
Perl version 5.12.3 documentation - IPC::Open3

Page 1http://perldoc.perl.org

NAME
IPC::Open3 - open a process for reading, writing, and error handling using open3()

SYNOPSIS
 $pid = open3(*CHLD_IN, *CHLD_OUT, *CHLD_ERR,
		 'some cmd and args', 'optarg', ...);

 my($wtr, $rdr, $err);
 use Symbol 'gensym'; $err = gensym;
 $pid = open3($wtr, $rdr, $err,
		 'some cmd and args', 'optarg', ...);

 waitpid($pid, 0);
 my $child_exit_status = $? >> 8;

DESCRIPTION
Extremely similar to open2(), open3() spawns the given $cmd and
 connects CHLD_OUT for reading
from the child, CHLD_IN for writing to
 the child, and CHLD_ERR for errors. If CHLD_ERR is false, or
the
 same file descriptor as CHLD_OUT, then STDOUT and STDERR of the child
 are on the same
filehandle (this means that an autovivified lexical
 cannot be used for the STDERR filehandle, see
SYNOPSIS). The CHLD_IN
 will have autoflush turned on.

If CHLD_IN begins with <&, then CHLD_IN will be closed in the
 parent, and the child will read from it
directly. If CHLD_OUT or
 CHLD_ERR begins with >&, then the child will send output
 directly to that
filehandle. In both cases, there will be a dup(2)
 instead of a pipe(2) made.

If either reader or writer is the null string, this will be replaced
 by an autogenerated filehandle. If so,
you must pass a valid lvalue
 in the parameter slot so it can be overwritten in the caller, or an
exception will be raised.

The filehandles may also be integers, in which case they are understood
 as file descriptors.

open3() returns the process ID of the child process. It doesn't return on
 failure: it just raises an
exception matching /^open3:/. However, exec failures in the child (such as no such file or
permission denied),
 are just reported to CHLD_ERR, as it is not possible to trap them.

If the child process dies for any reason, the next write to CHLD_IN is
 likely to generate a SIGPIPE in
the parent, which is fatal by default.
 So you may wish to handle this signal.

Note if you specify - as the command, in an analogous fashion to open(FOO, "-|") the child
process will just be the forked Perl
 process rather than an external command. This feature isn't yet

supported on Win32 platforms.

open3() does not wait for and reap the child process after it exits. Except for short programs where it's
acceptable to let the operating system
 take care of this, you need to do this yourself. This is normally
as simple as calling waitpid $pid, 0 when you're done with the process.
 Failing to do this can
result in an accumulation of defunct or "zombie"
 processes. See "waitpid" in perlfunc for more
information.

If you try to read from the child's stdout writer and their stderr
 writer, you'll have problems with
blocking, which means you'll want
 to use select() or the IO::Select, which means you'd best use

sysread() instead of readline() for normal stuff.

This is very dangerous, as you may block forever. It assumes it's
 going to talk to something like bc,
both writing to it and reading
 from it. This is presumably safe because you "know" that commands
 like
bc will read a line at a time and output a line at a time.
 Programs like sort that read their entire input
stream first,
 however, are quite apt to cause deadlock.

Perl version 5.12.3 documentation - IPC::Open3

Page 2http://perldoc.perl.org

The big problem with this approach is that if you don't have control
 over source code being run in the
child process, you can't control
 what it does with pipe buffering. Thus you can't just open a pipe to
cat -v and continually read and write a line from it.

See Also
IPC::Open2

Like Open3 but without STDERR catpure.

IPC::Run

This is a CPAN module that has better error handling and more facilities
 than Open3.

WARNING
The order of arguments differs from that of open2().

