
Perl version 5.12.2 documentation - IPC::Cmd

Page 1http://perldoc.perl.org

NAME
IPC::Cmd - finding and running system commands made easy

SYNOPSIS
 use IPC::Cmd qw[can_run run run_forked];

 my $full_path = can_run('wget') or warn 'wget is not installed!';

 ### commands can be arrayrefs or strings ###
 my $cmd = "$full_path -b theregister.co.uk";
 my $cmd = [$full_path, '-b', 'theregister.co.uk'];

 ### in scalar context ###
 my $buffer;
 if(scalar run(command => $cmd,
 verbose => 0,
 buffer => \$buffer,
 timeout => 20)
) {
 print "fetched webpage successfully: $buffer\n";
 }

 ### in list context ###
 my($success, $error_code, $full_buf, $stdout_buf, $stderr_buf) =
 run(command => $cmd, verbose => 0);

 if($success) {
 print "this is what the command printed:\n";
 print join "", @$full_buf;
 }

 ### check for features
 print "IPC::Open3 available: " . IPC::Cmd->can_use_ipc_open3;
 print "IPC::Run available: " . IPC::Cmd->can_use_ipc_run;
 print "Can capture buffer: " . IPC::Cmd->can_capture_buffer;

 ### don't have IPC::Cmd be verbose, ie don't print to stdout or
 ### stderr when running commands -- default is '0'
 $IPC::Cmd::VERBOSE = 0;

DESCRIPTION
IPC::Cmd allows you to run commands, interactively if desired,
 platform independent but have them
still work.

The can_run function can tell you if a certain binary is installed
 and if so where, whereas the run
function can actually execute any
 of the commands you give it and give you a clear return value, as
well
 as adhere to your verbosity settings.

CLASS METHODS
$ipc_run_version = IPC::Cmd->can_use_ipc_run([VERBOSE])

Utility function that tells you if IPC::Run is available. If the verbose flag is passed, it will print
diagnostic messages
 if IPC::Run can not be found or loaded.

Perl version 5.12.2 documentation - IPC::Cmd

Page 2http://perldoc.perl.org

$ipc_open3_version = IPC::Cmd->can_use_ipc_open3([VERBOSE])
Utility function that tells you if IPC::Open3 is available. If the verbose flag is passed, it will print
diagnostic messages
 if IPC::Open3 can not be found or loaded.

$bool = IPC::Cmd->can_capture_buffer
Utility function that tells you if IPC::Cmd is capable of
 capturing buffers in it's current configuration.

$bool = IPC::Cmd->can_use_run_forked
Utility function that tells you if IPC::Cmd is capable of
 providing run_forked on the current platform.

FUNCTIONS
$path = can_run(PROGRAM);

can_run takes but a single argument: the name of a binary you wish
 to locate. can_run works much
like the unix binary which or the bash
 command type, which scans through your path, looking for
the requested
 binary .

Unlike which and type, this function is platform independent and
 will also work on, for example,
Win32.

It will return the full path to the binary you asked for if it was
 found, or undef if it was not.

$ok | ($ok, $err, $full_buf, $stdout_buff, $stderr_buff) = run(command => COMMAND, [verbose
=> BOOL, buffer => \$SCALAR, timeout => DIGIT]);

run takes 4 arguments:

command

This is the command to execute. It may be either a string or an array
 reference.
 This is a
required argument.

See CAVEATS for remarks on how commands are parsed and their
 limitations.

verbose

This controls whether all output of a command should also be printed
 to STDOUT/STDERR or
should only be trapped in buffers (NOTE: buffers
 require IPC::Run to be installed or your
system able to work with IPC::Open3).

It will default to the global setting of $IPC::Cmd::VERBOSE,
 which by default is 0.

buffer

This will hold all the output of a command. It needs to be a reference
 to a scalar.
 Note that this
will hold both the STDOUT and STDERR messages, and you
 have no way of telling which is
which.
 If you require this distinction, run the run command in list context
 and inspect the
individual buffers.

Of course, this requires that the underlying call supports buffers. See
 the note on buffers right
above.

timeout

Sets the maximum time the command is allowed to run before aborting,
 using the built-in
alarm() call. If the timeout is triggered, the errorcode in the return value will be set to an
object of the IPC::Cmd::TimeOut class. See the errorcode section below for
 details.

Defaults to 0, meaning no timeout is set.

run will return a simple true or false when called in scalar
 context.
 In list context, you will be
returned a list of the following items:

success

A simple boolean indicating if the command executed without errors or
 not.

Perl version 5.12.2 documentation - IPC::Cmd

Page 3http://perldoc.perl.org

error message

If the first element of the return value (success) was 0, then some
 error occurred. This second
element is the error message the command
 you requested exited with, if available. This is
generally a pretty printed value of $? or $@. See perldoc perlvar for details on what they
can contain.
 If the error was a timeout, the error message will be prefixed with
 the string
IPC::Cmd::TimeOut, the timeout class.

full_buffer

This is an arrayreference containing all the output the command
 generated.
 Note that buffers
are only available if you have IPC::Run installed,
 or if your system is able to work with
IPC::Open3 -- See below).
 This element will be undef if this is not the case.

out_buffer

This is an arrayreference containing all the output sent to STDOUT the
 command generated.

Note that buffers are only available if you have IPC::Run installed,
 or if your system is able to
work with IPC::Open3 -- See below).
 This element will be undef if this is not the case.

error_buffer

This is an arrayreference containing all the output sent to STDERR the
 command generated.

Note that buffers are only available if you have IPC::Run installed,
 or if your system is able to
work with IPC::Open3 -- See below).
 This element will be undef if this is not the case.

See the HOW IT WORKS Section below to see how IPC::Cmd decides
 what modules or function calls
to use when issuing a command.

$hashref = run_forked(command => COMMAND, { child_stdin => SCALAR, timeout => DIGIT,
stdout_handler => CODEREF, stderr_handler => CODEREF});

run_forked is used to execute some program,
 optionally feed it with some input, get its return code

and output (both stdout and stderr into seperate buffers).
 In addition it allows to terminate the program
which take too long to finish.

The important and distinguishing feature of run_forked
 is execution timeout which at first seems to be

quite a simple task but if you think
 that the program which you're spawning
 might spawn some
children itself (which
 in their turn could do the same and so on)
 it turns out to be not a simple issue.

run_forked is designed to survive and
 successfully terminate almost any long running task,
 even a
fork bomb in case your system has the resources
 to survive during given timeout.

This is achieved by creating separate watchdog process
 which spawns the specified program in a
separate
 process session and supervises it: optionally
 feeds it with input, stores its exit code,
 stdout
and stderr, terminates it in case
 it runs longer than specified.

Invocation requires the command to be executed and optionally a hashref of options:

timeout

Specify in seconds how long the command may run for before it is killed with with SIG_KILL
(9) which effectively terminates it and all of its children (direct or indirect).

child_stdin

Specify some text that will be passed into STDIN of the executed program.

stdout_handler

You may provide a coderef of a subroutine that will be called a portion of data is received on
stdout from the executing program.

stderr_handler

You may provide a coderef of a subroutine that will be called a portion of data is received on

Perl version 5.12.2 documentation - IPC::Cmd

Page 4http://perldoc.perl.org

stderr from the executing program.

run_forked will return a HASHREF with the following keys:

exit_code

The exit code of the executed program.

timeout

The number of seconds the program ran for before being terminated, or 0 if no timeout
occurred.

stdout

Holds the standard output of the executed command
 (or empty string if there were no stdout
output; it's always defined!)

stderr

Holds the standard error of the executed command
 (or empty string if there were no stderr
output; it's always defined!)

merged

Holds the standard output and error of the executed command merged into one stream
 (or
empty string if there were no output at all; it's always defined!)

err_msg

Holds some explanation in the case of an error.

$q = QUOTE
Returns the character used for quoting strings on this platform. This is
 usually a ' (single quote) on
most systems, but some systems use different
 quotes. For example, Win32 uses " (double quote).

You can use it as follows:

 use IPC::Cmd qw[run QUOTE];
 my $cmd = q[echo] . QUOTE . q[foo bar] . QUOTE;

This makes sure that foo bar is treated as a string, rather than two
 seperate arguments to the echo
function.

__END__

HOW IT WORKS
run will try to execute your command using the following logic:

If you have IPC::Run installed, and the variable $IPC::Cmd::USE_IPC_RUN
 is set to true
(See the GLOBAL VARIABLES Section) use that to execute the command. You will have the
full output available in buffers, interactive commands are sure to work and you are guaranteed
to have your verbosity
 settings honored cleanly.

Otherwise, if the variable $IPC::Cmd::USE_IPC_OPEN3 is set to true (See the GLOBAL
VARIABLES Section), try to execute the command using IPC::Open3. Buffers will be
available on all platforms except Win32,
 interactive commands will still execute cleanly, and
also your verbosity
 settings will be adhered to nicely;

Otherwise, if you have the verbose argument set to true, we fall back
 to a simple system() call.
We cannot capture any buffers, but
 interactive commands will still work.

Otherwise we will try and temporarily redirect STDERR and STDOUT, do a
 system() call with
your command and then re-open STDERR and STDOUT.
 This is the method of last resort and

Perl version 5.12.2 documentation - IPC::Cmd

Page 5http://perldoc.perl.org

will still allow you to execute
 your commands cleanly. However, no buffers will be available.

Global Variables
The behaviour of IPC::Cmd can be altered by changing the following
 global variables:

$IPC::Cmd::VERBOSE
This controls whether IPC::Cmd will print any output from the
 commands to the screen or not. The
default is 0;

$IPC::Cmd::USE_IPC_RUN
This variable controls whether IPC::Cmd will try to use IPC::Run
 when available and suitable. Defaults
to true if you are on Win32.

$IPC::Cmd::USE_IPC_OPEN3
This variable controls whether IPC::Cmd will try to use IPC::Open3
 when available and suitable.
Defaults to true.

$IPC::Cmd::WARN
This variable controls whether run time warnings should be issued, like
 the failure to load an IPC::*
module you explicitly requested.

Defaults to true. Turn this off at your own risk.

Caveats
Whitespace and IPC::Open3 / system()

When using IPC::Open3 or system, if you provide a string as the command argument, it is
assumed to be appropriately escaped. You can
 use the QUOTE constant to use as a portable
quote character (see above).
 However, if you provide and Array Reference, special rules
apply:

If your command contains Special Characters (< > | &), it will
 be internally stringified
before executing the command, to avoid that these
 special characters are escaped and
passed as arguments instead of retaining
 their special meaning.

However, if the command contained arguments that contained whitespace, stringifying the
command would loose the significance of the whitespace.
 Therefor, IPC::Cmd will quote any
arguments containing whitespace in your
 command if the command is passed as an arrayref
and contains special characters.

Whitespace and IPC::Run

When using IPC::Run, if you provide a string as the command argument, the string will be
split on whitespace to determine the individual elements of your command. Although this will
usually just Do What You Mean, it may
 break if you have files or commands with whitespace
in them.

If you do not wish this to happen, you should provide an array
 reference, where all parts of
your command are already separated out.
 Note however, if there's extra or spurious
whitespace in these parts,
 the parser or underlying code may not interpret it correctly, and

cause an error.

Example:
 The following code

 gzip -cdf foo.tar.gz | tar -xf -

should either be passed as

 "gzip -cdf foo.tar.gz | tar -xf -"

or as

 ['gzip', '-cdf', 'foo.tar.gz', '|', 'tar', '-xf', '-']

Perl version 5.12.2 documentation - IPC::Cmd

Page 6http://perldoc.perl.org

But take care not to pass it as, for example

 ['gzip -cdf foo.tar.gz', '|', 'tar -xf -']

Since this will lead to issues as described above.

IO Redirect

Currently it is too complicated to parse your command for IO
 Redirections. For capturing
STDOUT or STDERR there is a work around
 however, since you can just inspect your buffers
for the contents.

Interleaving STDOUT/STDERR

Neither IPC::Run nor IPC::Open3 can interleave STDOUT and STDERR. For short
 bursts of
output from a program, ie this sample:

 for (1..4) {
 $_ % 2 ? print STDOUT $_ : print STDERR $_;
 }

IPC::[Run|Open3] will first read all of STDOUT, then all of STDERR, meaning the output looks
like 1 line on each, namely '13' on STDOUT and '24' on STDERR.

It should have been 1, 2, 3, 4.

This has been recorded in rt.cpan.org as bug #37532: Unable to interleave
 STDOUT and
STDERR

See Also
IPC::Run, IPC::Open3

ACKNOWLEDGEMENTS
Thanks to James Mastros and Martijn van der Streek for their
 help in getting IPC::Open3 to behave
nicely.

Thanks to Petya Kohts for the run_forked code.

BUG REPORTS
Please report bugs or other issues to <bug-ipc-cmd@rt.cpan.org>.

AUTHOR
This module by Jos Boumans <kane@cpan.org>.

COPYRIGHT
This library is free software; you may redistribute and/or modify it under the same terms as Perl itself.

