
Perl version 5.12.3 documentation - perlfunc

Page 1http://perldoc.perl.org

NAME
perlfunc - Perl builtin functions

DESCRIPTION
The functions in this section can serve as terms in an expression.
 They fall into two major categories:
list operators and named unary
 operators. These differ in their precedence relationship with a

following comma. (See the precedence table in perlop.) List
 operators take more than one argument,
while unary operators can never
 take more than one argument. Thus, a comma terminates the
argument of
 a unary operator, but merely separates the arguments of a list
 operator. A unary operator
generally provides a scalar context to its
 argument, while a list operator may provide either scalar or
list
 contexts for its arguments. If it does both, scalar arguments come first and list argument follow,
and there can only ever
 be one such list argument. For instance, splice() has three scalar
 arguments
followed by a list, whereas gethostbyname() has four scalar
 arguments.

In the syntax descriptions that follow, list operators that expect a
 list (and provide list context for
elements of the list) are shown
 with LIST as an argument. Such a list may consist of any combination

of scalar arguments or list values; the list values will be included
 in the list as if each individual
element were interpolated at that
 point in the list, forming a longer single-dimensional list value.

Commas should separate literal elements of the LIST.

Any function in the list below may be used either with or without
 parentheses around its arguments.
(The syntax descriptions omit the
 parentheses.) If you use parentheses, the simple but occasionally
surprising rule is this: It looks like a function, therefore it is a
 function, and precedence doesn't matter.
Otherwise it's a list
 operator or unary operator, and precedence does matter. Whitespace
 between the
function and left parenthesis doesn't count, so sometimes
 you need to be careful:

 print 1+2+4; # Prints 7.
 print(1+2) + 4; # Prints 3.
 print (1+2)+4; # Also prints 3!
 print +(1+2)+4; # Prints 7.
 print ((1+2)+4); # Prints 7.

If you run Perl with the -w switch it can warn you about this. For
 example, the third line above
produces:

 print (...) interpreted as function at - line 1.
 Useless use of integer addition in void context at - line 1.

A few functions take no arguments at all, and therefore work as neither
 unary nor list operators.
These include such functions as time
 and endpwent. For example, time+86_400 always means
time() + 86_400.

For functions that can be used in either a scalar or list context,
 nonabortive failure is generally
indicated in a scalar context by
 returning the undefined value, and in a list context by returning the

empty list.

Remember the following important rule: There is no rule that relates
 the behavior of an expression in
list context to its behavior in scalar
 context, or vice versa. It might do two totally different things.
 Each
operator and function decides which sort of value would be most
 appropriate to return in scalar
context. Some operators return the
 length of the list that would have been returned in list context.
Some
 operators return the first value in the list. Some operators return the
 last value in the list. Some
operators return a count of successful
 operations. In general, they do what you want, unless you want
consistency.

A named array in scalar context is quite different from what would at
 first glance appear to be a list in
scalar context. You can't get a list
 like (1,2,3) into being in scalar context, because the compiler
knows
 the context at compile time. It would generate the scalar comma operator
 there, not the list

Perl version 5.12.3 documentation - perlfunc

Page 2http://perldoc.perl.org

construction version of the comma. That means it
 was never a list to start with.

In general, functions in Perl that serve as wrappers for system calls ("syscalls")
 of the same name
(like chown(2), fork(2), closedir(2), etc.) all return
 true when they succeed and undef otherwise, as is
usually mentioned
 in the descriptions below. This is different from the C interfaces,
 which return -1 on
failure. Exceptions to this rule are wait, waitpid, and syscall. System calls also set the special
$!
 variable on failure. Other functions do not, except accidentally.

Extension modules can also hook into the Perl parser to define new
 kinds of keyword-headed
expression. These may look like functions, but
 may also look completely different. The syntax
following the keyword
 is defined entirely by the extension. If you are an implementor, see
"PL_keyword_plugin" in perlapi for the mechanism. If you are using such
 a module, see the module's
documentation for details of the syntax that
 it defines.

Perl Functions by Category
Here are Perl's functions (including things that look like
 functions, like some keywords and named
operators)
 arranged by category. Some functions appear in more
 than one place.

Functions for SCALARs or strings

chomp, chop, chr, crypt, hex, index, lc, lcfirst, length, oct, ord, pack, q//, qq//,
reverse, rindex, sprintf, substr, tr///, uc, ucfirst, y///

Regular expressions and pattern matching

m//, pos, quotemeta, s///, split, study, qr//

Numeric functions

abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

Functions for real @ARRAYs

pop, push, shift, splice, unshift

Functions for list data

grep, join, map, qw//, reverse, sort, unpack

Functions for real %HASHes

delete, each, exists, keys, values

Input and output functions

binmode, close, closedir, dbmclose, dbmopen, die, eof, fileno, flock, format,
getc, print, printf, read, readdir, rewinddir, say, seek, seekdir, select,
syscall, sysread, sysseek, syswrite, tell, telldir, truncate, warn, write

Functions for fixed length data or records

pack, read, syscall, sysread, syswrite, unpack, vec

Functions for filehandles, files, or directories

-X, chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, lstat, mkdir, open,
opendir, readlink, rename, rmdir, stat, symlink, sysopen, umask, unlink, utime

Keywords related to the control flow of your Perl program

caller, continue, die, do, dump, eval, exit, goto, last, next, redo, return, sub,
wantarray

Keywords related to switch

break, continue, given, when, default

(These are available only if you enable the "switch" feature.
 See feature and "Switch

Perl version 5.12.3 documentation - perlfunc

Page 3http://perldoc.perl.org

statements" in perlsyn.)

Keywords related to scoping

caller, import, local, my, our, state, package, use

(state is available only if the "state" feature is enabled. See feature.)

Miscellaneous functions

defined, dump, eval, formline, local, my, our, reset, scalar, state, undef,
wantarray

Functions for processes and process groups

alarm, exec, fork, getpgrp, getppid, getpriority, kill, pipe, qx//, setpgrp,
setpriority, sleep, system, times, wait, waitpid

Keywords related to Perl modules

do, import, no, package, require, use

Keywords related to classes and object-orientation

bless, dbmclose, dbmopen, package, ref, tie, tied, untie, use

Low-level socket functions

accept, bind, connect, getpeername, getsockname, getsockopt, listen, recv,
send, setsockopt, shutdown, socket, socketpair

System V interprocess communication functions

msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget, shmread,
shmwrite

Fetching user and group info

endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam,
getlogin, getpwent, getpwnam, getpwuid, setgrent, setpwent

Fetching network info

endprotoent, endservent, gethostbyaddr, gethostbyname, gethostent,
getnetbyaddr, getnetbyname, getnetent, getprotobyname, getprotobynumber,
getprotoent, getservbyname, getservbyport, getservent, sethostent,
setnetent, setprotoent, setservent

Time-related functions

gmtime, localtime, time, times

Functions new in perl5

abs, bless, break, chomp, chr, continue, default, exists, formline, given, glob,
import, lc, lcfirst, lock, map, my, no, our, prototype, qr//, qw//, qx//, readline,
readpipe, ref, sub*, sysopen, tie, tied, uc, ucfirst, untie, use, when

* sub was a keyword in Perl 4, but in Perl 5 it is an
 operator, which can be used in
expressions.

Functions obsoleted in perl5

dbmclose, dbmopen

Portability
Perl was born in Unix and can therefore access all common Unix
 system calls. In non-Unix
environments, the functionality of some
 Unix system calls may not be available, or details of the
available
 functionality may differ slightly. The Perl functions affected
 by this are:

Perl version 5.12.3 documentation - perlfunc

Page 4http://perldoc.perl.org

-X, binmode, chmod, chown, chroot, crypt, dbmclose, dbmopen, dump, endgrent,
endhostent, endnetent, endprotoent, endpwent, endservent, exec, fcntl, flock, fork,
getgrent, getgrgid, gethostbyname, gethostent, getlogin, getnetbyaddr,
getnetbyname, getnetent, getppid, getpgrp, getpriority, getprotobynumber,
getprotoent, getpwent, getpwnam, getpwuid, getservbyport, getservent, getsockopt,
glob, ioctl, kill, link, lstat, msgctl, msgget, msgrcv, msgsnd, open, pipe, readlink,
rename, select, semctl, semget, semop, setgrent, sethostent, setnetent, setpgrp,
setpriority, setprotoent, setpwent, setservent, setsockopt, shmctl, shmget,
shmread, shmwrite, socket, socketpair, stat, symlink, syscall, sysopen, system,
times, truncate, umask, unlink, utime, wait, waitpid

For more information about the portability of these functions, see perlport and other available
platform-specific documentation.

Alphabetical Listing of Perl Functions
-X FILEHANDLE

-X EXPR

-X DIRHANDLE

-X

A file test, where X is one of the letters listed below. This unary
 operator takes one argument,
either a filename, a filehandle, or a dirhandle, and tests the associated file to see if something
is true about it. If the
 argument is omitted, tests $_, except for -t, which tests STDIN.
 Unless
otherwise documented, it returns 1 for true and '' for false, or
 the undefined value if the file
doesn't exist. Despite the funny
 names, precedence is the same as any other named unary
operator. The
 operator may be any of:

 -r File is readable by effective uid/gid.
 -w File is writable by effective uid/gid.
 -x File is executable by effective uid/gid.
 -o File is owned by effective uid.

 -R File is readable by real uid/gid.
 -W File is writable by real uid/gid.
 -X File is executable by real uid/gid.
 -O File is owned by real uid.

 -e File exists.
 -z File has zero size (is empty).
 -s File has nonzero size (returns size in bytes).

 -f File is a plain file.
 -d File is a directory.
 -l File is a symbolic link.
 -p File is a named pipe (FIFO), or Filehandle is a pipe.
 -S File is a socket.
 -b File is a block special file.
 -c File is a character special file.
 -t Filehandle is opened to a tty.

 -u File has setuid bit set.
 -g File has setgid bit set.
 -k File has sticky bit set.

 -T File is an ASCII text file (heuristic guess).
 -B File is a "binary" file (opposite of -T).

Perl version 5.12.3 documentation - perlfunc

Page 5http://perldoc.perl.org

 -M Script start time minus file modification time, in days.
 -A Same for access time.
 -C Same for inode change time (Unix, may differ for other
platforms)

Example:

 while (<>) {
 chomp;
 next unless -f $_; # ignore specials
 #...
 }

The interpretation of the file permission operators -r, -R, -w, -W, -x, and -X is by default
based solely on the mode
 of the file and the uids and gids of the user. There may be other

reasons you can't actually read, write, or execute the file: for
 example network filesystem
access controls, ACLs (access control lists),
 read-only filesystems, and unrecognized
executable formats. Note
 that the use of these six specific operators to verify if some
operation
 is possible is usually a mistake, because it may be open to race
 conditions.

Also note that, for the superuser on the local filesystems, the -r, -R, -w, and -W tests always
return 1, and -x and -X return 1
 if any execute bit is set in the mode. Scripts run by the
superuser
 may thus need to do a stat() to determine the actual mode of the file,
 or temporarily
set their effective uid to something else.

If you are using ACLs, there is a pragma called filetest that may
 produce more accurate
results than the bare stat() mode bits.
 When under the use filetest 'access' the
above-mentioned filetests
 test whether the permission can (not) be granted using the

access(2) family of system calls. Also note that the -x and -X may
 under this pragma return
true even if there are no execute permission
 bits set (nor any extra execute permission ACLs).
This strangeness is
 due to the underlying system calls' definitions. Note also that, due to
 the
implementation of use filetest 'access', the _ special
 filehandle won't cache the
results of the file tests when this pragma is
 in effect. Read the documentation for the
filetest pragma for more
 information.

Note that -s/a/b/ does not do a negated substitution. Saying -exp($foo) still works as
expected, however: only single letters
 following a minus are interpreted as file tests.

The -T and -B switches work as follows. The first block or so of the
 file is examined for odd
characters such as strange control codes or
 characters with the high bit set. If too many
strange characters (>30%)
 are found, it's a -B file; otherwise it's a -T file. Also, any file

containing a zero byte in the first block is considered a binary file. If -T
 or -B is used on a
filehandle, the current IO buffer is examined
 rather than the first block. Both -T and -B return
true on an empty
 file, or a file at EOF when testing a filehandle. Because you have to
 read a
file to do the -T test, on most occasions you want to use a -f
 against the file first, as in next
 unless -f $file && -T $file.

If any of the file tests (or either the stat or lstat operators) are given
 the special filehandle
consisting of a solitary underline, then the stat
 structure of the previous file test (or stat
operator) is used, saving
 a system call. (This doesn't work with -t, and you need to remember
that lstat() and -l leave values in the stat structure for the
 symbolic link, not the real file.)
(Also, if the stat buffer was filled by
 an lstat call, -T and -B will reset it with the results of
stat _).
 Example:

 print "Can do.\n" if -r $a || -w _ || -x _;

 stat($filename);
 print "Readable\n" if -r _;
 print "Writable\n" if -w _;
 print "Executable\n" if -x _;
 print "Setuid\n" if -u _;

Perl version 5.12.3 documentation - perlfunc

Page 6http://perldoc.perl.org

 print "Setgid\n" if -g _;
 print "Sticky\n" if -k _;
 print "Text\n" if -T _;
 print "Binary\n" if -B _;

As of Perl 5.9.1, as a form of purely syntactic sugar, you can stack file
 test operators, in a way
that -f -w -x $file is equivalent to -x $file && -w _ && -f _. (This is only fancy
fancy: if you use
 the return value of -f $file as an argument to another filetest
 operator, no
special magic will happen.)

abs VALUE

abs

Returns the absolute value of its argument.
 If VALUE is omitted, uses $_.

accept NEWSOCKET,GENERICSOCKET

Accepts an incoming socket connect, just as accept(2) does. Returns the packed address if it
succeeded, false otherwise.
 See the example in "Sockets: Client/Server Communication" in
perlipc.

On systems that support a close-on-exec flag on files, the flag will
 be set for the newly opened
file descriptor, as determined by the
 value of $^F. See "$^F" in perlvar.

alarm SECONDS

alarm

Arranges to have a SIGALRM delivered to this process after the
 specified number of wallclock
seconds has elapsed. If SECONDS is not
 specified, the value stored in $_ is used. (On some
machines,
 unfortunately, the elapsed time may be up to one second less or more
 than you
specified because of how seconds are counted, and process
 scheduling may delay the
delivery of the signal even further.)

Only one timer may be counting at once. Each call disables the
 previous timer, and an
argument of 0 may be supplied to cancel the
 previous timer without starting a new one. The
returned value is the
 amount of time remaining on the previous timer.

For delays of finer granularity than one second, the Time::HiRes module
 (from CPAN, and
starting from Perl 5.8 part of the standard
 distribution) provides ualarm(). You may also use
Perl's four-argument
 version of select() leaving the first three arguments undefined, or you

might be able to use the syscall interface to access setitimer(2) if
 your system supports it.
See perlfaq8 for details.

It is usually a mistake to intermix alarm and sleep calls, because sleep may be internally
implemented on your system with alarm.

If you want to use alarm to time out a system call you need to use an eval/die pair. You
can't rely on the alarm causing the system call to
 fail with $! set to EINTR because Perl sets
up signal handlers to
 restart system calls on some systems. Using eval/die always works,

modulo the caveats given in "Signals" in perlipc.

 eval {
 local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
 alarm $timeout;
 $nread = sysread SOCKET, $buffer, $size;
 alarm 0;
 };
 if ($@) {
 die unless $@ eq "alarm\n"; # propagate unexpected errors
 # timed out
 }
 else {

Perl version 5.12.3 documentation - perlfunc

Page 7http://perldoc.perl.org

 # didn't
 }

For more information see perlipc.

atan2 Y,X

Returns the arctangent of Y/X in the range -PI to PI.

For the tangent operation, you may use the Math::Trig::tan
 function, or use the familiar
relation:

 sub tan { sin($_[0]) / cos($_[0]) }

The return value for atan2(0,0) is implementation-defined; consult
 your atan2(3) manpage
for more information.

bind SOCKET,NAME

Binds a network address to a socket, just as bind(2)
 does. Returns true if it succeeded, false
otherwise. NAME should be a
 packed address of the appropriate type for the socket. See the
examples in "Sockets: Client/Server Communication" in perlipc.

binmode FILEHANDLE, LAYER

binmode FILEHANDLE

Arranges for FILEHANDLE to be read or written in "binary" or "text"
 mode on systems where
the run-time libraries distinguish between
 binary and text files. If FILEHANDLE is an
expression, the value is
 taken as the name of the filehandle. Returns true on success,

otherwise it returns undef and sets $! (errno).

On some systems (in general, DOS and Windows-based systems) binmode()
 is necessary
when you're not working with a text file. For the sake
 of portability it is a good idea to always
use it when appropriate,
 and to never use it when it isn't appropriate. Also, people can
 set their
I/O to be by default UTF-8 encoded Unicode, not bytes.

In other words: regardless of platform, use binmode() on binary data,
 like for example images.

If LAYER is present it is a single string, but may contain multiple
 directives. The directives
alter the behaviour of the filehandle.
 When LAYER is present using binmode on a text file
makes sense.

If LAYER is omitted or specified as :raw the filehandle is made
 suitable for passing binary
data. This includes turning off possible CRLF
 translation and marking it as bytes (as opposed
to Unicode characters).
 Note that, despite what may be implied in "Programming Perl" (the

Camel, 3rd edition) or elsewhere, :raw is not simply the inverse of :crlf.
 Other layers that
would affect the binary nature of the stream are also disabled. See PerlIO, perlrun, and the
discussion about the
 PERLIO environment variable.

The :bytes, :crlf, :utf8, and any other directives of the
 form :..., are called I/O layers.
The open pragma can be used to
 establish default I/O layers. See open.

The LAYER parameter of the binmode() function is described as "DISCIPLINE"
 in
"Programming Perl, 3rd Edition". However, since the publishing of this
 book, by many known
as "Camel III", the consensus of the naming of this
 functionality has moved from "discipline" to
"layer". All documentation
 of this version of Perl therefore refers to "layers" rather than to

"disciplines". Now back to the regularly scheduled documentation...

To mark FILEHANDLE as UTF-8, use :utf8 or :encoding(utf8). :utf8 just marks the
data as UTF-8 without further checking,
 while :encoding(utf8) checks the data for actually
being valid
 UTF-8. More details can be found in PerlIO::encoding.

In general, binmode() should be called after open() but before any I/O
 is done on the
filehandle. Calling binmode() normally flushes any
 pending buffered output data (and perhaps
pending input data) on the
 handle. An exception to this is the :encoding layer that
 changes

Perl version 5.12.3 documentation - perlfunc

Page 8http://perldoc.perl.org

the default character encoding of the handle, see open.
 The :encoding layer sometimes
needs to be called in
 mid-stream, and it doesn't flush the stream. The :encoding
 also
implicitly pushes on top of itself the :utf8 layer because
 internally Perl operates on
UTF8-encoded Unicode characters.

The operating system, device drivers, C libraries, and Perl run-time
 system all work together
to let the programmer treat a single
 character (\n) as the line terminator, irrespective of the
external
 representation. On many operating systems, the native text file
 representation
matches the internal representation, but on some
 platforms the external representation of \n
is made up of more than
 one character.

Mac OS, all variants of Unix, and Stream_LF files on VMS use a single
 character to end each
line in the external representation of text (even
 though that single character is CARRIAGE
RETURN on Mac OS and LINE FEED
 on Unix and most VMS files). In other systems like
OS/2, DOS and the
 various flavors of MS-Windows your program sees a \n as a simple \cJ,

but what's stored in text files are the two characters \cM\cJ. That
 means that, if you don't use
binmode() on these systems, \cM\cJ
 sequences on disk will be converted to \n on input, and
any \n in
 your program will be converted back to \cM\cJ on output. This is what
 you want for
text files, but it can be disastrous for binary files.

Another consequence of using binmode() (on some systems) is that
 special end-of-file
markers will be seen as part of the data stream.
 For systems from the Microsoft family this
means that if your binary
 data contains \cZ, the I/O subsystem will regard it as the end of
 the
file, unless you use binmode().

binmode() is important not only for readline() and print() operations,
 but also when using
read(), seek(), sysread(), syswrite() and tell()
 (see perlport for more details). See the $/ and
$\ variables
 in perlvar for how to manually set your input and output
 line-termination
sequences.

bless REF,CLASSNAME

bless REF

This function tells the thingy referenced by REF that it is now an object
 in the CLASSNAME
package. If CLASSNAME is omitted, the current package
 is used. Because a bless is often
the last thing in a constructor,
 it returns the reference for convenience. Always use the
two-argument
 version if a derived class might inherit the function doing the blessing.
 See
perltoot and perlobj for more about the blessing (and blessings)
 of objects.

Consider always blessing objects in CLASSNAMEs that are mixed case.
 Namespaces with all
lowercase names are considered reserved for
 Perl pragmata. Builtin types have all uppercase
names. To prevent
 confusion, you may wish to avoid such package names as well. Make sure
that CLASSNAME is a true value.

See "Perl Modules" in perlmod.

break

Break out of a given() block.

This keyword is enabled by the "switch" feature: see feature
 for more information.

caller EXPR

caller

Returns the context of the current subroutine call. In scalar context,
 returns the caller's
package name if there is a caller (that is, if
 we're in a subroutine or eval or require) and the
undefined value
 otherwise. In list context, returns

 # 0 1 2
 ($package, $filename, $line) = caller;

With EXPR, it returns some extra information that the debugger uses to
 print a stack trace.
The value of EXPR indicates how many call frames
 to go back before the current one.

Perl version 5.12.3 documentation - perlfunc

Page 9http://perldoc.perl.org

 # 0 1 2 3 4
 ($package, $filename, $line, $subroutine, $hasargs,

 # 5 6 7 8 9 10
 $wantarray, $evaltext, $is_require, $hints, $bitmask, $hinthash)
 = caller($i);

Here $subroutine may be (eval) if the frame is not a subroutine
 call, but an eval. In such a
case additional elements $evaltext and $is_require are set: $is_require is true if the
frame is created by a require or use statement, $evaltext contains the text of the eval
EXPR statement. In particular, for an eval BLOCK statement,
 $subroutine is (eval), but
$evaltext is undefined. (Note also that
 each use statement creates a require frame inside
an eval EXPR
 frame.) $subroutine may also be (unknown) if this particular
 subroutine
happens to have been deleted from the symbol table. $hasargs is true if a new instance of
@_ was set up for the frame. $hints and $bitmask contain pragmatic hints that the caller
was
 compiled with. The $hints and $bitmask values are subject to change
 between
versions of Perl, and are not meant for external use.

$hinthash is a reference to a hash containing the value of %^H when the
 caller was
compiled, or undef if %^H was empty. Do not modify the values
 of this hash, as they are the
actual values stored in the optree.

Furthermore, when called from within the DB package, caller returns more
 detailed
information: it sets the list variable @DB::args to be the
 arguments with which the subroutine
was invoked.

Be aware that the optimizer might have optimized call frames away before caller had a
chance to get the information. That means that caller(N)
 might not return information about
the call frame you expect it to, for N > 1. In particular, @DB::args might have information
from the
 previous time caller was called.

Also be aware that setting @DB::args is best effort, intended for
 debugging or generating
backtraces, and should not be relied upon. In
 particular, as @_ contains aliases to the caller's
arguments, Perl does
 not take a copy of @_, so @DB::args will contain modifications the

subroutine makes to @_ or its contents, not the original values at call
 time. @DB::args, like
@_, does not hold explicit references to its
 elements, so under certain cases its elements may
have become freed and
 reallocated for other variables or temporary values. Finally, a side
effect
 of the current implementation means that the effects of shift @_ can normally be
undone (but not pop @_ or other splicing, and not if a
 reference to @_ has been taken, and
subject to the caveat about reallocated
 elements), so @DB::args is actually a hybrid of the
current state and
 initial state of @_. Buyer beware.

chdir EXPR

chdir FILEHANDLE

chdir DIRHANDLE

chdir

Changes the working directory to EXPR, if possible. If EXPR is omitted,
 changes to the
directory specified by $ENV{HOME}, if set; if not,
 changes to the directory specified by
$ENV{LOGDIR}. (Under VMS, the
 variable $ENV{SYS$LOGIN} is also checked, and used if it
is set.) If
 neither is set, chdir does nothing. It returns true on success,
 false otherwise. See
the example under die.

On systems that support fchdir(2), you may pass a filehandle or
 directory handle as argument.
On systems that don't support fchdir(2),
 passing handles raises an exception.

chmod LIST

Changes the permissions of a list of files. The first element of the
 list must be the numerical
mode, which should probably be an octal
 number, and which definitely should not be a string

Perl version 5.12.3 documentation - perlfunc

Page 10http://perldoc.perl.org

of octal digits: 0644 is okay, but "0644" is not. Returns the number of files
 successfully
changed. See also oct, if all you have is a string.

 $cnt = chmod 0755, "foo", "bar";
 chmod 0755, @executables;
 $mode = "0644"; chmod $mode, "foo"; # !!! sets mode to
 # --w----r-T
 $mode = "0644"; chmod oct($mode), "foo"; # this is better
 $mode = 0644; chmod $mode, "foo"; # this is best

On systems that support fchmod(2), you may pass filehandles among the
 files. On systems
that don't support fchmod(2), passing filehandles raises
 an exception. Filehandles must be
passed as globs or glob references to be
 recognized; barewords are considered filenames.

 open(my $fh, "<", "foo");
 my $perm = (stat $fh)[2] & 07777;
 chmod($perm | 0600, $fh);

You can also import the symbolic S_I* constants from the Fcntl
 module:

 use Fcntl qw(:mode);
 chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;
 # Identical to the chmod 0755 of the example above.

chomp VARIABLE

chomp(LIST)

chomp

This safer version of chop removes any trailing string
 that corresponds to the current value of
$/ (also known as
 $INPUT_RECORD_SEPARATOR in the English module). It returns the
total
 number of characters removed from all its arguments. It's often used to
 remove the
newline from the end of an input record when you're worried
 that the final record may be
missing its newline. When in paragraph
 mode ($/ = ""), it removes all trailing newlines from
the string.
 When in slurp mode ($/ = undef) or fixed-length record mode ($/ is
 a reference
to an integer or the like, see perlvar) chomp() won't
 remove anything.
 If VARIABLE is omitted,
it chomps $_. Example:

 while (<>) {
 chomp; # avoid \n on last field
 @array = split(/:/);
 # ...
 }

If VARIABLE is a hash, it chomps the hash's values, but not its keys.

You can actually chomp anything that's an lvalue, including an assignment:

 chomp($cwd = `pwd`);
 chomp($answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of
 characters removed is
returned.

Note that parentheses are necessary when you're chomping anything
 that is not a simple
variable. This is because chomp $cwd = `pwd`;
 is interpreted as (chomp $cwd) =
`pwd`;, rather than as chomp($cwd = `pwd`) which you might expect. Similarly, chomp
 $a, $b is interpreted as chomp($a), $b rather than
 as chomp($a, $b).

chop VARIABLE

chop(LIST)

Perl version 5.12.3 documentation - perlfunc

Page 11http://perldoc.perl.org

chop

Chops off the last character of a string and returns the character
 chopped. It is much more
efficient than s/.$//s because it neither
 scans nor copies the string. If VARIABLE is omitted,
chops $_.
 If VARIABLE is a hash, it chops the hash's values, but not its keys.

You can actually chop anything that's an lvalue, including an assignment.

If you chop a list, each element is chopped. Only the value of the
 last chop is returned.

Note that chop returns the last character. To return all but the last
 character, use
substr($string, 0, -1).

See also chomp.

chown LIST

Changes the owner (and group) of a list of files. The first two
 elements of the list must be the
numeric uid and gid, in that
 order. A value of -1 in either position is interpreted by most

systems to leave that value unchanged. Returns the number of files
 successfully changed.

 $cnt = chown $uid, $gid, 'foo', 'bar';
 chown $uid, $gid, @filenames;

On systems that support fchown(2), you may pass filehandles among the
 files. On systems
that don't support fchown(2), passing filehandles raises
 an exception. Filehandles must be
passed as globs or glob references to be
 recognized; barewords are considered filenames.

Here's an example that looks up nonnumeric uids in the passwd file:

 print "User: ";
 chomp($user = <STDIN>);
 print "Files: ";
 chomp($pattern = <STDIN>);

 ($login,$pass,$uid,$gid) = getpwnam($user)
 or die "$user not in passwd file";

 @ary = glob($pattern); # expand filenames
 chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the
 file unless you're the
superuser, although you should be able to change
 the group to any of your secondary groups.
On insecure systems, these
 restrictions may be relaxed, but this is not a portable assumption.

On POSIX systems, you can detect this condition this way:

 use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
 $can_chown_giveaway = not sysconf(_PC_CHOWN_RESTRICTED);

chr NUMBER

chr

Returns the character represented by that NUMBER in the character set.
 For example,
chr(65) is "A" in either ASCII or Unicode, and
 chr(0x263a) is a Unicode smiley face.

Negative values give the Unicode replacement character (chr(0xfffd)),
 except under the bytes
pragma, where the low eight bits of the value
 (truncated to an integer) are used.

If NUMBER is omitted, uses $_.

For the reverse, use ord.

Note that characters from 128 to 255 (inclusive) are by default
 internally not encoded as
UTF-8 for backward compatibility reasons.

See perlunicode for more about Unicode.

Perl version 5.12.3 documentation - perlfunc

Page 12http://perldoc.perl.org

chroot FILENAME

chroot

This function works like the system call by the same name: it makes the
 named directory the
new root directory for all further pathnames that
 begin with a / by your process and all its
children. (It doesn't
 change your current working directory, which is unaffected.) For security

reasons, this call is restricted to the superuser. If FILENAME is
 omitted, does a chroot to $_.

close FILEHANDLE

close

Closes the file or pipe associated with the filehandle, flushes the IO
 buffers, and closes the
system file descriptor. Returns true if those
 operations have succeeded and if no error was
reported by any PerlIO
 layer. Closes the currently selected filehandle if the argument is

omitted.

You don't have to close FILEHANDLE if you are immediately going to do
 another open on it,
because open closes it for you. (See open.) However, an explicit close on an input file
resets the line
 counter ($.), while the implicit close done by open does not.

If the filehandle came from a piped open, close returns false if one of
 the other syscalls
involved fails or if its program exits with non-zero
 status. If the only problem was that the
program exited non-zero, $!
 will be set to 0. Closing a pipe also waits for the process
executing
 on the pipe to exit--in case you wish to look at the output of the pipe
 afterwards--and
implicitly puts the exit status value of that command into $? and ${^CHILD_ERROR_NATIVE}
.

Closing the read end of a pipe before the process writing to it at the
 other end is done writing
results in the writer receiving a SIGPIPE. If
 the other end can't handle that, be sure to read all
the data before
 closing the pipe.

Example:

 open(OUTPUT, '|sort >foo') # pipe to sort
 or die "Can't start sort: $!";
 #... # print stuff to output
 close OUTPUT # wait for sort to finish
 or warn $! ? "Error closing sort pipe: $!"
 : "Exit status $? from sort";
 open(INPUT, 'foo') # get sort's results
 or die "Can't open 'foo' for input: $!";

FILEHANDLE may be an expression whose value can be used as an indirect
 filehandle,
usually the real filehandle name.

closedir DIRHANDLE

Closes a directory opened by opendir and returns the success of that
 system call.

connect SOCKET,NAME

Attempts to connect to a remote socket, just like connect(2).
 Returns true if it succeeded, false
otherwise. NAME should be a
 packed address of the appropriate type for the socket. See the
examples in "Sockets: Client/Server Communication" in perlipc.

continue BLOCK

continue

continue is actually a flow control statement rather than a function. If
 there is a continue
BLOCK attached to a BLOCK (typically in a while or foreach), it is always executed just
before the conditional is about to
 be evaluated again, just like the third part of a for loop in C.
Thus
 it can be used to increment a loop variable, even when the loop has been
 continued via
the next statement (which is similar to the C continue
 statement).

Perl version 5.12.3 documentation - perlfunc

Page 13http://perldoc.perl.org

last, next, or redo may appear within a continue
 block; last and redo behave as if
they had been executed within
 the main block. So will next, but since it will execute a
continue
 block, it may be more entertaining.

 while (EXPR) {
 ### redo always comes here
 do_something;
 } continue {
 ### next always comes here
 do_something_else;
 # then back the top to re-check EXPR
 }
 ### last always comes here

Omitting the continue section is equivalent to using an
 empty one, logically enough, so
next goes directly back
 to check the condition at the top of the loop.

If the "switch" feature is enabled, continue is also a
 function that exits the current when
(or default) block and
 falls through to the next one. See feature and "Switch statements" in
perlsyn for more information.

cos EXPR

cos

Returns the cosine of EXPR (expressed in radians). If EXPR is omitted,
 takes cosine of $_.

For the inverse cosine operation, you may use the Math::Trig::acos()
 function, or use
this relation:

 sub acos { atan2(sqrt(1 - $_[0] * $_[0]), $_[0]) }

crypt PLAINTEXT,SALT

Creates a digest string exactly like the crypt(3) function in the C
 library (assuming that you
actually have a version there that has not
 been extirpated as a potential munition).

crypt() is a one-way hash function. The PLAINTEXT and SALT is turned
 into a short string,
called a digest, which is returned. The same
 PLAINTEXT and SALT will always return the
same string, but there is no
 (known) way to get the original PLAINTEXT from the hash. Small

changes in the PLAINTEXT or SALT will result in large changes in the
 digest.

There is no decrypt function. This function isn't all that useful for
 cryptography (for that, look
for Crypt modules on your nearby CPAN
 mirror) and the name "crypt" is a bit of a misnomer.
Instead it is
 primarily used to check if two pieces of text are the same without
 having to
transmit or store the text itself. An example is checking
 if a correct password is given. The
digest of the password is stored,
 not the password itself. The user types in a password that is

crypt()'d with the same salt as the stored digest. If the two digests
 match the password is
correct.

When verifying an existing digest string you should use the digest as
 the salt (like
crypt($plain, $digest) eq $digest). The SALT used
 to create the digest is visible
as part of the digest. This ensures
 crypt() will hash the new string with the same salt as the
digest.
 This allows your code to work with the standard crypt and
 with more exotic
implementations. In other words, do not assume
 anything about the returned string itself, or
how many bytes in the
 digest matter.

Traditionally the result is a string of 13 bytes: two first bytes of
 the salt, followed by 11 bytes
from the set [./0-9A-Za-z], and only
 the first eight bytes of PLAINTEXT mattered. But
alternative
 hashing schemes (like MD5), higher level security schemes (like C2),
 and
implementations on non-Unix platforms may produce different
 strings.

When choosing a new salt create a random two character string whose
 characters come from
the set [./0-9A-Za-z] (like join '', ('.',
 '/', 0..9, 'A'..'Z',

Perl version 5.12.3 documentation - perlfunc

Page 14http://perldoc.perl.org

'a'..'z')[rand 64, rand 64]). This set of
 characters is just a recommendation; the
characters allowed in
 the salt depend solely on your system's crypt library, and Perl can't

restrict what salts crypt() accepts.

Here's an example that makes sure that whoever runs this program knows
 their password:

 $pwd = (getpwuid($<))[1];

 system "stty -echo";
 print "Password: ";
 chomp($word = <STDIN>);
 print "\n";
 system "stty echo";

 if (crypt($word, $pwd) ne $pwd) {
 die "Sorry...\n";
 } else {
 print "ok\n";
 }

Of course, typing in your own password to whoever asks you
 for it is unwise.

The crypt function is unsuitable for hashing large quantities
 of data, not least of all because
you can't get the information
 back. Look at the Digest module for more robust algorithms.

If using crypt() on a Unicode string (which potentially has
 characters with codepoints above
255), Perl tries to make sense
 of the situation by trying to downgrade (a copy of the string)
 the
string back to an eight-bit byte string before calling crypt()
 (on that copy). If that works, good. If
not, crypt() dies with Wide character in crypt.

dbmclose HASH

[This function has been largely superseded by the untie function.]

Breaks the binding between a DBM file and a hash.

dbmopen HASH,DBNAME,MASK

[This function has been largely superseded by the tie function.]

This binds a dbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley DB file to a
 hash. HASH is the
name of the hash. (Unlike normal open, the first
 argument is not a filehandle, even though it
looks like one). DBNAME
 is the name of the database (without the .dir or .pag extension if

any). If the database does not exist, it is created with protection
 specified by MASK (as
modified by the umask). If your system supports
 only the older DBM functions, you may make
only one dbmopen call in your
 program. In older versions of Perl, if your system had neither
DBM nor
 ndbm, calling dbmopen produced a fatal error; it now falls back to
 sdbm(3).

If you don't have write access to the DBM file, you can only read hash
 variables, not set them.
If you want to test whether you can write,
 either use file tests or try setting a dummy hash
entry inside an eval to trap the error.

Note that functions such as keys and values may return huge lists
 when used on large DBM
files. You may prefer to use the each
 function to iterate over large DBM files. Example:

 # print out history file offsets
 dbmopen(%HIST,'/usr/lib/news/history',0666);
 while (($key,$val) = each %HIST) {
 print $key, ' = ', unpack('L',$val), "\n";
 }
 dbmclose(%HIST);

See also AnyDBM_File for a more general description of the pros and
 cons of the various dbm
approaches, as well as DB_File for a particularly
 rich implementation.

Perl version 5.12.3 documentation - perlfunc

Page 15http://perldoc.perl.org

You can control which DBM library you use by loading that library
 before you call dbmopen():

 use DB_File;
 dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")
 or die "Can't open netscape history file: $!";

defined EXPR

defined

Returns a Boolean value telling whether EXPR has a value other than
 the undefined value
undef. If EXPR is not present, $_ is
 checked.

Many operations return undef to indicate failure, end of file,
 system error, uninitialized
variable, and other exceptional
 conditions. This function allows you to distinguish undef from

other values. (A simple Boolean test will not distinguish among undef, zero, the empty string,
and "0", which are all equally
 false.) Note that since undef is a valid scalar, its presence

doesn't necessarily indicate an exceptional condition: pop
 returns undef when its argument is
an empty array, or when the
 element to return happens to be undef.

You may also use defined(&func) to check whether subroutine &func
 has ever been
defined. The return value is unaffected by any forward
 declarations of &func. A subroutine
that is not defined
 may still be callable: its package may have an AUTOLOAD method that

makes it spring into existence the first time that it is called; see perlsub.

Use of defined on aggregates (hashes and arrays) is deprecated. It
 used to report whether
memory for that aggregate has ever been
 allocated. This behavior may disappear in future
versions of Perl.
 You should instead use a simple test for size:

 if (@an_array) { print "has array elements\n" }
 if (%a_hash) { print "has hash members\n" }

When used on a hash element, it tells you whether the value is defined,
 not whether the key
exists in the hash. Use exists for the latter
 purpose.

Examples:

 print if defined $switch{'D'};
 print "$val\n" while defined($val = pop(@ary));
 die "Can't readlink $sym: $!"
 unless defined($value = readlink $sym);
 sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
 $debugging = 0 unless defined $debugging;

Note: Many folks tend to overuse defined, and then are surprised to
 discover that the
number 0 and "" (the zero-length string) are, in fact,
 defined values. For example, if you say

 "ab" =~ /a(.*)b/;

The pattern match succeeds and $1 is defined, although it
 matched "nothing". It didn't really
fail to match anything. Rather, it
 matched something that happened to be zero characters
long. This is all
 very above-board and honest. When a function returns an undefined value,
 it's
an admission that it couldn't give you an honest answer. So you
 should use defined only
when questioning the integrity of what
 you're trying to do. At other times, a simple comparison
to 0 or "" is
 what you want.

See also undef, exists, ref.

delete EXPR

Given an expression that specifies an element or slice of a hash, delete
 deletes the
specified elements from that hash so that exists() on that element
 no longer returns true.
Setting a hash element to the undefined value does
 not remove its key, but deleting it does;
see exists.

Perl version 5.12.3 documentation - perlfunc

Page 16http://perldoc.perl.org

It returns the value or values deleted in list context, or the last such
 element in scalar context.
The return list's length always matches that of
 the argument list: deleting non-existent
elements returns the undefined value
 in their corresponding positions.

delete() may also be used on arrays and array slices, but its behavior is less
 straightforward.
Although exists() will return false for deleted entries,
 deleting array elements never changes
indices of existing values; use shift()
 or splice() for that. However, if all deleted elements fall at
the end of an
 array, the array's size shrinks to the position of the highest element that
 still tests
true for exists(), or to 0 if none do.

Be aware that calling delete on array values is deprecated and likely to
 be removed in a future
version of Perl.

Deleting from %ENV modifies the environment. Deleting from a hash tied to
 a DBM file deletes
the entry from the DBM file. Deleting from a tied hash
 or array may not necessarily return
anything; it depends on the implementation
 of the tied package's DELETE method, which
may do whatever it pleases.

The delete local EXPR construct localizes the deletion to the current
 block at run time.
Until the block exits, elements locally deleted
 temporarily no longer exist. See "Localized
deletion of elements of composite types" in perlsub.

 %hash = (foo => 11, bar => 22, baz => 33);
 $scalar = delete $hash{foo}; # $scalar is 11
 $scalar = delete @hash{qw(foo bar)}; # $scalar is 22
 @array = delete @hash{qw(foo bar baz)}; # @array is
(undef,undef,33)

The following (inefficiently) deletes all the values of %HASH and @ARRAY:

 foreach $key (keys %HASH) {
 delete $HASH{$key};
 }

 foreach $index (0 .. $#ARRAY) {
 delete $ARRAY[$index];
 }

And so do these:

 delete @HASH{keys %HASH};

 delete @ARRAY[0 .. $#ARRAY];

But both are slower than assigning the empty list
 or undefining %HASH or @ARRAY, which is
the customary way to empty out an aggregate:

 %HASH = (); # completely empty %HASH
 undef %HASH; # forget %HASH ever existed

 @ARRAY = (); # completely empty @ARRAY
 undef @ARRAY; # forget @ARRAY ever existed

The EXPR can be arbitrarily complicated provided its
 final operation is an element or slice of
an aggregate:

 delete $ref->[$x][$y]{$key};
 delete @{$ref->[$x][$y]}{$key1, $key2, @morekeys};

 delete $ref->[$x][$y][$index];
 delete @{$ref->[$x][$y]}[$index1, $index2, @moreindices];

Perl version 5.12.3 documentation - perlfunc

Page 17http://perldoc.perl.org

die LIST

die raises an exception. Inside an eval the error message is stuffed
 into $@ and the eval is
terminated with the undefined value.
 If the exception is outside of all enclosing evals, then
the uncaught
 exception prints LIST to STDERR and exits with a non-zero value. If you
 need to
exit the process with a specific exit code, see exit.

Equivalent examples:

 die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
 chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"

If the last element of LIST does not end in a newline, the current
 script line number and input
line number (if any) are also printed,
 and a newline is supplied. Note that the "input line
number" (also
 known as "chunk") is subject to whatever notion of "line" happens to
 be
currently in effect, and is also available as the special variable $.. See "$/" in perlvar and "$."
in perlvar.

Hint: sometimes appending ", stopped" to your message will cause it
 to make better sense
when the string "at foo line 123" is appended.
 Suppose you are running script
"canasta".

 die "/etc/games is no good";
 die "/etc/games is no good, stopped";

produce, respectively

 /etc/games is no good at canasta line 123.
 /etc/games is no good, stopped at canasta line 123.

If the output is empty and $@ already contains a value (typically from a
 previous eval) that
value is reused after appending "\t...propagated".
 This is useful for propagating
exceptions:

 eval { ... };
 die unless $@ =~ /Expected exception/;

If the output is empty and $@ contains an object reference that has a PROPAGATE method, that
method will be called with additional file
 and line number parameters. The return value
replaces the value in $@. i.e., as if $@ = eval { $@->PROPAGATE(__FILE__,
__LINE__) };
 were called.

If $@ is empty then the string "Died" is used.

If an uncaught exception results in interpreter exit, the exit code is
 determined from the values
of $! and $? with this pseudocode:

 exit $! if $!; # errno
 exit $? >> 8 if $? >> 8; # child exit status
 exit 255; # last resort

The intent is to squeeze as much possible information about the likely cause
 into the limited
space of the system exit code. However, as $! is the value
 of C's errno, which can be set by
any system call, this means that the value
 of the exit code used by die can be
non-predictable, so should not be relied
 upon, other than to be non-zero.

You can also call die with a reference argument, and if this is trapped
 within an eval, $@
contains that reference. This permits more
 elaborate exception handling using objects that
maintain arbitrary state
 about the exception. Such a scheme is sometimes preferable to
matching
 particular string values of $@ with regular expressions. Because $@ is a global
variable and eval may be used within object implementations,
 be careful that analyzing the
error object doesn't replace the reference in
 the global variable. It's easiest to make a local
copy of the reference
 before any manipulations. Here's an example:

Perl version 5.12.3 documentation - perlfunc

Page 18http://perldoc.perl.org

 use Scalar::Util "blessed";

 eval { ... ; die Some::Module::Exception->new(FOO => "bar") };
 if (my $ev_err = $@) {
 if (blessed($ev_err) &&
$ev_err->isa("Some::Module::Exception")) {
 # handle Some::Module::Exception
 }
 else {
 # handle all other possible exceptions
 }
 }

Because Perl stringifies uncaught exception messages before display,
 you'll probably want to
overload stringification operations on
 exception objects. See overload for details about that.

You can arrange for a callback to be run just before the die
 does its deed, by setting the
$SIG{__DIE__} hook. The associated
 handler is called with the error text and can change
the error
 message, if it sees fit, by calling die again. See "$SIG{expr}" in perlvar for details on
setting %SIG entries, and eval BLOCK for some examples. Although this feature was to be run
only right before your program was to exit, this is not
 currently so: the $SIG{__DIE__} hook
is currently called
 even inside eval()ed blocks/strings! If one wants the hook to do
 nothing in
such situations, put

 die @_ if $^S;

as the first line of the handler (see "$^S" in perlvar). Because
 this promotes strange action at a
distance, this counterintuitive
 behavior may be fixed in a future release.

See also exit(), warn(), and the Carp module.

do BLOCK

Not really a function. Returns the value of the last command in the
 sequence of commands
indicated by BLOCK. When modified by the while or until loop modifier, executes the
BLOCK once before testing the loop
 condition. (On other statements the loop modifiers test
the conditional
 first.)

do BLOCK does not count as a loop, so the loop control statements next, last, or redo
cannot be used to leave or restart the block.
 See perlsyn for alternative strategies.

do SUBROUTINE(LIST)

This form of subroutine call is deprecated. See perlsub.

do EXPR

Uses the value of EXPR as a filename and executes the contents of the
 file as a Perl script.

 do 'stat.pl';

is just like

 eval `cat stat.pl`;

except that it's more efficient and concise, keeps track of the current
 filename for error
messages, searches the @INC directories, and updates %INC if the file is found. See
"Predefined Names" in perlvar for these
 variables. It also differs in that code evaluated with do
 FILENAME
 cannot see lexicals in the enclosing scope; eval STRING does. It's the
 same,
however, in that it does reparse the file every time you call it,
 so you probably don't want to do
this inside a loop.

If do cannot read the file, it returns undef and sets $! to the
 error. If do can read the file but
cannot compile it, it
 returns undef and sets an error message in $@. If the file is
 successfully

Perl version 5.12.3 documentation - perlfunc

Page 19http://perldoc.perl.org

compiled, do returns the value of the last expression
 evaluated.

Inclusion of library modules is better done with the use and require operators, which also
do automatic error checking
 and raise an exception if there's a problem.

You might like to use do to read in a program configuration
 file. Manual error checking can be
done this way:

 # read in config files: system first, then user
 for $file ("/share/prog/defaults.rc",
 "$ENV{HOME}/.someprogrc")
 {
 unless ($return = do $file) {
 warn "couldn't parse $file: $@" if $@;
 warn "couldn't do $file: $!" unless defined $return;
 warn "couldn't run $file" unless $return;
 }
 }

dump LABEL

dump

This function causes an immediate core dump. See also the -u
 command-line switch in
perlrun, which does the same thing.
 Primarily this is so that you can use the undump program
(not
 supplied) to turn your core dump into an executable binary after
 having initialized all your
variables at the beginning of the
 program. When the new binary is executed it will begin by
executing
 a goto LABEL (with all the restrictions that goto suffers).
 Think of it as a goto with
an intervening core dump and reincarnation.
 If LABEL is omitted, restarts the program from the
top.

WARNING: Any files opened at the time of the dump will not
 be open any more when the
program is reincarnated, with possible
 resulting confusion by Perl.

This function is now largely obsolete, mostly because it's very hard to
 convert a core file into
an executable. That's why you should now invoke
 it as CORE::dump(), if you don't want to be
warned against a possible
 typo.

each HASH

each ARRAY

When called in list context, returns a 2-element list consisting of the key
 and value for the next
element of a hash, or the index and value for the
 next element of an array, so that you can
iterate over it. When called in
 scalar context, returns only the key (not the value) in a hash, or
the index
 in an array.

Hash entries are returned in an apparently random order. The actual random
 order is subject
to change in future versions of Perl, but it is
 guaranteed to be in the same order as either the
keys or values
 function would produce on the same (unmodified) hash. Since Perl
 5.8.2 the
ordering can be different even between different runs of Perl
 for security reasons (see
"Algorithmic Complexity Attacks" in perlsec).

After each has returned all entries from the hash or array, the next
 call to each returns the
empty list in list context and undef in
 scalar context. The next call following that one restarts
iteration. Each
 hash or array has its own internal iterator, accessed by each, keys,
 and
values. The iterator is implicitly reset when each has reached
 the end as just described; it
can be explicitly reset by calling keys or values on the hash or array. If you add or delete a
hash's elements
 while iterating over it, entries may be skipped or duplicated--so don't do
 that.
Exception: It is always safe to delete the item most recently
 returned by each(), so the
following code works properly:

 while (($key, $value) = each %hash) {
 print $key, "\n";

Perl version 5.12.3 documentation - perlfunc

Page 20http://perldoc.perl.org

 delete $hash{$key}; # This is safe
 }

This prints out your environment like the printenv(1) program,
 but in a different order:

 while (($key,$value) = each %ENV) {
 print "$key=$value\n";
 }

See also keys, values and sort.

eof FILEHANDLE

eof ()

eof

Returns 1 if the next read on FILEHANDLE will return end of file, or if
 FILEHANDLE is not
open. FILEHANDLE may be an expression whose value
 gives the real filehandle. (Note that
this function actually
 reads a character and then ungetcs it, so isn't useful in an
 interactive
context.) Do not read from a terminal file (or call eof(FILEHANDLE) on it) after end-of-file is
reached. File types such
 as terminals may lose the end-of-file condition if you do.

An eof without an argument uses the last file read. Using eof()
 with empty parentheses is
different. It refers to the pseudo file
 formed from the files listed on the command line and
accessed via the <> operator. Since <> isn't explicitly opened,
 as a normal filehandle is, an
eof() before <> has been
 used will cause @ARGV to be examined to determine if input is

available. Similarly, an eof() after <> has returned
 end-of-file will assume you are
processing another @ARGV list,
 and if you haven't set @ARGV, will read input from STDIN;
 see
"I/O Operators" in perlop.

In a while (<>) loop, eof or eof(ARGV) can be used to
 detect the end of each file, eof()
will detect the end of only the
 last file. Examples:

 # reset line numbering on each input file
 while (<>) {
 next if /^\s*#/; # skip comments
 print "$.\t$_";
 } continue {
 close ARGV if eof; # Not eof()!
 }

 # insert dashes just before last line of last file
 while (<>) {
 if (eof()) { # check for end of last file
 print "--------------\n";
 }
 print;
 last if eof(); # needed if we're reading from a
terminal
 }

Practical hint: you almost never need to use eof in Perl, because the
 input operators typically
return undef when they run out of data, or if
 there was an error.

eval EXPR

eval BLOCK

eval

In the first form, the return value of EXPR is parsed and executed as if it
 were a little Perl
program. The value of the expression (which is itself
 determined within scalar context) is first

Perl version 5.12.3 documentation - perlfunc

Page 21http://perldoc.perl.org

parsed, and if there weren't any
 errors, executed in the lexical context of the current Perl
program, so
 that any variable settings or subroutine and format definitions remain
 afterwards.
Note that the value is parsed every time the eval executes.
 If EXPR is omitted, evaluates $_.
This form is typically used to
 delay parsing and subsequent execution of the text of EXPR until
run time.

In the second form, the code within the BLOCK is parsed only once--at the
 same time the
code surrounding the eval itself was parsed--and executed
 within the context of the current
Perl program. This form is typically
 used to trap exceptions more efficiently than the first (see
below), while
 also providing the benefit of checking the code within BLOCK at compile
 time.

The final semicolon, if any, may be omitted from the value of EXPR or within
 the BLOCK.

In both forms, the value returned is the value of the last expression
 evaluated inside the
mini-program; a return statement may be also used, just
 as with subroutines. The expression
providing the return value is evaluated
 in void, scalar, or list context, depending on the context
of the eval itself. See wantarray for more on how the evaluation context can be determined.

If there is a syntax error or runtime error, or a die statement is
 executed, eval returns an
undefined value in scalar context
 or an empty list in list context, and $@ is set to the
 error
message. If there was no error, $@ is guaranteed to be the empty
 string. Beware that using
eval neither silences Perl from printing
 warnings to STDERR, nor does it stuff the text of
warning messages into $@.
 To do either of those, you have to use the $SIG{__WARN__}
facility, or
 turn off warnings inside the BLOCK or EXPR using no warnings 'all'.
 See
warn, perlvar, warnings and perllexwarn.

Note that, because eval traps otherwise-fatal errors, it is useful for
 determining whether a
particular feature (such as socket or symlink)
 is implemented. It is also Perl's exception
trapping mechanism, where
 the die operator is used to raise exceptions.

If you want to trap errors when loading an XS module, some problems with
 the binary
interface (such as Perl version skew) may be fatal even with eval unless
$ENV{PERL_DL_NONLAZY} is set. See perlrun.

If the code to be executed doesn't vary, you may use the eval-BLOCK
 form to trap run-time
errors without incurring the penalty of
 recompiling each time. The error, if any, is still returned
in $@.
 Examples:

 # make divide-by-zero nonfatal
 eval { $answer = $a / $b; }; warn $@ if $@;

 # same thing, but less efficient
 eval '$answer = $a / $b'; warn $@ if $@;

 # a compile-time error
 eval { $answer = }; # WRONG

 # a run-time error
 eval '$answer ='; # sets $@

Using the eval{} form as an exception trap in libraries does have some
 issues. Due to the
current arguably broken state of __DIE__ hooks, you
 may wish not to trigger any __DIE__
hooks that user code may have installed.
 You can use the local $SIG{__DIE__} construct
for this purpose,
 as this example shows:

 # a private exception trap for divide-by-zero
 eval { local $SIG{'__DIE__'}; $answer = $a / $b; };
 warn $@ if $@;

This is especially significant, given that __DIE__ hooks can call die again, which has the
effect of changing their error messages:

 # __DIE__ hooks may modify error messages

Perl version 5.12.3 documentation - perlfunc

Page 22http://perldoc.perl.org

 {
 local $SIG{'__DIE__'} =
 sub { (my $x = $_[0]) =~ s/foo/bar/g; die $x };
 eval { die "foo lives here" };
 print $@ if $@; # prints "bar lives here"
 }

Because this promotes action at a distance, this counterintuitive behavior
 may be fixed in a
future release.

With an eval, you should be especially careful to remember what's
 being looked at when:

 eval $x; # CASE 1
 eval "$x"; # CASE 2

 eval '$x'; # CASE 3
 eval { $x }; # CASE 4

 eval "\$$x++"; # CASE 5
 $$x++; # CASE 6

Cases 1 and 2 above behave identically: they run the code contained in
 the variable $x.
(Although case 2 has misleading double quotes making
 the reader wonder what else might be
happening (nothing is).) Cases 3
 and 4 likewise behave in the same way: they run the code
'$x', which
 does nothing but return the value of $x. (Case 4 is preferred for
 purely visual
reasons, but it also has the advantage of compiling at
 compile-time instead of at run-time.)
Case 5 is a place where
 normally you would like to use double quotes, except that in this

particular situation, you can just use symbolic references instead, as
 in case 6.

The assignment to $@ occurs before restoration of localised variables,
 which means a
temporary is required if you want to mask some but not all
 errors:

 # alter $@ on nefarious repugnancy only
 {
 my $e;
 {
 local $@; # protect existing $@
 eval { test_repugnancy() };
 # $@ =~ /nefarious/ and die $@; # DOES NOT WORK
 $@ =~ /nefarious/ and $e = $@;
 }
 die $e if defined $e
 }

eval BLOCK does not count as a loop, so the loop control statements next, last, or redo
cannot be used to leave or restart the block.

An eval '' executed within the DB package doesn't see the usual
 surrounding lexical scope,
but rather the scope of the first non-DB piece
 of code that called it. You don't normally need to
worry about this unless
 you are writing a Perl debugger.

exec LIST

exec PROGRAM LIST

The exec function executes a system command and never returns;
 use system instead of
exec if you want it to return. It fails and
 returns false only if the command does not exist and it
is executed
 directly instead of via your system's command shell (see below).

Since it's a common mistake to use exec instead of system, Perl
 warns you if there is a
following statement that isn't die, warn,
 or exit (if -w is set--but you always do that, right?).
If you really want to follow an exec with some other statement, you
 can use one of these

Perl version 5.12.3 documentation - perlfunc

Page 23http://perldoc.perl.org

styles to avoid the warning:

 exec ('foo') or print STDERR "couldn't exec foo: $!";
 { exec ('foo') }; print STDERR "couldn't exec foo: $!";

If there is more than one argument in LIST, or if LIST is an array
 with more than one value,
calls execvp(3) with the arguments in LIST.
 If there is only one scalar argument or an array
with one element in it,
 the argument is checked for shell metacharacters, and if there are any,

the entire argument is passed to the system's command shell for parsing
 (this is /bin/sh -c
on Unix platforms, but varies on other platforms).
 If there are no shell metacharacters in the
argument, it is split into
 words and passed directly to execvp, which is more efficient.

Examples:

 exec '/bin/echo', 'Your arguments are: ', @ARGV;
 exec "sort $outfile | uniq";

If you don't really want to execute the first argument, but want to lie
 to the program you are
executing about its own name, you can specify
 the program you actually want to run as an
"indirect object" (without a
 comma) in front of the LIST. (This always forces interpretation of
the
 LIST as a multivalued list, even if there is only a single scalar in
 the list.) Example:

 $shell = '/bin/csh';
 exec $shell '-sh'; # pretend it's a login shell

or, more directly,

 exec {'/bin/csh'} '-sh'; # pretend it's a login shell

When the arguments get executed via the system shell, results are
 subject to its quirks and
capabilities. See "`STRING`" in perlop
 for details.

Using an indirect object with exec or system is also more
 secure. This usage (which also
works fine with system()) forces
 interpretation of the arguments as a multivalued list, even if
the
 list had just one argument. That way you're safe from the shell
 expanding wildcards or
splitting up words with whitespace in them.

 @args = ("echo surprise");

 exec @args; # subject to shell escapes
 # if @args == 1
 exec { $args[0] } @args; # safe even with one-arg list

The first version, the one without the indirect object, ran the echo
 program, passing it
"surprise" an argument. The second version didn't;
 it tried to run a program named "echo
surprise", didn't find it, and set $? to a non-zero value indicating failure.

Beginning with v5.6.0, Perl attempts to flush all files opened for
 output before the exec, but
this may not be supported on some platforms
 (see perlport). To be safe, you may need to set
$| ($AUTOFLUSH
 in English) or call the autoflush() method of IO::Handle on any
 open
handles to avoid lost output.

Note that exec will not call your END blocks, nor will it invoke DESTROY methods on your
objects.

exists EXPR

Given an expression that specifies an element of a hash, returns true if the
 specified element
in the hash has ever been initialized, even if the
 corresponding value is undefined.

 print "Exists\n" if exists $hash{$key};
 print "Defined\n" if defined $hash{$key};
 print "True\n" if $hash{$key};

Perl version 5.12.3 documentation - perlfunc

Page 24http://perldoc.perl.org

exists may also be called on array elements, but its behavior is much less
 obvious, and is
strongly tied to the use of delete on arrays. Be aware
 that calling exists on array values is
deprecated and likely to be removed in
 a future version of Perl.

 print "Exists\n" if exists $array[$index];
 print "Defined\n" if defined $array[$index];
 print "True\n" if $array[$index];

A hash or array element can be true only if it's defined, and defined if
 it exists, but the reverse
doesn't necessarily hold true.

Given an expression that specifies the name of a subroutine,
 returns true if the specified
subroutine has ever been declared, even
 if it is undefined. Mentioning a subroutine name for
exists or defined
 does not count as declaring it. Note that a subroutine that does not
 exist may
still be callable: its package may have an AUTOLOAD
 method that makes it spring into
existence the first time that it is
 called; see perlsub.

 print "Exists\n" if exists &subroutine;
 print "Defined\n" if defined &subroutine;

Note that the EXPR can be arbitrarily complicated as long as the final
 operation is a hash or
array key lookup or subroutine name:

 if (exists $ref->{A}->{B}->{$key}) { }
 if (exists $hash{A}{B}{$key}) { }

 if (exists $ref->{A}->{B}->[$ix]) { }
 if (exists $hash{A}{B}[$ix]) { }

 if (exists &{$ref->{A}{B}{$key}}) { }

Although the mostly deeply nested array or hash will not spring into
 existence just because its
existence was tested, any intervening ones will.
 Thus $ref->{"A"} and
$ref->{"A"}->{"B"} will spring
 into existence due to the existence test for the $key
element above.
 This happens anywhere the arrow operator is used, including even here:

 undef $ref;
 if (exists $ref->{"Some key"}) { }
 print $ref; # prints HASH(0x80d3d5c)

This surprising autovivification in what does not at first--or even
 second--glance appear to be
an lvalue context may be fixed in a future
 release.

Use of a subroutine call, rather than a subroutine name, as an argument
 to exists() is an error.

 exists ⊂ # OK
 exists &sub(); # Error

exit EXPR

exit

Evaluates EXPR and exits immediately with that value. Example:

 $ans = <STDIN>;
 exit 0 if $ans =~ /^[Xx]/;

See also die. If EXPR is omitted, exits with 0 status. The only
 universally recognized values
for EXPR are 0 for success and 1
 for error; other values are subject to interpretation
depending on the
 environment in which the Perl program is running. For example, exiting
 69
(EX_UNAVAILABLE) from a sendmail incoming-mail filter will cause
 the mailer to return the
item undelivered, but that's not true everywhere.

Perl version 5.12.3 documentation - perlfunc

Page 25http://perldoc.perl.org

Don't use exit to abort a subroutine if there's any chance that
 someone might want to trap
whatever error happened. Use die instead,
 which can be trapped by an eval.

The exit() function does not always exit immediately. It calls any
 defined END routines first, but
these END routines may not
 themselves abort the exit. Likewise any object destructors that
need to
 be called are called before the real exit. If this is a problem, you
 can call
POSIX:_exit($status) to avoid END and destructor processing.
 See perlmod for details.

exp EXPR

exp

Returns e (the natural logarithm base) to the power of EXPR.
 If EXPR is omitted, gives
exp($_).

fcntl FILEHANDLE,FUNCTION,SCALAR

Implements the fcntl(2) function. You'll probably have to say

 use Fcntl;

first to get the correct constant definitions. Argument processing and
 value returned work just
like ioctl below.
 For example:

 use Fcntl;
 fcntl($filehandle, F_GETFL, $packed_return_buffer)
 or die "can't fcntl F_GETFL: $!";

You don't have to check for defined on the return from fcntl.
 Like ioctl, it maps a 0
return from the system call into "0 but true" in Perl. This string is true in boolean context
and 0
 in numeric context. It is also exempt from the normal -w warnings
 on improper numeric
conversions.

Note that fcntl raises an exception if used on a machine that
 doesn't implement fcntl(2). See
the Fcntl module or your fcntl(2)
 manpage to learn what functions are available on your
system.

Here's an example of setting a filehandle named REMOTE to be
 non-blocking at the system
level. You'll have to negotiate $|
 on your own, though.

 use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);

 $flags = fcntl(REMOTE, F_GETFL, 0)
 or die "Can't get flags for the socket: $!\n";

 $flags = fcntl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
 or die "Can't set flags for the socket: $!\n";

fileno FILEHANDLE

Returns the file descriptor for a filehandle, or undefined if the
 filehandle is not open. This is
mainly useful for constructing
 bitmaps for select and low-level POSIX tty-handling
operations.
 If FILEHANDLE is an expression, the value is taken as an indirect
 filehandle,
generally its name.

You can use this to find out whether two handles refer to the
 same underlying descriptor:

 if (fileno(THIS) == fileno(THAT)) {
 print "THIS and THAT are dups\n";
 }

(Filehandles connected to memory objects via new features of open may
 return undefined
even though they are open.)

flock FILEHANDLE,OPERATION

Perl version 5.12.3 documentation - perlfunc

Page 26http://perldoc.perl.org

Calls flock(2), or an emulation of it, on FILEHANDLE. Returns true
 for success, false on
failure. Produces a fatal error if used on a
 machine that doesn't implement flock(2), fcntl(2)
locking, or lockf(3). flock is Perl's portable file locking interface, although it locks
 entire files
only, not records.

Two potentially non-obvious but traditional flock semantics are
 that it waits indefinitely until
the lock is granted, and that its locks merely advisory. Such discretionary locks are more
flexible, but offer
 fewer guarantees. This means that programs that do not also use flock

may modify files locked with flock. See perlport, your port's specific documentation, or your
system-specific local manpages
 for details. It's best to assume traditional behavior if you're
writing
 portable programs. (But if you're not, you should as always feel perfectly
 free to write
for your own system's idiosyncrasies (sometimes called
 "features"). Slavish adherence to
portability concerns shouldn't get
 in the way of your getting your job done.)

OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with

LOCK_NB. These constants are traditionally valued 1, 2, 8 and 4, but
 you can use the
symbolic names if you import them from the Fcntl module,
 either individually, or as a group
using the ':flock' tag. LOCK_SH
 requests a shared lock, LOCK_EX requests an exclusive lock,
and LOCK_UN
 releases a previously requested lock. If LOCK_NB is bitwise-or'ed with

LOCK_SH or LOCK_EX then flock returns immediately rather than blocking
 waiting for the
lock; check the return status to see if you got it.

To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE
 before locking or
unlocking it.

Note that the emulation built with lockf(3) doesn't provide shared
 locks, and it requires that
FILEHANDLE be open with write intent. These
 are the semantics that lockf(3) implements.
Most if not all systems
 implement lockf(3) in terms of fcntl(2) locking, though, so the
 differing
semantics shouldn't bite too many people.

Note that the fcntl(2) emulation of flock(3) requires that FILEHANDLE
 be open with read intent
to use LOCK_SH and requires that it be open
 with write intent to use LOCK_EX.

Note also that some versions of flock cannot lock things over the
 network; you would need
to use the more system-specific fcntl for
 that. If you like you can force Perl to ignore your
system's flock(2)
 function, and so provide its own fcntl(2)-based emulation, by passing
 the
switch -Ud_flock to the Configure program when you configure
 Perl.

Here's a mailbox appender for BSD systems.

 use Fcntl qw(:flock SEEK_END); # import LOCK_* and SEEK_END
constants

 sub lock {
 my ($fh) = @_;
 flock($fh, LOCK_EX) or die "Cannot lock mailbox - $!\n";

 # and, in case someone appended while we were waiting...
 seek($fh, 0, SEEK_END) or die "Cannot seek - $!\n";
 }

 sub unlock {
 my ($fh) = @_;
 flock($fh, LOCK_UN) or die "Cannot unlock mailbox - $!\n";
 }

 open(my $mbox, ">>", "/usr/spool/mail/$ENV{'USER'}")
 or die "Can't open mailbox: $!";

 lock($mbox);
 print $mbox $msg,"\n\n";

Perl version 5.12.3 documentation - perlfunc

Page 27http://perldoc.perl.org

 unlock($mbox);

On systems that support a real flock(2), locks are inherited across fork()
 calls, whereas those
that must resort to the more capricious fcntl(2)
 function lose their locks, making it seriously
harder to write servers.

See also DB_File for other flock() examples.

fork

Does a fork(2) system call to create a new process running the
 same program at the same
point. It returns the child pid to the
 parent process, 0 to the child process, or undef if the fork
is
 unsuccessful. File descriptors (and sometimes locks on those descriptors)
 are shared, while
everything else is copied. On most systems supporting
 fork(), great care has gone into making
it extremely efficient (for
 example, using copy-on-write technology on data pages), making it
the
 dominant paradigm for multitasking over the last few decades.

Beginning with v5.6.0, Perl attempts to flush all files opened for
 output before forking the child
process, but this may not be supported
 on some platforms (see perlport). To be safe, you may
need to set $| ($AUTOFLUSH in English) or call the autoflush() method of IO::Handle
on any open handles to avoid duplicate output.

If you fork without ever waiting on your children, you will
 accumulate zombies. On some
systems, you can avoid this by setting $SIG{CHLD} to "IGNORE". See also perlipc for more
examples of
 forking and reaping moribund children.

Note that if your forked child inherits system file descriptors like
 STDIN and STDOUT that are
actually connected by a pipe or socket, even
 if you exit, then the remote server (such as, say,
a CGI script or a
 backgrounded job launched from a remote shell) won't think you're done.

You should reopen those to /dev/null if it's any issue.

format

Declare a picture format for use by the write function. For
 example:

 format Something =
 Test: @<<<<<<<< @||||| @>>>>>
 $str, $%, '$' . int($num)
 .

 $str = "widget";
 $num = $cost/$quantity;
 $~ = 'Something';
 write;

See perlform for many details and examples.

formline PICTURE,LIST

This is an internal function used by formats, though you may call it,
 too. It formats (see
perlform) a list of values according to the
 contents of PICTURE, placing the output into the
format output
 accumulator, $^A (or $ACCUMULATOR in English).
 Eventually, when a write is
done, the contents of $^A are written to some filehandle. You could also read $^A
 and then
set $^A back to "". Note that a format typically
 does one formline per line of form, but the
formline function itself
 doesn't care how many newlines are embedded in the PICTURE.
This means
 that the ~ and ~~ tokens treat the entire PICTURE as a single line.
 You may
therefore need to use multiple formlines to implement a single
 record format, just like the
format compiler.

Be careful if you put double quotes around the picture, because an @
 character may be taken
to mean the beginning of an array name. formline always returns true. See perlform for
other examples.

Perl version 5.12.3 documentation - perlfunc

Page 28http://perldoc.perl.org

getc FILEHANDLE

getc

Returns the next character from the input file attached to FILEHANDLE,
 or the undefined
value at end of file or if there was an error (in
 the latter case $! is set). If FILEHANDLE is
omitted, reads from
 STDIN. This is not particularly efficient. However, it cannot be
 used by
itself to fetch single characters without waiting for the user
 to hit enter. For that, try something
more like:

 if ($BSD_STYLE) {
 system "stty cbreak </dev/tty >/dev/tty 2>&1";
 }
 else {
 system "stty", '-icanon', 'eol', "\001";
 }

 $key = getc(STDIN);

 if ($BSD_STYLE) {
 system "stty -cbreak </dev/tty >/dev/tty 2>&1";
 }
 else {
 system 'stty', 'icanon', 'eol', '^@'; # ASCII NUL
 }
 print "\n";

Determination of whether $BSD_STYLE should be set
 is left as an exercise to the reader.

The POSIX::getattr function can do this more portably on
 systems purporting POSIX
compliance. See also the Term::ReadKey
 module from your nearest CPAN site; details on
CPAN can be found on "CPAN" in perlmodlib.

getlogin

This implements the C library function of the same name, which on most
 systems returns the
current login from /etc/utmp, if any. If it
 returns the empty string, use getpwuid.

 $login = getlogin || getpwuid($<) || "Kilroy";

Do not consider getlogin for authentication: it is not as
 secure as getpwuid.

getpeername SOCKET

Returns the packed sockaddr address of other end of the SOCKET connection.

 use Socket;
 $hersockaddr = getpeername(SOCK);
 ($port, $iaddr) = sockaddr_in($hersockaddr);
 $herhostname = gethostbyaddr($iaddr, AF_INET);
 $herstraddr = inet_ntoa($iaddr);

getpgrp PID

Returns the current process group for the specified PID. Use
 a PID of 0 to get the current
process group for the
 current process. Will raise an exception if used on a machine that

doesn't implement getpgrp(2). If PID is omitted, returns process
 group of current process.
Note that the POSIX version of getpgrp
 does not accept a PID argument, so only PID==0 is
truly portable.

getppid

Returns the process id of the parent process.

Perl version 5.12.3 documentation - perlfunc

Page 29http://perldoc.perl.org

Note for Linux users: on Linux, the C functions getpid() and getppid() return different
values from different threads. In order to
 be portable, this behavior is not reflected by the
Perl-level function getppid(), that returns a consistent value across threads. If you want
 to
call the underlying getppid(), you may use the CPAN module Linux::Pid.

getpriority WHICH,WHO

Returns the current priority for a process, a process group, or a user.
 (See getpriority(2)
.) Will raise a fatal exception if used on a
 machine that doesn't implement getpriority(2).

getpwnam NAME

getgrnam NAME

gethostbyname NAME

getnetbyname NAME

getprotobyname NAME

getpwuid UID

getgrgid GID

getservbyname NAME,PROTO

gethostbyaddr ADDR,ADDRTYPE

getnetbyaddr ADDR,ADDRTYPE

getprotobynumber NUMBER

getservbyport PORT,PROTO

getpwent

getgrent

gethostent

getnetent

getprotoent

getservent

setpwent

setgrent

sethostent STAYOPEN

setnetent STAYOPEN

setprotoent STAYOPEN

setservent STAYOPEN

endpwent

endgrent

endhostent

endnetent

endprotoent

endservent

These routines are the same as their counterparts in the
 system C library. In list context, the
return values from the
 various get routines are as follows:

 ($name,$passwd,$uid,$gid,
 $quota,$comment,$gcos,$dir,$shell,$expire) = getpw*
 ($name,$passwd,$gid,$members) = getgr*
 ($name,$aliases,$addrtype,$length,@addrs) = gethost*
 ($name,$aliases,$addrtype,$net) = getnet*

Perl version 5.12.3 documentation - perlfunc

Page 30http://perldoc.perl.org

 ($name,$aliases,$proto) = getproto*
 ($name,$aliases,$port,$proto) = getserv*

(If the entry doesn't exist you get an empty list.)

The exact meaning of the $gcos field varies but it usually contains
 the real name of the user
(as opposed to the login name) and other
 information pertaining to the user. Beware, however,
that in many
 system users are able to change this information and therefore it
 cannot be
trusted and therefore the $gcos is tainted (see perlsec). The $passwd and $shell, user's
encrypted password and
 login shell, are also tainted, because of the same reason.

In scalar context, you get the name, unless the function was a
 lookup by name, in which case
you get the other thing, whatever it is.
 (If the entry doesn't exist you get the undefined value.)
For example:

 $uid = getpwnam($name);
 $name = getpwuid($num);
 $name = getpwent();
 $gid = getgrnam($name);
 $name = getgrgid($num);
 $name = getgrent();
 #etc.

In getpw*() the fields $quota, $comment, and $expire are special
 in that they are unsupported
on many systems. If the
 $quota is unsupported, it is an empty scalar. If it is supported, it

usually encodes the disk quota. If the $comment field is unsupported,
 it is an empty scalar. If it
is supported it usually encodes some
 administrative comment about the user. In some
systems the $quota
 field may be $change or $age, fields that have to do with password
 aging.
In some systems the $comment field may be $class. The $expire
 field, if present, encodes the
expiration period of the account or the
 password. For the availability and the exact meaning of
these fields
 in your system, please consult your getpwnam(3) documentation and your pwd.h
file. You can also find out from within Perl what your
 $quota and $comment fields mean and
whether you have the $expire field
 by using the Config module and the values d_pwquota,
d_pwage, d_pwchange, d_pwcomment, and d_pwexpire. Shadow password
 files are
supported only if your vendor has implemented them in the
 intuitive fashion that calling the
regular C library routines gets the
 shadow versions if you're running under privilege or if there
exists
 the shadow(3) functions as found in System V (this includes Solaris
 and Linux.) Those
systems that implement a proprietary shadow password
 facility are unlikely to be supported.

The $members value returned by getgr*() is a space separated list of
 the login names of the
members of the group.

For the gethost*() functions, if the h_errno variable is supported in
 C, it will be returned to
you via $? if the function call fails. The @addrs value returned by a successful call is a list of
raw
 addresses returned by the corresponding library call. In the
 Internet domain, each address
is four bytes long; you can unpack it
 by saying something like:

 ($a,$b,$c,$d) = unpack('W4',$addr[0]);

The Socket library makes this slightly easier:

 use Socket;
 $iaddr = inet_aton("127.1"); # or whatever address
 $name = gethostbyaddr($iaddr, AF_INET);

 # or going the other way
 $straddr = inet_ntoa($iaddr);

In the opposite way, to resolve a hostname to the IP address
 you can write this:

 use Socket;

Perl version 5.12.3 documentation - perlfunc

Page 31http://perldoc.perl.org

 $packed_ip = gethostbyname("www.perl.org");
 if (defined $packed_ip) {
 $ip_address = inet_ntoa($packed_ip);
 }

Make sure <gethostbyname()> is called in SCALAR context and that
 its return value is
checked for definedness.

If you get tired of remembering which element of the return list
 contains which return value,
by-name interfaces are provided
 in standard modules: File::stat, Net::hostent,
Net::netent, Net::protoent, Net::servent, Time::gmtime, Time::localtime,

and User::grent. These override the normal built-ins, supplying
 versions that return objects
with the appropriate names
 for each field. For example:

 use File::stat;
 use User::pwent;
 $is_his = (stat($filename)->uid == pwent($whoever)->uid);

Even though it looks like they're the same method calls (uid),
 they aren't, because a
File::stat object is different from
 a User::pwent object.

getsockname SOCKET

Returns the packed sockaddr address of this end of the SOCKET connection,
 in case you
don't know the address because you have several different
 IPs that the connection might have
come in on.

 use Socket;
 $mysockaddr = getsockname(SOCK);
 ($port, $myaddr) = sockaddr_in($mysockaddr);
 printf "Connect to %s [%s]\n",
 scalar gethostbyaddr($myaddr, AF_INET),
 inet_ntoa($myaddr);

getsockopt SOCKET,LEVEL,OPTNAME

Queries the option named OPTNAME associated with SOCKET at a given LEVEL.
 Options
may exist at multiple protocol levels depending on the socket
 type, but at least the uppermost
socket level SOL_SOCKET (defined in the Socket module) will exist. To query options at
another level the
 protocol number of the appropriate protocol controlling the option
 should be
supplied. For example, to indicate that an option is to be
 interpreted by the TCP protocol,
LEVEL should be set to the protocol
 number of TCP, which you can get using
getprotobyname.

The function returns a packed string representing the requested socket
 option, or undef on
error, with the reason for the error placed in $!). Just what is in the packed string depends on
LEVEL and OPTNAME;
 consult getsockopt(2) for details. A common case is that the option is
an
 integer, in which case the result is a packed integer, which you can decode
 using unpack
with the i (or I) format.

An example to test whether Nagle's algorithm is turned on on a socket:

 use Socket qw(:all);

 defined(my $tcp = getprotobyname("tcp"))
 or die "Could not determine the protocol number for tcp";
 # my $tcp = IPPROTO_TCP; # Alternative
 my $packed = getsockopt($socket, $tcp, TCP_NODELAY)
 or die "getsockopt TCP_NODELAY: $!";
 my $nodelay = unpack("I", $packed);
 print "Nagle's algorithm is turned ", $nodelay ? "off\n" :

Perl version 5.12.3 documentation - perlfunc

Page 32http://perldoc.perl.org

"on\n";glob EXPR

glob

In list context, returns a (possibly empty) list of filename expansions on
 the value of EXPR
such as the standard Unix shell /bin/csh would do. In
 scalar context, glob iterates through
such filename expansions, returning
 undef when the list is exhausted. This is the internal
function
 implementing the <*.c> operator, but you can use it directly. If
 EXPR is omitted, $_
is used. The <*.c> operator is discussed in
 more detail in "I/O Operators" in perlop.

Note that glob splits its arguments on whitespace and treats
 each segment as separate
pattern. As such, glob("*.c *.h") matches all files with a .c or .h extension. The
expression glob(".* *") matchs all files in the current working directory.

If non-empty braces are the only wildcard characters used in the glob, no filenames are
matched, but potentially many strings
 are returned. For example, this produces nine strings,
one for
 each pairing of fruits and colors:

 @many = glob "{apple,tomato,cherry}={green,yellow,red}";

Beginning with v5.6.0, this operator is implemented using the standard File::Glob
extension. See File::Glob for details, including bsd_glob which does not treat whitespace as
a pattern separator.

gmtime EXPR

gmtime

Works just like localtime but the returned values are
 localized for the standard Greenwich time
zone.

Note: when called in list context, $isdst, the last value
 returned by gmtime is always 0. There
is no
 Daylight Saving Time in GMT.

See "gmtime" in perlport for portability concerns.

goto LABEL

goto EXPR

goto &NAME

The goto-LABEL form finds the statement labeled with LABEL and
 resumes execution there.
It can't be used to get out of a block or
 subroutine given to sort. It can be used to go almost
anywhere
 else within the dynamic scope, including out of subroutines, but it's
 usually better to
use some other construct such as last or die.
 The author of Perl has never felt the need to
use this form of goto
 (in Perl, that is; C is another matter). (The difference is that C
 does not
offer named loops combined with loop control. Perl does, and
 this replaces most structured
uses of goto in other languages.)

The goto-EXPR form expects a label name, whose scope will be resolved
 dynamically. This
allows for computed gotos per FORTRAN, but isn't
 necessarily recommended if you're
optimizing for maintainability:

 goto ("FOO", "BAR", "GLARCH")[$i];

Use of goto-LABEL or goto-EXPR to jump into a construct is
 deprecated and will issue a
warning. Even then, it may not be used to
 go into any construct that requires initialization,
such as a
 subroutine or a foreach loop. It also can't be used to go into a
 construct that is
optimized away.

The goto-&NAME form is quite different from the other forms of goto. In fact, it isn't a goto in
the normal sense at all, and
 doesn't have the stigma associated with other gotos. Instead, it

exits the current subroutine (losing any changes set by local()) and
 immediately calls in its
place the named subroutine using the current
 value of @_. This is used by AUTOLOAD
subroutines that wish to
 load another subroutine and then pretend that the other subroutine
had
 been called in the first place (except that any modifications to @_
 in the current subroutine

Perl version 5.12.3 documentation - perlfunc

Page 33http://perldoc.perl.org

are propagated to the other subroutine.)
 After the goto, not even caller will be able to tell
that this
 routine was called first.

NAME needn't be the name of a subroutine; it can be a scalar variable
 containing a code
reference, or a block that evaluates to a code
 reference.

grep BLOCK LIST

grep EXPR,LIST

This is similar in spirit to, but not the same as, grep(1) and its
 relatives. In particular, it is not
limited to using regular expressions.

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each element)
and returns the list value consisting of those
 elements for which the expression evaluated to
true. In scalar
 context, returns the number of times the expression was true.

 @foo = grep(!/^#/, @bar); # weed out comments

or equivalently,

 @foo = grep {!/^#/} @bar; # weed out comments

Note that $_ is an alias to the list value, so it can be used to
 modify the elements of the LIST.
While this is useful and supported,
 it can cause bizarre results if the elements of LIST are not
variables.
 Similarly, grep returns aliases into the original list, much as a for
 loop's index
variable aliases the list elements. That is, modifying an
 element of a list returned by grep (for
example, in a foreach, map
 or another grep) actually modifies the element in the original
list.
 This is usually something to be avoided when writing clear code.

If $_ is lexical in the scope where the grep appears (because it has
 been declared with my
$_) then, in addition to being locally aliased to
 the list elements, $_ keeps being lexical inside
the block; i.e., it
 can't be seen from the outside, avoiding any potential side-effects.

See also map for a list composed of the results of the BLOCK or EXPR.

hex EXPR

hex

Interprets EXPR as a hex string and returns the corresponding value.
 (To convert strings that
might start with either 0, 0x, or 0b, see oct.) If EXPR is omitted, uses $_.

 print hex '0xAf'; # prints '175'
 print hex 'aF'; # same

Hex strings may only represent integers. Strings that would cause
 integer overflow trigger a
warning. Leading whitespace is not stripped,
 unlike oct(). To present something as hex, look
into printf, sprintf, or unpack.

import LIST

There is no builtin import function. It is just an ordinary
 method (subroutine) defined (or
inherited) by modules that wish to export
 names to another module. The use function calls the
import method
 for the package used. See also use, perlmod, and Exporter.

index STR,SUBSTR,POSITION

index STR,SUBSTR

The index function searches for one string within another, but without
 the wildcard-like
behavior of a full regular-expression pattern match.
 It returns the position of the first
occurrence of SUBSTR in STR at
 or after POSITION. If POSITION is omitted, starts searching
from the
 beginning of the string. POSITION before the beginning of the string
 or after its end is
treated as if it were the beginning or the end,
 respectively. POSITION and the return value are
based at 0 (or whatever
 you've set the $[variable to--but don't do that). If the substring
 is not
found, index returns one less than the base, ordinarily -1.

Perl version 5.12.3 documentation - perlfunc

Page 34http://perldoc.perl.org

int EXPR

int

Returns the integer portion of EXPR. If EXPR is omitted, uses $_.
 You should not use this
function for rounding: one because it truncates
 towards 0, and two because machine
representations of floating-point
 numbers can sometimes produce counterintuitive results. For
example, int(-6.725/0.025) produces -268 rather than the correct -269; that's
 because
it's really more like -268.99999999999994315658 instead. Usually,
 the sprintf, printf, or
the POSIX::floor and POSIX::ceil
 functions will serve you better than will int().

ioctl FILEHANDLE,FUNCTION,SCALAR

Implements the ioctl(2) function. You'll probably first have to say

 require "sys/ioctl.ph"; # probably in
$Config{archlib}/sys/ioctl.ph

to get the correct function definitions. If sys/ioctl.ph doesn't
 exist or doesn't have the correct
definitions you'll have to roll your
 own, based on your C header files such as <sys/ioctl.h>.

(There is a Perl script called h2ph that comes with the Perl kit that
 may help you in this, but it's
nontrivial.) SCALAR will be read and/or
 written depending on the FUNCTION; a C pointer to
the string value of SCALAR
 will be passed as the third argument of the actual ioctl call. (If
SCALAR
 has no string value but does have a numeric value, that value will be
 passed rather
than a pointer to the string value. To guarantee this to be
 true, add a 0 to the scalar before
using it.) The pack and unpack
 functions may be needed to manipulate the values of
structures used by ioctl.

The return value of ioctl (and fcntl) is as follows:

 if OS returns: then Perl returns:
 -1 undefined value
 0 string "0 but true"
 anything else that number

Thus Perl returns true on success and false on failure, yet you can
 still easily determine the
actual value returned by the operating
 system:

 $retval = ioctl(...) || -1;
 printf "System returned %d\n", $retval;

The special string "0 but true" is exempt from -w complaints
 about improper numeric
conversions.

join EXPR,LIST

Joins the separate strings of LIST into a single string with fields
 separated by the value of
EXPR, and returns that new string. Example:

 $rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);

Beware that unlike split, join doesn't take a pattern as its
 first argument. Compare split.

keys HASH

keys ARRAY

Returns a list consisting of all the keys of the named hash, or the indices
 of an array. (In scalar
context, returns the number of keys or indices.)

The keys of a hash are returned in an apparently random order. The actual
 random order is
subject to change in future versions of Perl, but it
 is guaranteed to be the same order as either
the values or each
 function produces (given that the hash has not been modified). Since

Perl 5.8.1 the ordering is different even between different runs of
 Perl for security reasons
(see "Algorithmic Complexity Attacks" in perlsec).

Perl version 5.12.3 documentation - perlfunc

Page 35http://perldoc.perl.org

As a side effect, calling keys() resets the HASH or ARRAY's internal iterator
 (see each). In
particular, calling keys() in void context resets
 the iterator with no other overhead.

Here is yet another way to print your environment:

 @keys = keys %ENV;
 @values = values %ENV;
 while (@keys) {
 print pop(@keys), '=', pop(@values), "\n";
 }

or how about sorted by key:

 foreach $key (sort(keys %ENV)) {
 print $key, '=', $ENV{$key}, "\n";
 }

The returned values are copies of the original keys in the hash, so
 modifying them will not
affect the original hash. Compare values.

To sort a hash by value, you'll need to use a sort function.
 Here's a descending numeric sort
of a hash by its values:

 foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
 printf "%4d %s\n", $hash{$key}, $key;
 }

Used as an lvalue, keys allows you to increase the number of hash buckets
 allocated for the
given hash. This can gain you a measure of efficiency if
 you know the hash is going to get big.
(This is similar to pre-extending
 an array by assigning a larger number to $#array.) If you say

 keys %hash = 200;

then %hash will have at least 200 buckets allocated for it--256 of them,
 in fact, since it rounds
up to the next power of two. These
 buckets will be retained even if you do %hash = (), use
undef
 %hash if you want to free the storage while %hash is still in scope.
 You can't shrink
the number of buckets allocated for the hash using keys in this way (but you needn't worry
about doing this by accident,
 as trying has no effect). keys @array in an lvalue context is a
syntax
 error.

See also each, values and sort.

kill SIGNAL, LIST

Sends a signal to a list of processes. Returns the number of
 processes successfully signaled
(which is not necessarily the
 same as the number actually killed).

 $cnt = kill 1, $child1, $child2;
 kill 9, @goners;

If SIGNAL is zero, no signal is sent to the process, but kill
 checks whether it's possible to
send a signal to it (that
 means, to be brief, that the process is owned by the same user, or we
are
 the super-user). This is useful to check that a child process is still
 alive (even if only as a
zombie) and hasn't changed its UID. See perlport for notes on the portability of this construct.

Unlike in the shell, if SIGNAL is negative, it kills process groups instead
 of processes. That
means you usually want to use positive not negative signals.
 You may also use a signal name
in quotes.

The behavior of kill when a PROCESS number is zero or negative depends on
 the operating
system. For example, on POSIX-conforming systems, zero will
 signal the current process
group and -1 will signal all processes.

See "Signals" in perlipc for more details.

Perl version 5.12.3 documentation - perlfunc

Page 36http://perldoc.perl.org

last LABEL

last

The last command is like the break statement in C (as used in
 loops); it immediately exits
the loop in question. If the LABEL is
 omitted, the command refers to the innermost enclosing
loop. The continue block, if any, is not executed:

 LINE: while (<STDIN>) {
 last LINE if /^$/; # exit when done with header
 #...
 }

last cannot be used to exit a block that returns a value such as eval {}, sub {} or do {}
, and should not be used to exit
 a grep() or map() operation.

Note that a block by itself is semantically identical to a loop
 that executes once. Thus last
can be used to effect an early
 exit out of such a block.

See also continue for an illustration of how last, next, and redo work.

lc EXPR

lc

Returns a lowercased version of EXPR. This is the internal function
 implementing the \L
escape in double-quoted strings.

If EXPR is omitted, uses $_.

What gets returned depends on several factors:

If use bytes is in effect:

On EBCDIC platforms

The results are what the C language system call tolower() returns.

On ASCII platforms

The results follow ASCII semantics. Only characters A-Z change, to a-z

respectively.

Otherwise, If EXPR has the UTF8 flag set

If the current package has a subroutine named ToLower, it will be used to
 change the
case (See "User-Defined Case Mappings" in perlunicode.)
 Otherwise Unicode
semantics are used for the case change.

Otherwise, if use locale is in effect

Respects current LC_CTYPE locale. See perllocale.

Otherwise, if use feature 'unicode_strings' is in effect:

Unicode semantics are used for the case change. Any subroutine named ToLower will
not be used.

Otherwise:

On EBCDIC platforms

The results are what the C language system call tolower() returns.

On ASCII platforms

ASCII semantics are used for the case change. The lowercase of any
character
 outside the ASCII range is the character itself.

lcfirst EXPR

Perl version 5.12.3 documentation - perlfunc

Page 37http://perldoc.perl.org

lcfirst

Returns the value of EXPR with the first character lowercased. This
 is the internal function
implementing the \l escape in
 double-quoted strings.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragma, such as in a locale,
 as lc does.

length EXPR

length

Returns the length in characters of the value of EXPR. If EXPR is
 omitted, returns length of $_
. If EXPR is undefined, returns undef.

This function cannot be used on an entire array or hash to find out how
 many elements these
have. For that, use scalar @array and scalar keys
 %hash, respectively.

Like all Perl character operations, length() normally deals in logical
 characters, not physical
bytes. For how many bytes a string encoded as
 UTF-8 would take up, use
length(Encode::encode_utf8(EXPR)) (you'll have
 to use Encode first). See Encode
and perlunicode.

link OLDFILE,NEWFILE

Creates a new filename linked to the old filename. Returns true for
 success, false otherwise.

listen SOCKET,QUEUESIZE

Does the same thing that the listen(2) system call does. Returns true if
 it succeeded, false
otherwise. See the example in "Sockets: Client/Server Communication" in perlipc.

local EXPR

You really probably want to be using my instead, because local isn't
 what most people think
of as "local". See "Private Variables via my()" in perlsub for details.

A local modifies the listed variables to be local to the enclosing
 block, file, or eval. If more than
one value is listed, the list must
 be placed in parentheses. See "Temporary Values via local()"
in perlsub
 for details, including issues with tied arrays and hashes.

The delete local EXPR construct can also be used to localize the deletion
 of array/hash
elements to the current block.
 See "Localized deletion of elements of composite types" in
perlsub.

localtime EXPR

localtime

Converts a time as returned by the time function to a 9-element list
 with the time analyzed for
the local time zone. Typically used as
 follows:

 # 0 1 2 3 4 5 6 7 8
 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
 localtime(time);

All list elements are numeric, and come straight out of the C `struct
 tm'. $sec, $min, and
$hour are the seconds, minutes, and hours
 of the specified time.

$mday is the day of the month, and $mon is the month itself, in
 the range 0..11 with 0
indicating January and 11 indicating December.
 This makes it easy to get a month name from
a list:

 my @abbr = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
 print "$abbr[$mon] $mday";
 # $mon=9, $mday=18 gives "Oct 18"

$year is the number of years since 1900, not just the last two digits
 of the year. That is,

Perl version 5.12.3 documentation - perlfunc

Page 38http://perldoc.perl.org

$year is 123 in year 2023. The proper way
 to get a 4-digit year is simply:

 $year += 1900;

Otherwise you create non-Y2K-compliant programs--and you wouldn't want
 to do that, would
you?

To get the last two digits of the year (e.g., '01' in 2001) do:

 $year = sprintf("%02d", $year % 100);

$wday is the day of the week, with 0 indicating Sunday and 3 indicating
 Wednesday. $yday is
the day of the year, in the range 0..364
 (or 0..365 in leap years.)

$isdst is true if the specified time occurs during Daylight Saving
 Time, false otherwise.

If EXPR is omitted, localtime() uses the current time (as returned
 by time(3)).

In scalar context, localtime() returns the ctime(3) value:

 $now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

This scalar value is not locale dependent but is a Perl builtin. For GMT
 instead of local time
use the gmtime builtin. See also the Time::Local module (to convert the second, minutes,
hours, ... back to
 the integer value returned by time()), and the POSIX module's strftime(3)
 and
mktime(3) functions.

To get somewhat similar but locale dependent date strings, set up your
 locale environment
variables appropriately (please see perllocale) and
 try for example:

 use POSIX qw(strftime);
 $now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
 # or for GMT formatted appropriately for your locale:
 $now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

Note that the %a and %b, the short forms of the day of the week
 and the month of the year,
may not necessarily be three characters wide.

See "localtime" in perlport for portability concerns.

The Time::gmtime and Time::localtime modules provides a convenient,
 by-name access
mechanism to the gmtime() and localtime() functions,
 respectively.

For a comprehensive date and time representation look at the DateTime module on CPAN.

lock THING

This function places an advisory lock on a shared variable, or referenced
 object contained in
THING until the lock goes out of scope.

lock() is a "weak keyword" : this means that if you've defined a function
 by this name (before
any calls to it), that function will be called
 instead. If you are not under use
threads::shared this does nothing.
 See threads::shared.

log EXPR

log

Returns the natural logarithm (base e) of EXPR. If EXPR is omitted,
 returns log of $_. To get
the log of another base, use basic algebra:
 The base-N log of a number is equal to the natural
log of that number
 divided by the natural log of N. For example:

 sub log10 {
 my $n = shift;
 return log($n)/log(10);
 }

See also exp for the inverse operation.

Perl version 5.12.3 documentation - perlfunc

Page 39http://perldoc.perl.org

lstat EXPR

lstat

Does the same thing as the stat function (including setting the
 special _ filehandle) but stats
a symbolic link instead of the file
 the symbolic link points to. If symbolic links are
unimplemented on
 your system, a normal stat is done. For much more detailed
 information,
please see the documentation for stat.

If EXPR is omitted, stats $_.

m//

The match operator. See "Regexp Quote-Like Operators" in perlop.

map BLOCK LIST

map EXPR,LIST

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each element)
and returns the list value composed of the
 results of each such evaluation. In scalar context,
returns the
 total number of elements so generated. Evaluates BLOCK or EXPR in
 list context,
so each element of LIST may produce zero, one, or
 more elements in the returned value.

 @chars = map(chr, @nums);

translates a list of numbers to the corresponding characters. And

 %hash = map { get_a_key_for($_) => $_ } @array;

is just a funny way to write

 %hash = ();
 foreach (@array) {
 $hash{get_a_key_for($_)} = $_;
 }

Note that $_ is an alias to the list value, so it can be used to
 modify the elements of the LIST.
While this is useful and supported,
 it can cause bizarre results if the elements of LIST are not
variables.
 Using a regular foreach loop for this purpose would be clearer in
 most cases. See
also grep for an array composed of those items of
 the original list for which the BLOCK or
EXPR evaluates to true.

If $_ is lexical in the scope where the map appears (because it has
 been declared with my $_
), then, in addition to being locally aliased to
 the list elements, $_ keeps being lexical inside
the block; that is, it
 can't be seen from the outside, avoiding any potential side-effects.

{ starts both hash references and blocks, so map { ... could be either
 the start of map
BLOCK LIST or map EXPR, LIST. Because Perl doesn't look
 ahead for the closing } it has to
take a guess at which it's dealing with
 based on what it finds just after the {. Usually it gets it
right, but if it
 doesn't it won't realize something is wrong until it gets to the } and
 encounters
the missing (or unexpected) comma. The syntax error will be
 reported close to the }, but you'll
need to change something near the {
 such as using a unary + to give Perl some help:

 %hash = map { "\L$_" => 1 } @array # perl guesses EXPR. wrong
 %hash = map { +"\L$_" => 1 } @array # perl guesses BLOCK. right
 %hash = map { ("\L$_" => 1) } @array # this also works
 %hash = map { lc($_) => 1 } @array # as does this.
 %hash = map +(lc($_) => 1), @array # this is EXPR and works!

 %hash = map (lc($_), 1), @array # evaluates to (1, @array)

or to force an anon hash constructor use +{:

 @hashes = map +{ lc($_) => 1 }, @array # EXPR, so needs comma at

Perl version 5.12.3 documentation - perlfunc

Page 40http://perldoc.perl.org

endto get a list of anonymous hashes each with only one entry apiece.

mkdir FILENAME,MASK

mkdir FILENAME

mkdir

Creates the directory specified by FILENAME, with permissions
 specified by MASK (as
modified by umask). If it succeeds it
 returns true, otherwise it returns false and sets $!
(errno).
 If omitted, MASK defaults to 0777. If omitted, FILENAME defaults
 to $_.

In general, it is better to create directories with permissive MASK,
 and let the user modify that
with their umask, than it is to supply
 a restrictive MASK and give the user no way to be more
permissive.
 The exceptions to this rule are when the file or directory should be
 kept private
(mail files, for instance). The perlfunc(1) entry on umask discusses the choice of MASK in
more detail.

Note that according to the POSIX 1003.1-1996 the FILENAME may have any
 number of
trailing slashes. Some operating and filesystems do not get
 this right, so Perl automatically
removes all trailing slashes to keep
 everyone happy.

To recursively create a directory structure, look at
 the mkpath function of the File::Path
module.

msgctl ID,CMD,ARG

Calls the System V IPC function msgctl(2). You'll probably have to say

 use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT,
 then ARG must be a variable
that will hold the returned msqid_ds
 structure. Returns like ioctl: the undefined value for
error, "0 but true" for zero, or the actual return value otherwise. See also "SysV IPC" in
perlipc, IPC::SysV, and IPC::Semaphore documentation.

msgget KEY,FLAGS

Calls the System V IPC function msgget(2). Returns the message queue
 id, or the undefined
value if there is an error. See also "SysV IPC" in perlipc and IPC::SysV and IPC::Msg
documentation.

msgrcv ID,VAR,SIZE,TYPE,FLAGS

Calls the System V IPC function msgrcv to receive a message from
 message queue ID into
variable VAR with a maximum message size of
 SIZE. Note that when a message is received,
the message type as a
 native long integer will be the first thing in VAR, followed by the
 actual
message. This packing may be opened with unpack("l! a*").
 Taints the variable. Returns
true if successful, or false if there is
 an error. See also "SysV IPC" in perlipc, IPC::SysV, and
IPC::SysV::Msg documentation.

msgsnd ID,MSG,FLAGS

Calls the System V IPC function msgsnd to send the message MSG to the
 message queue
ID. MSG must begin with the native long integer message
 type, and be followed by the length
of the actual message, and finally
 the message itself. This kind of packing can be achieved
with pack("l! a*", $type, $message). Returns true if successful,
 or false if there is an
error. See also IPC::SysV
 and IPC::SysV::Msg documentation.

my EXPR

my TYPE EXPR

my EXPR : ATTRS

my TYPE EXPR : ATTRS

A my declares the listed variables to be local (lexically) to the
 enclosing block, file, or eval. If

Perl version 5.12.3 documentation - perlfunc

Page 41http://perldoc.perl.org

more than one value is listed,
 the list must be placed in parentheses.

The exact semantics and interface of TYPE and ATTRS are still
 evolving. TYPE is currently
bound to the use of fields pragma,
 and attributes are handled using the attributes
pragma, or starting
 from Perl 5.8.0 also via the Attribute::Handlers module. See
"Private Variables via my()" in perlsub for details, and fields, attributes, and Attribute::Handlers
.

next LABEL

next

The next command is like the continue statement in C; it starts
 the next iteration of the
loop:

 LINE: while (<STDIN>) {
 next LINE if /^#/; # discard comments
 #...
 }

Note that if there were a continue block on the above, it would get
 executed even on
discarded lines. If LABEL is omitted, the command
 refers to the innermost enclosing loop.

next cannot be used to exit a block which returns a value such as eval {}, sub {} or do
{}, and should not be used to exit
 a grep() or map() operation.

Note that a block by itself is semantically identical to a loop
 that executes once. Thus next
will exit such a block early.

See also continue for an illustration of how last, next, and redo work.

no MODULE VERSION LIST

no MODULE VERSION

no MODULE LIST

no MODULE

no VERSION

See the use function, of which no is the opposite.

oct EXPR

oct

Interprets EXPR as an octal string and returns the corresponding
 value. (If EXPR happens to
start off with 0x, interprets it as a
 hex string. If EXPR starts off with 0b, it is interpreted as a

binary string. Leading whitespace is ignored in all three cases.)
 The following will handle
decimal, binary, octal, and hex in standard
 Perl notation:

 $val = oct($val) if $val =~ /^0/;

If EXPR is omitted, uses $_. To go the other way (produce a number
 in octal), use sprintf() or
printf():

 $dec_perms = (stat("filename"))[2] & 07777;
 $oct_perm_str = sprintf "%o", $perms;

The oct() function is commonly used when a string such as 644 needs
 to be converted into a
file mode, for example. Although Perl automatically converts strings into numbers as needed,
this automatic
 conversion assumes base 10.

Leading white space is ignored without warning, as too are any trailing non-digits, such as a
decimal point (oct only handles non-negative
 integers, not negative integers or floating point).

open FILEHANDLE,EXPR

Perl version 5.12.3 documentation - perlfunc

Page 42http://perldoc.perl.org

open FILEHANDLE,MODE,EXPR

open FILEHANDLE,MODE,EXPR,LIST

open FILEHANDLE,MODE,REFERENCE

open FILEHANDLE

Opens the file whose filename is given by EXPR, and associates it with
 FILEHANDLE.

Simple examples to open a file for reading:

 open(my $fh, '<', "input.txt") or die $!;

and for writing:

 open(my $fh, '>', "output.txt") or die $!;

(The following is a comprehensive reference to open(): for a gentler
 introduction you may
consider perlopentut.)

If FILEHANDLE is an undefined scalar variable (or array or hash element)
 the variable is
assigned a reference to a new anonymous filehandle,
 otherwise if FILEHANDLE is an
expression, its value is used as the name of
 the real filehandle wanted. (This is considered a
symbolic reference, so use strict 'refs' should not be in effect.)

If EXPR is omitted, the scalar variable of the same name as the
 FILEHANDLE contains the
filename. (Note that lexical variables--those
 declared with my--will not work for this purpose; so
if you're
 using my, specify EXPR in your call to open.)

If three or more arguments are specified then the mode of opening and
 the filename are
separate. If MODE is '<' or nothing, the file
 is opened for input. If MODE is '>', the file is
truncated and
 opened for output, being created if necessary. If MODE is '>>',
 the file is
opened for appending, again being created if necessary.

You can put a '+' in front of the '>' or '<' to
 indicate that you want both read and write
access to the file; thus '+<' is almost always preferred for read/write updates--the '+>'
mode would clobber the file first. You can't usually use
 either read-write mode for updating
textfiles, since they have
 variable length records. See the -i switch in perlrun for a
 better
approach. The file is created with permissions of 0666
 modified by the process's umask
value.

These various prefixes correspond to the fopen(3) modes of 'r', 'r+', 'w', 'w+', 'a', and
'a+'.

In the two-argument (and one-argument) form of the call, the mode and
 filename should be
concatenated (in that order), possibly separated by
 spaces. You may omit the mode in these
forms when that mode is '<'.

If the filename begins with '|', the filename is interpreted as a
 command to which output is to
be piped, and if the filename ends with a '|', the filename is interpreted as a command that
pipes output to
 us. See "Using open() for IPC" in perlipc
 for more examples of this. (You are
not allowed to open to a command
 that pipes both in and out, but see IPC::Open2,
IPC::Open3,
 and "Bidirectional Communication with Another Process" in perlipc
 for
alternatives.)

For three or more arguments if MODE is '|-', the filename is
 interpreted as a command to
which output is to be piped, and if MODE
 is '-|', the filename is interpreted as a command
that pipes
 output to us. In the two-argument (and one-argument) form, one should
 replace
dash ('-') with the command.
 See "Using open() for IPC" in perlipc for more examples of
this.
 (You are not allowed to open to a command that pipes both in and
 out, but see
IPC::Open2, IPC::Open3, and "Bidirectional Communication" in perlipc for alternatives.)

In the form of pipe opens taking three or more arguments, if LIST is specified
 (extra
arguments after the command name) then LIST becomes arguments
 to the command invoked
if the platform supports it. The meaning of open with more than three arguments for non-pipe
modes is not yet
 defined, but experimental "layers" may give extra LIST arguments
 meaning.

Perl version 5.12.3 documentation - perlfunc

Page 43http://perldoc.perl.org

In the two-argument (and one-argument) form, opening '<-' or '-' opens STDIN and
opening '>-' opens STDOUT.

You may use the three-argument form of open to specify I/O layers
 (sometimes referred to as
"disciplines") to apply to the handle
 that affect how the input and output are processed (see
open and PerlIO for more details). For example:

 open(my $fh, "<:encoding(UTF-8)", "filename")
 || die "can't open UTF-8 encoded filename: $!";

opens the UTF-8 encoded file containing Unicode characters;
 see perluniintro. Note that if
layers are specified in the
 three-argument form, then default layers stored in ${^OPEN} (see
perlvar;
 usually set by the open pragma or the switch -CioD) are ignored.

Open returns nonzero on success, the undefined value otherwise. If
 the open involved a pipe,
the return value happens to be the pid of
 the subprocess.

If you're running Perl on a system that distinguishes between text
 files and binary files, then
you should check out binmode for tips
 for dealing with this. The key distinction between
systems that need binmode and those that don't is their text file formats. Systems
 like Unix,
Mac OS, and Plan 9, that end lines with a single
 character and encode that character in C as
"\n" do not
 need binmode. The rest need it.

When opening a file, it's seldom a good idea to continue if the request failed, so open is
frequently used with die. Even if die won't do what you want (say, in a CGI script,
 where you
want to format a suitable error message (but there are
 modules that can help with that
problem)) always check
 the return value from opening a file.

As a special case the 3-arg form with a read/write mode and the third
 argument being undef:

 open(my $tmp, "+>", undef) or die ...

opens a filehandle to an anonymous temporary file. Also using "+<"
 works for symmetry, but
you really should consider writing something
 to the temporary file first. You will need to seek()
to do the
 reading.

Since v5.8.0, Perl has built using PerlIO by default. Unless you've
 changed this (i.e., Configure
-Uuseperlio), you can open filehandles directly to Perl scalars via:

 open($fh, '>', \$variable) || ..

To (re)open STDOUT or STDERR as an in-memory file, close it first:

 close STDOUT;
 open STDOUT, '>', \$variable or die "Can't open STDOUT: $!";

General examples:

 $ARTICLE = 100;
 open ARTICLE or die "Can't find article $ARTICLE: $!\n";
 while (<ARTICLE>) {...

 open(LOG, '>>/usr/spool/news/twitlog'); # (log is reserved)
 # if the open fails, output is discarded

 open(my $dbase, '+<', 'dbase.mine') # open for update
 or die "Can't open 'dbase.mine' for update: $!";

 open(my $dbase, '+<dbase.mine') # ditto
 or die "Can't open 'dbase.mine' for update: $!";

 open(ARTICLE, '-|', "caesar <$article") # decrypt article
 or die "Can't start caesar: $!";

Perl version 5.12.3 documentation - perlfunc

Page 44http://perldoc.perl.org

 open(ARTICLE, "caesar <$article |") # ditto
 or die "Can't start caesar: $!";

 open(EXTRACT, "|sort >Tmp$$") # $$ is our process id
 or die "Can't start sort: $!";

 # in-memory files
 open(MEMORY,'>', \$var)
 or die "Can't open memory file: $!";
 print MEMORY "foo!\n"; # output will appear in
$var

 # process argument list of files along with any includes

 foreach $file (@ARGV) {
 process($file, 'fh00');
 }

 sub process {
 my($filename, $input) = @_;
 $input++; # this is a string increment
 unless (open($input, $filename)) {
 print STDERR "Can't open $filename: $!\n";
 return;
 }

 local $_;
 while (<$input>) { # note use of indirection
 if (/^#include "(.*)"/) {
 process($1, $input);
 next;
 }
 #... # whatever
 }
 }

See perliol for detailed info on PerlIO.

You may also, in the Bourne shell tradition, specify an EXPR beginning
 with '>&', in which
case the rest of the string is interpreted
 as the name of a filehandle (or file descriptor, if
numeric) to be
 duped (as dup(2)) and opened. You may use & after >, >>, <, +>, +>>, and
+<.
 The mode you specify should match the mode of the original filehandle.
 (Duping a
filehandle does not take into account any existing contents
 of IO buffers.) If you use the 3-arg
form then you can pass either a
 number, the name of a filehandle or the normal "reference to
a glob".

Here is a script that saves, redirects, and restores STDOUT and STDERR using various
methods:

 #!/usr/bin/perl
 open my $oldout, ">&STDOUT" or die "Can't dup STDOUT: $!";
 open OLDERR, ">&", *STDERR or die "Can't dup STDERR: $!";

 open STDOUT, '>', "foo.out" or die "Can't redirect STDOUT: $!";
 open STDERR, ">&STDOUT" or die "Can't dup STDOUT: $!";

 select STDERR; $| = 1; # make unbuffered
 select STDOUT; $| = 1; # make unbuffered

Perl version 5.12.3 documentation - perlfunc

Page 45http://perldoc.perl.org

 print STDOUT "stdout 1\n"; # this works for
 print STDERR "stderr 1\n"; # subprocesses too

 open STDOUT, ">&", $oldout or die "Can't dup \$oldout: $!";
 open STDERR, ">&OLDERR" or die "Can't dup OLDERR: $!";

 print STDOUT "stdout 2\n";
 print STDERR "stderr 2\n";

If you specify '<&=X', where X is a file descriptor number
 or a filehandle, then Perl will do an
equivalent of C's fdopen of
 that file descriptor (and not call dup(2)); this is more

parsimonious of file descriptors. For example:

 # open for input, reusing the fileno of $fd
 open(FILEHANDLE, "<&=$fd")

or

 open(FILEHANDLE, "<&=", $fd)

or

 # open for append, using the fileno of OLDFH
 open(FH, ">>&=", OLDFH)

or

 open(FH, ">>&=OLDFH")

Being parsimonious on filehandles is also useful (besides being
 parsimonious) for example
when something is dependent on file
 descriptors, like for example locking using flock(). If you
do just open(A, '>>&B'), the filehandle A will not have the same file
 descriptor as B, and
therefore flock(A) will not flock(B), and vice
 versa. But with open(A, '>>&=B') the
filehandles will share
 the same file descriptor.

Note that if you are using Perls older than 5.8.0, Perl will be using
 the standard C libraries'
fdopen() to implement the "=" functionality.
 On many Unix systems fdopen() fails when file
descriptors exceed a
 certain value, typically 255. For Perls 5.8.0 and later, PerlIO is
 most
often the default.

You can see whether Perl has been compiled with PerlIO or not by
 running perl -V and
looking for useperlio= line. If useperlio
 is define, you have PerlIO, otherwise you don't.

If you open a pipe on the command '-', i.e., either '|-' or '-|'
 with 2-arguments (or
1-argument) form of open(), then
 there is an implicit fork done, and the return value of open is
the pid
 of the child within the parent process, and 0 within the child
 process. (Use
defined($pid) to determine whether the open was successful.)
 The filehandle behaves
normally for the parent, but I/O to that
 filehandle is piped from/to the STDOUT/STDIN of the
child process.
 In the child process, the filehandle isn't opened--I/O happens from/to
 the new
STDOUT/STDIN. Typically this is used like the normal
 piped open when you want to exercise
more control over just how the
 pipe command gets executed, such as when running setuid
and
 you don't want to have to scan shell commands for metacharacters.

The following triples are more or less equivalent:

 open(FOO, "|tr '[a-z]' '[A-Z]'");
 open(FOO, '|-', "tr '[a-z]' '[A-Z]'");
 open(FOO, '|-') || exec 'tr', '[a-z]', '[A-Z]';
 open(FOO, '|-', "tr", '[a-z]', '[A-Z]');

 open(FOO, "cat -n '$file'|");
 open(FOO, '-|', "cat -n '$file'");

Perl version 5.12.3 documentation - perlfunc

Page 46http://perldoc.perl.org

 open(FOO, '-|') || exec 'cat', '-n', $file;
 open(FOO, '-|', "cat", '-n', $file);

The last example in each block shows the pipe as "list form", which is
 not yet supported on all
platforms. A good rule of thumb is that if
 your platform has true fork() (in other words, if your
platform is
 Unix) you can use the list form.

See "Safe Pipe Opens" in perlipc for more examples of this.

Beginning with v5.6.0, Perl will attempt to flush all files opened for
 output before any operation
that may do a fork, but this may not be
 supported on some platforms (see perlport). To be
safe, you may need
 to set $| ($AUTOFLUSH in English) or call the autoflush() method
 of
IO::Handle on any open handles.

On systems that support a close-on-exec flag on files, the flag will
 be set for the newly opened
file descriptor as determined by the value
 of $^F. See "$^F" in perlvar.

Closing any piped filehandle causes the parent process to wait for the
 child to finish, and
returns the status value in $? and ${^CHILD_ERROR_NATIVE}.

The filename passed to 2-argument (or 1-argument) form of open() will
 have leading and
trailing whitespace deleted, and the normal
 redirection characters honored. This property,
known as "magic open",
 can often be used to good effect. A user could specify a filename of
"rsh cat file |", or you could change certain filenames as needed:

 $filename =~ s/(.*\.gz)\s*$/gzip -dc < $1|/;
 open(FH, $filename) or die "Can't open $filename: $!";

Use 3-argument form to open a file with arbitrary weird characters in it,

 open(FOO, '<', $file);

otherwise it's necessary to protect any leading and trailing whitespace:

 $file =~ s#^(\s)#./$1#;
 open(FOO, "< $file\0");

(this may not work on some bizarre filesystems). One should
 conscientiously choose between
the magic and 3-arguments form
 of open():

 open IN, $ARGV[0];

will allow the user to specify an argument of the form "rsh cat file |",
 but will not work
on a filename that happens to have a trailing space, while

 open IN, '<', $ARGV[0];

will have exactly the opposite restrictions.

If you want a "real" C open (see open(2) on your system), then you
 should use the sysopen
function, which involves no such magic (but
 may use subtly different filemodes than Perl
open(), which is mapped
 to C fopen()). This is
 another way to protect your filenames from
interpretation. For example:

 use IO::Handle;
 sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL)
 or die "sysopen $path: $!";
 $oldfh = select(HANDLE); $| = 1; select($oldfh);
 print HANDLE "stuff $$\n";
 seek(HANDLE, 0, 0);
 print "File contains: ", <HANDLE>;

Using the constructor from the IO::Handle package (or one of its
 subclasses, such as
IO::File or IO::Socket), you can generate anonymous
 filehandles that have the scope of

Perl version 5.12.3 documentation - perlfunc

Page 47http://perldoc.perl.org

whatever variables hold references to
 them, and automatically close whenever and however
you leave that scope:

 use IO::File;
 #...
 sub read_myfile_munged {
 my $ALL = shift;
 my $handle = IO::File->new;
 open($handle, "myfile") or die "myfile: $!";
 $first = <$handle>
 or return (); # Automatically closed here.
 mung $first or die "mung failed"; # Or here.
 return $first, <$handle> if $ALL; # Or here.
 $first; # Or here.
 }

See seek for some details about mixing reading and writing.

opendir DIRHANDLE,EXPR

Opens a directory named EXPR for processing by readdir, telldir, seekdir,
rewinddir, and closedir. Returns true if successful.
 DIRHANDLE may be an expression
whose value can be used as an indirect
 dirhandle, usually the real dirhandle name. If
DIRHANDLE is an undefined
 scalar variable (or array or hash element), the variable is
assigned a
 reference to a new anonymous dirhandle.
 DIRHANDLEs have their own
namespace separate from FILEHANDLEs.

See example at readdir.

ord EXPR

ord

Returns the numeric (the native 8-bit encoding, like ASCII or EBCDIC,
 or Unicode) value of
the first character of EXPR. If EXPR is omitted,
 uses $_.

For the reverse, see chr.
 See perlunicode for more about Unicode.

our EXPR

our TYPE EXPR

our EXPR : ATTRS

our TYPE EXPR : ATTRS

our associates a simple name with a package variable in the current
 package for use within
the current scope. When use strict 'vars' is in
 effect, our lets you use declared global
variables without qualifying
 them with package names, within the lexical scope of the our
declaration.
 In this way our differs from use vars, which is package scoped.

Unlike my, which both allocates storage for a variable and associates
 a simple name with that
storage for use within the current scope, our
 associates a simple name with a package
variable in the current package,
 for use within the current scope. In other words, our has the
same
 scoping rules as my, but does not necessarily create a
 variable.

If more than one value is listed, the list must be placed
 in parentheses.

 our $foo;
 our($bar, $baz);

An our declaration declares a global variable that will be visible
 across its entire lexical scope,
even across package boundaries. The
 package in which the variable is entered is determined
at the point
 of the declaration, not at the point of use. This means the following
 behavior holds:

 package Foo;

Perl version 5.12.3 documentation - perlfunc

Page 48http://perldoc.perl.org

 our $bar; # declares $Foo::bar for rest of lexical scope
 $bar = 20;

 package Bar;
 print $bar; # prints 20, as it refers to $Foo::bar

Multiple our declarations with the same name in the same lexical
 scope are allowed if they
are in different packages. If they happen
 to be in the same package, Perl will emit warnings if
you have asked
 for them, just like multiple my declarations. Unlike a second my declaration,
which will bind the name to a fresh variable, a
 second our declaration in the same package, in
the same scope, is
 merely redundant.

 use warnings;
 package Foo;
 our $bar; # declares $Foo::bar for rest of lexical scope
 $bar = 20;

 package Bar;
 our $bar = 30; # declares $Bar::bar for rest of lexical scope
 print $bar; # prints 30

 our $bar; # emits warning but has no other effect
 print $bar; # still prints 30

An our declaration may also have a list of attributes associated
 with it.

The exact semantics and interface of TYPE and ATTRS are still
 evolving. TYPE is currently
bound to the use of fields pragma,
 and attributes are handled using the attributes
pragma, or starting
 from Perl 5.8.0 also via the Attribute::Handlers module. See
"Private Variables via my()" in perlsub for details, and fields, attributes, and Attribute::Handlers
.

pack TEMPLATE,LIST

Takes a LIST of values and converts it into a string using the rules
 given by the TEMPLATE.
The resulting string is the concatenation of
 the converted values. Typically, each converted
value looks
 like its machine-level representation. For example, on 32-bit machines
 an integer
may be represented by a sequence of 4 bytes, which will in
 Perl be presented as a string
that's 4 characters long.

See perlpacktut for an introduction to this function.

The TEMPLATE is a sequence of characters that give the order and type
 of values, as follows:

 a A string with arbitrary binary data, will be null padded.
 A A text (ASCII) string, will be space padded.
 Z A null-terminated (ASCIZ) string, will be null padded.

 b A bit string (ascending bit order inside each byte, like
vec()).
 B A bit string (descending bit order inside each byte).
 h A hex string (low nybble first).
 H A hex string (high nybble first).

 c A signed char (8-bit) value.
 C An unsigned char (octet) value.
 W An unsigned char value (can be greater than 255).

 s A signed short (16-bit) value.
 S An unsigned short value.

Perl version 5.12.3 documentation - perlfunc

Page 49http://perldoc.perl.org

 l A signed long (32-bit) value.
 L An unsigned long value.

 q A signed quad (64-bit) value.
 Q An unsigned quad value.
 (Quads are available only if your system supports 64-bit
 integer values _and_ if Perl has been compiled to support
those.
 Raises an exception otherwise.)

 i A signed integer value.
 I A unsigned integer value.
 (This 'integer' is _at_least_ 32 bits wide. Its exact
 size depends on what a local C compiler calls 'int'.)

 n An unsigned short (16-bit) in "network" (big-endian) order.
 N An unsigned long (32-bit) in "network" (big-endian) order.
 v An unsigned short (16-bit) in "VAX" (little-endian) order.
 V An unsigned long (32-bit) in "VAX" (little-endian) order.

 j A Perl internal signed integer value (IV).
 J A Perl internal unsigned integer value (UV).

 f A single-precision float in native format.
 d A double-precision float in native format.

 F A Perl internal floating-point value (NV) in native format
 D A float of long-double precision in native format.
 (Long doubles are available only if your system supports long
 double values _and_ if Perl has been compiled to support
those.
 Raises an exception otherwise.)

 p A pointer to a null-terminated string.
 P A pointer to a structure (fixed-length string).

 u A uuencoded string.
 U A Unicode character number. Encodes to a character in
character mode
 and UTF-8 (or UTF-EBCDIC in EBCDIC platforms) in byte mode.

 w A BER compressed integer (not an ASN.1 BER, see perlpacktut
for
 details). Its bytes represent an unsigned integer in base
128,
 most significant digit first, with as few digits as possible.
 Bit
 eight (the high bit) is set on each byte except the last.

 x A null byte (a.k.a ASCII NUL, "\000", chr(0))
 X Back up a byte.
 @ Null-fill or truncate to absolute position, counted from the
 start of the innermost ()-group.
 . Null-fill or truncate to absolute position specified by the
value.
 (Start of a ()-group.

Perl version 5.12.3 documentation - perlfunc

Page 50http://perldoc.perl.org

One or more modifiers below may optionally follow certain letters in the
 TEMPLATE (the
second column lists letters for which the modifier is valid):

 ! sSlLiI Forces native (short, long, int) sizes instead
 of fixed (16-/32-bit) sizes.

 xX Make x and X act as alignment commands.

 nNvV Treat integers as signed instead of unsigned.

 @. Specify position as byte offset in the internal
 representation of the packed string. Efficient but
 dangerous.

 > sSiIlLqQ Force big-endian byte-order on the type.
 jJfFdDpP (The "big end" touches the construct.)

 < sSiIlLqQ Force little-endian byte-order on the type.
 jJfFdDpP (The "little end" touches the construct.)

The > and < modifiers can also be used on () groups to force a particular byte-order on all
components in that group, including all its subgroups.

The following rules apply:

Each letter may optionally be followed by a number indicating the repeat
 count. A
numeric repeat count may optionally be enclosed in brackets, as
 in pack("C[80]",
@arr). The repeat count gobbles that many values from
 the LIST when used with all
format types other than a, A, Z, b, B, h, H, @, ., x, X, and P, where it means
 something
else, dscribed below. Supplying a * for the repeat count
 instead of a number means to
use however many items are left, except for:

@, x, and X, where it is equivalent to 0.

<.>, where it means relative to the start of the string.

u, where it is equivalent to 1 (or 45, which here is equivalent).

One can replace a numeric repeat count with a template letter enclosed in
 brackets to
use the packed byte length of the bracketed template for the
 repeat count.

For example, the template x[L] skips as many bytes as in a packed long,
 and the
template "$t X[$t] $t" unpacks twice whatever $t (when
 variable-expanded)
unpacks. If the template in brackets contains alignment
 commands (such as x![d]),
its packed length is calculated as if the
 start of the template had the maximal possible
alignment.

When used with Z, a * as the repeat count is guaranteed to add a
 trailing null byte, so
the resulting string is always one byte longer than
 the byte length of the item itself.

When used with @, the repeat count represents an offset from the start
 of the
innermost () group.

When used with ., the repeat count determines the starting position to
 calculate the
value offset as follows:

If the repeat count is 0, it's relative to the current position.

If the repeat count is *, the offset is relative to the start of the
 packed string.

And if it's an integer n, the offset is relative to the start of the nth innermost ()
group, or to the start of the string if n is
 bigger then the group level.

The repeat count for u is interpreted as the maximal number of bytes
 to encode per

Perl version 5.12.3 documentation - perlfunc

Page 51http://perldoc.perl.org

line of output, with 0, 1 and 2 replaced by 45. The repeat count should not be more
than 65.

The a, A, and Z types gobble just one value, but pack it as a
 string of length count,
padding with nulls or spaces as needed. When
 unpacking, A strips trailing whitespace
and nulls, Z strips everything
 after the first null, and a returns data without any sort of
trimming.

If the value to pack is too long, the result is truncated. If it's too
 long and an explicit
count is provided, Z packs only $count-1 bytes,
 followed by a null byte. Thus Z
always packs a trailing null, except
 for when the count is 0.

Likewise, the b and B formats pack a string that's that many bits long.
 Each such
format generates 1 bit of the result.

Each result bit is based on the least-significant bit of the corresponding
 input
character, i.e., on ord($char)%2. In particular, characters "0"
 and "1" generate bits
0 and 1, as do characters "\000" and "\001".

Starting from the beginning of the input string, each 8-tuple
 of characters is converted
to 1 character of output. With format b,
 the first character of the 8-tuple determines the
least-significant bit of a
 character; with format B, it determines the most-significant bit
of
 a character.

If the length of the input string is not evenly divisible by 8, the
 remainder is packed as if
the input string were padded by null characters
 at the end. Similarly during unpacking,
"extra" bits are ignored.

If the input string is longer than needed, remaining characters are ignored.

A * for the repeat count uses all characters of the input field. On unpacking, bits are
converted to a string of "0"s and "1"s.

The h and H formats pack a string that many nybbles (4-bit groups,
 representable as
hexadecimal digits, "0".."9" "a".."f") long.

For each such format, pack() generates 4 bits of the result.
 With non-alphabetical
characters, the result is based on the 4 least-significant
 bits of the input character, i.e.,
on ord($char)%16. In particular,
 characters "0" and "1" generate nybbles 0 and 1,
as do bytes "\0" and "\1". For characters "a".."f" and "A".."F", the result
 is
compatible with the usual hexadecimal digits, so that "a" and "A" both generate the
nybble 0xa==10. Do not use any characters
 but these with this format.

Starting from the beginning of the template to pack(), each pair
 of characters is
converted to 1 character of output. With format h, the
 first character of the pair
determines the least-significant nybble of the
 output character; with format H, it
determines the most-significant
 nybble.

If the length of the input string is not even, it behaves as if padded by
 a null character
at the end. Similarly, "extra" nybbles are ignored during
 unpacking.

If the input string is longer than needed, extra characters are ignored.

A * for the repeat count uses all characters of the input field. For
 unpack(), nybbles are
converted to a string of hexadecimal digits.

The p format packs a pointer to a null-terminated string. You are
 responsible for
ensuring that the string is not a temporary value, as that
 could potentially get
deallocated before you got around to using the packed
 result. The P format packs a
pointer to a structure of the size indicated
 by the length. A null pointer is created if the
corresponding value for p or P is undef; similarly with unpack(), where a null pointer

unpacks into undef.

If your system has a strange pointer size--meaning a pointer is neither as
 big as an int
nor as big as a long--it may not be possible to pack or
 unpack pointers in big- or

Perl version 5.12.3 documentation - perlfunc

Page 52http://perldoc.perl.org

little-endian byte order. Attempting to do
 so raises an exception.

The / template character allows packing and unpacking of a sequence of
 items where
the packed structure contains a packed item count followed by
 the packed items
themselves. This is useful when the structure you're
 unpacking has encoded the sizes
or repeat counts for some of its fields
 within the structure itself as separate fields.

For pack, you write length-item/sequence-item, and the length-item describes how
the length value is packed. Formats likely
 to be of most use are integer-packing ones
like n for Java strings, w for ASN.1 or SNMP, and N for Sun XDR.

For pack, sequence-item may have a repeat count, in which case
 the minimum of that
and the number of available items is used as the argument
 for length-item. If it has no
repeat count or uses a '*', the number
 of available items is used.

For unpack, an internal stack of integer arguments unpacked so far is
 used. You write
/sequence-item and the repeat count is obtained by
 popping off the last element from
the stack. The sequence-item must not
 have a repeat count.

If sequence-item refers to a string type ("A", "a", or "Z"),
 the length-item is the string
length, not the number of strings. With
 an explicit repeat count for pack, the packed
string is adjusted to that
 length. For example:

 unpack("W/a", "\04Gurusamy") gives ("Guru")
 unpack("a3/A A*", "007 Bond J ") gives (" Bond", "J")
 unpack("a3 x2 /A A*", "007: Bond, J.") gives ("Bond, J",
".")

 pack("n/a* w/a","hello,","world") gives
"\000\006hello,\005world"
 pack("a/W2", ord("a") .. ord("z")) gives "2ab"

The length-item is not returned explicitly from unpack.

Supplying a count to the length-item format letter is only useful with A, a, or Z. Packing
with a length-item of a or Z may
 introduce "\000" characters, which Perl does not
regard as legal in
 numeric strings.

The integer types s, S, l, and L may be
 followed by a ! modifier to specify native
shorts or
 longs. As shown in the example above, a bare l means
 exactly 32 bits,
although the native long as seen by the local C compiler
 may be larger. This is mainly
an issue on 64-bit platforms. You can
 see whether using ! makes any difference this
way:

 printf "format s is %d, s! is %d\n",
	 length pack("s"), length pack("s!");

 printf "format l is %d, l! is %d\n",
	 length pack("l"), length pack("l!");

i! and I! are also allowed, but only for completeness' sake:
 they are identical to i
and I.

The actual sizes (in bytes) of native shorts, ints, longs, and long
 longs on the platform
where Perl was built are also available from
 the command line:

 $ perl -V:{short,int,long{,long}}size
 shortsize='2';
 intsize='4';
 longsize='4';
 longlongsize='8';

or programmatically via the Config module:

Perl version 5.12.3 documentation - perlfunc

Page 53http://perldoc.perl.org

 use Config;
 print $Config{shortsize}, "\n";
 print $Config{intsize}, "\n";
 print $Config{longsize}, "\n";
 print $Config{longlongsize}, "\n";

$Config{longlongsize} is undefined on systems without long long support.

The integer formats s, S, i, I, l, L, j, and J are
 inherently non-portable between
processors and operating systems because
 they obey native byteorder and
endianness. For example, a 4-byte integer
 0x12345678 (305419896 decimal) would
be ordered natively (arranged in and
 handled by the CPU registers) into bytes as

 0x12 0x34 0x56 0x78 # big-endian
 0x78 0x56 0x34 0x12 # little-endian

Basically, Intel and VAX CPUs are little-endian, while everybody else,
 including
Motorola m68k/88k, PPC, Sparc, HP PA, Power, and Cray, are
 big-endian. Alpha and
MIPS can be either: Digital/Compaq used/uses them in
 little-endian mode, but
SGI/Cray uses them in big-endian mode.

The names big-endian and little-endian are comic references to the
 egg-eating habits
of the little-endian Lilliputians and the big-endian
 Blefuscudians from the classic
Jonathan Swift satire, Gulliver's Travels.
 This entered computer lingo via the paper
"On Holy Wars and a Plea for
 Peace" by Danny Cohen, USC/ISI IEN 137, April 1,
1980.

Some systems may have even weirder byte orders such as

 0x56 0x78 0x12 0x34
 0x34 0x12 0x78 0x56

You can determine your system endianness with this incantation:

 printf("%#02x ", $_) for unpack("W*", pack L=>0x12345678);

The byteorder on the platform where Perl was built is also available
 via Config:

 use Config;
 print "$Config{byteorder}\n";

or from the command line:

 $ perl -V:byteorder

Byteorders "1234" and "12345678" are little-endian; "4321"
 and "87654321" are
big-endian.

For portably packed integers, either use the formats n, N, v, and V or else use the >
and < modifiers described
 immediately below. See also perlport.

Starting with Perl 5.9.2, integer and floating-point formats, along with
 the p and P
formats and () groups, may all be followed by the > or < endianness modifiers to
respectively enforce big-
 or little-endian byte-order. These modifiers are especially
useful given how n, N, v and V don't cover signed integers, 64-bit integers, or
floating-point values.

Here are some concerns to keep in mind when using endianness modifier:

Exchanging signed integers between different platforms works only when all
platforms store them in the same format. Most platforms store
 signed integers
in two's-complement notation, so usually this is not an issue.

The > or < modifiers can only be used on floating-point
 formats on big- or

Perl version 5.12.3 documentation - perlfunc

Page 54http://perldoc.perl.org

little-endian machines. Otherwise, attempting to
 use them raises an exception.

Forcing big- or little-endian byte-order on floating-point values for
 data
exchange can work only if all platforms use the same
 binary representation
such as IEEE floating-point. Even if all
 platforms are using IEEE, there may still
be subtle differences. Being able
 to use > or < on floating-point values can be
useful,
 but also dangerous if you don't know exactly what you're doing.
 It is not
a general way to portably store floating-point values.

When using > or < on a () group, this affects
 all types inside the group that
accept byte-order modifiers,
 including all subgroups. It is silently ignored for all
other
 types. You are not allowed to override the byte-order within a group
 that
already has a byte-order modifier suffix.

Real numbers (floats and doubles) are in native machine format only.
 Due to the
multiplicity of floating-point formats and the lack of a
 standard "network" representation
for them, no facility for interchange has been
 made. This means that packed
floating-point data written on one machine
 may not be readable on another, even if
both use IEEE floating-point
 arithmetic (because the endianness of the memory
representation is not part
 of the IEEE spec). See also perlport.

If you know exactly what you're doing, you can use the > or <
 modifiers to force big- or
little-endian byte-order on floating-point values.

Because Perl uses doubles (or long doubles, if configured) internally for
 all numeric
calculation, converting from double into float and thence to double again loses
precision, so unpack("f", pack("f", $foo))
 will not in general equal $foo.

Pack and unpack can operate in two modes: character mode (C0 mode) where
 the
packed string is processed per character, and UTF-8 mode (U0 mode)
 where the
packed string is processed in its UTF-8-encoded Unicode form on
 a byte-by-byte
basis. Character mode is the default unless the format string starts with U. You can
always switch mode mid-format with an explicit C0 or U0 in the format. This mode
remains in effect until the next mode change, or until the end of the () group it
(directly) applies to.

You must yourself do any alignment or padding by inserting, for example,
 enough "x"
es while packing. There is no way for pack() and unpack()
 to know where characters
are going to or coming from, so they handle their output and input as flat sequences of
characters.

A () group is a sub-TEMPLATE enclosed in parentheses. A group may
 take a repeat
count either as postfix, or for unpack(), also via the /
 template character. Within each
repetition of a group, positioning with @ starts over at 0. Therefore, the result of

 pack("@1A((@2A)@3A)", qw[X Y Z])

is the string "\0X\0\0YZ".

x and X accept the ! modifier to act as alignment commands: they
 jump forward or
back to the closest position aligned at a multiple of count
 characters. For example, to
pack() or unpack() a C structure like

 struct {
	 char c; /* one signed, 8-bit character */
	 double d;
	 char cc[2];
 }

one may need to use the template c x![d] d c[2]. This assumes that
 doubles
must be aligned to the size of double.

Perl version 5.12.3 documentation - perlfunc

Page 55http://perldoc.perl.org

For alignment commands, a count of 0 is equivalent to a count of 1;
 both are
no-ops.

n, N, v and V accept the ! modifier to
 represent signed 16-/32-bit integers in
big-/little-endian order.
 This is portable only when all platforms sharing packed data
use the
 same binary representation for signed integers; for example, when all

platforms use two's-complement representation.

Comments can be embedded in a TEMPLATE using # through the end of line.
 White
space can separate pack codes from each other, but modifiers and
 repeat counts must
follow immediately. Breaking complex templates into
 individual line-by-line
components, suitably annotated, can do as much to
 improve legibility and
maintainability of pack/unpack formats as /x can
 for complicated pattern matches.

If TEMPLATE requires more arguments that pack() is given, pack()
 assumes additional
"" arguments. If TEMPLATE requires fewer arguments
 than given, extra arguments
are ignored.

Examples:

 $foo = pack("WWWW",65,66,67,68);
 # foo eq "ABCD"
 $foo = pack("W4",65,66,67,68);
 # same thing
 $foo = pack("W4",0x24b6,0x24b7,0x24b8,0x24b9);
 # same thing with Unicode circled letters.
 $foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
 # same thing with Unicode circled letters. You don't get the
UTF-8
 # bytes because the U at the start of the format caused a switch
to
 # U0-mode, so the UTF-8 bytes get joined into characters
 $foo = pack("C0U4",0x24b6,0x24b7,0x24b8,0x24b9);
 # foo eq "\xe2\x92\xb6\xe2\x92\xb7\xe2\x92\xb8\xe2\x92\xb9"
 # This is the UTF-8 encoding of the string in the previous
example

 $foo = pack("ccxxcc",65,66,67,68);
 # foo eq "AB\0\0CD"

 # NOTE: The examples above featuring "W" and "c" are true
 # only on ASCII and ASCII-derived systems such as ISO Latin 1
 # and UTF-8. On EBCDIC systems, the first example would be
 # $foo = pack("WWWW",193,194,195,196);

 $foo = pack("s2",1,2);
 # "\1\0\2\0" on little-endian
 # "\0\1\0\2" on big-endian

 $foo = pack("a4","abcd","x","y","z");
 # "abcd"

 $foo = pack("aaaa","abcd","x","y","z");
 # "axyz"

 $foo = pack("a14","abcdefg");
 # "abcdefg\0\0\0\0\0\0\0"

Perl version 5.12.3 documentation - perlfunc

Page 56http://perldoc.perl.org

 $foo = pack("i9pl", gmtime);
 # a real struct tm (on my system anyway)

 $utmp_template = "Z8 Z8 Z16 L";
 $utmp = pack($utmp_template, @utmp1);
 # a struct utmp (BSDish)

 @utmp2 = unpack($utmp_template, $utmp);
 # "@utmp1" eq "@utmp2"

 sub bintodec {
 unpack("N", pack("B32", substr("0" x 32 . shift, -32)));
 }

 $foo = pack('sx2l', 12, 34);
 # short 12, two zero bytes padding, long 34
 $bar = pack('s@4l', 12, 34);
 # short 12, zero fill to position 4, long 34
 # $foo eq $bar
 $baz = pack('s.l', 12, 4, 34);
 # short 12, zero fill to position 4, long 34

 $foo = pack('nN', 42, 4711);
 # pack big-endian 16- and 32-bit unsigned integers
 $foo = pack('S>L>', 42, 4711);
 # exactly the same
 $foo = pack('s<l<', -42, 4711);
 # pack little-endian 16- and 32-bit signed integers
 $foo = pack('(sl)<', -42, 4711);
 # exactly the same

The same template may generally also be used in unpack().

package NAMESPACE VERSION

package NAMESPACE

Declares the compilation unit as being in the given namespace. The scope
 of the package
declaration is from the declaration itself through the end
 of the enclosing block, file, or eval
(the same as the my operator).
 All further unqualified dynamic identifiers will be in this
namespace.
 A package statement affects dynamic variables only, including those
 you've used
local on, but not lexical variables, which are created
 with my (or our (or state)). Typically it
would be the first declaration in a file included by require or use. You can switch into a

package in more than one place, since this only determines which default symbol table the
compiler uses for the rest of that block. You can refer to
 identifiers in other packages than the
current one by prefixing the identifier
 with the package name and a double colon, as in
$SomePack::var
 or ThatPack::INPUT_HANDLE. If package name is omitted, the main

package as assumed. That is, $::sail is equivalent to $main::sail (as well as to
$main'sail, still seen in ancient
 code, mostly from Perl 4).

If VERSION is provided, package sets the $VERSION variable in the given
 namespace to a
version object with the VERSION provided. VERSION must be a
 "strict" style version number
as defined by the version module: a positive
 decimal number (integer or decimal-fraction)
without exponentiation or else a
 dotted-decimal v-string with a leading 'v' character and at
least three
 components. You should set $VERSION only once per package.

See "Packages" in perlmod for more information about packages, modules,
 and classes. See
perlsub for other scoping issues.

Perl version 5.12.3 documentation - perlfunc

Page 57http://perldoc.perl.org

pipe READHANDLE,WRITEHANDLE

Opens a pair of connected pipes like the corresponding system call.
 Note that if you set up a
loop of piped processes, deadlock can occur
 unless you are very careful. In addition, note that
Perl's pipes use
 IO buffering, so you may need to set $| to flush your WRITEHANDLE
 after
each command, depending on the application.

See IPC::Open2, IPC::Open3, and "Bidirectional Communication" in perlipc
 for examples of
such things.

On systems that support a close-on-exec flag on files, that flag is set
 on all newly opened file
descriptors whose filenos are higher than the current value of $^F (by default 2 for STDERR
). See "$^F" in perlvar.

pop ARRAY

pop

Pops and returns the last value of the array, shortening the array by
 one element.

Returns the undefined value if the array is empty, although this may also
 happen at other
times. If ARRAY is omitted, pops the @ARGV array in the
 main program, but the @_ array in
subroutines, just like shift.

pos SCALAR

pos

Returns the offset of where the last m//g search left off for the variable
 in question ($_ is used
when the variable is not specified). Note that
 0 is a valid match offset. undef indicates that
the search position
 is reset (usually due to match failure, but can also be because no match
has
 yet been run on the scalar). pos directly accesses the location used
 by the regexp engine
to store the offset, so assigning to pos will change
 that offset, and so will also influence the \G
zero-width assertion in
 regular expressions. Because a failed m//gc match doesn't reset the
offset,
 the return from pos won't change either in this case. See perlre and perlop.

print FILEHANDLE LIST

print LIST

print

Prints a string or a list of strings. Returns true if successful.
 FILEHANDLE may be a scalar
variable containing
 the name of or a reference to the filehandle, thus introducing
 one level of
indirection. (NOTE: If FILEHANDLE is a variable and
 the next token is a term, it may be
misinterpreted as an operator
 unless you interpose a + or put parentheses around the
arguments.)
 If FILEHANDLE is omitted, prints to standard output by default, or
 to the last
selected output channel; see select. If LIST is
 also omitted, prints $_ to the currently selected
output handle.
 To set the default output handle to something other than STDOUT
 use the
select operation. The current value of $, (if any) is
 printed between each LIST item. The
current value of $\ (if
 any) is printed after the entire LIST has been printed. Because
 print
takes a LIST, anything in the LIST is evaluated in list
 context, and any subroutine that you call
will have one or more of
 its expressions evaluated in list context. Also be careful not to
 follow
the print keyword with a left parenthesis unless you want
 the corresponding right parenthesis
to terminate the arguments to
 the print; put parentheses around all the arguments (or
interpose a +, but that doesn't look as good).

Note that if you're storing FILEHANDLEs in an array, or if you're using
 any other expression
more complex than a scalar variable to retrieve it,
 you will have to use a block returning the
filehandle value instead:

 print { $files[$i] } "stuff\n";
 print { $OK ? STDOUT : STDERR } "stuff\n";

Printing to a closed pipe or socket will generate a SIGPIPE signal. See perlipc for more on
signal handling.

Perl version 5.12.3 documentation - perlfunc

Page 58http://perldoc.perl.org

printf FILEHANDLE FORMAT, LIST

printf FORMAT, LIST

Equivalent to print FILEHANDLE sprintf(FORMAT, LIST), except that $\
 (the output
record separator) is not appended. The first argument
 of the list will be interpreted as the
printf format. See sprintf
 for an explanation of the format argument. If use locale is in
effect,
 and POSIX::setlocale() has been called, the character used for the decimal
 separator in
formatted floating-point numbers is affected by the LC_NUMERIC
 locale. See perllocale and
POSIX.

Don't fall into the trap of using a printf when a simple print would do. The print is more
efficient and less
 error prone.

prototype FUNCTION

Returns the prototype of a function as a string (or undef if the
 function has no prototype).
FUNCTION is a reference to, or the name of,
 the function whose prototype you want to
retrieve.

If FUNCTION is a string starting with CORE::, the rest is taken as a
 name for a Perl builtin. If
the builtin is not overridable (such as qw//) or if its arguments cannot be adequately
expressed by a prototype
 (such as system), prototype() returns undef, because the builtin

does not really behave like a Perl function. Otherwise, the string
 describing the equivalent
prototype is returned.

push ARRAY,LIST

Treats ARRAY as a stack, and pushes the values of LIST
 onto the end of ARRAY. The length
of ARRAY increases by the length of
 LIST. Has the same effect as

 for $value (LIST) {
 $ARRAY[++$#ARRAY] = $value;
 }

but is more efficient. Returns the number of elements in the array following
 the completed
push.

q/STRING/

qq/STRING/

qx/STRING/

qw/STRING/

Generalized quotes. See "Quote-Like Operators" in perlop.

qr/STRING/

Regexp-like quote. See "Regexp Quote-Like Operators" in perlop.

quotemeta EXPR

quotemeta

Returns the value of EXPR with all non-"word"
 characters backslashed. (That is, all characters
not matching /[A-Za-z_0-9]/ will be preceded by a backslash in the
 returned string,
regardless of any locale settings.)
 This is the internal function implementing
 the \Q escape in
double-quoted strings.

If EXPR is omitted, uses $_.

quotemeta (and \Q ... \E) are useful when interpolating strings into
 regular expressions,
because by default an interpolated variable will be
 considered a mini-regular expression. For
example:

 my $sentence = 'The quick brown fox jumped over the lazy dog';
 my $substring = 'quick.*?fox';

Perl version 5.12.3 documentation - perlfunc

Page 59http://perldoc.perl.org

 $sentence =~ s{$substring}{big bad wolf};

Will cause $sentence to become 'The big bad wolf jumped over...'.

On the other hand:

 my $sentence = 'The quick brown fox jumped over the lazy dog';
 my $substring = 'quick.*?fox';
 $sentence =~ s{\Q$substring\E}{big bad wolf};

Or:

 my $sentence = 'The quick brown fox jumped over the lazy dog';
 my $substring = 'quick.*?fox';
 my $quoted_substring = quotemeta($substring);
 $sentence =~ s{$quoted_substring}{big bad wolf};

Will both leave the sentence as is. Normally, when accepting string input from
 the user,
quotemeta() or \Q must be used.

rand EXPR

rand

Returns a random fractional number greater than or equal to 0 and less
 than the value of
EXPR. (EXPR should be positive.) If EXPR is
 omitted, the value 1 is used. Currently EXPR
with the value 0 is
 also special-cased as 1 (this was undocumented before Perl 5.8.0
 and is
subject to change in future versions of Perl). Automatically calls srand unless srand has
already been called. See also srand.

Apply int() to the value returned by rand() if you want random
 integers instead of random
fractional numbers. For example,

 int(rand(10))

returns a random integer between 0 and 9, inclusive.

(Note: If your rand function consistently returns numbers that are too
 large or too small, then
your version of Perl was probably compiled
 with the wrong number of RANDBITS.)

read FILEHANDLE,SCALAR,LENGTH,OFFSET

read FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH characters of data into variable SCALAR
 from the specified
FILEHANDLE. Returns the number of characters
 actually read, 0 at end of file, or undef if
there was an error (in
 the latter case $! is also set). SCALAR will be grown or shrunk so that
the last character actually read is the last character of the
 scalar after the read.

An OFFSET may be specified to place the read data at some place in the
 string other than the
beginning. A negative OFFSET specifies
 placement at that many characters counting
backwards from the end of
 the string. A positive OFFSET greater than the length of SCALAR

results in the string being padded to the required size with "\0"
 bytes before the result of the
read is appended.

The call is implemented in terms of either Perl's or your system's native
 fread(3) library
function. To get a true read(2) system call, see sysread.

Note the characters: depending on the status of the filehandle,
 either (8-bit) bytes or
characters are read. By default all
 filehandles operate on bytes, but for example if the
filehandle has
 been opened with the :utf8 I/O layer (see open, and the open
 pragma, open),
the I/O will operate on UTF-8 encoded Unicode
 characters, not bytes. Similarly for the
:encoding pragma:
 in that case pretty much any characters can be read.

readdir DIRHANDLE

Perl version 5.12.3 documentation - perlfunc

Page 60http://perldoc.perl.org

Returns the next directory entry for a directory opened by opendir.
 If used in list context,
returns all the rest of the entries in the
 directory. If there are no more entries, returns the
undefined value in
 scalar context and the empty list in list context.

If you're planning to filetest the return values out of a readdir, you'd
 better prepend the
directory in question. Otherwise, because we didn't chdir there, it would have been testing
the wrong file.

 opendir(my $dh, $some_dir) || die "can't opendir $some_dir: $!";
 @dots = grep { /^\./ && -f "$some_dir/$_" } readdir($dh);
 closedir $dh;

As of Perl 5.11.2 you can use a bare readdir in a while loop,
 which will set $_ on every
iteration.

 opendir(my $dh, $some_dir) || die;
 while(readdir $dh) {
 print "$some_dir/$_\n";
 }
 closedir $dh;

readline EXPR

readline

Reads from the filehandle whose typeglob is contained in EXPR (or from
 *ARGV if EXPR is
not provided). In scalar context, each call reads and
 returns the next line until end-of-file is
reached, whereupon the
 subsequent call returns undef. In list context, reads until end-of-file

is reached and returns a list of lines. Note that the notion of "line"
 used here is whatever you
may have defined with $/ or $INPUT_RECORD_SEPARATOR). See "$/" in perlvar.

When $/ is set to undef, when readline is in scalar
 context (i.e., file slurp mode), and
when an empty file is read, it
 returns '' the first time, followed by undef subsequently.

This is the internal function implementing the <EXPR>
 operator, but you can use it directly.
The <EXPR>
 operator is discussed in more detail in "I/O Operators" in perlop.

 $line = <STDIN>;
 $line = readline(*STDIN); # same thing

If readline encounters an operating system error, $! will be set
 with the corresponding error
message. It can be helpful to check $! when you are reading from filehandles you don't trust,
such as a
 tty or a socket. The following example uses the operator form of readline and
dies if the result is not defined.

 while (! eof($fh)) {
 defined($_ = <$fh>) or die "readline failed: $!";
 ...
 }

Note that you have can't handle readline errors that way with the ARGV filehandle. In that
case, you have to open each element of @ARGV yourself since eof handles ARGV differently.

 foreach my $arg (@ARGV) {
 open(my $fh, $arg) or warn "Can't open $arg: $!";

 while (! eof($fh)) {
 defined($_ = <$fh>)
 or die "readline failed for $arg: $!";
 ...
 }
 }

Perl version 5.12.3 documentation - perlfunc

Page 61http://perldoc.perl.org

readlink EXPR

readlink

Returns the value of a symbolic link, if symbolic links are
 implemented. If not, raises an
exception. If there is a system
 error, returns the undefined value and sets $! (errno). If EXPR
is
 omitted, uses $_.

readpipe EXPR

readpipe

EXPR is executed as a system command.
 The collected standard output of the command is
returned.
 In scalar context, it comes back as a single (potentially
 multi-line) string. In list
context, returns a list of lines
 (however you've defined lines with $/ or
$INPUT_RECORD_SEPARATOR).
 This is the internal function implementing the qx/EXPR/

operator, but you can use it directly. The qx/EXPR/
 operator is discussed in more detail in
"I/O Operators" in perlop.
 If EXPR is omitted, uses $_.

recv SOCKET,SCALAR,LENGTH,FLAGS

Receives a message on a socket. Attempts to receive LENGTH characters
 of data into
variable SCALAR from the specified SOCKET filehandle.
 SCALAR will be grown or shrunk to
the length actually read. Takes the
 same flags as the system call of the same name. Returns
the address
 of the sender if SOCKET's protocol supports this; returns an empty
 string
otherwise. If there's an error, returns the undefined value.
 This call is actually implemented in
terms of recvfrom(2) system call.
 See "UDP: Message Passing" in perlipc for examples.

Note the characters: depending on the status of the socket, either
 (8-bit) bytes or characters
are received. By default all sockets
 operate on bytes, but for example if the socket has been
changed using
 binmode() to operate with the :encoding(utf8) I/O layer (see the open
pragma, open), the I/O will operate on UTF-8 encoded Unicode
 characters, not bytes.
Similarly for the :encoding pragma: in that
 case pretty much any characters can be read.

redo LABEL

redo

The redo command restarts the loop block without evaluating the
 conditional again. The
continue block, if any, is not executed. If
 the LABEL is omitted, the command refers to the
innermost enclosing
 loop. Programs that want to lie to themselves about what was just input
normally use this command:

 # a simpleminded Pascal comment stripper
 # (warning: assumes no { or } in strings)
 LINE: while (<STDIN>) {
 while (s|({.*}.*){.*}|$1 |) {}
 s|{.*}| |;
 if (s|{.*| |) {
 $front = $_;
 while (<STDIN>) {
 if (/}/) { # end of comment?
 s|^|$front\{|;
 redo LINE;
 }
 }
 }
 print;
 }

redo cannot be used to retry a block that returns a value such as eval {}, sub {} or do
{}, and should not be used to exit
 a grep() or map() operation.

Note that a block by itself is semantically identical to a loop
 that executes once. Thus redo

Perl version 5.12.3 documentation - perlfunc

Page 62http://perldoc.perl.org

inside such a block will effectively
 turn it into a looping construct.

See also continue for an illustration of how last, next, and redo work.

ref EXPR

ref

Returns a non-empty string if EXPR is a reference, the empty
 string otherwise. If EXPR
 is not
specified, $_ will be used. The value returned depends on the
 type of thing the reference is a
reference to.
 Builtin types include:

 SCALAR
 ARRAY
 HASH
 CODE
 REF
 GLOB
 LVALUE
 FORMAT
 IO
 VSTRING
 Regexp

If the referenced object has been blessed into a package, then that package
 name is returned
instead. You can think of ref as a typeof operator.

 if (ref($r) eq "HASH") {
 print "r is a reference to a hash.\n";
 }
 unless (ref($r)) {
 print "r is not a reference at all.\n";
 }

The return value LVALUE indicates a reference to an lvalue that is not
 a variable. You get this
from taking the reference of function calls like pos() or substr(). VSTRING is returned if
the reference points
 to a version string.

The result Regexp indicates that the argument is a regular expression
 resulting from qr//.

See also perlref.

rename OLDNAME,NEWNAME

Changes the name of a file; an existing file NEWNAME will be
 clobbered. Returns true for
success, false otherwise.

Behavior of this function varies wildly depending on your system
 implementation. For
example, it will usually not work across file system
 boundaries, even though the system mv
command sometimes compensates
 for this. Other restrictions include whether it works on
directories,
 open files, or pre-existing files. Check perlport and either the
 rename(2) manpage
or equivalent system documentation for details.

For a platform independent move function look at the File::Copy
 module.

require VERSION

require EXPR

require

Demands a version of Perl specified by VERSION, or demands some semantics
 specified by
EXPR or by $_ if EXPR is not supplied.

VERSION may be either a numeric argument such as 5.006, which will be
 compared to $], or
a literal of the form v5.6.1, which will be compared
 to $^V (aka $PERL_VERSION). An

Perl version 5.12.3 documentation - perlfunc

Page 63http://perldoc.perl.org

exception is raised if
 VERSION is greater than the version of the current Perl interpreter.

Compare with use, which can do a similar check at compile time.

Specifying VERSION as a literal of the form v5.6.1 should generally be
 avoided, because it
leads to misleading error messages under earlier
 versions of Perl that do not support this
syntax. The equivalent numeric
 version should be used instead.

 require v5.6.1; # run time version check
 require 5.6.1; # ditto
 require 5.006_001; # ditto; preferred for backwards
compatibility

Otherwise, require demands that a library file be included if it
 hasn't already been included.
The file is included via the do-FILE
 mechanism, which is essentially just a variety of eval with
the
 caveat that lexical variables in the invoking script will be invisible
 to the included code. Has
semantics similar to the following subroutine:

 sub require {
 my ($filename) = @_;
 if (exists $INC{$filename}) {
 return 1 if $INC{$filename};
 die "Compilation failed in require";
 }
 my ($realfilename,$result);
 ITER: {
 foreach $prefix (@INC) {
 $realfilename = "$prefix/$filename";
 if (-f $realfilename) {
 $INC{$filename} = $realfilename;
 $result = do $realfilename;
 last ITER;
 }
 }
 die "Can't find $filename in \@INC";
 }
 if ($@) {
 $INC{$filename} = undef;
 die $@;
 } elsif (!$result) {
 delete $INC{$filename};
 die "$filename did not return true value";
 } else {
 return $result;
 }
 }

Note that the file will not be included twice under the same specified
 name.

The file must return true as the last statement to indicate
 successful execution of any
initialization code, so it's customary to
 end such a file with 1; unless you're sure it'll return true
otherwise. But it's better just to put the 1;, in case you add more
 statements.

If EXPR is a bareword, the require assumes a ".pm" extension and
 replaces "::" with "/" in the
filename for you,
 to make it easy to load standard modules. This form of loading of
 modules
does not risk altering your namespace.

In other words, if you try this:

 require Foo::Bar; # a splendid bareword

The require function will actually look for the "Foo/Bar.pm" file in the
 directories specified in

Perl version 5.12.3 documentation - perlfunc

Page 64http://perldoc.perl.org

the @INC array.

But if you try this:

 $class = 'Foo::Bar';
 require $class; # $class is not a bareword
 #or
 require "Foo::Bar"; # not a bareword because of the ""

The require function will look for the "Foo::Bar" file in the @INC array and
 will complain about
not finding "Foo::Bar" there. In this case you can do:

 eval "require $class";

Now that you understand how require looks for files with a
 bareword argument, there is a
little extra functionality going on behind
 the scenes. Before require looks for a ".pm"
extension, it will
 first look for a similar filename with a ".pmc" extension. If this file
 is found, it
will be loaded in place of any file ending in a ".pm"
 extension.

You can also insert hooks into the import facility, by putting Perl code
 directly into the @INC
array. There are three forms of hooks: subroutine
 references, array references and blessed
objects.

Subroutine references are the simplest case. When the inclusion system
 walks through @INC
and encounters a subroutine, this subroutine gets
 called with two parameters, the first a
reference to itself, and the
 second the name of the file to be included (e.g., "Foo/Bar.pm"). The
subroutine should return either nothing or else a list of up to three values in the following
order:

1 A filehandle, from which the file will be read.

2 A reference to a subroutine. If there is no filehandle (previous item),
 then this
subroutine is expected to generate one line of source code per
 call, writing the line into
$_ and returning 1, then returning 0 at
 end of file. If there is a filehandle, then the
subroutine will be
 called to act as a simple source filter, with the line as read in $_.

Again, return 1 for each valid line, and 0 after all lines have been
 returned.

3 Optional state for the subroutine. The state is passed in as $_[1]. A
 reference to the
subroutine itself is passed in as $_[0].

If an empty list, undef, or nothing that matches the first 3 values above
 is returned, then
require looks at the remaining elements of @INC.
 Note that this filehandle must be a real
filehandle (strictly a typeglob
 or reference to a typeglob, blessed or unblessed); tied
filehandles will be
 ignored and return value processing will stop there.

If the hook is an array reference, its first element must be a subroutine
 reference. This
subroutine is called as above, but the first parameter is
 the array reference. This lets you
indirectly pass arguments to
 the subroutine.

In other words, you can write:

 push @INC, \&my_sub;
 sub my_sub {
 my ($coderef, $filename) = @_; # $coderef is \&my_sub
 ...
 }

or:

 push @INC, [\&my_sub, $x, $y, ...];
 sub my_sub {
 my ($arrayref, $filename) = @_;
 # Retrieve $x, $y, ...
 my @parameters = @$arrayref[1..$#$arrayref];

Perl version 5.12.3 documentation - perlfunc

Page 65http://perldoc.perl.org

 ...
 }

If the hook is an object, it must provide an INC method that will be
 called as above, the first
parameter being the object itself. (Note that
 you must fully qualify the sub's name, as
unqualified INC is always forced
 into package main.) Here is a typical code layout:

 # In Foo.pm
 package Foo;
 sub new { ... }
 sub Foo::INC {
 my ($self, $filename) = @_;
 ...
 }

 # In the main program
 push @INC, Foo->new(...);

These hooks are also permitted to set the %INC entry
 corresponding to the files they have
loaded. See "%INC" in perlvar.

For a yet-more-powerful import facility, see use and perlmod.

reset EXPR

reset

Generally used in a continue block at the end of a loop to clear
 variables and reset ??
searches so that they work again. The
 expression is interpreted as a list of single characters
(hyphens
 allowed for ranges). All variables and arrays beginning with one of
 those letters are
reset to their pristine state. If the expression is
 omitted, one-match searches (?pattern?) are
reset to match again. Only resets variables or searches in the current package. Always returns
1. Examples:

 reset 'X'; # reset all X variables
 reset 'a-z'; # reset lower case variables
 reset; # just reset ?one-time? searches

Resetting "A-Z" is not recommended because you'll wipe out your @ARGV and @INC arrays
and your %ENV hash. Resets only package
 variables; lexical variables are unaffected, but they
clean themselves
 up on scope exit anyway, so you'll probably want to use them instead.
 See
my.

return EXPR

return

Returns from a subroutine, eval, or do FILE with the value
 given in EXPR. Evaluation of
EXPR may be in list, scalar, or void
 context, depending on how the return value will be used,
and the context
 may vary from one execution to the next (see wantarray). If no EXPR
 is
given, returns an empty list in list context, the undefined value in
 scalar context, and (of
course) nothing at all in void context.

(In the absence of an explicit return, a subroutine, eval,
 or do FILE automatically returns the
value of the last expression
 evaluated.)

reverse LIST

In list context, returns a list value consisting of the elements
 of LIST in the opposite order. In
scalar context, concatenates the
 elements of LIST and returns a string value with all
characters
 in the opposite order.

 print join(", ", reverse "world", "Hello"); # Hello, world

Perl version 5.12.3 documentation - perlfunc

Page 66http://perldoc.perl.org

 print scalar reverse "dlrow ,", "olleH"; # Hello, world

Used without arguments in scalar context, reverse() reverses $_.

 $_ = "dlrow ,olleH";
 print reverse; # No output, list
context
 print scalar reverse; # Hello, world

Note that reversing an array to itself (as in @a = reverse @a) will
 preserve non-existent
elements whenever possible, i.e., for non magical
 arrays or tied arrays with EXISTS and
DELETE methods.

This operator is also handy for inverting a hash, although there are some
 caveats. If a value is
duplicated in the original hash, only one of those
 can be represented as a key in the inverted
hash. Also, this has to
 unwind one hash and build a whole new one, which may take some
time
 on a large hash, such as from a DBM file.

 %by_name = reverse %by_address; # Invert the hash

rewinddir DIRHANDLE

Sets the current position to the beginning of the directory for the readdir routine on
DIRHANDLE.

rindex STR,SUBSTR,POSITION

rindex STR,SUBSTR

Works just like index() except that it returns the position of the last
 occurrence of SUBSTR in
STR. If POSITION is specified, returns the
 last occurrence beginning at or before that position.

rmdir FILENAME

rmdir

Deletes the directory specified by FILENAME if that directory is
 empty. If it succeeds it returns
true, otherwise it returns false and
 sets $! (errno). If FILENAME is omitted, uses $_.

To remove a directory tree recursively (rm -rf on Unix) look at
 the rmtree function of the
File::Path module.

s///

The substitution operator. See "Regexp Quote-Like Operators" in perlop.

say FILEHANDLE LIST

say LIST

say

Just like print, but implicitly appends a newline. say LIST is simply an abbreviation for {
local $\ = "\n"; print
 LIST }.

This keyword is available only when the "say" feature is
 enabled: see feature.

scalar EXPR

Forces EXPR to be interpreted in scalar context and returns the value
 of EXPR.

 @counts = (scalar @a, scalar @b, scalar @c);

There is no equivalent operator to force an expression to
 be interpolated in list context
because in practice, this is never
 needed. If you really wanted to do so, however, you could
use
 the construction @{[(some expression)]}, but usually a simple (some
expression) suffices.

Because scalar is a unary operator, if you accidentally use for EXPR a
 parenthesized list,

Perl version 5.12.3 documentation - perlfunc

Page 67http://perldoc.perl.org

this behaves as a scalar comma expression, evaluating
 all but the last element in void context
and returning the final element
 evaluated in scalar context. This is seldom what you want.

The following single statement:

 print uc(scalar(&foo,$bar)),$baz;

is the moral equivalent of these two:

 &foo;
 print(uc($bar),$baz);

See perlop for more details on unary operators and the comma operator.

seek FILEHANDLE,POSITION,WHENCE

Sets FILEHANDLE's position, just like the fseek call of stdio.
 FILEHANDLE may be an
expression whose value gives the name of the
 filehandle. The values for WHENCE are 0 to
set the new position in bytes to POSITION, 1 to set it to the current position plus
 POSITION,
and 2 to set it to EOF plus POSITION (typically
 negative). For WHENCE you may use the
constants SEEK_SET, SEEK_CUR, and SEEK_END (start of the file, current position, end
 of the
file) from the Fcntl module. Returns 1 on success, 0
 otherwise.

Note the in bytes: even if the filehandle has been set to
 operate on characters (for example by
using the :encoding(utf8) open
 layer), tell() will return byte offsets, not character offsets

(because implementing that would render seek() and tell() rather slow).

If you want to position the file for sysread or syswrite, don't use seek, because buffering
makes its effect on the file's read-write position
 unpredictable and non-portable. Use sysseek
instead.

Due to the rules and rigors of ANSI C, on some systems you have to do a
 seek whenever you
switch between reading and writing. Amongst other
 things, this may have the effect of calling
stdio's clearerr(3).
 A WHENCE of 1 (SEEK_CUR) is useful for not moving the file position:

 seek(TEST,0,1);

This is also useful for applications emulating tail -f. Once you hit
 EOF on your read and
then sleep for a while, you (probably) have to stick in a
 dummy seek() to reset things. The
seek doesn't change the position,
 but it does clear the end-of-file condition on the handle, so
that the
 next <FILE> makes Perl try again to read something. (We hope.)

If that doesn't work (some I/O implementations are particularly
 cantankerous), you might need
something like this:

 for (;;) {
 for ($curpos = tell(FILE); $_ = <FILE>;
 $curpos = tell(FILE)) {
 # search for some stuff and put it into files
 }
 sleep($for_a_while);
 seek(FILE, $curpos, 0);
 }

seekdir DIRHANDLE,POS

Sets the current position for the readdir routine on DIRHANDLE. POS
 must be a value
returned by telldir. seekdir also has the same caveats
 about possible directory
compaction as the corresponding system library
 routine.

select FILEHANDLE

select

Returns the currently selected filehandle. If FILEHANDLE is supplied,
 sets the new current

Perl version 5.12.3 documentation - perlfunc

Page 68http://perldoc.perl.org

default filehandle for output. This has two
 effects: first, a write or a print without a
filehandle will
 default to this FILEHANDLE. Second, references to variables related to
 output
will refer to this output channel. For example, if you have to
 set the top of form format for more
than one output channel, you might
 do the following:

 select(REPORT1);
 $^ = 'report1_top';
 select(REPORT2);
 $^ = 'report2_top';

FILEHANDLE may be an expression whose value gives the name of the
 actual filehandle.
Thus:

 $oldfh = select(STDERR); $| = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with
 methods, preferring to
write the last example as:

 use IO::Handle;
 STDERR->autoflush(1);

select RBITS,WBITS,EBITS,TIMEOUT

This calls the select(2) syscall with the bit masks specified, which
 can be constructed using
fileno and vec, along these lines:

 $rin = $win = $ein = '';
 vec($rin,fileno(STDIN),1) = 1;
 vec($win,fileno(STDOUT),1) = 1;
 $ein = $rin | $win;

If you want to select on many filehandles, you may wish to write a
 subroutine like this:

 sub fhbits {
 my(@fhlist) = split(' ',$_[0]);
 my($bits);
 for (@fhlist) {
 vec($bits,fileno($_),1) = 1;
 }
 $bits;
 }
 $rin = fhbits('STDIN TTY SOCK');

The usual idiom is:

 ($nfound,$timeleft) =
 select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

or to block until something becomes ready just do this

 $nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);

Most systems do not bother to return anything useful in $timeleft, so
 calling select() in scalar
context just returns $nfound.

Any of the bit masks can also be undef. The timeout, if specified, is
 in seconds, which may be
fractional. Note: not all implementations are
 capable of returning the $timeleft. If not, they
always return
 $timeleft equal to the supplied $timeout.

You can effect a sleep of 250 milliseconds this way:

 select(undef, undef, undef, 0.25);

Perl version 5.12.3 documentation - perlfunc

Page 69http://perldoc.perl.org

Note that whether select gets restarted after signals (say, SIGALRM)
 is
implementation-dependent. See also perlport for notes on the
 portability of select.

On error, select behaves like select(2): it returns
 -1 and sets $!.

On some Unixes, select(2) may report a socket file
 descriptor as "ready for reading" when no
data is available, and
 thus a subsequent read blocks. This can be avoided if you always use
O_NONBLOCK on the socket. See select(2) and fcntl(2) for further
 details.

WARNING: One should not attempt to mix buffered I/O (like read
 or <FH>) with select,
except as permitted by POSIX, and even
 then only on POSIX systems. You have to use
sysread instead.

semctl ID,SEMNUM,CMD,ARG

Calls the System V IPC function semctl(2). You'll probably have to say

 use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT or
 GETALL, then ARG must
be a variable that will hold the returned
 semid_ds structure or semaphore value array. Returns
like ioctl:
 the undefined value for error, "0 but true" for zero, or the actual
 return value
otherwise. The ARG must consist of a vector of native
 short integers, which may be created
with pack("s!",(0)x$nsem).
 See also "SysV IPC" in perlipc, IPC::SysV,
IPC::Semaphore
 documentation.

semget KEY,NSEMS,FLAGS

Calls the System V IPC function semget(2). Returns the semaphore id, or
 the undefined value
if there is an error. See also "SysV IPC" in perlipc, IPC::SysV, IPC::SysV::Semaphore

documentation.

semop KEY,OPSTRING

Calls the System V IPC function semop(2) for semaphore operations
 such as signalling and
waiting. OPSTRING must be a packed array of
 semop structures. Each semop structure can
be generated with pack("s!3", $semnum, $semop, $semflag). The length of
OPSTRING implies the number of semaphore operations. Returns true if
 successful, or false if
there is an error. As an example, the
 following code waits on semaphore $semnum of
semaphore id $semid:

 $semop = pack("s!3", $semnum, -1, 0);
 die "Semaphore trouble: $!\n" unless semop($semid, $semop);

To signal the semaphore, replace -1 with 1. See also "SysV IPC" in perlipc, IPC::SysV, and
IPC::SysV::Semaphore
 documentation.

send SOCKET,MSG,FLAGS,TO

send SOCKET,MSG,FLAGS

Sends a message on a socket. Attempts to send the scalar MSG to the SOCKET
 filehandle.
Takes the same flags as the system call of the same name. On
 unconnected sockets, you
must specify a destination to send to, in which
 case it does a sendto(2) syscall. Returns the
number of characters sent,
 or the undefined value on error. The sendmsg(2) syscall is
currently
 unimplemented. See "UDP: Message Passing" in perlipc for examples.

Note the characters: depending on the status of the socket, either
 (8-bit) bytes or characters
are sent. By default all sockets operate
 on bytes, but for example if the socket has been
changed using
 binmode() to operate with the :encoding(utf8) I/O layer (see open, or the
open pragma, open), the I/O will operate on UTF-8
 encoded Unicode characters, not bytes.
Similarly for the :encoding
 pragma: in that case pretty much any characters can be sent.

setpgrp PID,PGRP

Sets the current process group for the specified PID, 0 for the current
 process. Raises an

Perl version 5.12.3 documentation - perlfunc

Page 70http://perldoc.perl.org

exception when used on a machine that doesn't
 implement POSIX setpgid(2) or BSD
setpgrp(2). If the arguments are omitted,
 it defaults to 0,0. Note that the BSD 4.2 version of
setpgrp does not
 accept any arguments, so only setpgrp(0,0) is portable. See also
POSIX::setsid().

setpriority WHICH,WHO,PRIORITY

Sets the current priority for a process, a process group, or a user.
 (See setpriority(2).) Raises
an exception when used on a machine
 that doesn't implement setpriority(2).

setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL

Sets the socket option requested. Returns undefined if there is an
 error. Use integer constants
provided by the Socket module for
 LEVEL and OPNAME. Values for LEVEL can also be
obtained from
 getprotobyname. OPTVAL might either be a packed string or an integer.
 An
integer OPTVAL is shorthand for pack("i", OPTVAL).

An example disabling Nagle's algorithm on a socket:

 use Socket qw(IPPROTO_TCP TCP_NODELAY);
 setsockopt($socket, IPPROTO_TCP, TCP_NODELAY, 1);

shift ARRAY

shift

Shifts the first value of the array off and returns it, shortening the
 array by 1 and moving
everything down. If there are no elements in the
 array, returns the undefined value. If ARRAY
is omitted, shifts the @_ array within the lexical scope of subroutines and formats, and the
@ARGV array outside a subroutine and also within the lexical scopes
 established by the eval
STRING, BEGIN {}, INIT {}, CHECK {}, UNITCHECK {} and END {} constructs.

See also unshift, push, and pop. shift and unshift do the
 same thing to the left end of
an array that pop and push do to the
 right end.

shmctl ID,CMD,ARG

Calls the System V IPC function shmctl. You'll probably have to say

 use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT,
 then ARG must be a variable
that will hold the returned shmid_ds
 structure. Returns like ioctl: the undefined value for error,
"0 but
 true" for zero, or the actual return value otherwise.
 See also "SysV IPC" in perlipc and
IPC::SysV documentation.

shmget KEY,SIZE,FLAGS

Calls the System V IPC function shmget. Returns the shared memory
 segment id, or the
undefined value if there is an error.
 See also "SysV IPC" in perlipc and IPC::SysV
documentation.

shmread ID,VAR,POS,SIZE

shmwrite ID,STRING,POS,SIZE

Reads or writes the System V shared memory segment ID starting at
 position POS for size
SIZE by attaching to it, copying in/out, and
 detaching from it. When reading, VAR must be a
variable that will
 hold the data read. When writing, if STRING is too long, only SIZE
 bytes are
used; if STRING is too short, nulls are written to fill out
 SIZE bytes. Return true if successful,
or false if there is an error.
 shmread() taints the variable. See also "SysV IPC" in perlipc,
IPC::SysV documentation, and the IPC::Shareable module from CPAN.

shutdown SOCKET,HOW

Shuts down a socket connection in the manner indicated by HOW, which
 has the same

Perl version 5.12.3 documentation - perlfunc

Page 71http://perldoc.perl.org

interpretation as in the syscall of the same name.

 shutdown(SOCKET, 0); # I/we have stopped reading data
 shutdown(SOCKET, 1); # I/we have stopped writing data
 shutdown(SOCKET, 2); # I/we have stopped using this socket

This is useful with sockets when you want to tell the other
 side you're done writing but not
done reading, or vice versa.
 It's also a more insistent form of close because it also
 disables
the file descriptor in any forked copies in other
 processes.

Returns 1 for success; on error, returns undef if
 the first argument is not a valid filehandle, or
returns 0 and sets $! for any other failure.

sin EXPR

sin

Returns the sine of EXPR (expressed in radians). If EXPR is omitted,
 returns sine of $_.

For the inverse sine operation, you may use the Math::Trig::asin
 function, or use this
relation:

 sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }

sleep EXPR

sleep

Causes the script to sleep for (integer) EXPR seconds, or forever if no argument is given.
Returns the integer number of seconds actually slept.

May be interrupted if the process receives a signal such as SIGALRM.

 eval {
 local $SIG{ALARM} = sub { die "Alarm!\n" };
 sleep;
 };
 die $@ unless $@ eq "Alarm!\n";

You probably cannot mix alarm and sleep calls, because sleep
 is often implemented using
alarm.

On some older systems, it may sleep up to a full second less than what
 you requested,
depending on how it counts seconds. Most modern systems
 always sleep the full amount.
They may appear to sleep longer than that,
 however, because your process might not be
scheduled right away in a
 busy multitasking system.

For delays of finer granularity than one second, the Time::HiRes module
 (from CPAN, and
starting from Perl 5.8 part of the standard
 distribution) provides usleep(). You may also use
Perl's four-argument
 version of select() leaving the first three arguments undefined, or you

might be able to use the syscall interface to access setitimer(2) if
 your system supports it.
See perlfaq8 for details.

See also the POSIX module's pause function.

socket SOCKET,DOMAIN,TYPE,PROTOCOL

Opens a socket of the specified kind and attaches it to filehandle
 SOCKET. DOMAIN, TYPE,
and PROTOCOL are specified the same as for
 the syscall of the same name. You should use
 Socket first
 to get the proper definitions imported. See the examples in "Sockets:
Client/Server Communication" in perlipc.

On systems that support a close-on-exec flag on files, the flag will
 be set for the newly opened
file descriptor, as determined by the
 value of $^F. See "$^F" in perlvar.

socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL

Perl version 5.12.3 documentation - perlfunc

Page 72http://perldoc.perl.org

Creates an unnamed pair of sockets in the specified domain, of the
 specified type. DOMAIN,
TYPE, and PROTOCOL are specified the same as
 for the syscall of the same name. If
unimplemented, raises an exception.
 Returns true if successful.

On systems that support a close-on-exec flag on files, the flag will
 be set for the newly opened
file descriptors, as determined by the value
 of $^F. See "$^F" in perlvar.

Some systems defined pipe in terms of socketpair, in which a call
 to pipe(Rdr, Wtr) is
essentially:

 use Socket;
 socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
 shutdown(Rdr, 1); # no more writing for reader
 shutdown(Wtr, 0); # no more reading for writer

See perlipc for an example of socketpair use. Perl 5.8 and later will
 emulate socketpair using
IP sockets to localhost if your system implements
 sockets but not socketpair.

sort SUBNAME LIST

sort BLOCK LIST

sort LIST

In list context, this sorts the LIST and returns the sorted list value.
 In scalar context, the
behaviour of sort() is undefined.

If SUBNAME or BLOCK is omitted, sorts in standard string comparison
 order. If SUBNAME
is specified, it gives the name of a subroutine
 that returns an integer less than, equal to, or
greater than 0,
 depending on how the elements of the list are to be ordered. (The <=> and
cmp operators are extremely useful in such routines.)
 SUBNAME may be a scalar variable
name (unsubscripted), in which case
 the value provides the name of (or a reference to) the
actual
 subroutine to use. In place of a SUBNAME, you can provide a BLOCK as
 an
anonymous, in-line sort subroutine.

If the subroutine's prototype is ($$), the elements to be compared
 are passed by reference in
@_, as for a normal subroutine. This is
 slower than unprototyped subroutines, where the
elements to be
 compared are passed into the subroutine
 as the package global variables $a
and $b (see example below). Note that
 in the latter case, it is usually counter-productive to
declare $a and
 $b as lexicals.

The values to be compared are always passed by reference and should not
 be modified.

You also cannot exit out of the sort block or subroutine using any of the
 loop control operators
described in perlsyn or with goto.

When use locale is in effect, sort LIST sorts LIST according to the
 current collation
locale. See perllocale.

sort() returns aliases into the original list, much as a for loop's index
 variable aliases the list
elements. That is, modifying an element of a
 list returned by sort() (for example, in a foreach
, map or grep)
 actually modifies the element in the original list. This is usually
 something to be
avoided when writing clear code.

Perl 5.6 and earlier used a quicksort algorithm to implement sort.
 That algorithm was not
stable, and could go quadratic. (A stable sort
 preserves the input order of elements that
compare equal. Although
 quicksort's run time is O(NlogN) when averaged over all arrays of

length N, the time can be O(N**2), quadratic behavior, for some
 inputs.) In 5.7, the quicksort
implementation was replaced with
 a stable mergesort algorithm whose worst-case behavior is
O(NlogN).
 But benchmarks indicated that for some inputs, on some platforms,
 the original
quicksort was faster. 5.8 has a sort pragma for
 limited control of the sort. Its rather blunt
control of the
 underlying algorithm may not persist into future Perls, but the
 ability to
characterize the input or output in implementation
 independent ways quite probably will. See
the sort pragma.

Examples:

Perl version 5.12.3 documentation - perlfunc

Page 73http://perldoc.perl.org

 # sort lexically
 @articles = sort @files;

 # same thing, but with explicit sort routine
 @articles = sort {$a cmp $b} @files;

 # now case-insensitively
 @articles = sort {uc($a) cmp uc($b)} @files;

 # same thing in reversed order
 @articles = sort {$b cmp $a} @files;

 # sort numerically ascending
 @articles = sort {$a <=> $b} @files;

 # sort numerically descending
 @articles = sort {$b <=> $a} @files;

 # this sorts the %age hash by value instead of key
 # using an in-line function
 @eldest = sort { $age{$b} <=> $age{$a} } keys %age;

 # sort using explicit subroutine name
 sub byage {
 $age{$a} <=> $age{$b}; # presuming numeric
 }
 @sortedclass = sort byage @class;

 sub backwards { $b cmp $a }
 @harry = qw(dog cat x Cain Abel);
 @george = qw(gone chased yz Punished Axed);
 print sort @harry;
 # prints AbelCaincatdogx
 print sort backwards @harry;
 # prints xdogcatCainAbel
 print sort @george, 'to', @harry;
 # prints AbelAxedCainPunishedcatchaseddoggonetoxyz

 # inefficiently sort by descending numeric compare using
 # the first integer after the first = sign, or the
 # whole record case-insensitively otherwise

 my @new = sort {
 ($b =~ /=(\d+)/)[0] <=> ($a =~ /=(\d+)/)[0]
 ||
 uc($a) cmp uc($b)
 } @old;

 # same thing, but much more efficiently;
 # we'll build auxiliary indices instead
 # for speed
 my @nums = @caps = ();
 for (@old) {
 push @nums, (/=(\d+)/ ? $1 : undef);
 push @caps, uc($_);
 }

Perl version 5.12.3 documentation - perlfunc

Page 74http://perldoc.perl.org

 my @new = @old[sort {
 $nums[$b] <=> $nums[$a]
 ||
 $caps[$a] cmp $caps[$b]
 } 0..$#old
];

 # same thing, but without any temps
 @new = map { $_->[0] }
 sort { $b->[1] <=> $a->[1]
 ||
 $a->[2] cmp $b->[2]
 } map { [$_, /=(\d+)/, uc($_)] } @old;

 # using a prototype allows you to use any comparison subroutine
 # as a sort subroutine (including other package's subroutines)
 package other;
 sub backwards ($$) { $_[1] cmp $_[0]; } # $a and $b are not set
here

 package main;
 @new = sort other::backwards @old;

 # guarantee stability, regardless of algorithm
 use sort 'stable';
 @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

 # force use of mergesort (not portable outside Perl 5.8)
 use sort '_mergesort'; # note discouraging _
 @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

Warning: syntactical care is required when sorting the list returned from
 a function. If you want
to sort the list returned by the function call find_records(@key), you can use:

 @contact = sort { $a cmp $b } find_records @key;
 @contact = sort +find_records(@key);
 @contact = sort &find_records(@key);
 @contact = sort(find_records(@key));

If instead you want to sort the array @key with the comparison routine find_records()
then you can use:

 @contact = sort { find_records() } @key;
 @contact = sort find_records(@key);
 @contact = sort(find_records @key);
 @contact = sort(find_records (@key));

If you're using strict, you must not declare $a
 and $b as lexicals. They are package globals.
That means
 that if you're in the main package and type

 @articles = sort {$b <=> $a} @files;

then $a and $b are $main::a and $main::b (or $::a and $::b),
 but if you're in the
FooPack package, it's the same as typing

 @articles = sort {$FooPack::b <=> $FooPack::a} @files;

The comparison function is required to behave. If it returns
 inconsistent results (sometimes
saying $x[1] is less than $x[2] and
 sometimes saying the opposite, for example) the results

Perl version 5.12.3 documentation - perlfunc

Page 75http://perldoc.perl.org

are not
 well-defined.

Because <=> returns undef when either operand is NaN
 (not-a-number), and because sort
raises an exception unless the
 result of a comparison is defined, when sorting with a
comparison function
 like $a <=> $b, be careful about lists that might contain a NaN.
 The
following example takes advantage that NaN != NaN to
 eliminate any NaNs from the input
list.

 @result = sort { $a <=> $b } grep { $_ == $_ } @input;

splice ARRAY,OFFSET,LENGTH,LIST

splice ARRAY,OFFSET,LENGTH

splice ARRAY,OFFSET

splice ARRAY

Removes the elements designated by OFFSET and LENGTH from an array, and
 replaces
them with the elements of LIST, if any. In list context,
 returns the elements removed from the
array. In scalar context,
 returns the last element removed, or undef if no elements are

removed. The array grows or shrinks as necessary.
 If OFFSET is negative then it starts that
far from the end of the array.
 If LENGTH is omitted, removes everything from OFFSET
onward.
 If LENGTH is negative, removes the elements from OFFSET onward
 except for
-LENGTH elements at the end of the array.
 If both OFFSET and LENGTH are omitted,
removes everything. If OFFSET is
 past the end of the array, Perl issues a warning, and
splices at the
 end of the array.

The following equivalences hold (assuming $[== 0 and $#a >= $i)

 push(@a,$x,$y) splice(@a,@a,0,$x,$y)
 pop(@a) splice(@a,-1)
 shift(@a) splice(@a,0,1)
 unshift(@a,$x,$y) splice(@a,0,0,$x,$y)
 $a[$i] = $y splice(@a,$i,1,$y)

Example, assuming array lengths are passed before arrays:

 sub aeq { # compare two list values
 my(@a) = splice(@_,0,shift);
 my(@b) = splice(@_,0,shift);
 return 0 unless @a == @b; # same len?
 while (@a) {
 return 0 if pop(@a) ne pop(@b);
 }
 return 1;
 }
 if (&aeq($len,@foo[1..$len],0+@bar,@bar)) { ... }

split /PATTERN/,EXPR,LIMIT

split /PATTERN/,EXPR

split /PATTERN/

split

Splits the string EXPR into a list of strings and returns that list. By
 default, empty leading fields
are preserved, and empty trailing ones are
 deleted. (If all fields are empty, they are considered
to be trailing.)

In scalar context, returns the number of fields found.

If EXPR is omitted, splits the $_ string. If PATTERN is also omitted,
 splits on whitespace (after
skipping any leading whitespace). Anything
 matching PATTERN is taken to be a delimiter

Perl version 5.12.3 documentation - perlfunc

Page 76http://perldoc.perl.org

separating the fields. (Note
 that the delimiter may be longer than one character.)

If LIMIT is specified and positive, it represents the maximum number
 of fields the EXPR will be
split into, though the actual number of
 fields returned depends on the number of times
PATTERN matches within
 EXPR. If LIMIT is unspecified or zero, trailing null fields are
 stripped
(which potential users of pop would do well to remember).
 If LIMIT is negative, it is treated as
if an arbitrarily large LIMIT
 had been specified. Note that splitting an EXPR that evaluates to
the
 empty string always returns the empty list, regardless of the LIMIT
 specified.

A pattern matching the empty string (not to be confused with
 an empty pattern //, which is
just one member of the set of patterns
 matching the epmty string), splits EXPR into individual

characters. For example:

 print join(':', split(/ */, 'hi there')), "\n";

produces the output 'h:i:t:h:e:r:e'.

As a special case for split, the empty pattern // specifically
 matches the empty string; this
is not be confused with the normal use
 of an empty pattern to mean the last successful match.
So to split
 a string into individual characters, the following:

 print join(':', split(//, 'hi there')), "\n";

produces the output 'h:i: :t:h:e:r:e'.

Empty leading fields are produced when there are positive-width matches at
 the beginning of
the string; a zero-width match at the beginning of
 the string does not produce an empty field.
For example:

 print join(':', split(/(?=\w)/, 'hi there!'));

produces the output 'h:i :t:h:e:r:e!'. Empty trailing fields, on the other
 hand, are produced when
there is a match at the end of the string (and
 when LIMIT is given and is not 0), regardless of
the length of the match.
 For example:

 print join(':', split(//, 'hi there!', -1)), "\n";
 print join(':', split(/\W/, 'hi there!', -1)), "\n";

produce the output 'h:i: :t:h:e:r:e:!:' and 'hi:there:', respectively,
 both with an empty trailing field.

The LIMIT parameter can be used to split a line partially

 ($login, $passwd, $remainder) = split(/:/, $_, 3);

When assigning to a list, if LIMIT is omitted, or zero, Perl supplies
 a LIMIT one larger than the
number of variables in the list, to avoid
 unnecessary work. For the list above LIMIT would
have been 4 by
 default. In time critical applications it behooves you not to split
 into more fields
than you really need.

If the PATTERN contains parentheses, additional list elements are
 created from each
matching substring in the delimiter.

 split(/([,-])/, "1-10,20", 3);

produces the list value

 (1, '-', 10, ',', 20)

If you had the entire header of a normal Unix email message in $header,
 you could split it up
into fields and their values this way:

 $header =~ s/\n(?=\s)//g; # fix continuation lines
 %hdrs = (UNIX_FROM => split /^(\S*?):\s*/m, $header);

The pattern /PATTERN/ may be replaced with an expression to specify
 patterns that vary at

Perl version 5.12.3 documentation - perlfunc

Page 77http://perldoc.perl.org

runtime. (To do runtime compilation only once,
 use /$variable/o.)

As a special case, specifying a PATTERN of space (' ') will split on
 white space just as
split with no arguments does. Thus, split(' ') can
 be used to emulate awk's default
behavior, whereas split(/ /)
 will give you as many initial null fields (empty string) as there
are leading spaces.
 A split on /\s+/ is like a split(' ') except that any leading

whitespace produces a null first field. A split with no arguments
 really does a split(' ',
 $_) internally.

A PATTERN of /^/ is treated as if it were /^/m, since it isn't
 much use otherwise.

Example:

 open(PASSWD, '/etc/passwd');
 while (<PASSWD>) {
 chomp;
 ($login, $passwd, $uid, $gid,
 $gcos, $home, $shell) = split(/:/);
 #...
 }

As with regular pattern matching, any capturing parentheses that are not
 matched in a
split() will be set to undef when returned:

 @fields = split /(A)|B/, "1A2B3";
 # @fields is (1, 'A', 2, undef, 3)

sprintf FORMAT, LIST

Returns a string formatted by the usual printf conventions of the C
 library function sprintf
. See below for more details
 and see sprintf(3) or printf(3) on your system for an
explanation of
 the general principles.

For example:

 # Format number with up to 8 leading zeroes
 $result = sprintf("%08d", $number);

 # Round number to 3 digits after decimal point
 $rounded = sprintf("%.3f", $number);

Perl does its own sprintf formatting: it emulates the C
 function sprintf(3), but doesn't use it
except for floating-point
 numbers, and even then only standard modifiers are allowed.
Non-standard extensions in your local sprintf(3) are therefore unavailable from Perl.

Unlike printf, sprintf does not do what you probably mean when you
 pass it an array as
your first argument. The array is given scalar context,
 and instead of using the 0th element of
the array as the format, Perl will
 use the count of elements in the array as the format, which is
almost never
 useful.

Perl's sprintf permits the following universally-known conversions:

 %% a percent sign
 %c a character with the given number
 %s a string
 %d a signed integer, in decimal
 %u an unsigned integer, in decimal
 %o an unsigned integer, in octal
 %x an unsigned integer, in hexadecimal
 %e a floating-point number, in scientific notation
 %f a floating-point number, in fixed decimal notation
 %g a floating-point number, in %e or %f notation

Perl version 5.12.3 documentation - perlfunc

Page 78http://perldoc.perl.org

In addition, Perl permits the following widely-supported conversions:

 %X like %x, but using upper-case letters
 %E like %e, but using an upper-case "E"
 %G like %g, but with an upper-case "E" (if applicable)
 %b an unsigned integer, in binary
 %B like %b, but using an upper-case "B" with the # flag
 %p a pointer (outputs the Perl value's address in hexadecimal)
 %n special: *stores* the number of characters output so far
 into the next variable in the parameter list

Finally, for backward (and we do mean "backward") compatibility, Perl
 permits these
unnecessary but widely-supported conversions:

 %i a synonym for %d
 %D a synonym for %ld
 %U a synonym for %lu
 %O a synonym for %lo
 %F a synonym for %f

Note that the number of exponent digits in the scientific notation produced
 by %e, %E, %g and
%G for numbers with the modulus of the
 exponent less than 100 is system-dependent: it may
be three or less
 (zero-padded as necessary). In other words, 1.23 times ten to the
 99th may
be either "1.23e99" or "1.23e099".

Between the % and the format letter, you may specify several
 additional attributes controlling
the interpretation of the format.
 In order, these are:

format parameter index

An explicit format parameter index, such as 2$. By default sprintf
 will format the next
unused argument in the list, but this allows you
 to take the arguments out of order:

 printf '%2$d %1$d', 12, 34; # prints "34 12"
 printf '%3$d %d %1$d', 1, 2, 3; # prints "3 1 1"

flags

one or more of:

 space prefix non-negative number with a space
 + prefix non-negative number with a plus sign
 - left-justify within the field
 0 use zeros, not spaces, to right-justify
 # ensure the leading "0" for any octal,
 prefix non-zero hexadecimal with "0x" or "0X",
 prefix non-zero binary with "0b" or "0B"

For example:

 printf '<% d>', 12; # prints "< 12>"
 printf '<%+d>', 12; # prints "<+12>"
 printf '<%6s>', 12; # prints "< 12>"
 printf '<%-6s>', 12; # prints "<12 >"
 printf '<%06s>', 12; # prints "<000012>"
 printf '<%#o>', 12; # prints "<014>"
 printf '<%#x>', 12; # prints "<0xc>"
 printf '<%#X>', 12; # prints "<0XC>"
 printf '<%#b>', 12; # prints "<0b1100>"
 printf '<%#B>', 12; # prints "<0B1100>"

When a space and a plus sign are given as the flags at once,
 a plus sign is used to

Perl version 5.12.3 documentation - perlfunc

Page 79http://perldoc.perl.org

prefix a positive number.

 printf '<%+ d>', 12; # prints "<+12>"
 printf '<% +d>', 12; # prints "<+12>"

When the # flag and a precision are given in the %o conversion,
 the precision is
incremented if it's necessary for the leading "0".

 printf '<%#.5o>', 012; # prints "<00012>"
 printf '<%#.5o>', 012345; # prints "<012345>"
 printf '<%#.0o>', 0; # prints "<0>"

vector flag

This flag tells Perl to interpret the supplied string as a vector of
 integers, one for each
character in the string. Perl applies the format to
 each integer in turn, then joins the
resulting strings with a separator (a
 dot . by default). This can be useful for displaying
ordinal values of
 characters in arbitrary strings:

 printf "%vd", "AB\x{100}"; # prints "65.66.256"
 printf "version is v%vd\n", $^V; # Perl's version

Put an asterisk * before the v to override the string to
 use to separate the numbers:

 printf "address is %*vX\n", ":", $addr; # IPv6 address
 printf "bits are %0*v8b\n", " ", $bits; # random bitstring

You can also explicitly specify the argument number to use for
 the join string using
something like *2$v; for example:

 printf '%*4$vX %*4$vX %*4$vX', @addr[1..3], ":"; # 3 IPv6
addresses

(minimum) width

Arguments are usually formatted to be only as wide as required to
 display the given
value. You can override the width by putting
 a number here, or get the width from the
next argument (with *)
 or from a specified argument (e.g., with *2$):

 printf '<%s>', "a"; # prints "<a>"
 printf '<%6s>', "a"; # prints "< a>"
 printf '<%*s>', 6, "a"; # prints "< a>"
 printf '<%*2$s>', "a", 6; # prints "< a>"
 printf '<%2s>', "long"; # prints "<long>" (does not
truncate)

If a field width obtained through * is negative, it has the same
 effect as the - flag:
left-justification.

precision, or maximum width

You can specify a precision (for numeric conversions) or a maximum
 width (for string
conversions) by specifying a . followed by a number.
 For floating-point formats except
'g' and 'G', this specifies
 how many places right of the decimal point to show (the
default being 6).
 For example:

 # these examples are subject to system-specific variation
 printf '<%f>', 1; # prints "<1.000000>"
 printf '<%.1f>', 1; # prints "<1.0>"
 printf '<%.0f>', 1; # prints "<1>"
 printf '<%e>', 10; # prints "<1.000000e+01>"
 printf '<%.1e>', 10; # prints "<1.0e+01>"

Perl version 5.12.3 documentation - perlfunc

Page 80http://perldoc.perl.org

For "g" and "G", this specifies the maximum number of digits to show,
 including thoe
prior to the decimal point and those after it; for example:

 # These examples are subject to system-specific variation.
 printf '<%g>', 1; # prints "<1>"
 printf '<%.10g>', 1; # prints "<1>"
 printf '<%g>', 100; # prints "<100>"
 printf '<%.1g>', 100; # prints "<1e+02>"
 printf '<%.2g>', 100.01; # prints "<1e+02>"
 printf '<%.5g>', 100.01; # prints "<100.01>"
 printf '<%.4g>', 100.01; # prints "<100>"

For integer conversions, specifying a precision implies that the
 output of the number
itself should be zero-padded to this width,
 where the 0 flag is ignored:

 printf '<%.6d>', 1; # prints "<000001>"
 printf '<%+.6d>', 1; # prints "<+000001>"
 printf '<%-10.6d>', 1; # prints "<000001 >"
 printf '<%10.6d>', 1; # prints "< 000001>"
 printf '<%010.6d>', 1; # prints "< 000001>"
 printf '<%+10.6d>', 1; # prints "< +000001>"

 printf '<%.6x>', 1; # prints "<000001>"
 printf '<%#.6x>', 1; # prints "<0x000001>"
 printf '<%-10.6x>', 1; # prints "<000001 >"
 printf '<%10.6x>', 1; # prints "< 000001>"
 printf '<%010.6x>', 1; # prints "< 000001>"
 printf '<%#10.6x>', 1; # prints "< 0x000001>"

For string conversions, specifying a precision truncates the string
 to fit the specified
width:

 printf '<%.5s>', "truncated"; # prints "<trunc>"
 printf '<%10.5s>', "truncated"; # prints "< trunc>"

You can also get the precision from the next argument using .*:

 printf '<%.6x>', 1; # prints "<000001>"
 printf '<%.*x>', 6, 1; # prints "<000001>"

If a precision obtained through * is negative, it counts
 as having no precision at all.

 printf '<%.*s>', 7, "string"; # prints "<string>"
 printf '<%.*s>', 3, "string"; # prints "<str>"
 printf '<%.*s>', 0, "string"; # prints "<>"
 printf '<%.*s>', -1, "string"; # prints "<string>"

 printf '<%.*d>', 1, 0; # prints "<0>"
 printf '<%.*d>', 0, 0; # prints "<>"
 printf '<%.*d>', -1, 0; # prints "<0>"

You cannot currently get the precision from a specified number,
 but it is intended that
this will be possible in the future, for
 example using .*2$:

 printf "<%.*2$x>", 1, 6; # INVALID, but in future will print
 "<000001>"

size

For numeric conversions, you can specify the size to interpret the
 number as using l,

Perl version 5.12.3 documentation - perlfunc

Page 81http://perldoc.perl.org

h, V, q, L, or ll. For integer
 conversions (d u o x X b i D U O), numbers are
usually assumed to be
 whatever the default integer size is on your platform (usually 32
or 64
 bits), but you can override this to use instead one of the standard C types,
 as
supported by the compiler used to build Perl:

 l interpret integer as C type "long" or "unsigned
long"
 h interpret integer as C type "short" or "unsigned
short"
 q, L or ll interpret integer as C type "long long",
"unsigned long long".
 or "quads" (typically 64-bit integers)

The last will raise an exception if Perl does not understand "quads" in your
 installation.
(This requires either that the platform natively support quads,
 or that Perl were
specifically compiled to support quads.) You can find out
 whether your Perl supports
quads via Config:

 use Config;
 if ($Config{use64bitint} eq "define" || $Config{longsize} >=
 8) {
 print "Nice quads!\n";
 }

For floating-point conversions (e f g E F G), numbers are usually assumed
 to be
the default floating-point size on your platform (double or long double),
 but you can
force "long double" with q, L, or ll if your
 platform supports them. You can find out
whether your Perl supports long
 doubles via Config:

 use Config;
 print "long doubles\n" if $Config{d_longdbl} eq "define";

You can find out whether Perl considers "long double" to be the default
 floating-point
size to use on your platform via Config:

 use Config;
 if ($Config{uselongdouble} eq "define") {
	 print "long doubles by default\n";
 }

It can also be that long doubles and doubles are the same thing:

 use Config;
 ($Config{doublesize} == $Config{longdblsize}) &&
 print "doubles are long doubles\n";

The size specifier V has no effect for Perl code, but is supported for
 compatibility with
XS code. It means "use the standard size for a Perl
 integer or floating-point number",
which is the default.

order of arguments

Normally, sprintf() takes the next unused argument as the value to
 format for each
format specification. If the format specification
 uses * to require additional arguments,
these are consumed from
 the argument list in the order they appear in the format

specification before the value to format. Where an argument is
 specified by an explicit
index, this does not affect the normal
 order for the arguments, even when the explicitly
specified index
 would have been the next argument.

So:

 printf "<%*.*s>", $a, $b, $c;

Perl version 5.12.3 documentation - perlfunc

Page 82http://perldoc.perl.org

uses $a for the width, $b for the precision, and $c
 as the value to format; while:

 printf "<%*1$.*s>", $a, $b;

would use $a for the width and precision, and $b as the
 value to format.

Here are some more examples; be aware that when using an explicit
 index, the $ may
need escaping:

 printf "%2\$d %d\n", 12, 34; # will print "34 12\n"
 printf "%2\$d %d %d\n", 12, 34; # will print "34 12
34\n"
 printf "%3\$d %d %d\n", 12, 34, 56; # will print "56 12
34\n"
 printf "%2\$*3\$d %d\n", 12, 34, 3; # will print " 34 12\n"

If use locale is in effect and POSIX::setlocale() has been called,
 the character used for the
decimal separator in formatted floating-point
 numbers is affected by the LC_NUMERIC locale.
See perllocale
 and POSIX.

sqrt EXPR

sqrt

Return the positive square root of EXPR. If EXPR is omitted, uses $_. Works only for
non-negative operands unless you've
 loaded the Math::Complex module.

 use Math::Complex;
 print sqrt(-4); # prints 2i

srand EXPR

srand

Sets the random number seed for the rand operator.

The point of the function is to "seed" the rand function so that rand can produce a different
sequence each time you run your
 program.

If srand() is not called explicitly, it is called implicitly at the
 first use of the rand operator.
However, this was not true of
 versions of Perl before 5.004, so if your script will run under
older
 Perl versions, it should call srand.

Most programs won't even call srand() at all, except those that
 need a cryptographically-strong
starting point rather than the
 generally acceptable default, which is based on time of day,

process ID, and memory allocation, or the /dev/urandom device
 if available. You may also
want to call srand() after a fork() to
 avoid child processes sharing the same seed value as the
parent (and
 consequently each other).

You can call srand($seed) with the same $seed to reproduce the same sequence from rand(),
but this is usually reserved for
 generating predictable results for testing or debugging.

Otherwise, don't call srand() more than once in your program.

Do not call srand() (i.e., without an argument) more than once per
 process. The internal state
of the random number generator should
 contain more entropy than can be provided by any
seed, so calling
 srand() again actually loses randomness.

Most implementations of srand take an integer and will silently
 truncate decimal numbers.
This means srand(42) will usually
 produce the same results as srand(42.1). To be safe,
always pass srand an integer.

In versions of Perl prior to 5.004 the default seed was just the
 current time. This isn't a
particularly good seed, so many old
 programs supply their own seed value (often time ^ $$
or time ^
 ($$ + ($$ << 15))), but that isn't necessary any more.

For cryptographic purposes, however, you need something much more random than the

Perl version 5.12.3 documentation - perlfunc

Page 83http://perldoc.perl.org

default seed. Checksumming the compressed output of one or more
 rapidly changing
operating system status programs is the usual method. For
 example:

 srand (time ^ $$ ^ unpack "%L*", `ps axww | gzip -f`);

If you're particularly concerned with this, search the CPAN for
 random number generator
modules instead of rolling out your own.

Frequently called programs (like CGI scripts) that simply use

 time ^ $$

for a seed can fall prey to the mathematical property that

 a^b == (a+1)^(b+1)

one-third of the time. So don't do that.

stat FILEHANDLE

stat EXPR

stat DIRHANDLE

stat

Returns a 13-element list giving the status info for a file, either
 the file opened via
FILEHANDLE or DIRHANDLE, or named by EXPR. If EXPR is omitted, it stats $_. Returns
the empty list if stat fails. Typically
 used as follows:

 ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
 $atime,$mtime,$ctime,$blksize,$blocks)
 = stat($filename);

Not all fields are supported on all filesystem types. Here are the
 meanings of the fields:

 0 dev device number of filesystem
 1 ino inode number
 2 mode file mode (type and permissions)
 3 nlink number of (hard) links to the file
 4 uid numeric user ID of file's owner
 5 gid numeric group ID of file's owner
 6 rdev the device identifier (special files only)
 7 size total size of file, in bytes
 8 atime last access time in seconds since the epoch
 9 mtime last modify time in seconds since the epoch
 10 ctime inode change time in seconds since the epoch (*)
 11 blksize preferred block size for file system I/O
 12 blocks actual number of blocks allocated

(The epoch was at 00:00 January 1, 1970 GMT.)

(*) Not all fields are supported on all filesystem types. Notably, the
 ctime field is non-portable.
In particular, you cannot expect it to be a
 "creation time", see "Files and Filesystems" in
perlport for details.

If stat is passed the special filehandle consisting of an underline, no
 stat is done, but the
current contents of the stat structure from the
 last stat, lstat, or filetest are returned.
Example:

 if (-x $file && (($d) = stat(_)) && $d < 0) {
 print "$file is executable NFS file\n";
 }

(This works on machines only for which the device number is negative
 under NFS.)

Perl version 5.12.3 documentation - perlfunc

Page 84http://perldoc.perl.org

Because the mode contains both the file type and its permissions, you
 should mask off the file
type portion and (s)printf using a "%o"
 if you want to see the real permissions.

 $mode = (stat($filename))[2];
 printf "Permissions are %04o\n", $mode & 07777;

In scalar context, stat returns a boolean value indicating success
 or failure, and, if
successful, sets the information associated with
 the special filehandle _.

The File::stat module provides a convenient, by-name access mechanism:

 use File::stat;
 $sb = stat($filename);
 printf "File is %s, size is %s, perm %04o, mtime %s\n",
 $filename, $sb->size, $sb->mode & 07777,
 scalar localtime $sb->mtime;

You can import symbolic mode constants (S_IF*) and functions
 (S_IS*) from the Fcntl
module:

 use Fcntl ':mode';

 $mode = (stat($filename))[2];

 $user_rwx = ($mode & S_IRWXU) >> 6;
 $group_read = ($mode & S_IRGRP) >> 3;
 $other_execute = $mode & S_IXOTH;

 printf "Permissions are %04o\n", S_IMODE($mode), "\n";

 $is_setuid = $mode & S_ISUID;
 $is_directory = S_ISDIR($mode);

You could write the last two using the -u and -d operators.
 Commonly available S_IF*
constants are:

 # Permissions: read, write, execute, for user, group, others.

 S_IRWXU S_IRUSR S_IWUSR S_IXUSR
 S_IRWXG S_IRGRP S_IWGRP S_IXGRP
 S_IRWXO S_IROTH S_IWOTH S_IXOTH

 # Setuid/Setgid/Stickiness/SaveText.
 # Note that the exact meaning of these is system dependent.

 S_ISUID S_ISGID S_ISVTX S_ISTXT

 # File types. Not necessarily all are available on your system.

 S_IFREG S_IFDIR S_IFLNK S_IFBLK S_IFCHR S_IFIFO S_IFSOCK S_IFWHT
S_ENFMT

 # The following are compatibility aliases for S_IRUSR, S_IWUSR,
S_IXUSR.

 S_IREAD S_IWRITE S_IEXEC

and the S_IF* functions are

 S_IMODE($mode) the part of $mode containing the permission

Perl version 5.12.3 documentation - perlfunc

Page 85http://perldoc.perl.org

bits and the setuid/setgid/sticky bits

 S_IFMT($mode) the part of $mode containing the file type
 which can be bit-anded with (for example) S_IFREG
 or with the following functions

 # The operators -f, -d, -l, -b, -c, -p, and -S.

 S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
 S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)

 # No direct -X operator counterpart, but for the first one
 # the -g operator is often equivalent. The ENFMT stands for
 # record flocking enforcement, a platform-dependent feature.

 S_ISENFMT($mode) S_ISWHT($mode)

See your native chmod(2) and stat(2) documentation for more details
 about the S_*
constants. To get status info for a symbolic link
 instead of the target file behind the link, use
the lstat function.

state EXPR

state TYPE EXPR

state EXPR : ATTRS

state TYPE EXPR : ATTRS

state declares a lexically scoped variable, just like my does.
 However, those variables will
never be reinitialized, contrary to
 lexical variables that are reinitialized each time their
enclosing block
 is entered.

state variables are enabled only when the use feature "state" pragma is in effect. See
feature.

study SCALAR

study

Takes extra time to study SCALAR ($_ if unspecified) in anticipation of
 doing many pattern
matches on the string before it is next modified.
 This may or may not save time, depending on
the nature and number of
 patterns you are searching on, and on the distribution of character

frequencies in the string to be searched; you probably want to compare
 run times with and
without it to see which runs faster. Those loops
 that scan for many short constant strings
(including the constant
 parts of more complex patterns) will benefit most. You may have only

one study active at a time: if you study a different scalar the first
 is "unstudied". (The way
study works is this: a linked list of every
 character in the string to be searched is made, so
we know, for
 example, where all the 'k' characters are. From each search string,
 the rarest
character is selected, based on some static frequency tables
 constructed from some C
programs and English text. Only those places
 that contain this "rarest" character are
examined.)

For example, here is a loop that inserts index producing entries
 before any line containing a
certain pattern:

 while (<>) {
 study;
 print ".IX foo\n" if /\bfoo\b/;
 print ".IX bar\n" if /\bbar\b/;
 print ".IX blurfl\n" if /\bblurfl\b/;
 # ...
 print;

Perl version 5.12.3 documentation - perlfunc

Page 86http://perldoc.perl.org

 }

In searching for /\bfoo\b/, only locations in $_ that contain f
 will be looked at, because f is
rarer than o. In general, this is
 a big win except in pathological cases. The only question is
whether
 it saves you more time than it took to build the linked list in the
 first place.

Note that if you have to look for strings that you don't know till
 runtime, you can build an entire
loop as a string and eval that to
 avoid recompiling all your patterns all the time. Together with
undefining $/ to input entire files as one record, this can be quite
 fast, often faster than
specialized programs like fgrep(1). The following
 scans a list of files (@files) for a list of
words (@words), and prints
 out the names of those files that contain a match:

 $search = 'while (<>) { study;';
 foreach $word (@words) {
 $search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";
 }
 $search .= "}";
 @ARGV = @files;
 undef $/;
 eval $search; # this screams
 $/ = "\n"; # put back to normal input delimiter
 foreach $file (sort keys(%seen)) {
 print $file, "\n";
 }

sub NAME BLOCK

sub NAME (PROTO) BLOCK

sub NAME : ATTRS BLOCK

sub NAME (PROTO) : ATTRS BLOCK

This is subroutine definition, not a real function per se.
 Without a BLOCK it's just a forward
declaration. Without a NAME,
 it's an anonymous function declaration, and does actually return
a value: the CODE ref of the closure you just created.

See perlsub and perlref for details about subroutines and
 references, and attributes and
Attribute::Handlers for more
 information about attributes.

substr EXPR,OFFSET,LENGTH,REPLACEMENT

substr EXPR,OFFSET,LENGTH

substr EXPR,OFFSET

Extracts a substring out of EXPR and returns it. First character is at
 offset 0, or whatever
you've set $[to (but don't do that).
 If OFFSET is negative (or more precisely, less than $[),
starts
 that far from the end of the string. If LENGTH is omitted, returns
 everything to the end of
the string. If LENGTH is negative, leaves that
 many characters off the end of the string.

 my $s = "The black cat climbed the green tree";
 my $color = substr $s, 4, 5; # black
 my $middle = substr $s, 4, -11; # black cat climbed the
 my $end = substr $s, 14; # climbed the green tree
 my $tail = substr $s, -4; # tree
 my $z = substr $s, -4, 2; # tr

You can use the substr() function as an lvalue, in which case EXPR
 must itself be an lvalue. If
you assign something shorter than LENGTH,
 the string will shrink, and if you assign
something longer than LENGTH,
 the string will grow to accommodate it. To keep the string the
same
 length, you may need to pad or chop your value using sprintf.

If OFFSET and LENGTH specify a substring that is partly outside the
 string, only the part

Perl version 5.12.3 documentation - perlfunc

Page 87http://perldoc.perl.org

within the string is returned. If the substring
 is beyond either end of the string, substr() returns
the undefined
 value and produces a warning. When used as an lvalue, specifying a
 substring
that is entirely outside the string raises an exception.
 Here's an example showing the behavior
for boundary cases:

 my $name = 'fred';
 substr($name, 4) = 'dy'; # $name is now 'freddy'
 my $null = substr $name, 6, 2; # returns "" (no warning)
 my $oops = substr $name, 7; # returns undef, with warning
 substr($name, 7) = 'gap'; # raises an exception

An alternative to using substr() as an lvalue is to specify the
 replacement string as the 4th
argument. This allows you to replace
 parts of the EXPR and return what was there before in
one operation,
 just as you can with splice().

 my $s = "The black cat climbed the green tree";
 my $z = substr $s, 14, 7, "jumped from"; # climbed
 # $s is now "The black cat jumped from the green tree"

Note that the lvalue returned by the 3-arg version of substr() acts as
 a 'magic bullet'; each time
it is assigned to, it remembers which part
 of the original string is being modified; for example:

 $x = '1234';
 for (substr($x,1,2)) {
 $_ = 'a'; print $x,"\n"; # prints 1a4
 $_ = 'xyz'; print $x,"\n"; # prints 1xyz4
 $x = '56789';
 $_ = 'pq'; print $x,"\n"; # prints 5pq9
 }

Prior to Perl version 5.9.1, the result of using an lvalue multiple times was
 unspecified.

symlink OLDFILE,NEWFILE

Creates a new filename symbolically linked to the old filename.
 Returns 1 for success, 0
otherwise. On systems that don't support
 symbolic links, raises an exception. To check for
that,
 use eval:

 $symlink_exists = eval { symlink("",""); 1 };

syscall NUMBER, LIST

Calls the system call specified as the first element of the list,
 passing the remaining elements
as arguments to the system call. If
 unimplemented, raises an exception. The arguments are
interpreted
 as follows: if a given argument is numeric, the argument is passed as
 an int. If not,
the pointer to the string value is passed. You are
 responsible to make sure a string is
pre-extended long enough to
 receive any result that might be written into a string. You can't
use a
 string literal (or other read-only string) as an argument to syscall
 because Perl has to
assume that any string pointer might be written
 through. If your
 integer arguments are not
literals and have never been interpreted in a
 numeric context, you may need to add 0 to them
to force them to look
 like numbers. This emulates the syswrite function (or vice versa):

 require 'syscall.ph'; # may need to run h2ph
 $s = "hi there\n";
 syscall(&SYS_write, fileno(STDOUT), $s, length $s);

Note that Perl supports passing of up to only 14 arguments to your syscall,
 which in practice
should (usually) suffice.

Syscall returns whatever value returned by the system call it calls.
 If the system call fails,
syscall returns -1 and sets $! (errno).
 Note that some system calls can legitimately return

Perl version 5.12.3 documentation - perlfunc

Page 88http://perldoc.perl.org

-1. The proper
 way to handle such calls is to assign $!=0; before the call and
 check the
value of $! if syscall returns -1.

There's a problem with syscall(&SYS_pipe): it returns the file
 number of the read end of
the pipe it creates. There is no way
 to retrieve the file number of the other end. You can avoid
this
 problem by using pipe instead.

sysopen FILEHANDLE,FILENAME,MODE

sysopen FILEHANDLE,FILENAME,MODE,PERMS

Opens the file whose filename is given by FILENAME, and associates it
 with FILEHANDLE. If
FILEHANDLE is an expression, its value is used as
 the name of the real filehandle wanted.
This function calls the
 underlying operating system's open function with the parameters

FILENAME, MODE, PERMS.

The possible values and flag bits of the MODE parameter are
 system-dependent; they are
available via the standard module Fcntl.
 See the documentation of your operating system's
open to see which
 values and flag bits are available. You may combine several flags
 using
the |-operator.

Some of the most common values are O_RDONLY for opening the file in
 read-only mode,
O_WRONLY for opening the file in write-only mode,
 and O_RDWR for opening the file in
read-write mode.

For historical reasons, some values work on almost every system
 supported by Perl: 0 means
read-only, 1 means write-only, and 2
 means read/write. We know that these values do not
work under
 OS/390 & VM/ESA Unix and on the Macintosh; you probably don't want to
 use
them in new code.

If the file named by FILENAME does not exist and the open call creates
 it (typically because
MODE includes the O_CREAT flag), then the value of
 PERMS specifies the permissions of the
newly created file. If you omit
 the PERMS argument to sysopen, Perl uses the octal value
0666.
 These permission values need to be in octal, and are modified by your
 process's
current umask.

In many systems the O_EXCL flag is available for opening files in
 exclusive mode. This is not
locking: exclusiveness means here that
 if the file already exists, sysopen() fails. O_EXCL may
not work
 on network filesystems, and has no effect unless the O_CREAT flag
 is set as well.
Setting O_CREAT|O_EXCL prevents the file from
 being opened if it is a symbolic link. It does
not protect against
 symbolic links in the file's path.

Sometimes you may want to truncate an already-existing file. This
 can be done using the
O_TRUNC flag. The behavior of O_TRUNC with O_RDONLY is undefined.

You should seldom if ever use 0644 as argument to sysopen, because
 that takes away the
user's option to have a more permissive umask.
 Better to omit it. See the perlfunc(1) entry on
umask for more
 on this.

Note that sysopen depends on the fdopen() C library function.
 On many Unix systems,
fdopen() is known to fail when file descriptors
 exceed a certain value, typically 255. If you
need more file
 descriptors than that, consider rebuilding Perl to use the sfio
 library, or
perhaps using the POSIX::open() function.

See perlopentut for a kinder, gentler explanation of opening files.

sysread FILEHANDLE,SCALAR,LENGTH,OFFSET

sysread FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH bytes of data into variable SCALAR from the
 specified
FILEHANDLE, using the read(2). It bypasses
 buffered IO, so mixing this with other kinds of
reads, print, write, seek, tell, or eof can cause confusion because the
 perlio or stdio
layers usually buffers data. Returns the number of
 bytes actually read, 0 at end of file, or
undef if there was an
 error (in the latter case $! is also set). SCALAR will be grown or
 shrunk
so that the last byte actually read is the last byte of the
 scalar after the read.

Perl version 5.12.3 documentation - perlfunc

Page 89http://perldoc.perl.org

An OFFSET may be specified to place the read data at some place in the
 string other than the
beginning. A negative OFFSET specifies
 placement at that many characters counting
backwards from the end of
 the string. A positive OFFSET greater than the length of SCALAR

results in the string being padded to the required size with "\0"
 bytes before the result of the
read is appended.

There is no syseof() function, which is ok, since eof() doesn't work
 well on device files (like
ttys) anyway. Use sysread() and check
 for a return value for 0 to decide whether you're done.

Note that if the filehandle has been marked as :utf8 Unicode
 characters are read instead of
bytes (the LENGTH, OFFSET, and the
 return value of sysread() are in Unicode characters).

The :encoding(...) layer implicitly introduces the :utf8 layer.
 See binmode, open, and
the open pragma, open.

sysseek FILEHANDLE,POSITION,WHENCE

Sets FILEHANDLE's system position in bytes using lseek(2). FILEHANDLE may be an
expression whose value gives the name
 of the filehandle. The values for WHENCE are 0 to
set the new
 position to POSITION, 1 to set the it to the current position plus
 POSITION, and 2
to set it to EOF plus POSITION (typically
 negative).

Note the in bytes: even if the filehandle has been set to operate
 on characters (for example by
using the :encoding(utf8) I/O layer),
 tell() will return byte offsets, not character offsets
(because
 implementing that would render sysseek() unacceptably slow).

sysseek() bypasses normal buffered IO, so mixing this with reads (other
 than sysread, for
example <> or read()) print, write, seek, tell, or eof may cause confusion.

For WHENCE, you may also use the constants SEEK_SET, SEEK_CUR,
 and SEEK_END (start
of the file, current position, end of the file)
 from the Fcntl module. Use of the constants is also
more portable
 than relying on 0, 1, and 2. For example to define a "systell" function:

 use Fcntl 'SEEK_CUR';
 sub systell { sysseek($_[0], 0, SEEK_CUR) }

Returns the new position, or the undefined value on failure. A position
 of zero is returned as
the string "0 but true"; thus sysseek returns
 true on success and false on failure, yet you
can still easily determine
 the new position.

system LIST

system PROGRAM LIST

Does exactly the same thing as exec LIST, except that a fork is
 done first, and the parent
process waits for the child process to
 exit. Note that argument processing varies depending on
the
 number of arguments. If there is more than one argument in LIST,
 or if LIST is an array
with more than one value, starts the program
 given by the first element of the list with
arguments given by the
 rest of the list. If there is only one scalar argument, the argument
 is
checked for shell metacharacters, and if there are any, the
 entire argument is passed to the
system's command shell for parsing
 (this is /bin/sh -c on Unix platforms, but varies on
other
 platforms). If there are no shell metacharacters in the argument,
 it is split into words and
passed directly to execvp, which is
 more efficient.

Beginning with v5.6.0, Perl will attempt to flush all files opened for
 output before any operation
that may do a fork, but this may not be
 supported on some platforms (see perlport). To be
safe, you may need
 to set $| ($AUTOFLUSH in English) or call the autoflush() method
 of
IO::Handle on any open handles.

The return value is the exit status of the program as returned by the wait call. To get the
actual exit value, shift right by eight (see
 below). See also exec. This is not what you want to
use to capture
 the output from a command, for that you should use merely backticks or qx//,
as described in "`STRING`" in perlop. Return value of -1
 indicates a failure to start the
program or an error of the wait(2) system
 call (inspect $! for the reason).

If you'd like to make system (and many other bits of Perl) die on error,
 have a look at the

Perl version 5.12.3 documentation - perlfunc

Page 90http://perldoc.perl.org

autodie pragma.

Like exec, system allows you to lie to a program about its name if
 you use the system
PROGRAM LIST syntax. Again, see exec.

Since SIGINT and SIGQUIT are ignored during the execution of system, if you expect your
program to terminate on receipt of these
 signals you will need to arrange to do so yourself
based on the return
 value.

 @args = ("command", "arg1", "arg2");
 system(@args) == 0
 or die "system @args failed: $?"

If you'd like to manually inspect system's failure, you can check all
 possible failure modes by
inspecting $? like this:

 if ($? == -1) {
 print "failed to execute: $!\n";
 }
 elsif ($? & 127) {
 printf "child died with signal %d, %s coredump\n",
 ($? & 127), ($? & 128) ? 'with' : 'without';
 }
 else {
 printf "child exited with value %d\n", $? >> 8;
 }

Alternatively, you may inspect the value of ${^CHILD_ERROR_NATIVE}
 with the W*() calls
from the POSIX module.

When system's arguments are executed indirectly by the shell, results and return codes are
subject to its quirks.
 See "`STRING`" in perlop and exec for details.

Since system does a fork and wait it may affect a SIGCHLD
 handler. See perlipc for
details.

syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET

syswrite FILEHANDLE,SCALAR,LENGTH

syswrite FILEHANDLE,SCALAR

Attempts to write LENGTH bytes of data from variable SCALAR to the
 specified
FILEHANDLE, using write(2). If LENGTH is
 not specified, writes whole SCALAR. It bypasses
buffered IO, so
 mixing this with reads (other than sysread()), print, write, seek, tell,
or eof may cause confusion because the perlio and
 stdio layers usually buffers data. Returns
the number of bytes
 actually written, or undef if there was an error (in this case the
 errno
variable $! is also set). If the LENGTH is greater than the
 data available in the SCALAR after
the OFFSET, only as much data as is
 available will be written.

An OFFSET may be specified to write the data from some part of the
 string other than the
beginning. A negative OFFSET specifies writing
 that many characters counting backwards
from the end of the string.
 If SCALAR is of length zero, you can only use an OFFSET of 0.

Warning: If the filehandle is marked :utf8, Unicode characters
 encoded in UTF-8 are written
instead of bytes, and the LENGTH, OFFSET, and
 return value of syswrite() are in (UTF-8
encoded Unicode) characters.
 The :encoding(...) layer implicitly introduces the :utf8
layer.
 See binmode, open, and the open pragma, open.

tell FILEHANDLE

tell

Returns the current position in bytes for FILEHANDLE, or -1 on
 error. FILEHANDLE may be
an expression whose value gives the name of
 the actual filehandle. If FILEHANDLE is

Perl version 5.12.3 documentation - perlfunc

Page 91http://perldoc.perl.org

omitted, assumes the file
 last read.

Note the in bytes: even if the filehandle has been set to
 operate on characters (for example by
using the :encoding(utf8) open
 layer), tell() will return byte offsets, not character offsets
(because
 that would render seek() and tell() rather slow).

The return value of tell() for the standard streams like the STDIN
 depends on the operating
system: it may return -1 or something else.
 tell() on pipes, fifos, and sockets usually returns -1.

There is no systell function. Use sysseek(FH, 0, 1) for that.

Do not use tell() (or other buffered I/O operations) on a filehandle
 that has been manipulated
by sysread(), syswrite() or sysseek().
 Those functions ignore the buffering, while tell() does
not.

telldir DIRHANDLE

Returns the current position of the readdir routines on DIRHANDLE.
 Value may be given to
seekdir to access a particular location in a
 directory. telldir has the same caveats about
possible directory
 compaction as the corresponding system library routine.

tie VARIABLE,CLASSNAME,LIST

This function binds a variable to a package class that will provide the
 implementation for the
variable. VARIABLE is the name of the variable
 to be enchanted. CLASSNAME is the name of
a class implementing objects
 of correct type. Any additional arguments are passed to the new

method of the class (meaning TIESCALAR, TIEHANDLE, TIEARRAY,
 or TIEHASH). Typically
these are arguments such as might be passed
 to the dbm_open() function of C. The object
returned by the new
 method is also returned by the tie function, which would be useful
 if you
want to access other methods in CLASSNAME.

Note that functions such as keys and values may return huge lists
 when used on large
objects, like DBM files. You may prefer to use the each function to iterate over such.
Example:

 # print out history file offsets
 use NDBM_File;
 tie(%HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
 while (($key,$val) = each %HIST) {
 print $key, ' = ', unpack('L',$val), "\n";
 }
 untie(%HIST);

A class implementing a hash should have the following methods:

 TIEHASH classname, LIST
 FETCH this, key
 STORE this, key, value
 DELETE this, key
 CLEAR this
 EXISTS this, key
 FIRSTKEY this
 NEXTKEY this, lastkey
 SCALAR this
 DESTROY this
 UNTIE this

A class implementing an ordinary array should have the following methods:

 TIEARRAY classname, LIST
 FETCH this, key
 STORE this, key, value
 FETCHSIZE this

Perl version 5.12.3 documentation - perlfunc

Page 92http://perldoc.perl.org

 STORESIZE this, count
 CLEAR this
 PUSH this, LIST
 POP this
 SHIFT this
 UNSHIFT this, LIST
 SPLICE this, offset, length, LIST
 EXTEND this, count
 DESTROY this
 UNTIE this

A class implementing a filehandle should have the following methods:

 TIEHANDLE classname, LIST
 READ this, scalar, length, offset
 READLINE this
 GETC this
 WRITE this, scalar, length, offset
 PRINT this, LIST
 PRINTF this, format, LIST
 BINMODE this
 EOF this
 FILENO this
 SEEK this, position, whence
 TELL this
 OPEN this, mode, LIST
 CLOSE this
 DESTROY this
 UNTIE this

A class implementing a scalar should have the following methods:

 TIESCALAR classname, LIST
 FETCH this,
 STORE this, value
 DESTROY this
 UNTIE this

Not all methods indicated above need be implemented. See perltie, Tie::Hash, Tie::Array,
Tie::Scalar, and Tie::Handle.

Unlike dbmopen, the tie function will not use or require a module
 for you; you need to do
that explicitly yourself. See DB_File
 or the Config module for interesting tie implementations.

For further details see perltie, tied VARIABLE.

tied VARIABLE

Returns a reference to the object underlying VARIABLE (the same value
 that was originally
returned by the tie call that bound the variable
 to a package.) Returns the undefined value if
VARIABLE isn't tied to a
 package.

time

Returns the number of non-leap seconds since whatever time the system
 considers to be the
epoch, suitable for feeding to gmtime and localtime. On most systems the epoch is
00:00:00 UTC, January 1, 1970;
 a prominent exception being Mac OS Classic which uses
00:00:00, January 1,
 1904 in the current local time zone for its epoch.

For measuring time in better granularity than one second,
 you may use either the Time::HiRes
module (from CPAN, and starting from
 Perl 5.8 part of the standard distribution), or if you have

Perl version 5.12.3 documentation - perlfunc

Page 93http://perldoc.perl.org

gettimeofday(2), you may be able to use the syscall interface of Perl.
 See perlfaq8 for
details.

For date and time processing look at the many related modules on CPAN.
 For a
comprehensive date and time representation look at the DateTime module.

times

Returns a four-element list giving the user and system times, in
 seconds, for this process and
the children of this process.

 ($user,$system,$cuser,$csystem) = times;

In scalar context, times returns $user.

Children's times are only included for terminated children.

tr///

The transliteration operator. Same as y///. See "Quote and Quote-like Operators" in perlop.

truncate FILEHANDLE,LENGTH

truncate EXPR,LENGTH

Truncates the file opened on FILEHANDLE, or named by EXPR, to the
 specified length.
Raises an exception if truncate isn't implemented
 on your system. Returns true if successful,
the undefined value
 otherwise.

The behavior is undefined if LENGTH is greater than the length of the
 file.

The position in the file of FILEHANDLE is left unchanged. You may want to
 call seek before
writing to the file.

uc EXPR

uc

Returns an uppercased version of EXPR. This is the internal function
 implementing the \U
escape in double-quoted strings.
 It does not attempt to do titlecase mapping on initial letters.
See ucfirst for that.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragma, such as in a locale,
 as lc does.

ucfirst EXPR

ucfirst

Returns the value of EXPR with the first character in uppercase
 (titlecase in Unicode). This is
the internal function implementing
 the \u escape in double-quoted strings.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragma, such as in a locale,
 as lc does.

umask EXPR

umask

Sets the umask for the process to EXPR and returns the previous value.
 If EXPR is omitted,
merely returns the current umask.

The Unix permission rwxr-x--- is represented as three sets of three
 bits, or three octal
digits: 0750 (the leading 0 indicates octal
 and isn't one of the digits). The umask value is such
a number
 representing disabled permissions bits. The permission (or "mode")
 values you pass
mkdir or sysopen are modified by your umask, so
 even if you tell sysopen to create a file
with permissions 0777,
 if your umask is 0022 then the file will actually be created with

permissions 0755. If your umask were 0027 (group can't
 write; others can't read, write, or
execute), then passing sysopen 0666 would create a file with mode 0640 (0666 &~
 027 is

Perl version 5.12.3 documentation - perlfunc

Page 94http://perldoc.perl.org

0640).

Here's some advice: supply a creation mode of 0666 for regular
 files (in sysopen) and one of
0777 for directories (in mkdir) and executable files. This gives users the freedom of
 choice: if
they want protected files, they might choose process umasks
 of 022, 027, or even the
particularly antisocial mask of 077.
 Programs should rarely if ever make policy decisions
better left to
 the user. The exception to this is when writing files that should be
 kept private:
mail files, web browser cookies, .rhosts files, and
 so on.

If umask(2) is not implemented on your system and you are trying to
 restrict access for
yourself (i.e., (EXPR & 0700) > 0), raises an exception. If umask(2) is not implemented
and you are
 not trying to restrict access for yourself, returns undef.

Remember that a umask is a number, usually given in octal; it is not a
 string of octal digits.
See also oct, if all you have is a string.

undef EXPR

undef

Undefines the value of EXPR, which must be an lvalue. Use only on a
 scalar value, an array
(using @), a hash (using %), a subroutine
 (using &), or a typeglob (using *). Saying undef
$hash{$key}
 will probably not do what you expect on most predefined variables or
 DBM list
values, so don't do that; see delete. Always returns the
 undefined value. You can omit the
EXPR, in which case nothing is
 undefined, but you still get an undefined value that you could,
for
 instance, return from a subroutine, assign to a variable, or pass as a
 parameter. Examples:

 undef $foo;
 undef $bar{'blurfl'}; # Compare to: delete $bar{'blurfl'};
 undef @ary;
 undef %hash;
 undef &mysub;
 undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.
 return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
 select undef, undef, undef, 0.25;
 ($a, $b, undef, $c) = &foo; # Ignore third value returned

Note that this is a unary operator, not a list operator.

unlink LIST

unlink

Deletes a list of files. On success, it returns the number of files
 it successfully deleted. On
failure, it returns false and sets $!
 (errno):

 my $unlinked = unlink 'a', 'b', 'c';
 unlink @goners;
 unlink glob "*.bak";

On error, unlink will not tell you which files it could not remove.
 If you want to know which
files you could not remove, try them one
 at a time:

 foreach my $file (@goners) {
 unlink $file or warn "Could not unlink $file: $!";
 }

Note: unlink will not attempt to delete directories unless you are
 superuser and the -U flag is
supplied to Perl. Even if these
 conditions are met, be warned that unlinking a directory can
inflict
 damage on your filesystem. Finally, using unlink on directories is
 not supported on
many operating systems. Use rmdir instead.

If LIST is omitted, unlink uses $_.

Perl version 5.12.3 documentation - perlfunc

Page 95http://perldoc.perl.org

unpack TEMPLATE,EXPR

unpack TEMPLATE

unpack does the reverse of pack: it takes a string
 and expands it out into a list of values.
 (In
scalar context, it returns merely the first value produced.)

If EXPR is omitted, unpacks the $_ string.
 See perlpacktut for an introduction to this function.

The string is broken into chunks described by the TEMPLATE. Each chunk
 is converted
separately to a value. Typically, either the string is a result
 of pack, or the characters of the
string represent a C structure of some
 kind.

The TEMPLATE has the same format as in the pack function.
 Here's a subroutine that does
substring:

 sub substr {
 my($what,$where,$howmuch) = @_;
 unpack("x$where a$howmuch", $what);
 }

and then there's

 sub ordinal { unpack("W",$_[0]); } # same as ord()

In addition to fields allowed in pack(), you may prefix a field with
 a %<number> to indicate that
you want a <number>-bit checksum of the items instead of the items
 themselves. Default is a
16-bit checksum. Checksum is calculated by
 summing numeric values of expanded values (for
string fields the sum of ord($char) is taken, for bit fields the sum of zeroes and ones).

For example, the following
 computes the same number as the System V sum program:

 $checksum = do {
 local $/; # slurp!
 unpack("%32W*",<>) % 65535;
 };

The following efficiently counts the number of set bits in a bit vector:

 $setbits = unpack("%32b*", $selectmask);

The p and P formats should be used with care. Since Perl
 has no way of checking whether the
value passed to unpack()
 corresponds to a valid memory location, passing a pointer value
that's
 not known to be valid is likely to have disastrous consequences.

If there are more pack codes or if the repeat count of a field or a group
 is larger than what the
remainder of the input string allows, the result
 is not well defined: the repeat count may be
decreased, or unpack() may produce empty strings or zeros, or it may raise an exception.
 If
the input string is longer than one described by the TEMPLATE,
 the remainder of that input
string is ignored.

See pack for more examples and notes.

untie VARIABLE

Breaks the binding between a variable and a package. (See tie.)
 Has no effect if the variable
is not tied.

unshift ARRAY,LIST

Does the opposite of a shift. Or the opposite of a push,
 depending on how you look at it.
Prepends list to the front of the
 array, and returns the new number of elements in the array.

 unshift(@ARGV, '-e') unless $ARGV[0] =~ /^-/;

Note the LIST is prepended whole, not one element at a time, so the
 prepended elements stay
in the same order. Use reverse to do the
 reverse.

Perl version 5.12.3 documentation - perlfunc

Page 96http://perldoc.perl.org

use Module VERSION LIST

use Module VERSION

use Module LIST

use Module

use VERSION

Imports some semantics into the current package from the named module,
 generally by
aliasing certain subroutine or variable names into your
 package. It is exactly equivalent to

 BEGIN { require Module; Module->import(LIST); }

except that Module must be a bareword.

In the peculiar use VERSION form, VERSION may be either a positive
 decimal fraction such
as 5.006, which will be compared to $], or a v-string
 of the form v5.6.1, which will be
compared to $^V (aka $PERL_VERSION). An
 exception is raised if VERSION is greater than
the version of the
 current Perl interpreter; Perl will not attempt to parse the rest of the
 file.
Compare with require, which can do a similar check at run time.
 Symmetrically, no VERSION
allows you to specify that you want a version
 of Perl older than the specified one.

Specifying VERSION as a literal of the form v5.6.1 should generally be
 avoided, because it
leads to misleading error messages under earlier
 versions of Perl (that is, prior to 5.6.0) that
do not support this
 syntax. The equivalent numeric version should be used instead.

 use v5.6.1; # compile time version check
 use 5.6.1; # ditto
 use 5.006_001; # ditto; preferred for backwards compatibility

This is often useful if you need to check the current Perl version before useing library modules
that won't work with older versions of Perl.
 (We try not to do this more than we have to.)

Also, if the specified Perl version is greater than or equal to 5.9.5, use VERSION will also load
the feature pragma and enable all
 features available in the requested version. See feature.

Similarly, if the specified Perl version is greater than or equal to
 5.11.0, strictures are enabled
lexically as with use strict (except
 that the strict.pm file is not actually loaded).

The BEGIN forces the require and import to happen at compile time. The require makes
sure the module is loaded into memory if it hasn't been
 yet. The import is not a builtin; it's
just an ordinary static method
 call into the Module package to tell the module to import the list
of
 features back into the current package. The module can implement its import method any
way it likes, though most modules just choose to
 derive their import method via inheritance
from the Exporter class that
 is defined in the Exporter module. See Exporter. If no
import
 method can be found then the call is skipped, even if there is an AUTOLOAD

method.

If you do not want to call the package's import method (for instance,
 to stop your namespace
from being altered), explicitly supply the empty list:

 use Module ();

That is exactly equivalent to

 BEGIN { require Module }

If the VERSION argument is present between Module and LIST, then the use will call the
VERSION method in class Module with the given
 version as an argument. The default
VERSION method, inherited from
 the UNIVERSAL class, croaks if the given version is larger
than the
 value of the variable $Module::VERSION.

Again, there is a distinction between omitting LIST (import called
 with no arguments) and an
explicit empty LIST () (import not
 called). Note that there is no comma after VERSION!

Because this is a wide-open interface, pragmas (compiler directives)
 are also implemented

Perl version 5.12.3 documentation - perlfunc

Page 97http://perldoc.perl.org

this way. Currently implemented pragmas are:

 use constant;
 use diagnostics;
 use integer;
 use sigtrap qw(SEGV BUS);
 use strict qw(subs vars refs);
 use subs qw(afunc blurfl);
 use warnings qw(all);
 use sort qw(stable _quicksort _mergesort);

Some of these pseudo-modules import semantics into the current
 block scope (like strict or
integer, unlike ordinary modules,
 which import symbols into the current package (which are
effective
 through the end of the file).

Because use takes effect at compile time, it doesn't respect the
 ordinary flow control of the
code being compiled. In particular, putting
 a use inside the false branch of a conditional
doesn't prevent it
 from being processed. If a module or pragma only needs to be loaded
conditionally, this can be done using the if pragma:

 use if $] < 5.008, "utf8";
 use if WANT_WARNINGS, warnings => qw(all);

There's a corresponding no command that unimports meanings imported
 by use, i.e., it calls
unimport Module LIST instead of import.
 It behaves just as import does with
VERSION, an omitted or empty LIST, or no unimport method being found.

 no integer;
 no strict 'refs';
 no warnings;

Care should be taken when using the no VERSION form of no. It is only meant to be used to
assert that the running perl is of a earlier
 version than its argument and not to undo the
feature-enabling side effects
 of use VERSION.

See perlmodlib for a list of standard modules and pragmas. See perlrun
 for the -M and -m
command-line options to Perl that give use
 functionality from the command-line.

utime LIST

Changes the access and modification times on each file of a list of
 files. The first two elements
of the list must be the NUMERICAL access
 and modification times, in that order. Returns the
number of files
 successfully changed. The inode change time of each file is set
 to the current
time. For example, this code has the same effect as the
 Unix touch(1) command when the
files already exist and belong to
 the user running the program:

 #!/usr/bin/perl
 $atime = $mtime = time;
 utime $atime, $mtime, @ARGV;

Since Perl 5.7.2, if the first two elements of the list are undef, the utime(2) syscall from your
C library is called with a null second
 argument. On most systems, this will set the file's access
and
 modification times to the current time (i.e., equivalent to the example
 above) and will work
even on files you don't own provided you have write
 permission:

 for $file (@ARGV) {
	 utime(undef, undef, $file)
	 || warn "couldn't touch $file: $!";
 }

Under NFS this will use the time of the NFS server, not the time of
 the local machine. If there
is a time synchronization problem, the
 NFS server and local machine will have different times.

Perl version 5.12.3 documentation - perlfunc

Page 98http://perldoc.perl.org

The Unix
 touch(1) command will in fact normally use this form instead of the
 one shown in the
first example.

Passing only one of the first two elements as undef is
 equivalent to passing a 0 and will not
have the effect described when both are undef. This also triggers an
 uninitialized warning.

On systems that support futimes(2), you may pass filehandles among the
 files. On systems
that don't support futimes(2), passing filehandles raises
 an exception. Filehandles must be
passed as globs or glob references to be
 recognized; barewords are considered filenames.

values HASH

values ARRAY

Returns a list consisting of all the values of the named hash, or the values
 of an array. (In a
scalar context, returns the number of values.)

The values are returned in an apparently random order. The actual
 random order is subject to
change in future versions of Perl, but it
 is guaranteed to be the same order as either the keys
or each
 function would produce on the same (unmodified) hash. Since Perl
 5.8.1 the ordering
is different even between different runs of Perl
 for security reasons (see "Algorithmic
Complexity Attacks" in perlsec).

As a side effect, calling values() resets the HASH or ARRAY's internal
 iterator,
 see each. (In
particular, calling values() in void context resets
 the iterator with no other overhead. Apart from
resetting the iterator, values @array in list context is the same as plain @array.
 We
recommend that you use void context keys @array for this, but reasoned
 that it taking
values @array out would require more documentation than
 leaving it in.)

Note that the values are not copied, which means modifying them will
 modify the contents of
the hash:

 for (values %hash) { s/foo/bar/g } # modifies %hash values
 for (@hash{keys %hash}) { s/foo/bar/g } # same

See also keys, each, and sort.

vec EXPR,OFFSET,BITS

Treats the string in EXPR as a bit vector made up of elements of
 width BITS, and returns the
value of the element specified by OFFSET
 as an unsigned integer. BITS therefore specifies
the number of bits
 that are reserved for each element in the bit vector. This must
 be a power
of two from 1 to 32 (or 64, if your platform supports
 that).

If BITS is 8, "elements" coincide with bytes of the input string.

If BITS is 16 or more, bytes of the input string are grouped into chunks
 of size BITS/8, and
each group is converted to a number as with
 pack()/unpack() with big-endian formats n/N (and
analogously
 for BITS==64). See pack for details.

If bits is 4 or less, the string is broken into bytes, then the bits
 of each byte are broken into
8/BITS groups. Bits of a byte are
 numbered in a little-endian-ish way, as in 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80. For example,
 breaking the single input byte chr(0x36) into
two groups gives a list (0x6, 0x3); breaking it into 4 groups gives (0x2, 0x1, 0x3,
0x0).

vec may also be assigned to, in which case parentheses are needed
 to give the expression
the correct precedence as in

 vec($image, $max_x * $x + $y, 8) = 3;

If the selected element is outside the string, the value 0 is returned.
 If an element off the end
of the string is written to, Perl will first
 extend the string with sufficiently many zero bytes. It is
an error
 to try to write off the beginning of the string (i.e., negative OFFSET).

If the string happens to be encoded as UTF-8 internally (and thus has
 the UTF8 flag set), this
is ignored by vec, and it operates on the
 internal byte string, not the conceptual character

Perl version 5.12.3 documentation - perlfunc

Page 99http://perldoc.perl.org

string, even if you
 only have characters with values less than 256.

Strings created with vec can also be manipulated with the logical
 operators |, &, ^, and ~.
These operators will assume a bit
 vector operation is desired when both operands are strings.

See "Bitwise String Operators" in perlop.

The following code will build up an ASCII string saying 'PerlPerlPerl'.
 The comments
show the string after each step. Note that this code works
 in the same way on big-endian or
little-endian machines.

 my $foo = '';
 vec($foo, 0, 32) = 0x5065726C; # 'Perl'

 # $foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
 print vec($foo, 0, 8); # prints 80 == 0x50 == ord('P')

 vec($foo, 2, 16) = 0x5065; # 'PerlPe'
 vec($foo, 3, 16) = 0x726C; # 'PerlPerl'
 vec($foo, 8, 8) = 0x50; # 'PerlPerlP'
 vec($foo, 9, 8) = 0x65; # 'PerlPerlPe'
 vec($foo, 20, 4) = 2; # 'PerlPerlPe' . "\x02"
 vec($foo, 21, 4) = 7; # 'PerlPerlPer'
 # 'r' is "\x72"
 vec($foo, 45, 2) = 3; # 'PerlPerlPer' . "\x0c"
 vec($foo, 93, 1) = 1; # 'PerlPerlPer' . "\x2c"
 vec($foo, 94, 1) = 1; # 'PerlPerlPerl'
 # 'l' is "\x6c"

To transform a bit vector into a string or list of 0's and 1's, use these:

 $bits = unpack("b*", $vector);
 @bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the *.

Here is an example to illustrate how the bits actually fall in place:

 #!/usr/bin/perl -wl

 print <<'EOT';
 0 1 2 3
 unpack("V",$_)
01234567890123456789012345678901

--
 EOT

 for $w (0..3) {
 $width = 2**$w;
 for ($shift=0; $shift < $width; ++$shift) {
 for ($off=0; $off < 32/$width; ++$off) {
 $str = pack("B*", "0"x32);
 $bits = (1<<$shift);
 vec($str, $off, $width) = $bits;
 $res = unpack("b*",$str);
 $val = unpack("V", $str);
 write;
 }
 }
 }

Perl version 5.12.3 documentation - perlfunc

Page 100http://perldoc.perl.org

 format STDOUT =
 vec($_,@#,@#) = @<< == @#########
@>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
 $off, $width, $bits, $val, $res
 .
 __END__

Regardless of the machine architecture on which it runs, the example above should print the
following table:

 0 1 2 3
 unpack("V",$_)
01234567890123456789012345678901

--
 vec($_, 0, 1) = 1 == 1
10000000000000000000000000000000
 vec($_, 1, 1) = 1 == 2
01000000000000000000000000000000
 vec($_, 2, 1) = 1 == 4
00100000000000000000000000000000
 vec($_, 3, 1) = 1 == 8
00010000000000000000000000000000
 vec($_, 4, 1) = 1 == 16
00001000000000000000000000000000
 vec($_, 5, 1) = 1 == 32
00000100000000000000000000000000
 vec($_, 6, 1) = 1 == 64
00000010000000000000000000000000
 vec($_, 7, 1) = 1 == 128
00000001000000000000000000000000
 vec($_, 8, 1) = 1 == 256
00000000100000000000000000000000
 vec($_, 9, 1) = 1 == 512
00000000010000000000000000000000
 vec($_,10, 1) = 1 == 1024
00000000001000000000000000000000
 vec($_,11, 1) = 1 == 2048
00000000000100000000000000000000
 vec($_,12, 1) = 1 == 4096
00000000000010000000000000000000
 vec($_,13, 1) = 1 == 8192
00000000000001000000000000000000
 vec($_,14, 1) = 1 == 16384
00000000000000100000000000000000
 vec($_,15, 1) = 1 == 32768
00000000000000010000000000000000
 vec($_,16, 1) = 1 == 65536
00000000000000001000000000000000
 vec($_,17, 1) = 1 == 131072
00000000000000000100000000000000
 vec($_,18, 1) = 1 == 262144
00000000000000000010000000000000
 vec($_,19, 1) = 1 == 524288
00000000000000000001000000000000
 vec($_,20, 1) = 1 == 1048576
00000000000000000000100000000000

Perl version 5.12.3 documentation - perlfunc

Page 101http://perldoc.perl.org

 vec($_,21, 1) = 1 == 2097152
00000000000000000000010000000000
 vec($_,22, 1) = 1 == 4194304
00000000000000000000001000000000
 vec($_,23, 1) = 1 == 8388608
00000000000000000000000100000000
 vec($_,24, 1) = 1 == 16777216
00000000000000000000000010000000
 vec($_,25, 1) = 1 == 33554432
00000000000000000000000001000000
 vec($_,26, 1) = 1 == 67108864
00000000000000000000000000100000
 vec($_,27, 1) = 1 == 134217728
00000000000000000000000000010000
 vec($_,28, 1) = 1 == 268435456
00000000000000000000000000001000
 vec($_,29, 1) = 1 == 536870912
00000000000000000000000000000100
 vec($_,30, 1) = 1 == 1073741824
00000000000000000000000000000010
 vec($_,31, 1) = 1 == 2147483648
00000000000000000000000000000001
 vec($_, 0, 2) = 1 == 1
10000000000000000000000000000000
 vec($_, 1, 2) = 1 == 4
00100000000000000000000000000000
 vec($_, 2, 2) = 1 == 16
00001000000000000000000000000000
 vec($_, 3, 2) = 1 == 64
00000010000000000000000000000000
 vec($_, 4, 2) = 1 == 256
00000000100000000000000000000000
 vec($_, 5, 2) = 1 == 1024
00000000001000000000000000000000
 vec($_, 6, 2) = 1 == 4096
00000000000010000000000000000000
 vec($_, 7, 2) = 1 == 16384
00000000000000100000000000000000
 vec($_, 8, 2) = 1 == 65536
00000000000000001000000000000000
 vec($_, 9, 2) = 1 == 262144
00000000000000000010000000000000
 vec($_,10, 2) = 1 == 1048576
00000000000000000000100000000000
 vec($_,11, 2) = 1 == 4194304
00000000000000000000001000000000
 vec($_,12, 2) = 1 == 16777216
00000000000000000000000010000000
 vec($_,13, 2) = 1 == 67108864
00000000000000000000000000100000
 vec($_,14, 2) = 1 == 268435456
00000000000000000000000000001000
 vec($_,15, 2) = 1 == 1073741824
00000000000000000000000000000010
 vec($_, 0, 2) = 2 == 2
01000000000000000000000000000000

Perl version 5.12.3 documentation - perlfunc

Page 102http://perldoc.perl.org

 vec($_, 1, 2) = 2 == 8
00010000000000000000000000000000
 vec($_, 2, 2) = 2 == 32
00000100000000000000000000000000
 vec($_, 3, 2) = 2 == 128
00000001000000000000000000000000
 vec($_, 4, 2) = 2 == 512
00000000010000000000000000000000
 vec($_, 5, 2) = 2 == 2048
00000000000100000000000000000000
 vec($_, 6, 2) = 2 == 8192
00000000000001000000000000000000
 vec($_, 7, 2) = 2 == 32768
00000000000000010000000000000000
 vec($_, 8, 2) = 2 == 131072
00000000000000000100000000000000
 vec($_, 9, 2) = 2 == 524288
00000000000000000001000000000000
 vec($_,10, 2) = 2 == 2097152
00000000000000000000010000000000
 vec($_,11, 2) = 2 == 8388608
00000000000000000000000100000000
 vec($_,12, 2) = 2 == 33554432
00000000000000000000000001000000
 vec($_,13, 2) = 2 == 134217728
00000000000000000000000000010000
 vec($_,14, 2) = 2 == 536870912
00000000000000000000000000000100
 vec($_,15, 2) = 2 == 2147483648
00000000000000000000000000000001
 vec($_, 0, 4) = 1 == 1
10000000000000000000000000000000
 vec($_, 1, 4) = 1 == 16
00001000000000000000000000000000
 vec($_, 2, 4) = 1 == 256
00000000100000000000000000000000
 vec($_, 3, 4) = 1 == 4096
00000000000010000000000000000000
 vec($_, 4, 4) = 1 == 65536
00000000000000001000000000000000
 vec($_, 5, 4) = 1 == 1048576
00000000000000000000100000000000
 vec($_, 6, 4) = 1 == 16777216
00000000000000000000000010000000
 vec($_, 7, 4) = 1 == 268435456
00000000000000000000000000001000
 vec($_, 0, 4) = 2 == 2
01000000000000000000000000000000
 vec($_, 1, 4) = 2 == 32
00000100000000000000000000000000
 vec($_, 2, 4) = 2 == 512
00000000010000000000000000000000
 vec($_, 3, 4) = 2 == 8192
00000000000001000000000000000000
 vec($_, 4, 4) = 2 == 131072
00000000000000000100000000000000

Perl version 5.12.3 documentation - perlfunc

Page 103http://perldoc.perl.org

 vec($_, 5, 4) = 2 == 2097152
00000000000000000000010000000000
 vec($_, 6, 4) = 2 == 33554432
00000000000000000000000001000000
 vec($_, 7, 4) = 2 == 536870912
00000000000000000000000000000100
 vec($_, 0, 4) = 4 == 4
00100000000000000000000000000000
 vec($_, 1, 4) = 4 == 64
00000010000000000000000000000000
 vec($_, 2, 4) = 4 == 1024
00000000001000000000000000000000
 vec($_, 3, 4) = 4 == 16384
00000000000000100000000000000000
 vec($_, 4, 4) = 4 == 262144
00000000000000000010000000000000
 vec($_, 5, 4) = 4 == 4194304
00000000000000000000001000000000
 vec($_, 6, 4) = 4 == 67108864
00000000000000000000000000100000
 vec($_, 7, 4) = 4 == 1073741824
00000000000000000000000000000010
 vec($_, 0, 4) = 8 == 8
00010000000000000000000000000000
 vec($_, 1, 4) = 8 == 128
00000001000000000000000000000000
 vec($_, 2, 4) = 8 == 2048
00000000000100000000000000000000
 vec($_, 3, 4) = 8 == 32768
00000000000000010000000000000000
 vec($_, 4, 4) = 8 == 524288
00000000000000000001000000000000
 vec($_, 5, 4) = 8 == 8388608
00000000000000000000000100000000
 vec($_, 6, 4) = 8 == 134217728
00000000000000000000000000010000
 vec($_, 7, 4) = 8 == 2147483648
00000000000000000000000000000001
 vec($_, 0, 8) = 1 == 1
10000000000000000000000000000000
 vec($_, 1, 8) = 1 == 256
00000000100000000000000000000000
 vec($_, 2, 8) = 1 == 65536
00000000000000001000000000000000
 vec($_, 3, 8) = 1 == 16777216
00000000000000000000000010000000
 vec($_, 0, 8) = 2 == 2
01000000000000000000000000000000
 vec($_, 1, 8) = 2 == 512
00000000010000000000000000000000
 vec($_, 2, 8) = 2 == 131072
00000000000000000100000000000000
 vec($_, 3, 8) = 2 == 33554432
00000000000000000000000001000000
 vec($_, 0, 8) = 4 == 4
00100000000000000000000000000000

Perl version 5.12.3 documentation - perlfunc

Page 104http://perldoc.perl.org

 vec($_, 1, 8) = 4 == 1024
00000000001000000000000000000000
 vec($_, 2, 8) = 4 == 262144
00000000000000000010000000000000
 vec($_, 3, 8) = 4 == 67108864
00000000000000000000000000100000
 vec($_, 0, 8) = 8 == 8
00010000000000000000000000000000
 vec($_, 1, 8) = 8 == 2048
00000000000100000000000000000000
 vec($_, 2, 8) = 8 == 524288
00000000000000000001000000000000
 vec($_, 3, 8) = 8 == 134217728
00000000000000000000000000010000
 vec($_, 0, 8) = 16 == 16
00001000000000000000000000000000
 vec($_, 1, 8) = 16 == 4096
00000000000010000000000000000000
 vec($_, 2, 8) = 16 == 1048576
00000000000000000000100000000000
 vec($_, 3, 8) = 16 == 268435456
00000000000000000000000000001000
 vec($_, 0, 8) = 32 == 32
00000100000000000000000000000000
 vec($_, 1, 8) = 32 == 8192
00000000000001000000000000000000
 vec($_, 2, 8) = 32 == 2097152
00000000000000000000010000000000
 vec($_, 3, 8) = 32 == 536870912
00000000000000000000000000000100
 vec($_, 0, 8) = 64 == 64
00000010000000000000000000000000
 vec($_, 1, 8) = 64 == 16384
00000000000000100000000000000000
 vec($_, 2, 8) = 64 == 4194304
00000000000000000000001000000000
 vec($_, 3, 8) = 64 == 1073741824
00000000000000000000000000000010
 vec($_, 0, 8) = 128 == 128
00000001000000000000000000000000
 vec($_, 1, 8) = 128 == 32768
00000000000000010000000000000000
 vec($_, 2, 8) = 128 == 8388608
00000000000000000000000100000000
 vec($_, 3, 8) = 128 == 2147483648
00000000000000000000000000000001

wait

Behaves like wait(2) on your system: it waits for a child
 process to terminate and returns the
pid of the deceased process, or -1 if there are no child processes. The status is returned in
$?
 and ${^CHILD_ERROR_NATIVE}.
 Note that a return value of -1 could mean that child
processes are
 being automatically reaped, as described in perlipc.

If you use wait in your handler for $SIG{CHLD} it may accidently wait for the
 child created by
qx() or system(). See perlipc for details.

Perl version 5.12.3 documentation - perlfunc

Page 105http://perldoc.perl.org

waitpid PID,FLAGS

Waits for a particular child process to terminate and returns the pid of
 the deceased process,
or -1 if there is no such child process. On some
 systems, a value of 0 indicates that there are
processes still running.
 The status is returned in $? and ${^CHILD_ERROR_NATIVE}. If you
say

 use POSIX ":sys_wait_h";
 #...
 do {
 $kid = waitpid(-1, WNOHANG);
 } while $kid > 0;

then you can do a non-blocking wait for all pending zombie processes.
 Non-blocking wait is
available on machines supporting either the
 waitpid(2) or wait4(2) syscalls. However, waiting
for a particular
 pid with FLAGS of 0 is implemented everywhere. (Perl emulates the
 system
call by remembering the status values of processes that have
 exited but have not been
harvested by the Perl script yet.)

Note that on some systems, a return value of -1 could mean that child
 processes are being
automatically reaped. See perlipc for details,
 and for other examples.

wantarray

Returns true if the context of the currently executing subroutine or eval is looking for a list
value. Returns false if the context is
 looking for a scalar. Returns the undefined value if the
context is
 looking for no value (void context).

 return unless defined wantarray; # don't bother doing more
 my @a = complex_calculation();
 return wantarray ? @a : "@a";

wantarray()'s result is unspecified in the top level of a file,
 in a BEGIN, UNITCHECK, CHECK
, INIT or END block, or
 in a DESTROY method.

This function should have been named wantlist() instead.

warn LIST

Prints the value of LIST to STDERR. If the last element of LIST does
 not end in a newline, it
appends the same file/line number text as die
 does.

If the output is empty and $@ already contains a value (typically from a
 previous eval) that
value is used after appending "\t...caught"
 to $@. This is useful for staying almost, but
not entirely similar to die.

If $@ is empty then the string "Warning: Something's wrong" is used.

No message is printed if there is a $SIG{__WARN__} handler
 installed. It is the handler's
responsibility to deal with the message
 as it sees fit (like, for instance, converting it into a die
). Most
 handlers must therefore arrange to actually display the
 warnings that they are not
prepared to deal with, by calling warn
 again in the handler. Note that this is quite safe and will
not
 produce an endless loop, since __WARN__ hooks are not called from
 inside one.

You will find this behavior is slightly different from that of $SIG{__DIE__} handlers (which
don't suppress the error text, but can
 instead call die again to change it).

Using a __WARN__ handler provides a powerful way to silence all
 warnings (even the
so-called mandatory ones). An example:

 # wipe out *all* compile-time warnings
 BEGIN { $SIG{'__WARN__'} = sub { warn $_[0] if $DOWARN } }
 my $foo = 10;
 my $foo = 20; # no warning about duplicate my $foo,
 # but hey, you asked for it!

Perl version 5.12.3 documentation - perlfunc

Page 106http://perldoc.perl.org

 # no compile-time or run-time warnings before here
 $DOWARN = 1;

 # run-time warnings enabled after here
 warn "\$foo is alive and $foo!"; # does show up

See perlvar for details on setting %SIG entries, and for more
 examples. See the Carp module
for other kinds of warnings using its
 carp() and cluck() functions.

write FILEHANDLE

write EXPR

write

Writes a formatted record (possibly multi-line) to the specified FILEHANDLE,
 using the format
associated with that file. By default the format for
 a file is the one having the same name as
the filehandle, but the
 format for the current output channel (see the select function) may be
set
 explicitly by assigning the name of the format to the $~ variable.

Top of form processing is handled automatically: if there is
 insufficient room on the current
page for the formatted record, the
 page is advanced by writing a form feed, a special
top-of-page format
 is used to format the new page header, and then the record is written.
 By
default the top-of-page format is the name of the filehandle with
 "_TOP" appended, but it may
be dynamically set to the format of your
 choice by assigning the name to the $^ variable while
the filehandle is
 selected. The number of lines remaining on the current page is in
 variable $-,
which can be set to 0 to force a new page.

If FILEHANDLE is unspecified, output goes to the current default output
 channel, which starts
out as STDOUT but may be changed by the select operator. If the FILEHANDLE is an
EXPR, then the expression
 is evaluated and the resulting string is used to look up the name of
the FILEHANDLE at run time. For more on formats, see perlform.

Note that write is not the opposite of read. Unfortunately.

y///

The transliteration operator. Same as tr///. See "Quote and Quote-like Operators" in perlop.

