
Perl version 5.14.0 documentation - perlobj

Page 1http://perldoc.perl.org

NAME
perlobj - Perl objects

DESCRIPTION
First you need to understand what references are in Perl.
 See perlref for that. Second, if you still find
the following
 reference work too complicated, a tutorial on object-oriented programming
 in Perl can be
found in perltoot and perltooc.

If you're still with us, then
 here are three very simple definitions that you should find reassuring.

1. An object is simply a reference that happens to know which class it
 belongs to.

2. A class is simply a package that happens to provide methods to deal
 with object references.

3. A method is simply a subroutine that expects an object reference (or
 a package name, for
class methods) as the first argument.

We'll cover these points now in more depth.

An Object is Simply a Reference
Unlike say C++, Perl doesn't provide any special syntax for
 constructors. A constructor is merely a
subroutine that returns a
 reference to something "blessed" into a class, generally the
 class that the
subroutine is defined in. Here is a typical
 constructor:

 package Critter;
 sub new { bless {} }

That word new isn't special. You could have written
 a construct this way, too:

 package Critter;
 sub spawn { bless {} }

This might even be preferable, because the C++ programmers won't
 be tricked into thinking that new
works in Perl as it does in C++.
 It doesn't. We recommend that you name your constructors whatever

makes sense in the context of the problem you're solving. For example,
 constructors in the Tk
extension to Perl are named after the widgets
 they create.

One thing that's different about Perl constructors compared with those in
 C++ is that in Perl, they
have to allocate their own memory. (The other
 things is that they don't automatically call overridden
base-class
 constructors.) The {} allocates an anonymous hash containing no
 key/value pairs, and
returns it The bless() takes that reference and
 tells the object it references that it's now a Critter, and
returns
 the reference. This is for convenience, because the referenced object
 itself knows that it has
been blessed, and the reference to it could
 have been returned directly, like this:

 sub new {
	 my $self = {};
	 bless $self;
	 return $self;
 }

You often see such a thing in more complicated constructors
 that wish to call methods in the class as
part of the construction:

 sub new {
	 my $self = {};
	 bless $self;
	 $self->initialize();
	 return $self;

Perl version 5.14.0 documentation - perlobj

Page 2http://perldoc.perl.org

 }

If you care about inheritance (and you should; see "Modules: Creation, Use, and Abuse" in perlmodlib
),
 then you want to use the two-arg form of bless
 so that your constructors may be inherited:

 sub new {
	 my $class = shift;
	 my $self = {};
	 bless $self, $class;
	 $self->initialize();
	 return $self;
 }

Or if you expect people to call not just CLASS->new() but also $obj->new(), then use something
like the following. (Note that using
 this to call new() on an instance does not automatically perform any
copying. If you want a shallow or deep copy of an object, you'll have to
 specifically allow for that.) The
initialize() method used will be of
 whatever $class we blessed the object into:

 sub new {
	 my $this = shift;
	 my $class = ref($this) || $this;
	 my $self = {};
	 bless $self, $class;
	 $self->initialize();
	 return $self;
 }

Within the class package, the methods will typically deal with the
 reference as an ordinary reference.
Outside the class package,
 the reference is generally treated as an opaque value that may
 be
accessed only through the class's methods.

Although a constructor can in theory re-bless a referenced object
 currently belonging to another class,
this is almost certainly going
 to get you into trouble. The new class is responsible for all
 cleanup later.
The previous blessing is forgotten, as an object
 may belong to only one class at a time. (Although of
course it's
 free to inherit methods from many classes.) If you find yourself
 having to do this, the parent
class is probably misbehaving, though.

A clarification: Perl objects are blessed. References are not. Objects
 know which package they
belong to. References do not. The bless()
 function uses the reference to find the object. Consider
 the
following example:

 $a = {};
 $b = $a;
 bless $a, BLAH;
 print "\$b is a ", ref($b), "\n";

This reports $b as being a BLAH, so obviously bless()
 operated on the object and not on the
reference.

A Class is Simply a Package
Unlike say C++, Perl doesn't provide any special syntax for class
 definitions. You use a package as a
class by putting method
 definitions into the class.

There is a special array within each package called @ISA, which says
 where else to look for a
method if you can't find it in the current
 package. This is how Perl implements inheritance. Each
element of the
 @ISA array is just the name of another package that happens to be a
 class package.
The classes are searched for missing methods in
 depth-first, left-to-right order by default (see mro for

Perl version 5.14.0 documentation - perlobj

Page 3http://perldoc.perl.org

alternative
 search order and other in-depth information). The classes accessible
 through @ISA are
known as base classes of the current class.

All classes implicitly inherit from class UNIVERSAL as their
 last base class. Several commonly used
methods are automatically
 supplied in the UNIVERSAL class; see Default UNIVERSAL methods or
UNIVERSAL for more details.

If a missing method is found in a base class, it is cached
 in the current class for efficiency. Changing
@ISA or defining new
 subroutines invalidates the cache and causes Perl to do the lookup again.

If neither the current class, its named base classes, nor the UNIVERSAL
 class contains the requested
method, these three places are searched
 all over again, this time looking for a method named
AUTOLOAD(). If an
 AUTOLOAD is found, this method is called on behalf of the missing method,

setting the package global $AUTOLOAD to be the fully qualified name of
 the method that was
intended to be called.

If none of that works, Perl finally gives up and complains.

If you want to stop the AUTOLOAD inheritance say simply

	 sub AUTOLOAD;

and the call will die using the name of the sub being called.

Perl classes do method inheritance only. Data inheritance is left up
 to the class itself. By and large,
this is not a problem in Perl,
 because most classes model the attributes of their object using an

anonymous hash, which serves as its own little namespace to be carved up
 by the various classes
that might want to do something with the object.
 The only problem with this is that you can't sure that
you aren't using
 a piece of the hash that isn't already used. A reasonable workaround
 is to prepend
your fieldname in the hash with the package name.

 sub bump {
	 my $self = shift;
	 $self->{ __PACKAGE__ . ".count"}++;
 }

A Method is Simply a Subroutine
Unlike say C++, Perl doesn't provide any special syntax for method
 definition. (It does provide a little
syntax for method invocation
 though. More on that later.) A method expects its first argument
 to be
the object (reference) or package (string) it is being invoked
 on. There are two ways of calling
methods, which we'll call class
 methods and instance methods.

A class method expects a class name as the first argument. It
 provides functionality for the class as a
whole, not for any
 individual object belonging to the class. Constructors are often
 class methods, but
see perltoot and perltooc for alternatives.
 Many class methods simply ignore their first argument,
because they
 already know what package they're in and don't care what package
 they were invoked
via. (These aren't necessarily the same, because
 class methods follow the inheritance tree just like
ordinary instance
 methods.) Another typical use for class methods is to look up an
 object by name:

 sub find {
	 my ($class, $name) = @_;
	 $objtable{$name};
 }

An instance method expects an object reference as its first argument.
 Typically it shifts the first
argument into a "self" or "this" variable,
 and then uses that as an ordinary reference.

 sub display {

Perl version 5.14.0 documentation - perlobj

Page 4http://perldoc.perl.org

	 my $self = shift;
	 my @keys = @_ ? @_ : sort keys %$self;
	 foreach $key (@keys) {
	 print "\t$key => $self->{$key}\n";
	 }
 }

Method Invocation
For various historical and other reasons, Perl offers two equivalent
 ways to write a method call. The
simpler and more common way is to use
 the arrow notation:

 my $fred = Critter->find("Fred");
 $fred->display("Height", "Weight");

You should already be familiar with the use of the -> operator with
 references. In fact, since $fred
above is a reference to an object,
 you could think of the method call as just another form of

dereferencing.

Whatever is on the left side of the arrow, whether a reference or a
 class name, is passed to the
method subroutine as its first argument.
 So the above code is mostly equivalent to:

 my $fred = Critter::find("Critter", "Fred");
 Critter::display($fred, "Height", "Weight");

How does Perl know which package the subroutine is in? By looking at
 the left side of the arrow,
which must be either a package name or a
 reference to an object, i.e. something that has been
blessed to a
 package. Either way, that's the package where Perl starts looking. If
 that package has no
subroutine with that name, Perl starts looking for
 it in any base classes of that package, and so on.

If you need to, you can force Perl to start looking in some other package:

 my $barney = MyCritter->Critter::find("Barney");
 $barney->Critter::display("Height", "Weight");

Here MyCritter is presumably a subclass of Critter that defines
 its own versions of find() and
display(). We haven't specified what
 those methods do, but that doesn't matter above since we've
forced Perl
 to start looking for the subroutines in Critter.

As a special case of the above, you may use the SUPER pseudo-class to
 tell Perl to start looking for
the method in the packages named in the
 current class's @ISA list.

 package MyCritter;
 use base 'Critter'; # sets @MyCritter::ISA = ('Critter');

 sub display {
 my ($self, @args) = @_;
 $self->SUPER::display("Name", @args);
 }

It is important to note that SUPER refers to the superclass(es) of the current package and not to the
superclass(es) of the object. Also, the SUPER pseudo-class can only currently be used as a modifier
to a method
 name, but not in any of the other ways that class names are normally used,
 eg:

 something->SUPER::method(...);	 # OK
 SUPER::method(...);			 # WRONG
 SUPER->method(...);			 # WRONG

Perl version 5.14.0 documentation - perlobj

Page 5http://perldoc.perl.org

Instead of a class name or an object reference, you can also use any
 expression that returns either of
those on the left side of the arrow.
 So the following statement is valid:

 Critter->find("Fred")->display("Height", "Weight");

and so is the following:

 my $fred = (reverse "rettirC")->find(reverse "derF");

The right side of the arrow typically is the method name, but a simple scalar variable containing either
the method name or a subroutine reference can also be used.

If the right side of the arrow is a scalar containing a reference
 to a subroutine, then this is equivalent
to calling the referenced
 subroutine directly with the class name or object on the left side
 of the arrow
as its first argument. No lookup is done and there is
 no requirement that the subroutine be defined in
any package related
 to the class name or object on the left side of the arrow.

For example, the following calls to $display are equivalent:

 my $display = sub { my $self = shift; ... };
 $fred->$display("Height", "Weight");
 $display->($fred, "Height", "Weight");

Indirect Object Syntax
The other way to invoke a method is by using the so-called "indirect
 object" notation. This syntax was
available in Perl 4 long before
 objects were introduced, and is still used with filehandles like this:

 print STDERR "help!!!\n";

The same syntax can be used to call either object or class methods.

 my $fred = find Critter "Fred";
 display $fred "Height", "Weight";

Notice that there is no comma between the object or class name and the
 parameters. This is how Perl
can tell you want an indirect method call
 instead of an ordinary subroutine call.

But what if there are no arguments? In that case, Perl must guess what
 you want. Even worse, it must
make that guess at compile time.
 Usually Perl gets it right, but when it doesn't you get a function
 call
compiled as a method, or vice versa. This can introduce subtle bugs
 that are hard to detect.

For example, a call to a method new in indirect notation (as C++
 programmers are wont to make) can
be miscompiled into a subroutine
 call if there's already a new function in scope. You'd end up
 calling
the current package's new as a subroutine, rather than the
 desired class's method. The compiler tries
to cheat by remembering
 bareword requires, but the grief when it messes up just isn't worth the

years of debugging it will take you to track down such subtle bugs.

There is another problem with this syntax: the indirect object is
 limited to a name, a scalar variable, or
a block, because it would have
 to do too much lookahead otherwise, just like any other postfix

dereference in the language. (These are the same quirky rules as are
 used for the filehandle slot in
functions like print and printf.)
 This can lead to horribly confusing precedence problems, as in
these
 next two lines:

 move $obj->{FIELD}; # probably wrong!
 move $ary[$i]; # probably wrong!

Those actually parse as the very surprising:

Perl version 5.14.0 documentation - perlobj

Page 6http://perldoc.perl.org

 $obj->move->{FIELD}; # Well, lookee here
 $ary->move([$i]); # Didn't expect this one, eh?

Rather than what you might have expected:

 $obj->{FIELD}->move(); # You should be so lucky.
 $ary[$i]->move; # Yeah, sure.

To get the correct behavior with indirect object syntax, you would have
 to use a block around the
indirect object:

 move {$obj->{FIELD}};
 move {$ary[$i]};

Even then, you still have the same potential problem if there happens to
 be a function named move in
the current package. The ->
 notation suffers from neither of these disturbing ambiguities, so we
recommend you use it exclusively. However, you may still end up having
 to read code using the
indirect object notation, so it's important to be
 familiar with it.

Default UNIVERSAL methods
The UNIVERSAL package automatically contains the following methods that
 are inherited by all other
classes:

isa(CLASS)

isa returns true if its object is blessed into a subclass of CLASS

DOES(ROLE)

DOES returns true if its object claims to perform the role ROLE. By
 default, this is equivalent to
isa.

can(METHOD)

can checks to see if its object has a method called METHOD,
 if it does then a reference to the
sub is returned, if it does not then undef is returned.

VERSION([NEED])

VERSION returns the version number of the class (package). If the
 NEED argument is given
then it will check that the current version (as
 defined by the $VERSION variable in the given
package) not less than
 NEED; it will die if this is not the case. This method is called
automatically
 by the VERSION form of use.

 use Package 1.2 qw(some imported subs);
 # implies:
 Package->VERSION(1.2);

Destructors
When the last reference to an object goes away, the object is
 automatically destroyed. (This may
even be after you exit, if you've
 stored references in global variables.) If you want to capture control

just before the object is freed, you may define a DESTROY method in
 your class. It will automatically
be called at the appropriate moment,
 and you can do any extra cleanup you need to do. Perl passes a
reference
 to the object under destruction as the first (and only) argument. Beware
 that the reference
is a read-only value, and cannot be modified by
 manipulating $_[0] within the destructor. The object
itself (i.e.
 the thingy the reference points to, namely ${$_[0]}, @{$_[0]}, %{$_[0]} etc.) is not
similarly constrained.

Since DESTROY methods can be called at unpredictable times, it is
 important that you localise any
global variables that the method may
 update. In particular, localise $@ if you use eval {} and

Perl version 5.14.0 documentation - perlobj

Page 7http://perldoc.perl.org

localise $? if you use system or backticks.

If you arrange to re-bless the reference before the destructor returns,
 perl will again call the
DESTROY method for the re-blessed object after
 the current one returns. This can be used for clean
delegation of
 object destruction, or for ensuring that destructors in the base classes
 of your choosing
get called. Explicitly calling DESTROY is also possible,
 but is usually never needed.

DESTROY is subject to AUTOLOAD lookup, just like any other method. Hence, if
 your class has an
AUTOLOAD method, but does not need any DESTROY actions,
 you probably want to provide a
DESTROY method anyway, to prevent an
 expensive call to AUTOLOAD each time an object is freed.
As this technique
 makes empty DESTROY methods common, the implementation is optimised so that
a DESTROY method that is an empty or constant subroutine, and hence could
 have no side effects
anyway, is not actually called.

Do not confuse the previous discussion with how objects CONTAINED in the current
 one are
destroyed. Such objects will be freed and destroyed automatically
 when the current object is freed,
provided no other references to them exist
 elsewhere.

Summary
That's about all there is to it. Now you need just to go off and buy a
 book about object-oriented design
methodology, and bang your forehead
 with it for the next six months or so.

Two-Phased Garbage Collection
For most purposes, Perl uses a fast and simple, reference-based
 garbage collection system. That
means there's an extra
 dereference going on at some level, so if you haven't built
 your Perl
executable using your C compiler's -O flag, performance
 will suffer. If you have built Perl with cc -O,
then this
 probably won't matter.

A more serious concern is that unreachable memory with a non-zero
 reference count will not normally
get freed. Therefore, this is a bad
 idea:

 {
	 my $a;
	 $a = \$a;
 }

Even thought $a should go away, it can't. When building recursive data
 structures, you'll have to
break the self-reference yourself explicitly
 if you don't care to leak. For example, here's a
self-referential
 node such as one might use in a sophisticated tree structure:

 sub new_node {
	 my $class = shift;
	 my $node = {};
	 $node->{LEFT} = $node->{RIGHT} = $node;
	 $node->{DATA} = [@_];
	 return bless $node => $class;
 }

If you create nodes like that, they (currently) won't go away unless you
 break their self reference
yourself. (In other words, this is not to be
 construed as a feature, and you shouldn't depend on it.)

Almost.

When an interpreter thread finally shuts down (usually when your program
 exits), then a rather costly
but complete mark-and-sweep style of garbage
 collection is performed, and everything allocated by
that thread gets
 destroyed. This is essential to support Perl as an embedded or a
 multithreadable
language. For example, this program demonstrates Perl's
 two-phased garbage collection:

Perl version 5.14.0 documentation - perlobj

Page 8http://perldoc.perl.org

 #!/usr/bin/perl
 package Subtle;

 sub new {
	 my $test;
	 $test = \$test;
	 warn "CREATING " . \$test;
	 return bless \$test;
 }

 sub DESTROY {
	 my $self = shift;
	 warn "DESTROYING $self";
 }

 package main;

 warn "starting program";
 {
	 my $a = Subtle->new;
	 my $b = Subtle->new;
	 $$a = 0; # break selfref
	 warn "leaving block";
 }

 warn "just exited block";
 warn "time to die...";
 exit;

When run as /foo/test, the following output is produced:

 starting program at /foo/test line 18.
 CREATING SCALAR(0x8e5b8) at /foo/test line 7.
 CREATING SCALAR(0x8e57c) at /foo/test line 7.
 leaving block at /foo/test line 23.
 DESTROYING Subtle=SCALAR(0x8e5b8) at /foo/test line 13.
 just exited block at /foo/test line 26.
 time to die... at /foo/test line 27.
 DESTROYING Subtle=SCALAR(0x8e57c) during global destruction.

Notice that "global destruction" bit there? That's the thread
 garbage collector reaching the
unreachable.

Objects are always destructed, even when regular refs aren't. Objects
 are destructed in a separate
pass before ordinary refs just to prevent object destructors from using refs that have been themselves
destructed. Plain refs are only garbage-collected if the destruct level
 is greater than 0. You can test
the higher levels of global destruction
 by setting the PERL_DESTRUCT_LEVEL environment
variable, presuming -DDEBUGGING was enabled during perl build time.
 See
"PERL_DESTRUCT_LEVEL" in perlhacktips for more information.

A more complete garbage collection strategy will be implemented
 at a future date.

In the meantime, the best solution is to create a non-recursive container
 class that holds a pointer to
the self-referential data structure.
 Define a DESTROY method for the containing object's class that
manually
 breaks the circularities in the self-referential structure.

Perl version 5.14.0 documentation - perlobj

Page 9http://perldoc.perl.org

SEE ALSO
A kinder, gentler tutorial on object-oriented programming in Perl can
 be found in perltoot, perlboot and
perltooc. You should
 also check out perlbot for other object tricks, traps, and tips, as
 well as
perlmodlib for some style guides on constructing both
 modules and classes.

