
Perl version 5.12.3 documentation - Encode

Page 1http://perldoc.perl.org

NAME
Encode - character encodings

SYNOPSIS
 use Encode;

Table of Contents
Encode consists of a collection of modules whose details are too big
 to fit in one document. This POD
itself explains the top-level APIs
 and general topics at a glance. For other topics and more details,
 see
the PODs below:

 Name			 Description
 --
 Encode::Alias Alias definitions to encodings
 Encode::Encoding Encode Implementation Base Class
 Encode::Supported List of Supported Encodings
 Encode::CN Simplified Chinese Encodings
 Encode::JP Japanese Encodings
 Encode::KR Korean Encodings
 Encode::TW Traditional Chinese Encodings
 --

DESCRIPTION
The Encode module provides the interfaces between Perl's strings
 and the rest of the system. Perl
strings are sequences of characters.

The repertoire of characters that Perl can represent is at least that
 defined by the Unicode
Consortium. On most platforms the ordinal
 values of the characters (as returned by ord(ch)) is the
"Unicode
 codepoint" for the character (the exceptions are those platforms where
 the legacy encoding
is some variant of EBCDIC rather than a super-set
 of ASCII - see perlebcdic).

Traditionally, computer data has been moved around in 8-bit chunks
 often called "bytes". These
chunks are also known as "octets" in
 networking standards. Perl is widely used to manipulate data of
many
 types - not only strings of characters representing human or computer
 languages but also
"binary" data being the machine's representation of
 numbers, pixels in an image - or just about
anything.

When Perl is processing "binary data", the programmer wants Perl to
 process "sequences of bytes".
This is not a problem for Perl - as a
 byte has 256 possible values, it easily fits in Perl's much larger

"logical character".

TERMINOLOGY
character: a character in the range 0..(2**32-1) (or more).
 (What Perl's strings are made of.)

byte: a character in the range 0..255
 (A special case of a Perl character.)

octet: 8 bits of data, with ordinal values 0..255
 (Term for bytes passed to or from a non-Perl
context, e.g. a disk file.)

PERL ENCODING API
$octets = encode(ENCODING, $string [, CHECK])

Encodes a string from Perl's internal form into ENCODING and returns
 a sequence of octets.
ENCODING can be either a canonical name or
 an alias. For encoding names and aliases, see
Defining Aliases.
 For CHECK, see Handling Malformed Data.

For example, to convert a string from Perl's internal format to
 iso-8859-1 (also known as Latin1),

Perl version 5.12.3 documentation - Encode

Page 2http://perldoc.perl.org

 $octets = encode("iso-8859-1", $string);

CAVEAT: When you run $octets = encode("utf8", $string), then
 $octets may not be
equal to $string. Though they both contain the
 same data, the UTF8 flag for $octets is always off.
When you
 encode anything, UTF8 flag of the result is always off, even when it
 contains
completely valid utf8 string. See The UTF8 flag below.

If the $string is undef then undef is returned.

$string = decode(ENCODING, $octets [, CHECK])

Decodes a sequence of octets assumed to be in ENCODING into Perl's
 internal form and returns
the resulting string. As in encode(),
 ENCODING can be either a canonical name or an alias. For
encoding names
 and aliases, see Defining Aliases. For CHECK, see Handling Malformed Data.

For example, to convert ISO-8859-1 data to a string in Perl's internal format:

 $string = decode("iso-8859-1", $octets);

CAVEAT: When you run $string = decode("utf8", $octets), then $string may not be
equal to $octets. Though they both contain the same data,
 the UTF8 flag for $string is on unless
$octets entirely consists of
 ASCII data (or EBCDIC on EBCDIC machines). See The UTF8 flag

below.

If the $string is undef then undef is returned.

[$obj =] find_encoding(ENCODING)

Returns the encoding object corresponding to ENCODING. Returns
 undef if no matching
ENCODING is find.

This object is what actually does the actual (en|de)coding.

 $utf8 = decode($name, $bytes);

is in fact

 $utf8 = do{
 $obj = find_encoding($name);
 croak qq(encoding "$name" not found) unless ref $obj;
 $obj->decode($bytes)
 };

with more error checking.

Therefore you can save time by reusing this object as follows;

 my $enc = find_encoding("iso-8859-1");
 while(<>){
 my $utf8 = $enc->decode($_);
 # and do someting with $utf8;
 }

Besides ->decode and ->encode, other methods are
 available as well. For instance, -> name
returns the canonical
 name of the encoding object.

 find_encoding("latin1")->name; # iso-8859-1

See Encode::Encoding for details.

[$length =] from_to($octets, FROM_ENC, TO_ENC [, CHECK])

Converts in-place data between two encodings. The data in $octets
 must be encoded as octets
and not as characters in Perl's internal
 format. For example, to convert ISO-8859-1 data to
Microsoft's CP1250
 encoding:

Perl version 5.12.3 documentation - Encode

Page 3http://perldoc.perl.org

 from_to($octets, "iso-8859-1", "cp1250");

and to convert it back:

 from_to($octets, "cp1250", "iso-8859-1");

Note that because the conversion happens in place, the data to be
 converted cannot be a string
constant; it must be a scalar variable.

from_to() returns the length of the converted string in octets on
 success, undef on error.

CAVEAT: The following operations look the same but are not quite so;

 from_to($data, "iso-8859-1", "utf8"); #1
 $data = decode("iso-8859-1", $data); #2

Both #1 and #2 make $data consist of a completely valid UTF-8 string
 but only #2 turns UTF8 flag
on. #1 is equivalent to

 $data = encode("utf8", decode("iso-8859-1", $data));

See The UTF8 flag below.

Also note that

 from_to($octets, $from, $to, $check);

is equivalent to

 $octets = encode($to, decode($from, $octets), $check);

Yes, it does not respect the $check during decoding. It is
 deliberately done that way. If you need
minute control, decode
 then encode as follows;

 $octets = encode($to, decode($from, $octets, $check_from), $check_to);

$octets = encode_utf8($string);

Equivalent to $octets = encode("utf8", $string); The characters
 that comprise $string
are encoded in Perl's internal format and the
 result is returned as a sequence of octets. All
possible
 characters have a UTF-8 representation so this function cannot fail.

$string = decode_utf8($octets [, CHECK]);

equivalent to $string = decode("utf8", $octets [, CHECK]).
 The sequence of octets
represented by
 $octets is decoded from UTF-8 into a sequence of logical
 characters. Not all
sequences of octets form valid UTF-8 encodings, so
 it is possible for this call to fail. For CHECK,
see Handling Malformed Data.

Listing available encodings
 use Encode;
 @list = Encode->encodings();

Returns a list of the canonical names of the available encodings that
 are loaded. To get a list of all
available encodings including the
 ones that are not loaded yet, say

 @all_encodings = Encode->encodings(":all");

Or you can give the name of a specific module.

 @with_jp = Encode->encodings("Encode::JP");

When "::" is not in the name, "Encode::" is assumed.

Perl version 5.12.3 documentation - Encode

Page 4http://perldoc.perl.org

 @ebcdic = Encode->encodings("EBCDIC");

To find out in detail which encodings are supported by this package,
 see Encode::Supported.

Defining Aliases
To add a new alias to a given encoding, use:

 use Encode;
 use Encode::Alias;
 define_alias(newName => ENCODING);

After that, newName can be used as an alias for ENCODING.
 ENCODING may be either the name of
an encoding or an encoding object

But before you do so, make sure the alias is nonexistent with resolve_alias(), which returns the
canonical name thereof.
 i.e.

 Encode::resolve_alias("latin1") eq "iso-8859-1" # true
 Encode::resolve_alias("iso-8859-12") # false; nonexistent
 Encode::resolve_alias($name) eq $name # true if $name is canonical

resolve_alias() does not need use Encode::Alias; it can be
 exported via use Encode
qw(resolve_alias).

See Encode::Alias for details.

Finding IANA Character Set Registry names
The canonical name of a given encoding does not necessarily agree with
 IANA IANA Character Set
Registry, commonly seen as Content-Type:
 text/plain; charset=whatever. For most
cases canonical names
 work but sometimes it does not (notably 'utf-8-strict').

Therefore as of Encode version 2.21, a new method mime_name() is added.

 use Encode;
 my $enc = find_encoding('UTF-8');
 warn $enc->name; # utf-8-strict
 warn $enc->mime_name; # UTF-8

See also: Encode::Encoding

Encoding via PerlIO
If your perl supports PerlIO (which is the default), you can use a
 PerlIO layer to decode and encode
directly via a filehandle. The
 following two examples are totally identical in their functionality.

 # via PerlIO
 open my $in, "<:encoding(shiftjis)", $infile or die;
 open my $out, ">:encoding(euc-jp)", $outfile or die;
 while(<$in>){ print $out $_; }

 # via from_to
 open my $in, "<", $infile or die;
 open my $out, ">", $outfile or die;
 while(<$in>){
 from_to($_, "shiftjis", "euc-jp", 1);
 print $out $_;
 }

Perl version 5.12.3 documentation - Encode

Page 5http://perldoc.perl.org

Unfortunately, it may be that encodings are PerlIO-savvy. You can check
 if your encoding is
supported by PerlIO by calling the perlio_ok
 method.

 Encode::perlio_ok("hz"); # False
 find_encoding("euc-cn")->perlio_ok; # True where PerlIO is available

 use Encode qw(perlio_ok); # exported upon request
 perlio_ok("euc-jp")

Fortunately, all encodings that come with Encode core are PerlIO-savvy
 except for hz and
ISO-2022-kr. For gory details, see Encode::Encoding and Encode::PerlIO.

Handling Malformed Data
The optional CHECK argument tells Encode what to do when it
 encounters malformed data. Without
CHECK, Encode::FB_DEFAULT (== 0)
 is assumed.

As of version 2.12 Encode supports coderef values for CHECK. See below.

NOTE: Not all encoding support this feature

Some encodings ignore CHECK argument. For example, Encode::Unicode ignores CHECK and it
always croaks on error.

Now here is the list of CHECK values available

CHECK = Encode::FB_DEFAULT (== 0)

If CHECK is 0, (en|de)code will put a substitution character in
 place of a malformed character.
When you encode, <subchar>
 will be used. When you decode the code point 0xFFFD is used. If

the data is supposed to be UTF-8, an optional lexical warning
 (category utf8) is given.

CHECK = Encode::FB_CROAK (== 1)

If CHECK is 1, methods will die on error immediately with an error
 message. Therefore, when
CHECK is set to 1, you should trap the
 error with eval{} unless you really want to let it die.

CHECK = Encode::FB_QUIET

If CHECK is set to Encode::FB_QUIET, (en|de)code will immediately
 return the portion of the data
that has been processed so far when an
 error occurs. The data argument will be overwritten with
everything
 after that point (that is, the unprocessed part of data). This is
 handy when you have to
call decode repeatedly in the case where your
 source data may contain partial multi-byte
character sequences,
 (i.e. you are reading with a fixed-width buffer). Here is a sample
 code that
does exactly this:

 my $buffer = ''; my $string = '';
 while(read $fh, $buffer, 256, length($buffer)){
 $string .= decode($encoding, $buffer, Encode::FB_QUIET);
 # $buffer now contains the unprocessed partial character
 }

CHECK = Encode::FB_WARN

This is the same as above, except that it warns on error. Handy when
 you are debugging the
mode above.

perlqq mode (CHECK = Encode::FB_PERLQQ)

HTML charref mode (CHECK = Encode::FB_HTMLCREF)

XML charref mode (CHECK = Encode::FB_XMLCREF)

For encodings that are implemented by Encode::XS, CHECK ==
 Encode::FB_PERLQQ turns
(en|de)code into perlqq fallback mode.

Perl version 5.12.3 documentation - Encode

Page 6http://perldoc.perl.org

When you decode, \xHH will be inserted for a malformed character,
 where HH is the hex
representation of the octet that could not be
 decoded to utf8. And when you encode, \x{HHHH}
will be inserted,
 where HHHH is the Unicode ID of the character that cannot be found
 in the
character repertoire of the encoding.

HTML/XML character reference modes are about the same, in place of \x{HHHH}, HTML uses
&#NNN; where NNN is a decimal number and
 XML uses &#xHHHH; where HHHH is the
hexadecimal number.

In Encode 2.10 or later, LEAVE_SRC is also implied.

The bitmask

These modes are actually set via a bitmask. Here is how the FB_XX
 constants are laid out. You
can import the FB_XX constants via use Encode qw(:fallbacks); you can import the
generic bitmask
 constants via use Encode qw(:fallback_all).

 FB_DEFAULT FB_CROAK FB_QUIET FB_WARN FB_PERLQQ
 DIE_ON_ERR 0x0001 X
 WARN_ON_ERR 0x0002 X
 RETURN_ON_ERR 0x0004 X X
 LEAVE_SRC 0x0008 X
 PERLQQ 0x0100 X
 HTMLCREF 0x0200
 XMLCREF 0x0400

Encode::LEAVE_SRC

If the Encode::LEAVE_SRC bit is not set, but CHECK is, then the second
 argument to encode()
or decode() may be assigned to by the functions. If
 you're not interested in this, then bitwise-or
the bitmask with it.

coderef for CHECK
As of Encode 2.12 CHECK can also be a code reference which takes the
 ord value of unmapped
caharacter as an argument and returns a string
 that represents the fallback character. For instance,

 $ascii = encode("ascii", $utf8, sub{ sprintf "<U+%04X>", shift });

Acts like FB_PERLQQ but <U+XXXX> is used instead of
 \x{XXXX}.

Defining Encodings
To define a new encoding, use:

 use Encode qw(define_encoding);
 define_encoding($object, 'canonicalName' [, alias...]);

canonicalName will be associated with $object. The object
 should provide the interface described in
Encode::Encoding.
 If more than two arguments are provided then additional
 arguments are taken as
aliases for $object.

See Encode::Encoding for more details.

The UTF8 flag
Before the introduction of Unicode support in perl, The eq operator
 just compared the strings
represented by two scalars. Beginning with
 perl 5.8, eq compares two strings with simultaneous
consideration of the UTF8 flag. To explain why we made it so, I will quote page 402 of Programming
 Perl, 3rd ed.

Goal #1:

Old byte-oriented programs should not spontaneously break on the old
 byte-oriented data they

Perl version 5.12.3 documentation - Encode

Page 7http://perldoc.perl.org

used to work on.

Goal #2:

Old byte-oriented programs should magically start working on the new
 character-oriented data
when appropriate.

Goal #3:

Programs should run just as fast in the new character-oriented mode
 as in the old byte-oriented
mode.

Goal #4:

Perl should remain one language, rather than forking into a
 byte-oriented Perl and a
character-oriented Perl.

Back when Programming Perl, 3rd ed. was written, not even Perl 5.6.0
 was born and many
features documented in the book remained
 unimplemented for a long time. Perl 5.8 corrected this and
the introduction
 of the UTF8 flag is one of them. You can think of this perl notion as of a
 byte-oriented
mode (UTF8 flag off) and a character-oriented mode (UTF8
 flag on).

Here is how Encode takes care of the UTF8 flag.

When you encode, the resulting UTF8 flag is always off.

When you decode, the resulting UTF8 flag is on unless you can
 unambiguously represent data.
Here is the definition of
 dis-ambiguity.

After $utf8 = decode('foo', $octet);,

 When $octet is... The UTF8 flag in $utf8 is

 In ASCII only (or EBCDIC only) OFF
 In ISO-8859-1 ON
 In any other Encoding ON

As you see, there is one exception, In ASCII. That way you can assume
 Goal #1. And with
Encode Goal #2 is assumed but you still have to be
 careful in such cases mentioned in CAVEAT
paragraphs.

This UTF8 flag is not visible in perl scripts, exactly for the same
 reason you cannot (or you don't
have to) see if a scalar contains a
 string, integer, or floating point number. But you can still peek

and poke these if you will. See the section below.

Messing with Perl's Internals
The following API uses parts of Perl's internals in the current
 implementation. As such, they are
efficient but may change.

is_utf8(STRING [, CHECK])

[INTERNAL] Tests whether the UTF8 flag is turned on in the STRING.
 If CHECK is true, also
checks the data in STRING for being well-formed
 UTF-8. Returns true if successful, false
otherwise.

As of perl 5.8.1, utf8 also has utf8::is_utf8().

_utf8_on(STRING)

[INTERNAL] Turns on the UTF8 flag in STRING. The data in STRING is not checked for being
well-formed UTF-8. Do not use unless you know that the STRING is well-formed UTF-8. Returns
the previous
 state of the UTF8 flag (so please don't treat the return value as
 indicating success or
failure), or undef if STRING is not a string.

This function does not work on tainted values.

Perl version 5.12.3 documentation - Encode

Page 8http://perldoc.perl.org

_utf8_off(STRING)

[INTERNAL] Turns off the UTF8 flag in STRING. Do not use frivolously.
 Returns the previous
state of the UTF8 flag (so please don't treat the
 return value as indicating success or failure), or
undef if STRING is
 not a string.

This function does not work on tainted values.

UTF-8 vs. utf8 vs. UTF8
 We now view strings not as sequences of bytes, but as sequences
 of numbers in the range 0 .. 2**32-1 (or in the case of 64-bit
 computers, 0 .. 2**64-1) -- Programming Perl, 3rd ed.

That has been the perl's notion of UTF-8 but official UTF-8 is more
 strict; Its ranges is much narrower
(0 .. 10FFFF), some sequences are
 not allowed (i.e. Those used in the surrogate pair, 0xFFFE, et al).

Now that is overruled by Larry Wall himself.

 From: Larry Wall <larry@wall.org>
 Date: December 04, 2004 11:51:58 JST
 To: perl-unicode@perl.org
 Subject: Re: Make Encode.pm support the real UTF-8
 Message-Id: <20041204025158.GA28754@wall.org>

 On Fri, Dec 03, 2004 at 10:12:12PM +0000, Tim Bunce wrote:
 : I've no problem with 'utf8' being perl's unrestricted uft8 encoding,
 : but "UTF-8" is the name of the standard and should give the
 : corresponding behaviour.

 For what it's worth, that's how I've always kept them straight in my
 head.

 Also for what it's worth, Perl 6 will mostly default to strict but
 make it easy to switch back to lax.

 Larry

Do you copy? As of Perl 5.8.7, UTF-8 means strict, official UTF-8
 while utf8 means liberal, lax,
version thereof. And Encode version
 2.10 or later thus groks the difference between UTF-8 and
C"utf8".

 encode("utf8", "\x{FFFF_FFFF}", 1); # okay
 encode("UTF-8", "\x{FFFF_FFFF}", 1); # croaks

UTF-8 in Encode is actually a canonical name for utf-8-strict.
 Yes, the hyphen between "UTF"
and "8" is important. Without it Encode
 goes "liberal"

 find_encoding("UTF-8")->name # is 'utf-8-strict'
 find_encoding("utf-8")->name # ditto. names are case insensitive
 find_encoding("utf_8")->name # ditto. "_" are treated as "-"
 find_encoding("UTF8")->name # is 'utf8'.

The UTF8 flag is internally called UTF8, without a hyphen. It indicates
 whether a string is internally
encoded as utf8, also without a hypen.

Perl version 5.12.3 documentation - Encode

Page 9http://perldoc.perl.org

SEE ALSO
Encode::Encoding, Encode::Supported, Encode::PerlIO, encoding, perlebcdic, "open" in perlfunc,
perlunicode, perluniintro, perlunifaq, perlunitut utf8,
 the Perl Unicode Mailing List <
perl-unicode@perl.org>

MAINTAINER
This project was originated by Nick Ing-Simmons and later maintained
 by Dan Kogai <
dankogai@dan.co.jp>. See AUTHORS for a full
 list of people involved. For any questions, use <
perl-unicode@perl.org> so we can all share.

While Dan Kogai retains the copyright as a maintainer, the credit
 should go to all those involoved. See
AUTHORS for those submitted
 codes.

COPYRIGHT
Copyright 2002-2006 Dan Kogai <dankogai@dan.co.jp>

This library is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

