
Perl version 5.12.3 documentation - perllocale

Page 1http://perldoc.perl.org

NAME
perllocale - Perl locale handling (internationalization and localization)

DESCRIPTION
Perl supports language-specific notions of data such as "is this
 a letter", "what is the uppercase
equivalent of this letter", and
 "which of these letters comes first". These are important issues,

especially for languages other than English--but also for English: it
 would be naïve to imagine that
A-Za-z defines all the "letters"
 needed to write in English. Perl is also aware that some character
other
 than '.' may be preferred as a decimal point, and that output date
 representations may be
language-specific. The process of making an
 application take account of its users' preferences in
such matters is
 called internationalization (often abbreviated as i18n); telling
 such an application
about a particular set of preferences is known as localization (l10n).

Perl can understand language-specific data via the standardized (ISO C,
 XPG4, POSIX 1.c) method
called "the locale system". The locale system is
 controlled per application using one pragma, one
function call, and
 several environment variables.

NOTE: This feature is new in Perl 5.004, and does not apply unless an
 application specifically
requests it--see Backward compatibility.
 The one exception is that write() now always uses the
current locale
 - see NOTES.

PREPARING TO USE LOCALES
If Perl applications are to understand and present your data
 correctly according a locale of your
choice, all of the following
 must be true:

Your operating system must support the locale system. If it does,
 you should find that the
setlocale() function is a documented part of
 its C library.

Definitions for locales that you use must be installed. You, or
 your system administrator,
must make sure that this is the case. The
 available locales, the location in which they are kept,
and the manner
 in which they are installed all vary from system to system. Some systems

provide only a few, hard-wired locales and do not allow more to be
 added. Others allow you to
add "canned" locales provided by the system
 supplier. Still others allow you or the system
administrator to define
 and add arbitrary locales. (You may have to ask your supplier to

provide canned locales that are not delivered with your operating
 system.) Read your system
documentation for further illumination.

Perl must believe that the locale system is supported. If it does, perl -V:d_setlocale
will say that the value for d_setlocale is define.

If you want a Perl application to process and present your data
 according to a particular locale, the
application code should include
 the use locale pragma (see The use locale pragma) where

appropriate, and at least one of the following must be true:

The locale-determining environment variables (see ENVIRONMENT)
 must be correctly
set up at the time the application is started, either
 by yourself or by whoever set up your
system account.

The application must set its own locale using the method described in The setlocale
function.

USING LOCALES
The use locale pragma

By default, Perl ignores the current locale. The use locale
 pragma tells Perl to use the current
locale for some operations:

The comparison operators (lt, le, cmp, ge, and gt) and
 the POSIX string collation
functions strcoll() and strxfrm() use LC_COLLATE. sort() is also affected if used without an

Perl version 5.12.3 documentation - perllocale

Page 2http://perldoc.perl.org

explicit comparison function, because it uses cmp by default.

Note: eq and ne are unaffected by locale: they always
 perform a char-by-char comparison of
their scalar operands. What's
 more, if cmp finds that its operands are equal according to the

collation sequence specified by the current locale, it goes on to
 perform a char-by-char
comparison, and only returns 0 (equal) if the
 operands are char-for-char identical. If you really
want to know whether
 two strings--which eq and cmp may consider different--are equal
 as far
as collation in the locale is concerned, see the discussion in Category LC_COLLATE:
Collation.

Regular expressions and case-modification functions (uc(), lc(),
 ucfirst(), and lcfirst()) use
LC_CTYPE

The formatting functions (printf(), sprintf() and write()) use LC_NUMERIC

The POSIX date formatting function (strftime()) uses LC_TIME.

LC_COLLATE, LC_CTYPE, and so on, are discussed further in LOCALE CATEGORIES.

The default behavior is restored with the no locale pragma, or
 upon reaching the end of block
enclosing use locale.

The string result of any operation that uses locale
 information is tainted, as it is possible for a locale to
be
 untrustworthy. See SECURITY.

The setlocale function
You can switch locales as often as you wish at run time with the
 POSIX::setlocale() function:

 # This functionality not usable prior to Perl 5.004
 require 5.004;

 # Import locale-handling tool set from POSIX module.
 # This example uses: setlocale -- the function call
 # LC_CTYPE -- explained below
 use POSIX qw(locale_h);

 # query and save the old locale
 $old_locale = setlocale(LC_CTYPE);

 setlocale(LC_CTYPE, "fr_CA.ISO8859-1");
 # LC_CTYPE now in locale "French, Canada, codeset ISO 8859-1"

 setlocale(LC_CTYPE, "");
 # LC_CTYPE now reset to default defined by LC_ALL/LC_CTYPE/LANG
 # environment variables. See below for documentation.

 # restore the old locale
 setlocale(LC_CTYPE, $old_locale);

The first argument of setlocale() gives the category, the second the locale. The category tells in what
aspect of data processing you
 want to apply locale-specific rules. Category names are discussed in
LOCALE CATEGORIES and ENVIRONMENT. The locale is the name of a
 collection of customization
information corresponding to a particular
 combination of language, country or territory, and codeset.
Read on for
 hints on the naming of locales: not all systems name locales as in the
 example.

If no second argument is provided and the category is something else
 than LC_ALL, the function
returns a string naming the current locale
 for the category. You can use this value as the second

Perl version 5.12.3 documentation - perllocale

Page 3http://perldoc.perl.org

argument in a
 subsequent call to setlocale().

If no second argument is provided and the category is LC_ALL, the
 result is
implementation-dependent. It may be a string of
 concatenated locales names (separator also
implementation-dependent)
 or a single locale name. Please consult your setlocale(3) man page for

details.

If a second argument is given and it corresponds to a valid locale,
 the locale for the category is set to
that value, and the function
 returns the now-current locale value. You can then use this in yet
 another
call to setlocale(). (In some implementations, the return
 value may sometimes differ from the value
you gave as the second
 argument--think of it as an alias for the value you gave.)

As the example shows, if the second argument is an empty string, the
 category's locale is returned to
the default specified by the
 corresponding environment variables. Generally, this results in a
 return to
the default that was in force when Perl started up: changes
 to the environment made by the
application after startup may or may not
 be noticed, depending on your system's C library.

If the second argument does not correspond to a valid locale, the locale
 for the category is not
changed, and the function returns undef.

For further information about the categories, consult setlocale(3).

Finding locales
For locales available in your system, consult also setlocale(3) to
 see whether it leads to the list of
available locales (search for the SEE ALSO section). If that fails, try the following command lines:

 locale -a

 nlsinfo

 ls /usr/lib/nls/loc

 ls /usr/lib/locale

 ls /usr/lib/nls

	 ls /usr/share/locale

and see whether they list something resembling these

 en_US.ISO8859-1 de_DE.ISO8859-1 ru_RU.ISO8859-5
 en_US.iso88591 de_DE.iso88591 ru_RU.iso88595
 en_US de_DE ru_RU
 en de ru
 english german russian
 english.iso88591 german.iso88591 russian.iso88595
 english.roman8 russian.koi8r

Sadly, even though the calling interface for setlocale() has been
 standardized, names of locales and
the directories where the
 configuration resides have not been. The basic form of the name is
language_territory.codeset, but the latter parts after language are not always present. The language
and country
 are usually from the standards ISO 3166 and ISO 639, the
 two-letter abbreviations for the
countries and the languages of the
 world, respectively. The codeset part often mentions some ISO

8859 character set, the Latin codesets. For example, ISO 8859-1
 is the so-called "Western
European codeset" that can be used to encode
 most Western European languages adequately.
Again, there are several
 ways to write even the name of that one standard. Lamentably.

Perl version 5.12.3 documentation - perllocale

Page 4http://perldoc.perl.org

Two special locales are worth particular mention: "C" and "POSIX".
 Currently these are effectively the
same locale: the difference is
 mainly that the first one is defined by the C standard, the second by
 the
POSIX standard. They define the default locale in which
 every program starts in the absence of
locale information in its
 environment. (The default default locale, if you will.) Its language
 is
(American) English and its character codeset ASCII.

NOTE: Not all systems have the "POSIX" locale (not all systems are
 POSIX-conformant), so use "C"
when you need explicitly to specify this
 default locale.

LOCALE PROBLEMS
You may encounter the following warning message at Perl startup:

	 perl: warning: Setting locale failed.
	 perl: warning: Please check that your locale settings:
	 LC_ALL = "En_US",
	 LANG = (unset)
	 are supported and installed on your system.
	 perl: warning: Falling back to the standard locale ("C").

This means that your locale settings had LC_ALL set to "En_US" and
 LANG exists but has no value.
Perl tried to believe you but could not.
 Instead, Perl gave up and fell back to the "C" locale, the default
locale
 that is supposed to work no matter what. This usually means your locale
 settings were wrong,
they mention locales your system has never heard
 of, or the locale installation in your system has
problems (for example,
 some system files are broken or missing). There are quick and temporary

fixes to these problems, as well as more thorough and lasting fixes.

Temporarily fixing locale problems
The two quickest fixes are either to render Perl silent about any
 locale inconsistencies or to run Perl
under the default locale "C".

Perl's moaning about locale problems can be silenced by setting the
 environment variable
PERL_BADLANG to a zero value, for example "0".
 This method really just sweeps the problem under
the carpet: you tell
 Perl to shut up even when Perl sees that something is wrong. Do not
 be surprised
if later something locale-dependent misbehaves.

Perl can be run under the "C" locale by setting the environment
 variable LC_ALL to "C". This method
is perhaps a bit more civilized
 than the PERL_BADLANG approach, but setting LC_ALL (or
 other
locale variables) may affect other programs as well, not just
 Perl. In particular, external programs run
from within Perl will see
 these changes. If you make the new settings permanent (read on), all

programs you run see the changes. See ENVIRONMENT for
 the full list of relevant environment
variables and USING LOCALES
 for their effects in Perl. Effects in other programs are easily
deducible. For example, the variable LC_COLLATE may well affect
 your sort program (or whatever
the program that arranges "records"
 alphabetically in your system is called).

You can test out changing these variables temporarily, and if the
 new settings seem to help, put those
settings into your shell startup
 files. Consult your local documentation for the exact details. For in

Bourne-like shells (sh, ksh, bash, zsh):

	 LC_ALL=en_US.ISO8859-1
	 export LC_ALL

This assumes that we saw the locale "en_US.ISO8859-1" using the commands
 discussed above. We
decided to try that instead of the above faulty
 locale "En_US"--and in Cshish shells (csh, tcsh)

	 setenv LC_ALL en_US.ISO8859-1

or if you have the "env" application you can do in any shell

Perl version 5.12.3 documentation - perllocale

Page 5http://perldoc.perl.org

	 env LC_ALL=en_US.ISO8859-1 perl ...

If you do not know what shell you have, consult your local
 helpdesk or the equivalent.

Permanently fixing locale problems
The slower but superior fixes are when you may be able to yourself
 fix the misconfiguration of your
own environment variables. The
 mis(sing)configuration of the whole system's locales usually requires

the help of your friendly system administrator.

First, see earlier in this document about Finding locales. That tells
 how to find which locales are really
supported--and more importantly,
 installed--on your system. In our example error message,
environment
 variables affecting the locale are listed in the order of decreasing
 importance (and unset
variables do not matter). Therefore, having
 LC_ALL set to "En_US" must have been the bad choice,
as shown by the
 error message. First try fixing locale settings listed first.

Second, if using the listed commands you see something exactly
 (prefix matches do not count and
case usually counts) like "En_US"
 without the quotes, then you should be okay because you are
using a
 locale name that should be installed and available in your system.
 In this case, see
Permanently fixing your system's locale configuration.

Permanently fixing your system's locale configuration
This is when you see something like:

	 perl: warning: Please check that your locale settings:
	 LC_ALL = "En_US",
	 LANG = (unset)
	 are supported and installed on your system.

but then cannot see that "En_US" listed by the above-mentioned
 commands. You may see things like
"en_US.ISO8859-1", but that isn't
 the same. In this case, try running under a locale
 that you can list
and which somehow matches what you tried. The
 rules for matching locale names are a bit vague
because
 standardization is weak in this area. See again the Finding locales about general rules.

Fixing system locale configuration
Contact a system administrator (preferably your own) and report the exact
 error message you get,
and ask them to read this same documentation you
 are now reading. They should be able to check
whether there is something
 wrong with the locale configuration of the system. The Finding locales

section is unfortunately a bit vague about the exact commands and places
 because these things are
not that standardized.

The localeconv function
The POSIX::localeconv() function allows you to get particulars of the
 locale-dependent numeric
formatting information specified by the current LC_NUMERIC and LC_MONETARY locales. (If you just
want the name of
 the current locale for a particular category, use POSIX::setlocale()
 with a single
parameter--see The setlocale function.)

 use POSIX qw(locale_h);

 # Get a reference to a hash of locale-dependent info
 $locale_values = localeconv();

 # Output sorted list of the values
 for (sort keys %$locale_values) {
 printf "%-20s = %s\n", $_, $locale_values->{$_}
 }

Perl version 5.12.3 documentation - perllocale

Page 6http://perldoc.perl.org

localeconv() takes no arguments, and returns a reference to a hash.
 The keys of this hash are
variable names for formatting, such as decimal_point and thousands_sep. The values are the

corresponding, er, values. See "localeconv" in POSIX for a longer
 example listing the categories an
implementation might be expected to
 provide; some provide more and others fewer. You don't need
an
 explicit use locale, because localeconv() always observes the
 current locale.

Here's a simple-minded example program that rewrites its command-line
 parameters as integers
correctly formatted in the current locale:

 # See comments in previous example
 require 5.004;
 use POSIX qw(locale_h);

 # Get some of locale's numeric formatting parameters
 my ($thousands_sep, $grouping) =
 @{localeconv()}{'thousands_sep', 'grouping'};

 # Apply defaults if values are missing
 $thousands_sep = ',' unless $thousands_sep;

	 # grouping and mon_grouping are packed lists
	 # of small integers (characters) telling the
	 # grouping (thousand_seps and mon_thousand_seps
	 # being the group dividers) of numbers and
	 # monetary quantities. The integers' meanings:
	 # 255 means no more grouping, 0 means repeat
	 # the previous grouping, 1-254 means use that
	 # as the current grouping. Grouping goes from
	 # right to left (low to high digits). In the
	 # below we cheat slightly by never using anything
	 # else than the first grouping (whatever that is).
	 if ($grouping) {
	 @grouping = unpack("C*", $grouping);
	 } else {
	 @grouping = (3);
	 }

 # Format command line params for current locale
 for (@ARGV) {
 $_ = int; # Chop non-integer part
 1 while
 s/(\d)(\d{$grouping[0]}($|$thousands_sep))/$1$thousands_sep$2/;
 print "$_";
 }
 print "\n";

I18N::Langinfo
Another interface for querying locale-dependent information is the
 I18N::Langinfo::langinfo() function,
available at least in Unix-like
 systems and VMS.

The following example will import the langinfo() function itself and
 three constants to be used as
arguments to langinfo(): a constant for
 the abbreviated first day of the week (the numbering starts
from
 Sunday = 1) and two more constants for the affirmative and negative
 answers for a yes/no
question in the current locale.

Perl version 5.12.3 documentation - perllocale

Page 7http://perldoc.perl.org

 use I18N::Langinfo qw(langinfo ABDAY_1 YESSTR NOSTR);

 my ($abday_1, $yesstr, $nostr) = map { langinfo } qw(ABDAY_1 YESSTR
NOSTR);

 print "$abday_1? [$yesstr/$nostr] ";

In other words, in the "C" (or English) locale the above will probably
 print something like:

 Sun? [yes/no]

See I18N::Langinfo for more information.

LOCALE CATEGORIES
The following subsections describe basic locale categories. Beyond these,
 some combination
categories allow manipulation of more than one
 basic category at a time. See ENVIRONMENT for a
discussion of these.

Category LC_COLLATE: Collation
In the scope of use locale, Perl looks to the LC_COLLATE
 environment variable to determine the
application's notions on collation
 (ordering) of characters. For example, 'b' follows 'a' in Latin

alphabets, but where do 'á' and 'å' belong? And while
 'color' follows 'chocolate' in English, what about
in Spanish?

The following collations all make sense and you may meet any of them
 if you "use locale".

	 A B C D E a b c d e
	 A a B b C c D d E e
	 a A b B c C d D e E
	 a b c d e A B C D E

Here is a code snippet to tell what "word"
 characters are in the current locale, in that locale's order:

 use locale;
 print +(sort grep /\w/, map { chr } 0..255), "\n";

Compare this with the characters that you see and their order if you
 state explicitly that the locale
should be ignored:

 no locale;
 print +(sort grep /\w/, map { chr } 0..255), "\n";

This machine-native collation (which is what you get unless use
 locale has appeared earlier in the
same block) must be used for
 sorting raw binary data, whereas the locale-dependent collation of the

first example is useful for natural text.

As noted in USING LOCALES, cmp compares according to the current
 collation locale when use
locale is in effect, but falls back to a
 char-by-char comparison for strings that the locale says are
equal. You
 can use POSIX::strcoll() if you don't want this fall-back:

 use POSIX qw(strcoll);
 $equal_in_locale =
 !strcoll("space and case ignored", "SpaceAndCaseIgnored");

$equal_in_locale will be true if the collation locale specifies a
 dictionary-like ordering that ignores
space characters completely and
 which folds case.

Perl version 5.12.3 documentation - perllocale

Page 8http://perldoc.perl.org

If you have a single string that you want to check for "equality in
 locale" against several others, you
might think you could gain a little
 efficiency by using POSIX::strxfrm() in conjunction with eq:

 use POSIX qw(strxfrm);
 $xfrm_string = strxfrm("Mixed-case string");
 print "locale collation ignores spaces\n"
 if $xfrm_string eq strxfrm("Mixed-casestring");
 print "locale collation ignores hyphens\n"
 if $xfrm_string eq strxfrm("Mixedcase string");
 print "locale collation ignores case\n"
 if $xfrm_string eq strxfrm("mixed-case string");

strxfrm() takes a string and maps it into a transformed string for use
 in char-by-char comparisons
against other transformed strings during
 collation. "Under the hood", locale-affected Perl comparison
operators
 call strxfrm() for both operands, then do a char-by-char
 comparison of the transformed
strings. By calling strxfrm() explicitly
 and using a non locale-affected comparison, the example
attempts to save
 a couple of transformations. But in fact, it doesn't save anything: Perl
 magic (see
"Magic Variables" in perlguts) creates the transformed version of a
 string the first time it's needed in a
comparison, then keeps this version around
 in case it's needed again. An example rewritten the easy
way with cmp runs just about as fast. It also copes with null characters
 embedded in strings; if you call
strxfrm() directly, it treats the first
 null it finds as a terminator. don't expect the transformed strings
 it
produces to be portable across systems--or even from one revision
 of your operating system to the
next. In short, don't call strxfrm()
 directly: let Perl do it for you.

Note: use locale isn't shown in some of these examples because it isn't
 needed: strcoll() and
strxfrm() exist only to generate locale-dependent
 results, and so always obey the current
LC_COLLATE locale.

Category LC_CTYPE: Character Types
In the scope of use locale, Perl obeys the LC_CTYPE locale
 setting. This controls the application's
notion of which characters are
 alphabetic. This affects Perl's \w regular expression metanotation,

which stands for alphanumeric characters--that is, alphabetic,
 numeric, and including other special
characters such as the underscore or
 hyphen. (Consult perlre for more information about
 regular
expressions.) Thanks to LC_CTYPE, depending on your locale
 setting, characters like 'æ', 'ð', 'ß', and
 '
ø' may be understood as \w characters.

The LC_CTYPE locale also provides the map used in transliterating
 characters between lower and
uppercase. This affects the case-mapping
 functions--lc(), lcfirst, uc(), and ucfirst(); case-mapping

interpolation with \l, \L, \u, or \U in double-quoted strings
 and s/// substitutions; and
case-independent regular expression
 pattern matching using the i modifier.

Finally, LC_CTYPE affects the POSIX character-class test
 functions--isalpha(), islower(), and so on.
For example, if you move
 from the "C" locale to a 7-bit Scandinavian one, you may find--possibly
 to
your surprise--that "|" moves from the ispunct() class to isalpha().

Note: A broken or malicious LC_CTYPE locale definition may result
 in clearly ineligible characters
being considered to be alphanumeric by
 your application. For strict matching of (mundane) letters and
digits--for example, in command strings--locale-aware applications
 should use \w inside a no
locale block. See SECURITY.

Category LC_NUMERIC: Numeric Formatting
After a proper POSIX::setlocale() call, Perl obeys the LC_NUMERIC
 locale information, which controls
an application's idea of how numbers
 should be formatted for human readability by the printf(),
sprintf(), and
 write() functions. String-to-numeric conversion by the POSIX::strtod()
 function is also
affected. In most implementations the only effect is to
 change the character used for the decimal
point--perhaps from '.' to ','.
 These functions aren't aware of such niceties as thousands separation
and
 so on. (See The localeconv function if you care about these things.)

Perl version 5.12.3 documentation - perllocale

Page 9http://perldoc.perl.org

Output produced by print() is also affected by the current locale: it
 corresponds to what you'd get from
printf() in the "C" locale. The
 same is true for Perl's internal conversions between numeric and
 string
formats:

 use POSIX qw(strtod setlocale LC_NUMERIC);

	 setlocale LC_NUMERIC, "";

 $n = 5/2; # Assign numeric 2.5 to $n

 $a = " $n"; # Locale-dependent conversion to string

 print "half five is $n\n"; # Locale-dependent output

 printf "half five is %g\n", $n; # Locale-dependent output

 print "DECIMAL POINT IS COMMA\n"
 if $n == (strtod("2,5"))[0]; # Locale-dependent conversion

See also I18N::Langinfo and RADIXCHAR.

Category LC_MONETARY: Formatting of monetary amounts
The C standard defines the LC_MONETARY category, but no function
 that is affected by its contents.
(Those with experience of standards
 committees will recognize that the working group decided to punt
on the
 issue.) Consequently, Perl takes no notice of it. If you really want
 to use LC_MONETARY, you
can query its contents--see The localeconv function--and use the information that it returns in your
application's own formatting of currency amounts. However, you may well find that the information,
voluminous and complex though it may be, still does not quite meet your requirements: currency
formatting is a hard nut to crack.

See also I18N::Langinfo and CRNCYSTR.

LC_TIME
Output produced by POSIX::strftime(), which builds a formatted
 human-readable date/time string, is
affected by the current LC_TIME
 locale. Thus, in a French locale, the output produced by the %B

format element (full month name) for the first month of the year would
 be "janvier". Here's how to get
a list of long month names in the
 current locale:

 use POSIX qw(strftime);
 for (0..11) {
 $long_month_name[$_] =
 strftime("%B", 0, 0, 0, 1, $_, 96);
 }

Note: use locale isn't needed in this example: as a function that
 exists only to generate
locale-dependent results, strftime() always
 obeys the current LC_TIME locale.

See also I18N::Langinfo and ABDAY_1..ABDAY_7, DAY_1..DAY_7, ABMON_1..ABMON_12, and
ABMON_1..ABMON_12.

Other categories
The remaining locale category, LC_MESSAGES (possibly supplemented
 by others in particular
implementations) is not currently used by
 Perl--except possibly to affect the behavior of library
functions
 called by extensions outside the standard Perl distribution and by the
 operating system and
its utilities. Note especially that the string
 value of $! and the error messages given by external

Perl version 5.12.3 documentation - perllocale

Page 10http://perldoc.perl.org

utilities may
 be changed by LC_MESSAGES. If you want to have portable error
 codes, use %!. See
Errno.

SECURITY
Although the main discussion of Perl security issues can be found in perlsec, a discussion of Perl's
locale handling would be incomplete
 if it did not draw your attention to locale-dependent security
issues.
 Locales--particularly on systems that allow unprivileged users to
 build their own locales--are
untrustworthy. A malicious (or just plain
 broken) locale can make a locale-aware application give
unexpected
 results. Here are a few possibilities:

Regular expression checks for safe file names or mail addresses using \w may be spoofed by
an LC_CTYPE locale that claims that
 characters such as ">" and "|" are alphanumeric.

String interpolation with case-mapping, as in, say, $dest =
 "C:\U$name.$ext", may
produce dangerous results if a bogus LC_CTYPE
 case-mapping table is in effect.

A sneaky LC_COLLATE locale could result in the names of students with
 "D" grades appearing
ahead of those with "A"s.

An application that takes the trouble to use information in LC_MONETARY may format debits as
if they were credits and vice versa
 if that locale has been subverted. Or it might make
payments in US
 dollars instead of Hong Kong dollars.

The date and day names in dates formatted by strftime() could be
 manipulated to advantage
by a malicious user able to subvert the LC_DATE locale. ("Look--it says I wasn't in the building
on
 Sunday.")

Such dangers are not peculiar to the locale system: any aspect of an
 application's environment which
may be modified maliciously presents
 similar challenges. Similarly, they are not specific to Perl: any

programming language that allows you to write programs that take
 account of their environment
exposes you to these issues.

Perl cannot protect you from all possibilities shown in the
 examples--there is no substitute for your
own vigilance--but, when use locale is in effect, Perl uses the tainting mechanism (see perlsec) to
mark string results that become locale-dependent, and
 which may be untrustworthy in consequence.
Here is a summary of the
 tainting behavior of operators and functions that may be affected by
 the
locale:

Comparison operators (lt, le, ge, gt and cmp):

Scalar true/false (or less/equal/greater) result is never tainted.

Case-mapping interpolation (with \l, \L, \u or \U)

Result string containing interpolated material is tainted if use locale is in effect.

Matching operator (m//):

Scalar true/false result never tainted.

Subpatterns, either delivered as a list-context result or as $1 etc.
 are tainted if use locale is
in effect, and the subpattern regular
 expression contains \w (to match an alphanumeric
character), \W
 (non-alphanumeric character), \s (whitespace character), or \S
 (non
whitespace character). The matched-pattern variable, $&, $`
 (pre-match), $' (post-match), and
$+ (last match) are also tainted if use locale is in effect and the regular expression contains
\w, \W, \s, or \S.

Substitution operator (s///):

Has the same behavior as the match operator. Also, the left
 operand of =~ becomes tainted
when use locale in effect
 if modified as a result of a substitution based on a regular

expression match involving \w, \W, \s, or \S; or of
 case-mapping with \l, \L,\u or \U.

Perl version 5.12.3 documentation - perllocale

Page 11http://perldoc.perl.org

Output formatting functions (printf() and write()):

Results are never tainted because otherwise even output from print,
 for example
print(1/7), should be tainted if use locale is in
 effect.

Case-mapping functions (lc(), lcfirst(), uc(), ucfirst()):

Results are tainted if use locale is in effect.

POSIX locale-dependent functions (localeconv(), strcoll(),
 strftime(), strxfrm()):

Results are never tainted.

POSIX character class tests (isalnum(), isalpha(), isdigit(),
 isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(),
 isxdigit()):

True/false results are never tainted.

Three examples illustrate locale-dependent tainting.
 The first program, which ignores its locale, won't
run: a value taken
 directly from the command line may not be used to name an output file
 when taint
checks are enabled.

 #/usr/local/bin/perl -T
 # Run with taint checking

 # Command line sanity check omitted...
 $tainted_output_file = shift;

 open(F, ">$tainted_output_file")
 or warn "Open of $untainted_output_file failed: $!\n";

The program can be made to run by "laundering" the tainted value through
 a regular expression: the
second example--which still ignores locale
 information--runs, creating the file named on its command
line
 if it can.

 #/usr/local/bin/perl -T

 $tainted_output_file = shift;
 $tainted_output_file =~ m%[\w/]+%;
 $untainted_output_file = $&;

 open(F, ">$untainted_output_file")
 or warn "Open of $untainted_output_file failed: $!\n";

Compare this with a similar but locale-aware program:

 #/usr/local/bin/perl -T

 $tainted_output_file = shift;
 use locale;
 $tainted_output_file =~ m%[\w/]+%;
 $localized_output_file = $&;

 open(F, ">$localized_output_file")
 or warn "Open of $localized_output_file failed: $!\n";

This third program fails to run because $& is tainted: it is the result
 of a match involving \w while use
 locale is in effect.

Perl version 5.12.3 documentation - perllocale

Page 12http://perldoc.perl.org

ENVIRONMENT
PERL_BADLANG

A string that can suppress Perl's warning about failed locale settings
 at startup.
Failure can occur if the locale support in the operating
 system is lacking
(broken) in some way--or if you mistyped the name of
 a locale when you set up
your environment. If this environment
 variable is absent, or has a value that
does not evaluate to integer
 zero--that is, "0" or ""-- Perl will complain about
locale setting
 failures.

NOTE: PERL_BADLANG only gives you a way to hide the warning message.

The message tells about some problem in your system's locale support,
 and
you should investigate what the problem is.

The following environment variables are not specific to Perl: They are
 part of the standardized (ISO C,
XPG4, POSIX 1.c) setlocale() method
 for controlling an application's opinion on data.

LC_ALL

LC_ALL is the "override-all" locale environment variable. If
 set, it overrides all
the rest of the locale environment variables.

LANGUAGE

NOTE: LANGUAGE is a GNU extension, it affects you only if you
 are using the
GNU libc. This is the case if you are using e.g. Linux.
 If you are using
"commercial" Unixes you are most probably not
 using GNU libc and you can
ignore LANGUAGE.

However, in the case you are using LANGUAGE: it affects the
 language of
informational, warning, and error messages output by
 commands (in other
words, it's like LC_MESSAGES) but it has higher
 priority than LC_ALL.
Moreover, it's not a single value but
 instead a "path" (":"-separated list) of
languages (not locales).
 See the GNU gettext library documentation for
more information.

LC_CTYPE

In the absence of LC_ALL, LC_CTYPE chooses the character type
 locale. In
the absence of both LC_ALL and LC_CTYPE, LANG
 chooses the character type
locale.

LC_COLLATE

In the absence of LC_ALL, LC_COLLATE chooses the collation
 (sorting) locale.
In the absence of both LC_ALL and LC_COLLATE, LANG chooses the collation
locale.

LC_MONETARY

In the absence of LC_ALL, LC_MONETARY chooses the monetary
 formatting
locale. In the absence of both LC_ALL and LC_MONETARY, LANG chooses the
monetary formatting locale.

LC_NUMERIC

In the absence of LC_ALL, LC_NUMERIC chooses the numeric format
 locale. In
the absence of both LC_ALL and LC_NUMERIC, LANG
 chooses the numeric
format.

LC_TIME

In the absence of LC_ALL, LC_TIME chooses the date and time
 formatting
locale. In the absence of both LC_ALL and LC_TIME, LANG chooses the date
and time formatting locale.

Perl version 5.12.3 documentation - perllocale

Page 13http://perldoc.perl.org

LANG

LANG is the "catch-all" locale environment variable. If it is set, it
 is used as the
last resort after the overall LC_ALL and the
 category-specific LC_....

Examples
The LC_NUMERIC controls the numeric output:

 use locale;
 use POSIX qw(locale_h); # Imports setlocale() and the LC_
constants.
 setlocale(LC_NUMERIC, "fr_FR") or die "Pardon";
 printf "%g\n", 1.23; # If the "fr_FR" succeeded, probably shows
1,23.

and also how strings are parsed by POSIX::strtod() as numbers:

 use locale;
 use POSIX qw(locale_h strtod);
 setlocale(LC_NUMERIC, "de_DE") or die "Entschuldigung";
 my $x = strtod("2,34") + 5;
 print $x, "\n"; # Probably shows 7,34.

NOTES
Backward compatibility

Versions of Perl prior to 5.004 mostly ignored locale information,
 generally behaving as if something
similar to the "C" locale were
 always in force, even if the program environment suggested otherwise

(see The setlocale function). By default, Perl still behaves this
 way for backward compatibility. If you
want a Perl application to pay
 attention to locale information, you must use the use locale
 pragma
(see The use locale pragma) to instruct it to do so.

Versions of Perl from 5.002 to 5.003 did use the LC_CTYPE
 information if available; that is, \w did
understand what
 were the letters according to the locale environment variables.
 The problem was that
the user had no control over the feature:
 if the C library supported locales, Perl used them.

I18N:Collate obsolete
In versions of Perl prior to 5.004, per-locale collation was possible
 using the I18N::Collate library
module. This module is now mildly
 obsolete and should be avoided in new applications. The
LC_COLLATE
 functionality is now integrated into the Perl core language: One can
 use locale-specific
scalar data completely normally with use locale,
 so there is no longer any need to juggle with the
scalar references of I18N::Collate.

Sort speed and memory use impacts
Comparing and sorting by locale is usually slower than the default
 sorting; slow-downs of two to four
times have been observed. It will
 also consume more memory: once a Perl scalar variable has
participated
 in any string comparison or sorting operation obeying the locale
 collation rules, it will take
3-15 times more memory than before. (The
 exact multiplier depends on the string's contents, the
operating system
 and the locale.) These downsides are dictated more by the operating
 system's
implementation of the locale system than by Perl.

write() and LC_NUMERIC
Formats are the only part of Perl that unconditionally use information
 from a program's locale; if a
program's environment specifies an
 LC_NUMERIC locale, it is always used to specify the decimal
point
 character in formatted output. Formatted output cannot be controlled by use locale because
the pragma is tied to the block structure of the
 program, and, for historical reasons, formats exist
outside that block
 structure.

Perl version 5.12.3 documentation - perllocale

Page 14http://perldoc.perl.org

Freely available locale definitions
There is a large collection of locale definitions at:

 http://std.dkuug.dk/i18n/WG15-collection/locales/

You should be aware that it is
 unsupported, and is not claimed to be fit for any purpose. If your

system allows installation of arbitrary locales, you may find the
 definitions useful as they are, or as a
basis for the development of
 your own locales.

I18n and l10n
"Internationalization" is often abbreviated as i18n because its first
 and last letters are separated by
eighteen others. (You may guess why
 the internalin ... internaliti ... i18n tends to get abbreviated.) In

the same way, "localization" is often abbreviated to l10n.

An imperfect standard
Internationalization, as defined in the C and POSIX standards, can be
 criticized as incomplete,
ungainly, and having too large a granularity.
 (Locales apply to a whole process, when it would
arguably be more useful
 to have them apply to a single thread, window group, or whatever.) They

also have a tendency, like standards groups, to divide the world into
 nations, when we all know that
the world can equally well be divided
 into bankers, bikers, gamers, and so on. But, for now, it's the
only
 standard we've got. This may be construed as a bug.

Unicode and UTF-8
The support of Unicode is new starting from Perl version 5.6, and
 more fully implemented in the
version 5.8. See perluniintro and perlunicode for more details.

Usually locale settings and Unicode do not affect each other, but
 there are exceptions, see "Locales"
in perlunicode for examples.

BUGS
Broken systems

In certain systems, the operating system's locale support
 is broken and cannot be fixed or used by
Perl. Such deficiencies can
 and will result in mysterious hangs and/or Perl core dumps when the use
 locale is in effect. When confronted with such a system,
 please report in excruciating detail to <
perlbug@perl.org>, and
 complain to your vendor: bug fixes may exist for these problems
 in your
operating system. Sometimes such bug fixes are called an
 operating system upgrade.

SEE ALSO
I18N::Langinfo, perluniintro, perlunicode, open, "isalnum" in POSIX, "isalpha" in POSIX, "isdigit" in
POSIX, "isgraph" in POSIX, "islower" in POSIX, "isprint" in POSIX, "ispunct" in POSIX, "isspace" in
POSIX, "isupper" in POSIX, "isxdigit" in POSIX, "localeconv" in POSIX, "setlocale" in POSIX, "strcoll"
in POSIX, "strftime" in POSIX, "strtod" in POSIX, "strxfrm" in POSIX.

HISTORY
Jarkko Hietaniemi's original perli18n.pod heavily hacked by Dominic
 Dunlop, assisted by the
perl5-porters. Prose worked over a bit by
 Tom Christiansen.

Last update: Thu Jun 11 08:44:13 MDT 1998

