
Perl version 5.12.5 documentation - perlfilter

Page 1http://perldoc.perl.org

NAME
perlfilter - Source Filters

DESCRIPTION
This article is about a little-known feature of Perl called source filters. Source filters alter the program
text of a module
 before Perl sees it, much as a C preprocessor alters the source text of
 a C program
before the compiler sees it. This article tells you more
 about what source filters are, how they work,
and how to write your
 own.

The original purpose of source filters was to let you encrypt your
 program source to prevent casual
piracy. This isn't all they can do, as
 you'll soon learn. But first, the basics.

CONCEPTS
Before the Perl interpreter can execute a Perl script, it must first
 read it from a file into memory for
parsing and compilation. If that
 script itself includes other scripts with a use or require
 statement,
then each of those scripts will have to be read from their
 respective files as well.

Now think of each logical connection between the Perl parser and an
 individual file as a source
stream. A source stream is created when
 the Perl parser opens a file, it continues to exist as the
source code
 is read into memory, and it is destroyed when Perl is finished parsing
 the file. If the
parser encounters a require or use statement in
 a source stream, a new and distinct stream is
created just for that
 file.

The diagram below represents a single source stream, with the flow of
 source from a Perl script file on
the left into the Perl parser on the
 right. This is how Perl normally operates.

 file -------> parser

There are two important points to remember:

1. Although there can be any number of source streams in existence at any
 given time, only
one will be active.

2. Every source stream is associated with only one file.

A source filter is a special kind of Perl module that intercepts and
 modifies a source stream before it
reaches the parser. A source filter
 changes our diagram like this:

 file ----> filter ----> parser

If that doesn't make much sense, consider the analogy of a command
 pipeline. Say you have a shell
script stored in the compressed file trial.gz. The simple pipeline command below runs the script
without
 needing to create a temporary file to hold the uncompressed file.

 gunzip -c trial.gz | sh

In this case, the data flow from the pipeline can be represented as follows:

 trial.gz ----> gunzip ----> sh

With source filters, you can store the text of your script compressed and use a source filter to
uncompress it for Perl's parser:

 compressed gunzip
 Perl program ---> source filter ---> parser

Perl version 5.12.5 documentation - perlfilter

Page 2http://perldoc.perl.org

USING FILTERS
So how do you use a source filter in a Perl script? Above, I said that
 a source filter is just a special
kind of module. Like all Perl
 modules, a source filter is invoked with a use statement.

Say you want to pass your Perl source through the C preprocessor before
 execution. As it happens,
the source filters distribution comes with a C
 preprocessor filter module called Filter::cpp.

Below is an example program, cpp_test, which makes use of this filter.
 Line numbers have been
added to allow specific lines to be referenced
 easily.

 1: use Filter::cpp;
 2: #define TRUE 1
 3: $a = TRUE;
 4: print "a = $a\n";

When you execute this script, Perl creates a source stream for the
 file. Before the parser processes
any of the lines from the file, the
 source stream looks like this:

 cpp_test ---------> parser

Line 1, use Filter::cpp, includes and installs the cpp filter
 module. All source filters work this
way. The use statement is compiled
 and executed at compile time, before any more of the file is read,
and
 it attaches the cpp filter to the source stream behind the scenes. Now
 the data flow looks like this:

 cpp_test ----> cpp filter ----> parser

As the parser reads the second and subsequent lines from the source
 stream, it feeds those lines
through the cpp source filter before
 processing them. The cpp filter simply passes each line through
the
 real C preprocessor. The output from the C preprocessor is then
 inserted back into the source
stream by the filter.

 .-> cpp --.
 | |
 | |
 | <-'
 cpp_test ----> cpp filter ----> parser

The parser then sees the following code:

 use Filter::cpp;
 $a = 1;
 print "a = $a\n";

Let's consider what happens when the filtered code includes another
 module with use:

 1: use Filter::cpp;
 2: #define TRUE 1
 3: use Fred;
 4: $a = TRUE;
 5: print "a = $a\n";

The cpp filter does not apply to the text of the Fred module, only
 to the text of the file that used it (
cpp_test). Although the use
 statement on line 3 will pass through the cpp filter, the module that
 gets
included (Fred) will not. The source streams look like this
 after line 3 has been parsed and before line
4 is parsed:

 cpp_test ---> cpp filter ---> parser (INACTIVE)

Perl version 5.12.5 documentation - perlfilter

Page 3http://perldoc.perl.org

 Fred.pm ----> parser

As you can see, a new stream has been created for reading the source
 from Fred.pm. This stream
will remain active until all of Fred.pm
 has been parsed. The source stream for cpp_test will still
exist,
 but is inactive. Once the parser has finished reading Fred.pm, the
 source stream associated
with it will be destroyed. The source stream
 for cpp_test then becomes active again and the parser
reads line 4
 and subsequent lines from cpp_test.

You can use more than one source filter on a single file. Similarly,
 you can reuse the same filter in as
many files as you like.

For example, if you have a uuencoded and compressed source file, it is
 possible to stack a uudecode
filter and an uncompression filter like
 this:

 use Filter::uudecode; use Filter::uncompress;
 M'XL(".H<US4''V9I;F%L')Q;>7/;1I;_>_I3=&E=%:F*I"T?22Q/
 M6]9*<IQCO*XFT"0[PL%%'Y+IG?WN^ZYN-$'J.[.JE$,20/?K=_[>
 ...

Once the first line has been processed, the flow will look like this:

 file ---> uudecode ---> uncompress ---> parser
 filter filter

Data flows through filters in the same order they appear in the source
 file. The uudecode filter
appeared before the uncompress filter, so the
 source file will be uudecoded before it's uncompressed.

WRITING A SOURCE FILTER
There are three ways to write your own source filter. You can write it
 in C, use an external program as
a filter, or write the filter in Perl.
 I won't cover the first two in any great detail, so I'll get them out
 of the
way first. Writing the filter in Perl is most convenient, so
 I'll devote the most space to it.

WRITING A SOURCE FILTER IN C
The first of the three available techniques is to write the filter
 completely in C. The external module
you create interfaces directly
 with the source filter hooks provided by Perl.

The advantage of this technique is that you have complete control over
 the implementation of your
filter. The big disadvantage is the
 increased complexity required to write the filter - not only do you

need to understand the source filter hooks, but you also need a
 reasonable knowledge of Perl guts.
One of the few times it is worth
 going to this trouble is when writing a source scrambler. The decrypt
filter (which unscrambles the source before Perl parses it)
 included with the source filter distribution is
an example of a C
 source filter (see Decryption Filters, below).

Decryption Filters

All decryption filters work on the principle of "security through
 obscurity." Regardless of how
well you write a decryption filter and
 how strong your encryption algorithm is, anyone
determined enough can
 retrieve the original source code. The reason is quite simple - once

the decryption filter has decrypted the source back to its original
 form, fragments of it will be
stored in the computer's memory as Perl
 parses it. The source might only be in memory for
a short period of
 time, but anyone possessing a debugger, skill, and lots of patience can

eventually reconstruct your program.

That said, there are a number of steps that can be taken to make life
 difficult for the potential
cracker. The most important: Write your
 decryption filter in C and statically link the
decryption module into
 the Perl binary. For further tips to make life difficult for the
 potential
cracker, see the file decrypt.pm in the source filters
 module.

Perl version 5.12.5 documentation - perlfilter

Page 4http://perldoc.perl.org

CREATING A SOURCE FILTER AS A SEPARATE EXECUTABLE
An alternative to writing the filter in C is to create a separate
 executable in the language of your
choice. The separate executable
 reads from standard input, does whatever processing is necessary,
and
 writes the filtered data to standard output. Filter::cpp is an
 example of a source filter
implemented as a separate executable - the
 executable is the C preprocessor bundled with your C
compiler.

The source filter distribution includes two modules that simplify this
 task: Filter::exec and
Filter::sh. Both allow you to run any
 external executable. Both use a coprocess to control the flow
of data
 into and out of the external executable. (For details on coprocesses,
 see Stephens, W.R.
"Advanced Programming in the UNIX Environment."
 Addison-Wesley, ISBN 0-210-56317-7, pages
441-445.) The difference
 between them is that Filter::exec spawns the external command

directly, while Filter::sh spawns a shell to execute the external
 command. (Unix uses the Bourne
shell; NT uses the cmd shell.) Spawning
 a shell allows you to make use of the shell metacharacters
and
 redirection facilities.

Here is an example script that uses Filter::sh:

 use Filter::sh 'tr XYZ PQR';
 $a = 1;
 print "XYZ a = $a\n";

The output you'll get when the script is executed:

 PQR a = 1

Writing a source filter as a separate executable works fine, but a
 small performance penalty is
incurred. For example, if you execute the
 small example above, a separate subprocess will be
created to run the
 Unix tr command. Each use of the filter requires its own subprocess.
 If creating
subprocesses is expensive on your system, you might want to
 consider one of the other options for
creating source filters.

WRITING A SOURCE FILTER IN PERL
The easiest and most portable option available for creating your own
 source filter is to write it
completely in Perl. To distinguish this
 from the previous two techniques, I'll call it a Perl source filter.

To help understand how to write a Perl source filter we need an example
 to study. Here is a complete
source filter that performs rot13
 decoding. (Rot13 is a very simple encryption scheme used in Usenet

postings to hide the contents of offensive posts. It moves every letter
 forward thirteen places, so that
A becomes N, B becomes O, and Z
 becomes M.)

 package Rot13;

 use Filter::Util::Call;

 sub import {
 my ($type) = @_;
 my ($ref) = [];
 filter_add(bless $ref);
 }

 sub filter {
 my ($self) = @_;
 my ($status);

 tr/n-za-mN-ZA-M/a-zA-Z/

Perl version 5.12.5 documentation - perlfilter

Page 5http://perldoc.perl.org

 if ($status = filter_read()) > 0;
 $status;
 }

 1;

All Perl source filters are implemented as Perl classes and have the
 same basic structure as the
example above.

First, we include the Filter::Util::Call module, which exports a
 number of functions into your
filter's namespace. The filter shown
 above uses two of these functions, filter_add() and
filter_read().

Next, we create the filter object and associate it with the source
 stream by defining the import
function. If you know Perl well
 enough, you know that import is called automatically every time a

module is included with a use statement. This makes import the ideal
 place to both create and
install a filter object.

In the example filter, the object ($ref) is blessed just like any
 other Perl object. Our example uses an
anonymous array, but this isn't
 a requirement. Because this example doesn't need to store any
context
 information, we could have used a scalar or hash reference just as
 well. The next section
demonstrates context data.

The association between the filter object and the source stream is made
 with the filter_add()
function. This takes a filter object as a
 parameter ($ref in this case) and installs it in the source
stream.

Finally, there is the code that actually does the filtering. For this
 type of Perl source filter, all the
filtering is done in a method
 called filter(). (It is also possible to write a Perl source filter
 using a
closure. See the Filter::Util::Call manual page for more
 details.) It's called every time the
Perl parser needs another line of
 source to process. The filter() method, in turn, reads lines from

the source stream using the filter_read() function.

If a line was available from the source stream, filter_read()
 returns a status value greater than
zero and appends the line to $_.
 A status value of zero indicates end-of-file, less than zero means an

error. The filter function itself is expected to return its status in
 the same way, and put the filtered line
it wants written to the source
 stream in $_. The use of $_ accounts for the brevity of most Perl
 source
filters.

In order to make use of the rot13 filter we need some way of encoding
 the source file in rot13 format.
The script below, mkrot13, does
 just that.

 die "usage mkrot13 filename\n" unless @ARGV;
 my $in = $ARGV[0];
 my $out = "$in.tmp";
 open(IN, "<$in") or die "Cannot open file $in: $!\n";
 open(OUT, ">$out") or die "Cannot open file $out: $!\n";

 print OUT "use Rot13;\n";
 while (<IN>) {
 tr/a-zA-Z/n-za-mN-ZA-M/;
 print OUT;
 }

 close IN;
 close OUT;
 unlink $in;

Perl version 5.12.5 documentation - perlfilter

Page 6http://perldoc.perl.org

 rename $out, $in;

If we encrypt this with mkrot13:

 print " hello fred \n";

the result will be this:

 use Rot13;
 cevag "uryyb serq\a";

Running it produces this output:

 hello fred

USING CONTEXT: THE DEBUG FILTER
The rot13 example was a trivial example. Here's another demonstration
 that shows off a few more
features.

Say you wanted to include a lot of debugging code in your Perl script
 during development, but you
didn't want it available in the released
 product. Source filters offer a solution. In order to keep the
example
 simple, let's say you wanted the debugging output to be controlled by
 an environment
variable, DEBUG. Debugging code is enabled if the
 variable exists, otherwise it is disabled.

Two special marker lines will bracket debugging code, like this:

 ## DEBUG_BEGIN
 if ($year > 1999) {
 warn "Debug: millennium bug in year $year\n";
 }
 ## DEBUG_END

When the DEBUG environment variable exists, the filter ensures that
 Perl parses only the code
between the DEBUG_BEGIN and DEBUG_END
 markers. That means that when DEBUG does exist, the
code above
 should be passed through the filter unchanged. The marker lines can
 also be passed
through as-is, because the Perl parser will see them as
 comment lines. When DEBUG isn't set, we
need a way to disable the
 debug code. A simple way to achieve that is to convert the lines
 between
the two markers into comments:

 ## DEBUG_BEGIN
 #if ($year > 1999) {
 # warn "Debug: millennium bug in year $year\n";
 #}
 ## DEBUG_END

Here is the complete Debug filter:

 package Debug;

 use strict;
 use warnings;
 use Filter::Util::Call;

 use constant TRUE => 1;
 use constant FALSE => 0;

Perl version 5.12.5 documentation - perlfilter

Page 7http://perldoc.perl.org

 sub import {
 my ($type) = @_;
 my (%context) = (
 Enabled => defined $ENV{DEBUG},
 InTraceBlock => FALSE,
 Filename => (caller)[1],
 LineNo => 0,
 LastBegin => 0,
);
 filter_add(bless \%context);
 }

 sub Die {
 my ($self) = shift;
 my ($message) = shift;
 my ($line_no) = shift || $self->{LastBegin};
 die "$message at $self->{Filename} line $line_no.\n"
 }

 sub filter {
 my ($self) = @_;
 my ($status);
 $status = filter_read();
 ++ $self->{LineNo};

 # deal with EOF/error first
 if ($status <= 0) {
 $self->Die("DEBUG_BEGIN has no DEBUG_END")
 if $self->{InTraceBlock};
 return $status;
 }

 if ($self->{InTraceBlock}) {
 if (/^\s*##\s*DEBUG_BEGIN/) {
 $self->Die("Nested DEBUG_BEGIN", $self->{LineNo})
 } elsif (/^\s*##\s*DEBUG_END/) {
 $self->{InTraceBlock} = FALSE;
 }

 # comment out the debug lines when the filter is disabled
 s/^/#/ if ! $self->{Enabled};
 } elsif (/^\s*##\s*DEBUG_BEGIN/) {
 $self->{InTraceBlock} = TRUE;
 $self->{LastBegin} = $self->{LineNo};
 } elsif (/^\s*##\s*DEBUG_END/) {
 $self->Die("DEBUG_END has no DEBUG_BEGIN", $self->{LineNo});
 }
 return $status;
 }

 1;

The big difference between this filter and the previous example is the
 use of context data in the filter
object. The filter object is based on
 a hash reference, and is used to keep various pieces of context

Perl version 5.12.5 documentation - perlfilter

Page 8http://perldoc.perl.org

information between calls to the filter function. All but two of the
 hash fields are used for error
reporting. The first of those two,
 Enabled, is used by the filter to determine whether the debugging
code
 should be given to the Perl parser. The second, InTraceBlock, is true
 when the filter has
encountered a DEBUG_BEGIN line, but has not yet
 encountered the following DEBUG_END line.

If you ignore all the error checking that most of the code does, the
 essence of the filter is as follows:

 sub filter {
 my ($self) = @_;
 my ($status);
 $status = filter_read();

 # deal with EOF/error first
 return $status if $status <= 0;
 if ($self->{InTraceBlock}) {
 if (/^\s*##\s*DEBUG_END/) {
 $self->{InTraceBlock} = FALSE
 }

 # comment out debug lines when the filter is disabled
 s/^/#/ if ! $self->{Enabled};
 } elsif (/^\s*##\s*DEBUG_BEGIN/) {
 $self->{InTraceBlock} = TRUE;
 }
 return $status;
 }

Be warned: just as the C-preprocessor doesn't know C, the Debug filter
 doesn't know Perl. It can be
fooled quite easily:

 print <<EOM;
 ##DEBUG_BEGIN
 EOM

Such things aside, you can see that a lot can be achieved with a modest
 amount of code.

CONCLUSION
You now have better understanding of what a source filter is, and you
 might even have a possible use
for them. If you feel like playing with
 source filters but need a bit of inspiration, here are some extra

features you could add to the Debug filter.

First, an easy one. Rather than having debugging code that is
 all-or-nothing, it would be much more
useful to be able to control
 which specific blocks of debugging code get included. Try extending the

syntax for debug blocks to allow each to be identified. The contents of
 the DEBUG environment
variable can then be used to control which
 blocks get included.

Once you can identify individual blocks, try allowing them to be
 nested. That isn't difficult either.

Here is an interesting idea that doesn't involve the Debug filter.
 Currently Perl subroutines have fairly
limited support for formal
 parameter lists. You can specify the number of parameters and their
 type,
but you still have to manually take them out of the @_ array
 yourself. Write a source filter that allows
you to have a named
 parameter list. Such a filter would turn this:

 sub MySub ($first, $second, @rest) { ... }

into this:

Perl version 5.12.5 documentation - perlfilter

Page 9http://perldoc.perl.org

 sub MySub($$@) {
 my ($first) = shift;
 my ($second) = shift;
 my (@rest) = @_;
 ...
 }

Finally, if you feel like a real challenge, have a go at writing a
 full-blown Perl macro preprocessor as a
source filter. Borrow the
 useful features from the C preprocessor and any other macro processors
 you
know. The tricky bit will be choosing how much knowledge of Perl's
 syntax you want your filter to
have.

THINGS TO LOOK OUT FOR
Some Filters Clobber the DATA Handle

Some source filters use the DATA handle to read the calling program.
 When using these
source filters you cannot rely on this handle, nor expect
 any particular kind of behavior when
operating on it. Filters based on
 Filter::Util::Call (and therefore Filter::Simple) do not alter the
DATA
 filehandle.

REQUIREMENTS
The Source Filters distribution is available on CPAN, in

 CPAN/modules/by-module/Filter

Starting from Perl 5.8 Filter::Util::Call (the core part of the
 Source Filters distribution) is part of the
standard Perl distribution.
 Also included is a friendlier interface called Filter::Simple, by
 Damian
Conway.

AUTHOR
Paul Marquess <Paul.Marquess@btinternet.com>

Copyrights
This article originally appeared in The Perl Journal #11, and is
 copyright 1998 The Perl Journal. It
appears courtesy of Jon Orwant and
 The Perl Journal. This document may be distributed under the
same terms
 as Perl itself.

