
Perl version 5.12.5 documentation - pod2man

Page 1http://perldoc.perl.org

NAME
pod2man - Convert POD data to formatted *roff input

SYNOPSIS
pod2man [--center=string] [--date=string]
 [--fixed=font] [--fixedbold=font] [--fixeditalic=font]
 [
--fixedbolditalic=font] [--name=name] [--official]
 [--quotes=quotes] [--release[=version]]
 [--section=
manext] [--stderr] [--utf8] [--verbose]
 [input [output] ...]

pod2man --help

DESCRIPTION
pod2man is a front-end for Pod::Man, using it to generate *roff input
 from POD source. The resulting
*roff code is suitable for display on a
 terminal using nroff(1), normally via man(1), or printing using
troff(1).

input is the file to read for POD source (the POD can be embedded in
 code). If input isn't given, it
defaults to STDIN. output, if
 given, is the file to which to write the formatted output. If output
 isn't
given, the formatted output is written to STDOUT. Several POD
 files can be processed in the same
pod2man invocation (saving module
 load and compile times) by providing multiple pairs of input and
output files on the command line.

--section, --release, --center, --date, and --official can
 be used to set the headers and footers to
use; if not given, Pod::Man will
 assume various defaults. See below or Pod::Man for details.

pod2man assumes that your *roff formatters have a fixed-width font
 named CW. If yours is called
something else (like CR), use --fixed to specify it. This generally only matters for troff output
 for
printing. Similarly, you can set the fonts used for bold, italic, and
 bold italic fixed-width output.

Besides the obvious pod conversions, Pod::Man, and therefore pod2man also
 takes care of
formatting func(), func(n), and simple variable references
 like $foo or @bar so you don't have to use
code escapes for them; complex
 expressions like $fred{'stuff'} will still need to be escaped,
though.
 It also translates dashes that aren't used as hyphens into en dashes, makes
 long dashes--like
this--into proper em dashes, fixes "paired quotes," and
 takes care of several other troff-specific
tweaks. See Pod::Man for
 complete information.

OPTIONS
-c string, --center=string

Sets the centered page header to string. The default is "User
 Contributed Perl
Documentation", but also see --official below.

-d string, --date=string

Set the left-hand footer string to this value. By default, the modification
 date of the input file will
be used, or the current date if input comes from STDIN.

--fixed=font

The fixed-width font to use for verbatim text and code. Defaults to CW. Some systems may
want CR instead. Only matters for troff(1)
 output.

--fixedbold=font

Bold version of the fixed-width font. Defaults to CB. Only matters
 for troff(1) output.

--fixeditalic=font

Italic version of the fixed-width font (actually, something of a misnomer,
 since most fixed-width
fonts only have an oblique version, not an italic
 version). Defaults to CI. Only matters for
troff(1) output.

--fixedbolditalic=font

Perl version 5.12.5 documentation - pod2man

Page 2http://perldoc.perl.org

Bold italic (probably actually oblique) version of the fixed-width font.
 Pod::Man doesn't assume
you have this, and defaults to CB. Some
 systems (such as Solaris) have this font available as
CX. Only matters
 for troff(1) output.

-h, --help

Print out usage information.

-l, --lax

No longer used. pod2man used to check its input for validity as a
 manual page, but this
should now be done by podchecker(1) instead.
 Accepted for backward compatibility; this
option no longer does anything.

-n name, --name=name

Set the name of the manual page to name. Without this option, the manual
 name is set to the
uppercased base name of the file being converted unless
 the manual section is 3, in which
case the path is parsed to see if it is a
 Perl module path. If it is, a path like
.../lib/Pod/Man.pm is converted
 into a name like Pod::Man. This option, if given,
overrides any
 automatic determination of the name.

Note that this option is probably not useful when converting multiple POD
 files at once. The
convention for Unix man pages for commands is for the
 man page title to be in all-uppercase
even if the command isn't.

-o, --official

Set the default header to indicate that this page is part of the standard
 Perl release, if --center
is not also given.

-q quotes, --quotes=quotes

Sets the quote marks used to surround C<> text to quotes. If quotes is a single character, it is
used as both the left and right
 quote; if quotes is two characters, the first character is used as
the
 left quote and the second as the right quoted; and if quotes is four
 characters, the first two
are used as the left quote and the second two as
 the right quote.

quotes may also be set to the special value none, in which case no
 quote marks are added
around C<> text (but the font is still changed for
 troff output).

-r, --release

Set the centered footer. By default, this is the version of Perl you run pod2man under. Note
that some system an macro sets assume that the
 centered footer will be a modification date
and will prepend something like
 "Last modified: "; if this is the case, you may want to set
--release to
 the last modified date and --date to the version number.

-s, --section

Set the section for the .TH macro. The standard section numbering
 convention is to use 1 for
user commands, 2 for system calls, 3 for
 functions, 4 for devices, 5 for file formats, 6 for
games, 7 for
 miscellaneous information, and 8 for administrator commands. There is a lot
 of
variation here, however; some systems (like Solaris) use 4 for file
 formats, 5 for miscellaneous
information, and 7 for devices. Still others
 use 1m instead of 8, or some mix of both. About the
only section numbers
 that are reliably consistent are 1, 2, and 3.

By default, section 1 will be used unless the file ends in .pm, in
 which case section 3 will be
selected.

--stderr

By default, pod2man puts any errors detected in the POD input in a POD
 ERRORS section in
the output manual page. If --stderr is given, errors
 are sent to standard error instead and the
POD ERRORS section is
 suppressed.

Perl version 5.12.5 documentation - pod2man

Page 3http://perldoc.perl.org

-u, --utf8

By default, pod2man produces the most conservative possible *roff
 output to try to ensure
that it will work with as many different *roff
 implementations as possible. Many *roff
implementations cannot handle
 non-ASCII characters, so this means all non-ASCII characters
are converted
 either to a *roff escape sequence that tries to create a properly accented

character (at least for troff output) or to X.

This option says to instead output literal UTF-8 characters. If your
 *roff implementation can
handle it, this is the best output format to use
 and avoids corruption of documents containing
non-ASCII characters.
 However, be warned that *roff source with literal UTF-8 characters is
not
 supported by many implementations and may even result in segfaults and
 other bad
behavior.

Be aware that, when using this option, the input encoding of your POD
 source must be
properly declared unless it is US-ASCII or Latin-1. POD
 input without an =encoding
command will be assumed to be in Latin-1,
 and if it's actually in UTF-8, the output will be
double-encoded. See perlpod(1) for more information on the =encoding command.

-v, --verbose

Print out the name of each output file as it is being generated.

DIAGNOSTICS
If pod2man fails with errors, see Pod::Man and Pod::Simple for
 information about what those errors
might mean.

EXAMPLES
 pod2man program > program.1
 pod2man SomeModule.pm /usr/perl/man/man3/SomeModule.3
 pod2man --section=7 note.pod > note.7

If you would like to print out a lot of man page continuously, you probably
 want to set the C and D
registers to set contiguous page numbering and
 even/odd paging, at least on some versions of
man(7).

 troff -man -rC1 -rD1 perl.1 perldata.1 perlsyn.1 ...

To get index entries on STDERR, turn on the F register, as in:

 troff -man -rF1 perl.1

The indexing merely outputs messages via .tm for each major page,
 section, subsection, item, and
any X<> directives. See Pod::Man for more details.

BUGS
Lots of this documentation is duplicated from Pod::Man.

NOTES
For those not sure of the proper layout of a man page, here are some notes
 on writing a proper man
page.

The name of the program being documented is conventionally written in bold
 (using B<>) wherever it
occurs, as are all program options.
 Arguments should be written in italics (I<>). Functions are

traditionally written in italics; if you write a function as function(),
 Pod::Man will take care of this for
you. Literal code or commands should
 be in C<>. References to other man pages should be in the
form manpage(section), and Pod::Man will automatically format those
 appropriately. As an
exception, it's traditional not to use this form when
 referring to module documentation; use L<
Module::Name> instead.

Perl version 5.12.5 documentation - pod2man

Page 4http://perldoc.perl.org

References to other programs or functions are normally in the form of man
 page references so that
cross-referencing tools can provide the user with
 links and the like. It's possible to overdo this, though,
so be careful not
 to clutter your documentation with too much markup.

The major headers should be set out using a =head1 directive, and are
 historically written in the
rather startling ALL UPPER CASE format, although
 this is not mandatory. Minor headers may be
included using =head2, and
 are typically in mixed case.

The standard sections of a manual page are:

NAME

Mandatory section; should be a comma-separated list of programs or functions
 documented
by this POD page, such as:

 foo, bar - programs to do something

Manual page indexers are often extremely picky about the format of this
 section, so don't put
anything in it except this line. A single dash, and
 only a single dash, should separate the list of
programs or functions from
 the description. Do not use any markup such as C<> or
 B<>.
Functions should not be qualified with () or the like.
 The description should ideally fit on a
single line, even if a man program
 replaces the dash with a few tabs.

SYNOPSIS

A short usage summary for programs and functions. This section is mandatory
 for section 3
pages.

DESCRIPTION

Extended description and discussion of the program or functions, or the body
 of the
documentation for man pages that document something else. If
 particularly long, it's a good
idea to break this up into subsections =head2 directives like:

 =head2 Normal Usage

 =head2 Advanced Features

 =head2 Writing Configuration Files

or whatever is appropriate for your documentation.

OPTIONS

Detailed description of each of the command-line options taken by the
 program. This should
be separate from the description for the use of things
 like Pod::Usage. This is normally
presented as a list, with
 each option as a separate =item. The specific option string should be
enclosed in B<>. Any values that the option takes should be
 enclosed in I<>. For example, the
section for the option --section=manext would be introduced with:

 =item B<--section>=I<manext>

Synonymous options (like both the short and long forms) are separated by a
 comma and a
space on the same =item line, or optionally listed as their
 own item with a reference to the
canonical name. For example, since --section can also be written as -s, the above would be:

 =item B<-s> I<manext>, B<--section>=I<manext>

(Writing the short option first is arguably easier to read, since the long
 option is long enough to
draw the eye to it anyway and the short option can
 otherwise get lost in visual noise.)

RETURN VALUE

What the program or function returns, if successful. This section can be
 omitted for programs

Perl version 5.12.5 documentation - pod2man

Page 5http://perldoc.perl.org

whose precise exit codes aren't important, provided
 they return 0 on success as is standard. It
should always be present for
 functions.

ERRORS

Exceptions, error return codes, exit statuses, and errno settings.
 Typically used for function
documentation; program documentation uses
 DIAGNOSTICS instead. The general rule of
thumb is that errors printed to STDOUT or STDERR and intended for the end user are
documented in
 DIAGNOSTICS while errors passed internal to the calling program and

intended for other programmers are documented in ERRORS. When documenting
 a function
that sets errno, a full list of the possible errno values
 should be given here.

DIAGNOSTICS

All possible messages the program can print out--and what they mean. You
 may wish to follow
the same documentation style as the Perl documentation;
 see perldiag(1) for more details
(and look at the POD source as well).

If applicable, please include details on what the user should do to correct
 the error;
documenting an error as indicating "the input buffer is too
 small" without telling the user how to
increase the size of the input buffer
 (or at least telling them that it isn't possible) aren't very
useful.

EXAMPLES

Give some example uses of the program or function. Don't skimp; users often
 find this the
most useful part of the documentation. The examples are
 generally given as verbatim
paragraphs.

Don't just present an example without explaining what it does. Adding a
 short paragraph
saying what the example will do can increase the value of
 the example immensely.

ENVIRONMENT

Environment variables that the program cares about, normally presented as a
 list using =over
, =item, and =back. For example:

 =over 6

 =item HOME

 Used to determine the user's home directory. F<.foorc> in this
 directory is read for configuration details, if it exists.

 =back

Since environment variables are normally in all uppercase, no additional
 special formatting is
generally needed; they're glaring enough as it is.

FILES

All files used by the program or function, normally presented as a list, and
 what it uses them
for. File names should be enclosed in F<>. It's
 particularly important to document files that will
be potentially modified.

CAVEATS

Things to take special care with, sometimes called WARNINGS.

BUGS

Things that are broken or just don't work quite right.

RESTRICTIONS

Bugs you don't plan to fix. :-)

Perl version 5.12.5 documentation - pod2man

Page 6http://perldoc.perl.org

NOTES

Miscellaneous commentary.

AUTHOR

Who wrote it (use AUTHORS for multiple people). Including your current
 e-mail address (or
some e-mail address to which bug reports should be sent)
 so that users have a way of
contacting you is a good idea. Remember that
 program documentation tends to roam the wild
for far longer than you expect
 and pick an e-mail address that's likely to last if possible.

HISTORY

Programs derived from other sources sometimes have this, or you might keep
 a modification
log here. If the log gets overly long or detailed,
 consider maintaining it in a separate file,
though.

COPYRIGHT AND LICENSE

For copyright

 Copyright YEAR(s) by YOUR NAME(s)

(No, (C) is not needed. No, "all rights reserved" is not needed.)

For licensing the easiest way is to use the same licensing as Perl itself:

 This library is free software; you may redistribute it and/or
modify
 it under the same terms as Perl itself.

This makes it easy for people to use your module with Perl. Note that
 this licensing is neither
an endorsement or a requirement, you are of
 course free to choose any licensing.

SEE ALSO

Other man pages to check out, like man(1), man(7), makewhatis(8), or
 catman(8). Normally a
simple list of man pages separated by commas, or a
 paragraph giving the name of a reference
work. Man page references, if they
 use the standard name(section) form, don't have to be
enclosed in
 L<> (although it's recommended), but other things in this section
 probably should
be when appropriate.

If the package has a mailing list, include a URL or subscription
 instructions here.

If the package has a web site, include a URL here.

In addition, some systems use CONFORMING TO to note conformance to relevant
 standards and
MT-LEVEL to note safeness for use in threaded programs or
 signal handlers. These headings are
primarily useful when documenting parts
 of a C library. Documentation of object-oriented libraries or
modules may
 use CONSTRUCTORS and METHODS sections for detailed documentation of the
 parts
of the library and save the DESCRIPTION section for an overview; other
 large modules may use
FUNCTIONS for similar reasons. Some people use
 OVERVIEW to summarize the description if it's
quite long.

Section ordering varies, although NAME should always be the first section
 (you'll break some man
page systems otherwise), and NAME, SYNOPSIS,
 DESCRIPTION, and OPTIONS generally always
occur first and in that order if
 present. In general, SEE ALSO, AUTHOR, and similar material should
be left
 for last. Some systems also move WARNINGS and NOTES to last. The order
 given above
should be reasonable for most purposes.

Finally, as a general note, try not to use an excessive amount of markup.
 As documented here and in
Pod::Man, you can safely leave Perl variables,
 function names, man page references, and the like
unadorned by markup and
 the POD translators will figure it out for you. This makes it much easier
 to
later edit the documentation. Note that many existing translators
 (including this one currently) will do
the wrong thing with e-mail addresses
 when wrapped in L<>, so don't do that.

Perl version 5.12.5 documentation - pod2man

Page 7http://perldoc.perl.org

For additional information that may be more accurate for your specific
 system, see either man(5) or
man(7) depending on your system manual
 section numbering conventions.

SEE ALSO
Pod::Man, Pod::Simple, man(1), nroff(1), perlpod(1), podchecker(1), troff(1), man(7)

The man page documenting the an macro set may be man(5) instead of man(7) on your system.

The current version of this script is always available from its web site at
http://www.eyrie.org/~eagle/software/podlators/. It is also part of the
 Perl core distribution as of 5.6.0.

AUTHOR
Russ Allbery <rra@stanford.edu>, based very heavily on the original pod2man by Larry Wall and
Tom Christiansen. Large portions of this
 documentation, particularly the sections on the anatomy of a
proper man
 page, are taken from the pod2man documentation by Tom.

COPYRIGHT AND LICENSE
Copyright 1999, 2000, 2001, 2004, 2006, 2008 Russ Allbery
 <rra@stanford.edu>.

This program is free software; you may redistribute it and/or modify it
 under the same terms as Perl
itself.

