
Perl version 5.12.3 documentation - IO::Select

Page 1http://perldoc.perl.org

NAME
IO::Select - OO interface to the select system call

SYNOPSIS
 use IO::Select;

 $s = IO::Select->new();

 $s->add(*STDIN);
 $s->add($some_handle);

 @ready = $s->can_read($timeout);

 @ready = IO::Select->new(@handles)->can_read(0);

DESCRIPTION
The IO::Select package implements an object approach to the system select
 function call. It
allows the user to see what IO handles, see IO::Handle,
 are ready for reading, writing or have an
exception pending.

CONSTRUCTOR
new ([HANDLES])

The constructor creates a new object and optionally initialises it with a set
 of handles.

METHODS
add (HANDLES)

Add the list of handles to the IO::Select object. It is these values that
 will be returned when
an event occurs. IO::Select keeps these values in a
 cache which is indexed by the
fileno of the handle, so if more than one
 handle with the same fileno is specified then
only the last one is cached.

Each handle can be an IO::Handle object, an integer or an array
 reference where the first
element is an IO::Handle or an integer.

remove (HANDLES)

Remove all the given handles from the object. This method also works
 by the fileno of the
handles. So the exact handles that were added
 need not be passed, just handles that have an
equivalent fileno

exists (HANDLE)

Returns a true value (actually the handle itself) if it is present.
 Returns undef otherwise.

handles

Return an array of all registered handles.

can_read ([TIMEOUT])

Return an array of handles that are ready for reading. TIMEOUT is
 the maximum amount of
time to wait before returning an empty list, in
 seconds, possibly fractional. If TIMEOUT is not
given and any
 handles are registered then the call will block.

can_write ([TIMEOUT])

Same as can_read except check for handles that can be written to.

has_exception ([TIMEOUT])

Perl version 5.12.3 documentation - IO::Select

Page 2http://perldoc.perl.org

Same as can_read except check for handles that have an exception
 condition, for example
pending out-of-band data.

count ()

Returns the number of handles that the object will check for when
 one of the can_ methods is
called or the object is passed to
 the select static method.

bits()

Return the bit string suitable as argument to the core select() call.

select (READ, WRITE, EXCEPTION [, TIMEOUT])

select is a static method, that is you call it with the package name
 like new. READ, WRITE
and EXCEPTION are either undef or IO::Select objects. TIMEOUT is optional and has the
same effect as
 for the core select call.

The result will be an array of 3 elements, each a reference to an array
 which will hold the
handles that are ready for reading, writing and have
 exceptions respectively. Upon error an
empty list is returned.

EXAMPLE
Here is a short example which shows how IO::Select could be used
 to write a server which
communicates with several sockets while also
 listening for more connections on a listen socket

 use IO::Select;
 use IO::Socket;

 $lsn = new IO::Socket::INET(Listen => 1, LocalPort => 8080);
 $sel = new IO::Select($lsn);

 while(@ready = $sel->can_read) {
 foreach $fh (@ready) {
 if($fh == $lsn) {
 # Create a new socket
 $new = $lsn->accept;
 $sel->add($new);
 }
 else {
 # Process socket

 # Maybe we have finished with the socket
 $sel->remove($fh);
 $fh->close;
 }
 }
 }

AUTHOR
Graham Barr. Currently maintained by the Perl Porters. Please report all
 bugs to
<perl5-porters@perl.org>.

COPYRIGHT
Copyright (c) 1997-8 Graham Barr <gbarr@pobox.com>. All rights reserved.
 This program is free
software; you can redistribute it and/or
 modify it under the same terms as Perl itself.

