
Perl version 5.12.3 documentation - ExtUtils::MakeMaker::FAQ

Page 1http://perldoc.perl.org

NAME
ExtUtils::MakeMaker::FAQ - Frequently Asked Questions About MakeMaker

DESCRIPTION
FAQs, tricks and tips for ExtUtils::MakeMaker.

Module Installation
How do I install a module into my home directory?

If you're not the Perl administrator you probably don't have
 permission to install a module to its
default location. Then you
 should install it for your own use into your home directory like so:

 # Non-unix folks, replace ~ with /path/to/your/home/dir
 perl Makefile.PL INSTALL_BASE=~

This will put modules into ~/lib/perl5, man pages into ~/man and
 programs into ~/bin.

To ensure your Perl programs can see these newly installed modules,
 set your PERL5LIB
environment variable to ~/lib/perl5 or tell
 each of your programs to look in that directory with
the following:

 use lib "$ENV{HOME}/lib/perl5";

or if $ENV{HOME} isn't set and you don't want to set it for some
 reason, do it the long way.

 use lib "/path/to/your/home/dir/lib/perl5";

How do I get MakeMaker and Module::Build to install to the same place?

Module::Build, as of 0.28, supports two ways to install to the same
 location as MakeMaker.

1) Use INSTALL_BASE / --install_base

MakeMaker (as of 6.31) and Module::Build (as of 0.28) both can install
 to the same locations
using the "install_base" concept. See "INSTALL_BASE" in ExtUtils::MakeMaker for details. To
get MM and MB to
 install to the same location simply set INSTALL_BASE in MM and
--install_base in MB to the same location.

 perl Makefile.PL INSTALL_BASE=/whatever
 perl Build.PL --install_base /whatever

2) Use PREFIX / --prefix

Module::Build 0.28 added support for --prefix which works like
 MakeMaker's PREFIX.

 perl Makefile.PL PREFIX=/whatever
 perl Build.PL --prefix /whatever

How do I keep from installing man pages?

Recent versions of MakeMaker will only install man pages on Unix like
 operating systems.

For an individual module:

 perl Makefile.PL INSTALLMAN1DIR=none INSTALLMAN3DIR=none

If you want to suppress man page installation for all modules you have
 to reconfigure Perl and
tell it 'none' when it asks where to install
 man pages.

How do I use a module without installing it?

Two ways. One is to build the module normally...

 perl Makefile.PL
 make
 make test

Perl version 5.12.3 documentation - ExtUtils::MakeMaker::FAQ

Page 2http://perldoc.perl.org

...and then set the PERL5LIB environment variable to point at the
 blib/lib and blib/arch
directories.

The other is to install the module in a temporary location.

 perl Makefile.PL INSTALL_BASE=~/tmp
 make
 make test
 make install

And then set PERL5LIB to ~/tmp/lib/perl5. This works well when you
 have multiple modules to
work with. It also ensures that the module
 goes through its full installation process which may
modify it.

PREFIX vs INSTALL_BASE from Module::Build::Cookbook

The behavior of PREFIX is complicated and depends closely on how your
 Perl is configured.
The resulting installation locations will vary from
 machine to machine and even different
installations of Perl on the same machine.
 Because of this, its difficult to document where
prefix will place your modules.

In contrast, INSTALL_BASE has predictable, easy to explain installation locations.
 Now that
Module::Build and MakeMaker both have INSTALL_BASE there is little reason
 to use PREFIX
other than to preserve your existing installation locations. If you
 are starting a fresh Perl
installation we encourage you to use INSTALL_BASE. If
 you have an existing installation
installed via PREFIX, consider moving it to an
 installation structure matching INSTALL_BASE
and using that instead.

Philosophy and History
Why not just use <insert other build config tool here>?

Why did MakeMaker reinvent the build configuration wheel? Why not
 just use autoconf or
automake or ppm or Ant or ...

There are many reasons, but the major one is cross-platform
 compatibility.

Perl is one of the most ported pieces of software ever. It works on
 operating systems I've
never even heard of (see perlport for details).
 It needs a build tool that can work on all those
platforms and with
 any wacky C compilers and linkers they might have.

No such build tool exists. Even make itself has wildly different
 dialects. So we have to build
our own.

What is Module::Build and how does it relate to MakeMaker?

Module::Build is a project by Ken Williams to supplant MakeMaker.
 Its primary advantages
are:

* pure perl. no make, no shell commands

* easier to customize

* cleaner internals

* less cruft

Module::Build is the official heir apparent to MakeMaker and we
 encourage people to work on
M::B rather than spending time adding features
 to MakeMaker.

Module Writing
How do I keep my $VERSION up to date without resetting it manually?

Often you want to manually set the $VERSION in the main module
 distribution because this is
the version that everybody sees on CPAN
 and maybe you want to customize it a bit. But for all
the other
 modules in your dist, $VERSION is really just bookkeeping and all that's
 important is
it goes up every time the module is changed. Doing this
 by hand is a pain and you often

Perl version 5.12.3 documentation - ExtUtils::MakeMaker::FAQ

Page 3http://perldoc.perl.org

forget.Simplest way to do it automatically is to use your version control
 system's revision
number (you are using version control, right?).

In CVS, RCS and SVN you use $Revision$ (see the documentation of your
 version control
system for details). Every time the file is checked
 in the $Revision$ will be updated, updating
your $VERSION.

SVN uses a simple integer for $Revision$ so you can adapt it for your
 $VERSION like so:

 ($VERSION) = q$Revision$ =~ /(\d+)/;

In CVS and RCS version 1.9 is followed by 1.10. Since CPAN compares
 version numbers
numerically we use a sprintf() to convert 1.9 to 1.009
 and 1.10 to 1.010 which compare
properly.

 $VERSION = sprintf "%d.%03d", q$Revision$ =~ /(\d+)\.(\d+)/g;

If branches are involved (ie. $Revision: 1.5.3.4$) its a little more
 complicated.

 # must be all on one line or MakeMaker will get confused.
 $VERSION = do { my @r = (q$Revision$ =~ /\d+/g); sprintf
"%d."."%03d" x $#r, @r };

In SVN, $Revision$ should be the same for every file in the project so
 they would all have the
same $VERSION. CVS and RCS have a different
 $Revision$ per file so each file will have a
differnt $VERSION.
 Distributed version control systems, such as SVK, may have a different

$Revision$ based on who checks out the file leading to a different $VERSION
 on each
machine! Finally, some distributed version control systems, such
 as darcs, have no concept of
revision number at all.

What's this META.yml thing and how did it get in my MANIFEST?!

META.yml is a module meta-data file pioneered by Module::Build and
 automatically generated
as part of the 'distdir' target (and thus
 'dist'). See "Module Meta-Data" in ExtUtils::MakeMaker.

To shut off its generation, pass the NO_META flag to WriteMakefile().

How do I delete everything not in my MANIFEST?

Some folks are surpried that make distclean does not delete
 everything not listed in their
MANIFEST (thus making a clean
 distribution) but only tells them what they need to delete.
This is
 done because it is considered too dangerous. While developing your
 module you might
write a new file, not add it to the MANIFEST, then
 run a distclean and be sad because your
new work was deleted.

If you really want to do this, you can use ExtUtils::Manifest::manifind() to read the
MANIFEST and File::Find
 to delete the files. But you have to be careful. Here's a script to
 do
that. Use at your own risk. Have fun blowing holes in your foot.

 #!/usr/bin/perl -w

 use strict;

 use File::Spec;
 use File::Find;
 use ExtUtils::Manifest qw(maniread);

 my %manifest = map {($_ => 1)}
 grep { File::Spec->canonpath($_) }
 keys %{ maniread() };

 if(!keys %manifest) {
 print "No files found in MANIFEST. Stopping.\n";

Perl version 5.12.3 documentation - ExtUtils::MakeMaker::FAQ

Page 4http://perldoc.perl.org

 exit;
 }

 find({
 wanted => sub {
 my $path = File::Spec->canonpath($_);

 return unless -f $path;
 return if exists $manifest{ $path };

 print "unlink $path\n";
 unlink $path;
 },
 no_chdir => 1
 },
 "."
);

Which zip should I use on Windows for '[nd]make zipdist'?

We recommend InfoZIP: http://www.info-zip.org/Zip.html

XS
How to I prevent "object version X.XX does not match bootstrap parameter Y.YY" errors?

XS code is very sensitive to the module version number and will
 complain if the version
number in your Perl module doesn't match. If
 you change your module's version # without
rerunning Makefile.PL the old
 version number will remain in the Makefile causing the XS code
to be built
 with the wrong number.

To avoid this, you can force the Makefile to be rebuilt whenever you
 change the module
containing the version number by adding this to your
 WriteMakefile() arguments.

 depend => { '$(FIRST_MAKEFILE)' => '$(VERSION_FROM)' }

How do I make two or more XS files coexist in the same directory?

Sometimes you need to have two and more XS files in the same package.
 One way to go is to
put them into separate directories, but sometimes
 this is not the most suitable solution. The
following technique allows
 you to put two (and more) XS files in the same directory.

Let's assume that we have a package Cool::Foo, which includes Cool::Foo and
Cool::Bar modules each having a separate XS
 file. First we use the following Makefile.PL:

 use ExtUtils::MakeMaker;

 WriteMakefile(
 NAME		 => 'Cool::Foo',
 VERSION_FROM	 => 'Foo.pm',
 OBJECT => q/$(O_FILES)/,
 # ... other attrs ...
);

Notice the OBJECT attribute. MakeMaker generates the following
 variables in Makefile:

 # Handy lists of source code files:
 XS_FILES= Bar.xs \
 	 Foo.xs
 C_FILES = Bar.c \
 	 Foo.c
 O_FILES = Bar.o \

Perl version 5.12.3 documentation - ExtUtils::MakeMaker::FAQ

Page 5http://perldoc.perl.org

 	 Foo.o

Therefore we can use the O_FILES variable to tell MakeMaker to use
 these objects into the
shared library.

That's pretty much it. Now write Foo.pm and Foo.xs, Bar.pm
 and Bar.xs, where Foo.pm
bootstraps the shared library and Bar.pm simply loading Foo.pm.

The only issue left is to how to bootstrap Bar.xs. This is done
 from Foo.xs:

 MODULE = Cool::Foo PACKAGE = Cool::Foo

 BOOT:
 # boot the second XS file
 boot_Cool__Bar(aTHX_ cv);

If you have more than two files, this is the place where you should
 boot extra XS files from.

The following four files sum up all the details discussed so far.

 Foo.pm:

 package Cool::Foo;

 require DynaLoader;

 our @ISA = qw(DynaLoader);
 our $VERSION = '0.01';
 bootstrap Cool::Foo $VERSION;

 1;

 Bar.pm:

 package Cool::Bar;

 use Cool::Foo; # bootstraps Bar.xs

 1;

 Foo.xs:

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 MODULE = Cool::Foo PACKAGE = Cool::Foo

 BOOT:
 # boot the second XS file
 boot_Cool__Bar(aTHX_ cv);

 MODULE = Cool::Foo PACKAGE = Cool::Foo PREFIX = cool_foo_

 void
 cool_foo_perl_rules()

 CODE:
 fprintf(stderr, "Cool::Foo says: Perl Rules\n");

Perl version 5.12.3 documentation - ExtUtils::MakeMaker::FAQ

Page 6http://perldoc.perl.org

 Bar.xs:

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 MODULE = Cool::Bar PACKAGE = Cool::Bar PREFIX = cool_bar_

 void
 cool_bar_perl_rules()

 CODE:
 fprintf(stderr, "Cool::Bar says: Perl Rules\n");

And of course a very basic test:

 t/cool.t:

 use Test;
 BEGIN { plan tests => 1 };
 use Cool::Foo;
 use Cool::Bar;
 Cool::Foo::perl_rules();
 Cool::Bar::perl_rules();
 ok 1;

This tip has been brought to you by Nick Ing-Simmons and Stas Bekman.

PATCHING
If you have a question you'd like to see added to the FAQ (whether or
 not you have the answer)
please send it to makemaker@perl.org.

AUTHOR
The denizens of makemaker@perl.org.

SEE ALSO
ExtUtils::MakeMaker

