
Perl version 5.14.0 documentation - TAP::Parser::Aggregator

Page 1http://perldoc.perl.org

NAME
TAP::Parser::Aggregator - Aggregate TAP::Parser results

VERSION
Version 3.23

SYNOPSIS
 use TAP::Parser::Aggregator;

 my $aggregate = TAP::Parser::Aggregator->new;
 $aggregate->add('t/00-load.t', $load_parser);
 $aggregate->add('t/10-lex.t', $lex_parser);

 my $summary = <<'END_SUMMARY';
 Passed: %s
 Failed: %s
 Unexpectedly succeeded: %s
 END_SUMMARY
 printf $summary,
 scalar $aggregate->passed,
 scalar $aggregate->failed,
 scalar $aggregate->todo_passed;

DESCRIPTION
TAP::Parser::Aggregator collects parser objects and allows
 reporting/querying their aggregate
results.

METHODS
Class Methods
new

 my $aggregate = TAP::Parser::Aggregator->new;

Returns a new TAP::Parser::Aggregator object.

Instance Methods
add

 $aggregate->add($description => $parser);

The $description is usually a test file name (but only by
 convention.) It is used as a unique
identifier (see e.g. parsers.) Reusing a description is a fatal error.

The $parser is a TAP::Parser object.

parsers

 my $count = $aggregate->parsers;
 my @parsers = $aggregate->parsers;
 my @parsers = $aggregate->parsers(@descriptions);

In scalar context without arguments, this method returns the number of parsers
 aggregated. In list
context without arguments, returns the parsers in the
 order they were added.

If @descriptions is given, these correspond to the keys used in each
 call to the add() method.
Returns an array of the requested parsers (in
 the requested order) in list context or an array reference

Perl version 5.14.0 documentation - TAP::Parser::Aggregator

Page 2http://perldoc.perl.org

in scalar
 context.

Requesting an unknown identifier is a fatal error.

descriptions

Get an array of descriptions in the order in which they were added to
 the aggregator.

start

Call start immediately before adding any results to the aggregator.
 Among other times it records the
start time for the test run.

stop

Call stop immediately after adding all test results to the aggregator.

elapsed

Elapsed returns a Benchmark object that represents the running time
 of the aggregated tests. In order
for elapsed to be valid you must
 call start before running the tests and stop immediately

afterwards.

elapsed_timestr

Returns a formatted string representing the runtime returned by elapsed(). This lets the caller not
worry about Benchmark.

all_passed

Return true if all the tests passed and no parse errors were detected.

get_status

Get a single word describing the status of the aggregated tests.
 Depending on the outcome of the
tests returns 'PASS', 'FAIL' or
 'NOTESTS'. This token is understood by CPAN::Reporter.

Summary methods
Each of the following methods will return the total number of corresponding
 tests if called in scalar
context. If called in list context, returns the
 descriptions of the parsers which contain the
corresponding tests (see add
 for an explanation of description.

* failed

* parse_errors

* passed

* planned

* skipped

* todo

* todo_passed

* wait

* exit

For example, to find out how many tests unexpectedly succeeded (TODO tests
 which passed when
they shouldn't):

 my $count = $aggregate->todo_passed;
 my @descriptions = $aggregate->todo_passed;

Note that wait and exit are the totals of the wait and exit
 statuses of each of the tests. These
values are totalled only to provide
 a true value if any of them are non-zero.

Perl version 5.14.0 documentation - TAP::Parser::Aggregator

Page 3http://perldoc.perl.org

total

 my $tests_run = $aggregate->total;

Returns the total number of tests run.

has_problems

 if ($parser->has_problems) {
 ...
 }

Identical to has_errors, but also returns true if any TODO tests
 unexpectedly succeeded. This is
more akin to "warnings".

has_errors

 if ($parser->has_errors) {
 ...
 }

Returns true if any of the parsers failed. This includes:

* Failed tests

* Parse errors

* Bad exit or wait status

todo_failed

 # deprecated in favor of 'todo_passed'. This method was horribly
misnamed.

This was a badly misnamed method. It indicates which TODO tests unexpectedly
 succeeded. Will
now issue a warning and call todo_passed.

See Also
TAP::Parser

TAP::Harness

