
Perl version 5.12.5 documentation - perlapio

Page 1http://perldoc.perl.org

NAME
perlapio - perl's IO abstraction interface.

SYNOPSIS
    #define PERLIO_NOT_STDIO 0    /* For co-existence with stdio only */
    #include <perlio.h>           /* Usually via #include <perl.h> */

    PerlIO *PerlIO_stdin(void);
    PerlIO *PerlIO_stdout(void);
    PerlIO *PerlIO_stderr(void);

    PerlIO *PerlIO_open(const char *path,const char *mode);
    PerlIO *PerlIO_fdopen(int fd, const char *mode);
    PerlIO *PerlIO_reopen(const char *path, const char *mode, PerlIO *old);
  /* deprecated */
    int     PerlIO_close(PerlIO *f);

    int     PerlIO_stdoutf(const char *fmt,...)
    int     PerlIO_puts(PerlIO *f,const char *string);
    int     PerlIO_putc(PerlIO *f,int ch);
    int     PerlIO_write(PerlIO *f,const void *buf,size_t numbytes);
    int     PerlIO_printf(PerlIO *f, const char *fmt,...);
    int     PerlIO_vprintf(PerlIO *f, const char *fmt, va_list args);
    int     PerlIO_flush(PerlIO *f);

    int     PerlIO_eof(PerlIO *f);
    int     PerlIO_error(PerlIO *f);
    void    PerlIO_clearerr(PerlIO *f);

    int     PerlIO_getc(PerlIO *d);
    int     PerlIO_ungetc(PerlIO *f,int ch);
    int     PerlIO_read(PerlIO *f, void *buf, size_t numbytes);

    int     PerlIO_fileno(PerlIO *f);

    void    PerlIO_setlinebuf(PerlIO *f);

    Off_t   PerlIO_tell(PerlIO *f);
    int     PerlIO_seek(PerlIO *f, Off_t offset, int whence);
    void    PerlIO_rewind(PerlIO *f);

    int     PerlIO_getpos(PerlIO *f, SV *save);        /* prototype changed
 */
    int     PerlIO_setpos(PerlIO *f, SV *saved);       /* prototype changed
 */

    int     PerlIO_fast_gets(PerlIO *f);
    int     PerlIO_has_cntptr(PerlIO *f);
    int     PerlIO_get_cnt(PerlIO *f);
    char   *PerlIO_get_ptr(PerlIO *f);
    void    PerlIO_set_ptrcnt(PerlIO *f, char *ptr, int count);



Perl version 5.12.5 documentation - perlapio

Page 2http://perldoc.perl.org

    int     PerlIO_canset_cnt(PerlIO *f);              /* deprecated */
    void    PerlIO_set_cnt(PerlIO *f, int count);      /* deprecated */

    int     PerlIO_has_base(PerlIO *f);
    char   *PerlIO_get_base(PerlIO *f);
    int     PerlIO_get_bufsiz(PerlIO *f);

    PerlIO *PerlIO_importFILE(FILE *stdio, const char *mode);
    FILE   *PerlIO_exportFILE(PerlIO *f, int flags);
    FILE   *PerlIO_findFILE(PerlIO *f);
    void    PerlIO_releaseFILE(PerlIO *f,FILE *stdio);

    int     PerlIO_apply_layers(PerlIO *f, const char *mode, const char 
*layers);
    int     PerlIO_binmode(PerlIO *f, int ptype, int imode, const char 
*layers);
    void    PerlIO_debug(const char *fmt,...)

DESCRIPTION
Perl's source code, and extensions that want maximum portability,
 should use the above functions 
instead of those defined in ANSI C's stdio.h. The perl headers (in particular "perlio.h") will #define 
them to the I/O mechanism selected at Configure time.

The functions are modeled on those in stdio.h, but parameter order
 has been "tidied up a little".

PerlIO * takes the place of FILE *. Like FILE * it should be
 treated as opaque (it is probably safe to 
assume it is a pointer to
 something).

There are currently three implementations:

1. USE_STDIO

All above are #define'd to stdio functions or are trivial wrapper
 functions which call stdio. In 
this case only PerlIO * is a FILE *.
 This has been the default implementation since the 
abstraction was
 introduced in perl5.003_02.

2. USE_SFIO

A "legacy" implementation in terms of the "sfio" library. Used for
 some specialist applications 
on Unix machines ("sfio" is not widely
 ported away from Unix). Most of above are #define'd to 
the sfio
 functions. PerlIO * is in this case Sfio_t *.

3. USE_PERLIO

Introduced just after perl5.7.0, this is a re-implementation of the
 above abstraction which 
allows perl more control over how IO is done
 as it decouples IO from the way the operating 
system and C library
 choose to do things. For USE_PERLIO PerlIO * has an extra layer of

indirection - it is a pointer-to-a-pointer. This allows the PerlIO *
 to remain with a known value 
while swapping the implementation around
 underneath at run time. In this case all the above 
are true (but
 very simple) functions which call the underlying implementation.

This is the only implementation for which PerlIO_apply_layers()
 does anything 
"interesting".

The USE_PERLIO implementation is described in perliol.

Because "perlio.h" is a thin layer (for efficiency) the semantics of
 these functions are somewhat 
dependent on the underlying implementation.
 Where these variations are understood they are noted 
below.



Perl version 5.12.5 documentation - perlapio

Page 3http://perldoc.perl.org

Unless otherwise noted, functions return 0 on success, or a negative
 value (usually EOF which is 
usually -1) and set errno on error.

PerlIO_stdin(), PerlIO_stdout(), PerlIO_stderr()

Use these rather than stdin, stdout, stderr. They are written
 to look like "function calls" 
rather than variables because this makes
 it easier to make them function calls if platform 
cannot export data
 to loaded modules, or if (say) different "threads" might have different

values.

PerlIO_open(path, mode), PerlIO_fdopen(fd,mode)

These correspond to fopen()/fdopen() and the arguments are the same.
 Return NULL and set 
errno if there is an error. There may be an
 implementation limit on the number of open 
handles, which may be lower
 than the limit on the number of open files - errno may not be 
set
 when NULL is returned if this limit is exceeded.

PerlIO_reopen(path,mode,f)

While this currently exists in all three implementations perl itself
 does not use it. As perl does 
not use it, it is not well tested.

Perl prefers to dup the new low-level descriptor to the descriptor
 used by the existing PerlIO. 
This may become the behaviour of this
 function in the future.

PerlIO_printf(f,fmt,...), PerlIO_vprintf(f,fmt,a)

These are fprintf()/vfprintf() equivalents.

PerlIO_stdoutf(fmt,...)

This is printf() equivalent. printf is #defined to this function,
 so it is (currently) legal to use 
printf(fmt,...) in perl sources.

PerlIO_read(f,buf,count), PerlIO_write(f,buf,count)

These correspond functionally to fread() and fwrite() but the
 arguments and return values are 
different. The PerlIO_read() and
 PerlIO_write() signatures have been modeled on the more 
sane low level
 read() and write() functions instead: The "file" argument is passed
 first, there is 
only one "count", and the return value can distinguish
 between error and EOF.

Returns a byte count if successful (which may be zero or
 positive), returns negative value and 
sets errno on error.
 Depending on implementation errno may be EINTR if operation was

interrupted by a signal.

PerlIO_close(f)

Depending on implementation errno may be EINTR if operation was
 interrupted by a signal.

PerlIO_puts(f,s), PerlIO_putc(f,c)

These correspond to fputs() and fputc().
 Note that arguments have been revised to have "file" 
first.

PerlIO_ungetc(f,c)

This corresponds to ungetc(). Note that arguments have been revised
 to have "file" first. 
Arranges that next read operation will return
 the byte c. Despite the implied "character" in the 
name only
 values in the range 0..0xFF are defined. Returns the byte c on
 success or -1 (EOF) 
on error. The number of bytes that can be
 "pushed back" may vary, only 1 character is certain,
and then only if
 it is the last character that was read from the handle.

PerlIO_getc(f)

This corresponds to getc().
 Despite the c in the name only byte range 0..0xFF is supported.

Returns the character read or -1 (EOF) on error.

PerlIO_eof(f)



Perl version 5.12.5 documentation - perlapio

Page 4http://perldoc.perl.org

This corresponds to feof(). Returns a true/false indication of
 whether the handle is at end of 
file. For terminal devices this may
 or may not be "sticky" depending on the implementation. 
The flag is
 cleared by PerlIO_seek(), or PerlIO_rewind().

PerlIO_error(f)

This corresponds to ferror(). Returns a true/false indication of
 whether there has been an IO 
error on the handle.

PerlIO_fileno(f)

This corresponds to fileno(), note that on some platforms, the meaning
 of "fileno" may not 
match Unix. Returns -1 if the handle has no open
 descriptor associated with it.

PerlIO_clearerr(f)

This corresponds to clearerr(), i.e., clears 'error' and (usually)
 'eof' flags for the "stream". Does 
not return a value.

PerlIO_flush(f)

This corresponds to fflush(). Sends any buffered write data to the
 underlying file. If called with 
NULL this may flush all open
 streams (or core dump with some USE_STDIO 
implementations). Calling
 on a handle open for read only, or on which last operation was a 
read
 of some kind may lead to undefined behaviour on some USE_STDIO
 implementations. 
The USE_PERLIO (layers) implementation tries to
 behave better: it flushes all open streams 
when passed NULL, and
 attempts to retain data on read streams either in the buffer or by

seeking the handle to the current logical position.

PerlIO_seek(f,offset,whence)

This corresponds to fseek(). Sends buffered write data to the
 underlying file, or discards any 
buffered read data, then positions
 the file descriptor as specified by offset and whence (sic).

This is the correct thing to do when switching between read and write
 on the same handle 
(see issues with PerlIO_flush() above). Offset is
 of type Off_t which is a perl Configure value
which may not be same
 as stdio's off_t.

PerlIO_tell(f)

This corresponds to ftell(). Returns the current file position, or
 (Off_t) -1 on error. May just 
return value system "knows" without
 making a system call or checking the underlying file 
descriptor (so
 use on shared file descriptors is not safe without a
 PerlIO_seek()). Return value
is of type Off_t which is a perl
 Configure value which may not be same as stdio's off_t.

PerlIO_getpos(f,p), PerlIO_setpos(f,p)

These correspond (loosely) to fgetpos() and fsetpos(). Rather than
 stdio's Fpos_t they expect 
a "Perl Scalar Value" to be passed. What is
 stored there should be considered opaque. The 
layout of the data may
 vary from handle to handle. When not using stdio or if platform does

not have the stdio calls then they are implemented in terms of
 PerlIO_tell() and PerlIO_seek().

PerlIO_rewind(f)

This corresponds to rewind(). It is usually defined as being

    PerlIO_seek(f,(Off_t)0L, SEEK_SET);
    PerlIO_clearerr(f);

PerlIO_tmpfile()

This corresponds to tmpfile(), i.e., returns an anonymous PerlIO or
 NULL on error. The system
will attempt to automatically delete the
 file when closed. On Unix the file is usually unlink-ed 
just after
 it is created so it does not matter how it gets closed. On other
 systems the file may 
only be deleted if closed via PerlIO_close()
 and/or the program exits via exit. Depending on 
the implementation
 there may be "race conditions" which allow other processes access to
 the 



Perl version 5.12.5 documentation - perlapio

Page 5http://perldoc.perl.org

file, though in general it will be safer in this regard than
 ad. hoc. schemes.

PerlIO_setlinebuf(f)

This corresponds to setlinebuf(). Does not return a value. What
 constitutes a "line" is 
implementation dependent but usually means
 that writing "\n" flushes the buffer. What 
happens with things like
 "this\nthat" is uncertain. (Perl core uses it only when "dumping";
 it has
nothing to do with $| auto-flush.)

Co-existence with stdio
There is outline support for co-existence of PerlIO with stdio.
 Obviously if PerlIO is implemented in 
terms of stdio there is no
 problem. However in other cases then mechanisms must exist to create a

FILE * which can be passed to library code which is going to use stdio
 calls.

The first step is to add this line:

   #define PERLIO_NOT_STDIO 0

before including any perl header files. (This will probably become
 the default at some point). That 
prevents "perlio.h" from attempting
 to #define stdio functions onto PerlIO functions.

XS code is probably better using "typemap" if it expects FILE *
 arguments. The standard typemap will 
be adjusted to comprehend any
 changes in this area.

PerlIO_importFILE(f,mode)

Used to get a PerlIO * from a FILE *.

The mode argument should be a string as would be passed to
 fopen/PerlIO_open. If it is 
NULL then - for legacy support - the code
 will (depending upon the platform and the 
implementation) either
 attempt to empirically determine the mode in which f is open, or
 use 
"r+" to indicate a read/write stream.

Once called the FILE * should ONLY be closed by calling PerlIO_close() on the returned 
PerlIO *.

The PerlIO is set to textmode. Use PerlIO_binmode if this is
 not the desired mode.

This is not the reverse of PerlIO_exportFILE().

PerlIO_exportFILE(f,mode)

Given a PerlIO * create a 'native' FILE * suitable for passing to code
 expecting to be compiled 
and linked with ANSI C stdio.h. The mode
 argument should be a string as would be passed to 
fopen/PerlIO_open.
 If it is NULL then - for legacy support - the FILE * is opened in same
 mode
as the PerlIO *.

The fact that such a FILE * has been 'exported' is recorded, (normally
 by pushing a new :stdio 
"layer" onto the PerlIO *), which may affect
 future PerlIO operations on the original PerlIO *. 
You should not
 call fclose() on the file unless you call PerlIO_releaseFILE()
 to 
disassociate it from the PerlIO *. (Do not use PerlIO_importFILE()
 for doing the 
disassociation.)

Calling this function repeatedly will create a FILE * on each call
 (and will push an :stdio layer 
each time as well).

PerlIO_releaseFILE(p,f)

Calling PerlIO_releaseFILE informs PerlIO that all use of FILE * is
 complete. It is removed 
from the list of 'exported' FILE *s, and the
 associated PerlIO * should revert to its original 
behaviour.

Use this to disassociate a file from a PerlIO * that was associated
 using PerlIO_exportFILE().

PerlIO_findFILE(f)



Perl version 5.12.5 documentation - perlapio

Page 6http://perldoc.perl.org

Returns a native FILE * used by a stdio layer. If there is none, it
 will create one with 
PerlIO_exportFILE. In either case the FILE *
 should be considered as belonging to PerlIO 
subsystem and should
 only be closed by calling PerlIO_close().

"Fast gets" Functions
In addition to standard-like API defined so far above there is an
 "implementation" interface which 
allows perl to get at internals of
 PerlIO. The following calls correspond to the various FILE_xxx 
macros
 determined by Configure - or their equivalent in other
 implementations. This section is really 
of interest to only those
 concerned with detailed perl-core behaviour, implementing a PerlIO
 mapping 
or writing code which can make use of the "read ahead" that
 has been done by the IO system in the 
same way perl does. Note that
 any code that uses these interfaces must be prepared to do things the

traditional way if a handle does not support them.

PerlIO_fast_gets(f)

Returns true if implementation has all the interfaces required to
 allow perl's sv_gets to 
"bypass" normal IO mechanism. This can
 vary from handle to handle.

  PerlIO_fast_gets(f) = PerlIO_has_cntptr(f) && \
                        PerlIO_canset_cnt(f) && \
                        `Can set pointer into buffer'

PerlIO_has_cntptr(f)

Implementation can return pointer to current position in the "buffer"
 and a count of bytes 
available in the buffer. Do not use this - use
 PerlIO_fast_gets.

PerlIO_get_cnt(f)

Return count of readable bytes in the buffer. Zero or negative return
 means no more bytes 
available.

PerlIO_get_ptr(f)

Return pointer to next readable byte in buffer, accessing via the
 pointer (dereferencing) is only
safe if PerlIO_get_cnt() has returned
 a positive value. Only positive offsets up to value 
returned by
 PerlIO_get_cnt() are allowed.

PerlIO_set_ptrcnt(f,p,c)

Set pointer into buffer, and a count of bytes still in the
 buffer. Should be used only to set 
pointer to within range implied by
 previous calls to PerlIO_get_ptr and PerlIO_get_cnt.
The two
 values must be consistent with each other (implementation may only
 use one or the 
other or may require both).

PerlIO_canset_cnt(f)

Implementation can adjust its idea of number of bytes in the buffer.
 Do not use this - use 
PerlIO_fast_gets.

PerlIO_set_cnt(f,c)

Obscure - set count of bytes in the buffer. Deprecated. Only usable
 if PerlIO_canset_cnt() 
returns true. Currently used in only doio.c to
 force count less than -1 to -1. Perhaps should be 
PerlIO_set_empty or
 similar. This call may actually do nothing if "count" is deduced from

pointer and a "limit". Do not use this - use PerlIO_set_ptrcnt().

PerlIO_has_base(f)

Returns true if implementation has a buffer, and can return pointer
 to whole buffer and its size.
Used by perl for -T / -B tests.
 Other uses would be very obscure...

PerlIO_get_base(f)

Return start of buffer. Access only positive offsets in the buffer
 up to the value returned by 



Perl version 5.12.5 documentation - perlapio

Page 7http://perldoc.perl.org

PerlIO_get_bufsiz().PerlIO_get_bufsiz(f)

Return the total number of bytes in the buffer, this is neither the
 number that can be read, nor 
the amount of memory allocated to the
 buffer. Rather it is what the operating system and/or 
implementation
 happened to read() (or whatever) last time IO was requested.

Other Functions
PerlIO_apply_layers(f,mode,layers)

The new interface to the USE_PERLIO implementation. The layers ":crlf"
 and ":raw" are only 
ones allowed for other implementations and those
 are silently ignored. (As of perl5.8 ":raw" is 
deprecated.) Use
 PerlIO_binmode() below for the portable case.

PerlIO_binmode(f,ptype,imode,layers)

The hook used by perl's binmode operator. ptype is perl's character for the kind of IO:

'<' read

'>' write

'+' read/write

imode is O_BINARY or O_TEXT.

layers is a string of layers to apply, only ":crlf" makes sense in
 the non USE_PERLIO case. 
(As of perl5.8 ":raw" is deprecated in favour
 of passing NULL.)

Portable cases are:

    PerlIO_binmode(f,ptype,O_BINARY,NULL);
and
    PerlIO_binmode(f,ptype,O_TEXT,":crlf");

On Unix these calls probably have no effect whatsoever. Elsewhere
 they alter "\n" to CR,LF 
translation and possibly cause a special text
 "end of file" indicator to be written or honoured on
read. The effect
 of making the call after doing any IO to the handle depends on the

implementation. (It may be ignored, affect any data which is already
 buffered as well, or only 
apply to subsequent data.)

PerlIO_debug(fmt,...)

PerlIO_debug is a printf()-like function which can be used for
 debugging. No return value. Its 
main use is inside PerlIO where using
 real printf, warn() etc. would recursively call PerlIO and 
be a
 problem.

PerlIO_debug writes to the file named by $ENV{'PERLIO_DEBUG'} typical
 use might be

  Bourne shells (sh, ksh, bash, zsh, ash, ...):
   PERLIO_DEBUG=/dev/tty ./perl somescript some args

  Csh/Tcsh:
   setenv PERLIO_DEBUG /dev/tty
   ./perl somescript some args

  If you have the "env" utility:
   env PERLIO_DEBUG=/dev/tty ./perl somescript some args

  Win32:
   set PERLIO_DEBUG=CON
   perl somescript some args

If $ENV{'PERLIO_DEBUG'} is not set PerlIO_debug() is a no-op.


