
Perl version 5.12.3 documentation - perlstyle

Page 1http://perldoc.perl.org

NAME
perlstyle - Perl style guide

DESCRIPTION
Each programmer will, of course, have his or her own preferences in
 regards to formatting, but there
are some general guidelines that will
 make your programs easier to read, understand, and maintain.

The most important thing is to run your programs under the -w
 flag at all times. You may turn it off
explicitly for particular
 portions of code via the no warnings pragma or the $^W variable
 if you must.
You should also always run under use strict or know the
 reason why not. The use sigtrap and
even use diagnostics pragmas
 may also prove useful.

Regarding aesthetics of code lay out, about the only thing Larry
 cares strongly about is that the
closing curly bracket of
 a multi-line BLOCK should line up with the keyword that started the construct.

Beyond that, he has other preferences that aren't so strong:

4-column indent.

Opening curly on same line as keyword, if possible, otherwise line up.

Space before the opening curly of a multi-line BLOCK.

One-line BLOCK may be put on one line, including curlies.

No space before the semicolon.

Semicolon omitted in "short" one-line BLOCK.

Space around most operators.

Space around a "complex" subscript (inside brackets).

Blank lines between chunks that do different things.

Uncuddled elses.

No space between function name and its opening parenthesis.

Space after each comma.

Long lines broken after an operator (except and and or).

Space after last parenthesis matching on current line.

Line up corresponding items vertically.

Omit redundant punctuation as long as clarity doesn't suffer.

Larry has his reasons for each of these things, but he doesn't claim that
 everyone else's mind works
the same as his does.

Here are some other more substantive style issues to think about:

Just because you CAN do something a particular way doesn't mean that
 you SHOULD do it
that way. Perl is designed to give you several
 ways to do anything, so consider picking the
most readable one. For
 instance

 open(FOO,$foo) || die "Can't open $foo: $!";

is better than

 die "Can't open $foo: $!" unless open(FOO,$foo);

because the second way hides the main point of the statement in a
 modifier. On the other

Perl version 5.12.3 documentation - perlstyle

Page 2http://perldoc.perl.org

hand print "Starting analysis\n" if $verbose;

is better than

 $verbose && print "Starting analysis\n";

because the main point isn't whether the user typed -v or not.

Similarly, just because an operator lets you assume default arguments
 doesn't mean that you
have to make use of the defaults. The defaults
 are there for lazy systems programmers writing
one-shot programs. If
 you want your program to be readable, consider supplying the
argument.

Along the same lines, just because you CAN omit parentheses in many
 places doesn't mean
that you ought to:

 return print reverse sort num values %array;
 return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor
 schmuck bounce on the %
key in vi.

Even if you aren't in doubt, consider the mental welfare of the person
 who has to maintain the
code after you, and who will probably put
 parentheses in the wrong place.

Don't go through silly contortions to exit a loop at the top or the
 bottom, when Perl provides the
last operator so you can exit in
 the middle. Just "outdent" it a little to make it more visible:

 LINE:
	 for (;;) {
	 statements;
	 last LINE if $foo;
	 next LINE if /^#/;
	 statements;
	 }

Don't be afraid to use loop labels--they're there to enhance
 readability as well as to allow
multilevel loop breaks. See the
 previous example.

Avoid using grep() (or map()) or `backticks` in a void context, that is,
 when you just throw
away their return values. Those functions all
 have return values, so use them. Otherwise use
a foreach() loop or
 the system() function instead.

For portability, when using features that may not be implemented on
 every machine, test the
construct in an eval to see if it fails. If
 you know what version or patchlevel a particular feature
was
 implemented, you can test $] ($PERL_VERSION in English) to see if it
 will be there.
The Config module will also let you interrogate values
 determined by the Configure program
when Perl was installed.

Choose mnemonic identifiers. If you can't remember what mnemonic means,
 you've got a
problem.

While short identifiers like $gotit are probably ok, use underscores to
 separate words in
longer identifiers. It is generally easier to read $var_names_like_this than
$VarNamesLikeThis, especially for
 non-native speakers of English. It's also a simple rule
that works
 consistently with VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally
 reserves lowercase
module names for "pragma" modules like integer and strict. Other modules should begin
with a capital letter and use mixed
 case, but probably without underscores due to limitations in
primitive
 file systems' representations of module names as files that must fit into a
 few sparse
bytes.

Perl version 5.12.3 documentation - perlstyle

Page 3http://perldoc.perl.org

You may find it helpful to use letter case to indicate the scope
 or nature of a variable. For
example:

 $ALL_CAPS_HERE constants only (beware clashes with perl vars!)
 $Some_Caps_Here package-wide global/static
 $no_caps_here function scope my() or local() variables

Function and method names seem to work best as all lowercase.
 E.g., $obj->as_string()
.

You can use a leading underscore to indicate that a variable or
 function should not be used
outside the package that defined it.

If you have a really hairy regular expression, use the /x modifier and
 put in some whitespace
to make it look a little less like line noise.
 Don't use slash as a delimiter when your regexp has
slashes or backslashes.

Use the new and and or operators to avoid having to parenthesize
 list operators so much,
and to reduce the incidence of punctuation
 operators like && and ||. Call your subroutines as
if they were
 functions or list operators to avoid excessive ampersands and parentheses.

Use here documents instead of repeated print() statements.

Line up corresponding things vertically, especially if it'd be too long
 to fit on one line anyway.

 $IDX = $ST_MTIME;
 $IDX = $ST_ATIME 	 if $opt_u;
 $IDX = $ST_CTIME 	 if $opt_c;
 $IDX = $ST_SIZE 	 if $opt_s;

 mkdir $tmpdir, 0700	 or die "can't mkdir $tmpdir: $!";
 chdir($tmpdir) or die "can't chdir $tmpdir: $!";
 mkdir 'tmp', 0777	 or die "can't mkdir $tmpdir/tmp: $!";

Always check the return codes of system calls. Good error messages should
 go to STDERR,
include which program caused the problem, what the failed
 system call and arguments were,
and (VERY IMPORTANT) should contain the
 standard system error message for what went
wrong. Here's a simple but
 sufficient example:

 opendir(D, $dir)	 or die "can't opendir $dir: $!";

Line up your transliterations when it makes sense:

 tr [abc]
 [xyz];

Think about reusability. Why waste brainpower on a one-shot when you
 might want to do
something like it again? Consider generalizing your
 code. Consider writing a module or object
class. Consider making your
 code run cleanly with use strict and use warnings (or -w)
in
 effect. Consider giving away your code. Consider changing your whole
 world view.
Consider... oh, never mind.

Try to document your code and use Pod formatting in a consistent way. Here
 are commonly
expected conventions:

use C<> for function, variable and module names (and more
 generally anything that
can be considered part of code, like filehandles
 or specific values). Note that function
names are considered more readable
 with parentheses after their name, that is
function().

use B<> for commands names like cat or grep.

Perl version 5.12.3 documentation - perlstyle

Page 4http://perldoc.perl.org

use F<> or C<> for file names. F<> should
 be the only Pod code for file names, but as
most Pod formatters render it
 as italic, Unix and Windows paths with their slashes and
backslashes may
 be less readable, and better rendered with C<>.

Be consistent.

Be nice.

