
Perl version 5.14.1 documentation - File::Basename

Page 1http://perldoc.perl.org

NAME
File::Basename - Parse file paths into directory, filename and suffix.

SYNOPSIS
 use File::Basename;

 ($name,$path,$suffix) = fileparse($fullname,@suffixlist);
 $name = fileparse($fullname,@suffixlist);

 $basename = basename($fullname,@suffixlist);
 $dirname = dirname($fullname);

DESCRIPTION
These routines allow you to parse file paths into their directory, filename
 and suffix.

NOTE: dirname() and basename() emulate the behaviours, and
 quirks, of the shell and C
functions of the same name. See each
 function's documentation for details. If your concern is just
parsing
 paths it is safer to use File::Spec's splitpath() and splitdir() methods.

It is guaranteed that

 # Where $path_separator is / for Unix, \ for Windows, etc...
 dirname($path) . $path_separator . basename($path);

is equivalent to the original path for all systems but VMS.

fileparse

 my($filename, $directories, $suffix) = fileparse($path);
 my($filename, $directories, $suffix) = fileparse($path,
@suffixes);
 my $filename = fileparse($path,
@suffixes);

The fileparse() routine divides a file path into its $directories, $filename
 and (optionally)
the filename $suffix.

$directories contains everything up to and including the last
 directory separator in the $path
including the volume (if applicable).
 The remainder of the $path is the $filename.

 # On Unix returns ("baz", "/foo/bar/", "")
 fileparse("/foo/bar/baz");

 # On Windows returns ("baz", 'C:\foo\bar\', "")
 fileparse('C:\foo\bar\baz');

 # On Unix returns ("", "/foo/bar/baz/", "")
 fileparse("/foo/bar/baz/");

If @suffixes are given each element is a pattern (either a string or a qr//) matched against
the end of the $filename. The matching
 portion is removed and becomes the $suffix.

 # On Unix returns ("baz", "/foo/bar/", ".txt")
 fileparse("/foo/bar/baz.txt", qr/\.[^.]*/);

If type is non-Unix (see fileparse_set_fstype()) then the pattern
 matching for suffix
removal is performed case-insensitively, since
 those systems are not case-sensitive when
opening existing files.

Perl version 5.14.1 documentation - File::Basename

Page 2http://perldoc.perl.org

You are guaranteed that $directories . $filename . $suffix will
 denote the same
location as the original $path.

basename

 my $filename = basename($path);
 my $filename = basename($path, @suffixes);

This function is provided for compatibility with the Unix shell command basename(1). It does
NOT always return the file name portion of a
 path as you might expect. To be safe, if you want
the file name portion of
 a path use fileparse().

basename() returns the last level of a filepath even if the last
 level is clearly directory. In
effect, it is acting like pop() for
 paths. This differs from fileparse()'s behaviour.

 # Both return "bar"
 basename("/foo/bar");
 basename("/foo/bar/");

@suffixes work as in fileparse() except all regex metacharacters are
 quoted.

 # These two function calls are equivalent.
 my $filename = basename("/foo/bar/baz.txt", ".txt");
 my $filename = fileparse("/foo/bar/baz.txt", qr/\Q.txt\E/);

Also note that in order to be compatible with the shell command, basename() does not strip
off a suffix if it is identical to the
 remaining characters in the filename.

dirname

This function is provided for compatibility with the Unix shell
 command dirname(1) and has
inherited some of its quirks. In spite of
 its name it does NOT always return the directory name
as you might
 expect. To be safe, if you want the directory name of a path use fileparse().

Only on VMS (where there is no ambiguity between the file and directory
 portions of a path)
and AmigaOS (possibly due to an implementation quirk in
 this module) does dirname() work
like fileparse($path), returning just the
 $directories.

 # On VMS and AmigaOS
 my $directories = dirname($path);

When using Unix or MSDOS syntax this emulates the dirname(1) shell function
 which is
subtly different from how fileparse() works. It returns all but
 the last level of a file path
even if the last level is clearly a directory.
 In effect, it is not returning the directory portion but
simply the path one
 level up acting like chop() for file paths.

Also unlike fileparse(), dirname() does not include a trailing slash on
 its returned path.

 # returns /foo/bar. fileparse() would return /foo/bar/
 dirname("/foo/bar/baz");

 # also returns /foo/bar despite the fact that baz is clearly a
 # directory. fileparse() would return /foo/bar/baz/
 dirname("/foo/bar/baz/");

 # returns '.'. fileparse() would return 'foo/'
 dirname("foo/");

Under VMS, if there is no directory information in the $path, then the
 current default device
and directory is used.

fileparse_set_fstype

 my $type = fileparse_set_fstype();

Perl version 5.14.1 documentation - File::Basename

Page 3http://perldoc.perl.org

 my $previous_type = fileparse_set_fstype($type);

Normally File::Basename will assume a file path type native to your current
 operating system
(ie. /foo/bar style on Unix, \foo\bar on Windows, etc...).
 With this function you can override that
assumption.

Valid $types are "MacOS", "VMS", "AmigaOS", "OS2", "RISCOS",
 "MSWin32", "DOS" (also
"MSDOS" for backwards bug compatibility),
 "Epoc" and "Unix" (all case-insensitive). If an
unrecognized $type is
 given "Unix" will be assumed.

If you've selected VMS syntax, and the file specification you pass to
 one of these routines
contains a "/", they assume you are using Unix
 emulation and apply the Unix syntax rules
instead, for that function
 call only.

SEE ALSO
dirname(1), basename(1), File::Spec

