
Perl version 5.14.1 documentation - Text::ParseWords

Page 1http://perldoc.perl.org

NAME
Text::ParseWords - parse text into an array of tokens or array of arrays

SYNOPSIS
 use Text::ParseWords;
 @lists = nested_quotewords($delim, $keep, @lines);
 @words = quotewords($delim, $keep, @lines);
 @words = shellwords(@lines);
 @words = parse_line($delim, $keep, $line);
 @words = old_shellwords(@lines); # DEPRECATED!

DESCRIPTION
The &nested_quotewords() and "ewords() functions accept a delimiter (which can be a regular
expression)
 and a list of lines and then breaks those lines up into a list of
 words ignoring delimiters
that appear inside quotes. "ewords()
 returns all of the tokens in a single long list, while
&nested_quotewords()
 returns a list of token lists corresponding to the elements of @lines.

&parse_line() does tokenizing on a single string. The &*quotewords()
 functions simply call
&parse_line(), so if you're only splitting
 one line you can call &parse_line() directly and save a function
call.

The $keep argument is a boolean flag. If true, then the tokens are
 split on the specified delimiter, but
all other characters (quotes,
 backslashes, etc.) are kept in the tokens. If $keep is false then the

&*quotewords() functions remove all quotes and backslashes that are
 not themselves
backslash-escaped or inside of single quotes (i.e.,
 "ewords() tries to interpret these characters
just like the Bourne
 shell). NB: these semantics are significantly different from the
 original version of
this module shipped with Perl 5.000 through 5.004.
 As an additional feature, $keep may be the
keyword "delimiters" which
 causes the functions to preserve the delimiters in each string as
 tokens in
the token lists, in addition to preserving quote and
 backslash characters.

&shellwords() is written as a special case of "ewords(), and it
 does token parsing with
whitespace as a delimiter-- similar to most
 Unix shells.

EXAMPLES
The sample program:

 use Text::ParseWords;
 @words = quotewords('\s+', 0, q{this is "a test" of\ quotewords \"for
you});
 $i = 0;
 foreach (@words) {
 print "$i: <$_>\n";
 $i++;
 }

produces:

 0: <this>
 1: <is>
 2: <a test>
 3: <of quotewords>
 4: <"for>
 5: <you>

demonstrating:

0 a simple word

Perl version 5.14.1 documentation - Text::ParseWords

Page 2http://perldoc.perl.org

1 multiple spaces are skipped because of our $delim

2 use of quotes to include a space in a word

3 use of a backslash to include a space in a word

4 use of a backslash to remove the special meaning of a double-quote

5 another simple word (note the lack of effect of the
 backslashed double-quote)

Replacing quotewords('\s+', 0, q{this is...})
 with shellwords(q{this
is...})
 is a simpler way to accomplish the same thing.

AUTHORS
Maintainer: Alexandr Ciornii <alexchornyATgmail.com>.

Previous maintainer: Hal Pomeranz <pomeranz@netcom.com>, 1994-1997 (Original
 author
unknown). Much of the code for &parse_line() (including the
 primary regexp) from Joerk Behrends
<jbehrends@multimediaproduzenten.de>.

Examples section another documentation provided by John Heidemann <johnh@ISI.EDU>

Bug reports, patches, and nagging provided by lots of folks-- thanks
 everybody! Special thanks to
Michael Schwern <schwern@envirolink.org>
 for assuring me that a &nested_quotewords() would be
useful, and to Jeff Friedl <jfriedl@yahoo-inc.com> for telling me not to worry about
 error-checking
(sort of-- you had to be there).

