
Perl version 5.12.5 documentation - perlsolaris

Page 1http://perldoc.perl.org

NAME
README.solaris - Perl version 5 on Solaris systems

DESCRIPTION
This document describes various features of Sun's Solaris operating system
 that will affect how Perl
version 5 (hereafter just perl) is
 compiled and/or runs. Some issues relating to the older SunOS 4.x
are
 also discussed, though they may be out of date.

For the most part, everything should just work.

Starting with Solaris 8, perl5.00503 (or higher) is supplied with the
 operating system, so you might not
even need to build a newer version
 of perl at all. The Sun-supplied version is installed in /usr/perl5

with /usr/bin/perl pointing to /usr/perl5/bin/perl. Do not disturb
 that installation unless you really know
what you are doing. If you
 remove the perl supplied with the OS, you will render some bits of
 your
system inoperable. If you wish to install a newer version of perl,
 install it under a different prefix from
/usr/perl5. Common prefixes
 to use are /usr/local and /opt/perl.

You may wish to put your version of perl in the PATH of all users by
 changing the link /usr/bin/perl.
This is probably OK, as most perl
 scripts shipped with Solaris use an explicit path. (There are a few

exceptions, such as /usr/bin/rpm2cpio and /etc/rcm/scripts/README, but
 these are also sufficiently
generic that the actual version of perl
 probably doesn't matter too much.)

Solaris ships with a range of Solaris-specific modules. If you choose
 to install your own version of perl
you will find the source of many of
 these modules is available on CPAN under the Sun::Solaris::
namespace.

Solaris may include two versions of perl, e.g. Solaris 9 includes
 both 5.005_03 and 5.6.1. This is to
provide stability across Solaris
 releases, in cases where a later perl version has incompatibilities
 with
the version included in the preceeding Solaris release. The
 default perl version will always be the
most recent, and in general
 the old version will only be retained for one Solaris release. Note
 also that
the default perl will NOT be configured to search for modules
 in the older version, again due to
compatibility/stability concerns.
 As a consequence if you upgrade Solaris, you will have to

rebuild/reinstall any additional CPAN modules that you installed for
 the previous Solaris version. See
the CPAN manpage under 'autobundle'
 for a quick way of doing this.

As an interim measure, you may either change the #! line of your
 scripts to specifically refer to the old
perl version, e.g. on
 Solaris 9 use #!/usr/perl5/5.00503/bin/perl to use the perl version
 that was the
default for Solaris 8, or if you have a large number of
 scripts it may be more convenient to make the
old version of perl the
 default on your system. You can do this by changing the appropriate
 symlinks
under /usr/perl5 as follows (example for Solaris 9):

 # cd /usr/perl5
 # rm bin man pod
 # ln -s ./5.00503/bin
 # ln -s ./5.00503/man
 # ln -s ./5.00503/lib/pod
 # rm /usr/bin/perl
 # ln -s ../perl5/5.00503/bin/perl /usr/bin/perl

In both cases this should only be considered to be a temporary
 measure - you should upgrade to the
later version of perl as soon as
 is practicable.

Note also that the perl command-line utilities (e.g. perldoc) and any
 that are added by modules that
you install will be under
 /usr/perl5/bin, so that directory should be added to your PATH.

Solaris Version Numbers.
For consistency with common usage, perl's Configure script performs
 some minor manipulations on
the operating system name and version
 number as reported by uname. Here's a partial translation

Perl version 5.12.5 documentation - perlsolaris

Page 2http://perldoc.perl.org

table: Sun: perl's Configure:
 uname uname -r Name osname osvers
 SunOS 4.1.3 Solaris 1.1 sunos 4.1.3
 SunOS 5.6 Solaris 2.6 solaris 2.6
 SunOS 5.8 Solaris 8 solaris 2.8
 SunOS 5.9 Solaris 9 solaris 2.9
 SunOS 5.10 Solaris 10 solaris 2.10

The complete table can be found in the Sun Managers' FAQ
ftp://ftp.cs.toronto.edu/pub/jdd/sunmanagers/faq under
 "9.1) Which Sun models run which versions of
SunOS?".

RESOURCES
There are many, many sources for Solaris information. A few of the
 important ones for perl:

Solaris FAQ

The Solaris FAQ is available at http://www.science.uva.nl/pub/solaris/solaris2.html.

The Sun Managers' FAQ is available at ftp://ftp.cs.toronto.edu/pub/jdd/sunmanagers/faq

Precompiled Binaries

Precompiled binaries, links to many sites, and much, much more are
 available at
http://www.sunfreeware.com/ and http://www.blastwave.org/.

Solaris Documentation

All Solaris documentation is available on-line at http://docs.sun.com/.

SETTING UP
File Extraction Problems on Solaris.

Be sure to use a tar program compiled under Solaris (not SunOS 4.x)
 to extract the perl-5.x.x.tar.gz
file. Do not use GNU tar compiled
 for SunOS4 on Solaris. (GNU tar compiled for Solaris should be
fine.)
 When you run SunOS4 binaries on Solaris, the run-time system magically
 alters pathnames
matching m#lib/locale# so that when tar tries to create
 lib/locale.pm, a file named lib/oldlocale.pm gets
created instead.
 If you found this advice too late and used a SunOS4-compiled tar
 anyway, you must
find the incorrectly renamed file and move it back
 to lib/locale.pm.

Compiler and Related Tools on Solaris.
You must use an ANSI C compiler to build perl. Perl can be compiled
 with either Sun's add-on C
compiler or with gcc. The C compiler that
 shipped with SunOS4 will not do.

Include /usr/ccs/bin/ in your PATH.

Several tools needed to build perl are located in /usr/ccs/bin/: ar,
 as, ld, and make. Make sure that
/usr/ccs/bin/ is in your PATH.

You need to make sure the following packages are installed
 (this info is extracted from the Solaris
FAQ):

for tools (sccs, lex, yacc, make, nm, truss, ld, as): SUNWbtool,
 SUNWsprot, SUNWtoo

for libraries & headers: SUNWhea, SUNWarc, SUNWlibm, SUNWlibms, SUNWdfbh,
 SUNWcg6h,
SUNWxwinc, SUNWolinc

for 64 bit development: SUNWarcx, SUNWbtoox, SUNWdplx, SUNWscpux,
 SUNWsprox, SUNWtoox,
SUNWlmsx, SUNWlmx, SUNWlibCx

If you are in doubt which package contains a file you are missing,
 try to find an installation that has
that file. Then do a

Perl version 5.12.5 documentation - perlsolaris

Page 3http://perldoc.perl.org

 $ grep /my/missing/file /var/sadm/install/contents

This will display a line like this:

/usr/include/sys/errno.h f none 0644 root bin 7471 37605 956241356 SUNWhea

The last item listed (SUNWhea in this example) is the package you need.

Avoid /usr/ucb/cc.

You don't need to have /usr/ucb/ in your PATH to build perl. If you
 want /usr/ucb/ in your PATH
anyway, make sure that /usr/ucb/ is NOT
 in your PATH before the directory containing the right C
compiler.

Sun's C Compiler

If you use Sun's C compiler, make sure the correct directory
 (usually /opt/SUNWspro/bin/) is in your
PATH (before /usr/ucb/).

GCC

If you use gcc, make sure your installation is recent and complete.
 perl versions since 5.6.0 build fine
with gcc > 2.8.1 on Solaris >=
 2.6.

You must Configure perl with

 $ sh Configure -Dcc=gcc

If you don't, you may experience strange build errors.

If you have updated your Solaris version, you may also have to update
 your gcc. For example, if you
are running Solaris 2.6 and your gcc is
 installed under /usr/local, check in /usr/local/lib/gcc-lib and
make
 sure you have the appropriate directory, sparc-sun-solaris2.6/ or
 i386-pc-solaris2.6/. If gcc's
directory is for a different version of
 Solaris than you are running, then you will need to rebuild gcc for

your new version of Solaris.

You can get a precompiled version of gcc from http://www.sunfreeware.com/ or
http://www.blastwave.org/. Make
 sure you pick up the package for your Solaris release.

If you wish to use gcc to build add-on modules for use with the perl
 shipped with Solaris, you should
use the Solaris::PerlGcc module
 which is available from CPAN. The perl shipped with Solaris
 is
configured and built with the Sun compilers, and the compiler
 configuration information stored in
Config.pm is therefore only
 relevant to the Sun compilers. The Solaris:PerlGcc module contains a

replacement Config.pm that is correct for gcc - see the module for
 details.

GNU as and GNU ld

The following information applies to gcc version 2. Volunteers to
 update it as appropropriate for gcc
version 3 would be appreciated.

The versions of as and ld supplied with Solaris work fine for building
 perl. There is normally no need
to install the GNU versions to
 compile perl.

If you decide to ignore this advice and use the GNU versions anyway,
 then be sure that they are
relatively recent. Versions newer than 2.7
 are apparently new enough. Older versions may have
trouble with
 dynamic loading.

If you wish to use GNU ld, then you need to pass it the -Wl,-E flag.
 The hints/solaris_2.sh file tries to
do this automatically by setting
 the following Configure variables:

 ccdlflags="$ccdlflags -Wl,-E"
 lddlflags="$lddlflags -Wl,-E -G"

Perl version 5.12.5 documentation - perlsolaris

Page 4http://perldoc.perl.org

However, over the years, changes in gcc, GNU ld, and Solaris ld have made
 it difficult to
automatically detect which ld ultimately gets called.
 You may have to manually edit config.sh and add
the -Wl,-E flags
 yourself, or else run Configure interactively and add the flags at the
 appropriate
prompts.

If your gcc is configured to use GNU as and ld but you want to use the
 Solaris ones instead to build
perl, then you'll need to add
 -B/usr/ccs/bin/ to the gcc command line. One convenient way to do
 that is
with

 $ sh Configure -Dcc='gcc -B/usr/ccs/bin/'

Note that the trailing slash is required. This will result in some
 harmless warnings as Configure is run:

 gcc: file path prefix `/usr/ccs/bin/' never used

These messages may safely be ignored.
 (Note that for a SunOS4 system, you must use -B/bin/
instead.)

Alternatively, you can use the GCC_EXEC_PREFIX environment variable to
 ensure that Sun's as and
ld are used. Consult your gcc documentation
 for further information on the -B option and the
GCC_EXEC_PREFIX variable.

Sun and GNU make

The make under /usr/ccs/bin works fine for building perl. If you
 have the Sun C compilers, you will
also have a parallel version of
 make (dmake). This works fine to build perl, but can sometimes cause

problems when running 'make test' due to underspecified dependencies
 between the different test
harness files. The same problem can also
 affect the building of some add-on modules, so in those
cases either
 specify '-m serial' on the dmake command line, or use
 /usr/ccs/bin/make instead. If you
wish to use GNU make, be sure that
 the set-group-id bit is not set. If it is, then arrange your PATH so

that /usr/ccs/bin/make is before GNU make or else have the system
 administrator disable the
set-group-id bit on GNU make.

Avoid libucb.

Solaris provides some BSD-compatibility functions in /usr/ucblib/libucb.a.
 Perl will not build and run
correctly if linked against -lucb since it
 contains routines that are incompatible with the standard
Solaris libc.
 Normally this is not a problem since the solaris hints file prevents
 Configure from even
looking in /usr/ucblib for libraries, and also
 explicitly omits -lucb.

Environment for Compiling perl on Solaris
PATH

Make sure your PATH includes the compiler (/opt/SUNWspro/bin/ if you're
 using Sun's compiler) as
well as /usr/ccs/bin/ to pick up the other
 development tools (such as make, ar, as, and ld). Make sure
your path
 either doesn't include /usr/ucb or that it includes it after the
 compiler and compiler tools and
other standard Solaris directories.
 You definitely don't want /usr/ucb/cc.

LD_LIBRARY_PATH

If you have the LD_LIBRARY_PATH environment variable set, be sure that
 it does NOT include /lib or
/usr/lib. If you will be building
 extensions that call third-party shared libraries (e.g. Berkeley DB)
 then
make sure that your LD_LIBRARY_PATH environment variable includes
 the directory with that library
(e.g. /usr/local/lib).

If you get an error message

 dlopen: stub interception failed

it is probably because your LD_LIBRARY_PATH environment variable
 includes a directory which is a
symlink to /usr/lib (such as /lib).
 The reason this causes a problem is quite subtle. The file
 libdl.so.1.0

Perl version 5.12.5 documentation - perlsolaris

Page 5http://perldoc.perl.org

actually *only* contains functions which generate 'stub
 interception failed' errors! The runtime linker
intercepts links to
 "/usr/lib/libdl.so.1.0" and links in internal implementations of those
 functions instead.
[Thanks to Tim Bunce for this explanation.]

RUN CONFIGURE.
See the INSTALL file for general information regarding Configure.
 Only Solaris-specific issues are
discussed here. Usually, the
 defaults should be fine.

64-bit perl on Solaris.
See the INSTALL file for general information regarding 64-bit compiles.
 In general, the defaults should
be fine for most people.

By default, perl-5.6.0 (or later) is compiled as a 32-bit application
 with largefile and long-long support.

General 32-bit vs. 64-bit issues.

Solaris 7 and above will run in either 32 bit or 64 bit mode on SPARC
 CPUs, via a reboot. You can
build 64 bit apps whilst running 32 bit
 mode and vice-versa. 32 bit apps will run under Solaris running
in
 either 32 or 64 bit mode. 64 bit apps require Solaris to be running
 64 bit mode.

Existing 32 bit apps are properly known as LP32, i.e. Longs and
 Pointers are 32 bit. 64-bit apps are
more properly known as LP64.
 The discriminating feature of a LP64 bit app is its ability to utilise a

64-bit address space. It is perfectly possible to have a LP32 bit app
 that supports both 64-bit integers
(long long) and largefiles (> 2GB),
 and this is the default for perl-5.6.0.

For a more complete explanation of 64-bit issues, see the
 "Solaris 64-bit Developer's Guide" at
http://docs.sun.com/

You can detect the OS mode using "isainfo -v", e.g.

 $ isainfo -v # Ultra 30 in 64 bit mode
 64-bit sparcv9 applications
 32-bit sparc applications

By default, perl will be compiled as a 32-bit application. Unless
 you want to allocate more than ~ 4GB
of memory inside perl, or unless
 you need more than 255 open file descriptors, you probably don't
need
 perl to be a 64-bit app.

Large File Support

For Solaris 2.6 and onwards, there are two different ways for 32-bit
 applications to manipulate large
files (files whose size is > 2GByte).
 (A 64-bit application automatically has largefile support built in
 by
default.)

First is the "transitional compilation environment", described in
 lfcompile64(5). According to the man
page,

 The transitional compilation environment exports all the
 explicit 64-bit functions (xxx64()) and types in addition to
 all the regular functions (xxx()) and types. Both xxx() and
 xxx64() functions are available to the program source. A
 32-bit application must use the xxx64() functions in order
 to access large files. See the lf64(5) manual page for a
 complete listing of the 64-bit transitional interfaces.

The transitional compilation environment is obtained with the
 following compiler and linker flags:

 getconf LFS64_CFLAGS -D_LARGEFILE64_SOURCE
 getconf LFS64_LDFLAG # nothing special needed
 getconf LFS64_LIBS # nothing special needed

Perl version 5.12.5 documentation - perlsolaris

Page 6http://perldoc.perl.org

Second is the "large file compilation environment", described in
 lfcompile(5). According to the man
page,

 Each interface named xxx() that needs to access 64-bit entities
 to access large files maps to a xxx64() call in the
 resulting binary. All relevant data types are defined to be
 of correct size (for example, off_t has a typedef definition
 for a 64-bit entity).

 An application compiled in this environment is able to use
 the xxx() source interfaces to access both large and small
 files, rather than having to explicitly utilize the transitional
 xxx64() interface calls to access large files.

Two exceptions are fseek() and ftell(). 32-bit applications should
 use fseeko(3C) and ftello(3C). These
will get automatically mapped
 to fseeko64() and ftello64().

The large file compilation environment is obtained with

 getconf LFS_CFLAGS -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64
 getconf LFS_LDFLAGS # nothing special needed
 getconf LFS_LIBS # nothing special needed

By default, perl uses the large file compilation environment and
 relies on Solaris to do the underlying
mapping of interfaces.

Building an LP64 perl

To compile a 64-bit application on an UltraSparc with a recent Sun Compiler,
 you need to use the flag
"-xarch=v9". getconf(1) will tell you this, e.g.

 $ getconf -a | grep v9
 XBS5_LP64_OFF64_CFLAGS: -xarch=v9
 XBS5_LP64_OFF64_LDFLAGS: -xarch=v9
 XBS5_LP64_OFF64_LINTFLAGS: -xarch=v9
 XBS5_LPBIG_OFFBIG_CFLAGS: -xarch=v9
 XBS5_LPBIG_OFFBIG_LDFLAGS: -xarch=v9
 XBS5_LPBIG_OFFBIG_LINTFLAGS: -xarch=v9
 _XBS5_LP64_OFF64_CFLAGS: -xarch=v9
 _XBS5_LP64_OFF64_LDFLAGS: -xarch=v9
 _XBS5_LP64_OFF64_LINTFLAGS: -xarch=v9
 _XBS5_LPBIG_OFFBIG_CFLAGS: -xarch=v9
 _XBS5_LPBIG_OFFBIG_LDFLAGS: -xarch=v9
 _XBS5_LPBIG_OFFBIG_LINTFLAGS: -xarch=v9

This flag is supported in Sun WorkShop Compilers 5.0 and onwards
 (now marketed under the name
Forte) when used on Solaris 7 or later on
 UltraSparc systems.

If you are using gcc, you would need to use -mcpu=v9 -m64 instead. This
 option is not yet supported
as of gcc 2.95.2; from install/SPECIFIC
 in that release:

 GCC version 2.95 is not able to compile code correctly for sparc64
 targets. Users of the Linux kernel, at least, can use the sparc32
 program to start up a new shell invocation with an environment that
 causes configure to recognize (via uname -a) the system as sparc-*-*
 instead.

Perl version 5.12.5 documentation - perlsolaris

Page 7http://perldoc.perl.org

All this should be handled automatically by the hints file, if
 requested.

Long Doubles.

As of 5.8.1, long doubles are working if you use the Sun compilers
 (needed for additional math
routines not included in libm).

Threads in perl on Solaris.
It is possible to build a threaded version of perl on Solaris. The entire
 perl thread implementation is
still experimental, however, so beware.

Malloc Issues with perl on Solaris.
Starting from perl 5.7.1 perl uses the Solaris malloc, since the perl
 malloc breaks when dealing with
more than 2GB of memory, and the Solaris
 malloc also seems to be faster.

If you for some reason (such as binary backward compatibility) really
 need to use perl's malloc, you
can rebuild perl from the sources
 and Configure the build with

 $ sh Configure -Dusemymalloc

You should not use perl's malloc if you are building with gcc. There
 are reports of core dumps,
especially in the PDL module. The problem
 appears to go away under -DDEBUGGING, so it has
been difficult to
 track down. Sun's compiler appears to be okay with or without perl's
 malloc. [XXX
further investigation is needed here.]

MAKE PROBLEMS.
Dynamic Loading Problems With GNU as and GNU ld

If you have problems with dynamic loading using gcc on SunOS or
 Solaris, and you are using
GNU as and GNU ld, see the section GNU as and GNU ld above.

ld.so.1: ./perl: fatal: relocation error:

If you get this message on SunOS or Solaris, and you're using gcc,
 it's probably the GNU as
or GNU ld problem in the previous item GNU as and GNU ld.

dlopen: stub interception failed

The primary cause of the 'dlopen: stub interception failed' message is
 that the
LD_LIBRARY_PATH environment variable includes a directory
 which is a symlink to /usr/lib
(such as /lib). See LD_LIBRARY_PATH above.

#error "No DATAMODEL_NATIVE specified"

This is a common error when trying to build perl on Solaris 2.6 with a
 gcc installation from
Solaris 2.5 or 2.5.1. The Solaris header files
 changed, so you need to update your gcc
installation. You can either
 rerun the fixincludes script from gcc or take the opportunity to

update your gcc installation.

sh: ar: not found

This is a message from your shell telling you that the command 'ar'
 was not found. You need
to check your PATH environment variable to
 make sure that it includes the directory with the
'ar' command. This
 is a common problem on Solaris, where 'ar' is in the /usr/ccs/bin/
 directory.

MAKE TEST
op/stat.t test 4 in Solaris

op/stat.t test 4 may fail if you are on a tmpfs of some sort.
 Building in /tmp sometimes shows this
behavior. The
 test suite detects if you are building in /tmp, but it may not be able
 to catch all tmpfs
situations.

Perl version 5.12.5 documentation - perlsolaris

Page 8http://perldoc.perl.org

nss_delete core dump from op/pwent or op/grent
See "nss_delete core dump from op/pwent or op/grent" in perlhpux.

PREBUILT BINARIES OF PERL FOR SOLARIS.
You can pick up prebuilt binaries for Solaris from http://www.sunfreeware.com/,
http://www.blastwave.org,
 ActiveState http://www.activestate.com/, and http://www.perl.com/ under
the Binaries list at the top of the
 page. There are probably other sources as well. Please note that

these sites are under the control of their respective owners, not the
 perl developers.

RUNTIME ISSUES FOR PERL ON SOLARIS.
Limits on Numbers of Open Files on Solaris.

The stdio(3C) manpage notes that for LP32 applications, only 255
 files may be opened using fopen(),
and only file descriptors 0
 through 255 can be used in a stream. Since perl calls open() and
 then
fdopen(3C) with the resulting file descriptor, perl is limited
 to 255 simultaneous open files, even if
sysopen() is used. If this
 proves to be an insurmountable problem, you can compile perl as a
 LP64
application, see Building an LP64 perl for details. Note
 also that the default resource limit for open file
descriptors on
 Solaris is 255, so you will have to modify your ulimit or rctl
 (Solaris 9 onwards)
appropriately.

SOLARIS-SPECIFIC MODULES.
See the modules under the Solaris:: and Sun::Solaris namespaces on CPAN,
 see
http://www.cpan.org/modules/by-module/Solaris/ and http://www.cpan.org/modules/by-module/Sun/.

SOLARIS-SPECIFIC PROBLEMS WITH MODULES.
Proc::ProcessTable on Solaris

Proc::ProcessTable does not compile on Solaris with perl5.6.0 and higher
 if you have LARGEFILES
defined. Since largefile support is the
 default in 5.6.0 and later, you have to take special steps to use
this
 module.

The problem is that various structures visible via procfs use off_t,
 and if you compile with largefile
support these change from 32 bits to
 64 bits. Thus what you get back from procfs doesn't match up
with
 the structures in perl, resulting in garbage. See proc(4) for further
 discussion.

A fix for Proc::ProcessTable is to edit Makefile to
 explicitly remove the largefile flags from the ones
MakeMaker picks up
 from Config.pm. This will result in Proc::ProcessTable being built
 under the
correct environment. Everything should then be OK as long as
 Proc::ProcessTable doesn't try to
share off_t's with the rest of perl,
 or if it does they should be explicitly specified as off64_t.

BSD::Resource on Solaris
BSD::Resource versions earlier than 1.09 do not compile on Solaris
 with perl 5.6.0 and higher, for the
same reasons as Proc::ProcessTable.
 BSD::Resource versions starting from 1.09 have a workaround
for the problem.

Net::SSLeay on Solaris
Net::SSLeay requires a /dev/urandom to be present. This device is
 available from Solaris 9 onwards.
For earlier Solaris versions you
 can either get the package SUNWski (packaged with several Sun

software products, for example the Sun WebServer, which is part of
 the Solaris Server Intranet
Extension, or the Sun Directory Services,
 part of Solaris for ISPs) or download the ANDIrand package
from http://www.cosy.sbg.ac.at/~andi/. If you use SUNWski, make a
 symbolic link /dev/urandom
pointing to /dev/random. For more details,
 see Document ID27606 entitled "Differing /dev/random
support requirements
 within Solaris[TM] Operating Environments", available at

http://sunsolve.sun.com .

It may be possible to use the Entropy Gathering Daemon (written in
 Perl!), available from
http://www.lothar.com/tech/crypto/.

Perl version 5.12.5 documentation - perlsolaris

Page 9http://perldoc.perl.org

SunOS 4.x
In SunOS 4.x you most probably want to use the SunOS ld, /usr/bin/ld,
 since the more recent versions
of GNU ld (like 2.13) do not seem to
 work for building Perl anymore. When linking the extensions, the

GNU ld gets very unhappy and spews a lot of errors like this

 ... relocation truncated to fit: BASE13 ...

and dies. Therefore the SunOS 4.1 hints file explicitly sets the
 ld to be /usr/bin/ld.

As of Perl 5.8.1 the dynamic loading of libraries (DynaLoader, XSLoader)
 also seems to have become
broken in in SunOS 4.x. Therefore the default
 is to build Perl statically.

Running the test suite in SunOS 4.1 is a bit tricky since the lib/Tie/File/t/09_gen_rs test hangs (subtest
#51, FWIW) for some
 unknown reason. Just stop the test and kill that particular Perl
 process.

There are various other failures, that as of SunOS 4.1.4 and gcc 3.2.2
 look a lot like gcc bugs. Many
of the failures happen in the Encode
 tests, where for example when the test expects "0" you get
"0"
 which should after a little squinting look very odd indeed.
 Another example is earlier in
t/run/fresh_perl where chr(0xff) is
 expected but the test fails because the result is chr(0xff). Exactly.

This is the "make test" result from the said combination:

 Failed 27 test scripts out of 745, 96.38% okay.

Running the harness is painful because of the many failing
 Unicode-related tests will output
megabytes of failure messages,
 but if one patiently waits, one gets these results:

 Failed Test Stat Wstat Total Fail Failed List of
Failed

--
 ...
 ../ext/Encode/t/at-cn.t 4 1024 29 4 13.79% 14-17
 ../ext/Encode/t/at-tw.t 10 2560 17 10 58.82% 2 4 6 8 10
12
 14-17
 ../ext/Encode/t/enc_data.t 29 7424 ?? ?? % ??
 ../ext/Encode/t/enc_eucjp.t 29 7424 ?? ?? % ??
 ../ext/Encode/t/enc_module.t 29 7424 ?? ?? % ??
 ../ext/Encode/t/encoding.t 29 7424 ?? ?? % ??
 ../ext/Encode/t/grow.t 12 3072 24 12 50.00% 2 4 6 8 10
12 14
 16 18 20 22
 24
 Failed Test Stat Wstat Total Fail Failed List of
Failed

 ../ext/Encode/t/guess.t 255 65280 29 40 137.93% 10-29
 ../ext/Encode/t/jperl.t 29 7424 15 30 200.00% 1-15
 ../ext/Encode/t/mime-header.t 2 512 10 2 20.00% 2-3
 ../ext/Encode/t/perlio.t 22 5632 38 22 57.89% 1-4 9-16
19-20
 23-24 27-32
 ../ext/List/Util/t/shuffle.t 0 139 ?? ?? % ??

Perl version 5.12.5 documentation - perlsolaris

Page 10http://perldoc.perl.org

 ../ext/PerlIO/t/encoding.t 14 1 7.14% 11
 ../ext/PerlIO/t/fallback.t 9 2 22.22% 3 5
 ../ext/Socket/t/socketpair.t 0 2 45 70 155.56% 11-45
 ../lib/CPAN/t/vcmp.t 30 1 3.33% 25
 ../lib/Tie/File/t/09_gen_rs.t 0 15 ?? ?? % ??
 ../lib/Unicode/Collate/t/test.t 199 30 15.08% 7 26-27
71-75
 81-88 95
101
 103-104 106
 108-
 109 122 124
 161
 169-172
 ../lib/sort.t 0 139 119 26 21.85% 107-119
 op/alarm.t 4 1 25.00% 4
 op/utfhash.t 97 1 1.03% 31
 run/fresh_perl.t 91 1 1.10% 32
 uni/tr_7jis.t ?? ?? % ??
 uni/tr_eucjp.t 29 7424 6 12 200.00% 1-6
 uni/tr_sjis.t 29 7424 6 12 200.00% 1-6
 56 tests and 467 subtests skipped.
 Failed 27/811 test scripts, 96.67% okay. 1383/75399 subtests failed,
98.17% okay.

The alarm() test failure is caused by system() apparently blocking
 alarm(). That is probably a libc bug,
and given that SunOS 4.x
 has been end-of-lifed years ago, don't hold your breath for a fix.
 In addition
to that, don't try anything too Unicode-y, especially
 with Encode, and you should be fine in SunOS
4.x.

AUTHOR
The original was written by Andy Dougherty doughera@lafayette.edu
 drawing heavily on advice from
Alan Burlison, Nick Ing-Simmons, Tim Bunce,
 and many other Solaris users over the years.

Please report any errors, updates, or suggestions to perlbug@perl.org.

