
Perl version 5.12.5 documentation - perlrecharclass

Page 1http://perldoc.perl.org

NAME
perlrecharclass - Perl Regular Expression Character Classes

DESCRIPTION
The top level documentation about Perl regular expressions
 is found in perlre.

This manual page discusses the syntax and use of character
 classes in Perl regular expressions.

A character class is a way of denoting a set of characters
 in such a way that one character of the set
is matched.
 It's important to remember that: matching a character class
 consumes exactly one
character in the source string. (The source
 string is the string the regular expression is matched
against.)

There are three types of character classes in Perl regular
 expressions: the dot, backslash sequences,
and the form enclosed in square
 brackets. Keep in mind, though, that often the term "character class"
is used
 to mean just the bracketed form. Certainly, most Perl documentation does that.

The dot
The dot (or period), . is probably the most used, and certainly
 the most well-known character class.
By default, a dot matches any
 character, except for the newline. The default can be changed to
 add
matching the newline by using the single line modifier: either
 for the entire regular expression with the
/s modifier, or
 locally with (?s). (The experimental \N backslash sequence, described
 below,
matches any character except newline without regard to the single line modifier.)

Here are some examples:

 "a" =~ /./ # Match
 "." =~ /./ # Match
 "" =~ /./ # No match (dot has to match a character)
 "\n" =~ /./ # No match (dot does not match a newline)
 "\n" =~ /./s # Match (global 'single line' modifier)
 "\n" =~ /(?s:.)/ # Match (local 'single line' modifier)
 "ab" =~ /^.$/ # No match (dot matches one character)

Backslash sequences
A backslash sequence is a sequence of characters, the first one of which is a
 backslash. Perl
ascribes special meaning to many such sequences, and some of
 these are character classes. That is,
they match a single character each,
 provided that the character belongs to the specific set of
characters defined
 by the sequence.

Here's a list of the backslash sequences that are character classes. They
 are discussed in more detail
below. (For the backslash sequences that aren't
 character classes, see perlrebackslash.)

 \d Match a decimal digit character.
 \D Match a non-decimal-digit character.
 \w Match a "word" character.
 \W Match a non-"word" character.
 \s Match a whitespace character.
 \S Match a non-whitespace character.
 \h Match a horizontal whitespace character.
 \H Match a character that isn't horizontal whitespace.
 \v Match a vertical whitespace character.
 \V Match a character that isn't vertical whitespace.
 \N Match a character that isn't a newline. Experimental.
 \pP, \p{Prop} Match a character that has the given Unicode property.
 \PP, \P{Prop} Match a character that doesn't have the Unicode property

Perl version 5.12.5 documentation - perlrecharclass

Page 2http://perldoc.perl.org

Digits

\d matches a single character that is considered to be a decimal digit.
 What is considered a decimal
digit depends on the internal encoding of the
 source string and the locale that is in effect. If the source
string is in
 UTF-8 format, \d not only matches the digits '0' - '9', but also Arabic,
 Devanagari and digits
from other languages. Otherwise, if there is a locale in
 effect, it will match whatever characters the
locale considers decimal digits.
 Without a locale, \d matches just the digits '0' to '9'.
 See Locale,
EBCDIC, Unicode and UTF-8.

Unicode digits may cause some confusion, and some security issues. In UTF-8
 strings, \d matches
the same characters matched by \p{General_Category=Decimal_Number}, or synonymously,
\p{General_Category=Digit}. Starting with Unicode version 4.1, this is the
 same set of
characters matched by \p{Numeric_Type=Decimal}.

But Unicode also has a different property with a similar name, \p{Numeric_Type=Digit}, which
matches a completely different set of
 characters. These characters are things such as subscripts.

The design intent is for \d to match all the digits (and no other characters)
 that can be used with
"normal" big-endian positional decimal syntax, whereby a
 sequence of such digits {N0, N1, N2, ...Nn}
has the numeric value (...(N0 * 10
 + N1) * 10 + N2) * 10 ... + Nn). In Unicode 5.2, the Tamil digits
(U+0BE6 -
 U+0BEF) can also legally be used in old-style Tamil numbers in which they would
 appear
no more than one in a row, separated by characters that mean "times 10",
 "times 100", etc. (See
http://www.unicode.org/notes/tn21.)

Some of the non-European digits that \d matches look like European ones, but
 have different values.
For example, BENGALI DIGIT FOUR (U+09A) looks very much
 like an ASCII DIGIT EIGHT
(U+0038).

It may be useful for security purposes for an application to require that all
 digits in a row be from the
same script. See "charscript()" in Unicode::UCD.

Any character that isn't matched by \d will be matched by \D.

Word characters

A \w matches a single alphanumeric character (an alphabetic character, or a
 decimal digit) or an
underscore (_), not a whole word. To match a whole
 word, use \w+. This isn't the same thing as
matching an English word, but is the same as a string of Perl-identifier characters. What is considered
a
 word character depends on the internal
 encoding of the string and the locale or EBCDIC code page
that is in effect. If
 it's in UTF-8 format, \w matches those characters that are considered word

characters in the Unicode database. That is, it not only matches ASCII letters,
 but also Thai letters,
Greek letters, etc. If the source string isn't in UTF-8
 format, \w matches those characters that are
considered word characters by
 the current locale or EBCDIC code page. Without a locale or EBCDIC
code page, \w matches the ASCII letters, digits and the underscore.
 See Locale, EBCDIC, Unicode
and UTF-8.

There are a number of security issues with the full Unicode list of word
 characters. See
http://unicode.org/reports/tr36.

Also, for a somewhat finer-grained set of characters that are in programming
 language identifiers
beyond the ASCII range, you may wish to instead use the
 more customized Unicode properties,
"ID_Start", ID_Continue", "XID_Start", and
 "XID_Continue". See http://unicode.org/reports/tr31.

Any character that isn't matched by \w will be matched by \W.

Whitespace

\s matches any single character that is considered whitespace. The exact
 set of characters matched
by \s depends on whether the source string is in
 UTF-8 format and the locale or EBCDIC code page
that is in effect. If it's in
 UTF-8 format, \s matches what is considered whitespace in the Unicode

database; the complete list is in the table below. Otherwise, if there is a
 locale or EBCDIC code page
in effect, \s matches whatever is considered
 whitespace by the current locale or EBCDIC code page.

Perl version 5.12.5 documentation - perlrecharclass

Page 3http://perldoc.perl.org

Without a locale or
 EBCDIC code page, \s matches the horizontal tab (\t), the newline
 (\n), the
form feed (\f), the carriage return (\r), and the space.
 (Note that it doesn't match the vertical tab,
\cK.) Perhaps the most notable
 possible surprise is that \s matches a non-breaking space only if the

non-breaking space is in a UTF-8 encoded string or the locale or EBCDIC code
 page that is in effect
has that character.
 See Locale, EBCDIC, Unicode and UTF-8.

Any character that isn't matched by \s will be matched by \S.

\h will match any character that is considered horizontal whitespace;
 this includes the space and the
tab characters and a number other characters,
 all of which are listed in the table below. \H will match
any character
 that is not considered horizontal whitespace.

\v will match any character that is considered vertical whitespace;
 this includes the carriage return
and line feed characters (newline) plus several
 other characters, all listed in the table below. \V will
match any character that is not considered vertical whitespace.

\R matches anything that can be considered a newline under Unicode
 rules. It's not a character class,
as it can match a multi-character
 sequence. Therefore, it cannot be used inside a bracketed character
class; use \v instead (vertical whitespace).
 Details are discussed in perlrebackslash.

Note that unlike \s, \d and \w, \h and \v always match
 the same characters, regardless whether
the source string is in UTF-8
 format or not. The set of characters they match is also not influenced
 by
locale nor EBCDIC code page.

One might think that \s is equivalent to [\h\v]. This is not true. The
 vertical tab ("\x0b") is not
matched by \s, it is however considered
 vertical whitespace. Furthermore, if the source string is not
in UTF-8 format,
 and any locale or EBCDIC code page that is in effect doesn't include them, the
 next
line (ASCII-platform "\x85") and the no-break space (ASCII-platform "\xA0") characters are not
matched by \s, but are by \v and \h
 respectively. If the source string is in UTF-8 format, both the
next line and
 the no-break space are matched by \s.

The following table is a complete listing of characters matched by \s, \h and \v as of Unicode 5.2.

The first column gives the code point of the character (in hex format),
 the second column gives the
(Unicode) name. The third column indicates
 by which class(es) the character is matched (assuming
no locale or EBCDIC code
 page is in effect that changes the \s matching).

 0x00009 CHARACTER TABULATION h s
 0x0000a LINE FEED (LF) vs
 0x0000b LINE TABULATION v
 0x0000c FORM FEED (FF) vs
 0x0000d CARRIAGE RETURN (CR) vs
 0x00020 SPACE h s
 0x00085 NEXT LINE (NEL) vs [1]
 0x000a0 NO-BREAK SPACE h s [1]
 0x01680 OGHAM SPACE MARK h s
 0x0180e MONGOLIAN VOWEL SEPARATOR h s
 0x02000 EN QUAD h s
 0x02001 EM QUAD h s
 0x02002 EN SPACE h s
 0x02003 EM SPACE h s
 0x02004 THREE-PER-EM SPACE h s
 0x02005 FOUR-PER-EM SPACE h s
 0x02006 SIX-PER-EM SPACE h s
 0x02007 FIGURE SPACE h s
 0x02008 PUNCTUATION SPACE h s
 0x02009 THIN SPACE h s
 0x0200a HAIR SPACE h s
 0x02028 LINE SEPARATOR vs

Perl version 5.12.5 documentation - perlrecharclass

Page 4http://perldoc.perl.org

 0x02029 PARAGRAPH SEPARATOR vs
 0x0202f NARROW NO-BREAK SPACE h s
 0x0205f MEDIUM MATHEMATICAL SPACE h s
 0x03000 IDEOGRAPHIC SPACE h s

[1]

NEXT LINE and NO-BREAK SPACE only match \s if the source string is in
 UTF-8 format, or
the locale or EBCDIC code page that is in effect includes them.

It is worth noting that \d, \w, etc, match single characters, not
 complete numbers or words. To match
a number (that consists of integers),
 use \d+; to match a word, use \w+.

\N

\N is new in 5.12, and is experimental. It, like the dot, will match any
 character that is not a newline.
The difference is that \N is not influenced
 by the single line regular expression modifier (see The dot
above). Note
 that the form \N{...} may mean something completely different. When the {...} is a
quantifier, it means to match a non-newline
 character that many times. For example, \N{3} means to
match 3
 non-newlines; \N{5,} means to match 5 or more non-newlines. But if {...}
 is not a legal
quantifier, it is presumed to be a named character. See charnames for those. For example, none of
\N{COLON}, \N{4F}, and \N{F4} contain legal quantifiers, so Perl will try to find characters whose

names are, respectively, COLON, 4F, and F4.

Unicode Properties

\pP and \p{Prop} are character classes to match characters that fit given
 Unicode properties. One
letter property names can be used in the \pP form,
 with the property name following the \p,
otherwise, braces are required.
 When using braces, there is a single form, which is just the property
name
 enclosed in the braces, and a compound form which looks like \p{name=value},
 which
means to match if the property "name" for the character has the particular
 "value".
 For instance, a
match for a number can be written as /\pN/ or as /\p{Number}/, or as /\p{Number=True}/.

Lowercase letters are matched by the property Lowercase_Letter which
 has as short form Ll. They
need the braces, so are written as /\p{Ll}/ or /\p{Lowercase_Letter}/, or
/\p{General_Category=Lowercase_Letter}/
 (the underscores are optional). /\pLl/ is valid,
but means something different.
 It matches a two character string: a letter (Unicode property \pL),

followed by a lowercase l.

For more details, see "Unicode Character Properties" in perlunicode; for a
 complete list of possible
properties, see "Properties accessible through \p{} and \P{}" in perluniprops.
 It is also possible to
define your own properties. This is discussed in "User-Defined Character Properties" in perlunicode.

Examples

 "a" =~ /\w/ # Match, "a" is a 'word' character.
 "7" =~ /\w/ # Match, "7" is a 'word' character as well.
 "a" =~ /\d/ # No match, "a" isn't a digit.
 "7" =~ /\d/ # Match, "7" is a digit.
 " " =~ /\s/ # Match, a space is whitespace.
 "a" =~ /\D/ # Match, "a" is a non-digit.
 "7" =~ /\D/ # No match, "7" is not a non-digit.
 " " =~ /\S/ # No match, a space is not non-whitespace.

 " " =~ /\h/ # Match, space is horizontal whitespace.
 " " =~ /\v/ # No match, space is not vertical whitespace.
 "\r" =~ /\v/ # Match, a return is vertical whitespace.

 "a" =~ /\pL/ # Match, "a" is a letter.
 "a" =~ /\p{Lu}/ # No match, /\p{Lu}/ matches upper case letters.

Perl version 5.12.5 documentation - perlrecharclass

Page 5http://perldoc.perl.org

 "\x{0e0b}" =~ /\p{Thai}/ # Match, \x{0e0b} is the character
 # 'THAI CHARACTER SO SO', and that's in
 # Thai Unicode class.
 "a" =~ /\P{Lao}/ # Match, as "a" is not a Laotian character.

Bracketed Character Classes
The third form of character class you can use in Perl regular expressions
 is the bracketed character
class. In its simplest form, it lists the characters
 that may be matched, surrounded by square brackets,
like this: [aeiou].
 This matches one of a, e, i, o or u. Like the other
 character classes, exactly one
character will be matched. To match
 a longer string consisting of characters mentioned in the
character
 class, follow the character class with a quantifier. For
 instance, [aeiou]+ matches a string
of one or more lowercase English vowels.

Repeating a character in a character class has no
 effect; it's considered to be in the set only once.

Examples:

 "e" =~ /[aeiou]/ # Match, as "e" is listed in the class.
 "p" =~ /[aeiou]/ # No match, "p" is not listed in the class.
 "ae" =~ /^[aeiou]$/ # No match, a character class only matches
 # a single character.
 "ae" =~ /^[aeiou]+$/ # Match, due to the quantifier.

Special Characters Inside a Bracketed Character Class

Most characters that are meta characters in regular expressions (that
 is, characters that carry a
special meaning like ., *, or () lose
 their special meaning and can be used inside a character class
without
 the need to escape them. For instance, [()] matches either an opening
 parenthesis, or a
closing parenthesis, and the parens inside the character
 class don't group or capture.

Characters that may carry a special meaning inside a character class are: \, ^, -, [and], and are
discussed below. They can be
 escaped with a backslash, although this is sometimes not needed, in
which
 case the backslash may be omitted.

The sequence \b is special inside a bracketed character class. While
 outside the character class, \b
is an assertion indicating a point
 that does not have either two word characters or two non-word
characters
 on either side, inside a bracketed character class, \b matches a
 backspace character.

The sequences \a, \c, \e, \f, \n, \N{NAME}, \N{U+wide hex char}, \r, \t,
 and \x
 are also
special and have the same meanings as they do outside a bracketed character
 class.

Also, a backslash followed by two or three octal digits is considered an octal
 number.

A [is not special inside a character class, unless it's the start of a
 POSIX character class (see POSIX
Character Classes below). It normally does
 not need escaping.

A] is normally either the end of a POSIX character class (see POSIX Character Classes below), or it
signals the end of the bracketed
 character class. If you want to include a] in the set of characters,
you
 must generally escape it.
 However, if the] is the first (or the second if the first
 character is a
caret) character of a bracketed character class, it
 does not denote the end of the class (as you cannot
have an empty class)
 and is considered part of the set of characters that can be matched without

escaping.

Examples:

 "+" =~ /[+?*]/ # Match, "+" in a character class is not special.
 "\cH" =~ /[\b]/ # Match, \b inside in a character class
 # is equivalent to a backspace.
 "]" =~ /[][]/ # Match, as the character class contains.

Perl version 5.12.5 documentation - perlrecharclass

Page 6http://perldoc.perl.org

 # both [and].
 "[]" =~ /[[]]/ # Match, the pattern contains a character class
 # containing just], and the character class is
 # followed by a].

Character Ranges

It is not uncommon to want to match a range of characters. Luckily, instead
 of listing all the characters
in the range, one may use the hyphen (-).
 If inside a bracketed character class you have two
characters separated
 by a hyphen, it's treated as if all the characters between the two are in
 the
class. For instance, [0-9] matches any ASCII digit, and [a-m]
 matches any lowercase letter from
the first half of the ASCII alphabet.

Note that the two characters on either side of the hyphen are not
 necessary both letters or both digits.
Any character is possible,
 although not advisable. ['-?] contains a range of characters, but
 most
people will not know which characters that will be. Furthermore,
 such ranges may lead to portability
problems if the code has to run on
 a platform that uses a different character set, such as EBCDIC.

If a hyphen in a character class cannot syntactically be part of a range, for
 instance because it is the
first or the last character of the character class,
 or if it immediately follows a range, the hyphen isn't
special, and will be
 considered a character that is to be matched literally. You have to escape the

hyphen with a backslash if you want to have a hyphen in your set of characters
 to be matched, and its
position in the class is such that it could be
 considered part of a range.

Examples:

 [a-z] # Matches a character that is a lower case ASCII letter.
 [a-fz] # Matches any letter between 'a' and 'f' (inclusive) or
 # the letter 'z'.
 [-z] # Matches either a hyphen ('-') or the letter 'z'.
 [a-f-m] # Matches any letter between 'a' and 'f' (inclusive), the
 # hyphen ('-'), or the letter 'm'.
 ['-?] # Matches any of the characters '()*+,-./0123456789:;<=>?
 # (But not on an EBCDIC platform).

Negation

It is also possible to instead list the characters you do not want to
 match. You can do so by using a
caret (^) as the first character in the
 character class. For instance, [^a-z] matches a character that
is not a
 lowercase ASCII letter.

This syntax make the caret a special character inside a bracketed character
 class, but only if it is the
first character of the class. So if you want
 to have the caret as one of the characters you want to
match, you either
 have to escape the caret, or not list it first.

Examples:

 "e" =~ /[^aeiou]/ # No match, the 'e' is listed.
 "x" =~ /[^aeiou]/ # Match, as 'x' isn't a lowercase vowel.
 "^" =~ /[^^]/ # No match, matches anything that isn't a caret.
 "^" =~ /[x^]/ # Match, caret is not special here.

Backslash Sequences

You can put any backslash sequence character class (with the exception of \N) inside a bracketed
character class, and it will act just
 as if you put all the characters matched by the backslash sequence
inside the
 character class. For instance, [a-f\d] will match any decimal digit, or any
 of the
lowercase letters between 'a' and 'f' inclusive.

\N within a bracketed character class must be of the forms \N{name}
 or \N{U+wide hex char},

Perl version 5.12.5 documentation - perlrecharclass

Page 7http://perldoc.perl.org

and NOT be the form that matches non-newlines,
 for the same reason that a dot . inside a bracketed
character class loses
 its special meaning: it matches nearly anything, which generally isn't what you

want to happen.

Examples:

 /[\p{Thai}\d]/ # Matches a character that is either a Thai
 # character, or a digit.
 /[^\p{Arabic}()]/ # Matches a character that is neither an Arabic
 # character, nor a parenthesis.

Backslash sequence character classes cannot form one of the endpoints
 of a range. Thus, you can't
say:

 /[\p{Thai}-\d]/ # Wrong!

POSIX Character Classes

POSIX character classes have the form [:class:], where class is
 name, and the [: and :]
delimiters. POSIX character classes only appear inside bracketed character classes, and are a
convenient and descriptive
 way of listing a group of characters, though they currently suffer from

portability issues (see below and Locale, EBCDIC, Unicode and UTF-8).

Be careful about the syntax,

 # Correct:
 $string =~ /[[:alpha:]]/

 # Incorrect (will warn):
 $string =~ /[:alpha:]/

The latter pattern would be a character class consisting of a colon,
 and the letters a, l, p and h.

POSIX character classes can be part of a larger bracketed character class. For
 example,

 [01[:alpha:]%]

is valid and matches '0', '1', any alphabetic character, and the percent sign.

Perl recognizes the following POSIX character classes:

 alpha Any alphabetical character ("[A-Za-z]").
 alnum Any alphanumerical character. ("[A-Za-z0-9]")
 ascii Any character in the ASCII character set.
 blank A GNU extension, equal to a space or a horizontal tab ("\t").
 cntrl Any control character. See Note [2] below.
 digit Any decimal digit ("[0-9]"), equivalent to "\d".
 graph Any printable character, excluding a space. See Note [3] below.
 lower Any lowercase character ("[a-z]").
 print Any printable character, including a space. See Note [4] below.
 punct Any graphical character excluding "word" characters. Note [5].
 space Any whitespace character. "\s" plus the vertical tab ("\cK").
 upper Any uppercase character ("[A-Z]").
 word A Perl extension ("[A-Za-z0-9_]"), equivalent to "\w".
 xdigit Any hexadecimal digit ("[0-9a-fA-F]").

Most POSIX character classes have two Unicode-style \p property
 counterparts. (They are not official
Unicode properties, but Perl extensions
 derived from official Unicode properties.) The table below

Perl version 5.12.5 documentation - perlrecharclass

Page 8http://perldoc.perl.org

shows the relation
 between POSIX character classes and these counterparts.

One counterpart, in the column labelled "ASCII-range Unicode" in
 the table, will only match characters
in the ASCII character set.

The other counterpart, in the column labelled "Full-range Unicode", matches any
 appropriate
characters in the full Unicode character set. For example, \p{Alpha} will match not just the ASCII
alphabetic characters, but any
 character in the entire Unicode character set that is considered to be

alphabetic.

(Each of the counterparts has various synonyms as well. "Properties accessible through \p{} and \P{}"
in perluniprops lists all the
 synonyms, plus all the characters matched by each of the ASCII-range

properties. For example \p{AHex} is a synonym for \p{ASCII_Hex_Digit},
 and any \p property
name can be prefixed with "Is" such as \p{IsAlpha}.)

Both the \p forms are unaffected by any locale that is in effect, or whether
 the string is in UTF-8
format or not, or whether the platform is EBCDIC or not.
 In contrast, the POSIX character classes are
affected. If the source string is
 in UTF-8 format, the POSIX classes (with the exception of
[[:punct:]], see
 Note [5] below) behave like their "Full-range" Unicode counterparts. If the
 source
string is not in UTF-8 format, and no locale is in effect, and the
 platform is not EBCDIC, all the POSIX
classes behave like their ASCII-range
 counterparts. Otherwise, they behave based on the rules of the
locale or
 EBCDIC code page.

It is proposed to change this behavior in a future release of Perl so that the
 the UTF8ness of the
source string will be irrelevant to the behavior of the
 POSIX character classes. This means they will
always behave in strict
 accordance with the official POSIX standard. That is, if either locale or

EBCDIC code page is present, they will behave in accordance with those; if
 absent, the classes will
match only their ASCII-range counterparts. If you
 disagree with this proposal, send email to
perl5-porters@perl.org.

 [[:...:]] ASCII-range Full-range backslash Note
 Unicode Unicode sequence

 alpha \p{PosixAlpha} \p{Alpha}
 alnum \p{PosixAlnum} \p{Alnum}
 ascii \p{ASCII}
 blank \p{PosixBlank} \p{Blank} = [1]
 \p{HorizSpace} \h [1]
 cntrl \p{PosixCntrl} \p{Cntrl} [2]
 digit \p{PosixDigit} \p{Digit} \d
 graph \p{PosixGraph} \p{Graph} [3]
 lower \p{PosixLower} \p{Lower}
 print \p{PosixPrint} \p{Print} [4]
 punct \p{PosixPunct} \p{Punct} [5]
 \p{PerlSpace} \p{SpacePerl} \s [6]
 space \p{PosixSpace} \p{Space} [6]
 upper \p{PosixUpper} \p{Upper}
 word \p{PerlWord} \p{Word} \w
 xdigit \p{ASCII_Hex_Digit} \p{XDigit}

[1]

\p{Blank} and \p{HorizSpace} are synonyms.

[2]

Control characters don't produce output as such, but instead usually control
 the terminal
somehow: for example newline and backspace are control characters.
 In the ASCII range,
characters whose ordinals are between 0 and 31 inclusive,
 plus 127 (DEL) are control

Perl version 5.12.5 documentation - perlrecharclass

Page 9http://perldoc.perl.org

characters.On EBCDIC platforms, it is likely that the code page will define [[:cntrl:]]
 to
be the EBCDIC equivalents of the ASCII controls, plus the controls
 that in Unicode have
ordinals from 128 through 159.

[3]

Any character that is graphical, that is, visible. This class consists
 of all the alphanumerical
characters and all punctuation characters.

[4]

All printable characters, which is the set of all the graphical characters
 plus whitespace
characters that are not also controls.

[5] (punct)

\p{PosixPunct} and [[:punct:]] in the ASCII range match all the
 non-controls,
non-alphanumeric, non-space characters: [-!"#$%&'()*+,./:;<=>?@[\\\]^_`{|}~]
(although if a locale is in effect,
 it could alter the behavior of [[:punct:]]).

\p{Punct} matches a somewhat different set in the ASCII range, namely
[-!"#%&'()*,./:;?@[\\\]_{}]. That is, it is missing [$+<=>^`|~].
 This is because
Unicode splits what POSIX considers to be punctuation into two
 categories, Punctuation and
Symbols.

When the matching string is in UTF-8 format, [[:punct:]] matches what it
 matches in the
ASCII range, plus what \p{Punct} matches. This is different
 than strictly matching according
to \p{Punct}. Another way to say it is that
 for a UTF-8 string, [[:punct:]] matches all the
characters that Unicode
 considers to be punctuation, plus all the ASCII-range characters that
Unicode
 considers to be symbols.

[6]

\p{SpacePerl} and \p{Space} differ only in that \p{Space} additionally
 matches the
vertical tab, \cK. Same for the two ASCII-only range forms.

Negation

A Perl extension to the POSIX character class is the ability to
 negate it. This is done by prefixing the
class name with a caret (^).
 Some examples:

 POSIX ASCII-range Full-range backslash
 Unicode Unicode sequence

 [[:^digit:]] \P{PosixDigit} \P{Digit} \D
 [[:^space:]] \P{PosixSpace} \P{Space}
 \P{PerlSpace} \P{SpacePerl} \S
 [[:^word:]] \P{PerlWord} \P{Word} \W

[= =] and [. .]

Perl will recognize the POSIX character classes [=class=], and [.class.], but does not (yet?)
support them. Use of
 such a construct will lead to an error.

Examples

 /[[:digit:]]/ # Matches a character that is a digit.
 /[01[:lower:]]/ # Matches a character that is either a
 # lowercase letter, or '0' or '1'.
 /[[:digit:][:^xdigit:]]/ # Matches a character that can be anything
			 # except the letters 'a' to 'f'. This is
			 # because the main character class is composed
			 # of two POSIX character classes that are ORed
			 # together, one that matches any digit, and

Perl version 5.12.5 documentation - perlrecharclass

Page 10http://perldoc.perl.org

			 # the other that matches anything that isn't a
			 # hex digit. The result matches all
			 # characters except the letters 'a' to 'f' and
			 # 'A' to 'F'.

Locale, EBCDIC, Unicode and UTF-8
Some of the character classes have a somewhat different behaviour depending
 on the internal
encoding of the source string, and the locale that is
 in effect, and if the program is running on an
EBCDIC platform.

\w, \d, \s and the POSIX character classes (and their negations,
 including \W, \D, \S) suffer from
this behaviour. (Since the backslash
 sequences \b and \B are defined in terms of \w and \W, they
also are
 affected.)

The rule is that if the source string is in UTF-8 format, the character
 classes match according to the
Unicode properties. If the source string
 isn't, then the character classes match according to whatever
locale or EBCDIC
 code page is in effect. If there is no locale nor EBCDIC, they match the ASCII

defaults (0 to 9 for \d; 52 letters, 10 digits and underscore for \w;
 etc.).

This usually means that if you are matching against characters whose ord()
 values are between 128
and 255 inclusive, your character class may match
 or not depending on the current locale or EBCDIC
code page, and whether the
 source string is in UTF-8 format. The string will be in UTF-8 format if it

contains characters whose ord() value exceeds 255. But a string may be in
 UTF-8 format without it
having such characters. See "The "Unicode Bug"" in perlunicode.

For portability reasons, it may be better to not use \w, \d, \s
 or the POSIX character classes, and
use the Unicode properties instead.

Examples

 $str = "\xDF"; # $str is not in UTF-8 format.
 $str =~ /^\w/; # No match, as $str isn't in UTF-8 format.
 $str .= "\x{0e0b}"; # Now $str is in UTF-8 format.
 $str =~ /^\w/; # Match! $str is now in UTF-8 format.
 chop $str;
 $str =~ /^\w/; # Still a match! $str remains in UTF-8 format.

