
Perl version 5.12.3 documentation - Class::ISA

Page 1http://perldoc.perl.org

NAME
Class::ISA - report the search path for a class's ISA tree

SYNOPSIS
 # Suppose you go: use Food::Fishstick, and that uses and
 # inherits from other things, which in turn use and inherit
 # from other things. And suppose, for sake of brevity of
 # example, that their ISA tree is the same as:

 @Food::Fishstick::ISA = qw(Food::Fish Life::Fungus Chemicals);
 @Food::Fish::ISA = qw(Food);
 @Food::ISA = qw(Matter);
 @Life::Fungus::ISA = qw(Life);
 @Chemicals::ISA = qw(Matter);
 @Life::ISA = qw(Matter);
 @Matter::ISA = qw();

 use Class::ISA;
 print "Food::Fishstick path is:\n ",
 join(", ", Class::ISA::super_path('Food::Fishstick')),
 "\n";

That prints:

 Food::Fishstick path is:
 Food::Fish, Food, Matter, Life::Fungus, Life, Chemicals

DESCRIPTION
Suppose you have a class (like Food::Fish::Fishstick) that is derived,
 via its @ISA, from one or more
superclasses (as Food::Fish::Fishstick
 is from Food::Fish, Life::Fungus, and Chemicals), and some of
those
 superclasses may themselves each be derived, via its @ISA, from one or
 more superclasses
(as above).

When, then, you call a method in that class ($fishstick->calories),
 Perl first searches there for that
method, but if it's not there, it
 goes searching in its superclasses, and so on, in a depth-first (or
 maybe
"height-first" is the word) search. In the above example, it'd
 first look in Food::Fish, then Food, then
Matter, then Life::Fungus,
 then Life, then Chemicals.

This library, Class::ISA, provides functions that return that list --
 the list (in order) of names of classes
Perl would search to find a
 method, with no duplicates.

FUNCTIONS
the function Class::ISA::super_path($CLASS)

This returns the ordered list of names of classes that Perl would
 search thru in order to find a
method, with no duplicates in the list.
 $CLASS is not included in the list. UNIVERSAL is not
included -- if
 you need to consider it, add it to the end.

the function Class::ISA::self_and_super_path($CLASS)

Just like super_path, except that $CLASS is included as the first
 element.

the function Class::ISA::self_and_super_versions($CLASS)

This returns a hash whose keys are $CLASS and its
 (super-)superclasses, and whose values
are the contents of each
 class's $VERSION (or undef, for classes with no $VERSION).

The code for self_and_super_versions is meant to serve as an example
 for precisely the kind

Perl version 5.12.3 documentation - Class::ISA

Page 2http://perldoc.perl.org

of tasks I anticipate that self_and_super_path
 and super_path will be used for. You are
strongly advised to read the
 source for self_and_super_versions, and the comments there.

CAUTIONARY NOTES
* Class::ISA doesn't export anything. You have to address the
 functions with a "Class::ISA::" on the
front.

* Contrary to its name, Class::ISA isn't a class; it's just a package.
 Strange, isn't it?

* Say you have a loop in the ISA tree of the class you're calling one
 of the Class::ISA functions on:
say that Food inherits from Matter,
 but Matter inherits from Food (for sake of argument). If Perl, while

searching for a method, actually discovers this cyclicity, it will
 throw a fatal error. The functions in
Class::ISA effectively ignore
 this cyclicity; the Class::ISA algorithm is "never go down the same
 path
twice", and cyclicities are just a special case of that.

* The Class::ISA functions just look at @ISAs. But theoretically, I
 suppose, AUTOLOADs could
bypass Perl's ISA-based search mechanism and
 do whatever they please. That would be bad
behavior, tho; and I try
 not to think about that.

* If Perl can't find a method anywhere in the ISA tree, it then looks
 in the magical class UNIVERSAL.
This is rarely relevant to the tasks
 that I expect Class::ISA functions to be put to, but if it matters to

you, then instead of this:

 @supers = Class::Tree::super_path($class);

do this:

 @supers = (Class::Tree::super_path($class), 'UNIVERSAL');

And don't say no-one ever told ya!

* When you call them, the Class::ISA functions look at @ISAs anew --
 that is, there is no
memoization, and so if ISAs change during
 runtime, you get the current ISA tree's path, not anything
memoized.
 However, changing ISAs at runtime is probably a sign that you're out
 of your mind!

COPYRIGHT AND LICENSE
Copyright (c) 1999-2009 Sean M. Burke. All rights reserved.

This library is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

AUTHOR
Sean M. Burke sburke@cpan.org

MAINTAINER
Maintained by Steffen Mueller smueller@cpan.org.

