
Perl version 5.12.3 documentation - prove

Page 1http://perldoc.perl.org

NAME
prove - Run tests through a TAP harness.

USAGE
 prove [options] [files or directories]

OPTIONS
Boolean options:

 -v, --verbose Print all test lines.
 -l, --lib Add 'lib' to the path for your tests (-Ilib).
 -b, --blib Add 'blib/lib' and 'blib/arch' to the path for your
tests
 -s, --shuffle Run the tests in random order.
 -c, --color Colored test output (default).
 --nocolor Do not color test output.
 --count Show the X/Y test count when not verbose (default)
 --nocount Disable the X/Y test count.
 -D --dry Dry run. Show test that would have run.
 --ext Set the extension for tests (default '.t')
 -f, --failures Show failed tests.
 -o, --comments Show comments.
 --fork Fork to run harness in multiple processes.
 --ignore-exit Ignore exit status from test scripts.
 -m, --merge Merge test scripts' STDERR with their STDOUT.
 -r, --recurse Recursively descend into directories.
 --reverse Run the tests in reverse order.
 -q, --quiet Suppress some test output while running tests.
 -Q, --QUIET Only print summary results.
 -p, --parse Show full list of TAP parse errors, if any.
 --directives Only show results with TODO or SKIP directives.
 --timer Print elapsed time after each test.
 --normalize Normalize TAP output in verbose output
 -T Enable tainting checks.
 -t Enable tainting warnings.
 -W Enable fatal warnings.
 -w Enable warnings.
 -h, --help Display this help
 -?, Display this help
 -H, --man Longer manpage for prove
 --norc Don't process default .proverc

Options that take arguments:

 -I Library paths to include.
 -P Load plugin (searches App::Prove::Plugin::*.)
 -M Load a module.
 -e, --exec Interpreter to run the tests ('' for compiled tests.)
 --harness Define test harness to use. See TAP::Harness.
 --formatter Result formatter to use. See TAP::Harness.
 -a, --archive Store the resulting TAP in an archive file.
 -j, --jobs N Run N test jobs in parallel (try 9.)
 --state=opts Control prove's persistent state.
 --rc=rcfile Process options from rcfile

Perl version 5.12.3 documentation - prove

Page 2http://perldoc.perl.org

NOTES
.proverc

If ~/.proverc or ./.proverc exist they will be read and any
 options they contain processed before the
command line options. Options
 in .proverc are specified in the same way as command line options:

 # .proverc
 --state=hot,fast,save
 -j9 --fork

Additional option files may be specified with the --rc option.
 Default option file processing is disabled
by the --norc option.

Under Windows and VMS the option file is named _proverc rather than .proverc and is sought only in
the current directory.

Reading from STDIN
If you have a list of tests (or URLs, or anything else you want to test) in a
 file, you can add them to
your tests by using a '-':

 prove - < my_list_of_things_to_test.txt

See the README in the examples directory of this distribution.

Default Test Directory
If no files or directories are supplied, prove looks for all files
 matching the pattern t/*.t.

Colored Test Output
Colored test output is the default, but if output is not to a
 terminal, color is disabled. You can override
this by adding the --color switch.

Color support requires Term::ANSIColor on Unix-like platforms and Win32::Console windows. If the
necessary module is not installed
 colored output will not be available.

Exit Code
If the tests fail prove will exit with non-zero status.

Arguments to Tests
It is possible to supply arguments to tests. To do so separate them from
 prove's own arguments with
the arisdottle, '::'. For example

 prove -v t/mytest.t :: --url http://example.com

would run t/mytest.t with the options '--url http://example.com'.
 When running multiple tests they will
each receive the same arguments.

--exec
Normally you can just pass a list of Perl tests and the harness will know how
 to execute them.
However, if your tests are not written in Perl or if you
 want all tests invoked exactly the same way, use
the -e, or --exec
 switch:

 prove --exec '/usr/bin/ruby -w' t/
 prove --exec '/usr/bin/perl -Tw -mstrict -Ilib' t/
 prove --exec '/path/to/my/customer/exec'

Perl version 5.12.3 documentation - prove

Page 3http://perldoc.perl.org

--merge
If you need to make sure your diagnostics are displayed in the correct
 order relative to test results you
can use the --merge option to
 merge the test scripts' STDERR into their STDOUT.

This guarantees that STDOUT (where the test results appear) and STDOUT
 (where the diagnostics
appear) will stay in sync. The harness will
 display any diagnostics your tests emit on STDERR.

Caveat: this is a bit of a kludge. In particular note that if anything
 that appears on STDERR looks like
a test result the test harness will
 get confused. Use this option only if you understand the
consequences
 and can live with the risk.

--state
You can ask prove to remember the state of previous test runs and
 select and/or order the tests to
be run based on that saved state.

The --state switch requires an argument which must be a comma
 separated list of one or more of
the following options.

last

Run the same tests as the last time the state was saved. This makes it
 possible, for example,
to recreate the ordering of a shuffled test.

 # Run all tests in random order
 $ prove -b --state=save --shuffle

 # Run them again in the same order
 $ prove -b --state=last

failed

Run only the tests that failed on the last run.

 # Run all tests
 $ prove -b --state=save

 # Run failures
 $ prove -b --state=failed

If you also specify the save option newly passing tests will be
 excluded from subsequent
runs.

 # Repeat until no more failures
 $ prove -b --state=failed,save

passed

Run only the passed tests from last time. Useful to make sure that no
 new problems have
been introduced.

all

Run all tests in normal order. Multple options may be specified, so to
 run all tests with the
failures from last time first:

 $ prove -b --state=failed,all,save

hot

Run the tests that most recently failed first. The last failure time of
 each test is stored. The hot
option causes tests to be run in most-recent-
 failure order.

 $ prove -b --state=hot,save

Perl version 5.12.3 documentation - prove

Page 4http://perldoc.perl.org

Tests that have never failed will not be selected. To run all tests with
 the most recently failed
first use

 $ prove -b --state=hot,all,save

This combination of options may also be specified thus

 $ prove -b --state=adrian

todo

Run any tests with todos.

slow

Run the tests in slowest to fastest order. This is useful in conjunction
 with the -j parallel
testing switch to ensure that your slowest tests
 start running first.

 $ prove -b --state=slow -j9

fast

Run test tests in fastest to slowest order.

new

Run the tests in newest to oldest order based on the modification times
 of the test scripts.

old

Run the tests in oldest to newest order.

fresh

Run those test scripts that have been modified since the last test run.

save

Save the state on exit. The state is stored in a file called .prove
 (_prove on Windows and
VMS) in the current directory.

The --state switch may be used more than once.

 $ prove -b --state=hot --state=all,save

@INC
prove introduces a separation between "options passed to the perl which
 runs prove" and "options
passed to the perl which runs tests"; this
 distinction is by design. Thus the perl which is running a test
starts
 with the default @INC. Additional library directories can be added
 via the PERL5LIB
environment variable, via -Ifoo in PERL5OPT or
 via the -Ilib option to prove.

Taint Mode
Normally when a Perl program is run in taint mode the contents of the PERL5LIB environment
variable do not appear in @INC.

Because PERL5LIB is often used during testing to add build directories
 to @INC prove (actually
TAP::Parser::Source::Perl) passes the
 names of any directories found in PERL5LIB as -I switches.
The net
 effect of this is that PERL5LIB is honoured even when prove is run in
 taint mode.

PLUGINS
Plugins can be loaded using the -Pplugin syntax, eg:

 prove -PMyPlugin

Perl version 5.12.3 documentation - prove

Page 5http://perldoc.perl.org

This will search for a module named App::Prove::Plugin::MyPlugin, or failing
 that, MyPlugin.
If the plugin can't be found, prove will complain & exit.

You can pass arguments to your plugin by appending =arg1,arg2,etc to the
 plugin name:

 prove -PMyPlugin=fou,du,fafa

Please check individual plugin documentation for more details.

Available Plugins
For an up-to-date list of plugins available, please check CPAN:

http://search.cpan.org/search?query=App%3A%3AProve+Plugin

Writing Plugins
Please see "PLUGINS" in App::Prove.

