
Perl version 5.14.1 documentation - perltie

Page 1http://perldoc.perl.org

NAME
perltie - how to hide an object class in a simple variable

SYNOPSIS
 tie VARIABLE, CLASSNAME, LIST

 $object = tied VARIABLE

 untie VARIABLE

DESCRIPTION
Prior to release 5.0 of Perl, a programmer could use dbmopen()
 to connect an on-disk database in the
standard Unix dbm(3x)
 format magically to a %HASH in their program. However, their Perl was either

built with one particular dbm library or another, but not both, and
 you couldn't extend this mechanism
to other packages or types of variables.

Now you can.

The tie() function binds a variable to a class (package) that will provide
 the implementation for access
methods for that variable. Once this magic
 has been performed, accessing a tied variable
automatically triggers
 method calls in the proper class. The complexity of the class is
 hidden behind
magic methods calls. The method names are in ALL CAPS,
 which is a convention that Perl uses to
indicate that they're called
 implicitly rather than explicitly--just like the BEGIN() and END()
 functions.

In the tie() call, VARIABLE is the name of the variable to be
 enchanted. CLASSNAME is the name of a
class implementing objects of
 the correct type. Any additional arguments in the LIST are passed to

the appropriate constructor method for that class--meaning TIESCALAR(),
 TIEARRAY(), TIEHASH(),
or TIEHANDLE(). (Typically these are arguments
 such as might be passed to the dbminit() function of
C.) The object
 returned by the "new" method is also returned by the tie() function,
 which would be
useful if you wanted to access other methods in CLASSNAME. (You don't actually have to return a
reference to a right
 "type" (e.g., HASH or CLASSNAME) so long as it's a properly blessed
 object.) You
can also retrieve a reference to the underlying object
 using the tied() function.

Unlike dbmopen(), the tie() function will not use or require a module
 for you--you need to do that
explicitly yourself.

Tying Scalars
A class implementing a tied scalar should define the following methods:
 TIESCALAR, FETCH,
STORE, and possibly UNTIE and/or DESTROY.

Let's look at each in turn, using as an example a tie class for
 scalars that allows the user to do
something like:

 tie $his_speed, 'Nice', getppid();
 tie $my_speed, 'Nice', $$;

And now whenever either of those variables is accessed, its current
 system priority is retrieved and
returned. If those variables are set,
 then the process's priority is changed!

We'll use Jarkko Hietaniemi <jhi@iki.fi>'s BSD::Resource class (not
 included) to access the
PRIO_PROCESS, PRIO_MIN, and PRIO_MAX constants
 from your system, as well as the
getpriority() and setpriority() system
 calls. Here's the preamble of the class.

 package Nice;
 use Carp;
 use BSD::Resource;
 use strict;

Perl version 5.14.1 documentation - perltie

Page 2http://perldoc.perl.org

 $Nice::DEBUG = 0 unless defined $Nice::DEBUG;

TIESCALAR classname, LIST

This is the constructor for the class. That means it is
 expected to return a blessed reference to
a new scalar
 (probably anonymous) that it's creating. For example:

 sub TIESCALAR {
 my $class = shift;
 my $pid = shift || $$; # 0 means me

 if ($pid !~ /^\d+$/) {
 carp "Nice::Tie::Scalar got non-numeric pid $pid" if $^W;
 return undef;
 }

 unless (kill 0, $pid) { # EPERM or ERSCH, no doubt
 carp "Nice::Tie::Scalar got bad pid $pid: $!" if $^W;
 return undef;
 }

 return bless \$pid, $class;
 }

This tie class has chosen to return an error rather than raising an
 exception if its constructor
should fail. While this is how dbmopen() works,
 other classes may well not wish to be so
forgiving. It checks the global
 variable $^W to see whether to emit a bit of noise anyway.

FETCH this

This method will be triggered every time the tied variable is accessed
 (read). It takes no
arguments beyond its self reference, which is the
 object representing the scalar we're dealing
with. Because in this case
 we're using just a SCALAR ref for the tied scalar object, a simple
$$self
 allows the method to get at the real value stored there. In our example
 below, that real
value is the process ID to which we've tied our variable.

 sub FETCH {
 my $self = shift;
 confess "wrong type" unless ref $self;
 croak "usage error" if @_;
 my $nicety;
 local($!) = 0;
 $nicety = getpriority(PRIO_PROCESS, $$self);
 if ($!) { croak "getpriority failed: $!" }
 return $nicety;
 }

This time we've decided to blow up (raise an exception) if the renice
 fails--there's no place for
us to return an error otherwise, and it's
 probably the right thing to do.

STORE this, value

This method will be triggered every time the tied variable is set
 (assigned). Beyond its self
reference, it also expects one (and only one)
 argument: the new value the user is trying to
assign. Don't worry about
 returning a value from STORE; the semantic of assignment
returning the
 assigned value is implemented with FETCH.

 sub STORE {
 my $self = shift;
 confess "wrong type" unless ref $self;

Perl version 5.14.1 documentation - perltie

Page 3http://perldoc.perl.org

 my $new_nicety = shift;
 croak "usage error" if @_;

 if ($new_nicety < PRIO_MIN) {
 carp sprintf
 "WARNING: priority %d less than minimum system priority
 %d",
 $new_nicety, PRIO_MIN if $^W;
 $new_nicety = PRIO_MIN;
 }

 if ($new_nicety > PRIO_MAX) {
 carp sprintf
 "WARNING: priority %d greater than maximum system
priority %d",
 $new_nicety, PRIO_MAX if $^W;
 $new_nicety = PRIO_MAX;
 }

 unless (defined setpriority(PRIO_PROCESS, $$self,
$new_nicety)) {
 confess "setpriority failed: $!";
 }
 }

UNTIE this

This method will be triggered when the untie occurs. This can be useful
 if the class needs to
know when no further calls will be made. (Except DESTROY
 of course.) See The untie
Gotcha below for more details.

DESTROY this

This method will be triggered when the tied variable needs to be destructed.
 As with other
object classes, such a method is seldom necessary, because Perl
 deallocates its moribund
object's memory for you automatically--this isn't
 C++, you know. We'll use a DESTROY
method here for debugging purposes only.

 sub DESTROY {
 my $self = shift;
 confess "wrong type" unless ref $self;
 carp "[Nice::DESTROY pid $$self]" if $Nice::DEBUG;
 }

That's about all there is to it. Actually, it's more than all there
 is to it, because we've done a few nice
things here for the sake
 of completeness, robustness, and general aesthetics. Simpler
 TIESCALAR
classes are certainly possible.

Tying Arrays
A class implementing a tied ordinary array should define the following
 methods: TIEARRAY, FETCH,
STORE, FETCHSIZE, STORESIZE and perhaps UNTIE and/or DESTROY.

FETCHSIZE and STORESIZE are used to provide $#array and
 equivalent scalar(@array)
access.

The methods POP, PUSH, SHIFT, UNSHIFT, SPLICE, DELETE, and EXISTS are
 required if the perl
operator with the corresponding (but lowercase) name
 is to operate on the tied array. The Tie::Array
class can be used as a
 base class to implement the first five of these in terms of the basic
 methods

Perl version 5.14.1 documentation - perltie

Page 4http://perldoc.perl.org

above. The default implementations of DELETE and EXISTS in Tie::Array simply croak.

In addition EXTEND will be called when perl would have pre-extended
 allocation in a real array.

For this discussion, we'll implement an array whose elements are a fixed
 size at creation. If you try to
create an element larger than the fixed
 size, you'll take an exception. For example:

 use FixedElem_Array;
 tie @array, 'FixedElem_Array', 3;
 $array[0] = 'cat'; # ok.
 $array[1] = 'dogs'; # exception, length('dogs') > 3.

The preamble code for the class is as follows:

 package FixedElem_Array;
 use Carp;
 use strict;

TIEARRAY classname, LIST

This is the constructor for the class. That means it is expected to
 return a blessed reference
through which the new array (probably an
 anonymous ARRAY ref) will be accessed.

In our example, just to show you that you don't really have to return an
 ARRAY reference,
we'll choose a HASH reference to represent our object.
 A HASH works out well as a generic
record type: the {ELEMSIZE} field will
 store the maximum element size allowed, and the
{ARRAY} field will hold the
 true ARRAY ref. If someone outside the class tries to dereference
the
 object returned (doubtless thinking it an ARRAY ref), they'll blow up.
 This just goes to
show you that you should respect an object's privacy.

 sub TIEARRAY {
 my $class = shift;
 my $elemsize = shift;
 if (@_ || $elemsize =~ /\D/) {
 croak "usage: tie ARRAY, '" . __PACKAGE__ . "', elem_size";
 }
 return bless {
 ELEMSIZE => $elemsize,
 ARRAY => [],
 }, $class;
 }

FETCH this, index

This method will be triggered every time an individual element the tied array
 is accessed
(read). It takes one argument beyond its self reference: the
 index whose value we're trying to
fetch.

 sub FETCH {
 my $self = shift;
 my $index = shift;
 return $self->{ARRAY}->[$index];
 }

If a negative array index is used to read from an array, the index
 will be translated to a positive
one internally by calling FETCHSIZE
 before being passed to FETCH. You may disable this
feature by
 assigning a true value to the variable $NEGATIVE_INDICES in the
 tied array class.

As you may have noticed, the name of the FETCH method (et al.) is the same
 for all
accesses, even though the constructors differ in names (TIESCALAR
 vs TIEARRAY). While in

Perl version 5.14.1 documentation - perltie

Page 5http://perldoc.perl.org

theory you could have the same class servicing
 several tied types, in practice this becomes
cumbersome, and it's easiest
 to keep them at simply one tie type per class.

STORE this, index, value

This method will be triggered every time an element in the tied array is set
 (written). It takes
two arguments beyond its self reference: the index at
 which we're trying to store something
and the value we're trying to put
 there.

In our example, undef is really $self->{ELEMSIZE} number of
 spaces so we have a little
more work to do here:

 sub STORE {
 my $self = shift;
 my($index, $value) = @_;
 if (length $value > $self->{ELEMSIZE}) {
 croak "length of $value is greater than $self->{ELEMSIZE}";
 }
 # fill in the blanks
 $self->EXTEND($index) if $index > $self->FETCHSIZE();
 # right justify to keep element size for smaller elements
 $self->{ARRAY}->[$index] = sprintf "%$self->{ELEMSIZE}s",
$value;
 }

Negative indexes are treated the same as with FETCH.

FETCHSIZE this

Returns the total number of items in the tied array associated with
 object this. (Equivalent to
scalar(@array)). For example:

 sub FETCHSIZE {
 my $self = shift;
 return scalar @{$self->{ARRAY}};
 }

STORESIZE this, count

Sets the total number of items in the tied array associated with
 object this to be count. If this
makes the array larger then
 class's mapping of undef should be returned for new positions.
 If
the array becomes smaller then entries beyond count should be
 deleted.

In our example, 'undef' is really an element containing $self->{ELEMSIZE} number of
spaces. Observe:

 sub STORESIZE {
 my $self = shift;
 my $count = shift;
 if ($count > $self->FETCHSIZE()) {
 foreach ($count - $self->FETCHSIZE() .. $count) {
 $self->STORE($_, '');
 }
 } elsif ($count < $self->FETCHSIZE()) {
 foreach (0 .. $self->FETCHSIZE() - $count - 2) {
 $self->POP();
 }
 }
 }

EXTEND this, count

Perl version 5.14.1 documentation - perltie

Page 6http://perldoc.perl.org

Informative call that array is likely to grow to have count entries.
 Can be used to optimize
allocation. This method need do nothing.

In our example, we want to make sure there are no blank (undef)
 entries, so EXTEND will
make use of STORESIZE to fill elements
 as needed:

 sub EXTEND {
 my $self = shift;
 my $count = shift;
 $self->STORESIZE($count);
 }

EXISTS this, key

Verify that the element at index key exists in the tied array this.

In our example, we will determine that if an element consists of $self->{ELEMSIZE} spaces
only, it does not exist:

 sub EXISTS {
 my $self = shift;
 my $index = shift;
 return 0 if ! defined $self->{ARRAY}->[$index] ||
 $self->{ARRAY}->[$index] eq ' ' x
$self->{ELEMSIZE};
 return 1;
 }

DELETE this, key

Delete the element at index key from the tied array this.

In our example, a deleted item is $self->{ELEMSIZE} spaces:

 sub DELETE {
 my $self = shift;
 my $index = shift;
 return $self->STORE($index, '');
 }

CLEAR this

Clear (remove, delete, ...) all values from the tied array associated with
 object this. For
example:

 sub CLEAR {
 my $self = shift;
 return $self->{ARRAY} = [];
 }

PUSH this, LIST

Append elements of LIST to the array. For example:

 sub PUSH {
 my $self = shift;
 my @list = @_;
 my $last = $self->FETCHSIZE();
 $self->STORE($last + $_, $list[$_]) foreach 0 .. $#list;
 return $self->FETCHSIZE();
 }

Perl version 5.14.1 documentation - perltie

Page 7http://perldoc.perl.org

POP this

Remove last element of the array and return it. For example:

 sub POP {
 my $self = shift;
 return pop @{$self->{ARRAY}};
 }

SHIFT this

Remove the first element of the array (shifting other elements down)
 and return it. For
example:

 sub SHIFT {
 my $self = shift;
 return shift @{$self->{ARRAY}};
 }

UNSHIFT this, LIST

Insert LIST elements at the beginning of the array, moving existing elements
 up to make
room. For example:

 sub UNSHIFT {
 my $self = shift;
 my @list = @_;
 my $size = scalar(@list);
 # make room for our list
 @{$self->{ARRAY}}[$size .. $#{$self->{ARRAY}} + $size]
 = @{$self->{ARRAY}};
 $self->STORE($_, $list[$_]) foreach 0 .. $#list;
 }

SPLICE this, offset, length, LIST

Perform the equivalent of splice on the array.

offset is optional and defaults to zero, negative values count back from the end of the array.

length is optional and defaults to rest of the array.

LIST may be empty.

Returns a list of the original length elements at offset.

In our example, we'll use a little shortcut if there is a LIST:

 sub SPLICE {
 my $self = shift;
 my $offset = shift || 0;
 my $length = shift || $self->FETCHSIZE() - $offset;
 my @list = ();
 if (@_) {
 tie @list, __PACKAGE__, $self->{ELEMSIZE};
 @list = @_;
 }
 return splice @{$self->{ARRAY}}, $offset, $length, @list;
 }

UNTIE this

Will be called when untie happens. (See The untie Gotcha below.)

Perl version 5.14.1 documentation - perltie

Page 8http://perldoc.perl.org

DESTROY this

This method will be triggered when the tied variable needs to be destructed.
 As with the scalar
tie class, this is almost never needed in a
 language that does its own garbage collection, so
this time we'll
 just leave it out.

Tying Hashes
Hashes were the first Perl data type to be tied (see dbmopen()). A class
 implementing a tied hash
should define the following methods: TIEHASH is
 the constructor. FETCH and STORE access the
key and value pairs. EXISTS
 reports whether a key is present in the hash, and DELETE deletes one.

CLEAR empties the hash by deleting all the key and value pairs. FIRSTKEY
 and NEXTKEY
implement the keys() and each() functions to iterate over all
 the keys. SCALAR is triggered when the
tied hash is evaluated in scalar context. UNTIE is called when untie happens, and DESTROY is
called when
 the tied variable is garbage collected.

If this seems like a lot, then feel free to inherit from merely the
 standard Tie::StdHash module for most
of your methods, redefining only the
 interesting ones. See Tie::Hash for details.

Remember that Perl distinguishes between a key not existing in the hash,
 and the key existing in the
hash but having a corresponding value of undef. The two possibilities can be tested with the
exists() and defined() functions.

Here's an example of a somewhat interesting tied hash class: it gives you
 a hash representing a
particular user's dot files. You index into the hash
 with the name of the file (minus the dot) and you get
back that dot file's
 contents. For example:

 use DotFiles;
 tie %dot, 'DotFiles';
 if ($dot{profile} =~ /MANPATH/ ||
 $dot{login} =~ /MANPATH/ ||
 $dot{cshrc} =~ /MANPATH/)
 {
	 print "you seem to set your MANPATH\n";
 }

Or here's another sample of using our tied class:

 tie %him, 'DotFiles', 'daemon';
 foreach $f (keys %him) {
	 printf "daemon dot file %s is size %d\n",
	 $f, length $him{$f};
 }

In our tied hash DotFiles example, we use a regular
 hash for the object containing several important

fields, of which only the {LIST} field will be what the
 user thinks of as the real hash.

USER

whose dot files this object represents

HOME

where those dot files live

CLOBBER

whether we should try to change or remove those dot files

LIST

the hash of dot file names and content mappings

Perl version 5.14.1 documentation - perltie

Page 9http://perldoc.perl.org

Here's the start of Dotfiles.pm:

 package DotFiles;
 use Carp;
 sub whowasi { (caller(1))[3] . '()' }
 my $DEBUG = 0;
 sub debug { $DEBUG = @_ ? shift : 1 }

For our example, we want to be able to emit debugging info to help in tracing
 during development. We
keep also one convenience function around
 internally to help print out warnings; whowasi() returns
the function name
 that calls it.

Here are the methods for the DotFiles tied hash.

TIEHASH classname, LIST

This is the constructor for the class. That means it is expected to
 return a blessed reference
through which the new object (probably but not
 necessarily an anonymous hash) will be
accessed.

Here's the constructor:

 sub TIEHASH {
	 my $self = shift;
	 my $user = shift || $>;
	 my $dotdir = shift || '';
	 croak "usage: @{[&whowasi]} [USER [DOTDIR]]" if @_;
	 $user = getpwuid($user) if $user =~ /^\d+$/;
	 my $dir = (getpwnam($user))[7]
		 || croak "@{[&whowasi]}: no user $user";
	 $dir .= "/$dotdir" if $dotdir;

	 my $node = {
	 USER => $user,
	 HOME => $dir,
	 LIST => {},
	 CLOBBER => 0,
	 };

	 opendir(DIR, $dir)
		 || croak "@{[&whowasi]}: can't opendir $dir: $!";
	 foreach $dot (grep /^\./ && -f "$dir/$_", readdir(DIR)) {
	 $dot =~ s/^\.//;
	 $node->{LIST}{$dot} = undef;
	 }
	 closedir DIR;
	 return bless $node, $self;
 }

It's probably worth mentioning that if you're going to filetest the
 return values out of a readdir,
you'd better prepend the directory
 in question. Otherwise, because we didn't chdir() there, it
would
 have been testing the wrong file.

FETCH this, key

This method will be triggered every time an element in the tied hash is
 accessed (read). It
takes one argument beyond its self reference: the key
 whose value we're trying to fetch.

Here's the fetch for our DotFiles example.

 sub FETCH {

Perl version 5.14.1 documentation - perltie

Page 10http://perldoc.perl.org

	 carp &whowasi if $DEBUG;
	 my $self = shift;
	 my $dot = shift;
	 my $dir = $self->{HOME};
	 my $file = "$dir/.$dot";

	 unless (exists $self->{LIST}->{$dot} || -f $file) {
	 carp "@{[&whowasi]}: no $dot file" if $DEBUG;
	 return undef;
	 }

	 if (defined $self->{LIST}->{$dot}) {
	 return $self->{LIST}->{$dot};
	 } else {
	 return $self->{LIST}->{$dot} = `cat $dir/.$dot`;
	 }
 }

It was easy to write by having it call the Unix cat(1) command, but it
 would probably be more
portable to open the file manually (and somewhat
 more efficient). Of course, because dot files
are a Unixy concept, we're
 not that concerned.

STORE this, key, value

This method will be triggered every time an element in the tied hash is set
 (written). It takes
two arguments beyond its self reference: the index at
 which we're trying to store something,
and the value we're trying to put
 there.

Here in our DotFiles example, we'll be careful not to let
 them try to overwrite the file unless
they've called the clobber()
 method on the original object reference returned by tie().

 sub STORE {
	 carp &whowasi if $DEBUG;
	 my $self = shift;
	 my $dot = shift;
	 my $value = shift;
	 my $file = $self->{HOME} . "/.$dot";
	 my $user = $self->{USER};

	 croak "@{[&whowasi]}: $file not clobberable"
	 unless $self->{CLOBBER};

	 open(my $f, '>', $file) || croak "can't open $file: $!";
	 print $f $value;
	 close($f);
 }

If they wanted to clobber something, they might say:

 $ob = tie %daemon_dots, 'daemon';
 $ob->clobber(1);
 $daemon_dots{signature} = "A true daemon\n";

Another way to lay hands on a reference to the underlying object is to
 use the tied() function,
so they might alternately have set clobber
 using:

 tie %daemon_dots, 'daemon';
 tied(%daemon_dots)->clobber(1);

The clobber method is simply:

Perl version 5.14.1 documentation - perltie

Page 11http://perldoc.perl.org

 sub clobber {
	 my $self = shift;
	 $self->{CLOBBER} = @_ ? shift : 1;
 }

DELETE this, key

This method is triggered when we remove an element from the hash,
 typically by using the
delete() function. Again, we'll
 be careful to check whether they really want to clobber files.

 sub DELETE {
	 carp &whowasi if $DEBUG;

	 my $self = shift;
	 my $dot = shift;
	 my $file = $self->{HOME} . "/.$dot";
	 croak "@{[&whowasi]}: won't remove file $file"
	 unless $self->{CLOBBER};
	 delete $self->{LIST}->{$dot};
	 my $success = unlink($file);
	 carp "@{[&whowasi]}: can't unlink $file: $!" unless $success;
	 $success;
 }

The value returned by DELETE becomes the return value of the call
 to delete(). If you want to
emulate the normal behavior of delete(),
 you should return whatever FETCH would have
returned for this key.
 In this example, we have chosen instead to return a value which tells
 the
caller whether the file was successfully deleted.

CLEAR this

This method is triggered when the whole hash is to be cleared, usually by
 assigning the empty
list to it.

In our example, that would remove all the user's dot files! It's such a
 dangerous thing that
they'll have to set CLOBBER to something higher than
 1 to make it happen.

 sub CLEAR {
	 carp &whowasi if $DEBUG;
	 my $self = shift;
	 croak "@{[&whowasi]}: won't remove all dot files for $self->{USER}"
	 unless $self->{CLOBBER} > 1;
	 my $dot;
	 foreach $dot (keys %{$self->{LIST}}) {
	 $self->DELETE($dot);
	 }
 }

EXISTS this, key

This method is triggered when the user uses the exists() function
 on a particular hash. In our
example, we'll look at the {LIST}
 hash element for this:

 sub EXISTS {
	 carp &whowasi if $DEBUG;
	 my $self = shift;
	 my $dot = shift;
	 return exists $self->{LIST}->{$dot};
 }

Perl version 5.14.1 documentation - perltie

Page 12http://perldoc.perl.org

FIRSTKEY this

This method will be triggered when the user is going
 to iterate through the hash, such as via a
keys() or each()
 call.

 sub FIRSTKEY {
	 carp &whowasi if $DEBUG;
	 my $self = shift;
	 my $a = keys %{$self->{LIST}};		 # reset each() iterator
	 each %{$self->{LIST}}
 }

NEXTKEY this, lastkey

This method gets triggered during a keys() or each() iteration. It has a
 second argument which
is the last key that had been accessed. This is
 useful if you're carrying about ordering or
calling the iterator from more
 than one sequence, or not really storing things in a hash
anywhere.

For our example, we're using a real hash so we'll do just the simple
 thing, but we'll have to go
through the LIST field indirectly.

 sub NEXTKEY {
	 carp &whowasi if $DEBUG;
	 my $self = shift;
	 return each %{ $self->{LIST} }
 }

SCALAR this

This is called when the hash is evaluated in scalar context. In order
 to mimic the behaviour of
untied hashes, this method should return a
 false value when the tied hash is considered
empty. If this method does
 not exist, perl will make some educated guesses and return true
when
 the hash is inside an iteration. If this isn't the case, FIRSTKEY is
 called, and the result
will be a false value if FIRSTKEY returns the empty
 list, true otherwise.

However, you should not blindly rely on perl always doing the right thing. Particularly, perl will
mistakenly return true when you clear the hash by repeatedly calling DELETE until it is empty.
You are therefore advised to supply your own SCALAR method when you want to be
absolutely sure that your hash behaves nicely in scalar context.

In our example we can just call scalar on the underlying hash
 referenced by $self->
{LIST}:

 sub SCALAR {
	 carp &whowasi if $DEBUG;
	 my $self = shift;
	 return scalar %{ $self->{LIST} }
 }

UNTIE this

This is called when untie occurs. See The untie Gotcha below.

DESTROY this

This method is triggered when a tied hash is about to go out of
 scope. You don't really need it
unless you're trying to add debugging
 or have auxiliary state to clean up. Here's a very simple
function:

 sub DESTROY {
	 carp &whowasi if $DEBUG;
 }

Perl version 5.14.1 documentation - perltie

Page 13http://perldoc.perl.org

Note that functions such as keys() and values() may return huge lists
 when used on large objects, like
DBM files. You may prefer to use the
 each() function to iterate over such. Example:

 # print out history file offsets
 use NDBM_File;
 tie(%HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
 while (($key,$val) = each %HIST) {
 print $key, ' = ', unpack('L',$val), "\n";
 }
 untie(%HIST);

Tying FileHandles
This is partially implemented now.

A class implementing a tied filehandle should define the following
 methods: TIEHANDLE, at least one
of PRINT, PRINTF, WRITE, READLINE, GETC,
 READ, and possibly CLOSE, UNTIE and DESTROY.
The class can also provide: BINMODE,
 OPEN, EOF, FILENO, SEEK, TELL - if the corresponding perl
operators are
 used on the handle.

When STDERR is tied, its PRINT method will be called to issue warnings
 and error messages. This
feature is temporarily disabled during the call, which means you can use warn() inside PRINT
without starting a recursive
 loop. And just like __WARN__ and __DIE__ handlers, STDERR's PRINT

method may be called to report parser errors, so the caveats mentioned under "%SIG" in perlvar
apply.

All of this is especially useful when perl is embedded in some other program, where output to
STDOUT and STDERR may have to be redirected in some special way. See nvi and the Apache
module for examples.

When tying a handle, the first argument to tie should begin with an
 asterisk. So, if you are tying
STDOUT, use *STDOUT. If you have assigned
 it to a scalar variable, say $handle, use *$handle.
tie $handle
 works, too, but that is considered a bug and will be fixed in Perl 5.16. It
 is supposed to
tie the scalar $handle, not the handle inside it. tie $handle emits a deprecation warning as of
Perl 5.14.

In our example we're going to create a shouting handle.

 package Shout;

TIEHANDLE classname, LIST

This is the constructor for the class. That means it is expected to
 return a blessed reference of
some sort. The reference can be used to
 hold some internal information.

 sub TIEHANDLE { print "<shout>\n"; my $i; bless \$i, shift }

WRITE this, LIST

This method will be called when the handle is written to via the syswrite function.

 sub WRITE {
	 $r = shift;
	 my($buf,$len,$offset) = @_;
	 print "WRITE called, \$buf=$buf, \$len=$len, \$offset=$offset";
 }

PRINT this, LIST

This method will be triggered every time the tied handle is printed to
 with the print() or
say() functions. Beyond its self reference
 it also expects the list that was passed to the print

Perl version 5.14.1 documentation - perltie

Page 14http://perldoc.perl.org

function. sub PRINT { $r = shift; $$r++; print
join($,,map(uc($_),@_)),$\ }

say() acts just like print() except $\ will be localized to \n so
 you need do nothing special
to handle say() in PRINT().

PRINTF this, LIST

This method will be triggered every time the tied handle is printed to
 with the printf()
function.
 Beyond its self reference it also expects the format and list that was
 passed to the
printf function.

 sub PRINTF {
 shift;
 my $fmt = shift;
 print sprintf($fmt, @_);
 }

READ this, LIST

This method will be called when the handle is read from via the read
 or sysread functions.

 sub READ {
	 my $self = shift;
	 my $bufref = \$_[0];
	 my(undef,$len,$offset) = @_;
	 print "READ called, \$buf=$bufref, \$len=$len, \$offset=$offset";
	 # add to $$bufref, set $len to number of characters read
	 $len;
 }

READLINE this

This method is called when the handle is read via <HANDLE>
 or readline HANDLE.

As per readline, in scalar context it should return
 the next line, or undef for no more data.
In list context it should
 return all remaining lines, or an empty list for no more data. The strings

returned should include the input record separator $/ (see perlvar),
 unless it is undef (which
means "slurp" mode).

 sub READLINE {
 my $r = shift;
 if (wantarray) {
 return ("all remaining\n",
 "lines up\n",
 "to eof\n");
 } else {
 return "READLINE called " . ++$$r . " times\n";
 }
 }

GETC this

This method will be called when the getc function is called.

 sub GETC { print "Don't GETC, Get Perl"; return "a"; }

EOF this

This method will be called when the eof function is called.

Starting with Perl 5.12, an additional integer parameter will be passed. It
 will be zero if eof is

Perl version 5.14.1 documentation - perltie

Page 15http://perldoc.perl.org

called without parameter; 1 if eof is given
 a filehandle as a parameter, e.g. eof(FH); and 2
in the very special
 case that the tied filehandle is ARGV and eof is called with an empty

parameter list, e.g. eof().

 sub EOF { not length $stringbuf }

CLOSE this

This method will be called when the handle is closed via the close
 function.

 sub CLOSE { print "CLOSE called.\n" }

UNTIE this

As with the other types of ties, this method will be called when untie happens.
 It may be
appropriate to "auto CLOSE" when this occurs. See The untie Gotcha below.

DESTROY this

As with the other types of ties, this method will be called when the
 tied handle is about to be
destroyed. This is useful for debugging and
 possibly cleaning up.

 sub DESTROY { print "</shout>\n" }

Here's how to use our little example:

 tie(*FOO,'Shout');
 print FOO "hello\n";
 $a = 4; $b = 6;
 print FOO $a, " plus ", $b, " equals ", $a + $b, "\n";
 print <FOO>;

UNTIE this
You can define for all tie types an UNTIE method that will be called
 at untie(). See The untie Gotcha
below.

The untie Gotcha
If you intend making use of the object returned from either tie() or
 tied(), and if the tie's target class
defines a destructor, there is a
 subtle gotcha you must guard against.

As setup, consider this (admittedly rather contrived) example of a
 tie; all it does is use a file to keep a
log of the values assigned to
 a scalar.

 package Remember;

 use strict;
 use warnings;
 use IO::File;

 sub TIESCALAR {
 my $class = shift;
 my $filename = shift;
 my $handle = IO::File->new("> $filename")
 or die "Cannot open $filename: $!\n";

 print $handle "The Start\n";
 bless {FH => $handle, Value => 0}, $class;
 }

Perl version 5.14.1 documentation - perltie

Page 16http://perldoc.perl.org

 sub FETCH {
 my $self = shift;
 return $self->{Value};
 }

 sub STORE {
 my $self = shift;
 my $value = shift;
 my $handle = $self->{FH};
 print $handle "$value\n";
 $self->{Value} = $value;
 }

 sub DESTROY {
 my $self = shift;
 my $handle = $self->{FH};
 print $handle "The End\n";
 close $handle;
 }

 1;

Here is an example that makes use of this tie:

 use strict;
 use Remember;

 my $fred;
 tie $fred, 'Remember', 'myfile.txt';
 $fred = 1;
 $fred = 4;
 $fred = 5;
 untie $fred;
 system "cat myfile.txt";

This is the output when it is executed:

 The Start
 1
 4
 5
 The End

So far so good. Those of you who have been paying attention will have
 spotted that the tied object
hasn't been used so far. So lets add an
 extra method to the Remember class to allow comments to be
included in
 the file; say, something like this:

 sub comment {
 my $self = shift;
 my $text = shift;
 my $handle = $self->{FH};
 print $handle $text, "\n";
 }

Perl version 5.14.1 documentation - perltie

Page 17http://perldoc.perl.org

And here is the previous example modified to use the comment method
 (which requires the tied
object):

 use strict;
 use Remember;

 my ($fred, $x);
 $x = tie $fred, 'Remember', 'myfile.txt';
 $fred = 1;
 $fred = 4;
 comment $x "changing...";
 $fred = 5;
 untie $fred;
 system "cat myfile.txt";

When this code is executed there is no output. Here's why:

When a variable is tied, it is associated with the object which is the
 return value of the TIESCALAR,
TIEARRAY, or TIEHASH function. This
 object normally has only one reference, namely, the implicit
reference
 from the tied variable. When untie() is called, that reference is
 destroyed. Then, as in the
first example above, the object's
 destructor (DESTROY) is called, which is normal for objects that
have
 no more valid references; and thus the file is closed.

In the second example, however, we have stored another reference to
 the tied object in $x. That
means that when untie() gets called
 there will still be a valid reference to the object in existence, so

the destructor is not called at that time, and thus the file is not
 closed. The reason there is no output is
because the file buffers
 have not been flushed to disk.

Now that you know what the problem is, what can you do to avoid it?
 Prior to the introduction of the
optional UNTIE method the only way
 was the good old -w flag. Which will spot any instances where
you call
 untie() and there are still valid references to the tied object. If
 the second script above this
near the top use warnings 'untie'
 or was run with the -w flag, Perl prints this
 warning message:

 untie attempted while 1 inner references still exist

To get the script to work properly and silence the warning make sure
 there are no valid references to
the tied object before untie() is
 called:

 undef $x;
 untie $fred;

Now that UNTIE exists the class designer can decide which parts of the
 class functionality are really
associated with untie and which with
 the object being destroyed. What makes sense for a given
class depends
 on whether the inner references are being kept so that non-tie-related
 methods can be
called on the object. But in most cases it probably makes
 sense to move the functionality that would
have been in DESTROY to the UNTIE
 method.

If the UNTIE method exists then the warning above does not occur. Instead the
 UNTIE method is
passed the count of "extra" references and can issue its own
 warning if appropriate. e.g. to replicate
the no UNTIE case this method can
 be used:

 sub UNTIE
 {
 my ($obj,$count) = @_;
 carp "untie attempted while $count inner references still exist" if
$count;
 }

Perl version 5.14.1 documentation - perltie

Page 18http://perldoc.perl.org

SEE ALSO
See DB_File or Config for some interesting tie() implementations.
 A good starting point for many tie()
implementations is with one of the
 modules Tie::Scalar, Tie::Array, Tie::Hash, or Tie::Handle.

BUGS
The bucket usage information provided by scalar(%hash) is not
 available. What this means is that
using %tied_hash in boolean
 context doesn't work right (currently this always tests false,
 regardless of
whether the hash is empty or hash elements).

Localizing tied arrays or hashes does not work. After exiting the
 scope the arrays or the hashes are
not restored.

Counting the number of entries in a hash via scalar(keys(%hash))
 or scalar(values(%hash))
is inefficient since it needs to iterate
 through all the entries with FIRSTKEY/NEXTKEY.

Tied hash/array slices cause multiple FETCH/STORE pairs, there are no
 tie methods for slice
operations.

You cannot easily tie a multilevel data structure (such as a hash of
 hashes) to a dbm file. The first
problem is that all but GDBM and
 Berkeley DB have size limitations, but beyond that, you also have
problems
 with how references are to be represented on disk. One
 module that does attempt to
address this need is DBM::Deep. Check your
 nearest CPAN site as described in perlmodlib for source
code. Note
 that despite its name, DBM::Deep does not use dbm. Another earlier attempt
 at solving
the problem is MLDBM, which is also available on the CPAN, but
 which has some fairly serious
limitations.

Tied filehandles are still incomplete. sysopen(), truncate(),
 flock(), fcntl(), stat() and -X can't currently
be trapped.

AUTHOR
Tom Christiansen

TIEHANDLE by Sven Verdoolaege <skimo@dns.ufsia.ac.be> and Doug MacEachern <
dougm@osf.org>

UNTIE by Nick Ing-Simmons <nick@ing-simmons.net>

SCALAR by Tassilo von Parseval <tassilo.von.parseval@rwth-aachen.de>

Tying Arrays by Casey West <casey@geeknest.com>

