
Perl version 5.14.1 documentation - Encode::Encoding

Page 1http://perldoc.perl.org

NAME
Encode::Encoding - Encode Implementation Base Class

SYNOPSIS
 package Encode::MyEncoding;
 use base qw(Encode::Encoding);

 __PACKAGE__->Define(qw(myCanonical myAlias));

DESCRIPTION
As mentioned in Encode, encodings are (in the current
 implementation at least) defined as objects.
The mapping of encoding
 name to object is via the %Encode::Encoding hash. Though you can

directly manipulate this hash, it is strongly encouraged to use this
 base class module and add
encode() and decode() methods.

Methods you should implement
You are strongly encouraged to implement methods below, at least
 either encode() or decode().

->encode($string [,$check])

MUST return the octet sequence representing $string.

If $check is true, it SHOULD modify $string in place to remove
 the converted part (i.e. the
whole string unless there is an error).
 If perlio_ok() is true, SHOULD becomes MUST.

If an error occurs, it SHOULD return the octet sequence for the
 fragment of string that has
been converted and modify $string in-place
 to remove the converted part leaving it starting
with the problem
 fragment. If perlio_ok() is true, SHOULD becomes MUST.

If $check is is false then encode MUST make a "best effort" to
 convert the string - for
example, by using a replacement character.

->decode($octets [,$check])

MUST return the string that $octets represents.

If $check is true, it SHOULD modify $octets in place to remove
 the converted part (i.e. the
whole sequence unless there is an
 error). If perlio_ok() is true, SHOULD becomes MUST.

If an error occurs, it SHOULD return the fragment of string that has
 been converted and
modify $octets in-place to remove the converted
 part leaving it starting with the problem
fragment. If perlio_ok() is
 true, SHOULD becomes MUST.

If $check is false then decode should make a "best effort" to
 convert the string - for
example by using Unicode's "\x{FFFD}" as a
 replacement character.

If you want your encoding to work with encoding pragma, you should
 also implement the method
below.

->cat_decode($destination, $octets, $offset, $terminator [,$check])

MUST decode $octets with $offset and concatenate it to $destination.
 Decoding will terminate
when $terminator (a string) appears in output. $offset will be modified to the last $octets
position at end of decode.
 Returns true if $terminator appears output, else returns false.

Other methods defined in Encode::Encodings
You do not have to override methods shown below unless you have to.

->name

Predefined As:

Perl version 5.14.1 documentation - Encode::Encoding

Page 2http://perldoc.perl.org

 sub name { return shift->{'Name'} }

MUST return the string representing the canonical name of the encoding.

->mime_name

Predefined As:

 sub mime_name{
 require Encode::MIME::Name;
 return Encode::MIME::Name::get_mime_name(shift->name);
 }

MUST return the string representing the IANA charset name of the encoding.

->renew

Predefined As:

 sub renew {
 my $self = shift;
 my $clone = bless { %$self } => ref($self);
 $clone->{renewed}++;
 return $clone;
 }

This method reconstructs the encoding object if necessary. If you need
 to store the state
during encoding, this is where you clone your object.

PerlIO ALWAYS calls this method to make sure it has its own private
 encoding object.

->renewed

Predefined As:

 sub renewed { $_[0]->{renewed} || 0 }

Tells whether the object is renewed (and how many times). Some
 modules emit Use of
uninitialized value in null operation warning
 unless the value is numeric so
return 0 for false.

->perlio_ok()

Predefined As:

 sub perlio_ok {
 eval{ require PerlIO::encoding };
 return $@ ? 0 : 1;
 }

If your encoding does not support PerlIO for some reasons, just;

 sub perlio_ok { 0 }

->needs_lines()

Predefined As:

 sub needs_lines { 0 };

If your encoding can work with PerlIO but needs line buffering, you
 MUST define this method
so it returns true. 7bit ISO-2022 encodings
 are one example that needs this. When this
method is missing, false
 is assumed.

Perl version 5.14.1 documentation - Encode::Encoding

Page 3http://perldoc.perl.org

Example: Encode::ROT13
 package Encode::ROT13;
 use strict;
 use base qw(Encode::Encoding);

 __PACKAGE__->Define('rot13');

 sub encode($$;$){
 my ($obj, $str, $chk) = @_;
 $str =~ tr/A-Za-z/N-ZA-Mn-za-m/;
 $_[1] = '' if $chk; # this is what in-place edit means
 return $str;
 }

 # Jr pna or ynml yvxr guvf;
 *decode = \&encode;

 1;

Why the heck Encode API is different?
It should be noted that the $check behaviour is different from the
 outer public API. The logic is that the
"unchecked" case is useful
 when the encoding is part of a stream which may be reporting errors
 (e.g.
STDERR). In such cases, it is desirable to get everything
 through somehow without causing
additional errors which obscure the
 original one. Also, the encoding is best placed to know what the

correct replacement character is, so if that is the desired behaviour
 then letting low level code do it is
the most efficient.

By contrast, if $check is true, the scheme above allows the
 encoding to do as much as it can and tell
the layer above how much
 that was. What is lacking at present is a mechanism to report what
 went
wrong. The most likely interface will be an additional method
 call to the object, or perhaps (to avoid
forcing per-stream objects
 on otherwise stateless encodings) an additional parameter.

It is also highly desirable that encoding classes inherit from Encode::Encoding as a base class.
This allows that class to define
 additional behaviour for all encoding objects.

 package Encode::MyEncoding;
 use base qw(Encode::Encoding);

 __PACKAGE__->Define(qw(myCanonical myAlias));

to create an object with bless {Name => ...}, $class, and call
 define_encoding. They inherit
their name method from Encode::Encoding.

Compiled Encodings
For the sake of speed and efficiency, most of the encodings are now
 supported via a compiled form:
XS modules generated from UCM
 files. Encode provides the enc2xs tool to achieve that. Please see
enc2xs for more details.

SEE ALSO
perlmod, enc2xs

Scheme 1

The fixup routine gets passed the remaining fragment of string being
 processed. It modifies it
in place to remove bytes/characters it can
 understand and returns a string used to represent

Perl version 5.14.1 documentation - Encode::Encoding

Page 4http://perldoc.perl.org

them. For example:

 sub fixup {
 my $ch = substr($_[0],0,1,'');
 return sprintf("\x{%02X}",ord($ch);
 }

This scheme is close to how the underlying C code for Encode works,
 but gives the fixup
routine very little context.

Scheme 2

The fixup routine gets passed the original string, an index into
 it of the problem area, and the
output string so far. It appends
 what it wants to the output string and returns a new index into
the
 original string. For example:

 sub fixup {
 # my ($s,$i,$d) = @_;
 my $ch = substr($_[0],$_[1],1);
 $_[2] .= sprintf("\x{%02X}",ord($ch);
 return $_[1]+1;
 }

This scheme gives maximal control to the fixup routine but is more
 complicated to code, and
may require that the internals of Encode be tweaked to
 keep the original string intact.

Other Schemes

Hybrids of the above.

Multiple return values rather than in-place modifications.

Index into the string could be pos($str) allowing s/\G...//.

