
Perl version 5.12.3 documentation - perlboot

Page 1http://perldoc.perl.org

NAME
perlboot - Beginner's Object-Oriented Tutorial

DESCRIPTION
If you're not familiar with objects from other languages, some of the
 other Perl object documentation
may be a little daunting, such as perlobj, a basic reference in using objects, and perltoot, which

introduces readers to the peculiarities of Perl's object system in a
 tutorial way.

So, let's take a different approach, presuming no prior object
 experience. It helps if you know about
subroutines (perlsub),
 references (perlref et. seq.), and packages (perlmod), so become
 familiar with
those first if you haven't already.

If we could talk to the animals...
Let's let the animals talk for a moment:

 sub Cow::speak {
 print "a Cow goes moooo!\n";
 }
 sub Horse::speak {
 print "a Horse goes neigh!\n";
 }
 sub Sheep::speak {
 print "a Sheep goes baaaah!\n";
 }

 Cow::speak;
 Horse::speak;
 Sheep::speak;

This results in:

 a Cow goes moooo!
 a Horse goes neigh!
 a Sheep goes baaaah!

Nothing spectacular here. Simple subroutines, albeit from separate
 packages, and called using the
full package name. So let's create
 an entire pasture:

 # Cow::speak, Horse::speak, Sheep::speak as before
 @pasture = qw(Cow Cow Horse Sheep Sheep);
 foreach $animal (@pasture) {
 &{$animal."::speak"};
 }

This results in:

 a Cow goes moooo!
 a Cow goes moooo!
 a Horse goes neigh!
 a Sheep goes baaaah!
 a Sheep goes baaaah!

Wow. That symbolic coderef de-referencing there is pretty nasty.
 We're counting on no strict
refs mode, certainly not recommended
 for larger programs. And why was that necessary? Because
the name of
 the package seems to be inseparable from the name of the subroutine we
 want to invoke
within that package.

Perl version 5.12.3 documentation - perlboot

Page 2http://perldoc.perl.org

Or is it?

Introducing the method invocation arrow
For now, let's say that Class->method invokes subroutine method in package Class. (Here,
"Class" is used in its
 "category" meaning, not its "scholastic" meaning.) That's not
 completely
accurate, but we'll do this one step at a time. Now let's
 use it like so:

 # Cow::speak, Horse::speak, Sheep::speak as before
 Cow->speak;
 Horse->speak;
 Sheep->speak;

And once again, this results in:

 a Cow goes moooo!
 a Horse goes neigh!
 a Sheep goes baaaah!

That's not fun yet. Same number of characters, all constant, no
 variables. But yet, the parts are
separable now. Watch:

 $a = "Cow";
 $a->speak; # invokes Cow->speak

Ahh! Now that the package name has been parted from the subroutine
 name, we can use a variable
package name. And this time, we've got
 something that works even when use strict refs is
enabled.

Invoking a barnyard
Let's take that new arrow invocation and put it back in the barnyard
 example:

 sub Cow::speak {
 print "a Cow goes moooo!\n";
 }
 sub Horse::speak {
 print "a Horse goes neigh!\n";
 }
 sub Sheep::speak {
 print "a Sheep goes baaaah!\n";
 }

 @pasture = qw(Cow Cow Horse Sheep Sheep);
 foreach $animal (@pasture) {
 $animal->speak;
 }

There! Now we have the animals all talking, and safely at that,
 without the use of symbolic coderefs.

But look at all that common code. Each of the speak routines has a
 similar structure: a print
operator and a string that contains
 common text, except for two of the words. It'd be nice if we could

factor out the commonality, in case we decide later to change it all
 to says instead of goes.

And we actually have a way of doing that without much fuss, but we
 have to hear a bit more about
what the method invocation arrow is
 actually doing for us.

Perl version 5.12.3 documentation - perlboot

Page 3http://perldoc.perl.org

The extra parameter of method invocation
The invocation of:

 Class->method(@args)

attempts to invoke subroutine Class::method as:

 Class::method("Class", @args);

(If the subroutine can't be found, "inheritance" kicks in, but we'll
 get to that later.) This means that we
get the class name as the
 first parameter (the only parameter, if no arguments are given). So
 we can
rewrite the Sheep speaking subroutine as:

 sub Sheep::speak {
 my $class = shift;
 print "a $class goes baaaah!\n";
 }

And the other two animals come out similarly:

 sub Cow::speak {
 my $class = shift;
 print "a $class goes moooo!\n";
 }
 sub Horse::speak {
 my $class = shift;
 print "a $class goes neigh!\n";
 }

In each case, $class will get the value appropriate for that
 subroutine. But once again, we have a lot
of similar structure. Can
 we factor that out even further? Yes, by calling another method in
 the same
class.

Calling a second method to simplify things
Let's call out from speak to a helper method called sound.
 This method provides the constant text for
the sound itself.

 { package Cow;
 sub sound { "moooo" }
 sub speak {
 my $class = shift;
 print "a $class goes ", $class->sound, "!\n";
 }
 }

Now, when we call Cow->speak, we get a $class of Cow in speak. This in turn selects the
Cow->sound method, which
 returns moooo. But how different would this be for the Horse?

 { package Horse;
 sub sound { "neigh" }
 sub speak {
 my $class = shift;
 print "a $class goes ", $class->sound, "!\n";
 }
 }

Perl version 5.12.3 documentation - perlboot

Page 4http://perldoc.perl.org

Only the name of the package and the specific sound change. So can we
 somehow share the
definition for speak between the Cow and the
 Horse? Yes, with inheritance!

Inheriting the windpipes
We'll define a common subroutine package called Animal, with the
 definition for speak:

 { package Animal;
 sub speak {
 my $class = shift;
 print "a $class goes ", $class->sound, "!\n";
 }
 }

Then, for each animal, we say it "inherits" from Animal, along
 with the animal-specific sound:

 { package Cow;
 @ISA = qw(Animal);
 sub sound { "moooo" }
 }

Note the added @ISA array (pronounced "is a"). We'll get to that in a minute.

But what happens when we invoke Cow->speak now?

First, Perl constructs the argument list. In this case, it's just Cow. Then Perl looks for Cow::speak.
But that's not there, so
 Perl checks for the inheritance array @Cow::ISA. It's there,
 and contains the
single name Animal.

Perl next checks for speak inside Animal instead, as in Animal::speak. And that's found, so Perl
invokes that subroutine
 with the already frozen argument list.

Inside the Animal::speak subroutine, $class becomes Cow (the
 first argument). So when we get
to the step of invoking $class->sound, it'll be looking for Cow->sound, which
 gets it on the first try
without looking at @ISA. Success!

A few notes about @ISA
This magical @ISA variable has declared that Cow "is a" Animal.
 Note that it's an array, not a simple
single value, because on rare
 occasions, it makes sense to have more than one parent class
searched
 for the missing methods.

If Animal also had an @ISA, then we'd check there too. The
 search is recursive, depth-first,
left-to-right in each @ISA by
 default (see mro for alternatives). Typically, each @ISA has
 only one
element (multiple elements means multiple inheritance and
 multiple headaches), so we get a nice tree
of inheritance.

When we turn on use strict, we'll get complaints on @ISA, since
 it's not a variable containing an
explicit package name, nor is it a
 lexical ("my") variable. We can't make it a lexical variable though
 (it
has to belong to the package to be found by the inheritance mechanism),
 so there's a couple of
straightforward ways to handle that.

The easiest is to just spell the package name out:

 @Cow::ISA = qw(Animal);

Or declare it as package global variable:

 package Cow;
 our @ISA = qw(Animal);

Perl version 5.12.3 documentation - perlboot

Page 5http://perldoc.perl.org

Or allow it as an implicitly named package variable:

 package Cow;
 use vars qw(@ISA);
 @ISA = qw(Animal);

If the Animal class comes from another (object-oriented) module, then
 just employ use base to
specify that Animal should serve as the basis
 for the Cow class:

 package Cow;
 use base qw(Animal);

Now that's pretty darn simple!

Overriding the methods
Let's add a mouse, which can barely be heard:

 # Animal package from before
 { package Mouse;
 @ISA = qw(Animal);
 sub sound { "squeak" }
 sub speak {
 my $class = shift;
 print "a $class goes ", $class->sound, "!\n";
 print "[but you can barely hear it!]\n";
 }
 }

 Mouse->speak;

which results in:

 a Mouse goes squeak!
 [but you can barely hear it!]

Here, Mouse has its own speaking routine, so Mouse->speak
 doesn't immediately invoke
Animal->speak. This is known as
 "overriding". In fact, we don't even need to say that a Mouse is
 an
Animal at all, because all of the methods needed for speak are
 completely defined for Mouse; this is
known as "duck typing":
 "If it walks like a duck and quacks like a duck, I would call it a duck"
 (James
Whitcomb). However, it would probably be beneficial to allow a
 closer examination to conclude that a
Mouse is indeed an Animal,
 so it is actually better to define Mouse with Animal as its base
 (that is,
it is better to "derive Mouse from Animal").

Moreover, this duplication of code could become a maintenance headache
 (though code-reuse is not
actually a good reason for inheritance; good
 design practices dictate that a derived class should be
usable wherever
 its base class is usable, which might not be the outcome if code-reuse
 is the sole
criterion for inheritance. Just remember that a Mouse
 should always act like an Animal).

So, let's make Mouse an Animal!

The obvious solution is to invoke Animal::speak directly:

 # Animal package from before
 { package Mouse;
 @ISA = qw(Animal);
 sub sound { "squeak" }
 sub speak {

Perl version 5.12.3 documentation - perlboot

Page 6http://perldoc.perl.org

 my $class = shift;
 Animal::speak($class);
 print "[but you can barely hear it!]\n";
 }
 }

Note that we're using Animal::speak. If we were to invoke Animal->speak instead, the first
parameter to Animal::speak
 would automatically be "Animal" rather than "Mouse", so that
 the
call to $class->sound in Animal::speak would become Animal->sound rather than
Mouse->sound.

Also, without the method arrow ->, it becomes necessary to specify
 the first parameter to
Animal::speak ourselves, which is why $class
 is explicitly passed: Animal::speak($class).

However, invoking Animal::speak directly is a mess: Firstly, it assumes
 that the speak method is a
member of the Animal class; what if Animal
 actually inherits speak from its own base? Because we
are no longer using -> to access speak, the special method look up mechanism wouldn't be
 used, so
speak wouldn't even be found!

The second problem is more subtle: Animal is now hardwired into the subroutine
 selection. Let's
assume that Animal::speak does exist. What happens when,
 at a later time, someone expands the
class hierarchy by having Mouse
 inherit from Mus instead of Animal. Unless the invocation of
Animal::speak
 is also changed to an invocation of Mus::speak, centuries worth of taxonomical

classification could be obliterated!

What we have here is a fragile or leaky abstraction; it is the beginning of a
 maintenance nightmare.
What we need is the ability to search for the right
 method wih as few assumptions as possible.

Starting the search from a different place
A better solution is to tell Perl where in the inheritance chain to begin searching
 for speak. This can
be achieved with a modified version of the method arrow ->:

 ClassName->FirstPlaceToLook::method

So, the improved Mouse class is:

 # same Animal as before
 { package Mouse;
 # same @ISA, &sound as before
 sub speak {
 my $class = shift;
 $class->Animal::speak;
 print "[but you can barely hear it!]\n";
 }
 }

Using this syntax, we start with Animal to find speak, and then
 use all of Animal's inheritance chain
if it is not found immediately.
 As usual, the first parameter to speak would be $class, so we no

longer need to pass $class explicitly to speak.

But what about the second problem? We're still hardwiring Animal into
 the method lookup.

The SUPER way of doing things
If Animal is replaced with the special placeholder SUPER in that
 invocation, then the contents of
Mouse's @ISA are used for the
 search, beginning with $ISA[0]. So, all of the problems can be fixed

as follows:

 # same Animal as before

Perl version 5.12.3 documentation - perlboot

Page 7http://perldoc.perl.org

 { package Mouse;
 # same @ISA, &sound as before
 sub speak {
 my $class = shift;
 $class->SUPER::speak;
 print "[but you can barely hear it!]\n";
 }
 }

In general, SUPER::speak means look in the current package's @ISA
 for a class that implements
speak, and invoke the first one found.
 The placeholder is called SUPER, because many other
languages refer
 to base classes as "superclasses", and Perl likes to be eclectic.

Note that a call such as

 $class->SUPER::method;

does not look in the @ISA of $class unless $class happens to
 be the current package.

Let's review...
So far, we've seen the method arrow syntax:

 Class->method(@args);

or the equivalent:

 $a = "Class";
 $a->method(@args);

which constructs an argument list of:

 ("Class", @args)

and attempts to invoke:

 Class::method("Class", @args);

However, if Class::method is not found, then @Class::ISA is examined
 (recursively) to locate a
class (a package) that does indeed contain method,
 and that subroutine is invoked instead.

Using this simple syntax, we have class methods, (multiple) inheritance,
 overriding, and extending.
Using just what we've seen so far, we've
 been able to factor out common code (though that's never a
good reason
 for inheritance!), and provide a nice way to reuse implementations with
 variations.

Now, what about data?

A horse is a horse, of course of course, or is it?
Let's start with the code for the Animal class
 and the Horse class:

 { package Animal;
 sub speak {
 my $class = shift;
 print "a $class goes ", $class->sound, "!\n";
 }
 }
 { package Horse;
 @ISA = qw(Animal);

Perl version 5.12.3 documentation - perlboot

Page 8http://perldoc.perl.org

 sub sound { "neigh" }
 }

This lets us invoke Horse->speak to ripple upward to Animal::speak, calling back to
Horse::sound to get the specific
 sound, and the output of:

 a Horse goes neigh!

But all of our Horse objects would have to be absolutely identical.
 If we add a subroutine, all horses
automatically share it. That's
 great for making horses the same, but how do we capture the

distinctions of an individual horse? For example, suppose we want
 to give our first horse a name.
There's got to be a way to keep its
 name separate from the other horses.

That is to say, we want particular instances of Horse to have
 different names.

In Perl, any reference can be an "instance", so let's start with the
 simplest reference that can hold a
horse's name: a scalar reference.

 my $name = "Mr. Ed";
 my $horse = \$name;

So, now $horse is a reference to what will be the instance-specific
 data (the name). The final step is
to turn this reference into a real
 instance of a Horse by using the special operator bless:

 bless $horse, Horse;

This operator stores information about the package named Horse into
 the thing pointed at by the
reference. At this point, we say $horse is an instance of Horse. That is, it's a specific
 horse. The
reference is otherwise unchanged, and can still be used
 with traditional dereferencing operators.

Invoking an instance method
The method arrow can be used on instances, as well as classes (the names
 of packages). So, let's
get the sound that $horse makes:

 my $noise = $horse->sound("some", "unnecessary", "args");

To invoke sound, Perl first notes that $horse is a blessed
 reference (and thus an instance). It then
constructs an argument
 list, as per usual.

Now for the fun part: Perl takes the class in which the instance was
 blessed, in this case Horse, and
uses that class to locate the
 subroutine. In this case, Horse::sound is found directly (without
 using
inheritance). In the end, it is as though our initial line were
 written as follows:

 my $noise = Horse::sound($horse, "some", "unnecessary", "args");

Note that the first parameter here is still the instance, not the name
 of the class as before. We'll get
neigh as the return value, and
 that'll end up as the $noise variable above.

If Horse::sound had not been found, we'd be wandering up the @Horse::ISA
 array, trying to find the
method in one of the superclasses. The only
 difference between a class method and an instance
method is whether the
 first parameter is an instance (a blessed reference) or a class name (a
 string).

Accessing the instance data
Because we get the instance as the first parameter, we can now access
 the instance-specific data. In
this case, let's add a way to get at
 the name:

 { package Horse;

Perl version 5.12.3 documentation - perlboot

Page 9http://perldoc.perl.org

 @ISA = qw(Animal);
 sub sound { "neigh" }
 sub name {
 my $self = shift;
 $$self;
 }
 }

Inside Horse::name, the @_ array contains:

 ($horse, "some", "unnecessary", "args")

so the shift stores $horse into $self. Then, $self gets
 de-referenced with $$self as normal,
yielding "Mr. Ed".

It's traditional to shift the first parameter into a variable named $self for instance methods and
into a variable named $class for
 class methods.

Then, the following line:

 print $horse->name, " says ", $horse->sound, "\n";

outputs:

 Mr. Ed says neigh.

How to build a horse
Of course, if we constructed all of our horses by hand, we'd most
 likely make mistakes from time to
time. We're also violating one of
 the properties of object-oriented programming, in that the "inside

guts" of a Horse are visible. That's good if you're a veterinarian,
 but not if you just like to own horses.
So, let's have the Horse
 class handle the details inside a class method:

 { package Horse;
 @ISA = qw(Animal);
 sub sound { "neigh" }
 sub name {
 my $self = shift; # instance method, so use $self
 $$self;
 }
 sub named {
 my $class = shift; # class method, so use $class
 my $name = shift;
 bless \$name, $class;
 }
 }

Now with the new named method, we can build a horse as follows:

 my $horse = Horse->named("Mr. Ed");

Notice we're back to a class method, so the two arguments to Horse::named are Horse and Mr.
Ed. The bless operator
 not only blesses \$name, it also returns that reference.

This Horse::named method is called a "constructor".

We've called the constructor named here, so that it quickly denotes
 the constructor's argument as the
name for this particular Horse.
 You can use different constructors with different names for different

Perl version 5.12.3 documentation - perlboot

Page 10http://perldoc.perl.org

ways of "giving birth" to the object (like maybe recording its
 pedigree or date of birth). However, you'll
find that most people
 coming to Perl from more limited languages use a single constructor
 named new
, with various ways of interpreting the arguments to new. Either style is fine, as long as you document
your particular
 way of giving birth to an object. (And you were going to do that,
 right?)

Inheriting the constructor
But was there anything specific to Horse in that method? No. Therefore,
 it's also the same recipe for
building anything else that inherited from Animal, so let's put name and named there:

 { package Animal;
 sub speak {
 my $class = shift;
 print "a $class goes ", $class->sound, "!\n";
 }
 sub name {
 my $self = shift;
 $$self;
 }
 sub named {
 my $class = shift;
 my $name = shift;
 bless \$name, $class;
 }
 }
 { package Horse;
 @ISA = qw(Animal);
 sub sound { "neigh" }
 }

Ahh, but what happens if we invoke speak on an instance?

 my $horse = Horse->named("Mr. Ed");
 $horse->speak;

We get a debugging value:

 a Horse=SCALAR(0xaca42ac) goes neigh!

Why? Because the Animal::speak routine is expecting a classname as
 its first parameter, not an
instance. When the instance is passed in,
 we'll end up using a blessed scalar reference as a string,
and that
 shows up as we saw it just now.

Making a method work with either classes or instances
All we need is for a method to detect if it is being called on a class
 or called on an instance. The most
straightforward way is with the ref operator. This returns a string (the classname) when used on a

blessed reference, and an empty string when used on a string (like a
 classname). Let's modify the
name method first to notice the change:

 sub name {
 my $either = shift;
 ref $either ? $$either : "Any $either";
 }

Here, the ?: operator comes in handy to select either the
 dereference or a derived string. Now we
can use this with either an
 instance or a class. Note that I've changed the first parameter
 holder to
$either to show that this is intended:

Perl version 5.12.3 documentation - perlboot

Page 11http://perldoc.perl.org

 my $horse = Horse->named("Mr. Ed");
 print Horse->name, "\n"; # prints "Any Horse\n"
 print $horse->name, "\n"; # prints "Mr Ed.\n"

and now we'll fix speak to use this:

 sub speak {
 my $either = shift;
 print $either->name, " goes ", $either->sound, "\n";
 }

And since sound already worked with either a class or an instance,
 we're done!

Adding parameters to a method
Let's train our animals to eat:

 { package Animal;
 sub named {
 my $class = shift;
 my $name = shift;
 bless \$name, $class;
 }
 sub name {
 my $either = shift;
 ref $either ? $$either : "Any $either";
 }
 sub speak {
 my $either = shift;
 print $either->name, " goes ", $either->sound, "\n";
 }
 sub eat {
 my $either = shift;
 my $food = shift;
 print $either->name, " eats $food.\n";
 }
 }
 { package Horse;
 @ISA = qw(Animal);
 sub sound { "neigh" }
 }
 { package Sheep;
 @ISA = qw(Animal);
 sub sound { "baaaah" }
 }

And now try it out:

 my $horse = Horse->named("Mr. Ed");
 $horse->eat("hay");
 Sheep->eat("grass");

which prints:

 Mr. Ed eats hay.
 Any Sheep eats grass.

Perl version 5.12.3 documentation - perlboot

Page 12http://perldoc.perl.org

An instance method with parameters gets invoked with the instance,
 and then the list of parameters.
So that first invocation is like:

 Animal::eat($horse, "hay");

More interesting instances
What if an instance needs more data? Most interesting instances are
 made of many items, each of
which can in turn be a reference or even
 another object. The easiest way to store these is often in a
hash.
 The keys of the hash serve as the names of parts of the object (often
 called "instance variables"
or "member variables"), and the
 corresponding values are, well, the values.

But how do we turn the horse into a hash? Recall that an object was
 any blessed reference. We can
just as easily make it a blessed hash
 reference as a blessed scalar reference, as long as everything
that
 looks at the reference is changed accordingly.

Let's make a sheep that has a name and a color:

 my $bad = bless { Name => "Evil", Color => "black" }, Sheep;

so $bad->{Name} has Evil, and $bad->{Color} has black. But we want to make $bad->name
access the name, and
 that's now messed up because it's expecting a scalar reference. Not
 to worry,
because that's pretty easy to fix up.

One solution is to override Animal::name and Animal::named by
 defining them anew in Sheep,
but then any methods added later to Animal might still mess up, and we'd have to override all of
those
 too. Therefore, it's never a good idea to define the data layout in a
 way that's different from the
data layout of the base classes. In fact,
 it's a good idea to use blessed hash references in all cases.
Also, this
 is why it's important to have constructors do the low-level work. So,
 let's redefine Animal:

 ## in Animal
 sub name {
 my $either = shift;
 ref $either ? $either->{Name} : "Any $either";
 }
 sub named {
 my $class = shift;
 my $name = shift;
 my $self = { Name => $name };
 bless $self, $class;
 }

Of course, we still need to override named in order to handle
 constructing a Sheep with a certain
color:

 ## in Sheep
 sub named {
 my ($class, $name) = @_;
 my $self = $class->SUPER::named(@_);
 $$self{Color} = $class->default_color;
 $self
 }

(Note that @_ contains the parameters to named.)

What's this default_color? Well, if named has only the name,
 we still need to set a color, so we'll
have a class-specific default color.
 For a sheep, we might define it as white:

Perl version 5.12.3 documentation - perlboot

Page 13http://perldoc.perl.org

 ## in Sheep
 sub default_color { "white" }

Now:

 my $sheep = Sheep->named("Bad");
 print $sheep->{Color}, "\n";

outputs:

 white

Now, there's nothing particularly specific to Sheep when it comes
 to color, so let's remove
Sheep::named and implement Animal::named
 to handle color instead:

 ## in Animal
 sub named {
 my ($class, $name) = @_;
 my $self = { Name => $name, Color => $class->default_color };
 bless $self, $class;
 }

And then to keep from having to define default_color for each additional
 class, we'll define a
method that serves as the "default default" directly
 in Animal:

 ## in Animal
 sub default_color { "brown" }

Of course, because name and named were the only methods that
 referenced the "structure" of the
object, the rest of the methods can
 remain the same, so speak still works as before.

A horse of a different color
But having all our horses be brown would be boring. So let's add a
 method or two to get and set the
color.

 ## in Animal
 sub color {
 $_[0]->{Color}
 }
 sub set_color {
 $_[0]->{Color} = $_[1];
 }

Note the alternate way of accessing the arguments: $_[0] is used
 in-place, rather than with a shift
. (This saves us a bit of time
 for something that may be invoked frequently.) And now we can fix
 that
color for Mr. Ed:

 my $horse = Horse->named("Mr. Ed");
 $horse->set_color("black-and-white");
 print $horse->name, " is colored ", $horse->color, "\n";

which results in:

 Mr. Ed is colored black-and-white

Perl version 5.12.3 documentation - perlboot

Page 14http://perldoc.perl.org

Summary
So, now we have class methods, constructors, instance methods, instance
 data, and even accessors.
But that's still just the beginning of what
 Perl has to offer. We haven't even begun to talk about
accessors that
 double as getters and setters, destructors, indirect object notation,
 overloading, "isa"
and "can" tests, the UNIVERSAL class, and so on.
 That's for the rest of the Perl documentation to
cover. Hopefully, this
 gets you started, though.

SEE ALSO
For more information, see perlobj (for all the gritty details about
 Perl objects, now that you've seen the
basics), perltoot (the
 tutorial for those who already know objects), perltooc (dealing
 with class data),
perlbot (for some more tricks), and books such as
 Damian Conway's excellent Object Oriented Perl.

Some modules which might prove interesting are Class::Accessor,
 Class::Class, Class::Contract,
Class::Data::Inheritable,
 Class::MethodMaker and Tie::SecureHash

COPYRIGHT
Copyright (c) 1999, 2000 by Randal L. Schwartz and Stonehenge
 Consulting Services, Inc.

Copyright (c) 2009 by Michael F. Witten.

Permission is hereby granted to distribute this document intact with
 the Perl distribution, and in
accordance with the licenses of the Perl
 distribution; derived documents must include this copyright
notice
 intact.

Portions of this text have been derived from Perl Training materials
 originally appearing in the
Packages, References, Objects, and
 Modules course taught by instructors for Stonehenge Consulting
Services, Inc. and used with permission.

Portions of this text have been derived from materials originally
 appearing in Linux Magazine and
used with permission.

