
Perl version 5.14.1 documentation - utf8

Page 1http://perldoc.perl.org

NAME
utf8 - Perl pragma to enable/disable UTF-8 (or UTF-EBCDIC) in source code

SYNOPSIS
 use utf8;
 no utf8;

 # Convert the internal representation of a Perl scalar to/from UTF-8.

 $num_octets = utf8::upgrade($string);
 $success = utf8::downgrade($string[, FAIL_OK]);

 # Change each character of a Perl scalar to/from a series of
 # characters that represent the UTF-8 bytes of each original character.

 utf8::encode($string); # "\x{100}" becomes "\xc4\x80"
 utf8::decode($string); # "\xc4\x80" becomes "\x{100}"

 $flag = utf8::is_utf8(STRING); # since Perl 5.8.1
 $flag = utf8::valid(STRING);

DESCRIPTION
The use utf8 pragma tells the Perl parser to allow UTF-8 in the
 program text in the current lexical
scope (allow UTF-EBCDIC on EBCDIC based
 platforms). The no utf8 pragma tells Perl to switch
back to treating
 the source text as literal bytes in the current lexical scope.

Do not use this pragma for anything else than telling Perl that your
 script is written in UTF-8.
The utility functions described below are
 directly usable without use utf8;.

Because it is not possible to reliably tell UTF-8 from native 8 bit
 encodings, you need either a Byte
Order Mark at the beginning of your
 source code, or use utf8;, to instruct perl.

When UTF-8 becomes the standard source format, this pragma will
 effectively become a no-op. For
convenience in what follows the term UTF-X is used to refer to UTF-8 on ASCII and ISO Latin based

platforms and UTF-EBCDIC on EBCDIC based platforms.

See also the effects of the -C switch and its cousin, the $ENV{PERL_UNICODE}, in perlrun.

Enabling the utf8 pragma has the following effect:

Bytes in the source text that have their high-bit set will be treated
 as being part of a literal
UTF-X sequence. This includes most
 literals such as identifier names, string constants, and
constant
 regular expression patterns.

On EBCDIC platforms characters in the Latin 1 character set are
 treated as being part of a
literal UTF-EBCDIC character.

Note that if you have bytes with the eighth bit on in your script
 (for example embedded Latin-1 in your
string literals), use utf8
 will be unhappy since the bytes are most probably not well-formed
 UTF-X.
If you want to have such bytes under use utf8, you can disable
 this pragma until the end the block
(or file, if at top level) by no utf8;.

Utility functions
The following functions are defined in the utf8:: package by the
 Perl core. You do not need to say
use utf8 to use these and in fact
 you should not say that unless you really want to have UTF-8
source code.

Perl version 5.14.1 documentation - utf8

Page 2http://perldoc.perl.org

* $num_octets = utf8::upgrade($string)

Converts in-place the internal representation of the string from an octet
 sequence in the native
encoding (Latin-1 or EBCDIC) to UTF-X. The
 logical character sequence itself is unchanged. If
$string is already
 stored as UTF-X, then this is a no-op. Returns the
 number of octets
necessary to represent the string as UTF-X. Can be
 used to make sure that the UTF-8 flag is
on, so that \w or lc()
 work as Unicode on strings containing characters in the range
0x80-0xFF
 (on ASCII and derivatives).

Note that this function does not handle arbitrary encodings.
 Therefore Encode is
recommended for the general purposes; see also Encode.

* $success = utf8::downgrade($string[, FAIL_OK])

Converts in-place the internal representation of the string from UTF-X to the equivalent octet
sequence in the native encoding (Latin-1
 or EBCDIC). The logical character sequence itself is
unchanged. If $string is already stored as native 8 bit, then this is a no-op. Can
 be used to

make sure that the UTF-8 flag is off, e.g. when you want to make sure
 that the substr() or
length() function works with the usually faster
 byte algorithm.

Fails if the original UTF-X sequence cannot be represented in the
 native 8 bit encoding. On
failure dies or, if the value of FAIL_OK is
 true, returns false.

Returns true on success.

Note that this function does not handle arbitrary encodings.
 Therefore Encode is
recommended for the general purposes; see also Encode.

* utf8::encode($string)

Converts in-place the character sequence to the corresponding octet
 sequence in UTF-X.
That is, every (possibly wide) character gets
 replaced with a sequence of one or more
characters that represent the
 individual UTF-X bytes of the character. The UTF8 flag is turned
off.
 Returns nothing.

 my $a = "\x{100}"; # $a contains one character, with ord 0x100
 utf8::encode($a); # $a contains two characters, with ords 0xc4
and 0x80

Note that this function does not handle arbitrary encodings.
 Therefore Encode is
recommended for the general purposes; see also Encode.

* $success = utf8::decode($string)

Attempts to convert in-place the octet sequence in UTF-X to the
 corresponding character
sequence. That is, it replaces each sequence of
 characters in the string whose ords represent
a valid UTF-X byte
 sequence, with the corresponding single character. The UTF-8 flag is

turned on only if the source string contains multiple-byte UTF-X
 characters. If $string is invalid
as UTF-X, returns false;
 otherwise returns true.

 my $a = "\xc4\x80"; # $a contains two characters, with ords 0xc4
and 0x80
 utf8::decode($a); # $a contains one character, with ord 0x100

Note that this function does not handle arbitrary encodings.
 Therefore Encode is
recommended for the general purposes; see also Encode.

* $flag = utf8::is_utf8(STRING)

(Since Perl 5.8.1) Test whether STRING is in UTF-8 internally.
 Functionally the same as
Encode::is_utf8().

* $flag = utf8::valid(STRING)

[INTERNAL] Test whether STRING is in a consistent state regarding
 UTF-8. Will return true is
well-formed UTF-8 and has the UTF-8 flag
 on or if string is held as bytes (both these states

Perl version 5.14.1 documentation - utf8

Page 3http://perldoc.perl.org

are 'consistent').
 Main reason for this routine is to allow Perl's testsuite to check
 that
operations have left strings in a consistent state. You most
 probably want to use utf8::is_utf8()
instead.

utf8::encode is like utf8::upgrade, but the UTF8 flag is
 cleared. See perlunicode for more on
the UTF8 flag and the C API
 functions sv_utf8_upgrade, sv_utf8_downgrade,
sv_utf8_encode,
 and sv_utf8_decode, which are wrapped by the Perl functions
utf8::upgrade, utf8::downgrade, utf8::encode and utf8::decode. Also, the functions
utf8::is_utf8, utf8::valid,
 utf8::encode, utf8::decode, utf8::upgrade, and utf8::downgrade are
 actually
internal, and thus always available, without a require utf8
 statement.

BUGS
One can have Unicode in identifier names, but not in package/class or
 subroutine names. While some
limited functionality towards this does
 exist as of Perl 5.8.0, that is more accidental than designed;
use of
 Unicode for the said purposes is unsupported.

One reason of this unfinishedness is its (currently) inherent
 unportability: since both package names
and subroutine names may need
 to be mapped to file and directory names, the Unicode capability of

the filesystem becomes important-- and there unfortunately aren't
 portable answers.

SEE ALSO
perlunitut, perluniintro, perlrun, bytes, perlunicode

