
Perl version 5.14.1 documentation - Encode::Unicode

Page 1http://perldoc.perl.org

NAME
Encode::Unicode -- Various Unicode Transformation Formats

SYNOPSIS
 use Encode qw/encode decode/;
 $ucs2 = encode("UCS-2BE", $utf8);
 $utf8 = decode("UCS-2BE", $ucs2);

ABSTRACT
This module implements all Character Encoding Schemes of Unicode that
 are officially documented
by Unicode Consortium (except, of course,
 for UTF-8, which is a native format in perl).

http://www.unicode.org/glossary/ says:

Character Encoding Scheme A character encoding form plus byte
 serialization. There are
Seven character encoding schemes in Unicode:
 UTF-8, UTF-16, UTF-16BE, UTF-16LE,
UTF-32 (UCS-4), UTF-32BE (UCS-4BE) and
 UTF-32LE (UCS-4LE), and UTF-7.

Since UTF-7 is a 7-bit (re)encoded version of UTF-16BE, It is not part of
 Unicode's Character
Encoding Scheme. It is separately implemented in
 Encode::Unicode::UTF7. For details see
Encode::Unicode::UTF7.

Quick Reference

 Decodes from ord(N) Encodes chr(N) to...
 octet/char BOM S.P d800-dfff ord > 0xffff \x{1abcd} ==
 ---------------+-----------------+------------------------------
 UCS-2BE 2 N N is bogus Not Available
 UCS-2LE 2 N N bogus Not Available
 UTF-16 2/4 Y Y is S.P S.P BE/LE
 UTF-16BE 2/4 N Y S.P S.P 0xd82a,0xdfcd
 UTF-16LE 2/4 N Y S.P S.P 0x2ad8,0xcddf
 UTF-32 4 Y - is bogus As is BE/LE
 UTF-32BE 4 N - bogus As is 0x0001abcd
 UTF-32LE 4 N - bogus As is 0xcdab0100
 UTF-8 1-4 - - bogus >= 4 octets \xf0\x9a\af\8d
 ---------------+-----------------+------------------------------

Size, Endianness, and BOM
You can categorize these CES by 3 criteria: size of each character,
 endianness, and Byte Order
Mark.

by size
UCS-2 is a fixed-length encoding with each character taking 16 bits.
 It does not support surrogate
pairs. When a surrogate pair
 is encountered during decode(), its place is filled with \x{FFFD}
 if
CHECK is 0, or the routine croaks if CHECK is 1. When a
 character whose ord value is larger than
0xFFFF is encountered,
 its place is filled with \x{FFFD} if CHECK is 0, or the routine
 croaks if CHECK
is 1.

UTF-16 is almost the same as UCS-2 but it supports surrogate pairs.
 When it encounters a high
surrogate (0xD800-0xDBFF), it fetches the
 following low surrogate (0xDC00-0xDFFF) and
desurrogates them to
 form a character. Bogus surrogates result in death. When \x{10000}
 or above
is encountered during encode(), it ensurrogates them and
 pushes the surrogate pair to the output
stream.

UTF-32 (UCS-4) is a fixed-length encoding with each character taking 32 bits.
 Since it is 32-bit, there
is no need for surrogate pairs.

Perl version 5.14.1 documentation - Encode::Unicode

Page 2http://perldoc.perl.org

by endianness
The first (and now failed) goal of Unicode was to map all character
 repertoires into a fixed-length
integer so that programmers are happy.
 Since each character is either a short or long in C, you have
to
 pay attention to the endianness of each platform when you pass data
 to one another.

Anything marked as BE is Big Endian (or network byte order) and LE is
 Little Endian (aka VAX byte
order). For anything not marked either
 BE or LE, a character called Byte Order Mark (BOM) indicating
the
 endianness is prepended to the string.

CAVEAT: Though BOM in utf8 (\xEF\xBB\xBF) is valid, it is meaningless
 and as of this writing Encode
suite just leave it as is (\x{FeFF}).

BOM as integer when fetched in network byte order

 16 32 bits/char

 BE 0xFeFF 0x0000FeFF
 LE 0xFFFe 0xFFFe0000

This modules handles the BOM as follows.

When BE or LE is explicitly stated as the name of encoding, BOM is
 simply treated as a
normal character (ZERO WIDTH NO-BREAK SPACE).

When BE or LE is omitted during decode(), it checks if BOM is at the
 beginning of the string; if
one is found, the endianness is set to
 what the BOM says. If no BOM is found, the routine
dies.

When BE or LE is omitted during encode(), it returns a BE-encoded
 string with BOM
prepended. So when you want to encode a whole text
 file, make sure you encode() the whole
text at once, not line by line
 or each line, not file, will have a BOM prepended.

UCS-2 is an exception. Unlike others, this is an alias of UCS-2BE.
 UCS-2 is already registered
by IANA and others that way.

Surrogate Pairs
To say the least, surrogate pairs were the biggest mistake of the
 Unicode Consortium. But according
to the late Douglas Adams in The
 Hitchhiker's Guide to the Galaxy Trilogy, In the beginning
the
 Universe was created. This has made a lot of people very angry and
 been
 widely regarded as a bad move. Their mistake was not of this
 magnitude so let's forgive
them.

(I don't dare make any comparison with Unicode Consortium and the
 Vogons here ;) Or, comparing
Encode to Babel Fish is completely
 appropriate -- if you can only stick this into your ear :)

Surrogate pairs were born when the Unicode Consortium finally
 admitted that 16 bits were not big
enough to hold all the world's
 character repertoires. But they already made UCS-2 16-bit. What
 do we
do?

Back then, the range 0xD800-0xDFFF was not allocated. Let's split
 that range in half and use the first
half to represent the upper
 half of a character and the second half to represent the lower

half of a character. That way, you can represent 1024 * 1024 =
 1048576 more characters.
Now we can store character ranges up to
 \x{10ffff} even with 16-bit encodings. This pair of
half-character is
 now called a surrogate pair and UTF-16 is the name of the encoding
 that embraces
them.

Here is a formula to ensurrogate a Unicode character \x{10000} and
 above;

 $hi = ($uni - 0x10000) / 0x400 + 0xD800;

Perl version 5.14.1 documentation - Encode::Unicode

Page 3http://perldoc.perl.org

 $lo = ($uni - 0x10000) % 0x400 + 0xDC00;

And to desurrogate;

 $uni = 0x10000 + ($hi - 0xD800) * 0x400 + ($lo - 0xDC00);

Note this move has made \x{D800}-\x{DFFF} into a forbidden zone but
 perl does not prohibit the use
of characters within this range. To perl,
 every one of \x{0000_0000} up to \x{ffff_ffff} (*) is a character.

 (*) or \x{ffff_ffff_ffff_ffff} if your perl is compiled with 64-bit
 integer support!

Error Checking
Unlike most encodings which accept various ways to handle errors,
 Unicode encodings simply
croaks.

 % perl -MEncode -e'$_ = "\xfe\xff\xd8\xd9\xda\xdb\0\n"' \
 -e'Encode::from_to($_, "utf16","shift_jis", 0); print'
 UTF-16:Malformed LO surrogate d8d9 at /path/to/Encode.pm line 184.
 % perl -MEncode -e'$a = "BOM missing"' \
 -e' Encode::from_to($a, "utf16", "shift_jis", 0); print'
 UTF-16:Unrecognised BOM 424f at /path/to/Encode.pm line 184.

Unlike other encodings where mappings are not one-to-one against
 Unicode, UTFs are supposed to
map 100% against one another. So Encode
 is more strict on UTFs.

Consider that "division by zero" of Encode :)

SEE ALSO
Encode, Encode::Unicode::UTF7, http://www.unicode.org/glossary/,
http://www.unicode.org/unicode/faq/utf_bom.html,

RFC 2781 http://www.ietf.org/rfc/rfc2781.txt,

The whole Unicode standard http://www.unicode.org/unicode/uni2book/u2.html

Ch. 15, pp. 403 of Programming Perl (3rd Edition)
 by Larry Wall, Tom Christiansen, Jon
Orwant;
 O'Reilly & Associates; ISBN 0-596-00027-8

