
Perl version 5.12.3 documentation - TAP::Parser::ResultFactory

Page 1http://perldoc.perl.org

NAME
TAP::Parser::ResultFactory - Factory for creating TAP::Parser output objects

SYNOPSIS
 use TAP::Parser::ResultFactory;
 my $token = {...};
 my $factory = TAP::Parser::ResultFactory->new;
 my $result = $factory->make_result($token);

VERSION
Version 3.17

DESCRIPTION
This is a simple factory class which returns a TAP::Parser::Result subclass
 representing the current
bit of test data from TAP (usually a single line).
 It is used primarily by TAP::Parser::Grammar. Unless
you're subclassing,
 you probably won't need to use this module directly.

METHODS
Class Methods
new

Creates a new factory class. Note: You currently don't need to instantiate a factory in order to use it.

make_result

Returns an instance the appropriate class for the test token passed in.

 my $result = TAP::Parser::ResultFactory->make_result($token);

Can also be called as an instance method.

class_for

Takes one argument: $type. Returns the class for this $type, or croaks
 with an error.

register_type

Takes two arguments: $type, $class

This lets you override an existing type with your own custom type, or register
 a completely new type,
eg:

 # create a custom result type:
 package MyResult;
 use strict;
 use vars qw(@ISA);
 @ISA = 'TAP::Parser::Result';

 # register with the factory:
 TAP::Parser::ResultFactory->register_type('my_type' => __PACKAGE__);

 # use it:
 my $r = TAP::Parser::ResultFactory->({ type => 'my_type' });

Your custom type should then be picked up automatically by the TAP::Parser.

Perl version 5.12.3 documentation - TAP::Parser::ResultFactory

Page 2http://perldoc.perl.org

SUBCLASSING
Please see "SUBCLASSING" in TAP::Parser for a subclassing overview.

There are a few things to bear in mind when creating your own ResultFactory:

1 The factory itself is never instantiated (this may change in the future).
 This means that
_initialize is never called.

2 TAP::Parser::Result->new is never called, $tokens are reblessed.
 This will change in a
future version!

3 TAP::Parser::Result subclasses will register themselves with TAP::Parser::ResultFactory
directly:

 package MyFooResult;
 TAP::Parser::ResultFactory->register_type(foo => __PACKAGE__);

Of course, it's up to you to decide whether or not to ignore them.

Example
 package MyResultFactory;

 use strict;
 use vars '@ISA';

 use MyResult;
 use TAP::Parser::ResultFactory;

 @ISA = qw(TAP::Parser::ResultFactory);

 # force all results to be 'MyResult'
 sub class_for {
 return 'MyResult';
 }

 1;

SEE ALSO
TAP::Parser, TAP::Parser::Result, TAP::Parser::Grammar

