
Perl version 5.12.3 documentation - autodie

Page 1http://perldoc.perl.org

NAME
autodie - Replace functions with ones that succeed or die with lexical scope

SYNOPSIS
 use autodie; # Recommended: implies 'use autodie
qw(:default)'

 use autodie qw(:all); # Recommended more: defaults and system/exec.

 use autodie qw(open close); # open/close succeed or die

 open(my $fh, "<", $filename); # No need to check!

 {
 no autodie qw(open); # open failures won't die
 open(my $fh, "<", $filename); # Could fail silently!
 no autodie; # disable all autodies
 }

DESCRIPTION
 bIlujDI' yIchegh()Qo'; yIHegh()!

 It is better to die() than to return() in failure.

 -- Klingon programming proverb.

The autodie pragma provides a convenient way to replace functions
 that normally return false on
failure with equivalents that throw
 an exception on failure.

The autodie pragma has lexical scope, meaning that functions
 and subroutines altered with
autodie will only change their behaviour
 until the end of the enclosing block, file, or eval.

If system is specified as an argument to autodie, then it
 uses IPC::System::Simple to do the heavy
lifting. See the
 description of that module for more information.

EXCEPTIONS
Exceptions produced by the autodie pragma are members of the autodie::exception class. The
preferred way to work with
 these exceptions under Perl 5.10 is as follows:

 use feature qw(switch);

 eval {
 use autodie;

 open(my $fh, '<', $some_file);

 my @records = <$fh>;

 # Do things with @records...

 close($fh);

Perl version 5.12.3 documentation - autodie

Page 2http://perldoc.perl.org

 };

 given ($@) {
 when (undef) { say "No error"; }
 when ('open') { say "Error from open"; }
 when (':io') { say "Non-open, IO error."; }
 when (':all') { say "All other autodie errors." }
 default { say "Not an autodie error at all." }
 }

Under Perl 5.8, the given/when structure is not available, so the
 following structure may be used:

 eval {
 use autodie;

 open(my $fh, '<', $some_file);

 my @records = <$fh>;

 # Do things with @records...

 close($fh);
 };

 if ($@ and $@->isa('autodie::exception')) {
 if ($@->matches('open')) { print "Error from open\n"; }
 if ($@->matches(':io')) { print "Non-open, IO error."; }
 } elsif ($@) {
 # A non-autodie exception.
 }

See autodie::exception for further information on interrogating
 exceptions.

CATEGORIES
Autodie uses a simple set of categories to group together similar
 built-ins. Requesting a category type
(starting with a colon) will
 enable autodie for all built-ins beneath that category. For example,

requesting :file will enable autodie for close, fcntl, fileno, open and sysopen.

The categories are currently:

 :all
 :default
 :io
 read
 seek
 sysread
 sysseek
 syswrite
 :dbm
 dbmclose
 dbmopen
 :file
 binmode
 close

Perl version 5.12.3 documentation - autodie

Page 3http://perldoc.perl.org

 fcntl
 fileno
 flock
 ioctl
 open
 sysopen
 truncate
 :filesys
 chdir
 closedir
 opendir
 link
 mkdir
 readlink
 rename
 rmdir
 symlink
 unlink
 :ipc
 pipe
 :msg
 msgctl
 msgget
 msgrcv
 msgsnd
 :semaphore
 semctl
 semget
 semop
 :shm
 shmctl
 shmget
 shmread
 :socket
 accept
 bind
 connect
 getsockopt
 listen
 recv
 send
 setsockopt
 shutdown
 socketpair
 :threads
 fork
 :system
 system
 exec

Note that while the above category system is presently a strict
 hierarchy, this should not be assumed.

A plain use autodie implies use autodie qw(:default). Note that system and exec are not
enabled by default. system requires
 the optional IPC::System::Simple module to be installed, and
enabling system or exec will invalidate their exotic forms. See BUGS
 below for more details.

Perl version 5.12.3 documentation - autodie

Page 4http://perldoc.perl.org

The syntax:

 use autodie qw(:1.994);

allows the :default list from a particular version to be used. This
 provides the convenience of using
the default methods, but the surety
 that no behavorial changes will occur if the autodie module is

upgraded.

autodie can be enabled for all of Perl's built-ins, including system and exec with:

 use autodie qw(:all);

FUNCTION SPECIFIC NOTES
flock

It is not considered an error for flock to return false if it fails
 to an EWOULDBLOCK (or equivalent)
condition. This means one can
 still use the common convention of testing the return value of flock
when called with the LOCK_NB option:

 use autodie;

 if (flock($fh, LOCK_EX | LOCK_NB)) {
 # We have a lock
 }

Autodying flock will generate an exception if flock returns
 false with any other error.

system/exec
The system built-in is considered to have failed in the following
 circumstances:

The command does not start.

The command is killed by a signal.

The command returns a non-zero exit value (but see below).

On success, the autodying form of system returns the exit value
 rather than the contents of $?.

Additional allowable exit values can be supplied as an optional first
 argument to autodying system:

 system([0, 1, 2], $cmd, @args); # 0,1,2 are good exit values

autodie uses the IPC::System::Simple module to change system.
 See its documentation for further
information.

Applying autodie to system or exec causes the exotic
 forms system { $cmd } @args or exec
 { $cmd } @args
 to be considered a syntax error until the end of the lexical scope.
 If you really
need to use the exotic form, you can call CORE::system
 or CORE::exec instead, or use no
autodie qw(system exec) before
 calling the exotic form.

GOTCHAS
Functions called in list context are assumed to have failed if they
 return an empty list, or a list
consisting only of a single undef
 element.

DIAGNOSTICS
:void cannot be used with lexical scope

The :void option is supported in Fatal, but not autodie. To workaround this, autodie may
be explicitly disabled until
 the end of the current block with no autodie.
 To disable autodie

Perl version 5.12.3 documentation - autodie

Page 5http://perldoc.perl.org

for only a single function (eg, open)
 use no autodie qw(open).

No user hints defined for %s

You've insisted on hints for user-subroutines, either by pre-pending
 a ! to the subroutine
name itself, or earlier in the list of arguments
 to autodie. However the subroutine in question
does not have
 any hints available.

See also "DIAGNOSTICS" in Fatal.

BUGS
"Used only once" warnings can be generated when autodie or Fatal
 is used with package
filehandles (eg, FILE). Scalar filehandles are
 strongly recommended instead.

When using autodie or Fatal with user subroutines, the
 declaration of those subroutines must
appear before the first use of Fatal or autodie, or have been exported from a module.
 Attempting
to use Fatal or autodie on other user subroutines will
 result in a compile-time error.

Due to a bug in Perl, autodie may "lose" any format which has the
 same name as an autodying
built-in or function.

autodie may not work correctly if used inside a file with a
 name that looks like a string eval, such as
eval (3).

autodie and string eval
Due to the current implementation of autodie, unexpected results
 may be seen when used near or
with the string version of eval. None of these bugs exist when using block eval.

Under Perl 5.8 only, autodie does not propagate into string eval
 statements, although it can be
explicitly enabled inside a string eval.

Under Perl 5.10 only, using a string eval when autodie is in
 effect can cause the autodie behaviour
to leak into the surrounding
 scope. This can be worked around by using a no autodie at the
 end of
the scope to explicitly remove autodie's effects, or by
 avoiding the use of string eval.

None of these bugs exist when using block eval. The use of autodie with block eval is considered
good practice.

REPORTING BUGS
Please report bugs via the CPAN Request Tracker at
http://rt.cpan.org/NoAuth/Bugs.html?Dist=autodie.

FEEDBACK
If you find this module useful, please consider rating it on the
 CPAN Ratings service at
http://cpanratings.perl.org/rate?distribution=autodie .

The module author loves to hear how autodie has made your life
 better (or worse). Feedback can
be sent to <pjf@perltraining.com.au>.

AUTHOR
Copyright 2008-2009, Paul Fenwick <pjf@perltraining.com.au>

LICENSE
This module is free software. You may distribute it under the
 same terms as Perl itself.

SEE ALSO
Fatal, autodie::exception, autodie::hints, IPC::System::Simple

Perl tips, autodie at http://perltraining.com.au/tips/2008-08-20.html

Perl version 5.12.3 documentation - autodie

Page 6http://perldoc.perl.org

ACKNOWLEDGEMENTS
Mark Reed and Roland Giersig -- Klingon translators.

See the AUTHORS file for full credits. The latest version of this
 file can be found at
http://github.com/pfenwick/autodie/tree/master/AUTHORS .

