
Perl version 5.12.3 documentation - encoding

Page 1http://perldoc.perl.org

NAME
encoding - allows you to write your script in non-ascii or non-utf8

SYNOPSIS
 use encoding "greek"; # Perl like Greek to you?
 use encoding "euc-jp"; # Jperl!

 # or you can even do this if your shell supports your native encoding

 perl -Mencoding=latin2 -e'...' # Feeling centrally European?
 perl -Mencoding=euc-kr -e'...' # Or Korean?

 # more control

 # A simple euc-cn => utf-8 converter
 use encoding "euc-cn", STDOUT => "utf8"; while(<>){print};

 # "no encoding;" supported (but not scoped!)
 no encoding;

 # an alternate way, Filter
 use encoding "euc-jp", Filter=>1;
 # now you can use kanji identifiers -- in euc-jp!

 # switch on locale -
 # note that this probably means that unless you have a complete control
 # over the environments the application is ever going to be run, you
should
 # NOT use the feature of encoding pragma allowing you to write your
script
 # in any recognized encoding because changing locale settings will wreck
 # the script; you can of course still use the other features of the
pragma.
 use encoding ':locale';

ABSTRACT
Let's start with a bit of history: Perl 5.6.0 introduced Unicode
 support. You could apply substr() and
regexes even to complex CJK
 characters -- so long as the script was written in UTF-8. But back
 then,
text editors that supported UTF-8 were still rare and many users
 instead chose to write scripts in
legacy encodings, giving up a whole
 new feature of Perl 5.6.

Rewind to the future: starting from perl 5.8.0 with the encoding
 pragma, you can write your script in
any encoding you like (so long
 as the Encode module supports it) and still enjoy Unicode support.

This pragma achieves that by doing the following:

Internally converts all literals (q//,qq//,qr//,qw///, qx//) from
 the encoding specified
to utf8. In Perl 5.8.1 and later, literals in tr/// and DATA pseudo-filehandle are also
converted.

Changing PerlIO layers of STDIN and STDOUT to the encoding
 specified.

Literal Conversions
You can write code in EUC-JP as follows:

Perl version 5.12.3 documentation - encoding

Page 2http://perldoc.perl.org

 my $Rakuda = "\xF1\xD1\xF1\xCC"; # Camel in Kanji
 #<-char-><-char-> # 4 octets
 s/\bCamel\b/$Rakuda/;

And with use encoding "euc-jp" in effect, it is the same thing as
 the code in UTF-8:

 my $Rakuda = "\x{99F1}\x{99DD}"; # two Unicode Characters
 s/\bCamel\b/$Rakuda/;

PerlIO layers for STD(IN|OUT)
The encoding pragma also modifies the filehandle layers of
 STDIN and STDOUT to the specified
encoding. Therefore,

 use encoding "euc-jp";
 my $message = "Camel is the symbol of perl.\n";
 my $Rakuda = "\xF1\xD1\xF1\xCC"; # Camel in Kanji
 $message =~ s/\bCamel\b/$Rakuda/;
 print $message;

Will print "\xF1\xD1\xF1\xCC is the symbol of perl.\n",
 not "\x{99F1}\x{99DD} is the symbol of perl.\n".

You can override this by giving extra arguments; see below.

Implicit upgrading for byte strings
By default, if strings operating under byte semantics and strings
 with Unicode character data are
concatenated, the new string will
 be created by decoding the byte strings as ISO 8859-1 (Latin-1).

The encoding pragma changes this to use the specified encoding
 instead. For example:

 use encoding 'utf8';
 my $string = chr(20000); # a Unicode string
 utf8::encode($string); # now it's a UTF-8 encoded byte string
 # concatenate with another Unicode string
 print length($string . chr(20000));

Will print 2, because $string is upgraded as UTF-8. Without use encoding 'utf8';, it will print
4 instead, since $string
 is three octets when interpreted as Latin-1.

Side effects
If the encoding pragma is in scope then the lengths returned are
 calculated from the length of $/ in
Unicode characters, which is not
 always the same as the length of $/ in the native encoding.

This pragma affects utf8::upgrade, but not utf8::downgrade.

FEATURES THAT REQUIRE 5.8.1
Some of the features offered by this pragma requires perl 5.8.1. Most
 of these are done by Inaba
Hiroto. Any other features and changes
 are good for 5.8.0.

"NON-EUC" doublebyte encodings

Because perl needs to parse script before applying this pragma, such
 encodings as Shift_JIS
and Big-5 that may contain '\' (BACKSLASH;
 \x5c) in the second byte fails because the
second byte may
 accidentally escape the quoting character that follows. Perl 5.8.1
 or later
fixes this problem.

tr//

tr// was overlooked by Perl 5 porters when they released perl 5.8.0
 See the section below

Perl version 5.12.3 documentation - encoding

Page 3http://perldoc.perl.org

for details.

DATA pseudo-filehandle

Another feature that was overlooked was DATA.

USAGE
use encoding [ENCNAME] ;

Sets the script encoding to ENCNAME. And unless ${^UNICODE}
 exists and non-zero, PerlIO
layers of STDIN and STDOUT are set to
 ":encoding(ENCNAME)".

Note that STDERR WILL NOT be changed.

Also note that non-STD file handles remain unaffected. Use use
 open or binmode to change
layers of those.

If no encoding is specified, the environment variable PERL_ENCODING
 is consulted. If no
encoding can be found, the error Unknown encoding
 'ENCNAME' will be thrown.

use encoding ENCNAME [STDIN => ENCNAME_IN ...] ;

You can also individually set encodings of STDIN and STDOUT via the STDIN => ENCNAME
form. In this case, you cannot omit the
 first ENCNAME. STDIN => undef turns the IO
transcoding
 completely off.

When ${^UNICODE} exists and non-zero, these options will completely
 ignored.
${^UNICODE} is a variable introduced in perl 5.8.1. See perlrun see "${^UNICODE}" in perlvar
and "-C" in perlrun for
 details (perl 5.8.1 and later).

use encoding ENCNAME Filter=>1;

This turns the encoding pragma into a source filter. While the
 default approach just decodes
interpolated literals (in qq() and
 qr()), this will apply a source filter to the entire source code.
See The Filter Option below for details.

no encoding;

Unsets the script encoding. The layers of STDIN, STDOUT are
 reset to ":raw" (the default
unprocessed raw stream of bytes).

The Filter Option
The magic of use encoding is not applied to the names of
 identifiers. In order to make
${"\x{4eba}"}++ ($human++, where human
 is a single Han ideograph) work, you still need to
write your script
 in UTF-8 -- or use a source filter. That's what 'Filter=>1' does.

What does this mean? Your source code behaves as if it is written in
 UTF-8 with 'use utf8' in effect.
So even if your editor only supports
 Shift_JIS, for example, you can still try examples in Chapter 15 of
Programming Perl, 3rd Ed.. For instance, you can use UTF-8
 identifiers.

This option is significantly slower and (as of this writing) non-ASCII
 identifiers are not very stable
WITHOUT this option and with the
 source code written in UTF-8.

Filter-related changes at Encode version 1.87
The Filter option now sets STDIN and STDOUT like non-filter options.
 And STDIN=>
ENCODING and STDOUT=>ENCODING work like
 non-filter version.

use utf8 is implicitly declared so you no longer have to use
 utf8 to ${"\x{4eba}"}++.

CAVEATS
NOT SCOPED

The pragma is a per script, not a per block lexical. Only the last use encoding or no encoding
matters, and it affects the whole script. However, the <no encoding> pragma is supported and use
encoding can appear as many times as you want in a given script.
 The multiple use of this pragma is

Perl version 5.12.3 documentation - encoding

Page 4http://perldoc.perl.org

discouraged.By the same reason, the use this pragma inside modules is also
 discouraged (though not
as strongly discouraged as the case above.
 See below).

If you still have to write a module with this pragma, be very careful
 of the load order. See the codes
below;

 # called module
 package Module_IN_BAR;
 use encoding "bar";
 # stuff in "bar" encoding here
 1;

 # caller script
 use encoding "foo"
 use Module_IN_BAR;
 # surprise! use encoding "bar" is in effect.

The best way to avoid this oddity is to use this pragma RIGHT AFTER
 other modules are loaded. i.e.

 use Module_IN_BAR;
 use encoding "foo";

DO NOT MIX MULTIPLE ENCODINGS
Notice that only literals (string or regular expression) having only
 legacy code points are affected: if
you mix data like this

 \xDF\x{100}

the data is assumed to be in (Latin 1 and) Unicode, not in your native
 encoding. In other words, this
will match in "greek":

 "\xDF" =~ /\x{3af}/

but this will not

 "\xDF\x{100}" =~ /\x{3af}\x{100}/

since the \xDF (ISO 8859-7 GREEK SMALL LETTER IOTA WITH TONOS) on
 the left will not be
upgraded to \x{3af} (Unicode GREEK SMALL
 LETTER IOTA WITH TONOS) because of the
\x{100} on the left. You
 should not be mixing your legacy data and Unicode in the same string.

This pragma also affects encoding of the 0x80..0xFF code point range:
 normally characters in that
range are left as eight-bit bytes (unless
 they are combined with characters with code points 0x100 or
larger,
 in which case all characters need to become UTF-8 encoded), but if
 the encoding pragma is
present, even the 0x80..0xFF range always
 gets UTF-8 encoded.

After all, the best thing about this pragma is that you don't have to
 resort to \x{....} just to spell your
name in a native encoding.
 So feel free to put your strings in your encoding in quotes and
 regexes.

tr/// with ranges
The encoding pragma works by decoding string literals in q//,qq//,qr//,qw///, qx// and so
forth. In perl 5.8.0, this
 does not apply to tr///. Therefore,

 use encoding 'euc-jp';
 #....
 $kana =~ tr/\xA4\xA1-\xA4\xF3/\xA5\xA1-\xA5\xF3/;
 # -------- -------- -------- --------

Perl version 5.12.3 documentation - encoding

Page 5http://perldoc.perl.org

Does not work as

 $kana =~ tr/\x{3041}-\x{3093}/\x{30a1}-\x{30f3}/;

Legend of characters above

 utf8 euc-jp charnames::viacode()

 \x{3041} \xA4\xA1 HIRAGANA LETTER SMALL A
 \x{3093} \xA4\xF3 HIRAGANA LETTER N
 \x{30a1} \xA5\xA1 KATAKANA LETTER SMALL A
 \x{30f3} \xA5\xF3 KATAKANA LETTER N

This counterintuitive behavior has been fixed in perl 5.8.1.

workaround to tr///;

In perl 5.8.0, you can work around as follows;

 use encoding 'euc-jp';
 #
 eval qq{ \$kana =~ tr/\xA4\xA1-\xA4\xF3/\xA5\xA1-\xA5\xF3/ };

Note the tr// expression is surrounded by qq{}. The idea behind
 is the same as classic idiom that
makes tr/// 'interpolate'.

 tr/$from/$to/; # wrong!
 eval qq{ tr/$from/$to/ }; # workaround.

Nevertheless, in case of encoding pragma even q// is affected so tr/// not being decoded was
obviously against the will of Perl5
 Porters so it has been fixed in Perl 5.8.1 or later.

EXAMPLE - Greekperl
 use encoding "iso 8859-7";

 # \xDF in ISO 8859-7 (Greek) is \x{3af} in Unicode.

 $a = "\xDF";
 $b = "\x{100}";

 printf "%#x\n", ord($a); # will print 0x3af, not 0xdf

 $c = $a . $b;

 # $c will be "\x{3af}\x{100}", not "\x{df}\x{100}".

 # chr() is affected, and ...

 print "mega\n" if ord(chr(0xdf)) == 0x3af;

 # ... ord() is affected by the encoding pragma ...

 print "tera\n" if ord(pack("C", 0xdf)) == 0x3af;

Perl version 5.12.3 documentation - encoding

Page 6http://perldoc.perl.org

 # ... as are eq and cmp ...

 print "peta\n" if "\x{3af}" eq pack("C", 0xdf);
 print "exa\n" if "\x{3af}" cmp pack("C", 0xdf) == 0;

 # ... but pack/unpack C are not affected, in case you still
 # want to go back to your native encoding

 print "zetta\n" if unpack("C", (pack("C", 0xdf))) == 0xdf;

KNOWN PROBLEMS
literals in regex that are longer than 127 bytes

For native multibyte encodings (either fixed or variable length),
 the current implementation of
the regular expressions may introduce
 recoding errors for regular expression literals longer
than 127 bytes.

EBCDIC

The encoding pragma is not supported on EBCDIC platforms.
 (Porters who are willing and
able to remove this limitation are
 welcome.)

format

This pragma doesn't work well with format because PerlIO does not
 get along very well with it.
When format contains non-ascii
 characters it prints funny or gets "wide character warnings".

To understand it, try the code below.

 # Save this one in utf8
 # replace *non-ascii* with a non-ascii string
 my $camel;
 format STDOUT =
 non-ascii@>>>>>>>
 $camel
 .
 $camel = "*non-ascii*";
 binmode(STDOUT=>':encoding(utf8)'); # bang!
 write; # funny
 print $camel, "\n"; # fine

Without binmode this happens to work but without binmode, print()
 fails instead of write().

At any rate, the very use of format is questionable when it comes to
 unicode characters since
you have to consider such things as character
 width (i.e. double-width for ideographs) and
directions (i.e. BIDI for
 Arabic and Hebrew).

Thread safety

use encoding ... is not thread-safe (i.e., do not use in threaded
 applications).

The Logic of :locale
The logic of :locale is as follows:

1. If the platform supports the langinfo(CODESET) interface, the codeset
 returned is used as the
default encoding for the open pragma.

2. If 1. didn't work but we are under the locale pragma, the environment
 variables LC_ALL and
LANG (in that order) are matched for encodings
 (the part after ., if any), and if any found, that
is used
 as the default encoding for the open pragma.

Perl version 5.12.3 documentation - encoding

Page 7http://perldoc.perl.org

3. If 1. and 2. didn't work, the environment variables LC_ALL and LANG
 (in that order) are
matched for anything looking like UTF-8, and if
 any found, :utf8 is used as the default
encoding for the open
 pragma.

If your locale environment variables (LC_ALL, LC_CTYPE, LANG)
 contain the strings 'UTF-8' or
'UTF8' (case-insensitive matching),
 the default encoding of your STDIN, STDOUT, and STDERR, and
of any subsequent file open, is UTF-8.

HISTORY
This pragma first appeared in Perl 5.8.0. For features that require
 5.8.1 and better, see above.

The :locale subpragma was implemented in 2.01, or Perl 5.8.6.

SEE ALSO
perlunicode, Encode, open, Filter::Util::Call,

Ch. 15 of Programming Perl (3rd Edition)
 by Larry Wall, Tom Christiansen, Jon Orwant;

O'Reilly & Associates; ISBN 0-596-00027-8

