
Perl version 5.14.0 documentation - perlrecharclass

Page 1http://perldoc.perl.org

NAME
perlrecharclass - Perl Regular Expression Character Classes

DESCRIPTION
The top level documentation about Perl regular expressions
 is found in perlre.

This manual page discusses the syntax and use of character
 classes in Perl regular expressions.

A character class is a way of denoting a set of characters
 in such a way that one character of the set
is matched.
 It's important to remember that: matching a character class
 consumes exactly one
character in the source string. (The source
 string is the string the regular expression is matched
against.)

There are three types of character classes in Perl regular
 expressions: the dot, backslash sequences,
and the form enclosed in square
 brackets. Keep in mind, though, that often the term "character class"
is used
 to mean just the bracketed form. Certainly, most Perl documentation does that.

The dot
The dot (or period), . is probably the most used, and certainly
 the most well-known character class.
By default, a dot matches any
 character, except for the newline. The default can be changed to
 add
matching the newline by using the single line modifier: either
 for the entire regular expression with the
/s modifier, or
 locally with (?s). (The experimental \N backslash sequence, described
 below,
matches any character except newline without regard to the single line modifier.)

Here are some examples:

 "a" =~ /./ # Match
 "." =~ /./ # Match
 "" =~ /./ # No match (dot has to match a character)
 "\n" =~ /./ # No match (dot does not match a newline)
 "\n" =~ /./s # Match (global 'single line' modifier)
 "\n" =~ /(?s:.)/ # Match (local 'single line' modifier)
 "ab" =~ /^.$/ # No match (dot matches one character)

Backslash sequences
A backslash sequence is a sequence of characters, the first one of which is a
 backslash. Perl
ascribes special meaning to many such sequences, and some of
 these are character classes. That is,
they match a single character each,
 provided that the character belongs to the specific set of
characters defined
 by the sequence.

Here's a list of the backslash sequences that are character classes. They
 are discussed in more detail
below. (For the backslash sequences that aren't
 character classes, see perlrebackslash.)

 \d Match a decimal digit character.
 \D Match a non-decimal-digit character.
 \w Match a "word" character.
 \W Match a non-"word" character.
 \s Match a whitespace character.
 \S Match a non-whitespace character.
 \h Match a horizontal whitespace character.
 \H Match a character that isn't horizontal whitespace.
 \v Match a vertical whitespace character.
 \V Match a character that isn't vertical whitespace.
 \N Match a character that isn't a newline. Experimental.
 \pP, \p{Prop} Match a character that has the given Unicode property.
 \PP, \P{Prop} Match a character that doesn't have the Unicode property

Perl version 5.14.0 documentation - perlrecharclass

Page 2http://perldoc.perl.org

Digits

\d matches a single character considered to be a decimal digit.
 If the /a modifier in effect, it matches
[0-9]. Otherwise, it
 matches anything that is matched by \p{Digit}, which includes [0-9].
 (An
unlikely possible exception is that under locale matching rules, the
 current locale might not have [0-9]
matched by \d, and/or might match
 other characters whose code point is less than 256. Such a
locale
 definition would be in violation of the C language standard, but Perl
 doesn't currently assume
anything in regard to this.)

What this means is that unless the /a modifier is in effect \d not
 only matches the digits '0' - '9', but
also Arabic, Devanagari, and
 digits from other languages. This may cause some confusion, and some
security issues.

Some digits that \d matches look like some of the [0-9] ones, but
 have different values. For example,
BENGALI DIGIT FOUR (U+09EA) looks
 very much like an ASCII DIGIT EIGHT (U+0038). An
application that
 is expecting only the ASCII digits might be misled, or if the match is \d+, the matched
string might contain a mixture of digits from
 different writing systems that look like they signify a
number different
 than they actually do. "num()" in Unicode::UCD can be used to safely
 calculate the
value, returning undef if the input string contains
 such a mixture.

What \p{Digit} means (and hence \d except under the /a
 modifier) is
\p{General_Category=Decimal_Number}, or synonymously,
\p{General_Category=Digit}. Starting with Unicode version 4.1, this
 is the same set of
characters matched by \p{Numeric_Type=Decimal}.
 But Unicode also has a different property
with a similar name, \p{Numeric_Type=Digit}, which matches a completely different set of

characters. These characters are things such as CIRCLED DIGIT ONE
 or subscripts, or are from
writing systems that lack all ten digits.

The design intent is for \d to exactly match the set of characters
 that can safely be used with "normal"
big-endian positional decimal
 syntax, where, for example 123 means one 'hundred', plus two 'tens',

plus three 'ones'. This positional notation does not necessarily apply
 to characters that match the
other type of "digit", \p{Numeric_Type=Digit}, and so \d doesn't match them.

In Unicode 5.2, the Tamil digits (U+0BE6 - U+0BEF) can also legally be
 used in old-style Tamil
numbers in which they would appear no more than
 one in a row, separated by characters that mean
"times 10", "times 100",
 etc. (See http://www.unicode.org/notes/tn21.)

Any character not matched by \d is matched by \D.

Word characters

A \w matches a single alphanumeric character (an alphabetic character, or a
 decimal digit) or a
connecting punctuation character, such as an
 underscore ("_"). It does not match a whole word. To
match a whole
 word, use \w+. This isn't the same thing as matching an English word, but
 in the ASCII
range it is the same as a string of Perl-identifier
 characters.

If the /a modifier is in effect ...

\w matches the 63 characters [a-zA-Z0-9_].

otherwise ...

For code points above 255 ...

\w matches the same as \p{Word} matches in this range. That is,
 it matches Thai
letters, Greek letters, etc. This includes connector
 punctuation (like the underscore)
which connect two words together, or
 diacritics, such as a COMBINING TILDE and the
modifier letters, which
 are generally used to add auxiliary markings to letters.

For code points below 256 ...

if locale rules are in effect ...

\w matches the platform's native underscore character plus whatever
 the

Perl version 5.14.0 documentation - perlrecharclass

Page 3http://perldoc.perl.org

locale considers to be alphanumeric.

if Unicode rules are in effect or if on an EBCDIC platform ...

\w matches exactly what \p{Word} matches.

otherwise ...

\w matches [a-zA-Z0-9_].

Which rules apply are determined as described in "Which character set modifier is in effect?" in perlre.

There are a number of security issues with the full Unicode list of word
 characters. See
http://unicode.org/reports/tr36.

Also, for a somewhat finer-grained set of characters that are in programming
 language identifiers
beyond the ASCII range, you may wish to instead use the
 more customized Unicode properties,
"ID_Start", ID_Continue", "XID_Start", and
 "XID_Continue". See http://unicode.org/reports/tr31.

Any character not matched by \w is matched by \W.

Whitespace

\s matches any single character considered whitespace.

If the /a modifier is in effect ...

\s matches the 5 characters [\t\n\f\r]; that is, the horizontal tab,
 the newline, the form feed,
the carriage return, and the space. (Note
 that it doesn't match the vertical tab, \cK on ASCII
platforms.)

otherwise ...

For code points above 255 ...

\s matches exactly the code points above 255 shown with an "s" column
 in the table
below.

For code points below 256 ...

if locale rules are in effect ...

\s matches whatever the locale considers to be whitespace. Note that
 this is
likely to include the vertical space, unlike non-locale \s
 matching.

if Unicode rules are in effect or if on an EBCDIC platform ...

\s matches exactly the characters shown with an "s" column in the
 table
below.

otherwise ...

\s matches [\t\n\f\r].
 Note that this list doesn't include the non-breaking space.

Which rules apply are determined as described in "Which character set modifier is in effect?" in perlre.

Any character not matched by \s is matched by \S.

\h matches any character considered horizontal whitespace;
 this includes the space and tab
characters and several others
 listed in the table below. \H matches any character
 not considered
horizontal whitespace.

\v matches any character considered vertical whitespace;
 this includes the carriage return and line
feed characters (newline)
 plus several other characters, all listed in the table below. \V matches any
character not considered vertical whitespace.

\R matches anything that can be considered a newline under Unicode
 rules. It's not a character class,

Perl version 5.14.0 documentation - perlrecharclass

Page 4http://perldoc.perl.org

as it can match a multi-character
 sequence. Therefore, it cannot be used inside a bracketed character
class; use \v instead (vertical whitespace).
 Details are discussed in perlrebackslash.

Note that unlike \s (and \d and \w), \h and \v always match
 the same characters, without regard to
other factors, such as whether the
 source string is in UTF-8 format.

One might think that \s is equivalent to [\h\v]. This is not true.
 For example, the vertical tab (
"\x0b") is not matched by \s, it is
 however considered vertical whitespace.

The following table is a complete listing of characters matched by \s, \h and \v as of Unicode 6.0.

The first column gives the code point of the character (in hex format),
 the second column gives the
(Unicode) name. The third column indicates
 by which class(es) the character is matched (assuming
no locale or EBCDIC code
 page is in effect that changes the \s matching).

 0x00009 CHARACTER TABULATION h s
 0x0000a LINE FEED (LF) vs
 0x0000b LINE TABULATION v
 0x0000c FORM FEED (FF) vs
 0x0000d CARRIAGE RETURN (CR) vs
 0x00020 SPACE h s
 0x00085 NEXT LINE (NEL) vs [1]
 0x000a0 NO-BREAK SPACE h s [1]
 0x01680 OGHAM SPACE MARK h s
 0x0180e MONGOLIAN VOWEL SEPARATOR h s
 0x02000 EN QUAD h s
 0x02001 EM QUAD h s
 0x02002 EN SPACE h s
 0x02003 EM SPACE h s
 0x02004 THREE-PER-EM SPACE h s
 0x02005 FOUR-PER-EM SPACE h s
 0x02006 SIX-PER-EM SPACE h s
 0x02007 FIGURE SPACE h s
 0x02008 PUNCTUATION SPACE h s
 0x02009 THIN SPACE h s
 0x0200a HAIR SPACE h s
 0x02028 LINE SEPARATOR vs
 0x02029 PARAGRAPH SEPARATOR vs
 0x0202f NARROW NO-BREAK SPACE h s
 0x0205f MEDIUM MATHEMATICAL SPACE h s
 0x03000 IDEOGRAPHIC SPACE h s

[1]

NEXT LINE and NO-BREAK SPACE may or may not match \s depending
 on the rules in
effect. See the beginning of this section.

\N

\N is new in 5.12, and is experimental. It, like the dot, matches any
 character that is not a newline.
The difference is that \N is not influenced
 by the single line regular expression modifier (see The dot
above). Note
 that the form \N{...} may mean something completely different. When the {...} is a
quantifier, it means to match a non-newline
 character that many times. For example, \N{3} means to
match 3
 non-newlines; \N{5,} means to match 5 or more non-newlines. But if {...}
 is not a legal
quantifier, it is presumed to be a named character. See charnames for those. For example, none of
\N{COLON}, \N{4F}, and \N{F4} contain legal quantifiers, so Perl will try to find characters whose

names are respectively COLON, 4F, and F4.

Perl version 5.14.0 documentation - perlrecharclass

Page 5http://perldoc.perl.org

Unicode Properties

\pP and \p{Prop} are character classes to match characters that fit given
 Unicode properties. One
letter property names can be used in the \pP form,
 with the property name following the \p,
otherwise, braces are required.
 When using braces, there is a single form, which is just the property
name
 enclosed in the braces, and a compound form which looks like \p{name=value},
 which
means to match if the property "name" for the character has that particular
 "value".
 For instance, a
match for a number can be written as /\pN/ or as /\p{Number}/, or as /\p{Number=True}/.

Lowercase letters are matched by the property Lowercase_Letter which
 has as short form Ll. They
need the braces, so are written as /\p{Ll}/ or /\p{Lowercase_Letter}/, or
/\p{General_Category=Lowercase_Letter}/
 (the underscores are optional). /\pLl/ is valid,
but means something different.
 It matches a two character string: a letter (Unicode property \pL),

followed by a lowercase l.

If neither the /a modifier nor locale rules are in effect, the use of
 a Unicode property will force the
regular expression into using Unicode
 rules.

Note that almost all properties are immune to case-insensitive matching.
 That is, adding a /i regular
expression modifier does not change what
 they match. There are two sets that are affected. The first
set is Uppercase_Letter, Lowercase_Letter,
 and Titlecase_Letter,
 all of which match
Cased_Letter under /i matching.
 The second set is Uppercase, Lowercase,
 and Titlecase,

all of which match Cased under /i matching.
 (The difference between these sets is that some things,
such as Roman
 Numerals, come in both upper and lower case so they are Cased, but
 aren't
considered to be letters, so they aren't Cased_Letters. They're
 actually Letter_Numbers.)
 This
set also includes its subsets PosixUpper and PosixLower, both
 of which under /i matching match
PosixAlpha.

For more details on Unicode properties, see "Unicode Character Properties" in perlunicode; for a

complete list of possible properties, see "Properties accessible through \p{} and \P{}" in perluniprops,

which notes all forms that have /i differences.
 It is also possible to define your own properties. This
is discussed in "User-Defined Character Properties" in perlunicode.

Examples

 "a" =~ /\w/ # Match, "a" is a 'word' character.
 "7" =~ /\w/ # Match, "7" is a 'word' character as well.
 "a" =~ /\d/ # No match, "a" isn't a digit.
 "7" =~ /\d/ # Match, "7" is a digit.
 " " =~ /\s/ # Match, a space is whitespace.
 "a" =~ /\D/ # Match, "a" is a non-digit.
 "7" =~ /\D/ # No match, "7" is not a non-digit.
 " " =~ /\S/ # No match, a space is not non-whitespace.

 " " =~ /\h/ # Match, space is horizontal whitespace.
 " " =~ /\v/ # No match, space is not vertical whitespace.
 "\r" =~ /\v/ # Match, a return is vertical whitespace.

 "a" =~ /\pL/ # Match, "a" is a letter.
 "a" =~ /\p{Lu}/ # No match, /\p{Lu}/ matches upper case letters.

 "\x{0e0b}" =~ /\p{Thai}/ # Match, \x{0e0b} is the character
 # 'THAI CHARACTER SO SO', and that's in
 # Thai Unicode class.
 "a" =~ /\P{Lao}/ # Match, as "a" is not a Laotian character.

It is worth emphasizing that \d, \w, etc, match single characters, not
 complete numbers or words. To
match a number (that consists of digits),
 use \d+; to match a word, use \w+. But be aware of the

Perl version 5.14.0 documentation - perlrecharclass

Page 6http://perldoc.perl.org

security
 considerations in doing so, as mentioned above.

Bracketed Character Classes
The third form of character class you can use in Perl regular expressions
 is the bracketed character
class. In its simplest form, it lists the characters
 that may be matched, surrounded by square brackets,
like this: [aeiou].
 This matches one of a, e, i, o or u. Like the other
 character classes, exactly one
character is matched.* To match
 a longer string consisting of characters mentioned in the character

class, follow the character class with a quantifier. For
 instance, [aeiou]+ matches one or more
lowercase English vowels.

Repeating a character in a character class has no
 effect; it's considered to be in the set only once.

Examples:

 "e" =~ /[aeiou]/ # Match, as "e" is listed in the class.
 "p" =~ /[aeiou]/ # No match, "p" is not listed in the class.
 "ae" =~ /^[aeiou]$/ # No match, a character class only matches
 # a single character.
 "ae" =~ /^[aeiou]+$/ # Match, due to the quantifier.

* There is an exception to a bracketed character class matching only a
 single character. When the
class is to match caselessely under /i
 matching rules, and a character inside the class matches a

multiple-character sequence caselessly under Unicode rules, the class
 (when not inverted) will also
match that sequence. For
 example, Unicode says that the letter LATIN SMALL LETTER SHARP S

should match the sequence ss under /i rules. Thus,

 'ss' =~ /\A\N{LATIN SMALL LETTER SHARP S}\z/i # Matches
 'ss' =~ /\A[aeioust\N{LATIN SMALL LETTER SHARP S}]\z/i # Matches

Special Characters Inside a Bracketed Character Class

Most characters that are meta characters in regular expressions (that
 is, characters that carry a
special meaning like ., *, or () lose
 their special meaning and can be used inside a character class
without
 the need to escape them. For instance, [()] matches either an opening
 parenthesis, or a
closing parenthesis, and the parens inside the character
 class don't group or capture.

Characters that may carry a special meaning inside a character class are: \, ^, -, [and], and are
discussed below. They can be
 escaped with a backslash, although this is sometimes not needed, in
which
 case the backslash may be omitted.

The sequence \b is special inside a bracketed character class. While
 outside the character class, \b
is an assertion indicating a point
 that does not have either two word characters or two non-word
characters
 on either side, inside a bracketed character class, \b matches a
 backspace character.

The sequences \a, \c, \e, \f, \n, \N{NAME}, \N{U+hex char}, \r, \t,
 and \x
 are also special
and have the same meanings as they do outside a
 bracketed character class. (However, inside a
bracketed character
 class, if \N{NAME} expands to a sequence of characters, only the first
 one in the
sequence is used, with a warning.)

Also, a backslash followed by two or three octal digits is considered an octal
 number.

A [is not special inside a character class, unless it's the start of a
 POSIX character class (see POSIX
Character Classes below). It normally does
 not need escaping.

A] is normally either the end of a POSIX character class (see POSIX Character Classes below), or it
signals the end of the bracketed
 character class. If you want to include a] in the set of characters,
you
 must generally escape it.

Perl version 5.14.0 documentation - perlrecharclass

Page 7http://perldoc.perl.org

However, if the] is the first (or the second if the first
 character is a caret) character of a bracketed
character class, it
 does not denote the end of the class (as you cannot have an empty class)
 and is
considered part of the set of characters that can be matched without
 escaping.

Examples:

 "+" =~ /[+?*]/ # Match, "+" in a character class is not special.
 "\cH" =~ /[\b]/ # Match, \b inside in a character class
 # is equivalent to a backspace.
 "]" =~ /[][]/ # Match, as the character class contains.
 # both [and].
 "[]" =~ /[[]]/ # Match, the pattern contains a character class
 # containing just], and the character class is
 # followed by a].

Character Ranges

It is not uncommon to want to match a range of characters. Luckily, instead
 of listing all characters in
the range, one may use the hyphen (-).
 If inside a bracketed character class you have two characters
separated
 by a hyphen, it's treated as if all characters between the two were in
 the class. For
instance, [0-9] matches any ASCII digit, and [a-m]
 matches any lowercase letter from the first half
of the old ASCII alphabet.

Note that the two characters on either side of the hyphen are not
 necessarily both letters or both
digits. Any character is possible,
 although not advisable. ['-?] contains a range of characters, but

most people will not know which characters that means. Furthermore,
 such ranges may lead to
portability problems if the code has to run on
 a platform that uses a different character set, such as
EBCDIC.

If a hyphen in a character class cannot syntactically be part of a range, for
 instance because it is the
first or the last character of the character class,
 or if it immediately follows a range, the hyphen isn't
special, and so is
 considered a character to be matched literally. If you want a hyphen in
 your set of
characters to be matched and its position in the class is such
 that it could be considered part of a
range, you must escape that hyphen
 with a backslash.

Examples:

 [a-z] # Matches a character that is a lower case ASCII letter.
 [a-fz] # Matches any letter between 'a' and 'f' (inclusive) or
 # the letter 'z'.
 [-z] # Matches either a hyphen ('-') or the letter 'z'.
 [a-f-m] # Matches any letter between 'a' and 'f' (inclusive), the
 # hyphen ('-'), or the letter 'm'.
 ['-?] # Matches any of the characters '()*+,-./0123456789:;<=>?
 # (But not on an EBCDIC platform).

Negation

It is also possible to instead list the characters you do not want to
 match. You can do so by using a
caret (^) as the first character in the
 character class. For instance, [^a-z] matches any character
that is not a
 lowercase ASCII letter, which therefore includes almost a hundred thousand
 Unicode
letters. The class is said to be "negated" or "inverted".

This syntax make the caret a special character inside a bracketed character
 class, but only if it is the
first character of the class. So if you want
 the caret as one of the characters to match, either escape
the caret or
 else not list it first.

In inverted bracketed character classes, Perl ignores the Unicode rules
 that normally say that a given
character matches a sequence of multiple
 characters under caseless /i matching, which otherwise

Perl version 5.14.0 documentation - perlrecharclass

Page 8http://perldoc.perl.org

could be
 highly confusing:

 "ss" =~ /^[^\xDF]+$/ui;

This should match any sequences of characters that aren't \xDF nor
 what \xDF matches under /i.
"s" isn't \xDF, but Unicode
 says that "ss" is what \xDF matches under /i. So which one
 "wins"?
Do you fail the match because the string has ss or accept it
 because it has an s followed by another
s?

Examples:

 "e" =~ /[^aeiou]/ # No match, the 'e' is listed.
 "x" =~ /[^aeiou]/ # Match, as 'x' isn't a lowercase vowel.
 "^" =~ /[^^]/ # No match, matches anything that isn't a caret.
 "^" =~ /[x^]/ # Match, caret is not special here.

Backslash Sequences

You can put any backslash sequence character class (with the exception of \N and \R) inside a
bracketed character class, and it will act just
 as if you had put all characters matched by the
backslash sequence inside the
 character class. For instance, [a-f\d] matches any decimal digit, or
any
 of the lowercase letters between 'a' and 'f' inclusive.

\N within a bracketed character class must be of the forms \N{name}
 or \N{U+hex char}, and
NOT be the form that matches non-newlines,
 for the same reason that a dot . inside a bracketed
character class loses
 its special meaning: it matches nearly anything, which generally isn't what you

want to happen.

Examples:

 /[\p{Thai}\d]/ # Matches a character that is either a Thai
 # character, or a digit.
 /[^\p{Arabic}()]/ # Matches a character that is neither an Arabic
 # character, nor a parenthesis.

Backslash sequence character classes cannot form one of the endpoints
 of a range. Thus, you can't
say:

 /[\p{Thai}-\d]/ # Wrong!

POSIX Character Classes

POSIX character classes have the form [:class:], where class is
 name, and the [: and :]
delimiters. POSIX character classes only appear inside bracketed character classes, and are a
convenient and descriptive
 way of listing a group of characters.

Be careful about the syntax,

 # Correct:
 $string =~ /[[:alpha:]]/

 # Incorrect (will warn):
 $string =~ /[:alpha:]/

The latter pattern would be a character class consisting of a colon,
 and the letters a, l, p and h.

POSIX character classes can be part of a larger bracketed character class.
 For example,

 [01[:alpha:]%]

Perl version 5.14.0 documentation - perlrecharclass

Page 9http://perldoc.perl.org

is valid and matches '0', '1', any alphabetic character, and the percent sign.

Perl recognizes the following POSIX character classes:

 alpha Any alphabetical character ("[A-Za-z]").
 alnum Any alphanumeric character. ("[A-Za-z0-9]")
 ascii Any character in the ASCII character set.
 blank A GNU extension, equal to a space or a horizontal tab ("\t").
 cntrl Any control character. See Note [2] below.
 digit Any decimal digit ("[0-9]"), equivalent to "\d".
 graph Any printable character, excluding a space. See Note [3] below.
 lower Any lowercase character ("[a-z]").
 print Any printable character, including a space. See Note [4] below.
 punct Any graphical character excluding "word" characters. Note [5].
 space Any whitespace character. "\s" plus the vertical tab ("\cK").
 upper Any uppercase character ("[A-Z]").
 word A Perl extension ("[A-Za-z0-9_]"), equivalent to "\w".
 xdigit Any hexadecimal digit ("[0-9a-fA-F]").

Most POSIX character classes have two Unicode-style \p property
 counterparts. (They are not official
Unicode properties, but Perl extensions
 derived from official Unicode properties.) The table below
shows the relation
 between POSIX character classes and these counterparts.

One counterpart, in the column labelled "ASCII-range Unicode" in
 the table, matches only characters
in the ASCII character set.

The other counterpart, in the column labelled "Full-range Unicode", matches any
 appropriate
characters in the full Unicode character set. For example, \p{Alpha} matches not just the ASCII
alphabetic characters, but any
 character in the entire Unicode character set considered alphabetic.

The column labelled "backslash sequence" is a (short) synonym for
 the Full-range Unicode form.

(Each of the counterparts has various synonyms as well. "Properties accessible through \p{} and \P{}"
in perluniprops lists all
 synonyms, plus all characters matched by each ASCII-range property.
 For
example, \p{AHex} is a synonym for \p{ASCII_Hex_Digit},
 and any \p property name can be
prefixed with "Is" such as \p{IsAlpha}.)

Both the \p counterparts always assume Unicode rules are in effect.
 On ASCII platforms, this means
they assume that the code points from 128
 to 255 are Latin-1, and that means that using them under
locale rules is
 unwise unless the locale is guaranteed to be Latin-1 or UTF-8. In contrast, the
 POSIX
character classes are useful under locale rules. They are
 affected by the actual rules in effect, as
follows:

If the /a modifier, is in effect ...

Each of the POSIX classes matches exactly the same as their ASCII-range
 counterparts.

otherwise ...

For code points above 255 ...

The POSIX class matches the same as its Full-range counterpart.

For code points below 256 ...

if locale rules are in effect ...

The POSIX class matches according to the locale.

if Unicode rules are in effect or if on an EBCDIC platform ...

The POSIX class matches the same as the Full-range counterpart.

otherwise ...

Perl version 5.14.0 documentation - perlrecharclass

Page 10http://perldoc.perl.org

The POSIX class matches the same as the ASCII range counterpart.

Which rules apply are determined as described in "Which character set modifier is in effect?" in perlre.

It is proposed to change this behavior in a future release of Perl so that
 whether or not Unicode rules
are in effect would not change the
 behavior: Outside of locale or an EBCDIC code page, the POSIX
classes
 would behave like their ASCII-range counterparts. If you wish to
 comment on this proposal,
send email to perl5-porters@perl.org.

 [[:...:]] ASCII-range Full-range backslash Note
 Unicode Unicode sequence

 alpha \p{PosixAlpha} \p{XPosixAlpha}
 alnum \p{PosixAlnum} \p{XPosixAlnum}
 ascii \p{ASCII}
 blank \p{PosixBlank} \p{XPosixBlank} \h [1]
 or \p{HorizSpace} [1]
 cntrl \p{PosixCntrl} \p{XPosixCntrl} [2]
 digit \p{PosixDigit} \p{XPosixDigit} \d
 graph \p{PosixGraph} \p{XPosixGraph} [3]
 lower \p{PosixLower} \p{XPosixLower}
 print \p{PosixPrint} \p{XPosixPrint} [4]
 punct \p{PosixPunct} \p{XPosixPunct} [5]
 \p{PerlSpace} \p{XPerlSpace} \s [6]
 space \p{PosixSpace} \p{XPosixSpace} [6]
 upper \p{PosixUpper} \p{XPosixUpper}
 word \p{PosixWord} \p{XPosixWord} \w
 xdigit \p{PosixXDigit} \p{XPosixXDigit}

[1]

\p{Blank} and \p{HorizSpace} are synonyms.

[2]

Control characters don't produce output as such, but instead usually control
 the terminal
somehow: for example, newline and backspace are control characters.
 In the ASCII range,
characters whose code points are between 0 and 31 inclusive,
 plus 127 (DEL) are control
characters.

On EBCDIC platforms, it is likely that the code page will define [[:cntrl:]]
 to be the
EBCDIC equivalents of the ASCII controls, plus the controls
 that in Unicode have code pointss
from 128 through 159.

[3]

Any character that is graphical, that is, visible. This class consists
 of all alphanumeric
characters and all punctuation characters.

[4]

All printable characters, which is the set of all graphical characters
 plus those whitespace
characters which are not also controls.

[5]

\p{PosixPunct} and [[:punct:]] in the ASCII range match all
 non-controls,
non-alphanumeric, non-space characters: [-!"#$%&'()*+,./:;<=>?@[\\\]^_`{|}~]
(although if a locale is in effect,
 it could alter the behavior of [[:punct:]]).

The similarly named property, \p{Punct}, matches a somewhat different
 set in the ASCII
range, namely [-!"#%&'()*,./:;?@[\\\]_{}]. That is, it is missing [$+<=>^`|~].
 This

Perl version 5.14.0 documentation - perlrecharclass

Page 11http://perldoc.perl.org

is because Unicode splits what POSIX considers to be punctuation into two
 categories,
Punctuation and Symbols.

\p{XPosixPunct} and (in Unicode mode) [[:punct:]], match what \p{PosixPunct}
matches in the ASCII range, plus what \p{Punct}
 matches. This is different than strictly
matching according to \p{Punct}. Another way to say it is that
 if Unicode rules are in effect,
[[:punct:]] matches all characters
 that Unicode considers punctuation, plus all
ASCII-range characters that
 Unicode considers symbols.

[6]

\p{SpacePerl} and \p{Space} differ only in that in non-locale
 matching, \p{Space}
additionally
 matches the vertical tab, \cK. Same for the two ASCII-only range forms.

There are various other synonyms that can be used for these besides \p{HorizSpace} and \
\p{XPosixBlank}. For example, \p{PosixAlpha} can be written as \p{Alpha}. All are listed
 in
"Properties accessible through \p{} and \P{}" in perluniprops.

Negation of POSIX character classes

A Perl extension to the POSIX character class is the ability to
 negate it. This is done by prefixing the
class name with a caret (^).
 Some examples:

 POSIX ASCII-range Full-range backslash
 Unicode Unicode sequence

 [[:^digit:]] \P{PosixDigit} \P{XPosixDigit} \D
 [[:^space:]] \P{PosixSpace} \P{XPosixSpace}
 \P{PerlSpace} \P{XPerlSpace} \S
 [[:^word:]] \P{PerlWord} \P{XPosixWord} \W

The backslash sequence can mean either ASCII- or Full-range Unicode,
 depending on various factors
as described in "Which character set modifier is in effect?" in perlre.

[= =] and [. .]

Perl recognizes the POSIX character classes [=class=] and [.class.], but does not (yet?)
support them. Any attempt to use
 either construct raises an exception.

Examples

 /[[:digit:]]/ # Matches a character that is a digit.
 /[01[:lower:]]/ # Matches a character that is either a
 # lowercase letter, or '0' or '1'.
 /[[:digit:][:^xdigit:]]/ # Matches a character that can be anything
			 # except the letters 'a' to 'f'. This is
			 # because the main character class is composed
			 # of two POSIX character classes that are ORed
			 # together, one that matches any digit, and
			 # the other that matches anything that isn't a
			 # hex digit. The result matches all
			 # characters except the letters 'a' to 'f' and
			 # 'A' to 'F'.

