
Perl version 5.12.3 documentation - File::stat

Page 1http://perldoc.perl.org

NAME
File::stat - by-name interface to Perl's built-in stat() functions

SYNOPSIS
 use File::stat;
 $st = stat($file) or die "No $file: $!";
 if (($st->mode & 0111) && $st->nlink > 1)) {
 print "$file is executable with lotsa links\n";
 }

 if (-x $st) {
 print "$file is executable\n";
 }

 use Fcntl "S_IRUSR";
 if ($st->cando(S_IRUSR, 1)) {
 print "My effective uid can read $file\n";
 }

 use File::stat qw(:FIELDS);
 stat($file) or die "No $file: $!";
 if (($st_mode & 0111) && ($st_nlink > 1)) {
 print "$file is executable with lotsa links\n";
 }

DESCRIPTION
This module's default exports override the core stat() and lstat() functions, replacing them with
versions that return "File::stat" objects. This object has methods that
 return the similarly named
structure field name from the
 stat(2) function; namely,
 dev,
 ino,
 mode,
 nlink,
 uid,
 gid,
 rdev,
 size,
 atime,
mtime,
 ctime,
 blksize,
 and
 blocks.

As of version 1.02 (provided with perl 5.12) the object provides "-X"
 overloading, so you can call
filetest operators (-f, -x, and so
 on) on it. It also provides a ->cando method, called like

 $st->cando(ACCESS, EFFECTIVE)

where ACCESS is one of S_IRUSR, S_IWUSR or S_IXUSR from the Fcntl module, and EFFECTIVE
indicates whether to use
 effective (true) or real (false) ids. The method interprets the mode, uid and
gid fields, and returns whether or not the current process
 would be allowed the specified access.

If you don't want to use the objects, you may import the ->cando
 method into your namespace as a
regular function called stat_cando.
 This takes an arrayref containing the return values of stat or
lstat as its first argument, and interprets it for you.

You may also import all the structure fields directly into your namespace
 as regular variables using
the :FIELDS import tag. (Note that this still
 overrides your stat() and lstat() functions.) Access these
fields as
 variables named with a preceding st_ in front their method names.
 Thus, $stat_obj->
dev() corresponds to $st_dev if you import
 the fields.

To access this functionality without the core overrides,
 pass the use an empty import list, and then
access
 function functions with their full qualified names.
 On the other hand, the built-ins are still
available
 via the CORE:: pseudo-package.

Perl version 5.12.3 documentation - File::stat

Page 2http://perldoc.perl.org

BUGS
As of Perl 5.8.0 after using this module you cannot use the implicit $_ or the special filehandle _ with
stat() or lstat(), trying
 to do so leads into strange errors. The workaround is for $_ to
 be explicit

 my $stat_obj = stat $_;

and for _ to explicitly populate the object using the unexported
 and undocumented populate() function
with CORE::stat():

 my $stat_obj = File::stat::populate(CORE::stat(_));

ERRORS
-%s is not implemented on a File::stat object

The filetest operators -t, -T and -B are not implemented, as
 they require more information
than just a stat buffer.

WARNINGS
These can all be disabled with

 no warnings "File::stat";

File::stat ignores use filetest 'access'

You have tried to use one of the -rwxRWX filetests with use
 filetest 'access' in effect.
File::stat will ignore the pragma, and
 just use the information in the mode member as
usual.

File::stat ignores VMS ACLs

VMS systems have a permissions structure that cannot be completely
 represented in a stat
buffer, and unlike on other systems the builtin
 filetest operators respect this. The File::stat
overloads, however,
 do not, since the information required is not available.

NOTE
While this class is currently implemented using the Class::Struct
 module to build a struct-like class,
you shouldn't rely upon this.

AUTHOR
Tom Christiansen

