
Perl version 5.12.3 documentation - perl5004delta

Page 1http://perldoc.perl.org

NAME
perl5004delta - what's new for perl5.004

DESCRIPTION
This document describes differences between the 5.003 release (as
 documented in Programming
Perl, second edition--the Camel Book) and
 this one.

Supported Environments
Perl5.004 builds out of the box on Unix, Plan 9, LynxOS, VMS, OS/2,
 QNX, AmigaOS, and Windows
NT. Perl runs on Windows 95 as well, but it
 cannot be built there, for lack of a reasonable command
interpreter.

Core Changes
Most importantly, many bugs were fixed, including several security
 problems. See the Changes file in
the distribution for details.

List assignment to %ENV works
%ENV = () and %ENV = @list now work as expected (except on VMS
 where it generates a fatal
error).

Change to "Can't locate Foo.pm in @INC" error
The error "Can't locate Foo.pm in @INC" now lists the contents of @INC
 for easier debugging.

Compilation option: Binary compatibility with 5.003
There is a new Configure question that asks if you want to maintain
 binary compatibility with Perl
5.003. If you choose binary
 compatibility, you do not have to recompile your extensions, but you
 might
have symbol conflicts if you embed Perl in another application,
 just as in the 5.003 release. By
default, binary compatibility
 is preserved at the expense of symbol table pollution.

$PERL5OPT environment variable
You may now put Perl options in the $PERL5OPT environment variable.
 Unless Perl is running with
taint checks, it will interpret this
 variable as if its contents had appeared on a "#!perl" line at the

beginning of your script, except that hyphens are optional. PERL5OPT
 may only be used to set the
following switches: -[DIMUdmw].

Limitations on -M, -m, and -T options
The -M and -m options are no longer allowed on the #! line of
 a script. If a script needs a module, it
should invoke it with the use pragma.

The -T option is also forbidden on the #! line of a script,
 unless it was present on the Perl command
line. Due to the way #!
 works, this usually means that -T must be in the first argument.
 Thus:

 #!/usr/bin/perl -T -w

will probably work for an executable script invoked as scriptname,
 while:

 #!/usr/bin/perl -w -T

will probably fail under the same conditions. (Non-Unix systems will
 probably not follow this rule.) But
perl scriptname is guaranteed
 to fail, since then there is no chance of -T being found on the

command line before it is found on the #! line.

More precise warnings
If you removed the -w option from your Perl 5.003 scripts because it
 made Perl too verbose, we
recommend that you try putting it back when
 you upgrade to Perl 5.004. Each new perl version tends
to remove some
 undesirable warnings, while adding new warnings that may catch bugs in
 your

Perl version 5.12.3 documentation - perl5004delta

Page 2http://perldoc.perl.org

scripts.Deprecated: Inherited AUTOLOAD for non-methods
Before Perl 5.004, AUTOLOAD functions were looked up as methods
 (using the @ISA hierarchy), even
when the function to be autoloaded
 was called as a plain function (e.g. Foo::bar()), not a method

(e.g. Foo->bar() or $obj->bar()).

Perl 5.005 will use method lookup only for methods' AUTOLOADs.
 However, there is a significant base
of existing code that may be using
 the old behavior. So, as an interim step, Perl 5.004 issues an
optional
 warning when a non-method uses an inherited AUTOLOAD.

The simple rule is: Inheritance will not work when autoloading
 non-methods. The simple fix for old
code is: In any module that used to
 depend on inheriting AUTOLOAD for non-methods from a base
class named BaseClass, execute *AUTOLOAD = \&BaseClass::AUTOLOAD during startup.

Previously deprecated %OVERLOAD is no longer usable
Using %OVERLOAD to define overloading was deprecated in 5.003.
 Overloading is now defined
using the overload pragma. %OVERLOAD is
 still used internally but should not be used by Perl
scripts. See overload for more details.

Subroutine arguments created only when they're modified
In Perl 5.004, nonexistent array and hash elements used as subroutine
 parameters are brought into
existence only if they are actually
 assigned to (via @_).

Earlier versions of Perl vary in their handling of such arguments.
 Perl versions 5.002 and 5.003
always brought them into existence.
 Perl versions 5.000 and 5.001 brought them into existence only if
they were not the first argument (which was almost certainly a bug).
 Earlier versions of Perl never
brought them into existence.

For example, given this code:

 undef @a; undef %a;
 sub show { print $_[0] };
 sub change { $_[0]++ };
 show($a[2]);
 change($a{b});

After this code executes in Perl 5.004, $a{b} exists but $a[2] does
 not. In Perl 5.002 and 5.003, both
$a{b} and $a[2] would have existed
 (but $a[2]'s value would have been undefined).

Group vector changeable with $)
The $) special variable has always (well, in Perl 5, at least)
 reflected not only the current effective
group, but also the group list
 as returned by the getgroups() C function (if there is one).
 However,
until this release, there has not been a way to call the setgroups() C function from Perl.

In Perl 5.004, assigning to $) is exactly symmetrical with examining
 it: The first number in its string
value is used as the effective gid;
 if there are any numbers after the first one, they are passed to the
setgroups() C function (if there is one).

Fixed parsing of $$<digit>, &$<digit>, etc.
Perl versions before 5.004 misinterpreted any type marker followed by
 "$" and a digit. For example,
"$$0" was incorrectly taken to mean
 "${$}0" instead of "${$0}". This bug is (mostly) fixed in Perl 5.004.

However, the developers of Perl 5.004 could not fix this bug completely,
 because at least two
widely-used modules depend on the old meaning of
 "$$0" in a string. So Perl 5.004 still interprets
"$$<digit>" in the
 old (broken) way inside strings; but it generates this message as a
 warning. And in
Perl 5.005, this special treatment will cease.

Perl version 5.12.3 documentation - perl5004delta

Page 3http://perldoc.perl.org

Fixed localization of $<digit>, $&, etc.
Perl versions before 5.004 did not always properly localize the
 regex-related special variables. Perl
5.004 does localize them, as
 the documentation has always said it should. This may result in $1,
 $2,
etc. no longer being set where existing programs use them.

No resetting of $. on implicit close
The documentation for Perl 5.0 has always stated that $. is not
 reset when an already-open file
handle is reopened with no intervening
 call to close. Due to a bug, perl versions 5.000 through 5.003
did reset $. under that circumstance; Perl 5.004 does not.

wantarray may return undef
The wantarray operator returns true if a subroutine is expected to
 return a list, and false otherwise.
In Perl 5.004, wantarray can
 also return the undefined value if a subroutine's return value will
 not be
used at all, which allows subroutines to avoid a time-consuming
 calculation of a return value if it isn't
going to be used.

eval EXPR determines value of EXPR in scalar context
Perl (version 5) used to determine the value of EXPR inconsistently,
 sometimes incorrectly using the
surrounding context for the determination.
 Now, the value of EXPR (before being parsed by eval) is
always determined in
 a scalar context. Once parsed, it is executed as before, by providing
 the context
that the scope surrounding the eval provided. This change
 makes the behavior Perl4 compatible,
besides fixing bugs resulting from
 the inconsistent behavior. This program:

 @a = qw(time now is time);
 print eval @a;
 print '|', scalar eval @a;

used to print something like "timenowis881399109|4", but now (and in perl4)
 prints "4|4".

Changes to tainting checks
A bug in previous versions may have failed to detect some insecure
 conditions when taint checks are
turned on. (Taint checks are used
 in setuid or setgid scripts, or when explicitly turned on with the -T
invocation option.) Although it's unlikely, this may cause a
 previously-working script to now fail, which
should be construed
 as a blessing since that indicates a potentially-serious security
 hole was just
plugged.

The new restrictions when tainting include:

No glob() or <*>

These operators may spawn the C shell (csh), which cannot be made
 safe. This restriction will
be lifted in a future version of Perl
 when globbing is implemented without the use of an
external program.

No spawning if tainted $CDPATH, $ENV, $BASH_ENV

These environment variables may alter the behavior of spawned programs
 (especially shells)
in ways that subvert security. So now they are
 treated as dangerous, in the manner of $IFS
and $PATH.

No spawning if tainted $TERM doesn't look like a terminal name

Some termcap libraries do unsafe things with $TERM. However, it would be
 unnecessarily
harsh to treat all $TERM values as unsafe, since only shell
 metacharacters can cause trouble
in $TERM. So a tainted $TERM is
 considered to be safe if it contains only alphanumerics,
underscores,
 dashes, and colons, and unsafe if it contains other characters (including

whitespace).

Perl version 5.12.3 documentation - perl5004delta

Page 4http://perldoc.perl.org

New Opcode module and revised Safe module
A new Opcode module supports the creation, manipulation and
 application of opcode masks. The
revised Safe module has a new API
 and is implemented using the new Opcode module. Please read
the new
 Opcode and Safe documentation.

Embedding improvements
In older versions of Perl it was not possible to create more than one
 Perl interpreter instance inside a
single process without leaking like a
 sieve and/or crashing. The bugs that caused this behavior have
all been
 fixed. However, you still must take care when embedding Perl in a C
 program. See the
updated perlembed manpage for tips on how to manage
 your interpreters.

Internal change: FileHandle class based on IO::* classes
File handles are now stored internally as type IO::Handle. The
 FileHandle module is still supported for
backwards compatibility, but
 it is now merely a front end to the IO::* modules, specifically
 IO::Handle,
IO::Seekable, and IO::File. We suggest, but do not
 require, that you use the IO::* modules in new
code.

In harmony with this change, *GLOB{FILEHANDLE} is now just a
 backward-compatible synonym for
*GLOB{IO}.

Internal change: PerlIO abstraction interface
It is now possible to build Perl with AT&T's sfio IO package
 instead of stdio. See perlapio for more
details, and
 the INSTALL file for how to use it.

New and changed syntax
$coderef->(PARAMS)

A subroutine reference may now be suffixed with an arrow and a
 (possibly empty) parameter
list. This syntax denotes a call of the
 referenced subroutine, with the given parameters (if any).

This new syntax follows the pattern of $hashref->{FOO} and $aryref->[$foo]: You may
now write &$subref($foo) as $subref->($foo). All these arrow terms may be chained;

thus, &{$table->{FOO}}($bar) may now be written $table->{FOO}->($bar).

New and changed builtin constants
__PACKAGE__

The current package name at compile time, or the undefined value if
 there is no current
package (due to a package; directive). Like __FILE__ and __LINE__, __PACKAGE__ does
not interpolate
 into strings.

New and changed builtin variables
$^E

Extended error message on some platforms. (Also known as
 $EXTENDED_OS_ERROR if
you use English).

$^H

The current set of syntax checks enabled by use strict. See the
 documentation of strict
for more details. Not actually new, but
 newly documented.
 Because it is intended for internal
use by Perl core components,
 there is no use English long name for this variable.

$^M

By default, running out of memory it is not trappable. However, if
 compiled for this, Perl may
use the contents of $^M as an emergency
 pool after die()ing with this message. Suppose that
your Perl were
 compiled with -DPERL_EMERGENCY_SBRK and used Perl's malloc. Then

 $^M = 'a' x (1<<16);

Perl version 5.12.3 documentation - perl5004delta

Page 5http://perldoc.perl.org

would allocate a 64K buffer for use when in emergency.
 See the INSTALL file for information
on how to enable this option.
 As a disincentive to casual use of this advanced feature,
 there is
no use English long name for this variable.

New and changed builtin functions
delete on slices

This now works. (e.g. delete @ENV{'PATH', 'MANPATH'})

flock

is now supported on more platforms, prefers fcntl to lockf when
 emulating, and always flushes
before (un)locking.

printf and sprintf

Perl now implements these functions itself; it doesn't use the C
 library function sprintf() any
more, except for floating-point
 numbers, and even then only known flags are allowed. As a
result, it
 is now possible to know which conversions and flags will work, and
 what they will do.

The new conversions in Perl's sprintf() are:

 %i	 a synonym for %d
 %p	 a pointer (the address of the Perl value, in hexadecimal)
 %n	 special: *stores* the number of characters output so far
 into the next variable in the parameter list

The new flags that go between the % and the conversion are:

 #	 prefix octal with "0", hex with "0x"
 h	 interpret integer as C type "short" or "unsigned short"
 V	 interpret integer as Perl's standard integer type

Also, where a number would appear in the flags, an asterisk ("*") may
 be used instead, in
which case Perl uses the next item in the
 parameter list as the given number (that is, as the
field width or
 precision). If a field width obtained through "*" is negative, it has
 the same effect
as the '-' flag: left-justification.

See "sprintf" in perlfunc for a complete list of conversion and flags.

keys as an lvalue

As an lvalue, keys allows you to increase the number of hash buckets
 allocated for the given
hash. This can gain you a measure of efficiency if
 you know the hash is going to get big. (This
is similar to pre-extending
 an array by assigning a larger number to $#array.) If you say

 keys %hash = 200;

then %hash will have at least 200 buckets allocated for it. These
 buckets will be retained even
if you do %hash = (); use undef
 %hash if you want to free the storage while %hash is still
in scope.
 You can't shrink the number of buckets allocated for the hash using keys in this way
(but you needn't worry about doing this by accident,
 as trying has no effect).

my() in Control Structures

You can now use my() (with or without the parentheses) in the control
 expressions of control
structures such as:

 while (defined(my $line = <>)) {
 $line = lc $line;
 } continue {
 print $line;
 }

 if ((my $answer = <STDIN>) =~ /^y(es)?$/i) {

Perl version 5.12.3 documentation - perl5004delta

Page 6http://perldoc.perl.org

 user_agrees();
 } elsif ($answer =~ /^n(o)?$/i) {
 user_disagrees();
 } else {
 chomp $answer;
 die "`$answer' is neither `yes' nor `no'";
 }

Also, you can declare a foreach loop control variable as lexical by
 preceding it with the word
"my". For example, in:

 foreach my $i (1, 2, 3) {
 some_function();
 }

$i is a lexical variable, and the scope of $i extends to the end of
 the loop, but not beyond it.

Note that you still cannot use my() on global punctuation variables
 such as $_ and the like.

pack() and unpack()

A new format 'w' represents a BER compressed integer (as defined in
 ASN.1). Its format is a
sequence of one or more bytes, each of which
 provides seven bits of the total value, with the
most significant
 first. Bit eight of each byte is set, except for the last byte, in
 which bit eight is
clear.

If 'p' or 'P' are given undef as values, they now generate a NULL
 pointer.

Both pack() and unpack() now fail when their templates contain invalid
 types. (Invalid types
used to be ignored.)

sysseek()

The new sysseek() operator is a variant of seek() that sets and gets the
 file's system
read/write position, using the lseek(2) system call. It is
 the only reliable way to seek before
using sysread() or syswrite(). Its
 return value is the new position, or the undefined value on
failure.

use VERSION

If the first argument to use is a number, it is treated as a version
 number instead of a module
name. If the version of the Perl interpreter
 is less than VERSION, then an error message is
printed and Perl exits
 immediately. Because use occurs at compile time, this check happens

immediately during the compilation process, unlike require VERSION,
 which waits until
runtime for the check. This is often useful if you
 need to check the current Perl version before
useing library modules
 which have changed in incompatible ways from older versions of Perl.

(We try not to do this more than we have to.)

use Module VERSION LIST

If the VERSION argument is present between Module and LIST, then the use will call the
VERSION method in class Module with the given
 version as an argument. The default
VERSION method, inherited from
 the UNIVERSAL class, croaks if the given version is larger
than the
 value of the variable $Module::VERSION. (Note that there is not a
 comma after
VERSION!)

This version-checking mechanism is similar to the one currently used
 in the Exporter module,
but it is faster and can be used with modules
 that don't use the Exporter. It is the
recommended method for new
 code.

prototype(FUNCTION)

Returns the prototype of a function as a string (or undef if the
 function has no prototype).
FUNCTION is a reference to or the name of the
 function whose prototype you want to retrieve.

Perl version 5.12.3 documentation - perl5004delta

Page 7http://perldoc.perl.org

(Not actually new; just never documented before.)

srand

The default seed for srand, which used to be time, has been changed.
 Now it's a heady mix
of difficult-to-predict system-dependent values,
 which should be sufficient for most everyday
purposes.

Previous to version 5.004, calling rand without first calling srand
 would yield the same
sequence of random numbers on most or all machines.
 Now, when perl sees that you're
calling rand and haven't yet called srand, it calls srand with the default seed. You should
still call srand manually if your code might ever be run on a pre-5.004 system,
 of course, or if
you want a seed other than the default.

$_ as Default

Functions documented in the Camel to default to $_ now in
 fact do, and all those that do are
so documented in perlfunc.

m//gc does not reset search position on failure

The m//g match iteration construct has always reset its target
 string's search position (which
is visible through the pos operator)
 when a match fails; as a result, the next m//g match after
a failure
 starts again at the beginning of the string. With Perl 5.004, this
 reset may be disabled
by adding the "c" (for "continue") modifier,
 i.e. m//gc. This feature, in conjunction with the \G
zero-width
 assertion, makes it possible to chain matches together. See perlop
 and perlre.

m//x ignores whitespace before ?*+{}

The m//x construct has always been intended to ignore all unescaped
 whitespace. However,
before Perl 5.004, whitespace had the effect of
 escaping repeat modifiers like "*" or "?"; for
example, /a *b/x was
 (mis)interpreted as /a*b/x. This bug has been fixed in 5.004.

nested sub{} closures work now

Prior to the 5.004 release, nested anonymous functions didn't work
 right. They do now.

formats work right on changing lexicals

Just like anonymous functions that contain lexical variables
 that change (like a lexical index
variable for a foreach loop),
 formats now work properly. For example, this silently failed

before (printed only zeros), but is fine now:

 my $i;
 foreach $i (1 .. 10) {
	 write;
 }
 format =
	 my i is @#
	 $i
 .

However, it still fails (without a warning) if the foreach is within a
 subroutine:

 my $i;
 sub foo {
 foreach $i (1 .. 10) {
	 write;
 }
 }
 foo;
 format =
	 my i is @#
	 $i

Perl version 5.12.3 documentation - perl5004delta

Page 8http://perldoc.perl.org

 .

New builtin methods
The UNIVERSAL package automatically contains the following methods that
 are inherited by all other
classes:

isa(CLASS)

isa returns true if its object is blessed into a subclass of CLASS

isa is also exportable and can be called as a sub with two arguments. This
 allows the ability
to check what a reference points to. Example:

 use UNIVERSAL qw(isa);

 if(isa($ref, 'ARRAY')) {
 ...
 }

can(METHOD)

can checks to see if its object has a method called METHOD,
 if it does then a reference to the
sub is returned; if it does not then undef is returned.

VERSION([NEED])

VERSION returns the version number of the class (package). If the
 NEED argument is given
then it will check that the current version (as
 defined by the $VERSION variable in the given
package) not less than
 NEED; it will die if this is not the case. This method is normally
 called
as a class method. This method is called automatically by the VERSION form of use.

 use A 1.2 qw(some imported subs);
 # implies:
 A->VERSION(1.2);

NOTE: can directly uses Perl's internal code for method lookup, and isa uses a very similar method
and caching strategy. This may cause
 strange effects if the Perl code dynamically changes @ISA in
any package.

You may add other methods to the UNIVERSAL class via Perl or XS code.
 You do not need to use
UNIVERSAL in order to make these methods
 available to your program. This is necessary only if you
wish to
 have isa available as a plain subroutine in the current package.

TIEHANDLE now supported
See perltie for other kinds of tie()s.

TIEHANDLE classname, LIST

This is the constructor for the class. That means it is expected to
 return an object of some
sort. The reference can be used to
 hold some internal information.

 sub TIEHANDLE {
	 print "<shout>\n";
	 my $i;
	 return bless \$i, shift;
 }

PRINT this, LIST

This method will be triggered every time the tied handle is printed to.
 Beyond its self reference
it also expects the list that was passed to
 the print function.

Perl version 5.12.3 documentation - perl5004delta

Page 9http://perldoc.perl.org

 sub PRINT {
	 $r = shift;
	 $$r++;
	 return print join($, => map {uc} @_), $\;
 }

PRINTF this, LIST

This method will be triggered every time the tied handle is printed to
 with the printf()
function.
 Beyond its self reference it also expects the format and list that was
 passed to the
printf function.

 sub PRINTF {
 shift;
	 my $fmt = shift;
 print sprintf($fmt, @_)."\n";
 }

READ this LIST

This method will be called when the handle is read from via the read
 or sysread functions.

 sub READ {
	 $r = shift;
	 my($buf,$len,$offset) = @_;
	 print "READ called, \$buf=$buf, \$len=$len, \$offset=$offset";
 }

READLINE this

This method will be called when the handle is read from. The method
 should return undef
when there is no more data.

 sub READLINE {
	 $r = shift;
	 return "PRINT called $$r times\n"
 }

GETC this

This method will be called when the getc function is called.

 sub GETC { print "Don't GETC, Get Perl"; return "a"; }

DESTROY this

As with the other types of ties, this method will be called when the
 tied handle is about to be
destroyed. This is useful for debugging and
 possibly for cleaning up.

 sub DESTROY {
	 print "</shout>\n";
 }

Malloc enhancements
If perl is compiled with the malloc included with the perl distribution
 (that is, if perl -V:d_mymalloc
is 'define') then you can print
 memory statistics at runtime by running Perl thusly:

 env PERL_DEBUG_MSTATS=2 perl your_script_here

The value of 2 means to print statistics after compilation and on
 exit; with a value of 1, the statistics

Perl version 5.12.3 documentation - perl5004delta

Page 10http://perldoc.perl.org

are printed only on exit.
 (If you want the statistics at an arbitrary time, you'll need to
 install the optional
module Devel::Peek.)

Three new compilation flags are recognized by malloc.c. (They have no
 effect if perl is compiled with
system malloc().)

-DPERL_EMERGENCY_SBRK

If this macro is defined, running out of memory need not be a fatal
 error: a memory pool can
allocated by assigning to the special
 variable $^M. See $^M.

-DPACK_MALLOC

Perl memory allocation is by bucket with sizes close to powers of two.
 Because of these
malloc overhead may be big, especially for data of
 size exactly a power of two. If
PACK_MALLOC is defined, perl uses
 a slightly different algorithm for small allocations (up to 64
bytes
 long), which makes it possible to have overhead down to 1 byte for
 allocations which are
powers of two (and appear quite often).

Expected memory savings (with 8-byte alignment in alignbytes) is
 about 20% for typical
Perl usage. Expected slowdown due to additional
 malloc overhead is in fractions of a percent
(hard to measure, because
 of the effect of saved memory on speed).

-DTWO_POT_OPTIMIZE

Similarly to PACK_MALLOC, this macro improves allocations of data
 with size close to a power
of two; but this works for big allocations
 (starting with 16K by default). Such allocations are
typical for big
 hashes and special-purpose scripts, especially image processing.

On recent systems, the fact that perl requires 2M from system for 1M
 allocation will not affect
speed of execution, since the tail of such
 a chunk is not going to be touched (and thus will not
require real
 memory). However, it may result in a premature out-of-memory error.
 So if you will
be manipulating very large blocks with sizes close to
 powers of two, it would be wise to define
this macro.

Expected saving of memory is 0-100% (100% in applications which
 require most memory in
such 2**n chunks); expected slowdown is
 negligible.

Miscellaneous efficiency enhancements
Functions that have an empty prototype and that do nothing but return
 a fixed value are now inlined
(e.g. sub PI () { 3.14159 }).

Each unique hash key is only allocated once, no matter how many hashes
 have an entry with that
key. So even if you have 100 copies of the
 same hash, the hash keys never have to be reallocated.

Support for More Operating Systems
Support for the following operating systems is new in Perl 5.004.

Win32
Perl 5.004 now includes support for building a "native" perl under
 Windows NT, using the Microsoft
Visual C++ compiler (versions 2.0
 and above) or the Borland C++ compiler (versions 5.02 and
above).
 The resulting perl can be used under Windows 95 (if it
 is installed in the same directory
locations as it got installed
 in Windows NT). This port includes support for perl extension
 building tools
like MakeMaker and h2xs, so that many extensions
 available on the Comprehensive Perl Archive
Network (CPAN) can now be
 readily built under Windows NT. See http://www.perl.com/ for more

information on CPAN and README.win32 in the perl distribution for more
 details on how to get
started with building this port.

There is also support for building perl under the Cygwin32 environment.
 Cygwin32 is a set of GNU
tools that make it possible to compile and run
 many Unix programs under Windows NT by providing a
mostly Unix-like interface for compilation and execution. See README.cygwin32 in the
 perl
distribution for more details on this port and how to obtain the
 Cygwin32 toolkit.

Perl version 5.12.3 documentation - perl5004delta

Page 11http://perldoc.perl.org

Plan 9
See README.plan9 in the perl distribution.

QNX
See README.qnx in the perl distribution.

AmigaOS
See README.amigaos in the perl distribution.

Pragmata
Six new pragmatic modules exist:

use autouse MODULE => qw(sub1 sub2 sub3)

Defers require MODULE until someone calls one of the specified
 subroutines (which must
be exported by MODULE). This pragma should be
 used with caution, and only when
necessary.

use blib

use blib 'dir'

Looks for MakeMaker-like 'blib' directory structure starting in dir (or current directory) and
working back up to five levels of
 parent directories.

Intended for use on command line with -M option as a way of testing
 arbitrary scripts against
an uninstalled version of a package.

use constant NAME => VALUE

Provides a convenient interface for creating compile-time constants,
 See "Constant Functions"
in perlsub.

use locale

Tells the compiler to enable (or disable) the use of POSIX locales for
 builtin operations.

When use locale is in effect, the current LC_CTYPE locale is used
 for regular expressions
and case mapping; LC_COLLATE for string
 ordering; and LC_NUMERIC for numeric
formatting in printf and sprintf
 (but not in print). LC_NUMERIC is always used in write, since

lexical scoping of formats is problematic at best.

Each use locale or no locale affects statements to the end of
 the enclosing BLOCK or, if
not inside a BLOCK, to the end of the
 current file. Locales can be switched and queried with

POSIX::setlocale().

See perllocale for more information.

use ops

Disable unsafe opcodes, or any named opcodes, when compiling Perl code.

use vmsish

Enable VMS-specific language features. Currently, there are three
 VMS-specific features
available: 'status', which makes $? and system return genuine VMS status values instead of
emulating POSIX;
 'exit', which makes exit take a genuine VMS status value instead of

assuming that exit 1 is an error; and 'time', which makes all times
 relative to the local time
zone, in the VMS tradition.

Modules
Required Updates

Though Perl 5.004 is compatible with almost all modules that work
 with Perl 5.003, there are a few
exceptions:

Perl version 5.12.3 documentation - perl5004delta

Page 12http://perldoc.perl.org

 Module Required Version for Perl 5.004
 ------ -------------------------------
 Filter Filter-1.12
 LWP libwww-perl-5.08
 Tk Tk400.202 (-w makes noise)

Also, the majordomo mailing list program, version 1.94.1, doesn't work
 with Perl 5.004 (nor with perl
4), because it executes an invalid
 regular expression. This bug is fixed in majordomo version 1.94.2.

Installation directories
The installperl script now places the Perl source files for
 extensions in the architecture-specific library
directory, which is
 where the shared libraries for extensions have always been. This
 change is
intended to allow administrators to keep the Perl 5.004
 library directory unchanged from a previous
version, without running
 the risk of binary incompatibility between extensions' Perl source and
 shared
libraries.

Module information summary
Brand new modules, arranged by topic rather than strictly
 alphabetically:

 CGI.pm Web server interface ("Common Gateway Interface")
 CGI/Apache.pm Support for Apache's Perl module
 CGI/Carp.pm Log server errors with helpful context
 CGI/Fast.pm Support for FastCGI (persistent server process)
 CGI/Push.pm Support for server push
 CGI/Switch.pm Simple interface for multiple server types

 CPAN Interface to Comprehensive Perl Archive Network
 CPAN::FirstTime Utility for creating CPAN configuration file
 CPAN::Nox Runs CPAN while avoiding compiled extensions

 IO.pm Top-level interface to IO::* classes
 IO/File.pm IO::File extension Perl module
 IO/Handle.pm IO::Handle extension Perl module
 IO/Pipe.pm IO::Pipe extension Perl module
 IO/Seekable.pm IO::Seekable extension Perl module
 IO/Select.pm IO::Select extension Perl module
 IO/Socket.pm IO::Socket extension Perl module

 Opcode.pm Disable named opcodes when compiling Perl code

 ExtUtils/Embed.pm Utilities for embedding Perl in C programs
 ExtUtils/testlib.pm Fixes up @INC to use just-built extension

 FindBin.pm Find path of currently executing program

 Class/Struct.pm Declare struct-like datatypes as Perl classes
 File/stat.pm By-name interface to Perl's builtin stat
 Net/hostent.pm By-name interface to Perl's builtin gethost*
 Net/netent.pm By-name interface to Perl's builtin getnet*
 Net/protoent.pm By-name interface to Perl's builtin getproto*
 Net/servent.pm By-name interface to Perl's builtin getserv*
 Time/gmtime.pm By-name interface to Perl's builtin gmtime
 Time/localtime.pm By-name interface to Perl's builtin localtime
 Time/tm.pm Internal object for Time::{gm,local}time

Perl version 5.12.3 documentation - perl5004delta

Page 13http://perldoc.perl.org

 User/grent.pm By-name interface to Perl's builtin getgr*
 User/pwent.pm By-name interface to Perl's builtin getpw*

 Tie/RefHash.pm Base class for tied hashes with references as keys

 UNIVERSAL.pm Base class for *ALL* classes

Fcntl
New constants in the existing Fcntl modules are now supported,
 provided that your operating system
happens to support them:

 F_GETOWN F_SETOWN
 O_ASYNC O_DEFER O_DSYNC O_FSYNC O_SYNC
 O_EXLOCK O_SHLOCK

These constants are intended for use with the Perl operators sysopen()
 and fcntl() and the basic
database modules like SDBM_File. For the
 exact meaning of these and other Fcntl constants please
refer to your
 operating system's documentation for fcntl() and open().

In addition, the Fcntl module now provides these constants for use
 with the Perl operator flock():

	 LOCK_SH LOCK_EX LOCK_NB LOCK_UN

These constants are defined in all environments (because where there is
 no flock() system call, Perl
emulates it). However, for historical
 reasons, these constants are not exported unless they are
explicitly
 requested with the ":flock" tag (e.g. use Fcntl ':flock').

IO
The IO module provides a simple mechanism to load all the IO modules at one
 go. Currently this
includes:

 IO::Handle
 IO::Seekable
 IO::File
 IO::Pipe
 IO::Socket

For more information on any of these modules, please see its
 respective documentation.

Math::Complex
The Math::Complex module has been totally rewritten, and now supports
 more operations. These are
overloaded:

 + - * / ** <=> neg ~ abs sqrt exp log sin cos atan2 "" (stringify)

And these functions are now exported:

 pi i Re Im arg
 log10 logn ln cbrt root
 tan
 csc sec cot
 asin acos atan
 acsc asec acot
 sinh cosh tanh
 csch sech coth

Perl version 5.12.3 documentation - perl5004delta

Page 14http://perldoc.perl.org

 asinh acosh atanh
 acsch asech acoth
 cplx cplxe

Math::Trig
This new module provides a simpler interface to parts of Math::Complex for
 those who need
trigonometric functions only for real numbers.

DB_File
There have been quite a few changes made to DB_File. Here are a few of
 the highlights:

Fixed a handful of bugs.

By public demand, added support for the standard hash function exists().

Made it compatible with Berkeley DB 1.86.

Made negative subscripts work with RECNO interface.

Changed the default flags from O_RDWR to O_CREAT|O_RDWR and the default
 mode from
0640 to 0666.

Made DB_File automatically import the open() constants (O_RDWR,
 O_CREAT etc.) from
Fcntl, if available.

Updated documentation.

Refer to the HISTORY section in DB_File.pm for a complete list of
 changes. Everything after DB_File
1.01 has been added since 5.003.

Net::Ping
Major rewrite - support added for both udp echo and real icmp pings.

Object-oriented overrides for builtin operators
Many of the Perl builtins returning lists now have
 object-oriented overrides. These are:

 File::stat
 Net::hostent
 Net::netent
 Net::protoent
 Net::servent
 Time::gmtime
 Time::localtime
 User::grent
 User::pwent

For example, you can now say

 use File::stat;
 use User::pwent;
 $his = (stat($filename)->st_uid == pwent($whoever)->pw_uid);

Utility Changes
pod2html

Sends converted HTML to standard output

The pod2html utility included with Perl 5.004 is entirely new.
 By default, it sends the converted
HTML to its standard output,
 instead of writing it to a file like Perl 5.003's pod2html did.
 Use

Perl version 5.12.3 documentation - perl5004delta

Page 15http://perldoc.perl.org

the --outfile=FILENAME option to write to a file.

xsubpp
void XSUBs now default to returning nothing

Due to a documentation/implementation bug in previous versions of
 Perl, XSUBs with a return
type of void have actually been
 returning one value. Usually that value was the GV for the
XSUB,
 but sometimes it was some already freed or reused value, which would
 sometimes
lead to program failure.

In Perl 5.004, if an XSUB is declared as returning void, it
 actually returns no value, i.e. an
empty list (though there is a
 backward-compatibility exception; see below). If your XSUB really
does return an SV, you should give it a return type of SV *.

For backward compatibility, xsubpp tries to guess whether a void XSUB is really void or if it
wants to return an SV *.
 It does so by examining the text of the XSUB: if xsubpp finds
 what
looks like an assignment to ST(0), it assumes that the
 XSUB's return type is really SV *.

C Language API Changes
gv_fetchmethod and perl_call_sv

The gv_fetchmethod function finds a method for an object, just like
 in Perl 5.003. The GV it
returns may be a method cache entry.
 However, in Perl 5.004, method cache entries are not
visible to users;
 therefore, they can no longer be passed directly to perl_call_sv.
 Instead,
you should use the GvCV macro on the GV to extract its CV,
 and pass the CV to
perl_call_sv.

The most likely symptom of passing the result of gv_fetchmethod to perl_call_sv is
Perl's producing an "Undefined subroutine called"
 error on the second call to a given method
(since there is no cache
 on the first call).

perl_eval_pv

A new function handy for eval'ing strings of Perl code inside C code.
 This function returns the
value from the eval statement, which can
 be used instead of fetching globals from the symbol
table. See perlguts, perlembed and perlcall for details and examples.

Extended API for manipulating hashes

Internal handling of hash keys has changed. The old hashtable API is
 still fully supported, and
will likely remain so. The additions to the
 API allow passing keys as SV*s, so that tied
hashes can be given
 real scalars as keys rather than plain strings (nontied hashes still
 can
only use strings as keys). New extensions must use the new hash
 access functions and
macros if they wish to use SV* keys. These
 additions also make it feasible to manipulate HE*s
(hash entries),
 which can be more efficient. See perlguts for details.

Documentation Changes
Many of the base and library pods were updated. These
 new pods are included in section 1:

perldelta

This document.

perlfaq

Frequently asked questions.

perllocale

Locale support (internationalization and localization).

perltoot

Tutorial on Perl OO programming.

perlapio

Perl version 5.12.3 documentation - perl5004delta

Page 16http://perldoc.perl.org

Perl internal IO abstraction interface.

perlmodlib

Perl module library and recommended practice for module creation.
 Extracted from perlmod
(which is much smaller as a result).

perldebug

Although not new, this has been massively updated.

perlsec

Although not new, this has been massively updated.

New Diagnostics
Several new conditions will trigger warnings that were
 silent before. Some only affect certain
platforms.
 The following new warnings and errors outline these.
 These messages are classified as
follows (listed in
 increasing order of desperation):

 (W) A warning (optional).
 (D) A deprecation (optional).
 (S) A severe warning (mandatory).
 (F) A fatal error (trappable).
 (P) An internal error you should never see (trappable).
 (X) A very fatal error (nontrappable).
 (A) An alien error message (not generated by Perl).

"my" variable %s masks earlier declaration in same scope

(W) A lexical variable has been redeclared in the same scope, effectively
 eliminating all
access to the previous instance. This is almost always
 a typographical error. Note that the
earlier variable will still exist
 until the end of the scope or until all closure referents to it are

destroyed.

%s argument is not a HASH element or slice

(F) The argument to delete() must be either a hash element, such as

 $foo{$bar}
 $ref->[12]->{"susie"}

or a hash slice, such as

 @foo{$bar, $baz, $xyzzy}
 @{$ref->[12]}{"susie", "queue"}

Allocation too large: %lx

(X) You can't allocate more than 64K on an MS-DOS machine.

Allocation too large

(F) You can't allocate more than 2^31+"small amount" bytes.

Applying %s to %s will act on scalar(%s)

(W) The pattern match (//), substitution (s///), and transliteration (tr///)
 operators work on scalar
values. If you apply one of them to an array
 or a hash, it will convert the array or hash to a
scalar value (the
 length of an array or the population info of a hash) and then work on
 that
scalar value. This is probably not what you meant to do. See "grep" in perlfunc and "map" in
perlfunc for alternatives.

Attempt to free nonexistent shared string

Perl version 5.12.3 documentation - perl5004delta

Page 17http://perldoc.perl.org

(P) Perl maintains a reference counted internal table of strings to
 optimize the storage and
access of hash keys and other strings. This
 indicates someone tried to decrement the
reference count of a string
 that can no longer be found in the table.

Attempt to use reference as lvalue in substr

(W) You supplied a reference as the first argument to substr() used
 as an lvalue, which is
pretty strange. Perhaps you forgot to
 dereference it first. See "substr" in perlfunc.

Bareword "%s" refers to nonexistent package

(W) You used a qualified bareword of the form Foo::, but
 the compiler saw no other uses of
that namespace before that point.
 Perhaps you need to predeclare a package?

Can't redefine active sort subroutine %s

(F) Perl optimizes the internal handling of sort subroutines and keeps
 pointers into them. You
tried to redefine one such sort subroutine when it
 was currently active, which is not allowed. If
you really want to do
 this, you should write sort { &func } @x instead of sort func @x.

Can't use bareword ("%s") as %s ref while "strict refs" in use

(F) Only hard references are allowed by "strict refs". Symbolic references
 are disallowed. See
perlref.

Cannot resolve method `%s' overloading `%s' in package `%s'

(P) Internal error trying to resolve overloading specified by a method
 name (as opposed to a
subroutine reference).

Constant subroutine %s redefined

(S) You redefined a subroutine which had previously been eligible for
 inlining. See "Constant
Functions" in perlsub for commentary and
 workarounds.

Constant subroutine %s undefined

(S) You undefined a subroutine which had previously been eligible for
 inlining. See "Constant
Functions" in perlsub for commentary and
 workarounds.

Copy method did not return a reference

(F) The method which overloads "=" is buggy. See "Copy Constructor" in overload.

Died

(F) You passed die() an empty string (the equivalent of die "") or
 you called it with no args
and both $@ and $_ were empty.

Exiting pseudo-block via %s

(W) You are exiting a rather special block construct (like a sort block or
 subroutine) by
unconventional means, such as a goto, or a loop control
 statement. See "sort" in perlfunc.

Identifier too long

(F) Perl limits identifiers (names for variables, functions, etc.) to
 252 characters for simple
names, somewhat more for compound names (like $A::B). You've exceeded Perl's limits.
Future versions of Perl are
 likely to eliminate these arbitrary limitations.

Illegal character %s (carriage return)

(F) A carriage return character was found in the input. This is an
 error, and not a warning,
because carriage return characters can break
 multi-line strings, including here documents
(e.g., print <<EOF;).

Illegal switch in PERL5OPT: %s

(X) The PERL5OPT environment variable may only be used to set the
 following switches:

Perl version 5.12.3 documentation - perl5004delta

Page 18http://perldoc.perl.org

-[DIMUdmw].

Integer overflow in hex number

(S) The literal hex number you have specified is too big for your
 architecture. On a 32-bit
architecture the largest hex literal is
 0xFFFFFFFF.

Integer overflow in octal number

(S) The literal octal number you have specified is too big for your
 architecture. On a 32-bit
architecture the largest octal literal is
 037777777777.

internal error: glob failed

(P) Something went wrong with the external program(s) used for glob
 and <*.c>. This may
mean that your csh (C shell) is
 broken. If so, you should change all of the csh-related
variables in
 config.sh: If you have tcsh, make the variables refer to it as if it
 were csh (e.g.
full_csh='/usr/bin/tcsh'); otherwise, make them all
 empty (except that d_csh should
be 'undef') so that Perl will
 think csh is missing. In either case, after editing config.sh, run
./Configure -S and rebuild Perl.

Invalid conversion in %s: "%s"

(W) Perl does not understand the given format conversion.
 See "sprintf" in perlfunc.

Invalid type in pack: '%s'

(F) The given character is not a valid pack type. See "pack" in perlfunc.

Invalid type in unpack: '%s'

(F) The given character is not a valid unpack type. See "unpack" in perlfunc.

Name "%s::%s" used only once: possible typo

(W) Typographical errors often show up as unique variable names.
 If you had a good reason
for having a unique name, then just mention
 it again somehow to suppress the message (the
use vars pragma is
 provided for just this purpose).

Null picture in formline

(F) The first argument to formline must be a valid format picture
 specification. It was found to
be empty, which probably means you
 supplied it an uninitialized value. See perlform.

Offset outside string

(F) You tried to do a read/write/send/recv operation with an offset
 pointing outside the buffer.
This is difficult to imagine.
 The sole exception to this is that sysread()ing past the buffer
 will
extend the buffer and zero pad the new area.

Out of memory!

(X|F) The malloc() function returned 0, indicating there was insufficient
 remaining memory (or
virtual memory) to satisfy the request.

The request was judged to be small, so the possibility to trap it
 depends on the way Perl was
compiled. By default it is not trappable.
 However, if compiled for this, Perl may use the
contents of $^M as
 an emergency pool after die()ing with this message. In this case the
 error
is trappable once.

Out of memory during request for %s

(F) The malloc() function returned 0, indicating there was insufficient
 remaining memory (or
virtual memory) to satisfy the request. However,
 the request was judged large enough
(compile-time default is 64K), so
 a possibility to shut down by trapping this error is granted.

panic: frexp

(P) The library function frexp() failed, making printf("%f") impossible.

Perl version 5.12.3 documentation - perl5004delta

Page 19http://perldoc.perl.org

Possible attempt to put comments in qw() list

(W) qw() lists contain items separated by whitespace; as with literal
 strings, comment
characters are not ignored, but are instead treated
 as literal data. (You may have used
different delimiters than the
 parentheses shown here; braces are also frequently used.)

You probably wrote something like this:

 @list = qw(
 a # a comment
 b # another comment
);

when you should have written this:

 @list = qw(
 a
 b
);

If you really want comments, build your list the
 old-fashioned way, with quotes and commas:

 @list = (
 'a', # a comment
 'b', # another comment
);

Possible attempt to separate words with commas

(W) qw() lists contain items separated by whitespace; therefore commas
 aren't needed to
separate the items. (You may have used different
 delimiters than the parentheses shown
here; braces are also frequently
 used.)

You probably wrote something like this:

 qw! a, b, c !;

which puts literal commas into some of the list items. Write it without
 commas if you don't want
them to appear in your data:

 qw! a b c !;

Scalar value @%s{%s} better written as $%s{%s}

(W) You've used a hash slice (indicated by @) to select a single element of
 a hash. Generally
it's better to ask for a scalar value (indicated by $).
 The difference is that $foo{&bar} always
behaves like a scalar, both when
 assigning to it and when evaluating its argument, while
@foo{&bar} behaves
 like a list when you assign to it, and provides a list context to its

subscript, which can do weird things if you're expecting only one subscript.

Stub found while resolving method `%s' overloading `%s' in %s

(P) Overloading resolution over @ISA tree may be broken by importing stubs.
 Stubs should
never be implicitly created, but explicit calls to can
 may break this.

Too late for "-T" option

(X) The #! line (or local equivalent) in a Perl script contains the -T option, but Perl was not
invoked with -T in its argument
 list. This is an error because, by the time Perl discovers a -T in

a script, it's too late to properly taint everything from the
 environment. So Perl gives up.

untie attempted while %d inner references still exist

(W) A copy of the object returned from tie (or tied) was still
 valid when untie was called.

Perl version 5.12.3 documentation - perl5004delta

Page 20http://perldoc.perl.org

Unrecognized character %s

(F) The Perl parser has no idea what to do with the specified character
 in your Perl script (or
eval). Perhaps you tried to run a compressed
 script, a binary program, or a directory as a Perl
program.

Unsupported function fork

(F) Your version of executable does not support forking.

Note that under some systems, like OS/2, there may be different flavors of
 Perl executables,
some of which may support fork, some not. Try changing
 the name you call Perl by to perl_,
perl__, and so on.

Use of "$$<digit>" to mean "${$}<digit>" is deprecated

(D) Perl versions before 5.004 misinterpreted any type marker followed
 by "$" and a digit. For
example, "$$0" was incorrectly taken to mean
 "${$}0" instead of "${$0}". This bug is (mostly)
fixed in Perl 5.004.

However, the developers of Perl 5.004 could not fix this bug completely,
 because at least two
widely-used modules depend on the old meaning of
 "$$0" in a string. So Perl 5.004 still
interprets "$$<digit>" in the
 old (broken) way inside strings; but it generates this message as a
warning. And in Perl 5.005, this special treatment will cease.

Value of %s can be "0"; test with defined()

(W) In a conditional expression, you used <HANDLE>, <*> (glob), each(),
 or readdir() as
a boolean value. Each of these constructs can return a
 value of "0"; that would make the
conditional expression false, which is
 probably not what you intended. When using these
constructs in conditional
 expressions, test their values with the defined operator.

Variable "%s" may be unavailable

(W) An inner (nested) anonymous subroutine is inside a named
 subroutine, and outside that is
another subroutine; and the anonymous
 (innermost) subroutine is referencing a lexical
variable defined in
 the outermost subroutine. For example:

 sub outermost { my $a; sub middle { sub { $a } } }

If the anonymous subroutine is called or referenced (directly or
 indirectly) from the outermost
subroutine, it will share the variable
 as you would expect. But if the anonymous subroutine is
called or
 referenced when the outermost subroutine is not active, it will see
 the value of the
shared variable as it was before and during the
 first call to the outermost subroutine, which
is probably not what
 you want.

In these circumstances, it is usually best to make the middle
 subroutine anonymous, using the
sub {} syntax. Perl has specific
 support for shared variables in nested anonymous
subroutines; a named
 subroutine in between interferes with this feature.

Variable "%s" will not stay shared

(W) An inner (nested) named subroutine is referencing a lexical
 variable defined in an outer
subroutine.

When the inner subroutine is called, it will probably see the value of
 the outer subroutine's
variable as it was before and during the
 first call to the outer subroutine; in this case, after
the first
 call to the outer subroutine is complete, the inner and outer
 subroutines will no longer
share a common value for the variable. In
 other words, the variable will no longer be shared.

Furthermore, if the outer subroutine is anonymous and references a
 lexical variable outside
itself, then the outer and inner subroutines
 will never share the given variable.

This problem can usually be solved by making the inner subroutine
 anonymous, using the sub
 {} syntax. When inner anonymous subs that
 reference variables in outer subroutines are
called or referenced,
 they are automatically rebound to the current values of such
 variables.

Perl version 5.12.3 documentation - perl5004delta

Page 21http://perldoc.perl.org

Warning: something's wrong

(W) You passed warn() an empty string (the equivalent of warn "") or
 you called it with no
args and $_ was empty.

Ill-formed logical name |%s| in prime_env_iter

(W) A warning peculiar to VMS. A logical name was encountered when preparing
 to iterate
over %ENV which violates the syntactic rules governing logical
 names. Since it cannot be
translated normally, it is skipped, and will not
 appear in %ENV. This may be a benign
occurrence, as some software packages
 might directly modify logical name tables and
introduce nonstandard names,
 or it may indicate that a logical name table has been corrupted.

Got an error from DosAllocMem

(P) An error peculiar to OS/2. Most probably you're using an obsolete
 version of Perl, and this
should not happen anyway.

Malformed PERLLIB_PREFIX

(F) An error peculiar to OS/2. PERLLIB_PREFIX should be of the form

 prefix1;prefix2

or

 prefix1 prefix2

with nonempty prefix1 and prefix2. If prefix1 is indeed a prefix
 of a builtin library search
path, prefix2 is substituted. The error
 may appear if components are not found, or are too
long. See
 "PERLLIB_PREFIX" in README.os2.

PERL_SH_DIR too long

(F) An error peculiar to OS/2. PERL_SH_DIR is the directory to find the sh-shell in. See
"PERL_SH_DIR" in README.os2.

Process terminated by SIG%s

(W) This is a standard message issued by OS/2 applications, while *nix
 applications die in
silence. It is considered a feature of the OS/2
 port. One can easily disable this by appropriate
sighandlers, see "Signals" in perlipc. See also "Process terminated by SIGTERM/SIGINT"
 in
README.os2.

BUGS
If you find what you think is a bug, you might check the headers of
 recently posted articles in the
comp.lang.perl.misc newsgroup.
 There may also be information at http://www.perl.com/perl/ , the Perl

Home Page.

If you believe you have an unreported bug, please run the perlbug
 program included with your
release. Make sure you trim your bug down
 to a tiny but sufficient test case. Your bug report, along
with the
 output of perl -V, will be sent off to <perlbug@perl.com> to be
 analysed by the Perl porting
team.

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl. This file has been
 significantly updated for 5.004, so even
veteran users should
 look through it.

The README file for general stuff.

The Copying file for copyright information.

Perl version 5.12.3 documentation - perl5004delta

Page 22http://perldoc.perl.org

HISTORY
Constructed by Tom Christiansen, grabbing material with permission
 from innumerable contributors,
with kibitzing by more than a few Perl
 porters.

Last update: Wed May 14 11:14:09 EDT 1997

