
Perl version 5.14.1 documentation - Compress::Raw::Bzip2

Page 1http://perldoc.perl.org

NAME
Compress::Raw::Bzip2 - Low-Level Interface to bzip2 compression library

SYNOPSIS
 use Compress::Raw::Bzip2 ;

 my ($bz, $status) = new Compress::Raw::Bzip2 [OPTS]
 or die "Cannot create bzip2 object: $bzerno\n";

 $status = $bz->bzdeflate($input, $output);
 $status = $bz->bzflush($output);
 $status = $bz->bzclose($output);

 my ($bz, $status) = new Compress::Raw::Bunzip2 [OPTS]
 or die "Cannot create bunzip2 object: $bzerno\n";

 $status = $bz->bzinflate($input, $output);

 my $version = Compress::Raw::Bzip2::bzlibversion();

DESCRIPTION
Compress::Raw::Bzip2 provides an interface to the in-memory
 compression/uncompression
functions from the bzip2 compression library.

Although the primary purpose for the existence of Compress::Raw::Bzip2
 is for use by the
IO::Compress::Bzip2 and IO::Compress::Bunzip2
 modules, it can be used on its own for
simple compression/uncompression
 tasks.

Compression
($z, $status) = new Compress::Raw::Bzip2 $appendOutput, $blockSize100k, $workfactor;

Creates a new compression object.

If successful, it will return the initialised compression object, $z
 and a $status of BZ_OK in a list
context. In scalar context it
 returns the deflation object, $z, only.

If not successful, the returned compression object, $z, will be undef and $status will hold the a
bzip2 error code.

Below is a list of the valid options:

$appendOutput

Controls whether the compressed data is appended to the output buffer in
 the bzdeflate,
bzflush and bzclose methods.

Defaults to 1.

$blockSize100k

To quote the bzip2 documentation

 blockSize100k specifies the block size to be used for
compression. It
 should be a value between 1 and 9 inclusive, and the actual
block size
 used is 100000 x this figure. 9 gives the best compression but
takes
 most memory.

Perl version 5.14.1 documentation - Compress::Raw::Bzip2

Page 2http://perldoc.perl.org

Defaults to 1.

$workfactor

To quote the bzip2 documentation

 This parameter controls how the compression phase behaves when
 presented with worst case, highly repetitive, input data. If
 compression runs into difficulties caused by repetitive data,
the
 library switches from the standard sorting algorithm to a
fallback
 algorithm. The fallback is slower than the standard algorithm by
 perhaps a factor of three, but always behaves reasonably, no
matter how
 bad the input.

 Lower values of workFactor reduce the amount of effort the
standard
 algorithm will expend before resorting to the fallback. You
should set
 this parameter carefully; too low, and many inputs will be
handled by
 the fallback algorithm and so compress rather slowly, too high,
and
 your average-to-worst case compression times can become very
large. The
 default value of 30 gives reasonable behaviour over a wide range
 of
 circumstances.

 Allowable values range from 0 to 250 inclusive. 0 is a special
case,
 equivalent to using the default value of 30.

Defaults to 0.

$status = $bz->bzdeflate($input, $output);
Reads the contents of $input, compresses it and writes the compressed
 data to $output.

Returns BZ_RUN_OK on success and a bzip2 error code on failure.

If appendOutput is enabled in the constructor for the bzip2 object, the
 compressed data will be
appended to $output. If not enabled, $output
 will be truncated before the compressed data is
written to it.

$status = $bz->bzflush($output);
Flushes any pending compressed data to $output.

Returns BZ_RUN_OK on success and a bzip2 error code on failure.

$status = $bz->bzclose($output);
Terminates the compressed data stream and flushes any pending compressed
 data to $output.

Returns BZ_STREAM_END on success and a bzip2 error code on failure.

Example

Perl version 5.14.1 documentation - Compress::Raw::Bzip2

Page 3http://perldoc.perl.org

Uncompression
($z, $status) = new Compress::Raw::Bunzip2 $appendOutput, $consumeInput, $small,
$verbosity, $limitOutput;

If successful, it will return the initialised uncompression object, $z
 and a $status of BZ_OK in a list
context. In scalar context it
 returns the deflation object, $z, only.

If not successful, the returned uncompression object, $z, will be undef and $status will hold the a
bzip2 error code.

Below is a list of the valid options:

$appendOutput

Controls whether the compressed data is appended to the output buffer in the bzinflate,
bzflush and bzclose methods.

Defaults to 1.

$consumeInput

$small

To quote the bzip2 documentation

 If small is nonzero, the library will use an alternative
decompression
 algorithm which uses less memory but at the cost of
decompressing more
 slowly (roughly speaking, half the speed, but the maximum memory
 requirement drops to around 2300k).

Defaults to 0.

$limitOutput

The LimitOutput option changes the behavior of the $i->bzinflate
 method so that the
amount of memory used by the output buffer can be
 limited.

When LimitOutput is used the size of the output buffer used will either
 be the 16k or the
amount of memory already allocated to $output,
 whichever is larger. Predicting the output
size available is tricky, so
 don't rely on getting an exact output buffer size.

When LimitOutout is not specified $i->bzinflate will use as much
 memory as it takes
to write all the uncompressed data it creates by
 uncompressing the input buffer.

If LimitOutput is enabled, the ConsumeInput option will also be
 enabled.

This option defaults to false.

$verbosity

This parameter is ignored.

Defaults to 0.

$status = $z->bzinflate($input, $output);
Uncompresses $input and writes the uncompressed data to $output.

Returns BZ_OK if the uncompression was successful, but the end of the
 compressed data stream has
not been reached. Returns BZ_STREAM_END on
 successful uncompression and the end of the
compression stream has been
 reached.

If consumeInput is enabled in the constructor for the bunzip2 object, $input will have all
compressed data removed from it after
 uncompression. On BZ_OK return this will mean that $input
will be an
 empty string; when BZ_STREAM_END $input will either be an empty
 string or will contain
whatever data immediately followed the compressed
 data stream.

Perl version 5.14.1 documentation - Compress::Raw::Bzip2

Page 4http://perldoc.perl.org

If appendOutput is enabled in the constructor for the bunzip2 object,
 the uncompressed data will be
appended to $output. If not enabled, $output will be truncated before the uncompressed data is
written to it.

Misc
my $version = Compress::Raw::Bzip2::bzlibversion();

Returns the version of the underlying bzip2 library.

Constants
The following bzip2 constants are exported by this module

		 BZ_RUN
		 BZ_FLUSH
		 BZ_FINISH

		 BZ_OK
		 BZ_RUN_OK
		 BZ_FLUSH_OK
		 BZ_FINISH_OK
		 BZ_STREAM_END
		 BZ_SEQUENCE_ERROR
		 BZ_PARAM_ERROR
		 BZ_MEM_ERROR
		 BZ_DATA_ERROR
		 BZ_DATA_ERROR_MAGIC
		 BZ_IO_ERROR
		 BZ_UNEXPECTED_EOF
		 BZ_OUTBUFF_FULL
		 BZ_CONFIG_ERROR

SEE ALSO
Compress::Zlib, IO::Compress::Gzip, IO::Uncompress::Gunzip, IO::Compress::Deflate,
IO::Uncompress::Inflate, IO::Compress::RawDeflate, IO::Uncompress::RawInflate,
IO::Compress::Bzip2, IO::Uncompress::Bunzip2, IO::Compress::Lzma, IO::Uncompress::UnLzma,
IO::Compress::Xz, IO::Uncompress::UnXz, IO::Compress::Lzop, IO::Uncompress::UnLzop,
IO::Compress::Lzf, IO::Uncompress::UnLzf, IO::Uncompress::AnyInflate,
IO::Uncompress::AnyUncompress

Compress::Zlib::FAQ

File::GlobMapper, Archive::Zip, Archive::Tar, IO::Zlib

The primary site for the bzip2 program is http://www.bzip.org.

See the module Compress::Bzip2

AUTHOR
This module was written by Paul Marquess, pmqs@cpan.org.

MODIFICATION HISTORY
See the Changes file.

COPYRIGHT AND LICENSE
Copyright (c) 2005-2011 Paul Marquess. All rights reserved.

This program is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

Perl version 5.14.1 documentation - Compress::Raw::Bzip2

Page 5http://perldoc.perl.org

