
Perl version 5.12.2 documentation - Math::Trig

Page 1http://perldoc.perl.org

NAME
Math::Trig - trigonometric functions

SYNOPSIS
 use Math::Trig;

 $x = tan(0.9);
 $y = acos(3.7);
 $z = asin(2.4);

 $halfpi = pi/2;

 $rad = deg2rad(120);

 # Import constants pi2, pip2, pip4 (2*pi, pi/2, pi/4).
 use Math::Trig ':pi';

 # Import the conversions between cartesian/spherical/cylindrical.
 use Math::Trig ':radial';

 # Import the great circle formulas.
 use Math::Trig ':great_circle';

DESCRIPTION
Math::Trig defines many trigonometric functions not defined by the
 core Perl which defines only
the sin() and cos(). The constant pi is also defined as are a few convenience functions for angle

conversions, and great circle formulas for spherical movement.

TRIGONOMETRIC FUNCTIONS
The tangent

tan

The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot
 are aliases)

csc, cosec, sec, sec, cot, cotan

The arcus (also known as the inverse) functions of the sine, cosine,
 and tangent

asin, acos, atan

The principal value of the arc tangent of y/x

atan2(y, x)

The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc
 and acotan/acot are aliases).
Note that atan2(0, 0) is not well-defined.

acsc, acosec, asec, acot, acotan

The hyperbolic sine, cosine, and tangent

sinh, cosh, tanh

The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch
 and cotanh/coth are aliases)

csch, cosech, sech, coth, cotanh

Perl version 5.12.2 documentation - Math::Trig

Page 2http://perldoc.perl.org

The area (also known as the inverse) functions of the hyperbolic
 sine, cosine, and tangent

asinh, acosh, atanh

The area cofunctions of the hyperbolic sine, cosine, and tangent
 (acsch/acosech and acoth/acotanh
are aliases)

acsch, acosech, asech, acoth, acotanh

The trigonometric constant pi and some of handy multiples
 of it are also defined.

pi, pi2, pi4, pip2, pip4

ERRORS DUE TO DIVISION BY ZERO
The following functions

 acoth
 acsc
 acsch
 asec
 asech
 atanh
 cot
 coth
 csc
 csch
 sec
 sech
 tan
 tanh

cannot be computed for all arguments because that would mean dividing
 by zero or taking logarithm
of zero. These situations cause fatal
 runtime errors looking like this

 cot(0): Division by zero.
 (Because in the definition of cot(0), the divisor sin(0) is 0)
 Died at ...

or

 atanh(-1): Logarithm of zero.
 Died at...

For the csc, cot, asec, acsc, acot, csch, coth, asech, acsch, the argument cannot be 0 (zero).
For the atanh, acoth, the argument cannot be 1 (one). For the atanh, acoth, the argument cannot
be -1 (minus one). For the tan, sec, tanh, sech, the argument cannot be pi/2 + k *
 pi, where k is
any integer.

Note that atan2(0, 0) is not well-defined.

SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS
Please note that some of the trigonometric functions can break out
 from the real axis into the
complex plane. For example asin(2) has no definition for plain real numbers but it has
 definition
for complex numbers.

In Perl terms this means that supplying the usual Perl numbers (also
 known as scalars, please see
perldata) as input for the
 trigonometric functions might produce as output results that no more
 are
simple real numbers: instead they are complex numbers.

Perl version 5.12.2 documentation - Math::Trig

Page 3http://perldoc.perl.org

The Math::Trig handles this by using the Math::Complex package
 which knows how to handle
complex numbers, please see Math::Complex
 for more information. In practice you need not to worry
about getting
 complex numbers as results because the Math::Complex takes care of
 details like for
example how to display complex numbers. For example:

 print asin(2), "\n";

should produce something like this (take or leave few last decimals):

 1.5707963267949-1.31695789692482i

That is, a complex number with the real part of approximately 1.571
 and the imaginary part of
approximately -1.317.

PLANE ANGLE CONVERSIONS
(Plane, 2-dimensional) angles may be converted with the following functions.

deg2rad

 $radians = deg2rad($degrees);

grad2rad

 $radians = grad2rad($gradians);

rad2deg

 $degrees = rad2deg($radians);

grad2deg

 $degrees = grad2deg($gradians);

deg2grad

 $gradians = deg2grad($degrees);

rad2grad

 $gradians = rad2grad($radians);

The full circle is 2 pi radians or 360 degrees or 400 gradians.
 The result is by default wrapped to be
inside the [0, {2pi,360,400}[circle.
 If you don't want this, supply a true second argument:

 $zillions_of_radians = deg2rad($zillions_of_degrees, 1);
 $negative_degrees = rad2deg($negative_radians, 1);

You can also do the wrapping explicitly by rad2rad(), deg2deg(), and
 grad2grad().

rad2rad

 $radians_wrapped_by_2pi = rad2rad($radians);

deg2deg

 $degrees_wrapped_by_360 = deg2deg($degrees);

grad2grad

 $gradians_wrapped_by_400 = grad2grad($gradians);

Perl version 5.12.2 documentation - Math::Trig

Page 4http://perldoc.perl.org

RADIAL COORDINATE CONVERSIONS
Radial coordinate systems are the spherical and the cylindrical
 systems, explained shortly in
more detail.

You can import radial coordinate conversion functions by using the :radial tag:

 use Math::Trig ':radial';

 ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
 ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
 ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
 ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
 ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
 ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta,
$phi);

All angles are in radians.

COORDINATE SYSTEMS
Cartesian coordinates are the usual rectangular (x, y, z)-coordinates.

Spherical coordinates, (rho, theta, pi), are three-dimensional
 coordinates which define a point in
three-dimensional space. They are
 based on a sphere surface. The radius of the sphere is rho, also

known as the radial coordinate. The angle in the xy-plane
 (around the z-axis) is theta, also known as
the azimuthal
 coordinate. The angle from the z-axis is phi, also known as the polar coordinate. The
North Pole is therefore 0, 0, rho, and
 the Gulf of Guinea (think of the missing big chunk of Africa) 0,

pi/2, rho. In geographical terms phi is latitude (northward
 positive, southward negative) and theta is
longitude (eastward
 positive, westward negative).

BEWARE: some texts define theta and phi the other way round,
 some texts define the phi to start
from the horizontal plane, some
 texts use r in place of rho.

Cylindrical coordinates, (rho, theta, z), are three-dimensional
 coordinates which define a point in
three-dimensional space. They are
 based on a cylinder surface. The radius of the cylinder is rho,
 also
known as the radial coordinate. The angle in the xy-plane
 (around the z-axis) is theta, also known as
the azimuthal
 coordinate. The third coordinate is the z, pointing up from the theta-plane.

3-D ANGLE CONVERSIONS
Conversions to and from spherical and cylindrical coordinates are
 available. Please notice that the
conversions are not necessarily
 reversible because of the equalities like pi angles being equal to -pi
angles.

cartesian_to_cylindrical

 ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);

cartesian_to_spherical

 ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);

cylindrical_to_cartesian

 ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);

cylindrical_to_spherical

 ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta,
 $z);

Perl version 5.12.2 documentation - Math::Trig

Page 5http://perldoc.perl.org

Notice that when $z is not 0 $rho_s is not equal to $rho_c.

spherical_to_cartesian

 ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);

spherical_to_cylindrical

 ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta,
$phi);

Notice that when $z is not 0 $rho_c is not equal to $rho_s.

GREAT CIRCLE DISTANCES AND DIRECTIONS
A great circle is section of a circle that contains the circle
 diameter: the shortest distance between two
(non-antipodal) points on
 the spherical surface goes along the great circle connecting those two

points.

great_circle_distance
You can compute spherical distances, called great circle distances,
 by importing the
great_circle_distance() function:

 use Math::Trig 'great_circle_distance';

 $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [,
$rho]);

The great circle distance is the shortest distance between two
 points on a sphere. The distance is in
$rho units. The $rho is
 optional, it defaults to 1 (the unit sphere), therefore the distance
 defaults to
radians.

If you think geographically the theta are longitudes: zero at the
 Greenwhich meridian, eastward
positive, westward negative -- and the phi are latitudes: zero at the North Pole, northward positive,

southward negative. NOTE: this formula thinks in mathematics, not
 geographically: the phi zero is at
the North Pole, not at the
 Equator on the west coast of Africa (Bay of Guinea). You need to
 subtract
your geographical coordinates from pi/2 (also known as 90
 degrees).

 $distance = great_circle_distance($lon0, pi/2 - $lat0,
 $lon1, pi/2 - $lat1, $rho);

great_circle_direction
The direction you must follow the great circle (also known as bearing)
 can be computed by the
great_circle_direction() function:

 use Math::Trig 'great_circle_direction';

 $direction = great_circle_direction($theta0, $phi0, $theta1, $phi1);

great_circle_bearing
Alias 'great_circle_bearing' for 'great_circle_direction' is also available.

 use Math::Trig 'great_circle_bearing';

 $direction = great_circle_bearing($theta0, $phi0, $theta1, $phi1);

The result of great_circle_direction is in radians, zero indicating
 straight north, pi or -pi straight south,

Perl version 5.12.2 documentation - Math::Trig

Page 6http://perldoc.perl.org

pi/2 straight west, and
 -pi/2 straight east.

great_circle_destination
You can inversely compute the destination if you know the
 starting point, direction, and distance:

 use Math::Trig 'great_circle_destination';

 # $diro is the original direction,
 # for example from great_circle_bearing().
 # $distance is the angular distance in radians,
 # for example from great_circle_distance().
 # $thetad and $phid are the destination coordinates,
 # $dird is the final direction at the destination.

 ($thetad, $phid, $dird) =
 great_circle_destination($theta, $phi, $diro, $distance);

or the midpoint if you know the end points:

great_circle_midpoint
 use Math::Trig 'great_circle_midpoint';

 ($thetam, $phim) =
 great_circle_midpoint($theta0, $phi0, $theta1, $phi1);

The great_circle_midpoint() is just a special case of

great_circle_waypoint
 use Math::Trig 'great_circle_waypoint';

 ($thetai, $phii) =
 great_circle_waypoint($theta0, $phi0, $theta1, $phi1, $way);

Where the $way is a value from zero ($theta0, $phi0) to one ($theta1,
 $phi1). Note that antipodal
points (where their distance is pi
 radians) do not have waypoints between them (they would have an
an
 "equator" between them), and therefore undef is returned for
 antipodal points. If the points are the
same and the distance
 therefore zero and all waypoints therefore identical, the first point
 (either point)
is returned.

The thetas, phis, direction, and distance in the above are all in radians.

You can import all the great circle formulas by

 use Math::Trig ':great_circle';

Notice that the resulting directions might be somewhat surprising if
 you are looking at a flat worldmap:
in such map projections the great
 circles quite often do not look like the shortest routes -- but for

example the shortest possible routes from Europe or North America to
 Asia do often cross the polar
regions. (The common Mercator projection
 does not show great circles as straight lines: straight lines
in the
 Mercator projection are lines of constant bearing.)

EXAMPLES
To calculate the distance between London (51.3N 0.5W) and Tokyo
 (35.7N 139.8E) in kilometers:

 use Math::Trig qw(great_circle_distance deg2rad);

Perl version 5.12.2 documentation - Math::Trig

Page 7http://perldoc.perl.org

 # Notice the 90 - latitude: phi zero is at the North Pole.
 sub NESW { deg2rad($_[0]), deg2rad(90 - $_[1]) }
 my @L = NESW(-0.5, 51.3);
 my @T = NESW(139.8, 35.7);
 my $km = great_circle_distance(@L, @T, 6378); # About 9600 km.

The direction you would have to go from London to Tokyo (in radians,
 straight north being zero,
straight east being pi/2).

 use Math::Trig qw(great_circle_direction);

 my $rad = great_circle_direction(@L, @T); # About 0.547 or 0.174 pi.

The midpoint between London and Tokyo being

 use Math::Trig qw(great_circle_midpoint);

 my @M = great_circle_midpoint(@L, @T);

or about 69 N 89 E, in the frozen wastes of Siberia.

NOTE: you cannot get from A to B like this:

 Dist = great_circle_distance(A, B)
 Dir = great_circle_direction(A, B)
 C = great_circle_destination(A, Dist, Dir)

and expect C to be B, because the bearing constantly changes when
 going from A to B (except in
some special case like the meridians or
 the circles of latitudes) and in great_circle_destination() one
gives
 a constant bearing to follow.

CAVEAT FOR GREAT CIRCLE FORMULAS
The answers may be off by few percentages because of the irregular
 (slightly aspherical) form of the
Earth. The errors are at worst
 about 0.55%, but generally below 0.3%.

Real-valued asin and acos
For small inputs asin() and acos() may return complex numbers even
 when real numbers would be
enough and correct, this happens because of
 floating-point inaccuracies. You can see these
inaccuracies for
 example by trying theses:

 print cos(1e-6)**2+sin(1e-6)**2 - 1,"\n";
 printf "%.20f", cos(1e-6)**2+sin(1e-6)**2,"\n";

which will print something like this

 -1.11022302462516e-16
 0.99999999999999988898

even though the expected results are of course exactly zero and one.
 The formulas used to compute
asin() and acos() are quite sensitive to
 this, and therefore they might accidentally slip into the complex
plane even when they should not. To counter this there are two
 interfaces that are guaranteed to
return a real-valued output.

asin_real

 use Math::Trig qw(asin_real);

Perl version 5.12.2 documentation - Math::Trig

Page 8http://perldoc.perl.org

 $real_angle = asin_real($input_sin);

Return a real-valued arcus sine if the input is between [-1, 1], inclusive the endpoints. For
inputs greater than one, pi/2
 is returned. For inputs less than minus one, -pi/2 is returned.

acos_real

 use Math::Trig qw(acos_real);

 $real_angle = acos_real($input_cos);

Return a real-valued arcus cosine if the input is between [-1, 1], inclusive the endpoints. For
inputs greater than one, zero
 is returned. For inputs less than minus one, pi is returned.

BUGS
Saying use Math::Trig; exports many mathematical routines in the
 caller environment and even
overrides some (sin, cos). This is
 construed as a feature by the Authors, actually... ;-)

The code is not optimized for speed, especially because we use Math::Complex and thus go quite
near complex numbers while doing
 the computations even when the arguments are not. This,
however,
 cannot be completely avoided if we want things like asin(2) to give
 an answer instead of
giving a fatal runtime error.

Do not attempt navigation using these formulas.

Math::Complex

AUTHORS
Jarkko Hietaniemi <jhi!at!iki.fi> and Raphael Manfredi <Raphael_Manfredi!at!pobox.com>.

LICENSE
This library is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

