
Perl version 5.12.3 documentation - IO::Handle

Page 1http://perldoc.perl.org

NAME
IO::Handle - supply object methods for I/O handles

SYNOPSIS
 use IO::Handle;

 $io = new IO::Handle;
 if ($io->fdopen(fileno(STDIN),"r")) {
 print $io->getline;
 $io->close;
 }

 $io = new IO::Handle;
 if ($io->fdopen(fileno(STDOUT),"w")) {
 $io->print("Some text\n");
 }

 # setvbuf is not available by default on Perls 5.8.0 and later.
 use IO::Handle '_IOLBF';
 $io->setvbuf($buffer_var, _IOLBF, 1024);

 undef $io; # automatically closes the file if it's open

 autoflush STDOUT 1;

DESCRIPTION
IO::Handle is the base class for all other IO handle classes. It is
 not intended that objects of
IO::Handle would be created directly,
 but instead IO::Handle is inherited from by several other
classes
 in the IO hierarchy.

If you are reading this documentation, looking for a replacement for
 the FileHandle package, then I
suggest you read the documentation
 for IO::File too.

CONSTRUCTOR
new ()

Creates a new IO::Handle object.

new_from_fd (FD, MODE)

Creates an IO::Handle like new does.
 It requires two parameters, which are passed to the
method fdopen;
 if the fdopen fails, the object is destroyed. Otherwise, it is returned
 to the
caller.

METHODS
See perlfunc for complete descriptions of each of the following
 supported IO::Handle methods,
which are just front ends for the
 corresponding built-in functions:

 $io->close
 $io->eof
 $io->fcntl(FUNCTION, SCALAR)
 $io->fileno
 $io->format_write([FORMAT_NAME])
 $io->getc
 $io->ioctl(FUNCTION, SCALAR)
 $io->read (BUF, LEN, [OFFSET])

Perl version 5.12.3 documentation - IO::Handle

Page 2http://perldoc.perl.org

 $io->print (ARGS)
 $io->printf (FMT, [ARGS])
 $io->say (ARGS)
 $io->stat
 $io->sysread (BUF, LEN, [OFFSET])
 $io->syswrite (BUF, [LEN, [OFFSET]])
 $io->truncate (LEN)

See perlvar for complete descriptions of each of the following
 supported IO::Handle methods. All of
them return the previous
 value of the attribute and takes an optional single argument that when
 given
will set the value. If no argument is given the previous value
 is unchanged (except for $io->autoflush
will actually turn ON
 autoflush by default).

 $io->autoflush ([BOOL]) $|
 $io->format_page_number([NUM]) $%
 $io->format_lines_per_page([NUM]) $=
 $io->format_lines_left([NUM]) $-
 $io->format_name([STR]) $~
 $io->format_top_name([STR]) $^
 $io->input_line_number([NUM]) $.

The following methods are not supported on a per-filehandle basis.

 IO::Handle->format_line_break_characters([STR]) $:
 IO::Handle->format_formfeed([STR]) $^L
 IO::Handle->output_field_separator([STR]) $,
 IO::Handle->output_record_separator([STR]) $\

 IO::Handle->input_record_separator([STR]) $/

Furthermore, for doing normal I/O you might need these:

$io->fdopen (FD, MODE)

fdopen is like an ordinary open except that its first parameter
 is not a filename but rather a
file handle name, an IO::Handle object,
 or a file descriptor number. (For the documentation of
the open
 method, see IO::File.)

$io->opened

Returns true if the object is currently a valid file descriptor, false
 otherwise.

$io->getline

This works like <$io> described in "I/O Operators" in perlop
 except that it's more readable and
can be safely called in a
 list context but still returns just one line. If used as the conditional

+within a while or C-style for loop, however, you will need to
 +emulate the functionality of
<$io> with defined($_ = $io->getline).

$io->getlines

This works like <$io> when called in a list context to read all
 the remaining lines in a file,
except that it's more readable.
 It will also croak() if accidentally called in a scalar context.

$io->ungetc (ORD)

Pushes a character with the given ordinal value back onto the given
 handle's input stream.
Only one character of pushback per handle is
 guaranteed.

$io->write (BUF, LEN [, OFFSET])

Perl version 5.12.3 documentation - IO::Handle

Page 3http://perldoc.perl.org

This write is like write found in C, that is it is the
 opposite of read. The wrapper for the perl
write function is
 called format_write.

$io->error

Returns a true value if the given handle has experienced any errors
 since it was opened or
since the last call to clearerr, or if the
 handle is invalid. It only returns false for a valid
handle with no
 outstanding errors.

$io->clearerr

Clear the given handle's error indicator. Returns -1 if the handle is
 invalid, 0 otherwise.

$io->sync

sync synchronizes a file's in-memory state with that on the
 physical medium. sync does not
operate at the perlio api level, but
 operates on the file descriptor (similar to sysread, sysseek
and
 systell). This means that any data held at the perlio api level will not
 be synchronized. To
synchronize data that is buffered at the perlio api
 level you must use the flush method. sync is
not implemented on all
 platforms. Returns "0 but true" on success, undef on error, undef
 for
an invalid handle. See fsync(3c).

$io->flush

flush causes perl to flush any buffered data at the perlio api level.
 Any unread data in the
buffer will be discarded, and any unwritten data
 will be written to the underlying file descriptor.
Returns "0 but true"
 on success, undef on error.

$io->printflush (ARGS)

Turns on autoflush, print ARGS and then restores the autoflush status of the IO::Handle
object. Returns the return value from print.

$io->blocking ([BOOL])

If called with an argument blocking will turn on non-blocking IO if BOOL is false, and turn it
off if BOOL is true.

blocking will return the value of the previous setting, or the
 current setting if BOOL is not
given.

If an error occurs blocking will return undef and $! will be set.

If the C functions setbuf() and/or setvbuf() are available, then IO::Handle::setbuf and
IO::Handle::setvbuf set the buffering
 policy for an IO::Handle. The calling sequences for the
Perl functions
 are the same as their C counterparts--including the constants _IOFBF, _IOLBF, and
_IONBF for setvbuf()--except that the buffer parameter
 specifies a scalar variable to use as a buffer.
You should only
 change the buffer before any I/O, or immediately after calling flush.

WARNING: The IO::Handle::setvbuf() is not available by default on
 Perls 5.8.0 and later because
setvbuf() is rather specific to using
 the stdio library, while Perl prefers the new perlio subsystem
instead.

WARNING: A variable used as a buffer by setbuf or setvbuf must not
 be modified in any way
until the IO::Handle is closed or setbuf or setvbuf is called again, or memory corruption may
result! Remember that
 the order of global destruction is undefined, so even if your buffer
 variable
remains in scope until program termination, it may be undefined
 before the file IO::Handle is closed.
Note that you need to import the
 constants _IOFBF, _IOLBF, and _IONBF explicitly. Like C, setbuf

returns nothing. setvbuf returns "0 but true", on success, undef on
 failure.

Lastly, there is a special method for working under -T and setuid/gid
 scripts:

$io->untaint

Marks the object as taint-clean, and as such data read from it will also
 be considered
taint-clean. Note that this is a very trusting action to
 take, and appropriate consideration for the

Perl version 5.12.3 documentation - IO::Handle

Page 4http://perldoc.perl.org

data source and potential
 vulnerability should be kept in mind. Returns 0 on success, -1 if
setting
 the taint-clean flag failed. (eg invalid handle)

NOTE
An IO::Handle object is a reference to a symbol/GLOB reference (see
 the Symbol package). Some
modules that
 inherit from IO::Handle may want to keep object related variables
 in the hash table
part of the GLOB. In an attempt to prevent modules
 trampling on each other I propose the that any
such module should prefix
 its variables with its own name separated by _'s. For example the
IO::Socket
 module keeps a timeout variable in 'io_socket_timeout'.

SEE ALSO
perlfunc, "I/O Operators" in perlop, IO::File

BUGS
Due to backwards compatibility, all filehandles resemble objects
 of class IO::Handle, or actually
classes derived from that class.
 They actually aren't. Which means you can't derive your own class
from IO::Handle and inherit those methods.

HISTORY
Derived from FileHandle.pm by Graham Barr <gbarr@pobox.com>

