
Perl version 5.12.5 documentation - Pod::Parser

Page 1http://perldoc.perl.org

NAME
Pod::Parser - base class for creating POD filters and translators

SYNOPSIS
 use Pod::Parser;

 package MyParser;
 @ISA = qw(Pod::Parser);

 sub command {
 my ($parser, $command, $paragraph, $line_num) = @_;
 ## Interpret the command and its text; sample actions might be:
 if ($command eq 'head1') { ... }
 elsif ($command eq 'head2') { ... }
 ## ... other commands and their actions
 my $out_fh = $parser->output_handle();
 my $expansion = $parser->interpolate($paragraph, $line_num);
 print $out_fh $expansion;
 }

 sub verbatim {
 my ($parser, $paragraph, $line_num) = @_;
 ## Format verbatim paragraph; sample actions might be:
 my $out_fh = $parser->output_handle();
 print $out_fh $paragraph;
 }

 sub textblock {
 my ($parser, $paragraph, $line_num) = @_;
 ## Translate/Format this block of text; sample actions might be:
 my $out_fh = $parser->output_handle();
 my $expansion = $parser->interpolate($paragraph, $line_num);
 print $out_fh $expansion;
 }

 sub interior_sequence {
 my ($parser, $seq_command, $seq_argument) = @_;
 ## Expand an interior sequence; sample actions might be:
 return "*$seq_argument*" if ($seq_command eq 'B');
 return "`$seq_argument'" if ($seq_command eq 'C');
 return "_${seq_argument}_'" if ($seq_command eq 'I');
 ## ... other sequence commands and their resulting text
 }

 package main;

 ## Create a parser object and have it parse file whose name was
 ## given on the command-line (use STDIN if no files were given).
 $parser = new MyParser();
 $parser->parse_from_filehandle(*STDIN) if (@ARGV == 0);
 for (@ARGV) { $parser->parse_from_file($_); }

Perl version 5.12.5 documentation - Pod::Parser

Page 2http://perldoc.perl.org

REQUIRES
perl5.005, Pod::InputObjects, Exporter, Symbol, Carp

EXPORTS
Nothing.

DESCRIPTION
Pod::Parser is a base class for creating POD filters and translators.
 It handles most of the effort
involved with parsing the POD sections
 from an input stream, leaving subclasses free to be
concerned only with
 performing the actual translation of text.

Pod::Parser parses PODs, and makes method calls to handle the various
 components of the POD.
Subclasses of Pod::Parser override these methods
 to translate the POD into whatever output format
they desire.

QUICK OVERVIEW
To create a POD filter for translating POD documentation into some other
 format, you create a
subclass of Pod::Parser which typically overrides
 just the base class implementation for the following
methods:

command()

verbatim()

textblock()

interior_sequence()

You may also want to override the begin_input() and end_input()
 methods for your subclass (to
perform any needed per-file and/or
 per-document initialization or cleanup).

If you need to perform any preprocessing of input before it is parsed
 you may want to override one or
more of preprocess_line() and/or preprocess_paragraph().

Sometimes it may be necessary to make more than one pass over the input
 files. If this is the case
you have several options. You can make the
 first pass using Pod::Parser and override your methods
to store the
 intermediate results in memory somewhere for the end_pod() method to
 process. You
could use Pod::Parser for several passes with an
 appropriate state variable to control the operation
for each pass. If
 your input source can't be reset to start at the beginning, you can
 store it in some
other structure as a string or an array and have that
 structure implement a getline() method (which is
all that parse_from_filehandle() uses to read input).

Feel free to add any member data fields you need to keep track of things
 like current font, indentation,
horizontal or vertical position, or
 whatever else you like. Be sure to read PRIVATE METHODS AND
DATA
 to avoid name collisions.

For the most part, the Pod::Parser base class should be able to
 do most of the input parsing for you
and leave you free to worry about
 how to interpret the commands and translate the result.

Note that all we have described here in this quick overview is the
 simplest most straightforward use of
Pod::Parser to do stream-based
 parsing. It is also possible to use the Pod::Parser::parse_text
function
 to do more sophisticated tree-based parsing. See TREE-BASED PARSING.

PARSING OPTIONS
A parse-option is simply a named option of Pod::Parser with a
 value that corresponds to a certain
specified behavior. These various
 behaviors of Pod::Parser may be enabled/disabled by setting
 or
unsetting one or more parse-options using the parseopts() method.
 The set of currently accepted
parse-options is as follows:

-want_nonPODs (default: unset)

Perl version 5.12.5 documentation - Pod::Parser

Page 3http://perldoc.perl.org

Normally (by default) Pod::Parser will only provide access to
 the POD sections of the input.
Input paragraphs that are not part
 of the POD-format documentation are not made available to
the caller
 (not even using preprocess_paragraph()). Setting this option to a
 non-empty,
non-zero value will allow preprocess_paragraph() to see
 non-POD sections of the input as well
as POD sections. The cutting()
 method can be used to determine if the corresponding
paragraph is a POD
 paragraph, or some other input paragraph.

-process_cut_cmd (default: unset)

Normally (by default) Pod::Parser handles the =cut POD directive
 by itself and does not pass
it on to the caller for processing. Setting
 this option to a non-empty, non-zero value will cause
Pod::Parser to
 pass the =cut directive to the caller just like any other POD command
 (and
hence it may be processed by the command() method).

Pod::Parser will still interpret the =cut directive to mean that
 "cutting mode" has been
(re)entered, but the caller will get a chance
 to capture the actual =cut paragraph itself for
whatever purpose
 it desires.

-warnings (default: unset)

Normally (by default) Pod::Parser recognizes a bare minimum of
 pod syntax errors and
warnings and issues diagnostic messages
 for errors, but not for warnings. (Use Pod::Checker
to do more
 thorough checking of POD syntax.) Setting this option to a non-empty,
 non-zero
value will cause Pod::Parser to issue diagnostics for
 the few warnings it recognizes as well as
the errors.

Please see parseopts() for a complete description of the interface
 for the setting and unsetting of
parse-options.

RECOMMENDED SUBROUTINE/METHOD OVERRIDES
Pod::Parser provides several methods which most subclasses will probably
 want to override. These
methods are as follows:

command()
 $parser->command($cmd,$text,$line_num,$pod_para);

This method should be overridden by subclasses to take the appropriate
 action when a POD
command paragraph (denoted by a line beginning with
 "=") is encountered. When such a POD
directive is seen in the input,
 this method is called and is passed:

$cmd

the name of the command for this POD paragraph

$text

the paragraph text for the given POD paragraph command.

$line_num

the line-number of the beginning of the paragraph

$pod_para

a reference to a Pod::Paragraph object which contains further
 information about the
paragraph command (see Pod::InputObjects
 for details).

Note that this method is called for =pod paragraphs.

The base class implementation of this method simply treats the raw POD
 command as normal block
of paragraph text (invoking the textblock()
 method with the command paragraph).

Perl version 5.12.5 documentation - Pod::Parser

Page 4http://perldoc.perl.org

verbatim()
 $parser->verbatim($text,$line_num,$pod_para);

This method may be overridden by subclasses to take the appropriate
 action when a block of
verbatim text is encountered. It is passed the
 following parameters:

$text

the block of text for the verbatim paragraph

$line_num

the line-number of the beginning of the paragraph

$pod_para

a reference to a Pod::Paragraph object which contains further
 information about the
paragraph (see Pod::InputObjects
 for details).

The base class implementation of this method simply prints the textblock
 (unmodified) to the output
filehandle.

textblock()
 $parser->textblock($text,$line_num,$pod_para);

This method may be overridden by subclasses to take the appropriate
 action when a normal block of
POD text is encountered (although the base
 class method will usually do what you want). It is passed
the following
 parameters:

$text

the block of text for the a POD paragraph

$line_num

the line-number of the beginning of the paragraph

$pod_para

a reference to a Pod::Paragraph object which contains further
 information about the
paragraph (see Pod::InputObjects
 for details).

In order to process interior sequences, subclasses implementations of
 this method will probably want
to invoke either interpolate() or parse_text(), passing it the text block $text, and the corresponding

line number in $line_num, and then perform any desired processing upon
 the returned result.

The base class implementation of this method simply prints the text block
 as it occurred in the input
stream).

interior_sequence()
 $parser->interior_sequence($seq_cmd,$seq_arg,$pod_seq);

This method should be overridden by subclasses to take the appropriate
 action when an interior
sequence is encountered. An interior sequence is
 an embedded command within a block of text which
appears as a command
 name (usually a single uppercase character) followed immediately by a
 string
of text which is enclosed in angle brackets. This method is
 passed the sequence command
$seq_cmd and the corresponding text $seq_arg. It is invoked by the interpolate() method for each
interior
 sequence that occurs in the string that it is passed. It should return
 the desired text string to be
used in place of the interior sequence.
 The $pod_seq argument is a reference to a
Pod::InteriorSequence
 object which contains further information about the interior sequence.

Please see Pod::InputObjects for details if you need to access this
 additional information.

Perl version 5.12.5 documentation - Pod::Parser

Page 5http://perldoc.perl.org

Subclass implementations of this method may wish to invoke the nested() method of $pod_seq to
see if it is nested inside
 some other interior-sequence (and if so, which kind).

The base class implementation of the interior_sequence() method
 simply returns the raw text of the
interior sequence (as it occurred
 in the input) to the caller.

OPTIONAL SUBROUTINE/METHOD OVERRIDES
Pod::Parser provides several methods which subclasses may want to override
 to perform any special
pre/post-processing. These methods do not have to
 be overridden, but it may be useful for
subclasses to take advantage of them.

new()
 my $parser = Pod::Parser->new();

This is the constructor for Pod::Parser and its subclasses. You do not need to override this method! It
is capable of constructing
 subclass objects as well as base class objects, provided you use
 any of the
following constructor invocation styles:

 my $parser1 = MyParser->new();
 my $parser2 = new MyParser();
 my $parser3 = $parser2->new();

where MyParser is some subclass of Pod::Parser.

Using the syntax MyParser::new() to invoke the constructor is not
 recommended, but if you insist
on being able to do this, then the
 subclass will need to override the new() constructor method. If
 you
do override the constructor, you must be sure to invoke the initialize() method of the newly blessed
object.

Using any of the above invocations, the first argument to the
 constructor is always the corresponding
package name (or object
 reference). No other arguments are required, but if desired, an
 associative
array (or hash-table) my be passed to the new()
 constructor, as in:

 my $parser1 = MyParser->new(MYDATA => $value1, MOREDATA => $value2);
 my $parser2 = new MyParser(-myflag => 1);

All arguments passed to the new() constructor will be treated as
 key/value pairs in a hash-table. The
newly constructed object will be
 initialized by copying the contents of the given hash-table (which may
have been empty). The new() constructor for this class and all of its
 subclasses returns a blessed
reference to the initialized object (hash-table).

initialize()
 $parser->initialize();

This method performs any necessary object initialization. It takes no
 arguments (other than the object
instance of course, which is typically
 copied to a local variable named $self). If subclasses override
this
 method then they must be sure to invoke $self->SUPER::initialize().

begin_pod()
 $parser->begin_pod();

This method is invoked at the beginning of processing for each POD
 document that is encountered in
the input. Subclasses should override
 this method to perform any per-document initialization.

Perl version 5.12.5 documentation - Pod::Parser

Page 6http://perldoc.perl.org

begin_input()
 $parser->begin_input();

This method is invoked by parse_from_filehandle() immediately before
 processing input from a
filehandle. The base class implementation does
 nothing, however, subclasses may override it to
perform any per-file
 initializations.

Note that if multiple files are parsed for a single POD document
 (perhaps the result of some future
=include directive) this method
 is invoked for every file that is parsed. If you wish to perform certain

initializations once per document, then you should use begin_pod().

end_input()
 $parser->end_input();

This method is invoked by parse_from_filehandle() immediately after
 processing input from a
filehandle. The base class implementation does
 nothing, however, subclasses may override it to
perform any per-file
 cleanup actions.

Please note that if multiple files are parsed for a single POD document
 (perhaps the result of some
kind of =include directive) this method
 is invoked for every file that is parsed. If you wish to perform
certain
 cleanup actions once per document, then you should use end_pod().

end_pod()
 $parser->end_pod();

This method is invoked at the end of processing for each POD document
 that is encountered in the
input. Subclasses should override this method
 to perform any per-document finalization.

preprocess_line()
 $textline = $parser->preprocess_line($text, $line_num);

This method should be overridden by subclasses that wish to perform
 any kind of preprocessing for
each line of input (before it has
 been determined whether or not it is part of a POD paragraph). The

parameter $text is the input line; and the parameter $line_num is
 the line number of the
corresponding text line.

The value returned should correspond to the new text to use in its
 place. If the empty string or an
undefined value is returned then no
 further processing will be performed for this line.

Please note that the preprocess_line() method is invoked before
 the preprocess_paragraph()
method. After all (possibly preprocessed)
 lines in a paragraph have been assembled together and it
has been
 determined that the paragraph is part of the POD documentation from one
 of the selected
sections, then preprocess_paragraph() is invoked.

The base class implementation of this method returns the given text.

preprocess_paragraph()
 $textblock = $parser->preprocess_paragraph($text, $line_num);

This method should be overridden by subclasses that wish to perform any
 kind of preprocessing for
each block (paragraph) of POD documentation
 that appears in the input stream. The parameter
$text is the POD
 paragraph from the input file; and the parameter $line_num is the
 line number for
the beginning of the corresponding paragraph.

The value returned should correspond to the new text to use in its
 place If the empty string is returned
or an undefined value is
 returned, then the given $text is ignored (not processed).

Perl version 5.12.5 documentation - Pod::Parser

Page 7http://perldoc.perl.org

This method is invoked after gathering up all the lines in a paragraph
 and after determining the cutting
state of the paragraph,
 but before trying to further parse or interpret them. After
preprocess_paragraph() returns, the current cutting state (which
 is returned by $self->
cutting()) is examined. If it evaluates
 to true then input text (including the given $text) is cut (not

processed) until the next POD directive is encountered.

Please note that the preprocess_line() method is invoked before
 the preprocess_paragraph()
method. After all (possibly preprocessed)
 lines in a paragraph have been assembled together and
either it has been
 determined that the paragraph is part of the POD documentation from one
 of the
selected sections or the -want_nonPODs option is true,
 then preprocess_paragraph() is invoked.

The base class implementation of this method returns the given text.

METHODS FOR PARSING AND PROCESSING
Pod::Parser provides several methods to process input text. These
 methods typically won't need to
be overridden (and in some cases they
 can't be overridden), but subclasses may want to invoke them
to exploit
 their functionality.

parse_text()
 $ptree1 = $parser->parse_text($text, $line_num);
 $ptree2 = $parser->parse_text({%opts}, $text, $line_num);
 $ptree3 = $parser->parse_text(\%opts, $text, $line_num);

This method is useful if you need to perform your own interpolation of interior sequences and can't
rely upon interpolate to expand
 them in simple bottom-up order.

The parameter $text is a string or block of text to be parsed
 for interior sequences; and the
parameter $line_num is the
 line number corresponding to the beginning of $text.

parse_text() will parse the given text into a parse-tree of "nodes."
 and interior-sequences. Each
"node" in the parse tree is either a
 text-string, or a Pod::InteriorSequence. The result returned is a

parse-tree of type Pod::ParseTree. Please see Pod::InputObjects
 for more information about
Pod::InteriorSequence and Pod::ParseTree.

If desired, an optional hash-ref may be specified as the first argument
 to customize certain aspects of
the parse-tree that is created and
 returned. The set of recognized option keywords are:

-expand_seq => code-ref|method-name

Normally, the parse-tree returned by parse_text() will contain an
 unexpanded
Pod::InteriorSequence object for each interior-sequence
 encountered. Specifying
-expand_seq tells parse_text() to "expand"
 every interior-sequence it sees by invoking the
referenced function
 (or named method of the parser object) and using the return value as the

expanded result.

If a subroutine reference was given, it is invoked as:

 &$code_ref($parser, $sequence)

and if a method-name was given, it is invoked as:

 $parser->method_name($sequence)

where $parser is a reference to the parser object, and $sequence
 is a reference to the
interior-sequence object.
 [NOTE: If the interior_sequence() method is specified, then it is

invoked according to the interface specified in interior_sequence()].

-expand_text => code-ref|method-name

Normally, the parse-tree returned by parse_text() will contain a
 text-string for each contiguous
sequence of characters outside of an
 interior-sequence. Specifying -expand_text tells

Perl version 5.12.5 documentation - Pod::Parser

Page 8http://perldoc.perl.org

parse_text() to
 "preprocess" every such text-string it sees by invoking the referenced
 function
(or named method of the parser object) and using the return value
 as the preprocessed (or
"expanded") result. [Note that if the result is
 an interior-sequence, then it will not be expanded
as specified by the -expand_seq option; Any such recursive expansion needs to be handled by

the specified callback routine.]

If a subroutine reference was given, it is invoked as:

 &$code_ref($parser, $text, $ptree_node)

and if a method-name was given, it is invoked as:

 $parser->method_name($text, $ptree_node)

where $parser is a reference to the parser object, $text is the
 text-string encountered, and
$ptree_node is a reference to the current
 node in the parse-tree (usually an interior-sequence
object or else the
 top-level node of the parse-tree).

-expand_ptree => code-ref|method-name

Rather than returning a Pod::ParseTree, pass the parse-tree as an
 argument to the
referenced subroutine (or named method of the parser
 object) and return the result instead of
the parse-tree object.

If a subroutine reference was given, it is invoked as:

 &$code_ref($parser, $ptree)

and if a method-name was given, it is invoked as:

 $parser->method_name($ptree)

where $parser is a reference to the parser object, and $ptree
 is a reference to the parse-tree
object.

interpolate()
 $textblock = $parser->interpolate($text, $line_num);

This method translates all text (including any embedded interior sequences)
 in the given text string
$text and returns the interpolated result. The
 parameter $line_num is the line number
corresponding to the beginning
 of $text.

interpolate() merely invokes a private method to recursively expand
 nested interior sequences in
bottom-up order (innermost sequences are
 expanded first). If there is a need to expand nested
sequences in
 some alternate order, use parse_text instead.

parse_paragraph()
 $parser->parse_paragraph($text, $line_num);

This method takes the text of a POD paragraph to be processed, along
 with its corresponding line
number, and invokes the appropriate method
 (one of command(), verbatim(), or textblock()).

For performance reasons, this method is invoked directly without any
 dynamic lookup; Hence
subclasses may not override it!

parse_from_filehandle()
 $parser->parse_from_filehandle($in_fh,$out_fh);

This method takes an input filehandle (which is assumed to already be
 opened for reading) and reads
the entire input stream looking for blocks
 (paragraphs) of POD documentation to be processed. If no
first argument
 is given the default input filehandle STDIN is used.

Perl version 5.12.5 documentation - Pod::Parser

Page 9http://perldoc.perl.org

The $in_fh parameter may be any object that provides a getline()
 method to retrieve a single line of
input text (hence, an appropriate
 wrapper object could be used to parse PODs from a single string or
an
 array of strings).

Using $in_fh->getline(), input is read line-by-line and assembled
 into paragraphs or "blocks"
(which are separated by lines containing
 nothing but whitespace). For each block of POD
documentation
 encountered it will invoke a method to parse the given paragraph.

If a second argument is given then it should correspond to a filehandle where
 output should be sent
(otherwise the default output filehandle is STDOUT if no output filehandle is currently in use).

NOTE: For performance reasons, this method caches the input stream at
 the top of the stack in a
local variable. Any attempts by clients to
 change the stack contents during processing when in the
midst executing
 of this method will not affect the input stream used by the current
 invocation of this
method.

This method does not usually need to be overridden by subclasses.

parse_from_file()
 $parser->parse_from_file($filename,$outfile);

This method takes a filename and does the following:

opens the input and output files for reading
 (creating the appropriate filehandles)

invokes the parse_from_filehandle() method passing it the
 corresponding input and output
filehandles.

closes the input and output files.

If the special input filename "-" or "<&STDIN" is given then the STDIN
 filehandle is used for input (and
no open or close is performed). If no
 input filename is specified then "-" is implied. Filehandle
references,
 or objects that support the regular IO operations (like <$fh>
 or $fh-<Egtgetline>) are
also accepted; the handles must already be opened.

If a second argument is given then it should be the name of the desired
 output file. If the special
output filename "-" or ">&STDOUT" is given
 then the STDOUT filehandle is used for output (and no
open or close is
 performed). If the special output filename ">&STDERR" is given then the
 STDERR
filehandle is used for output (and no open or close is
 performed). If no output filehandle is currently in
use and no output
 filename is specified, then "-" is implied.
 Alternatively, filehandle references or
objects that support the regular
 IO operations (like print, e.g. IO::String) are also accepted;
 the
object must already be opened.

This method does not usually need to be overridden by subclasses.

ACCESSOR METHODS
Clients of Pod::Parser should use the following methods to access
 instance data fields:

errorsub()
 $parser->errorsub("method_name");
 $parser->errorsub(\&warn_user);
 $parser->errorsub(sub { print STDERR, @_ });

Specifies the method or subroutine to use when printing error messages
 about POD syntax. The
supplied method/subroutine must return TRUE upon
 successful printing of the message. If undef is
given, then the carp
 builtin is used to issue error messages (this is the default behavior).

 my $errorsub = $parser->errorsub()
 my $errmsg = "This is an error message!\n"

Perl version 5.12.5 documentation - Pod::Parser

Page 10http://perldoc.perl.org

 (ref $errorsub) and &{$errorsub}($errmsg)
 or (defined $errorsub) and $parser->$errorsub($errmsg)
 or carp($errmsg);

Returns a method name, or else a reference to the user-supplied subroutine
 used to print error
messages. Returns undef if the carp builtin
 is used to issue error messages (this is the default
behavior).

cutting()
 $boolean = $parser->cutting();

Returns the current cutting state: a boolean-valued scalar which
 evaluates to true if text from the
input file is currently being "cut"
 (meaning it is not considered part of the POD document).

 $parser->cutting($boolean);

Sets the current cutting state to the given value and returns the
 result.

parseopts()
When invoked with no additional arguments, parseopts returns a hashtable
 of all the current parsing
options.

 ## See if we are parsing non-POD sections as well as POD ones
 my %opts = $parser->parseopts();
 $opts{'-want_nonPODs}' and print "-want_nonPODs\n";

When invoked using a single string, parseopts treats the string as the
 name of a parse-option and
returns its corresponding value if it exists
 (returns undef if it doesn't).

 ## Did we ask to see '=cut' paragraphs?
 my $want_cut = $parser->parseopts('-process_cut_cmd');
 $want_cut and print "-process_cut_cmd\n";

When invoked with multiple arguments, parseopts treats them as
 key/value pairs and the specified
parse-option names are set to the
 given values. Any unspecified parse-options are unaffected.

 ## Set them back to the default
 $parser->parseopts(-warnings => 0);

When passed a single hash-ref, parseopts uses that hash to completely
 reset the existing
parse-options, all previous parse-option values
 are lost.

 ## Reset all options to default
 $parser->parseopts({ });

See PARSING OPTIONS for more information on the name and meaning of each
 parse-option
currently recognized.

output_file()
 $fname = $parser->output_file();

Returns the name of the output file being written.

Perl version 5.12.5 documentation - Pod::Parser

Page 11http://perldoc.perl.org

output_handle()
 $fhandle = $parser->output_handle();

Returns the output filehandle object.

input_file()
 $fname = $parser->input_file();

Returns the name of the input file being read.

input_handle()
 $fhandle = $parser->input_handle();

Returns the current input filehandle object.

input_streams()
 $listref = $parser->input_streams();

Returns a reference to an array which corresponds to the stack of all
 the input streams that are
currently in the middle of being parsed.

While parsing an input stream, it is possible to invoke parse_from_file() or parse_from_filehandle()
to parse a new input
 stream and then return to parsing the previous input stream. Each input
 stream
to be parsed is pushed onto the end of this input stack
 before any of its input is read. The input
stream that is currently
 being parsed is always at the end (or top) of the input stack. When an
 input
stream has been exhausted, it is popped off the end of the
 input stack.

Each element on this input stack is a reference to Pod::InputSource
 object. Please see
Pod::InputObjects for more details.

This method might be invoked when printing diagnostic messages, for example,
 to obtain the name
and line number of the all input files that are currently
 being processed.

top_stream()
 $hashref = $parser->top_stream();

Returns a reference to the hash-table that represents the element
 that is currently at the top (end) of
the input stream stack
 (see input_streams()). The return value will be the undef
 if the input stack is
empty.

This method might be used when printing diagnostic messages, for example,
 to obtain the name and
line number of the current input file.

PRIVATE METHODS AND DATA
Pod::Parser makes use of several internal methods and data fields
 which clients should not need to
see or use. For the sake of avoiding
 name collisions for client data and methods, these methods and
fields
 are briefly discussed here. Determined hackers may obtain further
 information about them by
reading the Pod::Parser source code.

Private data fields are stored in the hash-object whose reference is
 returned by the new() constructor
for this class. The names of all
 private methods and data-fields used by Pod::Parser begin with a

prefix of "_" and match the regular expression /^_\w+$/.

_push_input_stream()
 $hashref = $parser->_push_input_stream($in_fh,$out_fh);

Perl version 5.12.5 documentation - Pod::Parser

Page 12http://perldoc.perl.org

This method will push the given input stream on the input stack and
 perform any necessary
beginning-of-document or beginning-of-file
 processing. The argument $in_fh is the input stream
filehandle to
 push, and $out_fh is the corresponding output filehandle to use (if
 it is not given or is
undefined, then the current output stream is used,
 which defaults to standard output if it doesnt exist
yet).

The value returned will be reference to the hash-table that represents
 the new top of the input stream
stack. Please Note that it is
 possible for this method to use default values for the input and output
 file
handles. If this happens, you will need to look at the INPUT
 and OUTPUT instance data members to
determine their new values.

_pop_input_stream()
 $hashref = $parser->_pop_input_stream();

This takes no arguments. It will perform any necessary end-of-file or
 end-of-document processing and
then pop the current input stream from
 the top of the input stack.

The value returned will be reference to the hash-table that represents
 the new top of the input stream
stack.

TREE-BASED PARSING
If straightforward stream-based parsing wont meet your needs (as is
 likely the case for tasks such as
translating PODs into structured
 markup languages like HTML and XML) then you may need to take
the
 tree-based approach. Rather than doing everything in one pass and
 calling the interpolate()
method to expand sequences into text, it
 may be desirable to instead create a parse-tree using the
parse_text()
 method to return a tree-like structure which may contain an ordered
 list of children (each
of which may be a text-string, or a similar
 tree-like structure).

Pay special attention to METHODS FOR PARSING AND PROCESSING and
 to the objects described
in Pod::InputObjects. The former describes
 the gory details and parameters for how to customize and
extend the
 parsing behavior of Pod::Parser. Pod::InputObjects provides
 several objects that may all
be used interchangeably as parse-trees. The
 most obvious one is the Pod::ParseTree object. It
defines the basic
 interface and functionality that all things trying to be a POD parse-tree
 should do. A
Pod::ParseTree is defined such that each "node" may be a
 text-string, or a reference to another
parse-tree. Each Pod::Paragraph
 object and each Pod::InteriorSequence object also supports the
basic
 parse-tree interface.

The parse_text() method takes a given paragraph of text, and
 returns a parse-tree that contains one
or more children, each of which
 may be a text-string, or an InteriorSequence object. There are also

callback-options that may be passed to parse_text() to customize
 the way it expands or transforms
interior-sequences, as well as the
 returned result. These callbacks can be used to create a parse-tree
with custom-made objects (which may or may not support the parse-tree
 interface, depending on how
you choose to do it).

If you wish to turn an entire POD document into a parse-tree, that process
 is fairly straightforward.
The parse_text() method is the key to doing
 this successfully. Every paragraph-callback (i.e. the
polymorphic methods
 for command(), verbatim(), and textblock() paragraphs) takes
 a
Pod::Paragraph object as an argument. Each paragraph object has a parse_tree() method that can
be used to get or set a corresponding
 parse-tree. So for each of those paragraph-callback methods,
simply call parse_text() with the options you desire, and then use the returned
 parse-tree to assign to
the given paragraph object.

That gives you a parse-tree for each paragraph - so now all you need is
 an ordered list of paragraphs.
You can maintain that yourself as a data
 element in the object/hash. The most straightforward way
would be simply
 to use an array-ref, with the desired set of custom "options" for each
 invocation of
parse_text. Let's assume the desired option-set is
 given by the hash %options. Then we might do
something like the
 following:

Perl version 5.12.5 documentation - Pod::Parser

Page 13http://perldoc.perl.org

 package MyPodParserTree;

 @ISA = qw(Pod::Parser);

 ...

 sub begin_pod {
 my $self = shift;
 $self->{'-paragraphs'} = []; ## initialize paragraph list
 }

 sub command {
 my ($parser, $command, $paragraph, $line_num, $pod_para) = @_;
 my $ptree = $parser->parse_text({%options}, $paragraph, ...);
 $pod_para->parse_tree($ptree);
 push @{ $self->{'-paragraphs'} }, $pod_para;
 }

 sub verbatim {
 my ($parser, $paragraph, $line_num, $pod_para) = @_;
 push @{ $self->{'-paragraphs'} }, $pod_para;
 }

 sub textblock {
 my ($parser, $paragraph, $line_num, $pod_para) = @_;
 my $ptree = $parser->parse_text({%options}, $paragraph, ...);
 $pod_para->parse_tree($ptree);
 push @{ $self->{'-paragraphs'} }, $pod_para;
 }

 ...

 package main;
 ...
 my $parser = new MyPodParserTree(...);
 $parser->parse_from_file(...);
 my $paragraphs_ref = $parser->{'-paragraphs'};

Of course, in this module-author's humble opinion, I'd be more inclined to
 use the existing
Pod::ParseTree object than a simple array. That way
 everything in it, paragraphs and sequences, all
respond to the same core
 interface for all parse-tree nodes. The result would look something like:

 package MyPodParserTree2;

 ...

 sub begin_pod {
 my $self = shift;
 $self->{'-ptree'} = new Pod::ParseTree; ## initialize parse-tree
 }

 sub parse_tree {

Perl version 5.12.5 documentation - Pod::Parser

Page 14http://perldoc.perl.org

 ## convenience method to get/set the parse-tree for the entire POD
 (@_ > 1) and $_[0]->{'-ptree'} = $_[1];
 return $_[0]->{'-ptree'};
 }

 sub command {
 my ($parser, $command, $paragraph, $line_num, $pod_para) = @_;
 my $ptree = $parser->parse_text({<<options>>}, $paragraph, ...);
 $pod_para->parse_tree($ptree);
 $parser->parse_tree()->append($pod_para);
 }

 sub verbatim {
 my ($parser, $paragraph, $line_num, $pod_para) = @_;
 $parser->parse_tree()->append($pod_para);
 }

 sub textblock {
 my ($parser, $paragraph, $line_num, $pod_para) = @_;
 my $ptree = $parser->parse_text({<<options>>}, $paragraph, ...);
 $pod_para->parse_tree($ptree);
 $parser->parse_tree()->append($pod_para);
 }

 ...

 package main;
 ...
 my $parser = new MyPodParserTree2(...);
 $parser->parse_from_file(...);
 my $ptree = $parser->parse_tree;
 ...

Now you have the entire POD document as one great big parse-tree. You
 can even use the
-expand_seq option to parse_text to insert
 whole different kinds of objects. Just don't expect
Pod::Parser
 to know what to do with them after that. That will need to be in your
 code. Or,
alternatively, you can insert any object you like so long as
 it conforms to the Pod::ParseTree
interface.

One could use this to create subclasses of Pod::Paragraphs and Pod::InteriorSequences for
specific commands (or to create your own
 custom node-types in the parse-tree) and add some kind of
emit()
 method to each custom node/subclass object in the tree. Then all you'd
 need to do is
recursively walk the tree in the desired order, processing
 the children (most likely from left to right) by
formatting them if
 they are text-strings, or by calling their emit() method if they
 are objects/references.

CAVEATS
Please note that POD has the notion of "paragraphs": this is something
 starting after a blank (read:
empty) line, with the single exception
 of the file start, which is also starting a paragraph. That means
that
 especially a command (e.g. =head1) must be preceded with a blank
 line; __END__ is not a blank
line.

SEE ALSO
Pod::InputObjects, Pod::Select

Pod::InputObjects defines POD input objects corresponding to
 command paragraphs, parse-trees,

Perl version 5.12.5 documentation - Pod::Parser

Page 15http://perldoc.perl.org

and interior-sequences.

Pod::Select is a subclass of Pod::Parser which provides the ability
 to selectively include and/or
exclude sections of a POD document from being
 translated based upon the current heading,
subheading, subsubheading, etc.

AUTHOR
Please report bugs using http://rt.cpan.org.

Brad Appleton <bradapp@enteract.com>

Based on code for Pod::Text written by
 Tom Christiansen <tchrist@mox.perl.com>

LICENSE
Pod-Parser is free software; you can redistribute it and/or modify it
 under the terms of the Artistic
License distributed with Perl version
 5.000 or (at your option) any later version. Please refer to the

Artistic License that came with your Perl distribution for more
 details. If your version of Perl was not
distributed under the
 terms of the Artistic License, than you may distribute PodParser
 under the same
terms as Perl itself.

