
Perl version 5.14.0 documentation - Symbol

Page 1http://perldoc.perl.org

NAME
Symbol - manipulate Perl symbols and their names

SYNOPSIS
 use Symbol;

 $sym = gensym;
 open($sym, "filename");
 $_ = <$sym>;
 # etc.

 ungensym $sym; # no effect

 # replace *FOO{IO} handle but not $FOO, %FOO, etc.
 *FOO = geniosym;

 print qualify("x"), "\n"; # "main::x"
 print qualify("x", "FOO"), "\n"; # "FOO::x"
 print qualify("BAR::x"), "\n"; # "BAR::x"
 print qualify("BAR::x", "FOO"), "\n"; # "BAR::x"
 print qualify("STDOUT", "FOO"), "\n"; # "main::STDOUT" (global)
 print qualify(*x), "\n"; # returns *x
 print qualify(*x, "FOO"), "\n"; # returns *x

 use strict refs;
 print { qualify_to_ref $fh } "foo!\n";
 $ref = qualify_to_ref $name, $pkg;

 use Symbol qw(delete_package);
 delete_package('Foo::Bar');
 print "deleted\n" unless exists $Foo::{'Bar::'};

DESCRIPTION
Symbol::gensym creates an anonymous glob and returns a reference
 to it. Such a glob reference
can be used as a file or directory
 handle.

For backward compatibility with older implementations that didn't
 support anonymous globs,
Symbol::ungensym is also provided.
 But it doesn't do anything.

Symbol::geniosym creates an anonymous IO handle. This can be
 assigned into an existing glob
without affecting the non-IO portions
 of the glob.

Symbol::qualify turns unqualified symbol names into qualified
 variable names (e.g. "myvar" ->
"MyPackage::myvar"). If it is given a
 second parameter, qualify uses it as the default package;

otherwise, it uses the package of its caller. Regardless, global
 variable names (e.g. "STDOUT",
"ENV", "SIG") are always qualified with
 "main::".

Qualification applies only to symbol names (strings). References are
 left unchanged under the
assumption that they are glob references,
 which are qualified by their nature.

Symbol::qualify_to_ref is just like Symbol::qualify except that it
 returns a glob ref rather
than a symbol name, so you can use the result
 even if use strict 'refs' is in effect.

Symbol::delete_package wipes out a whole package namespace. Note
 this routine is not
exported by default--you may want to import it
 explicitly.

Perl version 5.14.0 documentation - Symbol

Page 2http://perldoc.perl.org

BUGS
Symbol::delete_package is a bit too powerful. It undefines every symbol that
 lives in the
specified package. Since perl, for performance reasons, does not
 perform a symbol table lookup each
time a function is called or a global
 variable is accessed, some code that has already been loaded
and that makes use
 of symbols in package Foo may stop working after you delete Foo, even if
 you
reload the Foo module afterwards.

