
Perl version 5.14.1 documentation - File::Find

Page 1http://perldoc.perl.org

NAME
File::Find - Traverse a directory tree.

SYNOPSIS
 use File::Find;
 find(\&wanted, @directories_to_search);
 sub wanted { ... }

 use File::Find;
 finddepth(\&wanted, @directories_to_search);
 sub wanted { ... }

 use File::Find;
 find({ wanted => \&process, follow => 1 }, '.');

DESCRIPTION
These are functions for searching through directory trees doing work
 on each file found similar to the
Unix find command. File::Find
 exports two functions, find and finddepth. They work similarly
 but
have subtle differences.

find

 find(\&wanted, @directories);
 find(\%options, @directories);

find() does a depth-first search over the given @directories in
 the order they are given.
For each file or directory found, it calls
 the &wanted subroutine. (See below for details on how
to use the &wanted function). Additionally, for each directory found, it will chdir() into that
directory and continue the search, invoking the &wanted function on each file or subdirectory
in the directory.

finddepth

 finddepth(\&wanted, @directories);
 finddepth(\%options, @directories);

finddepth() works just like find() except that it invokes the &wanted function for a
directory after invoking it for the
 directory's contents. It does a postorder traversal instead of a

preorder traversal, working from the bottom of the directory tree up
 where find() works from
the top of the tree down.

%options
The first argument to find() is either a code reference to your &wanted function, or a hash
reference describing the operations
 to be performed for each file. The
 code reference is described in
The wanted function below.

Here are the possible keys for the hash:

wanted

The value should be a code reference. This code reference is
 described in The wanted function
below. The &wanted subroutine is
 mandatory.

bydepth

Reports the name of a directory only AFTER all its entries
 have been reported. Entry point
finddepth() is a shortcut for
 specifying { bydepth => 1 } in the first argument of find()
.

Perl version 5.14.1 documentation - File::Find

Page 2http://perldoc.perl.org

preprocess

The value should be a code reference. This code reference is used to
 preprocess the current
directory. The name of the currently processed
 directory is in $File::Find::dir. Your
preprocessing function is
 called after readdir(), but before the loop that calls the wanted()

function. It is called with a list of strings (actually file/directory
 names) and is expected to return
a list of strings. The code can be
 used to sort the file/directory names alphabetically,
numerically,
 or to filter out directory entries based on their name alone. When follow or
follow_fast are in effect, preprocess is a no-op.

postprocess

The value should be a code reference. It is invoked just before leaving
 the currently processed
directory. It is called in void context with no
 arguments. The name of the current directory is in
$File::Find::dir. This
 hook is handy for summarizing a directory, such as calculating its
disk
 usage. When follow or follow_fast are in effect, postprocess is a
 no-op.

follow

Causes symbolic links to be followed. Since directory trees with symbolic
 links (followed) may
contain files more than once and may even have
 cycles, a hash has to be built up with an entry
for each file.
 This might be expensive both in space and time for a large
 directory tree. See
follow_fast and follow_skip below.
 If either follow or follow_fast is in effect:

It is guaranteed that an lstat has been called before the user's wanted() function is
called. This enables fast file checks involving _.
 Note that this guarantee no longer
holds if follow or follow_fast
 are not set.

There is a variable $File::Find::fullname which holds the absolute
 pathname
of the file with all symbolic links resolved. If the link is
 a dangling symbolic link, then
fullname will be set to undef.

This is a no-op on Win32.

follow_fast

This is similar to follow except that it may report some files more
 than once. It does detect
cycles, however. Since only symbolic links
 have to be hashed, this is much cheaper both in
space and time. If
 processing a file more than once (by the user's wanted() function)
 is worse
than just taking time, the option follow should be used.

This is also a no-op on Win32.

follow_skip

follow_skip==1, which is the default, causes all files which are
 neither directories nor
symbolic links to be ignored if they are about
 to be processed a second time. If a directory or a
symbolic link
 are about to be processed a second time, File::Find dies.

follow_skip==0 causes File::Find to die if any file is about to be
 processed a second time.

follow_skip==2 causes File::Find to ignore any duplicate files and
 directories but to proceed
normally otherwise.

dangling_symlinks

If true and a code reference, will be called with the symbolic link
 name and the directory it lives
in as arguments. Otherwise, if true
 and warnings are on, warning "symbolic_link_name is a
dangling
 symbolic link\n" will be issued. If false, the dangling symbolic link
 will be silently
ignored.

no_chdir

Does not chdir() to each directory as it recurses. The wanted()
 function will need to be
aware of this, of course. In this case, $_ will be the same as $File::Find::name.

Perl version 5.14.1 documentation - File::Find

Page 3http://perldoc.perl.org

untaint

If find is used in taint-mode (-T command line switch or if EUID != UID
 or if EGID != GID) then
internally directory names have to be untainted
 before they can be chdir'ed to. Therefore they
are checked against a regular
 expression untaint_pattern. Note that all names passed to the
user's wanted() function are still tainted. If this option is used while
 not in taint-mode, untaint
is a no-op.

untaint_pattern

See above. This should be set using the qr quoting operator.
 The default is set to
qr|^([-+@\w./]+)$|.
 Note that the parentheses are vital.

untaint_skip

If set, a directory which fails the untaint_pattern is skipped,
 including all its sub-directories. The
default is to 'die' in such a case.

The wanted function
The wanted() function does whatever verifications you want on
 each file and directory. Note that
despite its name, the wanted()
 function is a generic callback function, and does not tell
 File::Find if
a file is "wanted" or not. In fact, its return value
 is ignored.

The wanted function takes no arguments but rather does its work
 through a collection of variables.

$File::Find::dir is the current directory name,

$_ is the current filename within that directory

$File::Find::name is the complete pathname to the file.

The above variables have all been localized and may be changed without
 affecting data outside of the
wanted function.

For example, when examining the file /some/path/foo.ext you will have:

 $File::Find::dir = /some/path/
 $_ = foo.ext
 $File::Find::name = /some/path/foo.ext

You are chdir()'d to $File::Find::dir when the function is called,
 unless no_chdir was
specified. Note that when changing to
 directories is in effect the root directory (/) is a somewhat

special case inasmuch as the concatenation of $File::Find::dir, '/' and $_ is not literally
equal to $File::Find::name. The
 table below summarizes all variants:

 $File::Find::name $File::Find::dir $_
 default / / .
 no_chdir=>0 /etc / etc
 /etc/x /etc x

 no_chdir=>1 / / /
 /etc / /etc
 /etc/x /etc /etc/x

When follow or follow_fast are in effect, there is
 also a $File::Find::fullname. The
function may set $File::Find::prune to prune the tree unless bydepth was
 specified. Unless
follow or follow_fast is specified, for
 compatibility reasons (find.pl, find2perl) there are in
addition the
 following globals available: $File::Find::topdir, $File::Find::topdev,
$File::Find::topino, $File::Find::topmode and $File::Find::topnlink.

This library is useful for the find2perl tool, which when fed,

Perl version 5.14.1 documentation - File::Find

Page 4http://perldoc.perl.org

 find2perl / -name .nfs* -mtime +7 \
 -exec rm -f {} \; -o -fstype nfs -prune

produces something like:

 sub wanted {
 /^\.nfs.*\z/s &&
 (($dev, $ino, $mode, $nlink, $uid, $gid) = lstat($_)) &&
 int(-M _) > 7 &&
 unlink($_)
 ||
 ($nlink || (($dev, $ino, $mode, $nlink, $uid, $gid) = lstat($_)))
&&
 $dev < 0 &&
 ($File::Find::prune = 1);
 }

Notice the _ in the above int(-M _): the _ is a magical
 filehandle that caches the information from
the preceding stat(), lstat(), or filetest.

Here's another interesting wanted function. It will find all symbolic
 links that don't resolve:

 sub wanted {
 -l && !-e && print "bogus link: $File::Find::name\n";
 }

See also the script pfind on CPAN for a nice application of this
 module.

WARNINGS
If you run your program with the -w switch, or if you use the warnings pragma, File::Find will report
warnings for several weird
 situations. You can disable these warnings by putting the statement

 no warnings 'File::Find';

in the appropriate scope. See perllexwarn for more info about lexical
 warnings.

CAVEAT
$dont_use_nlink

You can set the variable $File::Find::dont_use_nlink to 1, if you want to
 force File::Find
to always stat directories. This was used for file systems
 that do not have an nlink count
matching the number of sub-directories.
 Examples are ISO-9660 (CD-ROM), AFS, HPFS (OS/2
file system), FAT (DOS file
 system) and a couple of others.

You shouldn't need to set this variable, since File::Find should now detect
 such file systems
on-the-fly and switch itself to using stat. This works even
 for parts of your file system, like a
mounted CD-ROM.

If you do set $File::Find::dont_use_nlink to 1, you will notice slow-downs.

symlinks

Be aware that the option to follow symbolic links can be dangerous.
 Depending on the structure of
the directory tree (including symbolic
 links to directories) you might traverse a given (physical)
directory
 more than once (only if follow_fast is in effect).
 Furthermore, deleting or changing
files in a symbolically linked directory
 might cause very unpleasant surprises, since you delete or
change files
 in an unknown directory.

Perl version 5.14.1 documentation - File::Find

Page 5http://perldoc.perl.org

BUGS AND CAVEATS
Despite the name of the finddepth() function, both find() and finddepth() perform a
depth-first search of the directory
 hierarchy.

HISTORY
File::Find used to produce incorrect results if called recursively.
 During the development of perl 5.8
this bug was fixed.
 The first fixed version of File::Find was 1.01.

SEE ALSO
find, find2perl.

