
Perl version 5.12.3 documentation - Term::ReadLine

Page 1http://perldoc.perl.org

NAME
Term::ReadLine - Perl interface to various readline packages.
 If no real package is found,
substitutes stubs instead of basic functions.

SYNOPSIS
 use Term::ReadLine;
 my $term = Term::ReadLine->new('Simple Perl calc');
 my $prompt = "Enter your arithmetic expression: ";
 my $OUT = $term->OUT || *STDOUT;
 while (defined ($_ = $term->readline($prompt))) {
 my $res = eval($_);
 warn $@ if $@;
 print $OUT $res, "\n" unless $@;
 $term->addhistory($_) if /\S/;
 }

DESCRIPTION
This package is just a front end to some other packages. It's a stub to
 set up a common interface to
the various ReadLine implementations found on
 CPAN (under the Term::ReadLine::*
namespace).

Minimal set of supported functions
All the supported functions should be called as methods, i.e., either as

 $term = Term::ReadLine->new('name');

or as

 $term->addhistory('row');

where $term is a return value of Term::ReadLine->new().

ReadLine

returns the actual package that executes the commands. Among possible

values are Term::ReadLine::Gnu, Term::ReadLine::Perl,
Term::ReadLine::Stub.

new

returns the handle for subsequent calls to following
 functions. Argument is the
name of the application. Optionally can be
 followed by two arguments for IN
and OUT filehandles. These
 arguments should be globs.

readline

gets an input line, possibly with actual readline
 support. Trailing newline is
removed. Returns undef on EOF.

addhistory

adds the line to the history of input, from where it can be used if
 the actual
readline is present.

IN, OUT

return the filehandles for input and output or undef if readline
 input and
output cannot be used for Perl.

MinLine

Perl version 5.12.3 documentation - Term::ReadLine

Page 2http://perldoc.perl.org

If argument is specified, it is an advice on minimal size of line to
 be included
into history. undef means do not include anything into
 history. Returns the old
value.

findConsole

returns an array with two strings that give most appropriate names for
 files for
input and output using conventions "<$in", ">out".

Attribs

returns a reference to a hash which describes internal configuration
 of the
package. Names of keys in this hash conform to standard
 conventions with the
leading rl_ stripped.

Features

Returns a reference to a hash with keys being features present in
 current
implementation. Several optional features are used in the
 minimal interface:
appname should be present if the first argument
 to new is recognized, and
minline should be present if MinLine method is not dummy. autohistory
should be present if
 lines are put into history automatically (maybe subject to
MinLine), and addhistory if addhistory method is not dummy.

If Features method reports a feature attribs as present, the
 method
Attribs is not dummy.

Additional supported functions
Actually Term::ReadLine can use some other package, that will
 support a richer set of commands.

All these commands are callable via method interface and have names
 which conform to standard
conventions with the leading rl_ stripped.

The stub package included with the perl distribution allows some
 additional methods:

tkRunning

makes Tk event loop run when waiting for user input (i.e., during readline
method).

ornaments

makes the command line stand out by using termcap data. The argument
 to
ornaments should be 0, 1, or a string of a form "aa,bb,cc,dd". Four
components of this string should be names of terminal capacities, first two will
be issued to make the prompt
 standout, last two to make the input line
standout.

newTTY

takes two arguments which are input filehandle and output filehandle.
 Switches
to use these filehandles.

One can check whether the currently loaded ReadLine package supports
 these methods by checking
for corresponding Features.

EXPORTS
None

ENVIRONMENT
The environment variable PERL_RL governs which ReadLine clone is
 loaded. If the value is false, a
dummy interface is used. If the value
 is true, it should be tail of the name of the package to use, such
as Perl or Gnu.

Perl version 5.12.3 documentation - Term::ReadLine

Page 3http://perldoc.perl.org

As a special case, if the value of this variable is space-separated,
 the tail might be used to disable the
ornaments by setting the tail to
 be o=0 or ornaments=0. The head should be as described above,
say

If the variable is not set, or if the head of space-separated list is
 empty, the best available package is
loaded.

 export "PERL_RL=Perl o=0"	 # Use Perl ReadLine without ornaments
 export "PERL_RL= o=0"		 # Use best available ReadLine without ornaments

(Note that processing of PERL_RL for ornaments is in the discretion of the particular used
Term::ReadLine::* package).

CAVEATS
It seems that using Term::ReadLine from Emacs minibuffer doesn't work
 quite right and one will get
an error message like

 Cannot open /dev/tty for read at ...

One possible workaround for this is to explicitly open /dev/tty like this

 open (FH, "/dev/tty")
 or eval 'sub Term::ReadLine::findConsole { ("&STDIN", "&STDERR") }';
 die $@ if $@;
 close (FH);

or you can try using the 4-argument form of Term::ReadLine->new().

