
Perl version 5.12.3 documentation - CGI::Carp

Page 1http://perldoc.perl.org

NAME
CGI::Carp - CGI routines for writing to the HTTPD (or other) error log

SYNOPSIS
 use CGI::Carp;

 croak "We're outta here!";
 confess "It was my fault: $!";
 carp "It was your fault!";
 warn "I'm confused";
 die "I'm dying.\n";

 use CGI::Carp qw(cluck);
 cluck "I wouldn't do that if I were you";

 use CGI::Carp qw(fatalsToBrowser);
 die "Fatal error messages are now sent to browser";

DESCRIPTION
CGI scripts have a nasty habit of leaving warning messages in the error
 logs that are neither time
stamped nor fully identified. Tracking down
 the script that caused the error is a pain. This fixes that.
Replace
 the usual

 use Carp;

with

 use CGI::Carp

And the standard warn(), die (), croak(), confess() and carp() calls
 will automagically be replaced with
functions that write out nicely
 time-stamped messages to the HTTP server error log.

For example:

 [Fri Nov 17 21:40:43 1995] test.pl: I'm confused at test.pl line 3.
 [Fri Nov 17 21:40:43 1995] test.pl: Got an error message: Permission
denied.
 [Fri Nov 17 21:40:43 1995] test.pl: I'm dying.

REDIRECTING ERROR MESSAGES
By default, error messages are sent to STDERR. Most HTTPD servers
 direct STDERR to the server's
error log. Some applications may wish
 to keep private error logs, distinct from the server's error log, or
they may wish to direct error messages to STDOUT so that the browser
 will receive them.

The carpout() function is provided for this purpose. Since
 carpout() is not exported by default, you
must import it explicitly by
 saying

 use CGI::Carp qw(carpout);

The carpout() function requires one argument, which should be a
 reference to an open filehandle for
writing errors. It should be
 called in a BEGIN block at the top of the CGI application so that
 compiler
errors will be caught. Example:

 BEGIN {
 use CGI::Carp qw(carpout);

Perl version 5.12.3 documentation - CGI::Carp

Page 2http://perldoc.perl.org

 open(LOG, ">>/usr/local/cgi-logs/mycgi-log") or
 die("Unable to open mycgi-log: $!\n");
 carpout(LOG);
 }

carpout() does not handle file locking on the log for you at this point.
 Also, note that carpout() does not
work with in-memory file handles, although
 a patch would be welcome to address that.

The real STDERR is not closed -- it is moved to CGI::Carp::SAVEERR. Some
 servers, when dealing
with CGI scripts, close their connection to the
 browser when the script closes STDOUT and STDERR.
CGI::Carp::SAVEERR is there to
 prevent this from happening prematurely.

You can pass filehandles to carpout() in a variety of ways. The "correct"
 way according to Tom
Christiansen is to pass a reference to a filehandle
 GLOB:

 carpout(*LOG);

This looks weird to mere mortals however, so the following syntaxes are
 accepted as well:

 carpout(LOG);
 carpout(main::LOG);
 carpout(main'LOG);
 carpout(\LOG);
 carpout(\'main::LOG');

 ... and so on

FileHandle and other objects work as well.

Use of carpout() is not great for performance, so it is recommended
 for debugging purposes or for
moderate-use applications. A future
 version of this module may delay redirecting STDERR until one
of the
 CGI::Carp methods is called to prevent the performance hit.

MAKING PERL ERRORS APPEAR IN THE BROWSER WINDOW
If you want to send fatal (die, confess) errors to the browser, ask to
 import the special
"fatalsToBrowser" subroutine:

 use CGI::Carp qw(fatalsToBrowser);
 die "Bad error here";

Fatal errors will now be echoed to the browser as well as to the log. CGI::Carp
 arranges to send a
minimal HTTP header to the browser so that even errors that
 occur in the early compile phase will be
seen.
 Nonfatal errors will still be directed to the log file only (unless redirected
 with carpout).

Note that fatalsToBrowser does not work with mod_perl version 2.0
 and higher.

Changing the default message
By default, the software error message is followed by a note to
 contact the Webmaster by e-mail with
the time and date of the error.
 If this message is not to your liking, you can change it using the

set_message() routine. This is not imported by default; you should
 import it on the use() line:

 use CGI::Carp qw(fatalsToBrowser set_message);
 set_message("It's not a bug, it's a feature!");

You may also pass in a code reference in order to create a custom
 error message. At run time, your
code will be called with the text
 of the error message that caused the script to die. Example:

Perl version 5.12.3 documentation - CGI::Carp

Page 3http://perldoc.perl.org

 use CGI::Carp qw(fatalsToBrowser set_message);
 BEGIN {
 sub handle_errors {
 my $msg = shift;
 print "<h1>Oh gosh</h1>";
 print "<p>Got an error: $msg</p>";
 }
 set_message(\&handle_errors);
 }

In order to correctly intercept compile-time errors, you should call
 set_message() from within a
BEGIN{} block.

DOING MORE THAN PRINTING A MESSAGE IN THE EVENT OF PERL ERRORS
If fatalsToBrowser in conjunction with set_message does not provide you with all of the functionality
you need, you can go one step further by specifying a function to be executed any time a script
 calls
"die", has a syntax error, or dies unexpectedly at runtime
 with a line like "undef->explode();".

 use CGI::Carp qw(set_die_handler);
 BEGIN {
 sub handle_errors {
 my $msg = shift;
 print "content-type: text/html\n\n";
 print "<h1>Oh gosh</h1>";
 print "<p>Got an error: $msg</p>";

 #proceed to send an email to a system administrator,
 #write a detailed message to the browser and/or a log,
 #etc....
 }
 set_die_handler(\&handle_errors);
 }

Notice that if you use set_die_handler(), you must handle sending
 HTML headers to the browser
yourself if you are printing a message.

If you use set_die_handler(), you will most likely interfere with the behavior of fatalsToBrowser, so you
must use this or that, not both.

Using set_die_handler() sets SIG{__DIE__} (as does fatalsToBrowser),
 and there is only one
SIG{__DIE__}. This means that if you are attempting to set SIG{__DIE__} yourself, you may interfere
with this module's functionality, or this module may interfere with your module's functionality.

MAKING WARNINGS APPEAR AS HTML COMMENTS
It is now also possible to make non-fatal errors appear as HTML
 comments embedded in the output
of your program. To enable this
 feature, export the new "warningsToBrowser" subroutine. Since
sending
 warnings to the browser before the HTTP headers have been sent would
 cause an error, any
warnings are stored in an internal buffer until
 you call the warningsToBrowser() subroutine with a true
argument:

 use CGI::Carp qw(fatalsToBrowser warningsToBrowser);
 use CGI qw(:standard);
 print header();
 warningsToBrowser(1);

You may also give a false argument to warningsToBrowser() to prevent
 warnings from being sent to

Perl version 5.12.3 documentation - CGI::Carp

Page 4http://perldoc.perl.org

the browser while you are printing some
 content where HTML comments are not allowed:

 warningsToBrowser(0); # disable warnings
 print "<script type=\"text/javascript\"><!--\n";
 print_some_javascript_code();
 print "//--></script>\n";
 warningsToBrowser(1); # re-enable warnings

Note: In this respect warningsToBrowser() differs fundamentally from
 fatalsToBrowser(), which you
should never call yourself!

OVERRIDING THE NAME OF THE PROGRAM
CGI::Carp includes the name of the program that generated the error or
 warning in the messages
written to the log and the browser window.
 Sometimes, Perl can get confused about what the actual
name of the
 executed program was. In these cases, you can override the program
 name that
CGI::Carp will use for all messages.

The quick way to do that is to tell CGI::Carp the name of the program
 in its use statement. You can do
that by adding
 "name=cgi_carp_log_name" to your "use" statement. For example:

 use CGI::Carp qw(name=cgi_carp_log_name);

. If you want to change the program name partway through the program,
 you can use the
set_progname() function instead. It is not
 exported by default, you must import it explicitly by
saying

 use CGI::Carp qw(set_progname);

Once you've done that, you can change the logged name of the program
 at any time by calling

 set_progname(new_program_name);

You can set the program back to the default by calling

 set_progname(undef);

Note that this override doesn't happen until after the program has
 compiled, so any compile-time
errors will still show up with the
 non-overridden program name

CHANGE LOG
1.29 Patch from Peter Whaite to fix the unfixable problem of CGI::Carp
 not behaving correctly in an
eval() context.

1.05 carpout() added and minor corrections by Marc Hedlund
 <hedlund@best.com> on 11/26/95.

1.06 fatalsToBrowser() no longer aborts for fatal errors within
 eval() statements.

1.08 set_message() added and carpout() expanded to allow for FileHandle
 objects.

1.09 set_message() now allows users to pass a code REFERENCE for really custom error messages.
croak and carp are now
 exported by default. Thanks to Gunther Birznieks for the
 patches.

1.10 Patch from Chris Dean (ctdean@cogit.com) to allow module to run correctly under mod_perl.

1.11 Changed order of > and < escapes.

1.12 Changed die() on line 217 to CORE::die to avoid -w warning.

1.13 Added cluck() to make the module orthogonal with Carp.
 More mod_perl related fixes.

Perl version 5.12.3 documentation - CGI::Carp

Page 5http://perldoc.perl.org

1.20 Patch from Ilmari Karonen (perl@itz.pp.sci.fi): Added
 warningsToBrowser(). Replaced <CODE>
tags with <PRE> in
 fatalsToBrowser() output.

1.23 ineval() now checks both $^S and inspects the message for the "eval" pattern
 (hack alert!) in
order to accommodate various combinations of Perl and
 mod_perl.

1.24 Patch from Scott Gifford (sgifford@suspectclass.com): Add support
 for overriding program
name.

1.26 Replaced CORE::GLOBAL::die with the evil $SIG{__DIE__} because the
 former isn't working in
some people's hands. There is no such thing
 as reliable exception handling in Perl.

1.27 Replaced tell STDOUT with bytes=tell STDOUT.

AUTHORS
Copyright 1995-2002, Lincoln D. Stein. All rights reserved.

This library is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

Address bug reports and comments to: lstein@cshl.org

SEE ALSO
Carp, CGI::Base, CGI::BasePlus, CGI::Request, CGI::MiniSvr, CGI::Form,
 CGI::Response

