
Perl version 5.12.5 documentation - perl5100delta

Page 1http://perldoc.perl.org

NAME
perl5100delta - what is new for perl 5.10.0

DESCRIPTION
This document describes the differences between the 5.8.8 release and
 the 5.10.0 release.

Many of the bug fixes in 5.10.0 were already seen in the 5.8.X maintenance
 releases; they are not
duplicated here and are documented in the set of
 man pages named perl58[1-8]?delta.

Core Enhancements
The feature pragma

The feature pragma is used to enable new syntax that would break Perl's
 backwards-compatibility
with older releases of the language. It's a lexical
 pragma, like strict or warnings.

Currently the following new features are available: switch (adds a
 switch statement), say (adds a
say built-in function), and state
 (adds a state keyword for declaring "static" variables). Those

features are described in their own sections of this document.

The feature pragma is also implicitly loaded when you require a minimal
 perl version (with the use
VERSION construct) greater than, or equal
 to, 5.9.5. See feature for details.

New -E command-line switch
-E is equivalent to -e, but it implicitly enables all
 optional features (like use feature ":5.10").

Defined-or operator
A new operator // (defined-or) has been implemented.
 The following expression:

 $a // $b

is merely equivalent to

 defined $a ? $a : $b

and the statement

 $c //= $d;

can now be used instead of

 $c = $d unless defined $c;

The // operator has the same precedence and associativity as ||.
 Special care has been taken to
ensure that this operator Do What You Mean
 while not breaking old code, but some edge cases
involving the empty
 regular expression may now parse differently. See perlop for
 details.

Switch and Smart Match operator
Perl 5 now has a switch statement. It's available when use feature
 'switch' is in effect. This
feature introduces three new keywords, given, when, and default:

 given ($foo) {
	 when (/^abc/) { $abc = 1; }
	 when (/^def/) { $def = 1; }
	 when (/^xyz/) { $xyz = 1; }
	 default { $nothing = 1; }
 }

Perl version 5.12.5 documentation - perl5100delta

Page 2http://perldoc.perl.org

A more complete description of how Perl matches the switch variable
 against the when conditions is
given in "Switch statements" in perlsyn.

This kind of match is called smart match, and it's also possible to use
 it outside of switch statements,
via the new ~~ operator. See "Smart matching in detail" in perlsyn.

This feature was contributed by Robin Houston.

Regular expressions
Recursive Patterns

It is now possible to write recursive patterns without using the (??{})
 construct. This new
way is more efficient, and in many cases easier to
 read.

Each capturing parenthesis can now be treated as an independent pattern
 that can be entered
by using the (?PARNO) syntax (PARNO standing for
 "parenthesis number"). For example, the
following pattern will match
 nested balanced angle brackets:

 /
 ^ # start of line
 (# start capture buffer 1
	 < # match an opening angle bracket
	 (?: # match one of:
	 (?> # don't backtrack over the inside of this
group
	 [^<>]+ # one or more non angle brackets
) # end non backtracking group
	 | # ... or ...
	 (?1) # recurse to bracket 1 and try it again
)* # 0 or more times.
	 > # match a closing angle bracket
) # end capture buffer one
 $ # end of line
 /x

PCRE users should note that Perl's recursive regex feature allows
 backtracking into a
recursed pattern, whereas in PCRE the recursion is
 atomic or "possessive" in nature. As in the
example above, you can
 add (?>) to control this selectively. (Yves Orton)

Named Capture Buffers

It is now possible to name capturing parenthesis in a pattern and refer to
 the captured
contents by name. The naming syntax is (?<NAME>....).
 It's possible to backreference to a
named buffer with the \k<NAME>
 syntax. In code, the new magical hashes %+ and %- can be
used to
 access the contents of the capture buffers.

Thus, to replace all doubled chars with a single copy, one could write

 s/(?<letter>.)\k<letter>/$+{letter}/g

Only buffers with defined contents will be "visible" in the %+ hash, so
 it's possible to do
something like

 foreach my $name (keys %+) {
 print "content of buffer '$name' is $+{$name}\n";
 }

The %- hash is a bit more complete, since it will contain array refs
 holding values from all
capture buffers similarly named, if there should
 be many of them.

%+ and %- are implemented as tied hashes through the new module
Tie::Hash::NamedCapture.

Perl version 5.12.5 documentation - perl5100delta

Page 3http://perldoc.perl.org

Users exposed to the .NET regex engine will find that the perl
 implementation differs in that
the numerical ordering of the buffers
 is sequential, and not "unnamed first, then named". Thus
in the pattern

 /(A)(?B)(C)(?<D>D)/

$1 will be 'A', $2 will be 'B', $3 will be 'C' and $4 will be 'D' and not
 $1 is 'A', $2 is 'C' and $3 is
'B' and $4 is 'D' that a .NET programmer
 would expect. This is considered a feature. :-) (Yves
Orton)

Possessive Quantifiers

Perl now supports the "possessive quantifier" syntax of the "atomic match"
 pattern. Basically a
possessive quantifier matches as much as it can and never
 gives any back. Thus it can be
used to control backtracking. The syntax is
 similar to non-greedy matching, except instead of
using a '?' as the modifier
 the '+' is used. Thus ?+, *+, ++, {min,max}+ are now legal

quantifiers. (Yves Orton)

Backtracking control verbs

The regex engine now supports a number of special-purpose backtrack
 control verbs:
(*THEN), (*PRUNE), (*MARK), (*SKIP), (*COMMIT), (*FAIL)
 and (*ACCEPT). See perlre for
their descriptions. (Yves Orton)

Relative backreferences

A new syntax \g{N} or \gN where "N" is a decimal integer allows a
 safer form of
back-reference notation as well as allowing relative
 backreferences. This should make it
easier to generate and embed patterns
 that contain backreferences. See "Capture buffers" in
perlre. (Yves Orton)

\K escape

The functionality of Jeff Pinyan's module Regexp::Keep has been added to
 the core. In regular
expressions you can now use the special escape \K
 as a way to do something like floating
length positive lookbehind. It is
 also useful in substitutions like:

 s/(foo)bar/$1/g

that can now be converted to

 s/foo\Kbar//g

which is much more efficient. (Yves Orton)

Vertical and horizontal whitespace, and linebreak

Regular expressions now recognize the \v and \h escapes that match
 vertical and horizontal
whitespace, respectively. \V and \H
 logically match their complements.

\R matches a generic linebreak, that is, vertical whitespace, plus
 the multi-character
sequence "\x0D\x0A".

say()
say() is a new built-in, only available when use feature 'say' is in
 effect, that is similar to print(),
but that implicitly appends a newline
 to the printed string. See "say" in perlfunc. (Robin Houston)

Lexical $_
The default variable $_ can now be lexicalized, by declaring it like
 any other lexical variable, with a
simple

 my $_;

The operations that default on $_ will use the lexically-scoped
 version of $_ when it exists, instead of

Perl version 5.12.5 documentation - perl5100delta

Page 4http://perldoc.perl.org

the global $_.

In a map or a grep block, if $_ was previously my'ed, then the $_ inside the block is lexical as well
(and scoped to the block).

In a scope where $_ has been lexicalized, you can still have access to
 the global version of $_ by
using $::_, or, more simply, by
 overriding the lexical declaration with our $_. (Rafael
Garcia-Suarez)

The _ prototype
A new prototype character has been added. _ is equivalent to $ but
 defaults to $_ if the
corresponding argument isn't supplied (both $
 and _ denote a scalar). Due to the optional nature of
the argument, you can only use it at the end of a prototype, or before a semicolon.

This has a small incompatible consequence: the prototype() function has
 been adjusted to return _ for
some built-ins in appropriate cases (for
 example, prototype('CORE::rmdir')). (Rafael
Garcia-Suarez)

UNITCHECK blocks
UNITCHECK, a new special code block has been introduced, in addition to BEGIN, CHECK, INIT and
END.

CHECK and INIT blocks, while useful for some specialized purposes,
 are always executed at the
transition between the compilation and the
 execution of the main program, and thus are useless
whenever code is
 loaded at runtime. On the other hand, UNITCHECK blocks are executed
 just after
the unit which defined them has been compiled. See perlmod
 for more information. (Alex Gough)

New Pragma, mro
A new pragma, mro (for Method Resolution Order) has been added. It
 permits to switch, on a
per-class basis, the algorithm that perl uses to
 find inherited methods in case of a multiple inheritance
hierarchy. The
 default MRO hasn't changed (DFS, for Depth First Search). Another MRO is
 available:
the C3 algorithm. See mro for more information.
 (Brandon Black)

Note that, due to changes in the implementation of class hierarchy search,
 code that used to undef
the *ISA glob will most probably break. Anyway,
 undef'ing *ISA had the side-effect of removing the
magic on the @ISA
 array and should not have been done in the first place. Also, the
 cache
*::ISA::CACHE:: no longer exists; to force reset the @ISA cache,
 you now need to use the mro
API, or more simply to assign to @ISA
 (e.g. with @ISA = @ISA).

readdir() may return a "short filename" on Windows
The readdir() function may return a "short filename" when the long
 filename contains characters
outside the ANSI codepage. Similarly
 Cwd::cwd() may return a short directory name, and glob() may
return short
 names as well. On the NTFS file system these short names can always be
 represented in
the ANSI codepage. This will not be true for all other file
 system drivers; e.g. the FAT filesystem
stores short filenames in the OEM
 codepage, so some files on FAT volumes remain unaccessible
through the
 ANSI APIs.

Similarly, $^X, @INC, and $ENV{PATH} are preprocessed at startup to make
 sure all paths are valid
in the ANSI codepage (if possible).

The Win32::GetLongPathName() function now returns the UTF-8 encoded
 correct long file name
instead of using replacement characters to force
 the name into the ANSI codepage. The new
Win32::GetANSIPathName()
 function can be used to turn a long pathname into a short one only if the

long one cannot be represented in the ANSI codepage.

Many other functions in the Win32 module have been improved to accept
 UTF-8 encoded arguments.
Please see Win32 for details.

Perl version 5.12.5 documentation - perl5100delta

Page 5http://perldoc.perl.org

readpipe() is now overridable
The built-in function readpipe() is now overridable. Overriding it permits
 also to override its operator
counterpart, qx// (a.k.a. ``).
 Moreover, it now defaults to $_ if no argument is provided. (Rafael

Garcia-Suarez)

Default argument for readline()
readline() now defaults to *ARGV if no argument is provided. (Rafael
 Garcia-Suarez)

state() variables
A new class of variables has been introduced. State variables are similar
 to my variables, but are
declared with the state keyword in place of my. They're visible only in their lexical scope, but their
value is
 persistent: unlike my variables, they're not undefined at scope entry,
 but retain their previous
value. (Rafael Garcia-Suarez, Nicholas Clark)

To use state variables, one needs to enable them by using

 use feature 'state';

or by using the -E command-line switch in one-liners.
 See "Persistent Private Variables" in perlsub.

Stacked filetest operators
As a new form of syntactic sugar, it's now possible to stack up filetest
 operators. You can now write
-f -w -x $file in a row to mean -x $file && -w _ && -f _. See "-X" in perlfunc.

UNIVERSAL::DOES()
The UNIVERSAL class has a new method, DOES(). It has been added to
 solve semantic problems
with the isa() method. isa() checks for
 inheritance, while DOES() has been designed to be
overridden when
 module authors use other types of relations between classes (in addition
 to
inheritance). (chromatic)

See "$obj->DOES(ROLE)" in UNIVERSAL.

Formats
Formats were improved in several ways. A new field, ^*, can be used for
 variable-width,
one-line-at-a-time text. Null characters are now handled
 correctly in picture lines. Using @# and ~~
together will now
 produce a compile-time error, as those format fields are incompatible. perlform has
been improved, and miscellaneous bugs fixed.

Byte-order modifiers for pack() and unpack()
There are two new byte-order modifiers, > (big-endian) and <
 (little-endian), that can be appended to
most pack() and unpack() template
 characters and groups to force a certain byte-order for that type or
group.
 See "pack" in perlfunc and perlpacktut for details.

no VERSION
You can now use no followed by a version number to specify that you
 want to use a version of perl
older than the specified one.

chdir, chmod and chown on filehandles
chdir, chmod and chown can now work on filehandles as well as
 filenames, if the system supports
respectively fchdir, fchmod and fchown, thanks to a patch provided by Gisle Aas.

OS groups
$(and $) now return groups in the order where the OS returns them,
 thanks to Gisle Aas. This
wasn't previously the case.

Perl version 5.12.5 documentation - perl5100delta

Page 6http://perldoc.perl.org

Recursive sort subs
You can now use recursive subroutines with sort(), thanks to Robin Houston.

Exceptions in constant folding
The constant folding routine is now wrapped in an exception handler, and
 if folding throws an
exception (such as attempting to evaluate 0/0), perl
 now retains the current optree, rather than
aborting the whole program.
 Without this change, programs would not compile if they had expressions
that
 happened to generate exceptions, even though those expressions were in code
 that could never
be reached at runtime. (Nicholas Clark, Dave Mitchell)

Source filters in @INC
It's possible to enhance the mechanism of subroutine hooks in @INC by
 adding a source filter on top
of the filehandle opened and returned by the
 hook. This feature was planned a long time ago, but
wasn't quite working
 until now. See "require" in perlfunc for details. (Nicholas Clark)

New internal variables
${^RE_DEBUG_FLAGS}

This variable controls what debug flags are in effect for the regular
 expression engine when
running under use re "debug". See re for
 details.

${^CHILD_ERROR_NATIVE}

This variable gives the native status returned by the last pipe close,
 backtick command,
successful call to wait() or waitpid(), or from the
 system() operator. See perlvar for details.
(Contributed by Gisle Aas.)

${^RE_TRIE_MAXBUF}

See Trie optimisation of literal string alternations.

${^WIN32_SLOPPY_STAT}

See Sloppy stat on Windows.

Miscellaneous
unpack() now defaults to unpacking the $_ variable.

mkdir() without arguments now defaults to $_.

The internal dump output has been improved, so that non-printable characters
 such as newline and
backspace are output in \x notation, rather than
 octal.

The -C option can no longer be used on the #! line. It wasn't
 working there anyway, since the
standard streams are already set up
 at this point in the execution of the perl interpreter. You can use

binmode() instead to get the desired behaviour.

UCD 5.0.0
The copy of the Unicode Character Database included in Perl 5 has
 been updated to version 5.0.0.

MAD
MAD, which stands for Miscellaneous Attribute Decoration, is a
 still-in-development work leading to a
Perl 5 to Perl 6 converter. To
 enable it, it's necessary to pass the argument -Dmad to Configure. The

obtained perl isn't binary compatible with a regular perl 5.10, and has
 space and speed penalties;
moreover not all regression tests still pass
 with it. (Larry Wall, Nicholas Clark)

kill() on Windows
On Windows platforms, kill(-9, $pid) now kills a process tree.
 (On Unix, this delivers the signal
to all processes in the same process
 group.)

Perl version 5.12.5 documentation - perl5100delta

Page 7http://perldoc.perl.org

Incompatible Changes
Packing and UTF-8 strings

The semantics of pack() and unpack() regarding UTF-8-encoded data has been
 changed. Processing
is now by default character per character instead of
 byte per byte on the underlying encoding.
Notably, code that used things
 like pack("a*", $string) to see through the encoding of string will
now
 simply get back the original $string. Packed strings can also get upgraded
 during processing
when you store upgraded characters. You can get the old
 behaviour by using use bytes.

To be consistent with pack(), the C0 in unpack() templates indicates
 that the data is to be processed
in character mode, i.e. character by
 character; on the contrary, U0 in unpack() indicates UTF-8 mode,
where
 the packed string is processed in its UTF-8-encoded Unicode form on a byte
 by byte basis.
This is reversed with regard to perl 5.8.X, but now consistent
 between pack() and unpack().

Moreover, C0 and U0 can also be used in pack() templates to specify
 respectively character and byte
modes.

C0 and U0 in the middle of a pack or unpack format now switch to the
 specified encoding mode,
honoring parens grouping. Previously, parens were
 ignored.

Also, there is a new pack() character format, W, which is intended to
 replace the old C. C is kept for
unsigned chars coded as bytes in
 the strings internal representation. W represents unsigned (logical)

character values, which can be greater than 255. It is therefore more
 robust when dealing with
potentially UTF-8-encoded data (as C will wrap
 values outside the range 0..255, and not respect the
string encoding).

In practice, that means that pack formats are now encoding-neutral, except C.

For consistency, A in unpack() format now trims all Unicode whitespace
 from the end of the string.
Before perl 5.9.2, it used to strip only the
 classical ASCII space characters.

Byte/character count feature in unpack()
A new unpack() template character, ".", returns the number of bytes or
 characters (depending on the
selected encoding mode, see above) read so far.

The $* and $# variables have been removed
$*, which was deprecated in favor of the /s and /m regexp
 modifiers, has been removed.

The deprecated $# variable (output format for numbers) has been
 removed.

Two new severe warnings, $#/$* is no longer supported, have been added.

substr() lvalues are no longer fixed-length
The lvalues returned by the three argument form of substr() used to be a
 "fixed length window" on the
original string. In some cases this could
 cause surprising action at distance or other undefined
behaviour. Now the
 length of the window adjusts itself to the length of the string assigned to
 it.

Parsing of -f _
The identifier _ is now forced to be a bareword after a filetest
 operator. This solves a number of
misparsing issues when a global _
 subroutine is defined.

:unique
The :unique attribute has been made a no-op, since its current
 implementation was fundamentally
flawed and not threadsafe.

Effect of pragmas in eval
The compile-time value of the %^H hint variable can now propagate into
 eval("")uated code. This
makes it more useful to implement lexical
 pragmas.

Perl version 5.12.5 documentation - perl5100delta

Page 8http://perldoc.perl.org

As a side-effect of this, the overloaded-ness of constants now propagates
 into eval("").

chdir FOO
A bareword argument to chdir() is now recognized as a file handle.
 Earlier releases interpreted the
bareword as a directory name.
 (Gisle Aas)

Handling of .pmc files
An old feature of perl was that before require or use look for a
 file with a .pm extension, they will
first look for a similar filename
 with a .pmc extension. If this file is found, it will be loaded in
 place of
any potentially existing file ending in a .pm extension.

Previously, .pmc files were loaded only if more recent than the
 matching .pm file. Starting with 5.9.4,
they'll be always loaded if
 they exist.

$^V is now a version object instead of a v-string
$^V can still be used with the %vd format in printf, but any
 character-level operations will now access
the string representation
 of the version object and not the ordinals of a v-string.
 Expressions like
substr($^V, 0, 2) or split //, $^V
 no longer work and must be rewritten.

@- and @+ in patterns
The special arrays @- and @+ are no longer interpolated in regular
 expressions. (Sadahiro Tomoyuki)

$AUTOLOAD can now be tainted
If you call a subroutine by a tainted name, and if it defers to an
 AUTOLOAD function, then
$AUTOLOAD will be (correctly) tainted.
 (Rick Delaney)

Tainting and printf
When perl is run under taint mode, printf() and sprintf() will now
 reject any tainted format
argument. (Rafael Garcia-Suarez)

undef and signal handlers
Undefining or deleting a signal handler via undef $SIG{FOO} is now
 equivalent to setting it to
'DEFAULT'. (Rafael Garcia-Suarez)

strictures and dereferencing in defined()
use strict 'refs' was ignoring taking a hard reference in an argument
 to defined(), as in :

 use strict 'refs';
 my $x = 'foo';
 if (defined $$x) {...}

This now correctly produces the run-time error Can't use string as a
 SCALAR ref while
"strict refs" in use.

defined @$foo and defined %$bar are now also subject to strict
 'refs' (that is, $foo and
$bar shall be proper references there.)
 (defined(@foo) and defined(%bar) are discouraged
constructs anyway.)
 (Nicholas Clark)

(?p{}) has been removed
The regular expression construct (?p{}), which was deprecated in perl
 5.8, has been removed. Use
(??{}) instead. (Rafael Garcia-Suarez)

Pseudo-hashes have been removed
Support for pseudo-hashes has been removed from Perl 5.9. (The fields
 pragma remains here, but
uses an alternate implementation.)

Perl version 5.12.5 documentation - perl5100delta

Page 9http://perldoc.perl.org

Removal of the bytecode compiler and of perlcc
perlcc, the byteloader and the supporting modules (B::C, B::CC,
 B::Bytecode, etc.) are no longer
distributed with the perl sources. Those
 experimental tools have never worked reliably, and, due to
the lack of
 volunteers to keep them in line with the perl interpreter developments, it
 was decided to
remove them instead of shipping a broken version of those.
 The last version of those modules can be
found with perl 5.9.4.

However the B compiler framework stays supported in the perl core, as with
 the more useful modules
it has permitted (among others, B::Deparse and
 B::Concise).

Removal of the JPL
The JPL (Java-Perl Lingo) has been removed from the perl sources tarball.

Recursive inheritance detected earlier
Perl will now immediately throw an exception if you modify any package's @ISA in such a way that it
would cause recursive inheritance.

Previously, the exception would not occur until Perl attempted to make
 use of the recursive
inheritance while resolving a method or doing a $foo->isa($bar) lookup.

warnings::enabled and warnings::warnif changed to favor users of modules
The behaviour in 5.10.x favors the person using the module;
 The behaviour in 5.8.x favors the module
writer;

Assume the following code:

 main calls Foo::Bar::baz()
 Foo::Bar inherits from Foo::Base
 Foo::Bar::baz() calls Foo::Base::_bazbaz()
 Foo::Base::_bazbaz() calls: warnings::warnif('substr', 'some warning
message');

On 5.8.x, the code warns when Foo::Bar contains use warnings;
 It does not matter if Foo::Base or
main have warnings enabled
 to disable the warning one has to modify Foo::Bar.

On 5.10.0 and newer, the code warns when main contains use warnings;
 It does not matter if
Foo::Base or Foo::Bar have warnings enabled
 to disable the warning one has to modify main.

Modules and Pragmata
Upgrading individual core modules

Even more core modules are now also available separately through the
 CPAN. If you wish to update
one of these modules, you don't need to
 wait for a new perl release. From within the cpan shell,
running the
 'r' command will report on modules with upgrades available. See perldoc CPAN for
more information.

Pragmata Changes
feature

The new pragma feature is used to enable new features that might break
 old code. See The
feature pragma above.

mro

This new pragma enables to change the algorithm used to resolve inherited
 methods. See
New Pragma, mro above.

Scoping of the sort pragma

The sort pragma is now lexically scoped. Its effect used to be global.

Perl version 5.12.5 documentation - perl5100delta

Page 10http://perldoc.perl.org

Scoping of bignum, bigint, bigrat

The three numeric pragmas bignum, bigint and bigrat are now
 lexically scoped. (Tels)

base

The base pragma now warns if a class tries to inherit from itself.
 (Curtis "Ovid" Poe)

strict and warnings

strict and warnings will now complain loudly if they are loaded via
 incorrect casing (as in
use Strict;). (Johan Vromans)

version

The version module provides support for version objects.

warnings

The warnings pragma doesn't load Carp anymore. That means that code
 that used Carp
routines without having loaded it at compile time might
 need to be adjusted; typically, the
following (faulty) code won't work
 anymore, and will require parentheses to be added after the
function name:

 use warnings;
 require Carp;
 Carp::confess 'argh';

less

less now does something useful (or at least it tries to). In fact, it
 has been turned into a
lexical pragma. So, in your modules, you can now
 test whether your users have requested to
use less CPU, or less memory,
 less magic, or maybe even less fat. See less for more.
(Joshua ben
 Jore)

New modules
encoding::warnings, by Audrey Tang, is a module to emit warnings
 whenever an ASCII
character string containing high-bit bytes is implicitly
 converted into UTF-8. It's a lexical
pragma since Perl 5.9.4; on older
 perls, its effect is global.

Module::CoreList, by Richard Clamp, is a small handy module that tells
 you what versions
of core modules ship with any versions of Perl 5. It
 comes with a command-line frontend,
corelist.

Math::BigInt::FastCalc is an XS-enabled, and thus faster, version of
Math::BigInt::Calc.

Compress::Zlib is an interface to the zlib compression library. It
 comes with a bundled
version of zlib, so having a working zlib is not a
 prerequisite to install it. It's used by
Archive::Tar (see below).

IO::Zlib is an IO::-style interface to Compress::Zlib.

Archive::Tar is a module to manipulate tar archives.

Digest::SHA is a module used to calculate many types of SHA digests,
 has been included
for SHA support in the CPAN module.

ExtUtils::CBuilder and ExtUtils::ParseXS have been added.

Hash::Util::FieldHash, by Anno Siegel, has been added. This module
 provides support
for field hashes: hashes that maintain an association
 of a reference with a value, in a
thread-safe garbage-collected way.
 Such hashes are useful to implement inside-out objects.

Module::Build, by Ken Williams, has been added. It's an alternative to

Perl version 5.12.5 documentation - perl5100delta

Page 11http://perldoc.perl.org

ExtUtils::MakeMaker to build and install perl modules.

Module::Load, by Jos Boumans, has been added. It provides a single
 interface to load Perl
modules and .pl files.

Module::Loaded, by Jos Boumans, has been added. It's used to mark
 modules as loaded
or unloaded.

Package::Constants, by Jos Boumans, has been added. It's a simple
 helper to list all
constants declared in a given package.

Win32API::File, by Tye McQueen, has been added (for Windows builds).
 This module
provides low-level access to Win32 system API calls for
 files/dirs.

Locale::Maketext::Simple, needed by CPANPLUS, is a simple wrapper around
Locale::Maketext::Lexicon. Note that Locale::Maketext::Lexicon isn't
 included
in the perl core; the behaviour of Locale::Maketext::Simple
 gracefully degrades when
the later isn't present.

Params::Check implements a generic input parsing/checking mechanism. It
 is used by
CPANPLUS.

Term::UI simplifies the task to ask questions at a terminal prompt.

Object::Accessor provides an interface to create per-object accessors.

Module::Pluggable is a simple framework to create modules that accept
 pluggable
sub-modules.

Module::Load::Conditional provides simple ways to query and possibly
 load installed
modules.

Time::Piece provides an object oriented interface to time functions,
 overriding the built-ins
localtime() and gmtime().

IPC::Cmd helps to find and run external commands, possibly
 interactively.

File::Fetch provide a simple generic file fetching mechanism.

Log::Message and Log::Message::Simple are used by the log facility
 of CPANPLUS.

Archive::Extract is a generic archive extraction mechanism
 for .tar (plain, gziped or
bzipped) or .zip files.

CPANPLUS provides an API and a command-line tool to access the CPAN
 mirrors.

Pod::Escapes provides utilities that are useful in decoding Pod
 E<...> sequences.

Pod::Simple is now the backend for several of the Pod-related modules
 included with Perl.

Selected Changes to Core Modules
Attribute::Handlers

Attribute::Handlers can now report the caller's file and line number.
 (David Feldman)

All interpreted attributes are now passed as array references. (Damian
 Conway)

B::Lint

B::Lint is now based on Module::Pluggable, and so can be extended
 with plugins.
(Joshua ben Jore)

B

It's now possible to access the lexical pragma hints (%^H) by using the
 method

Perl version 5.12.5 documentation - perl5100delta

Page 12http://perldoc.perl.org

B::COP::hints_hash(). It returns a B::RHE object, which in turn
 can be used to get a hash
reference via the method B::RHE::HASH(). (Joshua
 ben Jore)

Thread

As the old 5005thread threading model has been removed, in favor of the
 ithreads scheme,
the Thread module is now a compatibility wrapper, to
 be used in old code only. It has been
removed from the default list of
 dynamic extensions.

Utility Changes
perl -d

The Perl debugger can now save all debugger commands for sourcing later;
 notably, it can
now emulate stepping backwards, by restarting and
 rerunning all bar the last command from a
saved command history.

It can also display the parent inheritance tree of a given class, with the i command.

ptar

ptar is a pure perl implementation of tar that comes with Archive::Tar.

ptardiff

ptardiff is a small utility used to generate a diff between the contents
 of a tar archive and a
directory tree. Like ptar, it comes with Archive::Tar.

shasum

shasum is a command-line utility, used to print or to check SHA
 digests. It comes with the new
Digest::SHA module.

corelist

The corelist utility is now installed with perl (see New modules
 above).

h2ph and h2xs

h2ph and h2xs have been made more robust with regard to
 "modern" C code.

h2xs implements a new option --use-xsloader to force use of XSLoader even in
backwards compatible modules.

The handling of authors' names that had apostrophes has been fixed.

Any enums with negative values are now skipped.

perlivp

perlivp no longer checks for *.ph files by default. Use the new -a
 option to run all tests.

find2perl

find2perl now assumes -print as a default action. Previously, it
 needed to be specified
explicitly.

Several bugs have been fixed in find2perl, regarding -exec and -eval. Also the options
-path, -ipath and -iname have been
 added.

config_data

config_data is a new utility that comes with Module::Build. It
 provides a command-line
interface to the configuration of Perl modules
 that use Module::Build's framework of
configurability (that is, *::ConfigData modules that contain local configuration information
for
 their parent modules.)

cpanp

cpanp, the CPANPLUS shell, has been added. (cpanp-run-perl, a
 helper for CPANPLUS
operation, has been added too, but isn't intended for
 direct use).

Perl version 5.12.5 documentation - perl5100delta

Page 13http://perldoc.perl.org

cpan2dist

cpan2dist is a new utility that comes with CPANPLUS. It's a tool to
 create distributions (or
packages) from CPAN modules.

pod2html

The output of pod2html has been enhanced to be more customizable via
 CSS. Some
formatting problems were also corrected. (Jari Aalto)

New Documentation
The perlpragma manpage documents how to write one's own lexical
 pragmas in pure Perl (something
that is possible starting with 5.9.4).

The new perlglossary manpage is a glossary of terms used in the Perl
 documentation, technical and
otherwise, kindly provided by O'Reilly Media,
 Inc.

The perlreguts manpage, courtesy of Yves Orton, describes internals of the
 Perl regular expression
engine.

The perlreapi manpage describes the interface to the perl interpreter
 used to write pluggable regular
expression engines (by Ã†var ArnfjÃ¶rÃ°
 Bjarmason).

The perlunitut manpage is an tutorial for programming with Unicode and
 string encodings in Perl,
courtesy of Juerd Waalboer.

A new manual page, perlunifaq (the Perl Unicode FAQ), has been added
 (Juerd Waalboer).

The perlcommunity manpage gives a description of the Perl community
 on the Internet and in real life.
(Edgar "Trizor" Bering)

The CORE manual page documents the CORE:: namespace. (Tels)

The long-existing feature of /(?{...})/ regexps setting $_ and pos()
 is now documented.

Performance Enhancements
In-place sorting

Sorting arrays in place (@a = sort @a) is now optimized to avoid
 making a temporary copy of the
array.

Likewise, reverse sort ... is now optimized to sort in reverse,
 avoiding the generation of a
temporary intermediate list.

Lexical array access
Access to elements of lexical arrays via a numeric constant between 0 and
 255 is now faster. (This
used to be only the case for global arrays.)

XS-assisted SWASHGET
Some pure-perl code that perl was using to retrieve Unicode properties and
 transliteration mappings
has been reimplemented in XS.

Constant subroutines
The interpreter internals now support a far more memory efficient form of
 inlineable constants. Storing
a reference to a constant value in a symbol
 table is equivalent to a full typeglob referencing a constant
subroutine,
 but using about 400 bytes less memory. This proxy constant subroutine is
 automatically
upgraded to a real typeglob with subroutine if necessary.
 The approach taken is analogous to the
existing space optimisation for
 subroutine stub declarations, which are stored as plain scalars in place
of the full typeglob.

Several of the core modules have been converted to use this feature for
 their system dependent
constants - as a result use POSIX; now takes about
 200K less memory.

Perl version 5.12.5 documentation - perl5100delta

Page 14http://perldoc.perl.org

PERL_DONT_CREATE_GVSV
The new compilation flag PERL_DONT_CREATE_GVSV, introduced as an option
 in perl 5.8.8, is turned
on by default in perl 5.9.3. It prevents perl
 from creating an empty scalar with every new typeglob.
See perl589delta
 for details.

Weak references are cheaper
Weak reference creation is now O(1) rather than O(n), courtesy of
 Nicholas Clark. Weak reference
deletion remains O(n), but if deletion only
 happens at program exit, it may be skipped completely.

sort() enhancements
Salvador FandiÃ±o provided improvements to reduce the memory usage of sort
 and to speed up
some cases.

Memory optimisations
Several internal data structures (typeglobs, GVs, CVs, formats) have been
 restructured to use less
memory. (Nicholas Clark)

UTF-8 cache optimisation
The UTF-8 caching code is now more efficient, and used more often.
 (Nicholas Clark)

Sloppy stat on Windows
On Windows, perl's stat() function normally opens the file to determine
 the link count and update
attributes that may have been changed through
 hard links. Setting ${^WIN32_SLOPPY_STAT} to a
true value speeds up
 stat() by not performing this operation. (Jan Dubois)

Regular expressions optimisations
Engine de-recursivised

The regular expression engine is no longer recursive, meaning that
 patterns that used to
overflow the stack will either die with useful
 explanations, or run to completion, which, since
they were able to blow
 the stack before, will likely take a very long time to happen. If you were

experiencing the occasional stack overflow (or segfault) and upgrade to
 discover that now perl
apparently hangs instead, look for a degenerate
 regex. (Dave Mitchell)

Single char char-classes treated as literals

Classes of a single character are now treated the same as if the character
 had been used as a
literal, meaning that code that uses char-classes as an
 escaping mechanism will see a
speedup. (Yves Orton)

Trie optimisation of literal string alternations

Alternations, where possible, are optimised into more efficient matching
 structures. String
literal alternations are merged into a trie and are
 matched simultaneously. This means that
instead of O(N) time for matching
 N alternations at a given point, the new code performs in
O(1) time.
 A new special variable, ${^RE_TRIE_MAXBUF}, has been added to fine-tune
 this
optimization. (Yves Orton)

Note: Much code exists that works around perl's historic poor
 performance on alternations.
Often the tricks used to do so will disable
 the new optimisations. Hopefully the utility modules
used for this purpose
 will be educated about these new optimisations.

Aho-Corasick start-point optimisation

When a pattern starts with a trie-able alternation and there aren't
 better optimisations
available, the regex engine will use Aho-Corasick
 matching to find the start point. (Yves Orton)

Installation and Configuration Improvements

Perl version 5.12.5 documentation - perl5100delta

Page 15http://perldoc.perl.org

Configuration improvements
-Dusesitecustomize

Run-time customization of @INC can be enabled by passing the -Dusesitecustomize flag
to Configure. When enabled, this will make perl
 run $sitelibexp/sitecustomize.pl before
anything else. This script can
 then be set up to add additional entries to @INC.

Relocatable installations

There is now Configure support for creating a relocatable perl tree. If
 you Configure with
-Duserelocatableinc, then the paths in @INC (and
 everything else in %Config) can be
optionally located via the path of the
 perl executable.

That means that, if the string ".../" is found at the start of any
 path, it's substituted with the
directory of $^X. So, the relocation can
 be configured on a per-directory basis, although the
default with -Duserelocatableinc is that everything is relocated. The initial
 install is done
to the original configured prefix.

strlcat() and strlcpy()

The configuration process now detects whether strlcat() and strlcpy() are
 available. When they
are not available, perl's own version is used (from
 Russ Allbery's public domain
implementation). Various places in the perl
 interpreter now use them. (Steve Peters)

d_pseudofork and d_printf_format_null

A new configuration variable, available as $Config{d_pseudofork} in
 the Config module,
has been added, to distinguish real fork() support
 from fake pseudofork used on Windows
platforms.

A new configuration variable, d_printf_format_null, has been added, to see if printf-like
formats are allowed to be NULL.

Configure help

Configure -h has been extended with the most commonly used options.

Compilation improvements
Parallel build

Parallel makes should work properly now, although there may still be problems
 if make test
is instructed to run in parallel.

Borland's compilers support

Building with Borland's compilers on Win32 should work more smoothly. In
 particular Steve
Hay has worked to side step many warnings emitted by their
 compilers and at least one C
compiler internal error.

Static build on Windows

Perl extensions on Windows now can be statically built into the Perl DLL.

Also, it's now possible to build a perl-static.exe that doesn't depend
 on the Perl DLL on
Win32. See the Win32 makefiles for details.
 (Vadim Konovalov)

ppport.h files

All ppport.h files in the XS modules bundled with perl are now
 autogenerated at build time.
(Marcus Holland-Moritz)

C++ compatibility

Efforts have been made to make perl and the core XS modules compilable
 with various C++
compilers (although the situation is not perfect with
 some of the compilers on some of the
platforms tested.)

Perl version 5.12.5 documentation - perl5100delta

Page 16http://perldoc.perl.org

Support for Microsoft 64-bit compiler

Support for building perl with Microsoft's 64-bit compiler has been
 improved. (ActiveState)

Visual C++

Perl can now be compiled with Microsoft Visual C++ 2005 (and 2008 Beta 2).

Win32 builds

All win32 builds (MS-Win, WinCE) have been merged and cleaned up.

Installation improvements
Module auxiliary files

README files and changelogs for CPAN modules bundled with perl are no
 longer installed.

New Or Improved Platforms
Perl has been reported to work on Symbian OS. See perlsymbian for more
 information.

Many improvements have been made towards making Perl work correctly on
 z/OS.

Perl has been reported to work on DragonFlyBSD and MidnightBSD.

Perl has also been reported to work on NexentaOS
 (http://www.gnusolaris.org/).

The VMS port has been improved. See perlvms.

Support for Cray XT4 Catamount/Qk has been added. See hints/catamount.sh in the source code
distribution for more
 information.

Vendor patches have been merged for RedHat and Gentoo.

DynaLoader::dl_unload_file() now works on Windows.

Selected Bug Fixes
strictures in regexp-eval blocks

strict wasn't in effect in regexp-eval blocks (/(?{...})/).

Calling CORE::require()

CORE::require() and CORE::do() were always parsed as require() and do()
 when they were
overridden. This is now fixed.

Subscripts of slices

You can now use a non-arrowed form for chained subscripts after a list
 slice, like in:

 ({foo => "bar"})[0]{foo}

This used to be a syntax error; a -> was required.

no warnings 'category' works correctly with -w

Previously when running with warnings enabled globally via -w, selective
 disabling of specific
warning categories would actually turn off all warnings.
 This is now fixed; now no warnings
'io'; will only turn off warnings in the io class. Previously it would erroneously turn off all
warnings.

threads improvements

Several memory leaks in ithreads were closed. Also, ithreads were made
 less
memory-intensive.

threads is now a dual-life module, also available on CPAN. It has been
 expanded in many
ways. A kill() method is available for thread signalling.
 One can get thread status, or the list of
running or joinable threads.

Perl version 5.12.5 documentation - perl5100delta

Page 17http://perldoc.perl.org

A new threads->exit() method is used to exit from the application
 (this is the default for
the main thread) or from the current thread only
 (this is the default for all other threads). On
the other hand, the exit()
 built-in now always causes the whole application to terminate. (Jerry

D. Hedden)

chr() and negative values

chr() on a negative value now gives \x{FFFD}, the Unicode replacement
 character, unless
when the bytes pragma is in effect, where the low
 eight bits of the value are used.

PERL5SHELL and tainting

On Windows, the PERL5SHELL environment variable is now checked for
 taintedness. (Rafael
Garcia-Suarez)

Using *FILE{IO}

stat() and -X filetests now treat *FILE{IO} filehandles like *FILE
 filehandles. (Steve Peters)

Overloading and reblessing

Overloading now works when references are reblessed into another class.
 Internally, this has
been implemented by moving the flag for "overloading"
 from the reference to the referent,
which logically is where it should
 always have been. (Nicholas Clark)

Overloading and UTF-8

A few bugs related to UTF-8 handling with objects that have
 stringification overloaded have
been fixed. (Nicholas Clark)

eval memory leaks fixed

Traditionally, eval 'syntax error' has leaked badly. Many (but not all)
 of these leaks
have now been eliminated or reduced. (Dave Mitchell)

Random device on Windows

In previous versions, perl would read the file /dev/urandom if it
 existed when seeding its
random number generator. That file is unlikely
 to exist on Windows, and if it did would
probably not contain appropriate
 data, so perl no longer tries to read it on Windows. (Alex
Davies)

PERLIO_DEBUG

The PERLIO_DEBUG environment variable no longer has any effect for
 setuid scripts and for
scripts run with -T.

Moreover, with a thread-enabled perl, using PERLIO_DEBUG could lead to
 an internal buffer
overflow. This has been fixed.

PerlIO::scalar and read-only scalars

PerlIO::scalar will now prevent writing to read-only scalars. Moreover,
 seek() is now supported
with PerlIO::scalar-based filehandles, the
 underlying string being zero-filled as needed.
(Rafael, Jarkko Hietaniemi)

study() and UTF-8

study() never worked for UTF-8 strings, but could lead to false results.
 It's now a no-op on
UTF-8 data. (Yves Orton)

Critical signals

The signals SIGILL, SIGBUS and SIGSEGV are now always delivered in an
 "unsafe" manner
(contrary to other signals, that are deferred until the
 perl interpreter reaches a reasonably
stable state; see "Deferred Signals (Safe Signals)" in perlipc). (Rafael)

@INC-hook fix

Perl version 5.12.5 documentation - perl5100delta

Page 18http://perldoc.perl.org

When a module or a file is loaded through an @INC-hook, and when this hook
 has set a
filename entry in %INC, __FILE__ is now set for this module
 accordingly to the contents of
that %INC entry. (Rafael)

-t switch fix

The -w and -t switches can now be used together without messing
 up which categories of
warnings are activated. (Rafael)

Duping UTF-8 filehandles

Duping a filehandle which has the :utf8 PerlIO layer set will now
 properly carry that layer on
the duped filehandle. (Rafael)

Localisation of hash elements

Localizing a hash element whose key was given as a variable didn't work
 correctly if the
variable was changed while the local() was in effect (as
 in local $h{$x}; ++$x). (Bo
Lindbergh)

New or Changed Diagnostics
Use of uninitialized value

Perl will now try to tell you the name of the variable (if any) that was
 undefined.

Deprecated use of my() in false conditional

A new deprecation warning, Deprecated use of my() in false conditional,
 has been added, to
warn against the use of the dubious and deprecated
 construct

 my $x if 0;

See perldiag. Use state variables instead.

!=~ should be !~

A new warning, !=~ should be !~, is emitted to prevent this misspelling
 of the
non-matching operator.

Newline in left-justified string

The warning Newline in left-justified string has been removed.

Too late for "-T" option

The error Too late for "-T" option has been reformulated to be more
 descriptive.

"%s" variable %s masks earlier declaration

This warning is now emitted in more consistent cases; in short, when one
 of the declarations
involved is a my variable:

 my $x; my $x;	 # warns
 my $x; our $x;	 # warns
 our $x; my $x;	 # warns

On the other hand, the following:

 our $x; our $x;

now gives a "our" variable %s redeclared warning.

readdir()/closedir()/etc. attempted on invalid dirhandle

These new warnings are now emitted when a dirhandle is used but is
 either closed or not
really a dirhandle.

Opening dirhandle/filehandle %s also as a file/directory

Perl version 5.12.5 documentation - perl5100delta

Page 19http://perldoc.perl.org

Two deprecation warnings have been added: (Rafael)

 Opening dirhandle %s also as a file
 Opening filehandle %s also as a directory

Use of -P is deprecated

Perl's command-line switch -P is now deprecated.

v-string in use/require is non-portable

Perl will warn you against potential backwards compatibility problems with
 the use VERSION
syntax.

perl -V

perl -V has several improvements, making it more useable from shell
 scripts to get the
value of configuration variables. See perlrun for
 details.

Changed Internals
In general, the source code of perl has been refactored, tidied up,
 and optimized in many places.
Also, memory management and allocation
 has been improved in several points.

When compiling the perl core with gcc, as many gcc warning flags are
 turned on as is possible on the
platform. (This quest for cleanliness
 doesn't extend to XS code because we cannot guarantee the
tidiness of
 code we didn't write.) Similar strictness flags have been added or
 tightened for various
other C compilers.

Reordering of SVt_* constants
The relative ordering of constants that define the various types of SV
 have changed; in particular,
SVt_PVGV has been moved before SVt_PVLV, SVt_PVAV, SVt_PVHV and SVt_PVCV. This is
unlikely to make any
 difference unless you have code that explicitly makes assumptions about that

ordering. (The inheritance hierarchy of B::* objects has been changed
 to reflect this.)

Elimination of SVt_PVBM
Related to this, the internal type SVt_PVBM has been removed. This
 dedicated type of SV was used
by the index operator and parts of the
 regexp engine to facilitate fast Boyer-Moore matches. Its use
internally has
 been replaced by SVs of type SVt_PVGV.

New type SVt_BIND
A new type SVt_BIND has been added, in readiness for the project to
 implement Perl 6 on 5. There
deliberately is no implementation yet, and
 they cannot yet be created or destroyed.

Removal of CPP symbols
The C preprocessor symbols PERL_PM_APIVERSION and PERL_XS_APIVERSION, which were
supposed to give the version number of
 the oldest perl binary-compatible (resp. source-compatible)
with the
 present one, were not used, and sometimes had misleading values. They have
 been
removed.

Less space is used by ops
The BASEOP structure now uses less space. The op_seq field has been
 removed and replaced by a
single bit bit-field op_opt. op_type is now 9
 bits long. (Consequently, the B::OP class doesn't
provide an seq
 method anymore.)

New parser
perl's parser is now generated by bison (it used to be generated by
 byacc.) As a result, it seems to be
a bit more robust.

Also, Dave Mitchell improved the lexer debugging output under -DT.

Perl version 5.12.5 documentation - perl5100delta

Page 20http://perldoc.perl.org

Use of const
Andy Lester supplied many improvements to determine which function
 parameters and local variables
could actually be declared const to the C
 compiler. Steve Peters provided new *_set macros and
reworked the core to
 use these rather than assigning to macros in LVALUE context.

Mathoms
A new file, mathoms.c, has been added. It contains functions that are
 no longer used in the perl core,
but that remain available for binary or
 source compatibility reasons. However, those functions will not
be
 compiled in if you add -DNO_MATHOMS in the compiler flags.

AvFLAGS has been removed
The AvFLAGS macro has been removed.

av_* changes
The av_*() functions, used to manipulate arrays, no longer accept null AV* parameters.

$^H and %^H
The implementation of the special variables $^H and %^H has changed, to
 allow implementing lexical
pragmas in pure Perl.

B:: modules inheritance changed
The inheritance hierarchy of B:: modules has changed; B::NV now
 inherits from B::SV (it used to
inherit from B::IV).

Anonymous hash and array constructors
The anonymous hash and array constructors now take 1 op in the optree
 instead of 3, now that
pp_anonhash and pp_anonlist return a reference to
 an hash/array when the op is flagged with
OPf_SPECIAL. (Nicholas Clark)

Known Problems
There's still a remaining problem in the implementation of the lexical $_: it doesn't work inside
/(?{...})/ blocks. (See the TODO test in t/op/mydef.t.)

Stacked filetest operators won't work when the filetest pragma is in
 effect, because they rely on
the stat() buffer _ being populated, and
 filetest bypasses stat().

UTF-8 problems
The handling of Unicode still is unclean in several places, where it's
 dependent on whether a string is
internally flagged as UTF-8. This will
 be made more consistent in perl 5.12, but that won't be possible
without
 a certain amount of backwards incompatibility.

Platform Specific Problems
When compiled with g++ and thread support on Linux, it's reported that the $! stops working
correctly. This is related to the fact that the glibc
 provides two strerror_r(3) implementation, and perl
selects the wrong
 one.

Reporting Bugs
If you find what you think is a bug, you might check the articles
 recently posted to the
comp.lang.perl.misc newsgroup and the perl
 bug database at http://rt.perl.org/rt3/ . There may also be
information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug
 program included with your
release. Be sure to trim your bug down
 to a tiny but sufficient test case. Your bug report, along with
the
 output of perl -V, will be sent off to perlbug@perl.org to be
 analysed by the Perl porting team.

Perl version 5.12.5 documentation - perl5100delta

Page 21http://perldoc.perl.org

SEE ALSO
The Changes file and the perl590delta to perl595delta man pages for
 exhaustive details on what
changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

