
Perl version 5.14.1 documentation - File::Glob

Page 1http://perldoc.perl.org

NAME
File::Glob - Perl extension for BSD glob routine

SYNOPSIS
 use File::Glob ':glob';

 @list = bsd_glob('*.[ch]');
 $homedir = bsd_glob('~gnat', GLOB_TILDE | GLOB_ERR);

 if (GLOB_ERROR) {
 # an error occurred reading $homedir
 }

 ## override the core glob (CORE::glob() does this automatically
 ## by default anyway, since v5.6.0)
 use File::Glob ':globally';
 my @sources = <*.{c,h,y}>;

 ## override the core glob, forcing case sensitivity
 use File::Glob qw(:globally :case);
 my @sources = <*.{c,h,y}>;

 ## override the core glob forcing case insensitivity
 use File::Glob qw(:globally :nocase);
 my @sources = <*.{c,h,y}>;

 ## glob on all files in home directory
 use File::Glob ':globally';
 my @sources = <~gnat/*>;

DESCRIPTION
The glob angle-bracket operator <> is a pathname generator that
 implements the rules for file name
pattern matching used by Unix-like shells
 such as the Bourne shell or C shell.

File::Glob::bsd_glob() implements the FreeBSD glob(3) routine, which is
 a superset of the POSIX
glob() (described in IEEE Std 1003.2 "POSIX.2").
 bsd_glob() takes a mandatory pattern argument,
and an optional flags argument, and returns a list of filenames matching the
 pattern, with
interpretation of the pattern modified by the flags
 variable.

Since v5.6.0, Perl's CORE::glob() is implemented in terms of bsd_glob().
 Note that they don't share
the same prototype--CORE::glob() only accepts
 a single argument. Due to historical reasons,
CORE::glob() will also
 split its argument on whitespace, treating it as multiple patterns,
 whereas
bsd_glob() considers them as one pattern.

META CHARACTERS
 \ Quote the next metacharacter
 [] Character class
 {} Multiple pattern
 * Match any string of characters
 ? Match any single character
 ~ User name home directory

The metanotation a{b,c,d}e is a shorthand for abe ace ade. Left to
 right order is preserved, with

Perl version 5.14.1 documentation - File::Glob

Page 2http://perldoc.perl.org

results of matches being sorted separately
 at a low level to preserve this order. As a special case {, }
, and {} are passed undisturbed.

POSIX FLAGS
The POSIX defined flags for bsd_glob() are:

GLOB_ERR

Force bsd_glob() to return an error when it encounters a directory it
 cannot open or read.
Ordinarily bsd_glob() continues to find matches.

GLOB_LIMIT

Make bsd_glob() return an error (GLOB_NOSPACE) when the pattern expands
 to a size
bigger than the system constant ARG_MAX (usually found in
 limits.h). If your system does not
define this constant, bsd_glob() uses sysconf(_SC_ARG_MAX) or _POSIX_ARG_MAX where
available (in that
 order). You can inspect these values using the standard POSIX
 extension.

GLOB_MARK

Each pathname that is a directory that matches the pattern has a slash
 appended.

GLOB_NOCASE

By default, file names are assumed to be case sensitive; this flag
 makes bsd_glob() treat case
differences as not significant.

GLOB_NOCHECK

If the pattern does not match any pathname, then bsd_glob() returns a list
 consisting of only
the pattern. If GLOB_QUOTE is set, its effect
 is present in the pattern returned.

GLOB_NOSORT

By default, the pathnames are sorted in ascending ASCII order; this
 flag prevents that sorting
(speeding up bsd_glob()).

The FreeBSD extensions to the POSIX standard are the following flags:

GLOB_BRACE

Pre-process the string to expand {pat,pat,...} strings like csh(1).
 The pattern '{}' is left
unexpanded for historical reasons (and csh(1)
 does the same thing to ease typing of find(1)
patterns).

GLOB_NOMAGIC

Same as GLOB_NOCHECK but it only returns the pattern if it does not
 contain any of the special
characters "*", "?" or "[". NOMAGIC is
 provided to simplify implementing the historic csh(1)
globbing
 behaviour and should probably not be used anywhere else.

GLOB_QUOTE

Use the backslash ('\') character for quoting: every occurrence of a
 backslash followed by a
character in the pattern is replaced by that
 character, avoiding any special interpretation of the
character.
 (But see below for exceptions on DOSISH systems).

GLOB_TILDE

Expand patterns that start with '~' to user name home directories.

GLOB_CSH

For convenience, GLOB_CSH is a synonym for GLOB_BRACE | GLOB_NOMAGIC |
GLOB_QUOTE | GLOB_TILDE | GLOB_ALPHASORT.

The POSIX provided GLOB_APPEND, GLOB_DOOFFS, and the FreeBSD
 extensions
GLOB_ALTDIRFUNC, and GLOB_MAGCHAR flags have not been
 implemented in the Perl version

Perl version 5.14.1 documentation - File::Glob

Page 3http://perldoc.perl.org

because they involve more complex
 interaction with the underlying C structures.

The following flag has been added in the Perl implementation for
 csh compatibility:

GLOB_ALPHASORT

If GLOB_NOSORT is not in effect, sort filenames is alphabetical
 order (case does not matter)
rather than in ASCII order.

DIAGNOSTICS
bsd_glob() returns a list of matching paths, possibly zero length. If an
 error occurred,
&File::Glob::GLOB_ERROR will be non-zero and $! will be
 set. &File::Glob::GLOB_ERROR is
guaranteed to be zero if no error occurred,
 or one of the following values otherwise:

GLOB_NOSPACE

An attempt to allocate memory failed.

GLOB_ABEND

The glob was stopped because an error was encountered.

In the case where bsd_glob() has found some matching paths, but is
 interrupted by an error, it will
return a list of filenames and
 set &File::Glob::ERROR.

Note that bsd_glob() deviates from POSIX and FreeBSD glob(3) behaviour
 by not considering
ENOENT and ENOTDIR as errors - bsd_glob() will
 continue processing despite those errors, unless the
GLOB_ERR flag is
 set.

Be aware that all filenames returned from File::Glob are tainted.

NOTES
If you want to use multiple patterns, e.g. bsd_glob("a* b*"), you should
 probably throw
them in a set as in bsd_glob("{a*,b*}"). This is because
 the argument to bsd_glob() isn't
subjected to parsing by the C shell.
 Remember that you can use a backslash to escape
things.

On DOSISH systems, backslash is a valid directory separator character.
 In this case, use of
backslash as a quoting character (via GLOB_QUOTE)
 interferes with the use of backslash as
a directory separator. The
 best (simplest, most portable) solution is to use forward slashes for

directory separators, and backslashes for quoting. However, this does
 not match "normal
practice" on these systems. As a concession to user
 expectation, therefore, backslashes
(under GLOB_QUOTE) only quote the
 glob metacharacters '[', ']', '{', '}', '-', '~', and backslash
itself.
 All other backslashes are passed through unchanged.

Win32 users should use the real slash. If you really want to use
 backslashes, consider using
Sarathy's File::DosGlob, which comes with
 the standard Perl distribution.

Mac OS (Classic) users should note a few differences. Since
 Mac OS is not Unix, when the
glob code encounters a tilde glob (e.g.
 ~user) and the GLOB_TILDE flag is used, it simply
returns that
 pattern without doing any expansion.

Glob on Mac OS is case-insensitive by default (if you don't use any
 flags). If you specify any
flags at all and still want glob
 to be case-insensitive, you must include GLOB_NOCASE in the
flags.

The path separator is ':' (aka colon), not '/' (aka slash). Mac OS users
 should be careful about
specifying relative pathnames. While a full path
 always begins with a volume name, a relative
pathname should always
 begin with a ':'. If specifying a volume name only, a trailing ':' is

required.

The specification of pathnames in glob patterns adheres to the usual Mac
 OS conventions:
The path separator is a colon ':', not a slash '/'. A
 full path always begins with a volume name.

Perl version 5.14.1 documentation - File::Glob

Page 4http://perldoc.perl.org

A relative pathname on Mac
 OS must always begin with a ':', except when specifying a file or

directory name in the current working directory, where the leading colon
 is optional. If
specifying a volume name only, a trailing ':' is
 required. Due to these rules, a glob like <*:> will
find all
 mounted volumes, while a glob like <*> or <:*> will find
 all files and directories in the
current directory.

Note that updirs in the glob pattern are resolved before the matching begins,
 i.e. a pattern like
"*HD:t?p::a*" will be matched as "*HD:a*". Note also,
 that a single trailing ':' in the pattern is
ignored (unless it's a volume
 name pattern like "*HD:"), i.e. a glob like <:*:> will find both

directories and files (and not, as one might expect, only directories).
 You can, however, use
the GLOB_MARK flag to distinguish (without a file
 test) directory names from file names.

If the GLOB_MARK flag is set, all directory paths will have a ':' appended.
 Since a directory like
'lib:' is not a valid relative path on Mac OS,
 both a leading and a trailing colon will be added,
when the directory name in
 question doesn't contain any colons (e.g. 'lib' becomes ':lib:').

SEE ALSO
"glob" in perlfunc, glob(3)

AUTHOR
The Perl interface was written by Nathan Torkington <gnat@frii.com>,
 and is released under the
artistic license. Further modifications were
 made by Greg Bacon <gbacon@cs.uah.edu>, Gurusamy
Sarathy <gsar@activestate.com>, and Thomas Wegner <wegner_thomas@yahoo.com>. The C glob
code has the
 following copyright:

 Copyright (c) 1989, 1993 The Regents of the University of California.
 All rights reserved.

 This code is derived from software contributed to Berkeley by
 Guido van Rossum.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:

 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 3. Neither the name of the University nor the names of its contributors
 may be used to endorse or promote products derived from this
software
 without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

Perl version 5.14.1 documentation - File::Glob

Page 5http://perldoc.perl.org

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

