
Perl version 5.14.1 documentation - Opcode

Page 1http://perldoc.perl.org

NAME
Opcode - Disable named opcodes when compiling perl code

SYNOPSIS
 use Opcode;

DESCRIPTION
Perl code is always compiled into an internal format before execution.

Evaluating perl code (e.g. via "eval" or "do 'file'") causes
 the code to be compiled into an internal
format and then,
 provided there was no error in the compilation, executed.
 The internal format is
based on many distinct opcodes.

By default no opmask is in effect and any code can be compiled.

The Opcode module allow you to define an operator mask to be in
 effect when perl next compiles any
code. Attempting to compile code
 which contains a masked opcode will cause the compilation to fail

with an error. The code will not be executed.

NOTE
The Opcode module is not usually used directly. See the ops pragma and
 Safe modules for more
typical uses.

WARNING
The authors make no warranty, implied or otherwise, about the
 suitability of this software for safety
or security purposes.

The authors shall not in any case be liable for special, incidental,
 consequential, indirect or other
similar damages arising from the use
 of this software.

Your mileage will vary. If in any doubt do not use it.

Operator Names and Operator Lists
The canonical list of operator names is the contents of the array
 PL_op_name defined and initialised
in file opcode.h of the Perl
 source distribution (and installed into the perl library).

Each operator has both a terse name (its opname) and a more verbose or
 recognisable descriptive
name. The opdesc function can be used to
 return a list of descriptions for a list of operators.

Many of the functions and methods listed below take a list of
 operators as parameters. Most operator
lists can be made up of several
 types of element. Each element can be one of

an operator name (opname)

Operator names are typically small lowercase words like enterloop,
 leaveloop, last,
next, redo etc. Sometimes they are rather cryptic
 like gv2cv, i_ncmp and ftsvtx.

an operator tag name (optag)

Operator tags can be used to refer to groups (or sets) of operators.
 Tag names always
begin with a colon. The Opcode module defines several
 optags and the user can
define others using the define_optag function.

a negated opname or optag

An opname or optag can be prefixed with an exclamation mark, e.g., !mkdir.
 Negating
an opname or optag means remove the corresponding ops from the
 accumulated set
of ops at that point.

an operator set (opset)

Perl version 5.14.1 documentation - Opcode

Page 2http://perldoc.perl.org

An opset as a binary string of approximately 44 bytes which holds a
 set or zero or
more operators.

The opset and opset_to_ops functions can be used to convert from
 a list of operators
to an opset and vice versa.

Wherever a list of operators can be given you can use one or more opsets.
 See also
Manipulating Opsets below.

Opcode Functions
The Opcode package contains functions for manipulating operator names
 tags and sets. All are
available for export by the package.

opcodes

In a scalar context opcodes returns the number of opcodes in this
 version of perl
(around 350 for perl-5.7.0).

In a list context it returns a list of all the operator names.
 (Not yet implemented, use
@names = opset_to_ops(full_opset).)

opset (OP, ...)

Returns an opset containing the listed operators.

opset_to_ops (OPSET)

Returns a list of operator names corresponding to those operators in
 the set.

opset_to_hex (OPSET)

Returns a string representation of an opset. Can be handy for debugging.

full_opset

Returns an opset which includes all operators.

empty_opset

Returns an opset which contains no operators.

invert_opset (OPSET)

Returns an opset which is the inverse set of the one supplied.

verify_opset (OPSET, ...)

Returns true if the supplied opset looks like a valid opset (is the
 right length etc)
otherwise it returns false. If an optional second
 parameter is true then verify_opset will
croak on an invalid opset
 instead of returning false.

Most of the other Opcode functions call verify_opset automatically
 and will croak if
given an invalid opset.

define_optag (OPTAG, OPSET)

Define OPTAG as a symbolic name for OPSET. Optag names always start
 with a
colon :.

The optag name used must not be defined already (define_optag will
 croak if it is
already defined). Optag names are global to the perl
 process and optag definitions
cannot be altered or deleted once
 defined.

It is strongly recommended that applications using Opcode should use a
 leading
capital letter on their tag names since lowercase names are
 reserved for use by the
Opcode module. If using Opcode within a module
 you should prefix your tags names
with the name of your module to
 ensure uniqueness and thus avoid clashes with other
modules.

Perl version 5.14.1 documentation - Opcode

Page 3http://perldoc.perl.org

opmask_add (OPSET)

Adds the supplied opset to the current opmask. Note that there is
 currently no
mechanism for unmasking ops once they have been masked.
 This is intentional.

opmask

Returns an opset corresponding to the current opmask.

opdesc (OP, ...)

This takes a list of operator names and returns the corresponding list
 of operator
descriptions.

opdump (PAT)

Dumps to STDOUT a two column list of op names and op descriptions.
 If an optional
pattern is given then only lines which match the
 (case insensitive) pattern will be
output.

It's designed to be used as a handy command line utility:

	 perl -MOpcode=opdump -e opdump
	 perl -MOpcode=opdump -e 'opdump Eval'

Manipulating Opsets
Opsets may be manipulated using the perl bit vector operators & (and), | (or),
 ^ (xor) and ~
(negate/invert).

However you should never rely on the numerical position of any opcode
 within the opset. In other
words both sides of a bit vector operator
 should be opsets returned from Opcode functions.

Also, since the number of opcodes in your current version of perl might
 not be an exact multiple of
eight, there may be unused bits in the last
 byte of an upset. This should not cause any problems
(Opcode functions
 ignore those extra bits) but it does mean that using the ~ operator
 will typically not
produce the same 'physical' opset 'string' as the
 invert_opset function.

TO DO (maybe)
 $bool = opset_eq($opset1, $opset2)	 true if opsets are logically eqiv

 $yes = opset_can($opset, @ops)	 true if $opset has all @ops set

 @diff = opset_diff($opset1, $opset2) => ('foo', '!bar', ...)

Predefined Opcode Tags
:base_core

 null stub scalar pushmark wantarray const defined undef

 rv2sv sassign

 rv2av aassign aelem aelemfast aslice av2arylen

 rv2hv helem hslice each values keys exists delete aeach akeys
avalues
 boolkeys reach rvalues rkeys

 preinc i_preinc predec i_predec postinc i_postinc postdec
i_postdec
 int hex oct abs pow multiply i_multiply divide i_divide

Perl version 5.14.1 documentation - Opcode

Page 4http://perldoc.perl.org

 modulo i_modulo add i_add subtract i_subtract

 left_shift right_shift bit_and bit_xor bit_or negate i_negate
 not complement

 lt i_lt gt i_gt le i_le ge i_ge eq i_eq ne i_ne ncmp i_ncmp
 slt sgt sle sge seq sne scmp

 substr vec stringify study pos length index rindex ord chr

 ucfirst lcfirst uc lc quotemeta trans transr chop schop chomp
schomp

 match split qr

 list lslice splice push pop shift unshift reverse

 cond_expr flip flop andassign orassign dorassign and or dor xor

 warn die lineseq nextstate scope enter leave

 rv2cv anoncode prototype

 entersub leavesub leavesublv return method method_named -- XXX
loops via recursion?

 leaveeval -- needed for Safe to operate, is safe without
entereval

:base_mem

These memory related ops are not included in :base_core because they
 can easily be used
to implement a resource attack (e.g., consume all
 available memory).

 concat repeat join range

 anonlist anonhash

Note that despite the existence of this optag a memory resource attack
 may still be possible
using only :base_core ops.

Disabling these ops is a very heavy handed way to attempt to prevent
 a memory resource
attack. It's probable that a specific memory limit
 mechanism will be added to perl in the near
future.

:base_loop

These loop ops are not included in :base_core because they can easily be
 used to
implement a resource attack (e.g., consume all available CPU time).

 grepstart grepwhile
 mapstart mapwhile
 enteriter iter
 enterloop leaveloop unstack
 last next redo
 goto

:base_io

These ops enable filehandle (rather than filename) based input and
 output. These are safe

Perl version 5.14.1 documentation - Opcode

Page 5http://perldoc.perl.org

on the assumption that only pre-existing
 filehandles are available for use. Usually, to create
new filehandles
 other ops such as open would need to be enabled, if you don't take into

account the magical open of ARGV.

 readline rcatline getc read

 formline enterwrite leavewrite

 print say sysread syswrite send recv

 eof tell seek sysseek

 readdir telldir seekdir rewinddir

:base_orig

These are a hotchpotch of opcodes still waiting to be considered

 gvsv gv gelem

 padsv padav padhv padany

 once

 rv2gv refgen srefgen ref

 bless -- could be used to change ownership of objects
(reblessing)

 pushre regcmaybe regcreset regcomp subst substcont

 sprintf prtf -- can core dump

 crypt

 tie untie

 dbmopen dbmclose
 sselect select
 pipe_op sockpair

 getppid getpgrp setpgrp getpriority setpriority localtime gmtime

 entertry leavetry -- can be used to 'hide' fatal errors

 entergiven leavegiven
 enterwhen leavewhen
 break continue
 smartmatch

 custom -- where should this go

:base_math

These ops are not included in :base_core because of the risk of them being
 used to
generate floating point exceptions (which would have to be caught
 using a $SIG{FPE}
handler).

 atan2 sin cos exp log sqrt

Perl version 5.14.1 documentation - Opcode

Page 6http://perldoc.perl.org

These ops are not included in :base_core because they have an effect
 beyond the scope of
the compartment.

 rand srand

:base_thread

These ops are related to multi-threading.

 lock

:default

A handy tag name for a reasonable default set of ops. (The current ops
 allowed are unstable
while development continues. It will change.)

 :base_core :base_mem :base_loop :base_orig :base_thread

This list used to contain :base_io prior to Opcode 1.07.

If safety matters to you (and why else would you be using the Opcode module?)
 then you
should not rely on the definition of this, or indeed any other, optag!

:filesys_read

 stat lstat readlink

 ftatime ftblk ftchr ftctime ftdir fteexec fteowned fteread
 ftewrite ftfile ftis ftlink ftmtime ftpipe ftrexec ftrowned
 ftrread ftsgid ftsize ftsock ftsuid fttty ftzero ftrwrite ftsvtx

 fttext ftbinary

 fileno

:sys_db

 ghbyname ghbyaddr ghostent shostent ehostent -- hosts
 gnbyname gnbyaddr gnetent snetent enetent -- networks
 gpbyname gpbynumber gprotoent sprotoent eprotoent -- protocols
 gsbyname gsbyport gservent sservent eservent -- services

 gpwnam gpwuid gpwent spwent epwent getlogin -- users
 ggrnam ggrgid ggrent sgrent egrent -- groups

:browse

A handy tag name for a reasonable default set of ops beyond the
 :default optag. Like
:default (and indeed all the other optags) its
 current definition is unstable while development
continues. It will change.

The :browse tag represents the next step beyond :default. It it a
 superset of the :default ops
and adds :filesys_read the :sys_db.
 The intent being that scripts can access more (possibly
sensitive)
 information about your system but not be able to change it.

 :default :filesys_read :sys_db

:filesys_open

 sysopen open close
 umask binmode

 open_dir closedir -- other dir ops are in :base_io

Perl version 5.14.1 documentation - Opcode

Page 7http://perldoc.perl.org

:filesys_write

 link unlink rename symlink truncate

 mkdir rmdir

 utime chmod chown

 fcntl -- not strictly filesys related, but possibly as
dangerous?

:subprocess

 backtick system

 fork

 wait waitpid

 glob -- access to Cshell via <`rm *`>

:ownprocess

 exec exit kill

 time tms -- could be used for timing attacks (paranoid?)

:others

This tag holds groups of assorted specialist opcodes that don't warrant
 having optags
defined for them.

SystemV Interprocess Communications:

 msgctl msgget msgrcv msgsnd

 semctl semget semop

 shmctl shmget shmread shmwrite

:load

This tag holds opcodes related to loading modules and getting information
 about calling
environment and args.

 require dofile
 caller

:still_to_be_decided

 chdir
 flock ioctl

 socket getpeername ssockopt
 bind connect listen accept shutdown gsockopt getsockname

 sleep alarm -- changes global timer state and signal handling
 sort -- assorted problems including core dumps
 tied -- can be used to access object implementing a tie
 pack unpack -- can be used to create/use memory pointers

Perl version 5.14.1 documentation - Opcode

Page 8http://perldoc.perl.org

 hintseval -- constant op holding eval hints

 entereval -- can be used to hide code from initial compile

 reset

 dbstate -- perl -d version of nextstate(ment) opcode

:dangerous

This tag is simply a bucket for opcodes that are unlikely to be used via
 a tag name but need
to be tagged for completeness and documentation.

 syscall dump chroot

SEE ALSO
ops -- perl pragma interface to Opcode module.

Safe -- Opcode and namespace limited execution compartments

AUTHORS
Originally designed and implemented by Malcolm Beattie,
 mbeattie@sable.ox.ac.uk as part of Safe
version 1.

Split out from Safe module version 1, named opcode tags and other
 changes added by Tim Bunce.

