
Perl version 5.12.3 documentation - Tie::File

Page 1http://perldoc.perl.org

NAME
Tie::File - Access the lines of a disk file via a Perl array

SYNOPSIS
	 # This file documents Tie::File version 0.97
	 use Tie::File;

	 tie @array, 'Tie::File', filename or die ...;

	 $array[13] = 'blah'; # line 13 of the file is now 'blah'
	 print $array[42]; # display line 42 of the file

	 $n_recs = @array; # how many records are in the file?
	 $#array -= 2; # chop two records off the end

	 for (@array) {
	 s/PERL/Perl/g; # Replace PERL with Perl everywhere in the file
	 }

	 # These are just like regular push, pop, unshift, shift, and splice
	 # Except that they modify the file in the way you would expect

	 push @array, new recs...;
	 my $r1 = pop @array;
	 unshift @array, new recs...;
	 my $r2 = shift @array;
	 @old_recs = splice @array, 3, 7, new recs...;

	 untie @array; # all finished

DESCRIPTION
Tie::File represents a regular text file as a Perl array. Each
 element in the array corresponds to a
record in the file. The first
 line of the file is element 0 of the array; the second line is element
 1, and so
on.

The file is not loaded into memory, so this will work even for
 gigantic files.

Changes to the array are reflected in the file immediately.

Lazy people and beginners may now stop reading the manual.

recsep
What is a 'record'? By default, the meaning is the same as for the <...> operator: It's a string
terminated by $/, which is
 probably "\n". (Minor exception: on DOS and Win32 systems, a
 'record'
is a string terminated by "\r\n".) You may change the
 definition of "record" by supplying the
recsep option in the tie
 call:

	 tie @array, 'Tie::File', $file, recsep => 'es';

This says that records are delimited by the string es. If the file
 contained the following data:

	 Curse these pesky flies!\n

then the @array would appear to have four elements:

Perl version 5.12.3 documentation - Tie::File

Page 2http://perldoc.perl.org

	 "Curse th"
	 "e p"
	 "ky fli"
	 "!\n"

An undefined value is not permitted as a record separator. Perl's
 special "paragraph mode" semantics
(à la $/ = "") are not
 emulated.

Records read from the tied array do not have the record separator
 string on the end; this is to allow

	 $array[17] .= "extra";

to work as expected.

(See autochomp, below.) Records stored into the array will have
 the record separator string
appended before they are written to the
 file, if they don't have one already. For example, if the record

separator string is "\n", then the following two lines do exactly
 the same thing:

	 $array[17] = "Cherry pie";
	 $array[17] = "Cherry pie\n";

The result is that the contents of line 17 of the file will be
 replaced with "Cherry pie"; a newline
character will separate line 17
 from line 18. This means that this code will do nothing:

	 chomp $array[17];

Because the chomped value will have the separator reattached when
 it is written back to the file.
There is no way to create a file
 whose trailing record separator string is missing.

Inserting records that contain the record separator string is not
 supported by this module. It will
probably produce a reasonable
 result, but what this result will be may change in a future version.
 Use
'splice' to insert records or to replace one record with several.

autochomp
Normally, array elements have the record separator removed, so that if
 the file contains the text

	 Gold
	 Frankincense
	 Myrrh

the tied array will appear to contain ("Gold", "Frankincense",
 "Myrrh"). If you set
autochomp to a false value, the record
 separator will not be removed. If the file above was tied with

	 tie @gifts, "Tie::File", $gifts, autochomp => 0;

then the array @gifts would appear to contain ("Gold\n",
 "Frankincense\n", "Myrrh\n"),
or (on Win32 systems) ("Gold\r\n",
 "Frankincense\r\n", "Myrrh\r\n").

mode
Normally, the specified file will be opened for read and write access,
 and will be created if it does not
exist. (That is, the flags O_RDWR | O_CREAT are supplied in the open call.) If you want to
 change
this, you may supply alternative flags in the mode option.
 See Fcntl for a listing of available flags.
 For
example:

	 # open the file if it exists, but fail if it does not exist
	 use Fcntl 'O_RDWR';
	 tie @array, 'Tie::File', $file, mode => O_RDWR;

Perl version 5.12.3 documentation - Tie::File

Page 3http://perldoc.perl.org

	 # create the file if it does not exist
	 use Fcntl 'O_RDWR', 'O_CREAT';
	 tie @array, 'Tie::File', $file, mode => O_RDWR | O_CREAT;

	 # open an existing file in read-only mode
	 use Fcntl 'O_RDONLY';
	 tie @array, 'Tie::File', $file, mode => O_RDONLY;

Opening the data file in write-only or append mode is not supported.

memory
This is an upper limit on the amount of memory that Tie::File will
 consume at any time while
managing the file. This is used for two
 things: managing the read cache and managing the deferred
write
 buffer.

Records read in from the file are cached, to avoid having to re-read
 them repeatedly. If you read the
same record twice, the first time it
 will be stored in memory, and the second time it will be fetched
from
 the read cache. The amount of data in the read cache will not
 exceed the value you specified for
memory. If Tie::File wants
 to cache a new record, but the read cache is full, it will make room
 by
expiring the least-recently visited records from the read cache.

The default memory limit is 2Mib. You can adjust the maximum read
 cache size by supplying the
memory option. The argument is the
 desired cache size, in bytes.

	 # I have a lot of memory, so use a large cache to speed up access
	 tie @array, 'Tie::File', $file, memory => 20_000_000;

Setting the memory limit to 0 will inhibit caching; records will be
 fetched from disk every time you
examine them.

The memory value is not an absolute or exact limit on the memory
 used. Tie::File objects contains
some structures besides the read
 cache and the deferred write buffer, whose sizes are not charged

against memory.

The cache itself consumes about 310 bytes per cached record, so if
 your file has many short records,
you may want to decrease the cache
 memory limit, or else the cache overhead may exceed the size
of the
 cached data.

dw_size
(This is an advanced feature. Skip this section on first reading.)

If you use deferred writing (See Deferred Writing, below) then
 data you write into the array will not be
written directly to the
 file; instead, it will be saved in the deferred write buffer to be
 written out later.
Data in the deferred write buffer is also charged
 against the memory limit you set with the memory
option.

You may set the dw_size option to limit the amount of data that can
 be saved in the deferred write
buffer. This limit may not exceed the
 total memory limit. For example, if you set dw_size to 1000 and
memory to 2500, that means that no more than 1000 bytes of deferred
 writes will be saved up. The
space available for the read cache will
 vary, but it will always be at least 1500 bytes (if the deferred
write
 buffer is full) and it could grow as large as 2500 bytes (if the
 deferred write buffer is empty.)

If you don't specify a dw_size, it defaults to the entire memory
 limit.

Option Format
-mode is a synonym for mode. -recsep is a synonym for recsep. -memory is a synonym for
memory. You get the
 idea.

Perl version 5.12.3 documentation - Tie::File

Page 4http://perldoc.perl.org

Public Methods
The tie call returns an object, say $o. You may call

	 $rec = $o->FETCH($n);
	 $o->STORE($n, $rec);

to fetch or store the record at line $n, respectively; similarly
 the other tied array methods. (See perltie
for details.) You may
 also call the following methods on this object:

flock
	 $o->flock(MODE)

will lock the tied file. MODE has the same meaning as the second
 argument to the Perl built-in flock
function; for example LOCK_SH or LOCK_EX | LOCK_NB. (These constants are provided by
 the use
 Fcntl ':flock' declaration.)

MODE is optional; the default is LOCK_EX.

Tie::File maintains an internal table of the byte offset of each
 record it has seen in the file.

When you use flock to lock the file, Tie::File assumes that the
 read cache is no longer
trustworthy, because another process might
 have modified the file since the last time it was read.
Therefore, a
 successful call to flock discards the contents of the read cache
 and the internal record
offset table.

Tie::File promises that the following sequence of operations will
 be safe:

	 my $o = tie @array, "Tie::File", $filename;
	 $o->flock;

In particular, Tie::File will not read or write the file during
 the tie call. (Exception: Using mode =>
 O_TRUNC will, of
 course, erase the file during the tie call. If you want to do this
 safely, then open
the file without O_TRUNC, lock the file, and use @array = ().)

The best way to unlock a file is to discard the object and untie the
 array. It is probably unsafe to
unlock the file without also untying
 it, because if you do, changes may remain unwritten inside the
object.
 That is why there is no shortcut for unlocking. If you really want to
 unlock the file prematurely,
you know what to do; if you don't know
 what to do, then don't do it.

All the usual warnings about file locking apply here. In particular,
 note that file locking in Perl is
advisory, which means that
 holding a lock will not prevent anyone else from reading, writing, or

erasing the file; it only prevents them from getting another lock at
 the same time. Locks are analogous
to green traffic lights: If you
 have a green light, that does not prevent the idiot coming the other
 way
from plowing into you sideways; it merely guarantees to you that
 the idiot does not also have a green
light at the same time.

autochomp
	 my $old_value = $o->autochomp(0); # disable autochomp option
	 my $old_value = $o->autochomp(1); # enable autochomp option

	 my $ac = $o->autochomp(); # recover current value

See autochomp, above.

defer, flush, discard, and autodefer
See Deferred Writing, below.

Perl version 5.12.3 documentation - Tie::File

Page 5http://perldoc.perl.org

offset
	 $off = $o->offset($n);

This method returns the byte offset of the start of the $nth record
 in the file. If there is no such record,
it returns an undefined
 value.

Tying to an already-opened filehandle
If $fh is a filehandle, such as is returned by IO::File or one
 of the other IO modules, you may use:

	 tie @array, 'Tie::File', $fh, ...;

Similarly if you opened that handle FH with regular open or sysopen, you may use:

	 tie @array, 'Tie::File', *FH, ...;

Handles that were opened write-only won't work. Handles that were
 opened read-only will work as
long as you don't try to modify the
 array. Handles must be attached to seekable sources of data---that
means no pipes or sockets. If Tie::File can detect that you
 supplied a non-seekable handle, the
tie call will throw an
 exception. (On Unix systems, it can detect this.)

Note that Tie::File will only close any filehandles that it opened
 internally. If you passed it a filehandle
as above, you "own" the
 filehandle, and are responsible for closing it after you have untied
 the
@array.

Deferred Writing
(This is an advanced feature. Skip this section on first reading.)

Normally, modifying a Tie::File array writes to the underlying file
 immediately. Every assignment
like $a[3] = ... rewrites as much of
 the file as is necessary; typically, everything from line 3
through
 the end will need to be rewritten. This is the simplest and most
 transparent behavior.
Performance even for large files is reasonably
 good.

However, under some circumstances, this behavior may be excessively
 slow. For example, suppose
you have a million-record file, and you
 want to do:

	 for (@FILE) {
	 $_ = "> $_";
	 }

The first time through the loop, you will rewrite the entire file,
 from line 0 through the end. The second
time through the loop, you
 will rewrite the entire file from line 1 through the end. The third
 time through
the loop, you will rewrite the entire file from line 2 to
 the end. And so on.

If the performance in such cases is unacceptable, you may defer the
 actual writing, and then have it
done all at once. The following loop
 will perform much better for large files:

	 (tied @a)->defer;
	 for (@a) {
	 $_ = "> $_";
	 }
	 (tied @a)->flush;

If Tie::File's memory limit is large enough, all the writing will
 done in memory. Then, when you call
->flush, the entire file
 will be rewritten in a single pass.

(Actually, the preceding discussion is something of a fib. You don't
 need to enable deferred writing to
get good performance for this
 common case, because Tie::File will do it for you automatically

Perl version 5.12.3 documentation - Tie::File

Page 6http://perldoc.perl.org

unless you specifically tell it not to. See autodeferring,
 below.)

Calling ->flush returns the array to immediate-write mode. If
 you wish to discard the deferred
writes, you may call ->discard
 instead of ->flush. Note that in some cases, some of the data
 will
have been written already, and it will be too late for ->discard to discard all the changes. Support
for ->discard may be withdrawn in a future version of Tie::File.

Deferred writes are cached in memory up to the limit specified by the dw_size option (see above). If
the deferred-write buffer is full
 and you try to write still more deferred data, the buffer will be
 flushed.
All buffered data will be written immediately, the buffer
 will be emptied, and the now-empty space will
be used for future
 deferred writes.

If the deferred-write buffer isn't yet full, but the total size of the
 buffer and the read cache would
exceed the memory limit, the oldest
 records will be expired from the read cache until the total size is

under the limit.

push, pop, shift, unshift, and splice cannot be
 deferred. When you perform one of these
operations, any deferred data
 is written to the file and the operation is performed immediately.
 This
may change in a future version.

If you resize the array with deferred writing enabled, the file will
 be resized immediately, but deferred
records will not be written.
 This has a surprising consequence: @a = (...) erases the file

immediately, but the writing of the actual data is deferred. This
 might be a bug. If it is a bug, it will be
fixed in a future version.

Autodeferring
Tie::File tries to guess when deferred writing might be helpful,
 and to turn it on and off
automatically.

	 for (@a) {
	 $_ = "> $_";
	 }

In this example, only the first two assignments will be done
 immediately; after this, all the changes to
the file will be deferred
 up to the user-specified memory limit.

You should usually be able to ignore this and just use the module
 without thinking about deferring.
However, special applications may
 require fine control over which writes are deferred, or may require

that all writes be immediate. To disable the autodeferment feature,
 use

	 (tied @o)->autodefer(0);

or

 	 tie @array, 'Tie::File', $file, autodefer => 0;

Similarly, ->autodefer(1) re-enables autodeferment, and ->autodefer() recovers the current
value of the autodefer setting.

CONCURRENT ACCESS TO FILES
Caching and deferred writing are inappropriate if you want the same
 file to be accessed
simultaneously from more than one process. Other
 optimizations performed internally by this module
are also
 incompatible with concurrent access. A future version of this module will
 support a
concurrent => 1 option that enables safe concurrent access.

Previous versions of this documentation suggested using memory
 => 0 for safe concurrent access.
This was mistaken. Tie::File
 will not support safe concurrent access before version 0.98.

Perl version 5.12.3 documentation - Tie::File

Page 7http://perldoc.perl.org

CAVEATS
(That's Latin for 'warnings'.)

Reasonable effort was made to make this module efficient. Nevertheless,
 changing the size of
a record in the middle of a large file will
 always be fairly slow, because everything after the
new record must be
 moved.

The behavior of tied arrays is not precisely the same as for regular
 arrays. For example:

	 # This DOES print "How unusual!"
	 undef $a[10]; print "How unusual!\n" if defined $a[10];

undef-ing a Tie::File array element just blanks out the
 corresponding record in the file.
When you read it back again, you'll
 get the empty string, so the supposedly-undef'ed value
will be
 defined. Similarly, if you have autochomp disabled, then

	 # This DOES print "How unusual!" if 'autochomp' is disabled
	 undef $a[10];
 print "How unusual!\n" if $a[10];

Because when autochomp is disabled, $a[10] will read back as "\n" (or whatever the
record separator string is.)

There are other minor differences, particularly regarding exists
 and delete, but in general,
the correspondence is extremely close.

I have supposed that since this module is concerned with file I/O,
 almost all normal use of it
will be heavily I/O bound. This means
 that the time to maintain complicated data structures
inside the
 module will be dominated by the time to actually perform the I/O.
 When there was
an opportunity to spend CPU time to avoid doing I/O, I
 usually tried to take it.

You might be tempted to think that deferred writing is like
 transactions, with flush as commit
and discard as rollback, but it isn't, so don't.

There is a large memory overhead for each record offset and for each
 cache entry: about 310
bytes per cached data record, and about 21 bytes per offset table entry.

The per-record overhead will limit the maximum number of records you
 can access per file.
Note that accessing the length of the array
 via $x = scalar @tied_file accesses all
records and stores their
 offsets. The same for foreach (@tied_file), even if you exit the

loop early.

SUBCLASSING
This version promises absolutely nothing about the internals, which
 may change without notice. A
future version of the module will have a
 well-defined and stable subclassing API.

WHAT ABOUT DB_File?
People sometimes point out that DB_File will do something similar,
 and ask why Tie::File module
is necessary.

There are a number of reasons that you might prefer Tie::File.
 A list is available at
http://perl.plover.com/TieFile/why-not-DB_File.

AUTHOR
Mark Jason Dominus

To contact the author, send email to: mjd-perl-tiefile+@plover.com

To receive an announcement whenever a new version of this module is
 released, send a blank email
message to mjd-perl-tiefile-subscribe@plover.com.

Perl version 5.12.3 documentation - Tie::File

Page 8http://perldoc.perl.org

The most recent version of this module, including documentation and
 any news of importance, will be
available at

	 http://perl.plover.com/TieFile/

LICENSE
Tie::File version 0.97 is copyright (C) 2003 Mark Jason Dominus.

This library is free software; you may redistribute it and/or modify
 it under the same terms as Perl
itself.

These terms are your choice of any of (1) the Perl Artistic Licence,
 or (2) version 2 of the GNU
General Public License as published by the
 Free Software Foundation, or (3) any later version of the
GNU General
 Public License.

This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without
even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the
 GNU General Public License for more details.

You should have received a copy of the GNU General Public License
 along with this library program;
it should be in the file COPYING.
 If not, write to the Free Software Foundation, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301, USA

For licensing inquiries, contact the author at:

	 Mark Jason Dominus
	 255 S. Warnock St.
	 Philadelphia, PA 19107

WARRANTY
Tie::File version 0.97 comes with ABSOLUTELY NO WARRANTY.
 For details, see the license.

THANKS
Gigantic thanks to Jarkko Hietaniemi, for agreeing to put this in the
 core when I hadn't written it yet,
and for generally being helpful,
 supportive, and competent. (Usually the rule is "choose any one.")

Also big thanks to Abhijit Menon-Sen for all of the same things.

Special thanks to Craig Berry and Peter Prymmer (for VMS portability
 help), Randy Kobes (for Win32
portability help), Clinton Pierce and
 Autrijus Tang (for heroic eleventh-hour Win32 testing above and
beyond
 the call of duty), Michael G Schwern (for testing advice), and the
 rest of the CPAN testers (for
testing generally).

Special thanks to Tels for suggesting several speed and memory
 optimizations.

Additional thanks to:
 Edward Avis /
 Mattia Barbon /
 Tom Christiansen /
 Gerrit Haase /
 Gurusamy
Sarathy /
 Jarkko Hietaniemi (again) /
 Nikola Knezevic /
 John Kominetz /
 Nick Ing-Simmons /
 Tassilo
von Parseval /
 H. Dieter Pearcey /
 Slaven Rezic /
 Eric Roode /
 Peter Scott /
 Peter Somu /
 Autrijus
Tang (again) /
 Tels (again) /
 Juerd Waalboer

TODO
More tests. (Stuff I didn't think of yet.)

Paragraph mode?

Fixed-length mode. Leave-blanks mode.

Maybe an autolocking mode?

For many common uses of the module, the read cache is a liability.
 For example, a program that

Perl version 5.12.3 documentation - Tie::File

Page 9http://perldoc.perl.org

inserts a single record, or that scans the
 file once, will have a cache hit rate of zero. This suggests a
major
 optimization: The cache should be initially disabled. Here's a hybrid
 approach: Initially, the
cache is disabled, but the cache code
 maintains statistics about how high the hit rate would be *if* it
were
 enabled. When it sees the hit rate get high enough, it enables
 itself. The STAT comments in this
code are the beginning of an
 implementation of this.

Record locking with fcntl()? Then the module might support an undo
 log and get real transactions.
What a tour de force that would be.

Keeping track of the highest cached record. This would allow reads-in-a-row
 to skip the cache lookup
faster (if reading from 1..N with empty cache at
 start, the last cached value will be always N-1).

More tests.

