listing of DIR, or the current directory.

In an array context, returns a list of lines returned from the server. In
 a scalar context, returns
a reference to a list.

Perl version 5.12.2 documentation - Net::FTP

Page 4http://perldoc.perl.org

dir ([DIR])

Get a directory listing of DIR, or the current directory in long format.

In an array context, returns a list of lines returned from the server. In
 a scalar context, returns
a reference to a list.

get (REMOTE_FILE [, LOCAL_FILE [, WHERE]])

Get REMOTE_FILE from the server and store locally. LOCAL_FILE may be
 a filename or a
filehandle. If not specified, the file will be stored in
 the current directory with the same
leafname as the remote file.

If WHERE is given then the first WHERE bytes of the file will
 not be transferred, and the
remaining bytes will be appended to
 the local file if it already exists.

Returns LOCAL_FILE, or the generated local file name if LOCAL_FILE
 is not given. If an error
was encountered undef is returned.

put (LOCAL_FILE [, REMOTE_FILE])

Put a file on the remote server. LOCAL_FILE may be a name or a filehandle.
 If LOCAL_FILE
is a filehandle then REMOTE_FILE must be specified. If REMOTE_FILE is not specified then
the file will be stored in the current
 directory with the same leafname as LOCAL_FILE.

Returns REMOTE_FILE, or the generated remote filename if REMOTE_FILE
 is not given.

NOTE: If for some reason the transfer does not complete and an error is
 returned then the
contents that had been transferred will not be remove
 automatically.

put_unique (LOCAL_FILE [, REMOTE_FILE])

Same as put but uses the STOU command.

Returns the name of the file on the server.

append (LOCAL_FILE [, REMOTE_FILE])

Same as put but appends to the file on the remote server.

Returns REMOTE_FILE, or the generated remote filename if REMOTE_FILE
 is not given.

unique_name ()

Returns the name of the last file stored on the server using the STOU command.

mdtm (FILE)

Returns the modification time of the given file

size (FILE)

Returns the size in bytes for the given file as stored on the remote server.

NOTE: The size reported is the size of the stored file on the remote server.
 If the file is
subsequently transferred from the server in ASCII mode
 and the remote server and local
machine have different ideas about
 "End Of Line" then the size of file on the local machine
after transfer
 may be different.

supported (CMD)

Returns TRUE if the remote server supports the given command.

hash ([FILEHANDLE_GLOB_REF],[BYTES_PER_HASH_MARK])

Called without parameters, or with the first argument false, hash marks
 are suppressed. If the
first argument is true but not a reference to a file handle glob, then *STDERR is used. The
second argument is the number
 of bytes per hash mark printed, and defaults to 1024. In all
cases the
 return value is a reference to an array of two: the filehandle glob reference
 and the
bytes per hash mark.

Perl version 5.12.2 documentation - Net::FTP

Page 5http://perldoc.perl.org

feature (NAME)

Determine if the server supports the specified feature. The return
 value is a list of lines the
server responded with to describe the
 options that it supports for the given feature. If the
feature is
 unsupported then the empty list is returned.

 if ($ftp->feature('MDTM')) {
 # Do something
 }

 if (grep { /\bTLS\b/ } $ftp->feature('AUTH')) {
 # Server supports TLS
 }

The following methods can return different results depending on
 how they are called. If the user
explicitly calls either
 of the pasv or port methods then these methods will
 return a true or false
value. If the user does not
 call either of these methods then the result will be a
 reference to a
Net::FTP::dataconn based object.

nlst ([DIR])

Send an NLST command to the server, with an optional parameter.

list ([DIR])

Same as nlst but using the LIST command

retr (FILE)

Begin the retrieval of a file called FILE from the remote server.

stor (FILE)

Tell the server that you wish to store a file. FILE is the
 name of the new file that should be
created.

stou (FILE)

Same as stor but using the STOU command. The name of the unique
 file which was created
on the server will be available via the unique_name
 method after the data connection has
been closed.

appe (FILE)

Tell the server that we want to append some data to the end of a file
 called FILE. If this file
does not exist then create it.

If for some reason you want to have complete control over the data connection,
 this includes
generating it and calling the response method when required,
 then the user can use these methods
to do so.

However calling these methods only affects the use of the methods above that
 can return a data
connection. They have no effect on methods get, put, put_unique and those that do not require
data connections.

port ([PORT])

Send a PORT command to the server. If PORT is specified then it is sent
 to the server. If not,
then a listen socket is created and the correct information
 sent to the server.

pasv ()

Tell the server to go into passive mode. Returns the text that represents the
 port on which the
server is listening, this text is in a suitable form to
 sent to another ftp server using the port
method.

Perl version 5.12.2 documentation - Net::FTP

Page 6http://perldoc.perl.org

The following methods can be used to transfer files between two remote
 servers, providing that these
two servers can connect directly to each other.

pasv_xfer (SRC_FILE, DEST_SERVER [, DEST_FILE])

This method will do a file transfer between two remote ftp servers. If DEST_FILE is omitted
then the leaf name of SRC_FILE will be used.

pasv_xfer_unique (SRC_FILE, DEST_SERVER [, DEST_FILE])

Like pasv_xfer but the file is stored on the remote server using
 the STOU command.

pasv_wait (NON_PASV_SERVER)

This method can be used to wait for a transfer to complete between a passive
 server and a
non-passive server. The method should be called on the passive
 server with the Net::FTP
object for the non-passive server passed as an
 argument.

abort ()

Abort the current data transfer.

quit ()

Send the QUIT command to the remote FTP server and close the socket connection.

Methods for the adventurous
Net::FTP inherits from Net::Cmd so methods defined in Net::Cmd may
 be used to send
commands to the remote FTP server.

quot (CMD [,ARGS])

Send a command, that Net::FTP does not directly support, to the remote
 server and wait for a
response.

Returns most significant digit of the response code.

WARNING This call should only be used on commands that do not require
 data connections.
Misuse of this method can hang the connection.

THE dataconn CLASS
Some of the methods defined in Net::FTP return an object which will
 be derived from this class.The
dataconn class itself is derived from
 the IO::Socket::INET class, so any normal IO operations can
be performed.
 However the following methods are defined in the dataconn class and IO should
 be
performed using these.

read (BUFFER, SIZE [, TIMEOUT])

Read SIZE bytes of data from the server and place it into BUFFER, also
 performing any
<CRLF> translation necessary. TIMEOUT is optional, if not
 given, the timeout value from the
command connection will be used.

Returns the number of bytes read before any <CRLF> translation.

write (BUFFER, SIZE [, TIMEOUT])

Write SIZE bytes of data from BUFFER to the server, also
 performing any <CRLF> translation
necessary. TIMEOUT is optional, if not
 given, the timeout value from the command connection
will be used.

Returns the number of bytes written before any <CRLF> translation.

bytes_read ()

Returns the number of bytes read so far.

abort ()

Abort the current data transfer.

Perl version 5.12.2 documentation - Net::FTP

Page 7http://perldoc.perl.org

close ()

Close the data connection and get a response from the FTP server. Returns true if the
connection was closed successfully and the first digit of
 the response from the server was a
'2'.

UNIMPLEMENTED
The following RFC959 commands have not been implemented:

SMNT

Mount a different file system structure without changing login or
 accounting information.

HELP

Ask the server for "helpful information" (that's what the RFC says) on
 the commands it
accepts.

MODE

Specifies transfer mode (stream, block or compressed) for file to be
 transferred.

SYST

Request remote server system identification.

STAT

Request remote server status.

STRU

Specifies file structure for file to be transferred.

REIN

Reinitialize the connection, flushing all I/O and account information.

REPORTING BUGS
When reporting bugs/problems please include as much information as possible.
 It may be difficult for
me to reproduce the problem as almost every setup
 is different.

A small script which yields the problem will probably be of help. It would
 also be useful if this script
was run with the extra options Debug = 1>
 passed to the constructor, and the output sent with the
bug report. If you
 cannot include a small script then please include a Debug trace from a
 run of your
program which does yield the problem.

AUTHOR
Graham Barr <gbarr@pobox.com>

SEE ALSO
Net::Netrc Net::Cmd

ftp(1), ftpd(8), RFC 959
 http://www.cis.ohio-state.edu/htbin/rfc/rfc959.html

USE EXAMPLES
For an example of the use of Net::FTP see

http://www.csh.rit.edu/~adam/Progs/

autoftp is a program that can retrieve, send, or list files via
 the FTP protocol in a
non-interactive manner.

Perl version 5.12.2 documentation - Net::FTP

Page 8http://perldoc.perl.org

CREDITS
Henry Gabryjelski <henryg@WPI.EDU> - for the suggestion of creating directories
 recursively.

Nathan Torkington <gnat@frii.com> - for some input on the documentation.

Roderick Schertler <roderick@gate.net> - for various inputs

COPYRIGHT
Copyright (c) 1995-2004 Graham Barr. All rights reserved.
 This program is free software; you can
redistribute it and/or modify it
 under the same terms as Perl itself.

