
Perl version 5.14.1 documentation - PerlIO::via

Page 1http://perldoc.perl.org

NAME
PerlIO::via - Helper class for PerlIO layers implemented in perl

SYNOPSIS
 use PerlIO::via::Layer;
 open($fh,"<:via(Layer)",...);

 use Some::Other::Package;
 open($fh,">:via(Some::Other::Package)",...);

DESCRIPTION
The PerlIO::via module allows you to develop PerlIO layers in Perl, without
 having to go into the nitty
gritty of programming C with XS as the interface
 to Perl.

One example module, PerlIO::via::QuotedPrint, is included with Perl
 5.8.0, and more example
modules are available from CPAN, such as PerlIO::via::StripHTML and PerlIO::via::Base64. The

PerlIO::via::StripHTML module for instance, allows you to say:

	 use PerlIO::via::StripHTML;
	 open(my $fh, "<:via(StripHTML)", "index.html");
 my @line = <$fh>;

to obtain the text of an HTML-file in an array with all the HTML-tags
 automagically removed.

Please note that if the layer is created in the PerlIO::via:: namespace, it
 does not have to be fully
qualified. The PerlIO::via module will prefix
 the PerlIO::via:: namespace if the specified modulename
does not exist as a
 fully qualified module name.

EXPECTED METHODS
To create a Perl module that implements a PerlIO layer in Perl (as opposed to
 in C using XS as the
interface to Perl), you need to supply some of the
 following subroutines. It is recommended to create
these Perl modules in the
 PerlIO::via:: namespace, so that they can easily be located on CPAN and
use
 the default namespace feature of the PerlIO::via module itself.

Please note that this is an area of recent development in Perl and that the
 interface described here is
therefore still subject to change (and hopefully
 will have better documentation and more examples).

In the method descriptions below $fh will be
 a reference to a glob which can be treated as a perl file
handle.
 It refers to the layer below. $fh is not passed if the layer
 is at the bottom of the stack, for this
reason and to maintain
 some level of "compatibility" with TIEHANDLE classes it is passed last.

$class->PUSHED([$mode,[$fh]])

Should return an object or the class, or -1 on failure. (Compare
 TIEHANDLE.) The arguments
are an optional mode string ("r", "w",
 "w+", ...) and a filehandle for the PerlIO layer below.
Mandatory.

When the layer is pushed as part of an open call, PUSHED will be called before the actual
open occurs, whether that be via OPEN, SYSOPEN, FDOPEN or by letting a lower layer do the
open.

$obj->POPPED([$fh])

Optional - called when the layer is about to be removed.

$obj->UTF8($bellowFlag,[$fh])

Optional - if present it will be called immediately after PUSHED has
 returned. It should return a
true value if the layer expects data to be
 UTF-8 encoded. If it returns true, the result is as if the
caller had done

Perl version 5.14.1 documentation - PerlIO::via

Page 2http://perldoc.perl.org

 ":via(YourClass):utf8"

If not present or if it returns false, then the stream is left with
 the UTF-8 flag clear.
 The
$bellowFlag argument will be true if there is a layer below
 and that layer was expecting UTF-8.

$obj->OPEN($path,$mode,[$fh])

Optional - if not present a lower layer does the open.
 If present, called for normal opens after
the layer is pushed.
 This function is subject to change as there is no easy way
 to get a lower
layer to do the open and then regain control.

$obj->BINMODE([$fh])

Optional - if not present the layer is popped on binmode($fh) or when :raw
 is pushed. If
present it should return 0 on success, -1 on error, or undef
 to pop the layer.

$obj->FDOPEN($fd,[$fh])

Optional - if not present a lower layer does the open.
 If present, called after the layer is
pushed for opens which pass
 a numeric file descriptor.
 This function is subject to change as
there is no easy way
 to get a lower layer to do the open and then regain control.

$obj->SYSOPEN($path,$imode,$perm,[$fh])

Optional - if not present a lower layer does the open.
 If present, called after the layer is
pushed for sysopen style opens
 which pass a numeric mode and permissions.
 This function is
subject to change as there is no easy way
 to get a lower layer to do the open and then regain
control.

$obj->FILENO($fh)

Returns a numeric value for a Unix-like file descriptor. Returns -1 if
 there isn't one. Optional.
Default is fileno($fh).

$obj->READ($buffer,$len,$fh)

Returns the number of octets placed in $buffer (must be less than or
 equal to $len). Optional.
Default is to use FILL instead.

$obj->WRITE($buffer,$fh)

Returns the number of octets from $buffer that have been successfully written.

$obj->FILL($fh)

Should return a string to be placed in the buffer. Optional. If not
 provided, must provide READ
or reject handles open for reading in
 PUSHED.

$obj->CLOSE($fh)

Should return 0 on success, -1 on error.
 Optional.

$obj->SEEK($posn,$whence,$fh)

Should return 0 on success, -1 on error.
 Optional. Default is to fail, but that is likely to be
changed
 in future.

$obj->TELL($fh)

Returns file position.
 Optional. Default to be determined.

$obj->UNREAD($buffer,$fh)

Returns the number of octets from $buffer that have been successfully
 saved to be returned
on future FILL/READ calls. Optional. Default is
 to push data into a temporary layer above this
one.

$obj->FLUSH($fh)

Perl version 5.14.1 documentation - PerlIO::via

Page 3http://perldoc.perl.org

Flush any buffered write data. May possibly be called on readable
 handles too. Should return
0 on success, -1 on error.

$obj->SETLINEBUF($fh)

Optional. No return.

$obj->CLEARERR($fh)

Optional. No return.

$obj->ERROR($fh)

Optional. Returns error state. Default is no error until a mechanism
 to signal error (die?) is
worked out.

$obj->EOF($fh)

Optional. Returns end-of-file state. Default is a function of the return
 value of FILL or READ.

EXAMPLES
Check the PerlIO::via:: namespace on CPAN for examples of PerlIO layers
 implemented in Perl. To
give you an idea how simple the implementation of
 a PerlIO layer can look, a simple example is
included here.

Example - a Hexadecimal Handle
Given the following module, PerlIO::via::Hex :

 package PerlIO::via::Hex;

 sub PUSHED
 {
 my ($class,$mode,$fh) = @_;
 # When writing we buffer the data
 my $buf = '';
 return bless \$buf,$class;
 }

 sub FILL
 {
 my ($obj,$fh) = @_;
 my $line = <$fh>;
 return (defined $line) ? pack("H*", $line) : undef;
 }

 sub WRITE
 {
 my ($obj,$buf,$fh) = @_;
 $$obj .= unpack("H*", $buf);
 return length($buf);
 }

 sub FLUSH
 {
 my ($obj,$fh) = @_;
 print $fh $$obj or return -1;
 $$obj = '';
 return 0;
 }

Perl version 5.14.1 documentation - PerlIO::via

Page 4http://perldoc.perl.org

 1;

The following code opens up an output handle that will convert any
 output to a hexadecimal dump of
the output bytes: for example "A" will
 be converted to "41" (on ASCII-based machines, on EBCDIC
platforms
 the "A" will become "c1")

 use PerlIO::via::Hex;
 open(my $fh, ">:via(Hex)", "foo.hex");

and the following code will read the hexdump in and convert it
 on the fly back into bytes:

 open(my $fh, "<:via(Hex)", "foo.hex");

