
Perl version 5.14.0 documentation - Time::HiRes

Page 1http://perldoc.perl.org

NAME
Time::HiRes - High resolution alarm, sleep, gettimeofday, interval timers

SYNOPSIS
 use Time::HiRes qw(usleep ualarm gettimeofday tv_interval nanosleep
		 clock_gettime clock_getres clock_nanosleep clock
 stat);

 usleep ($microseconds);
 nanosleep ($nanoseconds);

 ualarm ($microseconds);
 ualarm ($microseconds, $interval_microseconds);

 $t0 = [gettimeofday];
 ($seconds, $microseconds) = gettimeofday;

 $elapsed = tv_interval ($t0, [$seconds, $microseconds]);
 $elapsed = tv_interval ($t0, [gettimeofday]);
 $elapsed = tv_interval ($t0);

 use Time::HiRes qw (time alarm sleep);

 $now_fractions = time;
 sleep ($floating_seconds);
 alarm ($floating_seconds);
 alarm ($floating_seconds, $floating_interval);

 use Time::HiRes qw(setitimer getitimer);

 setitimer ($which, $floating_seconds, $floating_interval);
 getitimer ($which);

 use Time::HiRes qw(clock_gettime clock_getres clock_nanosleep
		 ITIMER_REAL ITIMER_VIRTUAL ITIMER_PROF ITIMER_REALPROF);

 $realtime = clock_gettime(CLOCK_REALTIME);
 $resolution = clock_getres(CLOCK_REALTIME);

 clock_nanosleep(CLOCK_REALTIME, 1.5e9);
 clock_nanosleep(CLOCK_REALTIME, time()*1e9 + 10e9, TIMER_ABSTIME);

 my $ticktock = clock();

 use Time::HiRes qw(stat);

 my @stat = stat("file");
 my @stat = stat(FH);

Perl version 5.14.0 documentation - Time::HiRes

Page 2http://perldoc.perl.org

DESCRIPTION
The Time::HiRes module implements a Perl interface to the usleep, nanosleep, ualarm,
gettimeofday, and setitimer/getitimer system calls, in other words, high
 resolution time and
timers. See the EXAMPLES section below and the
 test scripts for usage; see your system
documentation for the
 description of the underlying nanosleep or usleep, ualarm, gettimeofday
, and setitimer/getitimer calls.

If your system lacks gettimeofday() or an emulation of it you don't
 get gettimeofday() or the
one-argument form of tv_interval().
 If your system lacks all of nanosleep(), usleep(),
select(), and poll, you don't get Time::HiRes::usleep(), Time::HiRes::nanosleep(),
or Time::HiRes::sleep().
 If your system lacks both ualarm() and setitimer() you don't get
Time::HiRes::ualarm() or Time::HiRes::alarm().

If you try to import an unimplemented function in the use statement
 it will fail at compile time.

If your subsecond sleeping is implemented with nanosleep() instead
 of usleep(), you can mix
subsecond sleeping with signals since nanosleep() does not use signals. This, however, is not
portable,
 and you should first check for the truth value of &Time::HiRes::d_nanosleep to see
whether you have nanosleep, and
 then carefully read your nanosleep() C API documentation for
any
 peculiarities.

If you are using nanosleep for something else than mixing sleeping
 with signals, give some thought
to whether Perl is the tool you should
 be using for work requiring nanosecond accuracies.

Remember that unless you are working on a hard realtime system,
 any clocks and timers will be
imprecise, especially so if you are working
 in a pre-emptive multiuser system. Understand the
difference between wallclock time and process time (in UNIX-like systems the sum of user and
system times). Any attempt to sleep for X seconds will
 most probably end up sleeping more than that,
but don't be surpised
 if you end up sleeping slightly less.

The following functions can be imported from this module.
 No functions are exported by default.

gettimeofday ()

In array context returns a two-element array with the seconds and
 microseconds since the
epoch. In scalar context returns floating
 seconds like Time::HiRes::time() (see below).

usleep ($useconds)

Sleeps for the number of microseconds (millionths of a second)
 specified. Returns the number
of microseconds actually slept.
 Can sleep for more than one second, unlike the usleep
system call.
 Can also sleep for zero seconds, which often works like a thread yield.
 See also
Time::HiRes::usleep(), Time::HiRes::sleep(), and
Time::HiRes::clock_nanosleep().

Do not expect usleep() to be exact down to one microsecond.

nanosleep ($nanoseconds)

Sleeps for the number of nanoseconds (1e9ths of a second) specified.
 Returns the number of
nanoseconds actually slept (accurate only to
 microseconds, the nearest thousand of them).
Can sleep for more than
 one second. Can also sleep for zero seconds, which often works like

a thread yield. See also Time::HiRes::sleep(), Time::HiRes::usleep(), and
Time::HiRes::clock_nanosleep().

Do not expect nanosleep() to be exact down to one nanosecond.
 Getting even accuracy of
one thousand nanoseconds is good.

ualarm ($useconds [, $interval_useconds])

Issues a ualarm call; the $interval_useconds is optional and
 will be zero if unspecified,
resulting in alarm-like behaviour.

Returns the remaining time in the alarm in microseconds, or undef
 if an error occurred.

Perl version 5.14.0 documentation - Time::HiRes

Page 3http://perldoc.perl.org

ualarm(0) will cancel an outstanding ualarm().

Note that the interaction between alarms and sleeps is unspecified.

tv_interval

tv_interval ($ref_to_gettimeofday [, $ref_to_later_gettimeofday])

Returns the floating seconds between the two times, which should have
 been returned by
gettimeofday(). If the second argument is omitted,
 then the current time is used.

time ()

Returns a floating seconds since the epoch. This function can be
 imported, resulting in a nice
drop-in replacement for the time
 provided with core Perl; see the EXAMPLES below.

NOTE 1: This higher resolution timer can return values either less
 or more than the core
time(), depending on whether your platform
 rounds the higher resolution timer values up,
down, or to the nearest second
 to get the core time(), but naturally the difference should be
never
 more than half a second. See also clock_getres, if available
 in your system.

NOTE 2: Since Sunday, September 9th, 2001 at 01:46:40 AM GMT, when
 the time()
seconds since epoch rolled over to 1_000_000_000, the
 default floating point format of Perl
and the seconds since epoch have
 conspired to produce an apparent bug: if you print the
value of Time::HiRes::time() you seem to be getting only five decimals, not
 six as
promised (microseconds). Not to worry, the microseconds are
 there (assuming your platform
supports such granularity in the first
 place). What is going on is that the default floating point
format of
 Perl only outputs 15 digits. In this case that means ten digits
 before the decimal
separator and five after. To see the microseconds
 you can use either printf/sprintf with
"%.6f", or the gettimeofday() function in list context, which will give you the
 seconds and
microseconds as two separate values.

sleep ($floating_seconds)

Sleeps for the specified amount of seconds. Returns the number of
 seconds actually slept (a
floating point value). This function can
 be imported, resulting in a nice drop-in replacement for
the sleep
 provided with perl, see the EXAMPLES below.

Note that the interaction between alarms and sleeps is unspecified.

alarm ($floating_seconds [, $interval_floating_seconds])

The SIGALRM signal is sent after the specified number of seconds.
 Implemented using
setitimer() if available, ualarm() if not.
 The $interval_floating_seconds
argument is optional and will be
 zero if unspecified, resulting in alarm()-like behaviour. This

function can be imported, resulting in a nice drop-in replacement for
 the alarm provided with
perl, see the EXAMPLES below.

Returns the remaining time in the alarm in seconds, or undef
 if an error occurred.

NOTE 1: With some combinations of operating systems and Perl
 releases SIGALRM restarts
select(), instead of interrupting it.
 This means that an alarm() followed by a select()
may together
 take the sum of the times specified for the the alarm() and the select(), not
just the time of the alarm().

Note that the interaction between alarms and sleeps is unspecified.

setitimer ($which, $floating_seconds [, $interval_floating_seconds])

Start up an interval timer: after a certain time, a signal ($which) arrives,
 and more signals may
keep arriving at certain intervals. To disable
 an "itimer", use $floating_seconds of zero. If
the $interval_floating_seconds is set to zero (or unspecified), the
 timer is disabled
after the next delivered signal.

Use of interval timers may interfere with alarm(), sleep(),
 and usleep(). In
standard-speak the "interaction is unspecified",
 which means that anything may happen: it
may work, it may not.

Perl version 5.14.0 documentation - Time::HiRes

Page 4http://perldoc.perl.org

In scalar context, the remaining time in the timer is returned.

In list context, both the remaining time and the interval are returned.

There are usually three or four interval timers (signals) available: the $which can be
ITIMER_REAL, ITIMER_VIRTUAL, ITIMER_PROF, or ITIMER_REALPROF. Note that which
ones are available depends: true
 UNIX platforms usually have the first three, but only Solaris
seems to
 have ITIMER_REALPROF (which is used to profile multithreaded programs).
 Win32
unfortunately does not haveinterval timers.

ITIMER_REAL results in alarm()-like behaviour. Time is counted in real time; that is,
wallclock time. SIGALRM is delivered when
 the timer expires.

ITIMER_VIRTUAL counts time in (process) virtual time; that is,
 only when the process is
running. In multiprocessor/user/CPU systems
 this may be more or less than real or wallclock
time. (This time is
 also known as the user time.) SIGVTALRM is delivered when the
 timer
expires.

ITIMER_PROF counts time when either the process virtual time or when
 the operating system
is running on behalf of the process (such as I/O).
 (This time is also known as the system time.)
(The sum of user
 time and system time is known as the CPU time.) SIGPROF is
 delivered
when the timer expires. SIGPROF can interrupt system calls.

The semantics of interval timers for multithreaded programs are
 system-specific, and some
systems may support additional interval
 timers. For example, it is unspecified which thread
gets the signals.
 See your setitimer() documentation.

getitimer ($which)

Return the remaining time in the interval timer specified by $which.

In scalar context, the remaining time is returned.

In list context, both the remaining time and the interval are returned.
 The interval is always
what you put in using setitimer().

clock_gettime ($which)

Return as seconds the current value of the POSIX high resolution timer
 specified by $which.
All implementations that support POSIX high
 resolution timers are supposed to support at
least the $which value
 of CLOCK_REALTIME, which is supposed to return results close to the

results of gettimeofday, or the number of seconds since 00:00:00:00
 January 1, 1970
Greenwich Mean Time (GMT). Do not assume that
 CLOCK_REALTIME is zero, it might be
one, or something else.
 Another potentially useful (but not available everywhere) value is
CLOCK_MONOTONIC, which guarantees a monotonically increasing time
 value (unlike time() or
gettimeofday(), which can be adjusted).
 See your system documentation for other possibly
supported values.

clock_getres ($which)

Return as seconds the resolution of the POSIX high resolution timer
 specified by $which. All
implementations that support POSIX high
 resolution timers are supposed to support at least
the $which value
 of CLOCK_REALTIME, see clock_gettime.

clock_nanosleep ($which, $nanoseconds, $flags = 0)

Sleeps for the number of nanoseconds (1e9ths of a second) specified.
 Returns the number of
nanoseconds actually slept. The $which is the
 "clock id", as with clock_gettime() and
clock_getres(). The flags
 default to zero but TIMER_ABSTIME can specified (must be exported
explicitly) which means that $nanoseconds is not a time interval
 (as is the default) but
instead an absolute time. Can sleep for more
 than one second. Can also sleep for zero
seconds, which often works
 like a thread yield. See also Time::HiRes::sleep(),
Time::HiRes::usleep(), and Time::HiRes::nanosleep().

Do not expect clock_nanosleep() to be exact down to one nanosecond.
 Getting even accuracy
of one thousand nanoseconds is good.

Perl version 5.14.0 documentation - Time::HiRes

Page 5http://perldoc.perl.org

clock()

Return as seconds the process time (user + system time) spent by
 the process since the first
call to clock() (the definition is not
 "since the start of the process", though if you are lucky
these times
 may be quite close to each other, depending on the system). What this
 means is
that you probably need to store the result of your first call
 to clock(), and subtract that value
from the following results of clock().

The time returned also includes the process times of the terminated
 child processes for which
wait() has been executed. This value is
 somewhat like the second value returned by the
times() of core Perl,
 but not necessarily identical. Note that due to backward
 compatibility
limitations the returned value may wrap around at about
 2147 seconds or at about 36 minutes.

stat

stat FH

stat EXPR

As "stat" in perlfunc but with the access/modify/change file timestamps
 in subsecond
resolution, if the operating system and the filesystem
 both support such timestamps. To
override the standard stat():

 use Time::HiRes qw(stat);

Test for the value of &Time::HiRes::d_hires_stat to find out whether
 the operating system
supports subsecond file timestamps: a value
 larger than zero means yes. There are
unfortunately no easy
 ways to find out whether the filesystem supports such timestamps.

UNIX filesystems often do; NTFS does; FAT doesn't (FAT timestamp
 granularity is two
seconds).

A zero return value of &Time::HiRes::d_hires_stat means that
 Time::HiRes::stat is a no-op
passthrough for CORE::stat(),
 and therefore the timestamps will stay integers. The same
 thing
will happen if the filesystem does not do subsecond timestamps,
 even if the
&Time::HiRes::d_hires_stat is non-zero.

In any case do not expect nanosecond resolution, or even a microsecond
 resolution. Also note
that the modify/access timestamps might have
 different resolutions, and that they need not be
synchronized, e.g.
 if the operations are

 write
 stat # t1
 read
 stat # t2

the access time stamp from t2 need not be greater-than the modify
 time stamp from t1: it may
be equal or less.

EXAMPLES
 use Time::HiRes qw(usleep ualarm gettimeofday tv_interval);

 $microseconds = 750_000;
 usleep($microseconds);

 # signal alarm in 2.5s & every .1s thereafter
 ualarm(2_500_000, 100_000);
 # cancel that ualarm
 ualarm(0);

 # get seconds and microseconds since the epoch
 ($s, $usec) = gettimeofday();

Perl version 5.14.0 documentation - Time::HiRes

Page 6http://perldoc.perl.org

 # measure elapsed time
 # (could also do by subtracting 2 gettimeofday return values)
 $t0 = [gettimeofday];
 # do bunch of stuff here
 $t1 = [gettimeofday];
 # do more stuff here
 $t0_t1 = tv_interval $t0, $t1;

 $elapsed = tv_interval ($t0, [gettimeofday]);
 $elapsed = tv_interval ($t0);	 # equivalent code

 #
 # replacements for time, alarm and sleep that know about
 # floating seconds
 #
 use Time::HiRes;
 $now_fractions = Time::HiRes::time;
 Time::HiRes::sleep (2.5);
 Time::HiRes::alarm (10.6666666);

 use Time::HiRes qw (time alarm sleep);
 $now_fractions = time;
 sleep (2.5);
 alarm (10.6666666);

 # Arm an interval timer to go off first at 10 seconds and
 # after that every 2.5 seconds, in process virtual time

 use Time::HiRes qw (setitimer ITIMER_VIRTUAL time);

 $SIG{VTALRM} = sub { print time, "\n" };
 setitimer(ITIMER_VIRTUAL, 10, 2.5);

 use Time::HiRes qw(clock_gettime clock_getres CLOCK_REALTIME);
 # Read the POSIX high resolution timer.
 my $high = clock_getres(CLOCK_REALTIME);
 # But how accurate we can be, really?
 my $reso = clock_getres(CLOCK_REALTIME);

 use Time::HiRes qw(clock_nanosleep TIMER_ABSTIME);
 clock_nanosleep(CLOCK_REALTIME, 1e6);
 clock_nanosleep(CLOCK_REALTIME, 2e9, TIMER_ABSTIME);

 use Time::HiRes qw(clock);
 my $clock0 = clock();
 ... # Do something.
 my $clock1 = clock();
 my $clockd = $clock1 - $clock0;

 use Time::HiRes qw(stat);
 my ($atime, $mtime, $ctime) = (stat("istics"))[8, 9, 10];

Perl version 5.14.0 documentation - Time::HiRes

Page 7http://perldoc.perl.org

C API
In addition to the perl API described above, a C API is available for
 extension writers. The following C
functions are available in the
 modglobal hash:

 name C prototype
 --------------- ----------------------
 Time::NVtime double (*)()
 Time::U2time void (*)(pTHX_ UV ret[2])

Both functions return equivalent information (like gettimeofday)
 but with different representations.
The names NVtime and U2time
 were selected mainly because they are operating system
independent.
 (gettimeofday is Unix-centric, though some platforms like Win32 and
 VMS have
emulations for it.)

Here is an example of using NVtime from C:

 double (*myNVtime)(); /* Returns -1 on failure. */
 SV **svp = hv_fetch(PL_modglobal, "Time::NVtime", 12, 0);
 if (!svp) croak("Time::HiRes is required");
 if (!SvIOK(*svp)) croak("Time::NVtime isn't a function pointer");
 myNVtime = INT2PTR(double(*)(), SvIV(*svp));
 printf("The current time is: %f\n", (*myNVtime)());

DIAGNOSTICS
useconds or interval more than ...

In ualarm() you tried to use number of microseconds or interval (also
 in microseconds) more than
1_000_000 and setitimer() is not available
 in your system to emulate that case.

negative time not invented yet
You tried to use a negative time argument.

internal error: useconds < 0 (unsigned ... signed ...)
Something went horribly wrong-- the number of microseconds that cannot
 become negative just
became negative. Maybe your compiler is broken?

useconds or uinterval equal to or more than 1000000
In some platforms it is not possible to get an alarm with subsecond
 resolution and later than one
second.

unimplemented in this platform
Some calls simply aren't available, real or emulated, on every platform.

CAVEATS
Notice that the core time() maybe rounding rather than truncating.
 What this means is that the core
time() may be reporting the time
 as one second later than gettimeofday() and
Time::HiRes::time().

Adjusting the system clock (either manually or by services like ntp)
 may cause problems, especially
for long running programs that assume
 a monotonously increasing time (note that all platforms do not
adjust
 time as gracefully as UNIX ntp does). For example in Win32 (and derived
 platforms like Cygwin
and MinGW) the Time::HiRes::time() may temporarily
 drift off from the system clock (and the original
time()) by up to 0.5
 seconds. Time::HiRes will notice this eventually and recalibrate.
 Note that since
Time::HiRes 1.77 the clock_gettime(CLOCK_MONOTONIC)
 might help in this (in case your system
supports CLOCK_MONOTONIC).

Some systems have APIs but not implementations: for example QNX and Haiku
 have the interval

Perl version 5.14.0 documentation - Time::HiRes

Page 8http://perldoc.perl.org

timer APIs but not the functionality.

SEE ALSO
Perl modules BSD::Resource, Time::TAI64.

Your system documentation for clock, clock_gettime, clock_getres, clock_nanosleep,
clock_settime, getitimer, gettimeofday, setitimer, sleep, stat, ualarm.

AUTHORS
D. Wegscheid <wegscd@whirlpool.com>
 R. Schertler <roderick@argon.org>
 J. Hietaniemi
<jhi@iki.fi>
 G. Aas <gisle@aas.no>

COPYRIGHT AND LICENSE
Copyright (c) 1996-2002 Douglas E. Wegscheid. All rights reserved.

Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008 Jarkko Hietaniemi.
 All rights reserved.

This program is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

