
Perl version 5.14.1 documentation - perlbot

Page 1http://perldoc.perl.org

NAME
perlbot - Bag o' Object Tricks (the BOT)

DESCRIPTION
The following collection of tricks and hints is intended to whet curious
 appetites about such things as
the use of instance variables and the
 mechanics of object and class relationships. The reader is
encouraged to
 consult relevant textbooks for discussion of Object Oriented definitions and

methodology. This is not intended as a tutorial for object-oriented
 programming or as a
comprehensive guide to Perl's object oriented features,
 nor should it be construed as a style guide. If
you're looking for tutorials,
 be sure to read perlboot, perltoot, and perltooc.

The Perl motto still holds: There's more than one way to do it.

OO SCALING TIPS
1 Do not attempt to verify the type of $self. That'll break if the class is
 inherited, when the type

of $self is valid but its package isn't what you
 expect. See rule 5.

2 If an object-oriented (OO) or indirect-object (IO) syntax was used, then the
 object is probably
the correct type and there's no need to become paranoid
 about it. Perl isn't a paranoid
language anyway. If people subvert the OO
 or IO syntax then they probably know what
they're doing and you should let
 them do it. See rule 1.

3 Use the two-argument form of bless(). Let a subclass use your constructor.
 See
INHERITING A CONSTRUCTOR.

4 The subclass is allowed to know things about its immediate superclass, the
 superclass is
allowed to know nothing about a subclass.

5 Don't be trigger happy with inheritance. A "using", "containing", or
 "delegation" relationship
(some sort of aggregation, at least) is often more
 appropriate. See OBJECT
RELATIONSHIPS, USING RELATIONSHIP WITH SDBM,
 and DELEGATION.

6 The object is the namespace. Make package globals accessible via the
 object. This will
remove the guess work about the symbol's home package.
 See CLASS CONTEXT AND
THE OBJECT.

7 IO syntax is certainly less noisy, but it is also prone to ambiguities that
 can cause
difficult-to-find bugs. Allow people to use the sure-thing OO
 syntax, even if you don't like it.

8 Do not use function-call syntax on a method. You're going to be bitten
 someday. Someone
might move that method into a superclass and your code
 will be broken. On top of that
you're feeding the paranoia in rule 2.

9 Don't assume you know the home package of a method. You're making it
 difficult for
someone to override that method. See THINKING OF CODE REUSE.

INSTANCE VARIABLES
An anonymous array or anonymous hash can be used to hold instance
 variables. Named parameters
are also demonstrated.

	 package Foo;

	 sub new {
		 my $type = shift;
		 my %params = @_;
		 my $self = {};
		 $self->{'High'} = $params{'High'};
		 $self->{'Low'} = $params{'Low'};
		 bless $self, $type;

Perl version 5.14.1 documentation - perlbot

Page 2http://perldoc.perl.org

	 }

	 package Bar;

	 sub new {
		 my $type = shift;
		 my %params = @_;
		 my $self = [];
		 $self->[0] = $params{'Left'};
		 $self->[1] = $params{'Right'};
		 bless $self, $type;
	 }

	 package main;

	 $a = Foo->new('High' => 42, 'Low' => 11);
	 print "High=$a->{'High'}\n";
	 print "Low=$a->{'Low'}\n";

	 $b = Bar->new('Left' => 78, 'Right' => 40);
	 print "Left=$b->[0]\n";
	 print "Right=$b->[1]\n";

SCALAR INSTANCE VARIABLES
An anonymous scalar can be used when only one instance variable is needed.

	 package Foo;

	 sub new {
		 my $type = shift;
		 my $self;
		 $self = shift;
		 bless \$self, $type;
	 }

	 package main;

	 $a = Foo->new(42);
	 print "a=$$a\n";

INSTANCE VARIABLE INHERITANCE
This example demonstrates how one might inherit instance variables from a
 superclass for inclusion
in the new class. This requires calling the
 superclass's constructor and adding one's own instance
variables to the new
 object.

	 package Bar;

	 sub new {
		 my $type = shift;
		 my $self = {};
		 $self->{'buz'} = 42;
		 bless $self, $type;

Perl version 5.14.1 documentation - perlbot

Page 3http://perldoc.perl.org

	 }

	 package Foo;
	 @ISA = qw(Bar);

	 sub new {
		 my $type = shift;
		 my $self = Bar->new;
		 $self->{'biz'} = 11;
		 bless $self, $type;
	 }

	 package main;

	 $a = Foo->new;
	 print "buz = ", $a->{'buz'}, "\n";
	 print "biz = ", $a->{'biz'}, "\n";

OBJECT RELATIONSHIPS
The following demonstrates how one might implement "containing" and "using"
 relationships between
objects.

	 package Bar;

	 sub new {
		 my $type = shift;
		 my $self = {};
		 $self->{'buz'} = 42;
		 bless $self, $type;
	 }

	 package Foo;

	 sub new {
		 my $type = shift;
		 my $self = {};
		 $self->{'Bar'} = Bar->new;
		 $self->{'biz'} = 11;
		 bless $self, $type;
	 }

	 package main;

	 $a = Foo->new;
	 print "buz = ", $a->{'Bar'}->{'buz'}, "\n";
	 print "biz = ", $a->{'biz'}, "\n";

OVERRIDING SUPERCLASS METHODS
The following example demonstrates how to override a superclass method and
 then call the
overridden method. The SUPER pseudo-class allows the
 programmer to call an overridden
superclass method without actually knowing
 where that method is defined.

Perl version 5.14.1 documentation - perlbot

Page 4http://perldoc.perl.org

	 package Buz;
	 sub goo { print "here's the goo\n" }

	 package Bar; @ISA = qw(Buz);
	 sub google { print "google here\n" }

	 package Baz;
	 sub mumble { print "mumbling\n" }

	 package Foo;
	 @ISA = qw(Bar Baz);

	 sub new {
		 my $type = shift;
		 bless [], $type;
	 }
	 sub grr { print "grumble\n" }
	 sub goo {
		 my $self = shift;
		 $self->SUPER::goo();
	 }
	 sub mumble {
		 my $self = shift;
		 $self->SUPER::mumble();
	 }
	 sub google {
		 my $self = shift;
		 $self->SUPER::google();
	 }

	 package main;

	 $foo = Foo->new;
	 $foo->mumble;
	 $foo->grr;
	 $foo->goo;
	 $foo->google;

Note that SUPER refers to the superclasses of the current package
 (Foo), not to the superclasses of
$self.

USING RELATIONSHIP WITH SDBM
This example demonstrates an interface for the SDBM class. This creates a
 "using" relationship
between the SDBM class and the new class Mydbm.

	 package Mydbm;

	 require SDBM_File;
	 require Tie::Hash;
	 @ISA = qw(Tie::Hash);

	 sub TIEHASH {
	 my $type = shift;

Perl version 5.14.1 documentation - perlbot

Page 5http://perldoc.perl.org

	 my $ref = SDBM_File->new(@_);
	 bless {'dbm' => $ref}, $type;
	 }
	 sub FETCH {
	 my $self = shift;
	 my $ref = $self->{'dbm'};
	 $ref->FETCH(@_);
	 }
	 sub STORE {
	 my $self = shift;
	 if (defined $_[0]){
		 my $ref = $self->{'dbm'};
		 $ref->STORE(@_);
	 } else {
		 die "Cannot STORE an undefined key in Mydbm\n";
	 }
	 }

	 package main;
	 use Fcntl qw(O_RDWR O_CREAT);

	 tie %foo, "Mydbm", "Sdbm", O_RDWR|O_CREAT, 0640;
	 $foo{'bar'} = 123;
	 print "foo-bar = $foo{'bar'}\n";

	 tie %bar, "Mydbm", "Sdbm2", O_RDWR|O_CREAT, 0640;
	 $bar{'Cathy'} = 456;
	 print "bar-Cathy = $bar{'Cathy'}\n";

THINKING OF CODE REUSE
One strength of Object-Oriented languages is the ease with which old code
 can use new code. The
following examples will demonstrate first how one can
 hinder code reuse and then how one can
promote code reuse.

This first example illustrates a class which uses a fully-qualified method
 call to access the "private"
method BAZ(). The second example will show
 that it is impossible to override the BAZ() method.

	 package FOO;

	 sub new {
		 my $type = shift;
		 bless {}, $type;
	 }
	 sub bar {
		 my $self = shift;
		 $self->FOO::private::BAZ;
	 }

	 package FOO::private;

	 sub BAZ {
		 print "in BAZ\n";
	 }

Perl version 5.14.1 documentation - perlbot

Page 6http://perldoc.perl.org

	 package main;

	 $a = FOO->new;
	 $a->bar;

Now we try to override the BAZ() method. We would like FOO::bar() to call
 GOOP::BAZ(), but this
cannot happen because FOO::bar() explicitly calls
 FOO::private::BAZ().

	 package FOO;

	 sub new {
		 my $type = shift;
		 bless {}, $type;
	 }
	 sub bar {
		 my $self = shift;
		 $self->FOO::private::BAZ;
	 }

	 package FOO::private;

	 sub BAZ {
		 print "in BAZ\n";
	 }

	 package GOOP;
	 @ISA = qw(FOO);
	 sub new {
		 my $type = shift;
		 bless {}, $type;
	 }

	 sub BAZ {
		 print "in GOOP::BAZ\n";
	 }

	 package main;

	 $a = GOOP->new;
	 $a->bar;

To create reusable code we must modify class FOO, flattening class
 FOO::private. The next example
shows a reusable class FOO which allows the
 method GOOP::BAZ() to be used in place of
FOO::BAZ().

	 package FOO;

	 sub new {
		 my $type = shift;
		 bless {}, $type;
	 }
	 sub bar {
		 my $self = shift;

Perl version 5.14.1 documentation - perlbot

Page 7http://perldoc.perl.org

		 $self->BAZ;
	 }

	 sub BAZ {
		 print "in BAZ\n";
	 }

	 package GOOP;
	 @ISA = qw(FOO);

	 sub new {
		 my $type = shift;
		 bless {}, $type;
	 }
	 sub BAZ {
		 print "in GOOP::BAZ\n";
	 }

	 package main;

	 $a = GOOP->new;
	 $a->bar;

CLASS CONTEXT AND THE OBJECT
Use the object to solve package and class context problems. Everything a
 method needs should be
available via the object or should be passed as a
 parameter to the method.

A class will sometimes have static or global data to be used by the
 methods. A subclass may want to
override that data and replace it with new
 data. When this happens the superclass may not know how
to find the new
 copy of the data.

This problem can be solved by using the object to define the context of the
 method. Let the method
look in the object for a reference to the data. The
 alternative is to force the method to go hunting for
the data ("Is it in my
 class, or in a subclass? Which subclass?"), and this can be inconvenient
 and will
lead to hackery. It is better just to let the object tell the
 method where that data is located.

	 package Bar;

	 %fizzle = ('Password' => 'XYZZY');

	 sub new {
		 my $type = shift;
		 my $self = {};
		 $self->{'fizzle'} = \%fizzle;
		 bless $self, $type;
	 }

	 sub enter {
		 my $self = shift;

		 # Don't try to guess if we should use %Bar::fizzle
		 # or %Foo::fizzle. The object already knows which
		 # we should use, so just ask it.

Perl version 5.14.1 documentation - perlbot

Page 8http://perldoc.perl.org

		 #
		 my $fizzle = $self->{'fizzle'};

		 print "The word is ", $fizzle->{'Password'}, "\n";
	 }

	 package Foo;
	 @ISA = qw(Bar);

	 %fizzle = ('Password' => 'Rumple');

	 sub new {
		 my $type = shift;
		 my $self = Bar->new;
		 $self->{'fizzle'} = \%fizzle;
		 bless $self, $type;
	 }

	 package main;

	 $a = Bar->new;
	 $b = Foo->new;
	 $a->enter;
	 $b->enter;

INHERITING A CONSTRUCTOR
An inheritable constructor should use the second form of bless() which allows
 blessing directly into a
specified class. Notice in this example that the
 object will be a BAR not a FOO, even though the
constructor is in class FOO.

	 package FOO;

	 sub new {
		 my $type = shift;
		 my $self = {};
		 bless $self, $type;
	 }

	 sub baz {
		 print "in FOO::baz()\n";
	 }

	 package BAR;
	 @ISA = qw(FOO);

	 sub baz {
		 print "in BAR::baz()\n";
	 }

	 package main;

	 $a = BAR->new;

Perl version 5.14.1 documentation - perlbot

Page 9http://perldoc.perl.org

	 $a->baz;

DELEGATION
Some classes, such as SDBM_File, cannot be effectively subclassed because
 they create foreign
objects. Such a class can be extended with some sort of
 aggregation technique such as the "using"
relationship mentioned earlier or
 by delegation.

The following example demonstrates delegation using an AUTOLOAD() function to
 perform
message-forwarding. This will allow the Mydbm object to behave
 exactly like an SDBM_File object.
The Mydbm class could now extend the
 behavior by adding custom FETCH() and STORE() methods,
if this is desired.

	 package Mydbm;

	 require SDBM_File;
	 require Tie::Hash;
	 @ISA = qw(Tie::Hash);

	 sub TIEHASH {
		 my $type = shift;
		 my $ref = SDBM_File->new(@_);
		 bless {'delegate' => $ref};
	 }

	 sub AUTOLOAD {
		 my $self = shift;

		 # The Perl interpreter places the name of the
		 # message in a variable called $AUTOLOAD.

		 # DESTROY messages should never be propagated.
		 return if $AUTOLOAD =~ /::DESTROY$/;

		 # Remove the package name.
		 $AUTOLOAD =~ s/^Mydbm:://;

		 # Pass the message to the delegate.
		 $self->{'delegate'}->$AUTOLOAD(@_);
	 }

	 package main;
	 use Fcntl qw(O_RDWR O_CREAT);

	 tie %foo, "Mydbm", "adbm", O_RDWR|O_CREAT, 0640;
	 $foo{'bar'} = 123;
	 print "foo-bar = $foo{'bar'}\n";

SEE ALSO
perlboot, perltoot, perltooc.

