
Perl version 5.14.1 documentation - feature

Page 1http://perldoc.perl.org

NAME
feature - Perl pragma to enable new features

SYNOPSIS
 use feature qw(switch say);
 given ($foo) {
	 when (1)	 { say "\$foo == 1" }
	 when ([2,3])	 { say "\$foo == 2 || \$foo == 3" }
	 when (/^a[bc]d$/) { say "\$foo eq 'abd' || \$foo eq 'acd'" }
	 when ($_ > 100) { say "\$foo > 100" }
	 default		 { say "None of the above" }
 }

 use feature ':5.10'; # loads all features available in perl 5.10

DESCRIPTION
It is usually impossible to add new syntax to Perl without breaking
 some existing programs. This
pragma provides a way to minimize that
 risk. New syntactic constructs, or new semantic meanings to
older
 constructs, can be enabled by use feature 'foo', and will be parsed
 only when the
appropriate feature pragma is in scope.

Lexical effect
Like other pragmas (use strict, for example), features have a lexical
 effect. use feature
qw(foo) will only make the feature "foo" available
 from that point to the end of the enclosing block.

 {
 use feature 'say';
 say "say is available here";
 }
 print "But not here.\n";

no feature
Features can also be turned off by using no feature "foo". This too
 has lexical effect.

 use feature 'say';
 say "say is available here";
 {
 no feature 'say';
 print "But not here.\n";
 }
 say "Yet it is here.";

no feature with no features specified will turn off all features.

The 'switch' feature
use feature 'switch' tells the compiler to enable the Perl 6
 given/when construct.

See "Switch statements" in perlsyn for details.

The 'say' feature
use feature 'say' tells the compiler to enable the Perl 6 say function.

See "say" in perlfunc for details.

Perl version 5.14.1 documentation - feature

Page 2http://perldoc.perl.org

the 'state' feature
use feature 'state' tells the compiler to enable state
 variables.

See "Persistent Private Variables" in perlsub for details.

the 'unicode_strings' feature
use feature 'unicode_strings' tells the compiler to use Unicode semantics
 in all string
operations executed within its scope (unless they are also
 within the scope of either use locale or
use bytes). The same applies
 to all regular expressions compiled within the scope, even if
executed outside
 it.

no feature 'unicode_strings' tells the compiler to use the traditional
 Perl semantics wherein
the native character set semantics is used unless it is
 clear to Perl that Unicode is desired. This can
lead to some surprises
 when the behavior suddenly changes. (See "The "Unicode Bug"" in
perlunicode for details.) For this reason, if you are
 potentially using Unicode in your program, the use
 feature 'unicode_strings' subpragma is strongly recommended.

This subpragma is available starting with Perl 5.11.3, but was not fully
 implemented until 5.13.8.

FEATURE BUNDLES
It's possible to load a whole slew of features in one go, using
 a feature bundle. The name of a feature
bundle is prefixed with
 a colon, to distinguish it from an actual feature. At present, the
 only feature
bundle is use feature ":5.10" which is equivalent
 to use feature qw(switch say state)
.

Specifying sub-versions such as the 0 in 5.10.0 in feature bundles has
 no effect: feature bundles
are guaranteed to be the same for all sub-versions.

IMPLICIT LOADING
There are two ways to load the feature pragma implicitly :

By using the -E switch on the command-line instead of -e. It enables
 all available features in
the main compilation unit (that is, the one-liner.)

By requiring explicitly a minimal Perl version number for your program, with
 the use VERSION
construct, and when the version is higher than or equal to
 5.10.0. That is,

 use 5.10.0;

will do an implicit

 use feature ':5.10';

and so on. Note how the trailing sub-version is automatically stripped from the
 version.

But to avoid portability warnings (see "use" in perlfunc), you may prefer:

 use 5.010;

with the same effect.

