
Perl version 5.14.1 documentation - Socket

Page 1http://perldoc.perl.org

NAME
Socket, sockaddr_in, sockaddr_un, inet_aton, inet_ntoa, inet_pton, inet_ntop - load the C socket.h
defines and structure manipulators

SYNOPSIS
 use Socket;

 $proto = getprotobyname('udp');
 socket(Socket_Handle, PF_INET, SOCK_DGRAM, $proto);
 $iaddr = gethostbyname('hishost.com');
 $port = getservbyname('time', 'udp');
 $sin = sockaddr_in($port, $iaddr);
 send(Socket_Handle, 0, 0, $sin);

 $proto = getprotobyname('tcp');
 socket(Socket_Handle, PF_INET, SOCK_STREAM, $proto);
 $port = getservbyname('smtp', 'tcp');
 $sin = sockaddr_in($port,inet_aton("127.1"));
 $sin = sockaddr_in(7,inet_aton("localhost"));
 $sin = sockaddr_in(7,INADDR_LOOPBACK);
 connect(Socket_Handle,$sin);

 ($port, $iaddr) = sockaddr_in(getpeername(Socket_Handle));
 $peer_host = gethostbyaddr($iaddr, AF_INET);
 $peer_addr = inet_ntoa($iaddr);

 $proto = getprotobyname('tcp');
 socket(Socket_Handle, PF_UNIX, SOCK_STREAM, $proto);
 unlink('/var/run/usock');
 $sun = sockaddr_un('/var/run/usock');
 connect(Socket_Handle,$sun);

DESCRIPTION
This module is just a translation of the C socket.h file.
 Unlike the old mechanism of requiring a
translated socket.ph
 file, this uses the h2xs program (see the Perl source distribution)
 and your native
C compiler. This means that it has a far more likely chance of getting the numbers right. This includes

all of the commonly used pound-defines like AF_INET, SOCK_STREAM, etc.

Also, some common socket "newline" constants are provided: the
 constants CR, LF, and CRLF, as
well as $CR, $LF, and $CRLF, which map to \015, \012, and \015\012. If you do
 not want to use
the literal characters in your programs, then use
 the constants provided here. They are not exported
by default, but can
 be imported individually, and with the :crlf export tag:

 use Socket qw(:DEFAULT :crlf);

In addition, some structure manipulation functions are available:

inet_aton HOSTNAME

Takes a string giving the name of a host, and translates that to an
 opaque string (if
programming in C, struct in_addr). Takes arguments
 of both the 'rtfm.mit.edu' type and
'18.181.0.24'. If the host name
 cannot be resolved, returns undef. For multi-homed hosts
(hosts with
 more than one address), the first address found is returned.

For portability do not assume that the result of inet_aton() is 32
 bits wide, in other words, that
it would contain only the IPv4 address
 in network order.

Perl version 5.14.1 documentation - Socket

Page 2http://perldoc.perl.org

inet_ntoa IP_ADDRESS

Takes a string (an opaque string as returned by inet_aton(),
 or a v-string representing the four
octets of the IPv4 address in
 network order) and translates it into a string of the form 'd.d.d.d'

where the 'd's are numbers less than 256 (the normal human-readable
 four dotted number
notation for Internet addresses).

INADDR_ANY

Note: does not return a number, but a packed string.

Returns the 4-byte wildcard ip address which specifies any
 of the hosts ip addresses. (A
particular machine can have
 more than one ip address, each address corresponding to
 a
particular network interface. This wildcard address
 allows you to bind to all of them
simultaneously.)
 Normally equivalent to inet_aton('0.0.0.0').

INADDR_BROADCAST

Note: does not return a number, but a packed string.

Returns the 4-byte 'this-lan' ip broadcast address.
 This can be useful for some protocols to
solicit information
 from all servers on the same LAN cable.
 Normally equivalent to
inet_aton('255.255.255.255').

INADDR_LOOPBACK

Note - does not return a number.

Returns the 4-byte loopback address. Normally equivalent
 to inet_aton('localhost').

INADDR_NONE

Note - does not return a number.

Returns the 4-byte 'invalid' ip address. Normally equivalent
 to inet_aton('255.255.255.255').

IN6ADDR_ANY

Returns the 16-byte wildcard IPv6 address. Normally equivalent
 to inet_pton(AF_INET6, "::")

IN6ADDR_LOOPBACK

Returns the 16-byte loopback IPv6 address. Normally equivalent
 to inet_pton(AF_INET6, "::1")

sockaddr_family SOCKADDR

Takes a sockaddr structure (as returned by pack_sockaddr_in(),
 pack_sockaddr_un() or the
perl builtin functions getsockname() and
 getpeername()) and returns the address family tag. It
will match the
 constant AF_INET for a sockaddr_in and AF_UNIX for a sockaddr_un. It
 can be
used to figure out what unpacker to use for a sockaddr of
 unknown type.

sockaddr_in PORT, ADDRESS

sockaddr_in SOCKADDR_IN

In a list context, unpacks its SOCKADDR_IN argument and returns an array
 consisting of
(PORT, ADDRESS). In a scalar context, packs its (PORT,
 ADDRESS) arguments as a
SOCKADDR_IN and returns it. If this is confusing,
 use pack_sockaddr_in() and
unpack_sockaddr_in() explicitly.

pack_sockaddr_in PORT, IP_ADDRESS

Takes two arguments, a port number and an opaque string, IP_ADDRESS
 (as returned by
inet_aton(), or a v-string). Returns the sockaddr_in
 structure with those arguments packed in
with AF_INET filled in. For
 Internet domain sockets, this structure is normally what you need
for
 the arguments in bind(), connect(), and send(), and is also returned
 by getpeername(),
getsockname() and recv().

unpack_sockaddr_in SOCKADDR_IN

Perl version 5.14.1 documentation - Socket

Page 3http://perldoc.perl.org

Takes a sockaddr_in structure (as returned by pack_sockaddr_in()) and
 returns an array of
two elements: the port and an opaque string
 representing the IP address (you can use
inet_ntoa() to convert the
 address to the four-dotted numeric format). Will croak if the
 structure
does not have AF_INET in the right place.

sockaddr_in6 PORT, IP6_ADDRESS, [SCOPE_ID, [FLOWINFO]]

sockaddr_in6 SOCKADDR_IN6

In list context, unpacks its SOCKADDR_IN6 argument according to
 unpack_sockaddr_in6(). In
scalar context, packs its arguments according to
 pack_sockaddr_in6().

pack_sockaddr_in6 PORT, IP6_ADDRESS, [SCOPE_ID, [FLOWINFO]]

Takes two to four arguments, a port number, an opaque string (as returned by
 inet_pton()),
optionally a scope ID number, and optionally a flow label
 number. Returns the sockaddr_in6
structure with those arguments packed in
 with AF_INET6 filled in. IPv6 equivalent of
pack_sockaddr_in().

unpack_sockaddr_in6 SOCKADDR_IN6

Takes a sockaddr_in6 structure (as returned by pack_sockaddr_in6()) and
 returns an array of
four elements: the port number, an opaque string
 representing the IPv6 address, the scope ID,
and the flow label. (You can
 use inet_ntop() to convert the address to the usual string format).
Will
 croak if the structure does not have AF_INET6 in the right place.

sockaddr_un PATHNAME

sockaddr_un SOCKADDR_UN

In a list context, unpacks its SOCKADDR_UN argument and returns an array
 consisting of
(PATHNAME). In a scalar context, packs its PATHNAME
 arguments as a SOCKADDR_UN
and returns it. If this is confusing, use
 pack_sockaddr_un() and unpack_sockaddr_un()
explicitly.
 These are only supported if your system has <sys/un.h>.

pack_sockaddr_un PATH

Takes one argument, a pathname. Returns the sockaddr_un structure with
 that path packed in
with AF_UNIX filled in. For unix domain sockets, this
 structure is normally what you need for
the arguments in bind(),
 connect(), and send(), and is also returned by getpeername(),

getsockname() and recv().

unpack_sockaddr_un SOCKADDR_UN

Takes a sockaddr_un structure (as returned by pack_sockaddr_un())
 and returns the
pathname. Will croak if the structure does not
 have AF_UNIX in the right place.

inet_pton ADDRESS_FAMILY, HOSTNAME

Takes an address family, either AF_INET or AF_INET6, and a string giving
 the name of a
host, and translates that to an opaque string
 (if programming in C, struct in_addr or struct
in6_addr depending on the address family passed in). The host string may be a string
hostname, such
 as 'www.perl.org', or an IP address. If using an IP address, the type of
 IP
address must be consistent with the address family passed into the function.

This function is not exported by default.

inet_ntop ADDRESS_FAMILY, IP_ADDRESS

Takes an address family, either AF_INET or AF_INET6, and a string (an opaque string as
returned by inet_aton() or inet_pton()) and
 translates it to an IPv4 or IPv6 address string.

This function is not exported by default.

getaddrinfo HOST, SERVICE, [HINTS]

Given at least one of a hostname and a service name, returns a list of address
 structures to
listen on or connect to. HOST and SERVICE should be plain
 strings (or a numerical port

Perl version 5.14.1 documentation - Socket

Page 4http://perldoc.perl.org

number for SERVICE). If present, HINTS should be
 a reference to a HASH, where the
following keys are recognised:

flags => INT

A bitfield containing AI_* constants

family => INT

Restrict to only generating addresses in this address family

socktype => INT

Restrict to only generating addresses of this socket type

protocol => INT

Restrict to only generating addresses for this protocol

The return value will be a list; the first value being an error indication,
 followed by a list of
address structures (if no error occured).

 my ($err, @results) = getaddrinfo(...);

The error value will be a dualvar; comparable to the EI_* error constants,
 or printable as a
human-readable error message string. Each value in the
 results list will be a HASH reference
containing the following fields:

family => INT

The address family (e.g. AF_INET)

socktype => INT

The socket type (e.g. SOCK_STREAM)

protocol => INT

The protocol (e.g. IPPROTO_TCP)

addr => STRING

The address in a packed string (such as would be returned by
pack_sockaddr_in)

canonname => STRING

The canonical name for the host if the AI_CANONNAME flag was provided, or
undef otherwise. This field will only be present on the first returned
 address.

getnameinfo ADDR, FLAGS

Given a packed socket address (such as from getsockname, getpeername, or
 returned by
getaddrinfo in a addr field), returns the hostname and
 symbolic service name it
represents. FLAGS may be a bitmask of NI_*
 constants, or defaults to 0 if unspecified.

The return value will be a list; the first value being an error condition,
 followed by the
hostname and service name.

 my ($err, $host, $service) = getnameinfo(...);

The error value will be a dualvar; comparable to the EI_* error constants,
 or printable as a
human-readable error message string. The host and service
 names will be plain strings.

