
Perl version 5.12.5 documentation - Module::Pluggable

Page 1http://perldoc.perl.org

NAME
Module::Pluggable - automatically give your module the ability to have plugins

SYNOPSIS
Simple use Module::Pluggable -

 package MyClass;
 use Module::Pluggable;

and then later ...

 use MyClass;
 my $mc = MyClass->new();
 # returns the names of all plugins installed under MyClass::Plugin::*
 my @plugins = $mc->plugins();

EXAMPLE
Why would you want to do this? Say you have something that wants to pass an
 object to a number of
different plugins in turn. For example you may want to extract meta-data from every email you get
sent and do something
 with it. Plugins make sense here because then you can keep adding new
meta data parsers and all the logic and docs for each one will be self contained and new handlers are
easy to add without changing the core code. For that, you might do something like ...

 package Email::Examiner;

 use strict;
 use Email::Simple;
 use Module::Pluggable require => 1;

 sub handle_email {
 my $self = shift;
 my $email = shift;

 foreach my $plugin ($self->plugins) {
 $plugin->examine($email);
 }

 return 1;
 }

.. and all the plugins will get a chance in turn to look at it.

This can be trivally extended so that plugins could save the email
 somewhere and then no other
plugin should try and do that. Simply have it so that the examine method returns 1 if it has saved the
email somewhere. You might also wnat to be paranoid
 and check to see if the plugin has an examine
method.

 foreach my $plugin ($self->plugins) {
 next unless $plugin->can('examine');
 last if $plugin->examine($email);
 }

And so on. The sky's the limit.

Perl version 5.12.5 documentation - Module::Pluggable

Page 2http://perldoc.perl.org

DESCRIPTION
Provides a simple but, hopefully, extensible way of having 'plugins' for your module. Obviously this
isn't going to be the be all and end all of
 solutions but it works for me.

Essentially all it does is export a method into your namespace that looks through a search path for
.pm files and turn those into class names.

Optionally it instantiates those classes for you.

ADVANCED USAGE

Alternatively, if you don't want to use 'plugins' as the method ...

 package MyClass;
 use Module::Pluggable sub_name => 'foo';

and then later ...

 my @plugins = $mc->foo();

Or if you want to look in another namespace

 package MyClass;
 use Module::Pluggable search_path => ['Acme::MyClass::Plugin',
'MyClass::Extend'];

or directory

 use Module::Pluggable search_dirs => ['mylibs/Foo'];

Or if you want to instantiate each plugin rather than just return the name

 package MyClass;
 use Module::Pluggable instantiate => 'new';

and then

 # whatever is passed to 'plugins' will be passed
 # to 'new' for each plugin
 my @plugins = $mc->plugins(@options);

alternatively you can just require the module without instantiating it

 package MyClass;
 use Module::Pluggable require => 1;

since requiring automatically searches inner packages, which may not be desirable, you can turn this
off

 package MyClass;
 use Module::Pluggable require => 1, inner => 0;

You can limit the plugins loaded using the except option, either as a string,
 array ref or regex

 package MyClass;
 use Module::Pluggable except => 'MyClass::Plugin::Foo';

Perl version 5.12.5 documentation - Module::Pluggable

Page 3http://perldoc.perl.org

or

 package MyClass;
 use Module::Pluggable except => ['MyClass::Plugin::Foo',
'MyClass::Plugin::Bar'];

or

 package MyClass;
 use Module::Pluggable except => qr/^MyClass::Plugin::(Foo|Bar)$/;

and similarly for only which will only load plugins which match.

Remember you can use the module more than once

 package MyClass;
 use Module::Pluggable search_path => 'MyClass::Filters' sub_name =>
'filters';
 use Module::Pluggable search_path => 'MyClass::Plugins' sub_name =>
'plugins';

and then later ...

 my @filters = $self->filters;
 my @plugins = $self->plugins;

INNER PACKAGES
If you have, for example, a file lib/Something/Plugin/Foo.pm that
 contains package definitions for
both Something::Plugin::Foo and Something::Plugin::Bar then as long as you either have
either the require or instantiate option set then we'll also find Something::Plugin::Bar. Nifty!

OPTIONS
You can pass a hash of options when importing this module.

The options can be ...

sub_name
The name of the subroutine to create in your namespace.

By default this is 'plugins'

search_path
An array ref of namespaces to look in.

search_dirs
An array ref of directorys to look in before @INC.

instantiate
Call this method on the class. In general this will probably be 'new'
 but it can be whatever you want.
Whatever arguments are passed to 'plugins' will be passed to the method.

The default is 'undef' i.e just return the class name.

require
Just require the class, don't instantiate (overrides 'instantiate');

Perl version 5.12.5 documentation - Module::Pluggable

Page 4http://perldoc.perl.org

inner
If set to 0 will not search inner packages. If set to 1 will override require.

only
Takes a string, array ref or regex describing the names of the only plugins to return. Whilst this may
seem perverse ... well, it is. But it also makes sense. Trust me.

except
Similar to only it takes a description of plugins to exclude from returning. This is slightly less
perverse.

package
This is for use by extension modules which build on Module::Pluggable:
 passing a package
option allows you to place the plugin method in a
 different package other than your own.

file_regex
By default Module::Pluggable only looks for .pm files.

By supplying a new file_regex then you can change this behaviour e.g

 file_regex => qr/\.plugin$/

include_editor_junk
By default Module::Pluggable ignores files that look like they were
 left behind by editors.
Currently this means files ending in ~ (~),
 the extensions .swp or .swo, or files beginning with .#.

Setting include_editor_junk changes Module::Pluggable so it does
 not ignore any files it
finds.

METHODs
search_path

The method search_path is exported into you namespace as well. You can call that at any time to
change or replace the search_path.

 $self->search_path(add => "New::Path"); # add
 $self->search_path(new => "New::Path"); # replace

FUTURE PLANS
This does everything I need and I can't really think of any other features I want to add. Famous last
words of course

Recently tried fixed to find inner packages and to make it 'just work' with PAR but there are still some
issues.

However suggestions (and patches) are welcome.

AUTHOR
Simon Wistow <simon@thegestalt.org>

COPYING
Copyright, 2006 Simon Wistow

Distributed under the same terms as Perl itself.

Perl version 5.12.5 documentation - Module::Pluggable

Page 5http://perldoc.perl.org

BUGS
None known.

SEE ALSO
File::Spec, File::Find, File::Basename, Class::Factory::Util, Module::Pluggable::Ordered

