
Perl version 5.12.5 documentation - Term::UI

Page 1http://perldoc.perl.org

NAME
Term::UI - Term::ReadLine UI made easy

SYNOPSIS
 use Term::UI;
 use Term::ReadLine;

 my $term = Term::ReadLine->new('brand');

 my $reply = $term->get_reply(
 prompt => 'What is your favourite colour?',
 choices => [qw|blue red green|],
 default => blue,
);

 my $bool = $term->ask_yn(
 prompt => 'Do you like cookies?',
 default => 'y',
);

 my $string = q[some_command -option --no-foo --quux='this thing'];

 my ($options,$munged_input) = $term->parse_options($string);

 ### don't have Term::UI issue warnings -- default is '1'
 $Term::UI::VERBOSE = 0;

 ### always pick the default (good for non-interactive terms)
 ### -- default is '0'
 $Term::UI::AUTOREPLY = 1;

 ### Retrieve the entire session as a printable string:
 $hist = Term::UI::History->history_as_string;
 $hist = $term->history_as_string;

DESCRIPTION
Term::UI is a transparent way of eliminating the overhead of having
 to format a question and then
validate the reply, informing the user
 if the answer was not proper and re-issuing the question.

Simply give it the question you want to ask, optionally with choices
 the user can pick from and a
default and Term::UI will DWYM.

For asking a yes or no question, there's even a shortcut.

HOW IT WORKS
Term::UI places itself at the back of the Term::ReadLine @ISA array, so you can call its functions
through your term object.

Term::UI uses Term::UI::History to record all interactions
 with the commandline. You can
retrieve this history, or alter
 the filehandle the interaction is printed to. See the Term::UI::History
manpage or the SYNOPSIS for details.

Perl version 5.12.5 documentation - Term::UI

Page 2http://perldoc.perl.org

METHODS
$reply = $term->get_reply(prompt => 'question?', [choices => \@list, default => $list[0], multi
=> BOOL, print_me => "extra text to print & record", allow => $ref]);

get_reply asks a user a question, and then returns the reply to the
 caller. If the answer is invalid
(more on that below), the question will
 be reposed, until a satisfactory answer has been entered.

You have the option of providing a list of choices the user can pick from
 using the choices
argument. If the answer is not in the list of choices
 presented, the question will be reposed.

If you provide a default answer, this will be returned when either $AUTOREPLY is set to true, (see
the GLOBAL VARIABLES section further
 below), or when the user just hits enter.

You can indicate that the user is allowed to enter multiple answers by
 toggling the multi flag. Note
that a list of answers will then be
 returned to you, rather than a simple string.

By specifying an allow hander, you can yourself validate the answer
 a user gives. This can be any of
the types that the Params::Check allow function allows, so please refer to that manpage for details.

Finally, you have the option of adding a print_me argument, which is
 simply printed before the
prompt. It's printed to the same file handle
 as the rest of the questions, so you can use this to keep
track of a
 full session of Q&A with the user, and retrieve it later using the
Term::UI->history_as_string function.

See the EXAMPLES section for samples of how to use this function.

$bool = $term->ask_yn(prompt => "your question", [default => (y|1,n|0), print_me => "extra text
to print & record"])

Asks a simple yes or no question to the user, returning a boolean
 indicating true or false to the
caller.

The default answer will automatically returned, if the user hits enter or if $AUTOREPLY is set to
true. See the GLOBAL VARIABLES
 section further below.

Also, you have the option of adding a print_me argument, which is
 simply printed before the prompt.
It's printed to the same file handle
 as the rest of the questions, so you can use this to keep track of a

full session of Q&A with the user, and retrieve it later using the Term::UI->history_as_string
function.

See the EXAMPLES section for samples of how to use this function.

($opts, $munged) = $term->parse_options(STRING);
parse_options will convert all options given from an input string
 to a hash reference. If called in list
context it will also return
 the part of the input string that it found no options in.

Consider this example:

 my $str = q[command --no-foo --baz --bar=0 --quux=bleh] .
 q[--option="some'thing" -one-dash -single=blah' arg];

 my ($options,$munged) = $term->parse_options($str);

 ### $options would contain: ###
 $options = {
 'foo' => 0,
 'bar' => 0,
 'one-dash' => 1,
 'baz' => 1,
 'quux' => 'bleh',

Perl version 5.12.5 documentation - Term::UI

Page 3http://perldoc.perl.org

 'single' => 'blah\'',
 'option' => 'some\'thing'
 };

 ### and this is the munged version of the input string,
 ### ie what's left of the input minus the options
 $munged = 'command arg';

As you can see, you can either use a single or a double - to
 indicate an option.
 If you prefix an option
with no- and do not give it a value, it
 will be set to 0.
 If it has no prefix and no value, it will be set to 1.

Otherwise, it will be set to its value. Note also that it can deal
 fine with single/double quoting issues.

$str = $term->history_as_string
Convenience wrapper around Term::UI::History->history_as_string.

Consult the Term::UI::History man page for details.

GLOBAL VARIABLES
The behaviour of Term::UI can be altered by changing the following
 global variables:

$Term::UI::VERBOSE
This controls whether Term::UI will issue warnings and explanations
 as to why certain things may
have failed. If you set it to 0,
 Term::UI will not output any warnings.
 The default is 1;

$Term::UI::AUTOREPLY
This will make every question be answered by the default, and warn if
 there was no default provided.
This is particularly useful if your
 program is run in non-interactive mode.
 The default is 0;

$Term::UI::INVALID
This holds the string that will be printed when the user makes an
 invalid choice.
 You can override this
string from your program if you, for example,
 wish to do localization.
 The default is Invalid
selection, please try again:

$Term::UI::History::HISTORY_FH
This is the filehandle all the print statements from this module
 are being sent to. Please consult the
Term::UI::History manpage
 for details.

This defaults to *STDOUT.

EXAMPLES
Basic get_reply sample

 ### ask a user (with an open question) for their favourite colour
 $reply = $term->get_reply(prompt => 'Your favourite colour?);

which would look like:

 Your favourite colour?

and $reply would hold the text the user typed.

get_reply with choices
 ### now provide a list of choices, so the user has to pick one
 $reply = $term->get_reply(
 prompt => 'Your favourite colour?',
 choices => [qw|red green blue|]);

Perl version 5.12.5 documentation - Term::UI

Page 4http://perldoc.perl.org

which would look like:

 1> red
 2> green
 3> blue

 Your favourite colour?

$reply will hold one of the choices presented. Term::UI will repose
 the question if the user
attempts to enter an answer that's not in the
 list of choices. The string presented is held in the
$Term::UI::INVALID
 variable (see the GLOBAL VARIABLES section for details.

get_reply with choices and default
 ### provide a sensible default option -- everyone loves blue!
 $reply = $term->get_reply(
 prompt => 'Your favourite colour?',
 choices => [qw|red green blue|],
 default => 'blue');

which would look like:

 1> red
 2> green
 3> blue

 Your favourite colour? [3]:

Note the default answer after the prompt. A user can now just hit enter
 (or set
$Term::UI::AUTOREPLY -- see the GLOBAL VARIABLES section) and
 the sensible answer 'blue'
will be returned.

get_reply using print_me & multi
 ### allow the user to pick more than one colour and add an
 ### introduction text
 @reply = $term->get_reply(
 print_me => 'Tell us what colours you like',
 prompt => 'Your favourite colours?',
 choices => [qw|red green blue|],
 multi => 1);

which would look like:

 Tell us what colours you like
 1> red
 2> green
 3> blue

 Your favourite colours?

An answer of 3 2 1 would fill @reply with blue green red

get_reply & allow
 ### pose an open question, but do a custom verification on
 ### the answer, which will only exit the question loop, if

Perl version 5.12.5 documentation - Term::UI

Page 5http://perldoc.perl.org

 ### the answer matches the allow handler.
 $reply = $term->get_reply(
 prompt => "What is the magic number?",
 allow => 42);

Unless the user now enters 42, the question will be reposed over
 and over again. You can use more
sophisticated allow handlers (even
 subroutines can be used). The allow handler is implemented
using Params::Check's allow function. Check its manpage for details.

an elaborate ask_yn sample
 ### ask a user if he likes cookies. Default to a sensible 'yes'
 ### and inform him first what cookies are.
 $bool = $term->ask_yn(prompt => 'Do you like cookies?',
 default => 'y',
 print_me => 'Cookies are LOVELY!!!');

would print:

 Cookies are LOVELY!!!
 Do you like cookies? [Y/n]:

If a user then simply hits enter, agreeing with the default, $bool would be set to true. (Simply
hitting 'y' would also return true. Hitting 'n' would return false)

We could later retrieve this interaction by printing out the Q&A history as follows:

 print $term->history_as_string;

which would then print:

 Cookies are LOVELY!!!
 Do you like cookies? [Y/n]: y

There's a chance we're doing this non-interactively, because a console
 is missing, the user indicated
he just wanted the defaults, etc.

In this case, simply setting $Term::UI::AUTOREPLY to true, will
 return from every question with the
default answer set for the question.
 Do note that if AUTOREPLY is true, and no default is set,
Term::UI
 will warn about this and return undef.

See Also
Params::Check, Term::ReadLine, Term::UI::History

BUG REPORTS
Please report bugs or other issues to <bug-term-ui@rt.cpan.org<gt>.

AUTHOR
This module by Jos Boumans <kane@cpan.org>.

COPYRIGHT
This library is free software; you may redistribute and/or modify it under the same terms as Perl itself.

