
Perl version 5.14.0 documentation - ExtUtils::Liblist

Page 1http://perldoc.perl.org

NAME
ExtUtils::Liblist - determine libraries to use and how to use them

SYNOPSIS
 require ExtUtils::Liblist;

 $MM->ext($potential_libs, $verbose, $need_names);

 # Usually you can get away with:
 ExtUtils::Liblist->ext($potential_libs, $verbose, $need_names)

DESCRIPTION
This utility takes a list of libraries in the form -llib1 -llib2
 -llib3 and returns lines suitable for
inclusion in an extension
 Makefile. Extra library paths may be included with the form
-L/another/path this will affect the searches for all subsequent
 libraries.

It returns an array of four or five scalar values: EXTRALIBS,
 BSLOADLIBS, LDLOADLIBS,
LD_RUN_PATH, and, optionally, a reference to
 the array of the filenames of actual libraries. Some of
these don't
 mean anything unless on Unix. See the details about those platform
 specifics below. The
list of the filenames is returned only if
 $need_names argument is true.

Dependent libraries can be linked in one of three ways:

* For static extensions

by the ld command when the perl binary is linked with the extension
 library. See EXTRALIBS
below.

* For dynamic extensions at build/link time

by the ld command when the shared object is built/linked. See
 LDLOADLIBS below.

* For dynamic extensions at load time

by the DynaLoader when the shared object is loaded. See BSLOADLIBS
 below.

EXTRALIBS
List of libraries that need to be linked with when linking a perl
 binary which includes this extension.
Only those libraries that
 actually exist are included. These are written to a file and used
 when linking
perl.

LDLOADLIBS and LD_RUN_PATH
List of those libraries which can or must be linked into the shared
 library when created using ld. These
may be static or dynamic
 libraries. LD_RUN_PATH is a colon separated list of the directories
 in
LDLOADLIBS. It is passed as an environment variable to the process
 that links the shared library.

BSLOADLIBS
List of those libraries that are needed but can be linked in
 dynamically at run time on this platform.
SunOS/Solaris does not need
 this because ld records the information (from LDLOADLIBS) into the

object file. This list is used to create a .bs (bootstrap) file.

PORTABILITY
This module deals with a lot of system dependencies and has quite a
 few architecture specific ifs in
the code.

VMS implementation
The version of ext() which is executed under VMS differs from the
 Unix-OS/2 version in several
respects:

Perl version 5.14.0 documentation - ExtUtils::Liblist

Page 2http://perldoc.perl.org

Input library and path specifications are accepted with or without the -l and -L prefixes used by
Unix linkers. If neither prefix is
 present, a token is considered a directory to search if it is in fact
 a
directory, and a library to search for otherwise. Authors who wish
 their extensions to be portable
to Unix or OS/2 should use the Unix
 prefixes, since the Unix-OS/2 version of ext() requires them.

Wherever possible, shareable images are preferred to object libraries,
 and object libraries to plain
object files. In accordance with VMS
 naming conventions, ext() looks for files named libshr and lib
rtl;
 it also looks for liblib and liblib to accommodate Unix conventions
 used in some ported
software.

For each library that is found, an appropriate directive for a linker options
 file is generated. The
return values are space-separated strings of
 these directives, rather than elements used on the
linker command line.

LDLOADLIBS contains both the libraries found based on $potential_libs and
 the CRTLs, if
any, specified in Config.pm. EXTRALIBS contains just those
 libraries found based on
$potential_libs. BSLOADLIBS and LD_RUN_PATH
 are always empty.

In addition, an attempt is made to recognize several common Unix library
 names, and filter them out
or convert them to their VMS equivalents, as
 appropriate.

In general, the VMS version of ext() should properly handle input from
 extensions originally designed
for a Unix or VMS environment. If you
 encounter problems, or discover cases where the search could
be improved,
 please let us know.

Win32 implementation
The version of ext() which is executed under Win32 differs from the
 Unix-OS/2 version in several
respects:

If $potential_libs is empty, the return value will be empty.
 Otherwise, the libraries specified
by $Config{perllibs} (see Config.pm)
 will be appended to the list of $potential_libs.
The libraries
 will be searched for in the directories specified in $potential_libs,
$Config{libpth}, and in $Config{installarchlib}/CORE.
 For each library that is found,
a space-separated list of fully qualified
 library pathnames is generated.

Input library and path specifications are accepted with or without the -l and -L prefixes used by
Unix linkers.

An entry of the form -La:\foo specifies the a:\foo directory to look
 for the libraries that follow.

An entry of the form -lfoo specifies the library foo, which may be
 spelled differently depending
on what kind of compiler you are using. If
 you are using GCC, it gets translated to libfoo.a, but
for other win32
 compilers, it becomes foo.lib. If no files are found by those translated
 names,
one more attempt is made to find them using either foo.a or libfoo.lib, depending on
whether GCC or some other win32 compiler is
 being used, respectively.

If neither the -L or -l prefix is present in an entry, the entry is
 considered a directory to search if
it is in fact a directory, and a
 library to search for otherwise. The $Config{lib_ext} suffix will

be appended to any entries that are not directories and don't already have
 the suffix.

Note that the -L and -l prefixes are not required, but authors
 who wish their extensions to be
portable to Unix or OS/2 should use the
 prefixes, since the Unix-OS/2 version of ext() requires
them.

Entries cannot be plain object files, as many Win32 compilers will
 not handle object files in the
place of libraries.

Entries in $potential_libs beginning with a colon and followed by
 alphanumeric characters
are treated as flags. Unknown flags will be ignored.

An entry that matches /:nodefault/i disables the appending of default
 libraries found in
$Config{perllibs} (this should be only needed very rarely).

Perl version 5.14.0 documentation - ExtUtils::Liblist

Page 3http://perldoc.perl.org

An entry that matches /:nosearch/i disables all searching for
 the libraries specified after it.
Translation of -Lfoo and -lfoo still happens as appropriate (depending on compiler being used,
as reflected by $Config{cc}), but the entries are not verified to be
 valid files or directories.

An entry that matches /:search/i reenables searching for
 the libraries specified after it. You
can put it at the end to
 enable searching for default libraries specified by $Config{perllibs}.

The libraries specified may be a mixture of static libraries and
 import libraries (to link with DLLs).
Since both kinds are used
 pretty transparently on the Win32 platform, we do not attempt to

distinguish between them.

LDLOADLIBS and EXTRALIBS are always identical under Win32, and BSLOADLIBS
 and
LD_RUN_PATH are always empty (this may change in future).

You must make sure that any paths and path components are properly
 surrounded with
double-quotes if they contain spaces. For example, $potential_libs could be (literally):

	 "-Lc:\Program Files\vc\lib" msvcrt.lib "la test\foo bar.lib"

Note how the first and last entries are protected by quotes in order
 to protect the spaces.

Since this module is most often used only indirectly from extension Makefile.PL files, here is an
example Makefile.PL entry to add
 a library to the build process for an extension:

 LIBS => ['-lgl']

When using GCC, that entry specifies that MakeMaker should first look
 for libgl.a (followed by
gl.a) in all the locations specified by $Config{libpth}.

When using a compiler other than GCC, the above entry will search for gl.lib (followed by
libgl.lib).

If the library happens to be in a location not in $Config{libpth},
 you need:

 LIBS => ['-Lc:\gllibs -lgl']

Here is a less often used example:

 LIBS => ['-lgl', ':nosearch -Ld:\mesalibs -lmesa -luser32']

This specifies a search for library gl as before. If that search
 fails to find the library, it looks at the
next item in the list. The :nosearch flag will prevent searching for the libraries that follow,
 so it
simply returns the value as -Ld:\mesalibs -lmesa -luser32,
 since GCC can use that value
as is with its linker.

When using the Visual C compiler, the second item is returned as -libpath:d:\mesalibs
mesa.lib user32.lib.

When using the Borland compiler, the second item is returned as -Ld:\mesalibs mesa.lib
user32.lib, and MakeMaker takes care of
 moving the -Ld:\mesalibs to the correct place in
the linker
 command line.

SEE ALSO
ExtUtils::MakeMaker

