
Perl version 5.12.5 documentation - Locale::Country

Page 1http://perldoc.perl.org

NAME
Locale::Country - ISO codes for country identification (ISO 3166)

SYNOPSIS
 use Locale::Country;

 $country = code2country('jp'); # $country gets 'Japan'
 $code = country2code('Norway'); # $code gets 'no'

 @codes = all_country_codes();
 @names = all_country_names();

 # semi-private routines
 Locale::Country::alias_code('uk' => 'gb');
 Locale::Country::rename_country('gb' => 'Great Britain');

DESCRIPTION
The Locale::Country module provides access to the ISO
 codes for identifying countries, as
defined in ISO 3166-1.
 You can either access the codes via the conversion routines
 (described
below), or with the two functions which return lists
 of all country codes or all country names.

There are three different code sets you can use for identifying
 countries:

alpha-2

Two letter codes, such as 'tv' for Tuvalu.
 This code set is identified with the symbol
LOCALE_CODE_ALPHA_2.

alpha-3

Three letter codes, such as 'brb' for Barbados.
 This code set is identified with the symbol
LOCALE_CODE_ALPHA_3.

numeric

Numeric codes, such as 064 for Bhutan.
 This code set is identified with the symbol
LOCALE_CODE_NUMERIC.

All of the routines take an optional additional argument
 which specifies the code set to use.
 If not
specified, it defaults to the two-letter codes.
 This is partly for backwards compatibility (previous
versions
 of this module only supported the alpha-2 codes), and
 partly because they are the most
widely used codes.

The alpha-2 and alpha-3 codes are not case-dependent,
 so you can use 'BO', 'Bo', 'bO' or 'bo' for
Bolivia.
 When a code is returned by one of the functions in
 this module, it will always be lower-case.

As of version 2.00, Locale::Country supports variant
 names for countries. So, for example, the country
code for "United States"
 is "us", so country2code('United States') returns 'us'.
 Now the following will
also return 'us':

 country2code('United States of America')
 country2code('USA')

CONVERSION ROUTINES
There are three conversion routines: code2country(), country2code(),
 and
country_code2code().

code2country(CODE, [CODESET])

Perl version 5.12.5 documentation - Locale::Country

Page 2http://perldoc.perl.org

This function takes a country code and returns a string
 which contains the name of the country
identified.
 If the code is not a valid country code, as defined by ISO 3166,
 then undef will be
returned:

 $country = code2country('fi');

country2code(STRING, [CODESET])

This function takes a country name and returns the corresponding
 country code, if such exists.
If the argument could not be identified as a country name,
 then undef will be returned:

 $code = country2code('Norway', LOCALE_CODE_ALPHA_3);
 # $code will now be 'nor'

The case of the country name is not important.
 See the section KNOWN BUGS AND
LIMITATIONS below.

country_code2code(CODE, CODESET, CODESET)

This function takes a country code from one code set,
 and returns the corresponding code
from another code set.

 $alpha2 = country_code2code('fin',
		 LOCALE_CODE_ALPHA_3, LOCALE_CODE_ALPHA_2);
 # $alpha2 will now be 'fi'

If the code passed is not a valid country code in
 the first code set, or if there isn't a code for
the
 corresponding country in the second code set,
 then undef will be returned.

QUERY ROUTINES
There are two function which can be used to obtain a list of all codes,
 or all country names:

all_country_codes([CODESET])

Returns a list of all two-letter country codes.
 The codes are guaranteed to be all lower-case,

and not in any particular order.

all_country_names([CODESET])

Returns a list of all country names for which there is a corresponding
 country code in the
specified code set.
 The names are capitalised, and not returned in any particular order.

Not all countries have alpha-3 and numeric codes -
 some just have an alpha-2 code,
 so you'll
get a different number of countries
 depending on which code set you specify.

SEMI-PRIVATE ROUTINES
Locale::Country provides two semi-private routines for modifying
 the internal data.
 Given their status,
they aren't exported by default,
 and so need to be called by prefixing the function name with the

package name.

alias_code
Define a new code as an alias for an existing code:

 Locale::Country::alias_code(ALIAS => CODE [, CODESET])

This feature was added as a mechanism for handling
 a "uk" code. The ISO standard says that the
two-letter code for
 "United Kingdom" is "gb", whereas domain names are all .uk.

By default the module does not understand "uk", since it is implementing
 an ISO standard. If you
would like 'uk' to work as the two-letter
 code for United Kingdom, use the following:

 Locale::Country::alias_code('uk' => 'gb');

Perl version 5.12.5 documentation - Locale::Country

Page 3http://perldoc.perl.org

With this code, both "uk" and "gb" are valid codes for United Kingdom,
 with the reverse lookup
returning "uk" rather than the usual "gb".

Note: this function was previously called _alias_code,
 but the leading underscore has been dropped.

The old name will be supported for all 2.X releases for
 backwards compatibility.

rename_country
If the official country name just isn't good enough for you,
 you can rename a country. For example,
the official country
 name for code 'gb' is 'United Kingdom'.
 If you want to change that, you might call:

 Locale::Country::rename_country('gb' => 'Great Britain');

This means that calling code2country('gb') will now return
 'Great Britain' instead of 'United Kingdom'.

The original country name is retained as an alias,
 so for the above example, country2code('United
Kingdom')
 will still return 'gb'.

EXAMPLES
The following example illustrates use of the code2country() function.
 The user is prompted for a
country code, and then told the corresponding
 country name:

 $| = 1; # turn off buffering

 print "Enter country code: ";
 chop($code = <STDIN>);
 $country = code2country($code, LOCALE_CODE_ALPHA_2);
 if (defined $country)
 {
 print "$code = $country\n";
 }
 else
 {
 print "'$code' is not a valid country code!\n";
 }

DOMAIN NAMES
Most top-level domain names are based on these codes,
 but there are certain codes which aren't.
 If
you are using this module to identify country from hostname,
 your best bet is to preprocess the
country code.

For example, edu, com, gov and friends would map to us; uk would map to gb. Any others?

KNOWN BUGS AND LIMITATIONS
When using country2code(), the country name must currently appear
 exactly as it does in
the source of the module. The module now supports
 a small number of variants.

Possible extensions to this are: an interface for getting at the
 list of variant names, and regular
expression matches.

In the current implementation, all data is read in when the
 module is loaded, and then held in
memory.
 A lazy implementation would be more memory friendly.

Support for country names in different languages.

SEE ALSO
Locale::Language

ISO two letter codes for identification of language (ISO 639).

Perl version 5.12.5 documentation - Locale::Country

Page 4http://perldoc.perl.org

Locale::Script

ISO codes for identification of scripts (ISO 15924).

Locale::Currency

ISO three letter codes for identification of currencies
 and funds (ISO 4217).

Locale::SubCountry

ISO codes for country sub-divisions (states, counties, provinces, etc),
 as defined in ISO
3166-2.
 This module is not part of the Locale-Codes distribution,
 but is available from CPAN in
CPAN/modules/by-module/Locale/

ISO 3166-1

The ISO standard which defines these codes.

http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

Official home page for the ISO 3166 maintenance agency.

http://www.egt.ie/standards/iso3166/iso3166-1-en.html

Another useful, but not official, home page.

http://www.cia.gov/cia/publications/factbook/docs/app-d-1.html

An appendix in the CIA world fact book which lists country codes
 as defined by ISO 3166,
FIPS 10-4, and internet domain names.

AUTHOR
Neil Bowers <neil@bowers.com>

COPYRIGHT
Copyright (C) 2002-2004, Neil Bowers.

Copyright (c) 1997-2001 Canon Research Centre Europe (CRE).

This module is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

