
Perl version 5.12.3 documentation - perlrepository

Page 1http://perldoc.perl.org

NAME
perlrepository - Using the Perl source repository

SYNOPSIS
All of Perl's source code is kept centrally in a Git repository at perl5.git.perl.org. The repository
contains many Perl revisions from
 Perl 1 onwards and all the revisions from Perforce, the version
control
 system we were using previously. This repository is accessible in
 different ways.

The full repository takes up about 80MB of disk space. A check out of
 the blead branch (that is, the
main development branch, which contains
 bleadperl, the development version of perl 5) takes up
about 160MB of
 disk space (including the repository). A build of bleadperl takes up
 about 200MB
(including the repository and the check out).

Getting access to the repository
Read access via the web

You may access the repository over the web. This allows you to browse
 the tree, see recent commits,
subscribe to RSS feeds for the changes,
 search for particular commits and more. You may access it
at:

 http://perl5.git.perl.org/perl.git

A mirror of the repository is found at:

 http://github.com/mirrors/perl

Read access via Git
You will need a copy of Git for your computer. You can fetch a copy of
 the repository using the Git
protocol (which uses port 9418):

 % git clone git://perl5.git.perl.org/perl.git perl-git

This clones the repository and makes a local copy in the perl-git
 directory.

If your local network does not allow you to use port 9418, then you can
 fetch a copy of the repository
over HTTP (this is at least 4x slower):

 % git clone http://perl5.git.perl.org/perl.git perl-http

This clones the repository and makes a local copy in the perl-http
 directory.

Write access to the repository
If you are a committer, then you can fetch a copy of the repository
 that you can push back on with:

 % git clone ssh://perl5.git.perl.org/perl.git perl-ssh

This clones the repository and makes a local copy in the perl-ssh
 directory.

If you cloned using the git protocol, which is faster than ssh, then
 you will need to modify the URL for
the origin remote to enable
 pushing. To do that edit .git/config with git-config(1) like
 this:

 % git config remote.origin.url ssh://perl5.git.perl.org/perl.git

You can also set up your user name and e-mail address. Most people do
 this once globally in their
~/.gitconfig by doing something like:

 % git config --global user.name "Ã†var ArnfjÃ¶rÃ° Bjarmason"

Perl version 5.12.3 documentation - perlrepository

Page 2http://perldoc.perl.org

 % git config --global user.email avarab@gmail.com

However if you'd like to override that just for perl then execute then
 execute something like the
following in perl-git:

 % git config user.email avar@cpan.org

It is also possible to keep origin as a git remote, and add a new
 remote for ssh access:

 % git remote add camel perl5.git.perl.org:/perl.git

This allows you to update your local repository by pulling from origin, which is faster and doesn't
require you to authenticate, and
 to push your changes back with the camel remote:

 % git fetch camel
 % git push camel

The fetch command just updates the camel refs, as the objects
 themselves should have been
fetched when pulling from origin.

A note on camel and dromedary
The committers have SSH access to the two servers that serve perl5.git.perl.org. One is
perl5.git.perl.org itself (camel),
 which is the 'master' repository. The second one is
users.perl5.git.perl.org (dromedary), which can be used for
 general testing and
development. Dromedary syncs the git tree from
 camel every few minutes, you should not push there.
Both machines also
 have a full CPAN mirror in /srv/CPAN, please use this. To share files
 with the
general public, dromedary serves your ~/public_html/ as
http://users.perl5.git.perl.org/~yourlogin/

These hosts have fairly strict firewalls to the outside. Outgoing, only
 rsync, ssh and git are allowed.
For http and ftp, you can use
 http://webproxy:3128 as proxy. Incoming, the firewall tries to detect

attacks and blocks IP addresses with suspicious activity. This
 sometimes (but very rarely) has false
positives and you might get
 blocked. The quickest way to get unblocked is to notify the admins.

These two boxes are owned, hosted, and operated by booking.com. You can
 reach the sysadmins in
#p5p on irc.perl.org or via mail to perl5-porters@perl.org

Overview of the repository
Once you have changed into the repository directory, you can inspect
 it.

After a clone the repository will contain a single local branch, which
 will be the current branch as well,
as indicated by the asterisk.

 % git branch
 * blead

Using the -a switch to branch will also show the remote tracking
 branches in the repository:

 % git branch -a
 * blead
 origin/HEAD
 origin/blead
 ...

The branches that begin with "origin" correspond to the "git remote"
 that you cloned from (which is
named "origin"). Each branch on the
 remote will be exactly tracked by theses branches. You should
NEVER do
 work on these remote tracking branches. You only ever do work in a
 local branch. Local

Perl version 5.12.3 documentation - perlrepository

Page 3http://perldoc.perl.org

branches can be configured to automerge (on pull)
 from a designated remote tracking branch. This is
the case with the
 default branch blead which will be configured to merge from the
 remote tracking
branch origin/blead.

You can see recent commits:

 % git log

And pull new changes from the repository, and update your local
 repository (must be clean first)

 % git pull

Assuming we are on the branch blead immediately after a pull, this
 command would be more or less
equivalent to:

 % git fetch
 % git merge origin/blead

In fact if you want to update your local repository without touching
 your working directory you do:

 % git fetch

And if you want to update your remote-tracking branches for all defined
 remotes simultaneously you
can do

 % git remote update

Neither of these last two commands will update your working directory,
 however both will update the
remote-tracking branches in your
 repository.

To make a local branch of a remote branch:

 % git checkout -b maint-5.10 origin/maint-5.10

To switch back to blead:

 % git checkout blead

Finding out your status
The most common git command you will use will probably be

 % git status

This command will produce as output a description of the current state
 of the repository, including
modified files and unignored untracked
 files, and in addition it will show things like what files have
been
 staged for the next commit, and usually some useful information about
 how to change things.
For instance the following:

 $ git status
 # On branch blead
 # Your branch is ahead of 'origin/blead' by 1 commit.
 #
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 # modified: pod/perlrepository.pod
 #

Perl version 5.12.3 documentation - perlrepository

Page 4http://perldoc.perl.org

 # Changed but not updated:
 # (use "git add <file>..." to update what will be committed)
 #
 # modified: pod/perlrepository.pod
 #
 # Untracked files:
 # (use "git add <file>..." to include in what will be committed)
 #
 # deliberate.untracked

This shows that there were changes to this document staged for commit,
 and that there were further
changes in the working directory not yet
 staged. It also shows that there was an untracked file in the
working
 directory, and as you can see shows how to change all of this. It also
 shows that there is one
commit on the working branch blead which has
 not been pushed to the origin remote yet. NOTE:
that this output
 is also what you see as a template if you do not provide a message to git commit.

Assuming that you'd like to commit all the changes you've just made as a
 a single atomic unit, run this
command:

 % git commit -a

(That -a tells git to add every file you've changed to this commit.
 New files aren't automatically added
to your commit when you use commit
 -a If you want to add files or to commit some, but not all of
your
 changes, have a look at the documentation for git add.)

Git will start up your favorite text editor, so that you can craft a
 commit message for your change. See
Commit message below for more
 information about what makes a good commit message.

Once you've finished writing your commit message and exited your editor,
 git will write your change to
disk and tell you something like this:

 Created commit daf8e63: explain git status and stuff about remotes
 1 files changed, 83 insertions(+), 3 deletions(-)

If you re-run git status, you should see something like this:

 % git status
 # On branch blead
 # Your branch is ahead of 'origin/blead' by 2 commits.
 #
 # Untracked files:
 # (use "git add <file>..." to include in what will be committed)
 #
 # deliberate.untracked
 nothing added to commit but untracked files present (use "git add" to
track)

When in doubt, before you do anything else, check your status and read
 it carefully, many questions
are answered directly by the git status
 output.

Submitting a patch
If you have a patch in mind for Perl, you should first get a copy of
 the repository:

 % git clone git://perl5.git.perl.org/perl.git perl-git

Then change into the directory:

Perl version 5.12.3 documentation - perlrepository

Page 5http://perldoc.perl.org

 % cd perl-git

Alternatively, if you already have a Perl repository, you should ensure
 that you're on the blead branch,
and your repository is up to date:

 % git checkout blead
 % git pull

It's preferable to patch against the latest blead version, since this
 is where new development occurs
for all changes other than critical bug
 fixes. Critical bug fix patches should be made against the
relevant
 maint branches, or should be submitted with a note indicating all the
 branches where the fix
should be applied.

Now that we have everything up to date, we need to create a temporary
 new branch for these
changes and switch into it:

 % git checkout -b orange

which is the short form of

 % git branch orange
 % git checkout orange

Creating a topic branch makes it easier for the maintainers to rebase
 or merge back into the master
blead for a more linear history. If you
 don't work on a topic branch the maintainer has to manually
cherry
 pick your changes onto blead before they can be applied.

That'll get you scolded on perl5-porters, so don't do that. Be
 Awesome.

Then make your changes. For example, if Leon Brocard changes his name
 to Orange Brocard, we
should change his name in the AUTHORS file:

 % perl -pi -e 's{Leon Brocard}{Orange Brocard}' AUTHORS

You can see what files are changed:

 % git status
 # On branch orange
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 # modified: AUTHORS
 #

And you can see the changes:

 % git diff
 diff --git a/AUTHORS b/AUTHORS
 index 293dd70..722c93e 100644
 --- a/AUTHORS
 +++ b/AUTHORS
 @@ -541,7 +541,7 @@ Lars Hecking
<lhecking@nmrc.ucc.ie>
 Laszlo Molnar <laszlo.molnar@eth.ericsson.se>
 Leif Huhn <leif@hale.dkstat.com>
 Len Johnson <lenjay@ibm.net>
 -Leon Brocard <acme@astray.com>

Perl version 5.12.3 documentation - perlrepository

Page 6http://perldoc.perl.org

 +Orange Brocard <acme@astray.com>
 Les Peters <lpeters@aol.net>
 Lesley Binks <lesley.binks@gmail.com>
 Lincoln D. Stein <lstein@cshl.org>

Now commit your change locally:

 % git commit -a -m 'Rename Leon Brocard to Orange Brocard'
 Created commit 6196c1d: Rename Leon Brocard to Orange Brocard
 1 files changed, 1 insertions(+), 1 deletions(-)

You can examine your last commit with:

 % git show HEAD

and if you are not happy with either the description or the patch
 itself you can fix it up by editing the
files once more and then issue:

 % git commit -a --amend

Now you should create a patch file for all your local changes:

 % git format-patch -M origin..
 0001-Rename-Leon-Brocard-to-Orange-Brocard.patch

You should now send an email to to perlbug@perl.org with a description of your
 changes, and include
this patch file as an attachment. In addition to
 being tracked by RT, mail to perlbug will automatically
be forwarded
 to perl5-porters. You should only send patches to perl5-porters@perl.org directly if the

patch is not ready to be applied, but intended for discussion.

See the next section for how to configure and use git to send these
 emails for you.

If you want to delete your temporary branch, you may do so with:

 % git checkout blead
 % git branch -d orange
 error: The branch 'orange' is not an ancestor of your current HEAD.
 If you are sure you want to delete it, run 'git branch -D orange'.
 % git branch -D orange
 Deleted branch orange.

Using git to send patch emails
In your ~/git/perl repository, set the destination email to perl's bug
 tracker:

 $ git config sendemail.to perlbug@perl.org

Or maybe perl5-porters (discussed above):

 $ git config sendemail.to perl5-porters@perl.org

Then you can use git directly to send your patch emails:

 $ git send-email 0001-Rename-Leon-Brocard-to-Orange-Brocard.patch

You may need to set some configuration variables for your particular
 email service provider. For
example, to set your global git config to
 send email via a gmail account:

Perl version 5.12.3 documentation - perlrepository

Page 7http://perldoc.perl.org

 $ git config --global sendemail.smtpserver smtp.gmail.com
 $ git config --global sendemail.smtpssl 1
 $ git config --global sendemail.smtpuser YOURUSERNAME@gmail.com

With this configuration, you will be prompted for your gmail password
 when you run 'git send-email'.
You can also configure sendemail.smtppass with your password if you don't care about having

your password in the .gitconfig file.

A note on derived files
Be aware that many files in the distribution are derivative--avoid
 patching them, because git won't see
the changes to them, and the build
 process will overwrite them. Patch the originals instead. Most

utilities (like perldoc) are in this category, i.e. patch utils/perldoc.PL rather than utils/perldoc. Similarly,
don't create
 patches for files under $src_root/ext from their copies found in
 $install_root/lib. If you are
unsure about the proper location of a
 file that may have gotten copied while building the source

distribution, consult the MANIFEST.

As a special case, several files are regenerated by 'make regen' if
 your patch alters embed.fnc.
These are needed for compilation, but
 are included in the distribution so that you can build perl
without
 needing another perl to generate the files. You must test with these
 regenerated files, but it is
preferred that you instead note that
 'make regen is needed' in both the email and the commit
message, and
 submit your patch without them. If you're submitting a series of
 patches, it might be
best to submit the regenerated changes
 immediately after the source-changes that caused them, so
as to have
 as little effect as possible on the bisectability of your patchset.

Getting your patch accepted
If you are submitting a code patch there are several things that
 you need to do.

Commit message

As you craft each patch you intend to submit to the Perl core, it's
 important to write a good
commit message.

The first line of the commit message should be a short description and
 should skip the full
stop. It should be no longer than the subject
 line of an E-Mail, 50 characters being a good rule
of thumb.

A lot of Git tools (Gitweb, GitHub, git log --pretty=oneline, ..) will
 only display the first line (cut
off at 50 characters) when presenting
 commit summaries.

The commit message should include description of the problem that the
 patch corrects or new
functionality that the patch adds.

As a general rule of thumb, your commit message should let a programmer
 with a reasonable
familiarity with the Perl core quickly understand what
 you were trying to do, how you were
trying to do it and why the change
 matters to Perl.

What

Your commit message should describe what part of the Perl core you're
 changing and
what you expect your patch to do.

Why

Perhaps most importantly, your commit message should describe why the
 change you
are making is important. When someone looks at your change
 in six months or six
years, your intent should be clear. If you're
 deprecating a feature with the intent of later
simplifying another bit
 of code, say so. If you're fixing a performance problem or adding
a new
 feature to support some other bit of the core, mention that.

How

While it's not necessary for documentation changes, new tests or
 trivial patches, it's
often worth explaining how your change works.
 Even if it's clear to you today, it may

Perl version 5.12.3 documentation - perlrepository

Page 8http://perldoc.perl.org

not be clear to a porter next
 month or next year.

A commit message isn't intended to take the place of comments in your
 code. Commit
messages should describe the change you made, while code
 comments should describe the
current state of the code. If you've just
 implemented a new feature, complete with doc, tests
and well-commented
 code, a brief commit message will often suffice. If, however, you've
 just
changed a single character deep in the parser or lexer, you might
 need to write a small novel
to ensure that future readers understand
 what you did and why you did it.

Comments, Comments, Comments

Be sure to adequately comment your code. While commenting every line
 is unnecessary,
anything that takes advantage of side effects of
 operators, that creates changes that will be
felt outside of the
 function being patched, or that others may find confusing should be

documented. If you are going to err, it is better to err on the side
 of adding too many
comments than too few.

Style

In general, please follow the particular style of the code you are
 patching.

In particular, follow these general guidelines for patching Perl
 sources:

 8-wide tabs (no exceptions!)
 4-wide indents for code, 2-wide indents for nested CPP #defines
 try hard not to exceed 79-columns
 ANSI C prototypes
 uncuddled elses and "K&R" style for indenting control constructs
 no C++ style (//) comments
 mark places that need to be revisited with XXX (and revisit
often!)
 opening brace lines up with "if" when conditional spans multiple
 lines; should be at end-of-line otherwise
 in function definitions, name starts in column 0 (return value is
 on
 previous line)
 single space after keywords that are followed by parens, no space
 between function name and following paren
 avoid assignments in conditionals, but if they're unavoidable,
use
 extra paren, e.g. "if (a && (b = c)) ..."
 "return foo;" rather than "return(foo);"
 "if (!foo) ..." rather than "if (foo == FALSE) ..." etc.

Testsuite

If your patch changes code (rather than just changing documentation) you
 should also include
one or more test cases which illustrate the bug you're
 fixing or validate the new functionality
you're adding. In general,
 you should update an existing test file rather than create a new one.

Your testsuite additions should generally follow these guidelines
 (courtesy of Gurusamy
Sarathy <gsar@activestate.com>):

 Know what you're testing. Read the docs, and the source.
 Tend to fail, not succeed.
 Interpret results strictly.
 Use unrelated features (this will flush out bizarre
interactions).
 Use non-standard idioms (otherwise you are not testing
TIMTOWTDI).
 Avoid using hardcoded test numbers whenever possible (the

Perl version 5.12.3 documentation - perlrepository

Page 9http://perldoc.perl.org

 EXPECTED/GOT found in t/op/tie.t is much more maintainable,
 and gives better failure reports).
 Give meaningful error messages when a test fails.
 Avoid using qx// and system() unless you are testing for them.
If you
 do use them, make sure that you cover _all_ perl platforms.
 Unlink any temporary files you create.
 Promote unforeseen warnings to errors with $SIG{__WARN__}.
 Be sure to use the libraries and modules shipped with the version
 being tested, not those that were already installed.
 Add comments to the code explaining what you are testing for.
 Make updating the '1..42' string unnecessary. Or make sure that
 you update it.
 Test _all_ behaviors of a given operator, library, or function:
 - All optional arguments
 - Return values in various contexts (boolean, scalar, list,
lvalue)
 - Use both global and lexical variables
 - Don't forget the exceptional, pathological cases.

Accepting a patch
If you have received a patch file generated using the above section,
 you should try out the patch.

First we need to create a temporary new branch for these changes and
 switch into it:

 % git checkout -b experimental

Patches that were formatted by git format-patch are applied with git am:

 % git am 0001-Rename-Leon-Brocard-to-Orange-Brocard.patch
 Applying Rename Leon Brocard to Orange Brocard

If just a raw diff is provided, it is also possible use this two-step
 process:

 % git apply bugfix.diff
 % git commit -a -m "Some fixing" --author="That Guy
<that.guy@internets.com>"

Now we can inspect the change:

 % git show HEAD
 commit b1b3dab48344cff6de4087efca3dbd63548ab5e2
 Author: Leon Brocard <acme@astray.com>
 Date: Fri Dec 19 17:02:59 2008 +0000

 Rename Leon Brocard to Orange Brocard

 diff --git a/AUTHORS b/AUTHORS
 index 293dd70..722c93e 100644
 --- a/AUTHORS
 +++ b/AUTHORS
 @@ -541,7 +541,7 @@ Lars Hecking
<lhecking@nmrc.ucc.ie>
 Laszlo Molnar <laszlo.molnar@eth.ericsson.se>
 Leif Huhn <leif@hale.dkstat.com>

Perl version 5.12.3 documentation - perlrepository

Page 10http://perldoc.perl.org

 Len Johnson <lenjay@ibm.net>
 -Leon Brocard <acme@astray.com>
 +Orange Brocard <acme@astray.com>
 Les Peters <lpeters@aol.net>
 Lesley Binks <lesley.binks@gmail.com>
 Lincoln D. Stein <lstein@cshl.org>

If you are a committer to Perl and you think the patch is good, you can
 then merge it into blead then
push it out to the main repository:

 % git checkout blead
 % git merge experimental
 % git push

If you want to delete your temporary branch, you may do so with:

 % git checkout blead
 % git branch -d experimental
 error: The branch 'experimental' is not an ancestor of your current HEAD.
 If you are sure you want to delete it, run 'git branch -D experimental'.
 % git branch -D experimental
 Deleted branch experimental.

Cleaning a working directory
The command git clean can with varying arguments be used as a
 replacement for make clean.

To reset your working directory to a pristine condition you can do:

 % git clean -dxf

However, be aware this will delete ALL untracked content. You can use

 % git clean -Xf

to remove all ignored untracked files, such as build and test
 byproduct, but leave any manually
created files alone.

If you only want to cancel some uncommitted edits, you can use git
 checkout and give it a list of
files to be reverted, or git checkout
 -f to revert them all.

If you want to cancel one or several commits, you can use git reset.

Bisecting
git provides a built-in way to determine, with a binary search in
 the history, which commit should be
blamed for introducing a given bug.

Suppose that we have a script ~/testcase.pl that exits with 0
 when some behaviour is correct, and
with 1 when it's faulty. You need
 an helper script that automates building perl and running the

testcase:

 % cat ~/run
 #!/bin/sh
 git clean -dxf
 # If you can use ccache, add -Dcc=ccache\ gcc -Dld=gcc to the Configure
line
 # if Encode is not needed for the test, you can speed up the bisect by
 # excluding it from the runs with -Dnoextensions=Encode

Perl version 5.12.3 documentation - perlrepository

Page 11http://perldoc.perl.org

 sh Configure -des -Dusedevel -Doptimize="-g"
 test -f config.sh || exit 125
 # Correct makefile for newer GNU gcc
 perl -ni -we 'print unless /<(?:built-in|command)/' makefile x2p/makefile
 # if you just need miniperl, replace test_prep with miniperl
 make -j4 test_prep
 [-x ./perl] || exit 125
 ./perl -Ilib ~/testcase.pl
 ret=$?
 [$ret -gt 127] && ret=127
 git clean -dxf
 exit $ret

This script may return 125 to indicate that the corresponding commit
 should be skipped. Otherwise, it
returns the status of ~/testcase.pl.

You first enter in bisect mode with:

 % git bisect start

For example, if the bug is present on HEAD but wasn't in 5.10.0, git will learn about this when you
enter:

 % git bisect bad
 % git bisect good perl-5.10.0
 Bisecting: 853 revisions left to test after this

This results in checking out the median commit between HEAD and perl-5.10.0. You can then run
the bisecting process with:

 % git bisect run ~/run

When the first bad commit is isolated, git bisect will tell you so:

 ca4cfd28534303b82a216cfe83a1c80cbc3b9dc5 is first bad commit
 commit ca4cfd28534303b82a216cfe83a1c80cbc3b9dc5
 Author: Dave Mitchell <davem@fdisolutions.com>
 Date: Sat Feb 9 14:56:23 2008 +0000

 [perl #49472] Attributes + Unknown Error
 ...

 bisect run success

You can peek into the bisecting process with git bisect log and git bisect visualize. git
 bisect reset will get you out of bisect
 mode.

Please note that the first good state must be an ancestor of the
 first bad state. If you want to search
for the commit that solved
 some bug, you have to negate your test case (i.e. exit with 1 if OK
 and 0 if
not) and still mark the lower bound as good and the
 upper as bad. The "first bad commit" has then to
be understood as
 the "first commit where the bug is solved".

git help bisect has much more information on how you can tweak your
 binary searches.

Perl version 5.12.3 documentation - perlrepository

Page 12http://perldoc.perl.org

Submitting a patch via GitHub
GitHub is a website that makes it easy to fork and publish projects
 with Git. First you should set up a
GitHub account and log in.

Perl's git repository is mirrored on GitHub at this page:

 http://github.com/mirrors/perl/tree/blead

Visit the page and click the "fork" button. This clones the Perl git
 repository for you and provides you
with "Your Clone URL" from which
 you should clone:

 % git clone git@github.com:USERNAME/perl.git perl-github

The same patch as above, using github might look like this:

 % cd perl-github
 % git remote add upstream git://perl5.git.perl.org/perl.git
 % git pull upstream blead
 % git checkout -b orange
 % perl -pi -e 's{Leon Brocard}{Orange Brocard}' AUTHORS
 % git commit -a -m 'Rename Leon Brocard to Orange Brocard'
 % git push origin orange

The orange branch has been pushed to GitHub, so you should now send an
 email (see Submitting a
patch) with a description of your changes
 and the following information:

 http://github.com/USERNAME/perl/tree/orange
 git@github.com:USERNAME/perl.git branch orange

Merging from a branch via GitHub
If someone has provided a branch via GitHub and you are a committer,
 you should use the following
in your perl-ssh directory:

 % git remote add dandv git://github.com/dandv/perl.git
 % git fetch dandv

Now you can see the differences between the branch and blead:

 % git diff dandv/blead

And you can see the commits:

 % git log dandv/blead

If you approve of a specific commit, you can cherry pick it:

 % git cherry-pick 3adac458cb1c1d41af47fc66e67b49c8dec2323f

Or you could just merge the whole branch if you like it all:

 % git merge dandv/blead

And then push back to the repository:

 % git push

Perl version 5.12.3 documentation - perlrepository

Page 13http://perldoc.perl.org

Topic branches and rewriting history
Individual committers should create topic branches under yourname/some_descriptive_name.
Other committers should check
 with a topic branch's creator before making any change to it.

The simplest way to create a remote topic branch that works on all
 versions of git is to push the
current head as a new branch on the
 remote, then check it out locally:

 $ branch="$yourname/$some_descriptive_name"
 $ git push origin HEAD:$branch
 $ git checkout -b $branch origin/$branch

Users of git 1.7 or newer can do it in a more obvious manner:

 $ branch="$yourname/$some_descriptive_name"
 $ git checkout -b $branch
 $ git push origin -u $branch

If you are not the creator of yourname/some_descriptive_name, you
 might sometimes find that the
original author has edited the branch's
 history. There are lots of good reasons for this. Sometimes, an
author
 might simply be rebasing the branch onto a newer source point.
 Sometimes, an author might
have found an error in an early commit which
 they wanted to fix before merging the branch to blead.

Currently the master repository is configured to forbid
 non-fast-forward merges. This means that the
branches within can not
 be rebased and pushed as a single step.

The only way you will ever be allowed to rebase or modify the history
 of a pushed branch is to delete
it and push it as a new branch under
 the same name. Please think carefully about doing this. It may
be
 better to sequentially rename your branches so that it is easier for
 others working with you to
cherry-pick their local changes onto the new
 version. (XXX: needs explanation).

If you want to rebase a personal topic branch, you will have to delete
 your existing topic branch and
push as a new version of it. You can do
 this via the following formula (see the explanation about
refspec's
 in the git push documentation for details) after you have rebased your
 branch:

 # first rebase
 $ git checkout $user/$topic
 $ git fetch
 $ git rebase origin/blead

 # then "delete-and-push"
 $ git push origin :$user/$topic
 $ git push origin $user/$topic

NOTE: it is forbidden at the repository level to delete any of the
 "primary" branches. That is any
branch matching m!^(blead|maint|perl)!. Any attempt to do so will result in git
 producing an
error like this:

 $ git push origin :blead
 *** It is forbidden to delete blead/maint branches in this repository
 error: hooks/update exited with error code 1
 error: hook declined to update refs/heads/blead
 To ssh://perl5.git.perl.org/perl
 ! [remote rejected] blead (hook declined)
 error: failed to push some refs to 'ssh://perl5.git.perl.org/perl'

As a matter of policy we do not edit the history of the blead and
 maint-* branches. If a typo (or worse)
sneaks into a commit to blead or
 maint-*, we'll fix it in another commit. The only types of updates

Perl version 5.12.3 documentation - perlrepository

Page 14http://perldoc.perl.org

allowed on these branches are "fast-forward's", where all history is
 preserved.

Annotated tags in the canonical perl.git repository will never be
 deleted or modified. Think long and
hard about whether you want to push
 a local tag to perl.git before doing so. (Pushing unannotated
tags is
 not allowed.)

Committing to maintenance versions
Maintenance versions should only be altered to add critical bug
 fixes, see perlpolicy.

To commit to a maintenance version of perl, you need to create a local
 tracking branch:

 % git checkout --track -b maint-5.005 origin/maint-5.005

This creates a local branch named maint-5.005, which tracks the
 remote branch
origin/maint-5.005. Then you can pull, commit, merge
 and push as before.

You can also cherry-pick commits from blead and another branch, by
 using the git cherry-pick
command. It is recommended to use the -x option to git cherry-pick in order to record the SHA1
of the
 original commit in the new commit message.

Grafts
The perl history contains one mistake which was not caught in the
 conversion: a merge was recorded
in the history between blead and
 maint-5.10 where no merge actually occurred. Due to the nature of
git,
 this is now impossible to fix in the public repository. You can remove
 this mis-merge locally by
adding the following line to your .git/info/grafts file:

 296f12bbbbaa06de9be9d09d3dcf8f4528898a49
434946e0cb7a32589ed92d18008aaa1d88515930

It is particularly important to have this graft line if any bisecting
 is done in the area of the "merge" in
question.

SEE ALSO
The git documentation, accessible via the git help command

perlpolicy - Perl core development policy

