
Perl version 5.14.1 documentation - perlnewmod

Page 1http://perldoc.perl.org

NAME
perlnewmod - preparing a new module for distribution

DESCRIPTION
This document gives you some suggestions about how to go about writing
 Perl modules, preparing
them for distribution, and making them available
 via CPAN.

One of the things that makes Perl really powerful is the fact that Perl
 hackers tend to want to share
the solutions to problems they've faced,
 so you and I don't have to battle with the same problem
again.

The main way they do this is by abstracting the solution into a Perl
 module. If you don't know what
one of these is, the rest of this
 document isn't going to be much use to you. You're also missing out
on
 an awful lot of useful code; consider having a look at perlmod, perlmodlib and perlmodinstall
before coming back here.

When you've found that there isn't a module available for what you're
 trying to do, and you've had to
write the code yourself, consider
 packaging up the solution into a module and uploading it to CPAN so
that
 others can benefit.

Warning
We're going to primarily concentrate on Perl-only modules here, rather
 than XS modules. XS modules
serve a rather different purpose, and
 you should consider different things before distributing them -
the
 popularity of the library you are gluing, the portability to other
 operating systems, and so on.
However, the notes on preparing the Perl
 side of the module and packaging and distributing it will
apply equally
 well to an XS module as a pure-Perl one.

What should I make into a module?
You should make a module out of any code that you think is going to be
 useful to others. Anything
that's likely to fill a hole in the communal
 library and which someone else can slot directly into their
program. Any
 part of your code which you can isolate and extract and plug into
 something else is a
likely candidate.

Let's take an example. Suppose you're reading in data from a local
 format into a hash-of-hashes in
Perl, turning that into a tree, walking
 the tree and then piping each node to an Acme Transmogrifier
Server.

Now, quite a few people have the Acme Transmogrifier, and you've had to
 write something to talk the
protocol from scratch - you'd almost
 certainly want to make that into a module. The level at which you
pitch
 it is up to you: you might want protocol-level modules analogous to Net::SMTP which then talk to
higher level modules analogous
 to Mail::Send. The choice is yours, but you do want to get
 a module
out for that server protocol.

Nobody else on the planet is going to talk your local data format, so we
 can ignore that. But what
about the thing in the middle? Building tree
 structures from Perl variables and then traversing them is
a nice,
 general problem, and if nobody's already written a module that does
 that, you might want to
modularise that code too.

So hopefully you've now got a few ideas about what's good to modularise.
 Let's now see how it's
done.

Step-by-step: Preparing the ground
Before we even start scraping out the code, there are a few things we'll
 want to do in advance.

Look around

Dig into a bunch of modules to see how they're written. I'd suggest
 starting with Text::Tabs,
since it's in the standard
 library and is nice and simple, and then looking at something a little

more complex like File::Copy. For object oriented
 code, WWW::Mechanize or the Email::*

Perl version 5.14.1 documentation - perlnewmod

Page 2http://perldoc.perl.org

modules provide some good
 examples.

These should give you an overall feel for how modules are laid out and
 written.

Check it's new

There are a lot of modules on CPAN, and it's easy to miss one that's
 similar to what you're
planning on contributing. Have a good plough
 through the http://search.cpan.org and make sure
you're not the one
 reinventing the wheel!

Discuss the need

You might love it. You might feel that everyone else needs it. But there
 might not actually be any
real demand for it out there. If you're unsure
 about the demand your module will have, consider
sending out feelers
 on the comp.lang.perl.modules newsgroup, or as a last resort, ask the

modules list at modules@perl.org. Remember that this is a closed list
 with a very long
turn-around time - be prepared to wait a good while for
 a response from them.

Choose a name

Perl modules included on CPAN have a naming hierarchy you should try to
 fit in with. See
perlmodlib for more details on how this works, and
 browse around CPAN and the modules list to
get a feel of it. At the very
 least, remember this: modules should be title capitalised,
(This::Thing)
 fit in with a category, and explain their purpose succinctly.

Check again

While you're doing that, make really sure you haven't missed a module
 similar to the one you're
about to write.

When you've got your name sorted out and you're sure that your module is
 wanted and not
currently available, it's time to start coding.

Step-by-step: Making the module
Start with module-starter or h2xs

The module-starter utility is distributed as part of the Module::Starter CPAN package. It creates
a directory
 with stubs of all the necessary files to start a new module, according
 to recent "best
practice" for module development, and is invoked from
 the command line, thus:

 module-starter --module=Foo::Bar \
 --author="Your Name" --email=yourname@cpan.org

If you do not wish to install the Module::Starter
 package from CPAN, h2xs is an older tool,
originally intended for the
 development of XS modules, which comes packaged with the Perl

distribution.

A typical invocation of h2xs for a pure Perl module is:

 h2xs -AX --skip-exporter --use-new-tests -n Foo::Bar

The -A omits the Autoloader code, -X omits XS elements, --skip-exporter omits the
Exporter code, --use-new-tests sets up a
 modern testing environment, and -n specifies the
name of the module.

Use strict and warnings

A module's code has to be warning and strict-clean, since you can't
 guarantee the conditions
that it'll be used under. Besides, you wouldn't
 want to distribute code that wasn't warning or
strict-clean anyway,
 right?

Use Carp

The Carp module allows you to present your error messages from
 the caller's perspective; this
gives you a way to signal a problem with
 the caller and not your module. For instance, if you say
this:

Perl version 5.14.1 documentation - perlnewmod

Page 3http://perldoc.perl.org

 warn "No hostname given";

the user will see something like this:

 No hostname given at
/usr/local/lib/perl5/site_perl/5.6.0/Net/Acme.pm
 line 123.

which looks like your module is doing something wrong. Instead, you want
 to put the blame on
the user, and say this:

 No hostname given at bad_code, line 10.

You do this by using Carp and replacing your warns with carps. If you need to die, say croak
instead. However, keep warn and die in place for your sanity checks - where it really is
 your
module at fault.

Use Exporter - wisely!

Exporter gives you a standard way of exporting symbols and
 subroutines from your module into
the caller's namespace. For instance,
 saying use Net::Acme qw(&frob) would import the
frob subroutine.

The package variable @EXPORT will determine which symbols will get
 exported when the caller
simply says use Net::Acme - you will hardly
 ever want to put anything in there. @EXPORT_OK,
on the other hand,
 specifies which symbols you're willing to export. If you do want to
 export a
bunch of symbols, use the %EXPORT_TAGS and define a standard
 export set - look at Exporter
for more details.

Use plain old documentation

The work isn't over until the paperwork is done, and you're going to
 need to put in some time
writing some documentation for your module. module-starter or h2xs will provide a stub for
you to fill in; if
 you're not sure about the format, look at perlpod for an
 introduction. Provide a
good synopsis of how your module is used in
 code, a description, and then notes on the syntax
and function of the
 individual subroutines or methods. Use Perl comments for developer notes

and POD for end-user notes.

Write tests

You're encouraged to create self-tests for your module to ensure it's
 working as intended on the
myriad platforms Perl supports; if you upload
 your module to CPAN, a host of testers will build
your module and send
 you the results of the tests. Again, module-starter and h2xs
 provide
a test framework which you can extend - you should do something
 more than just checking your
module will compile. Test::Simple and Test::More are good
 places to start when writing a test
suite.

Write the README

If you're uploading to CPAN, the automated gremlins will extract the
 README file and place that
in your CPAN directory. It'll also appear in
 the main by-module and by-category directories if you
make it onto
 the modules list. It's a good idea to put here what the module actually
 does in
detail, and the user-visible changes since the last release.

Step-by-step: Distributing your module
Get a CPAN user ID

Every developer publishing modules on CPAN needs a CPAN ID. Visit
http://pause.perl.org/, select "Request PAUSE Account", and wait for
 your request to
be approved by the PAUSE administrators.

perl Makefile.PL; make test; make dist

Once again, module-starter or h2xs has done all the work for you.
 They produce the

Perl version 5.14.1 documentation - perlnewmod

Page 4http://perldoc.perl.org

standard Makefile.PL you see when you download and
 install modules, and this produces a
Makefile with a dist target.

Once you've ensured that your module passes its own tests - always a
 good thing to make sure
- you can make dist, and the Makefile will
 hopefully produce you a nice tarball of your module,
ready for upload.

Upload the tarball

The email you got when you received your CPAN ID will tell you how to
 log in to PAUSE, the
Perl Authors Upload SErver. From the menus there,
 you can upload your module to CPAN.

Announce to the modules list

Once uploaded, it'll sit unnoticed in your author directory. If you want
 it connected to the rest of
the CPAN, you'll need to go to "Register
 Namespace" on PAUSE. Once registered, your module
will appear in the
 by-module and by-category listings on CPAN.

Announce to clpa

If you have a burning desire to tell the world about your release, post
 an announcement to the
moderated comp.lang.perl.announce newsgroup.

Fix bugs!

Once you start accumulating users, they'll send you bug reports. If
 you're lucky, they'll even
send you patches. Welcome to the joys of
 maintaining a software project...

AUTHOR
Simon Cozens, simon@cpan.org

Updated by Kirrily "Skud" Robert, skud@cpan.org

SEE ALSO
perlmod, perlmodlib, perlmodinstall, h2xs, strict, Carp, Exporter, perlpod, Test::Simple, Test::More
ExtUtils::MakeMaker, Module::Build, Module::Starter
 http://www.cpan.org/ , Ken Williams's tutorial on
building your own
 module at http://mathforum.org/~ken/perl_modules.html

