
Perl version 5.12.5 documentation - File::Path

Page 1http://perldoc.perl.org

NAME
File::Path - Create or remove directory trees

VERSION
This document describes version 2.08 of File::Path, released
 2009-10-04.

SYNOPSIS
 use File::Path qw(make_path remove_tree);

 make_path('foo/bar/baz', '/zug/zwang');
 make_path('foo/bar/baz', '/zug/zwang', {
 verbose => 1,
 mode => 0711,
 });

 remove_tree('foo/bar/baz', '/zug/zwang');
 remove_tree('foo/bar/baz', '/zug/zwang', {
 verbose => 1,
 error => \my $err_list,
 });

 # legacy (interface promoted before v2.00)
 mkpath('/foo/bar/baz');
 mkpath('/foo/bar/baz', 1, 0711);
 mkpath(['/foo/bar/baz', 'blurfl/quux'], 1, 0711);
 rmtree('foo/bar/baz', 1, 1);
 rmtree(['foo/bar/baz', 'blurfl/quux'], 1, 1);

 # legacy (interface promoted before v2.06)
 mkpath('foo/bar/baz', '/zug/zwang', { verbose => 1, mode => 0711 });
 rmtree('foo/bar/baz', '/zug/zwang', { verbose => 1, mode => 0711 });

DESCRIPTION
This module provide a convenient way to create directories of
 arbitrary depth and to delete an entire
directory subtree from the
 filesystem.

The following functions are provided:

make_path($dir1, $dir2,)

make_path($dir1, $dir2,, \%opts)

The make_path function creates the given directories if they don't
 exists before, much like the
Unix command mkdir -p.

The function accepts a list of directories to be created. Its
 behaviour may be tuned by an
optional hashref appearing as the last
 parameter on the call.

The function returns the list of directories actually created during
 the call; in scalar context the
number of directories created.

The following keys are recognised in the option hash:

mode => $num

The numeric permissions mode to apply to each created directory
 (defaults to 0777),
to be modified by the current umask. If the
 directory already exists (and thus does not
need to be created),
 the permissions will not be modified.

mask is recognised as an alias for this parameter.

Perl version 5.12.5 documentation - File::Path

Page 2http://perldoc.perl.org

verbose => $bool

If present, will cause make_path to print the name of each directory
 as it is created.
By default nothing is printed.

error => \$err

If present, it should be a reference to a scalar.
 This scalar will be made to reference an
array, which will
 be used to store any errors that are encountered. See the ERROR
HANDLING section for more information.

If this parameter is not used, certain error conditions may raise
 a fatal error that will
cause the program will halt, unless trapped
 in an eval block.

owner => $owner

user => $owner

uid => $owner

If present, will cause any created directory to be owned by $owner.
 If the value is
numeric, it will be interpreted as a uid, otherwise
 as username is assumed. An error
will be issued if the username cannot be
 mapped to a uid, or the uid does not exist, or
the process lacks the
 privileges to change ownership.

Ownwership of directories that already exist will not be changed.

user and uid are aliases of owner.

group => $group

If present, will cause any created directory to be owned by the group $group.
 If the
value is numeric, it will be interpreted as a gid, otherwise
 as group name is assumed.
An error will be issued if the group name cannot be
 mapped to a gid, or the gid does
not exist, or the process lacks the
 privileges to change group ownership.

Group ownwership of directories that already exist will not be changed.

 make_path '/var/tmp/webcache', {owner=>'nobody',
group=>'nogroup'};

mkpath($dir)

mkpath($dir, $verbose, $mode)

mkpath([$dir1, $dir2,...], $verbose, $mode)

mkpath($dir1, $dir2,..., \%opt)

The mkpath() function provide the legacy interface of make_path() with
 a different
interpretation of the arguments passed. The behaviour and
 return value of the function is
otherwise identical to make_path().

remove_tree($dir1, $dir2,)

remove_tree($dir1, $dir2,, \%opts)

The remove_tree function deletes the given directories and any
 files and subdirectories they
might contain, much like the Unix
 command rm -r or del /s on Windows.

The function accepts a list of directories to be
 removed. Its behaviour may be tuned by an
optional hashref
 appearing as the last parameter on the call.

The functions returns the number of files successfully deleted.

The following keys are recognised in the option hash:

verbose => $bool

If present, will cause remove_tree to print the name of each file as
 it is unlinked. By
default nothing is printed.

Perl version 5.12.5 documentation - File::Path

Page 3http://perldoc.perl.org

safe => $bool

When set to a true value, will cause remove_tree to skip the files
 for which the
process lacks the required privileges needed to delete
 files, such as delete privileges
on VMS. In other words, the code
 will make no attempt to alter file permissions. Thus,
if the process
 is interrupted, no filesystem object will be left in a more
 permissive
mode.

keep_root => $bool

When set to a true value, will cause all files and subdirectories
 to be removed, except
the initially specified directories. This comes
 in handy when cleaning out an
application's scratch directory.

 remove_tree('/tmp', {keep_root => 1});

result => \$res

If present, it should be a reference to a scalar.
 This scalar will be made to reference an
array, which will
 be used to store all files and directories unlinked
 during the call. If
nothing is unlinked, the array will be empty.

 remove_tree('/tmp', {result => \my $list});
 print "unlinked $_\n" for @$list;

This is a useful alternative to the verbose key.

error => \$err

If present, it should be a reference to a scalar.
 This scalar will be made to reference an
array, which will
 be used to store any errors that are encountered. See the ERROR
HANDLING section for more information.

Removing things is a much more dangerous proposition than
 creating things. As such,
there are certain conditions that remove_tree may encounter that are so dangerous
that the only
 sane action left is to kill the program.

Use error to trap all that is reasonable (problems with
 permissions and the like), and
let it die if things get out
 of hand. This is the safest course of action.

rmtree($dir)

rmtree($dir, $verbose, $safe)

rmtree([$dir1, $dir2,...], $verbose, $safe)

rmtree($dir1, $dir2,..., \%opt)

The rmtree() function provide the legacy interface of remove_tree()
 with a different
interpretation of the arguments passed. The behaviour
 and return value of the function is
otherwise identical to
 remove_tree().

ERROR HANDLING
NOTE:

The following error handling mechanism is considered
 experimental and is subject to change
pending feedback from
 users.

If make_path or remove_tree encounter an error, a diagnostic
 message will be printed to STDERR
via carp (for non-fatal
 errors), or via croak (for fatal errors).

If this behaviour is not desirable, the error attribute may be
 used to hold a reference to a variable,
which will be used to store
 the diagnostics. The variable is made a reference to an array of hash

references. Each hash contain a single key/value pair where the key
 is the name of the file, and the
value is the error message (including
 the contents of $! when appropriate). If a general error is

encountered the diagnostic key will be empty.

Perl version 5.12.5 documentation - File::Path

Page 4http://perldoc.perl.org

An example usage looks like:

 remove_tree('foo/bar', 'bar/rat', {error => \my $err});
 if (@$err) {
 for my $diag (@$err) {
 my ($file, $message) = %$diag;
 if ($file eq '') {
 print "general error: $message\n";
 }
 else {
 print "problem unlinking $file: $message\n";
 }
 }
 }
 else {
 print "No error encountered\n";
 }

Note that if no errors are encountered, $err will reference an
 empty array. This means that $err will
always end up TRUE; so you
 need to test @$err to determine if errors occured.

NOTES
File::Path blindly exports mkpath and rmtree into the
 current namespace. These days, this is
considered bad style, but
 to change it now would break too much code. Nonetheless, you are
 invited
to specify what it is you are expecting to use:

 use File::Path 'rmtree';

The routines make_path and remove_tree are not exported
 by default. You must specify which
ones you want to use.

 use File::Path 'remove_tree';

Note that a side-effect of the above is that mkpath and rmtree
 are no longer exported at all. This is
due to the way the Exporter
 module works. If you are migrating a codebase to use the new

interface, you will have to list everything explicitly. But that's
 just good practice anyway.

 use File::Path qw(remove_tree rmtree);

API CHANGES

The API was changed in the 2.0 branch. For a time, mkpath and rmtree tried, unsuccessfully, to
deal with the two different
 calling mechanisms. This approach was considered a failure.

The new semantics are now only available with make_path and remove_tree. The old semantics
are only available through mkpath and rmtree. Users are strongly encouraged to upgrade
 to at least
2.08 in order to avoid surprises.

SECURITY CONSIDERATIONS

There were race conditions 1.x implementations of File::Path's rmtree function (although sometimes
patched depending on the OS
 distribution or platform). The 2.0 version contains code to avoid the

problem mentioned in CVE-2002-0435.

See the following pages for more information:

 http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=286905
 http://www.nntp.perl.org/group/perl.perl5.porters/2005/01/msg97623.html
 http://www.debian.org/security/2005/dsa-696

Perl version 5.12.5 documentation - File::Path

Page 5http://perldoc.perl.org

Additionally, unless the safe parameter is set (or the
 third parameter in the traditional interface is
TRUE), should a remove_tree be interrupted, files that were originally in read-only
 mode may now
have their permissions set to a read-write (or "delete
 OK") mode.

DIAGNOSTICS
FATAL errors will cause the program to halt (croak), since the
 problem is so severe that it would be
dangerous to continue. (This
 can always be trapped with eval, but it's not a good idea. Under
 the
circumstances, dying is the best thing to do).

SEVERE errors may be trapped using the modern interface. If the
 they are not trapped, or the old
interface is used, such an error
 will cause the program will halt.

All other errors may be trapped using the modern interface, otherwise
 they will be carped about.
Program execution will not be halted.

mkdir [path]: [errmsg] (SEVERE)

make_path was unable to create the path. Probably some sort of
 permissions error at the
point of departure, or insufficient resources
 (such as free inodes on Unix).

No root path(s) specified

make_path was not given any paths to create. This message is only
 emitted if the routine is
called with the traditional interface.
 The modern interface will remain silent if given nothing to
do.

No such file or directory

On Windows, if make_path gives you this warning, it may mean that
 you have exceeded your
filesystem's maximum path length.

cannot fetch initial working directory: [errmsg]

remove_tree attempted to determine the initial directory by calling Cwd::getcwd, but the
call failed for some reason. No attempt
 will be made to delete anything.

cannot stat initial working directory: [errmsg]

remove_tree attempted to stat the initial directory (after having
 successfully obtained its
name via getcwd), however, the call
 failed for some reason. No attempt will be made to
delete anything.

cannot chdir to [dir]: [errmsg]

remove_tree attempted to set the working directory in order to
 begin deleting the objects
therein, but was unsuccessful. This is
 usually a permissions issue. The routine will continue to
delete
 other things, but this directory will be left intact.

directory [dir] changed before chdir, expected dev=[n] ino=[n], actual dev=[n] ino=[n], aborting.
(FATAL)

remove_tree recorded the device and inode of a directory, and then
 moved into it. It then
performed a stat on the current directory
 and detected that the device and inode were no
longer the same. As
 this is at the heart of the race condition problem, the program
 will die at
this point.

cannot make directory [dir] read+writeable: [errmsg]

remove_tree attempted to change the permissions on the current directory
 to ensure that
subsequent unlinkings would not run into problems,
 but was unable to do so. The permissions
remain as they were, and
 the program will carry on, doing the best it can.

cannot read [dir]: [errmsg]

remove_tree tried to read the contents of the directory in order
 to acquire the names of the
directory entries to be unlinked, but
 was unsuccessful. This is usually a permissions issue.

Perl version 5.12.5 documentation - File::Path

Page 6http://perldoc.perl.org

The
 program will continue, but the files in this directory will remain
 after the call.

cannot reset chmod [dir]: [errmsg]

remove_tree, after having deleted everything in a directory, attempted
 to restore its
permissions to the original state but failed. The
 directory may wind up being left behind.

cannot remove [dir] when cwd is [dir]

The current working directory of the program is /some/path/to/here
 and you are attempting to
remove an ancestor, such as /some/path.
 The directory tree is left untouched.

The solution is to chdir out of the child directory to a place
 outside the directory tree to be
removed.

cannot chdir to [parent-dir] from [child-dir]: [errmsg], aborting. (FATAL)

remove_tree, after having deleted everything and restored the permissions
 of a directory,
was unable to chdir back to the parent. The program
 halts to avoid a race condition from
occurring.

cannot stat prior working directory [dir]: [errmsg], aborting. (FATAL)

remove_tree was unable to stat the parent directory after have returned
 from the child.
Since there is no way of knowing if we returned to
 where we think we should be (by comparing
device and inode) the only
 way out is to croak.

previous directory [parent-dir] changed before entering [child-dir], expected dev=[n] ino=[n], actual
dev=[n] ino=[n], aborting. (FATAL)

When remove_tree returned from deleting files in a child directory, a
 check revealed that the
parent directory it returned to wasn't the one
 it started out from. This is considered a sign of
malicious activity.

cannot make directory [dir] writeable: [errmsg]

Just before removing a directory (after having successfully removed
 everything it contained),
remove_tree attempted to set the permissions
 on the directory to ensure it could be
removed and failed. Program
 execution continues, but the directory may possibly not be
deleted.

cannot remove directory [dir]: [errmsg]

remove_tree attempted to remove a directory, but failed. This may because
 some objects
that were unable to be removed remain in the directory, or
 a permissions issue. The directory
will be left behind.

cannot restore permissions of [dir] to [0nnn]: [errmsg]

After having failed to remove a directory, remove_tree was unable to
 restore its permissions
from a permissive state back to a possibly
 more restrictive setting. (Permissions given in
octal).

cannot make file [file] writeable: [errmsg]

remove_tree attempted to force the permissions of a file to ensure it
 could be deleted, but
failed to do so. It will, however, still attempt
 to unlink the file.

cannot unlink file [file]: [errmsg]

remove_tree failed to remove a file. Probably a permissions issue.

cannot restore permissions of [file] to [0nnn]: [errmsg]

After having failed to remove a file, remove_tree was also unable
 to restore the permissions
on the file to a possibly less permissive
 setting. (Permissions given in octal).

unable to map [owner] to a uid, ownership not changed");

Perl version 5.12.5 documentation - File::Path

Page 7http://perldoc.perl.org

make_path was instructed to give the ownership of created
 directories to the symbolic name
[owner], but getpwnam did
 not return the corresponding numeric uid. The directory will
 be
created, but ownership will not be changed.

unable to map [group] to a gid, group ownership not changed

make_path was instructed to give the group ownership of created
 directories to the symbolic
name [group], but getgrnam did
 not return the corresponding numeric gid. The directory will

be created, but group ownership will not be changed.

SEE ALSO
File::Remove

Allows files and directories to be moved to the Trashcan/Recycle
 Bin (where they may later be
restored if necessary) if the operating
 system supports such functionality. This feature may
one day be
 made available directly in File::Path.

File::Find::Rule

When removing directory trees, if you want to examine each file to
 decide whether to delete it
(and possibly leaving large swathes
 alone), File::Find::Rule offers a convenient and flexible
approach
 to examining directory trees.

BUGS
Please report all bugs on the RT queue:

http://rt.cpan.org/NoAuth/Bugs.html?Dist=File-Path

ACKNOWLEDGEMENTS
Paul Szabo identified the race condition originally, and Brendan
 O'Dea wrote an implementation for
Debian that addressed the problem.
 That code was used as a basis for the current code. Their efforts

are greatly appreciated.

Gisle Aas made a number of improvements to the documentation for
 2.07 and his advice and
assistance is also greatly appreciated.

AUTHORS
Tim Bunce and Charles Bailey. Currently maintained by David Landgren
 <david@landgren.net>.

COPYRIGHT
This module is copyright (C) Charles Bailey, Tim Bunce and
 David Landgren 1995-2009. All rights
reserved.

LICENSE
This library is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

