
Perl version 5.14.1 documentation - perlreftut

Page 1http://perldoc.perl.org

NAME
perlreftut - Mark's very short tutorial about references

DESCRIPTION
One of the most important new features in Perl 5 was the capability to
 manage complicated data
structures like multidimensional arrays and
 nested hashes. To enable these, Perl 5 introduced a
feature called
 `references', and using references is the key to managing complicated,
 structured data
in Perl. Unfortunately, there's a lot of funny syntax
 to learn, and the main manual page can be hard to
follow. The manual
 is quite complete, and sometimes people find that a problem, because
 it can be
hard to tell what is important and what isn't.

Fortunately, you only need to know 10% of what's in the main page to get
 90% of the benefit. This
page will show you that 10%.

Who Needs Complicated Data Structures?
One problem that came up all the time in Perl 4 was how to represent a
 hash whose values were lists.
Perl 4 had hashes, of course, but the
 values had to be scalars; they couldn't be lists.

Why would you want a hash of lists? Let's take a simple example: You
 have a file of city and country
names, like this:

	 Chicago, USA
	 Frankfurt, Germany
	 Berlin, Germany
	 Washington, USA
	 Helsinki, Finland
	 New York, USA

and you want to produce an output like this, with each country mentioned
 once, and then an
alphabetical list of the cities in that country:

	 Finland: Helsinki.
	 Germany: Berlin, Frankfurt.
	 USA: Chicago, New York, Washington.

The natural way to do this is to have a hash whose keys are country
 names. Associated with each
country name key is a list of the cities in
 that country. Each time you read a line of input, split it into a
country
 and a city, look up the list of cities already known to be in that
 country, and append the new
city to the list. When you're done reading
 the input, iterate over the hash as usual, sorting each list of
cities
 before you print it out.

If hash values can't be lists, you lose. In Perl 4, hash values can't
 be lists; they can only be strings.
You lose. You'd probably have to
 combine all the cities into a single string somehow, and then when

time came to write the output, you'd have to break the string into a
 list, sort the list, and turn it back
into a string. This is messy
 and error-prone. And it's frustrating, because Perl already has
 perfectly
good lists that would solve the problem if only you could
 use them.

The Solution
By the time Perl 5 rolled around, we were already stuck with this
 design: Hash values must be
scalars. The solution to this is
 references.

A reference is a scalar value that refers to an entire array or an
 entire hash (or to just about anything
else). Names are one kind of
 reference that you're already familiar with. Think of the President
 of the
United States: a messy, inconvenient bag of blood and bones.
 But to talk about him, or to represent
him in a computer program, all
 you need is the easy, convenient scalar string "Barack Obama".

References in Perl are like names for arrays and hashes. They're
 Perl's private, internal names, so

Perl version 5.14.1 documentation - perlreftut

Page 2http://perldoc.perl.org

you can be sure they're
 unambiguous. Unlike "Barack Obama", a reference only refers to one
 thing,
and you always know what it refers to. If you have a reference
 to an array, you can recover the entire
array from it. If you have a
 reference to a hash, you can recover the entire hash. But the
 reference is
still an easy, compact scalar value.

You can't have a hash whose values are arrays; hash values can only be
 scalars. We're stuck with
that. But a single reference can refer to
 an entire array, and references are scalars, so you can have a
hash of
 references to arrays, and it'll act a lot like a hash of arrays, and
 it'll be just as useful as a hash
of arrays.

We'll come back to this city-country problem later, after we've seen
 some syntax for managing
references.

Syntax
There are just two ways to make a reference, and just two ways to use
 it once you have it.

Making References
Make Rule 1

If you put a \ in front of a variable, you get a
 reference to that variable.

 $aref = \@array; # $aref now holds a reference to @array
 $href = \%hash; # $href now holds a reference to %hash
 $sref = \$scalar; # $sref now holds a reference to $scalar

Once the reference is stored in a variable like $aref or $href, you
 can copy it or store it just the same
as any other scalar value:

 $xy = $aref; # $xy now holds a reference to @array
 $p[3] = $href; # $p[3] now holds a reference to %hash
 $z = $p[3]; # $z now holds a reference to %hash

These examples show how to make references to variables with names.
 Sometimes you want to
make an array or a hash that doesn't have a
 name. This is analogous to the way you like to be able to
use the
 string "\n" or the number 80 without having to store it in a named
 variable first.

Make Rule 2

[ITEMS] makes a new, anonymous array, and returns a reference to
 that array. { ITEMS }
makes a new, anonymous hash, and returns a
 reference to that hash.

 $aref = [1, "foo", undef, 13];
 # $aref now holds a reference to an array

 $href = { APR => 4, AUG => 8 };
 # $href now holds a reference to a hash

The references you get from rule 2 are the same kind of
 references that you get from rule 1:

	 # This:
	 $aref = [1, 2, 3];

	 # Does the same as this:
	 @array = (1, 2, 3);
	 $aref = \@array;

The first line is an abbreviation for the following two lines, except
 that it doesn't create the superfluous

Perl version 5.14.1 documentation - perlreftut

Page 3http://perldoc.perl.org

array variable @array.

If you write just [], you get a new, empty anonymous array.
 If you write just {}, you get a new, empty
anonymous hash.

Using References
What can you do with a reference once you have it? It's a scalar
 value, and we've seen that you can
store it as a scalar and get it back
 again just like any scalar. There are just two more ways to use it:

Use Rule 1

You can always use an array reference, in curly braces, in place of
 the name of an array. For
example, @{$aref} instead of @array.

Here are some examples of that:

Arrays:

	 @a		 @{$aref}		 An array
	 reverse @a	 reverse @{$aref}	 Reverse the array
	 $a[3]		 ${$aref}[3]		 An element of the array
	 $a[3] = 17;	 ${$aref}[3] = 17	 Assigning an element

On each line are two expressions that do the same thing. The
 left-hand versions operate on the array
@a. The right-hand
 versions operate on the array that is referred to by $aref. Once
 they find the
array they're operating on, both versions do the same
 things to the arrays.

Using a hash reference is exactly the same:

	 %h		 %{$href}	 A hash
	 keys %h		 keys %{$href}	 Get the keys from the hash
	 $h{'red'}	 ${$href}{'red'}	 An element of the hash
	 $h{'red'} = 17	 ${$href}{'red'} = 17 Assigning an element

Whatever you want to do with a reference, Use Rule 1 tells you how
 to do it. You just write the Perl
code that you would have written
 for doing the same thing to a regular array or hash, and then replace
the array or hash name with {$reference}. "How do I loop over an
 array when all I have is a
reference?" Well, to loop over an array, you
 would write

 for my $element (@array) {
 ...
 }

so replace the array name, @array, with the reference:

 for my $element (@{$aref}) {
 ...
 }

"How do I print out the contents of a hash when all I have is a
 reference?" First write the code for
printing out a hash:

 for my $key (keys %hash) {
 print "$key => $hash{$key}\n";
 }

And then replace the hash name with the reference:

 for my $key (keys %{$href}) {

Perl version 5.14.1 documentation - perlreftut

Page 4http://perldoc.perl.org

 print "$key => ${$href}{$key}\n";
 }

Use Rule 2

Use Rule 1 is all you really need, because it tells you how to do
 absolutely everything you ever need
to do with references. But the
 most common thing to do with an array or a hash is to extract a single

element, and the Use Rule 1 notation is cumbersome. So there is an
 abbreviation.

${$aref}[3] is too hard to read, so you can write $aref->[3]
 instead.

${$href}{red} is too hard to read, so you can write $href->{red} instead.

If $aref holds a reference to an array, then $aref->[3] is
 the fourth element of the array. Don't
confuse this with $aref[3],
 which is the fourth element of a totally different array, one
 deceptively
named @aref. $aref and @aref are unrelated the
 same way that $item and @item are.

Similarly, $href->{'red'} is part of the hash referred to by
 the scalar variable $href, perhaps
even one with no name. $href{'red'} is part of the deceptively named %href hash. It's
 easy to
forget to leave out the ->, and if you do, you'll get
 bizarre results when your program gets array and
hash elements out of
 totally unexpected hashes and arrays that weren't the ones you wanted
 to use.

An Example
Let's see a quick example of how all this is useful.

First, remember that [1, 2, 3] makes an anonymous array containing (1, 2, 3), and gives you
a reference to that array.

Now think about

	 @a = ([1, 2, 3],
 [4, 5, 6],
	 [7, 8, 9]
);

@a is an array with three elements, and each one is a reference to
 another array.

$a[1] is one of these references. It refers to an array, the array
 containing (4, 5, 6), and because
it is a reference to an array, Use Rule 2 says that we can write $a[1]->[2] to get the
 third element
from that array. $a[1]->[2] is the 6.
 Similarly, $a[0]->[1] is the 2. What we have here is like a

two-dimensional array; you can write $a[ROW]->[COLUMN] to get
 or set the element in any row and
any column of the array.

The notation still looks a little cumbersome, so there's one more
 abbreviation:

Arrow Rule
In between two subscripts, the arrow is optional.

Instead of $a[1]->[2], we can write $a[1][2]; it means the
 same thing. Instead of $a[0]->[1]
= 23, we can write $a[0][1] = 23; it means the same thing.

Now it really looks like two-dimensional arrays!

You can see why the arrows are important. Without them, we would have
 had to write ${$a[1]}[2]
instead of $a[1][2]. For
 three-dimensional arrays, they let us write $x[2][3][5] instead of
 the
unreadable ${${$x[2]}[3]}[5].

Solution
Here's the answer to the problem I posed earlier, of reformatting a
 file of city and country names.

Perl version 5.14.1 documentation - perlreftut

Page 5http://perldoc.perl.org

 1 my %table;

 2 while (<>) {
 3 chomp;
 4 my ($city, $country) = split /, /;
 5 $table{$country} = [] unless exists $table{$country};
 6 push @{$table{$country}}, $city;
 7 }

 8 foreach $country (sort keys %table) {
 9 print "$country: ";
 10 my @cities = @{$table{$country}};
 11 print join ', ', sort @cities;
 12 print ".\n";
 13	 }

The program has two pieces: Lines 2--7 read the input and build a data
 structure, and lines 8-13
analyze the data and print out the report.
 We're going to have a hash, %table, whose keys are
country names,
 and whose values are references to arrays of city names. The data
 structure will look
like this:

 %table
 +-------+---+
 | | | +-----------+--------+
 |Germany| *---->| Frankfurt | Berlin |
 | | | +-----------+--------+
 +-------+---+
 | | | +----------+
 |Finland| *---->| Helsinki |
 | | | +----------+
 +-------+---+
 | | | +---------+------------+----------+
 | USA | *---->| Chicago | Washington | New York |
 | | | +---------+------------+----------+
 +-------+---+

We'll look at output first. Supposing we already have this structure,
 how do we print it out?

 8 foreach $country (sort keys %table) {
 9 print "$country: ";
 10 my @cities = @{$table{$country}};
 11 print join ', ', sort @cities;
 12 print ".\n";
 13	 }

%table is an
 ordinary hash, and we get a list of keys from it, sort the keys, and
 loop over the keys as
usual. The only use of references is in line 10. $table{$country} looks up the key $country in
the hash
 and gets the value, which is a reference to an array of cities in that country. Use Rule 1 says
that
 we can recover the array by saying @{$table{$country}}. Line 10 is just like

	 @cities = @array;

except that the name array has been replaced by the reference {$table{$country}}. The @ tells
Perl to get the entire array.
 Having gotten the list of cities, we sort it, join it, and print it
 out as usual.

Perl version 5.14.1 documentation - perlreftut

Page 6http://perldoc.perl.org

Lines 2-7 are responsible for building the structure in the first
 place. Here they are again:

 2 while (<>) {
 3 chomp;
 4 my ($city, $country) = split /, /;
 5 $table{$country} = [] unless exists $table{$country};
 6 push @{$table{$country}}, $city;
 7 }

Lines 2-4 acquire a city and country name. Line 5 looks to see if the
 country is already present as a
key in the hash. If it's not, the
 program uses the [] notation (Make Rule 2) to manufacture a new,

empty anonymous array of cities, and installs a reference to it into
 the hash under the appropriate
key.

Line 6 installs the city name into the appropriate array. $table{$country} now holds a reference
to the array of cities seen
 in that country so far. Line 6 is exactly like

	 push @array, $city;

except that the name array has been replaced by the reference {$table{$country}}. The push
adds a city name to the end of the
 referred-to array.

There's one fine point I skipped. Line 5 is unnecessary, and we can
 get rid of it.

 2 while (<>) {
 3 chomp;
 4 my ($city, $country) = split /, /;
 5 #### $table{$country} = [] unless exists $table{$country};
 6 push @{$table{$country}}, $city;
 7 }

If there's already an entry in %table for the current $country,
 then nothing is different. Line 6 will
locate the value in $table{$country}, which is a reference to an array, and push $city into the
array. But
 what does it do when $country holds a key, say Greece, that is not yet in %table?

This is Perl, so it does the exact right thing. It sees that you want
 to push Athens onto an array that
doesn't exist, so it helpfully
 makes a new, empty, anonymous array for you, installs it into %table,
and then pushes Athens onto it. This is called
 `autovivification'--bringing things to life automatically.
Perl saw
 that they key wasn't in the hash, so it created a new hash entry
 automatically. Perl saw that
you wanted to use the hash value as an
 array, so it created a new empty array and installed a
reference to it
 in the hash automatically. And as usual, Perl made the array one
 element longer to
hold the new city name.

The Rest
I promised to give you 90% of the benefit with 10% of the details, and
 that means I left out 90% of the
details. Now that you have an
 overview of the important parts, it should be easier to read the perlref
manual page, which discusses 100% of the details.

Some of the highlights of perlref:

You can make references to anything, including scalars, functions, and
 other references.

In Use Rule 1, you can omit the curly brackets whenever the thing
 inside them is an atomic
scalar variable like $aref. For example, @$aref is the same as @{$aref}, and $$aref[1]
is the same as ${$aref}[1]. If you're just starting out, you may want to adopt
 the habit of
always including the curly brackets.

This doesn't copy the underlying array:

Perl version 5.14.1 documentation - perlreftut

Page 7http://perldoc.perl.org

 $aref2 = $aref1;

You get two references to the same array. If you modify $aref1->[23] and then look at
$aref2->[23] you'll see the change.

To copy the array, use

 $aref2 = [@{$aref1}];

This uses [...] notation to create a new anonymous array, and $aref2 is assigned a
reference to the new array. The new array is
 initialized with the contents of the array referred
to by $aref1.

Similarly, to copy an anonymous hash, you can use

 $href2 = {%{$href1}};

To see if a variable contains a reference, use the ref function. It
 returns true if its argument is
a reference. Actually it's a little
 better than that: It returns HASH for hash references and
ARRAY
 for array references.

If you try to use a reference like a string, you get strings like

	 ARRAY(0x80f5dec) or HASH(0x826afc0)

If you ever see a string that looks like this, you'll know you
 printed out a reference by mistake.

A side effect of this representation is that you can use eq to see
 if two references refer to the
same thing. (But you should usually use == instead because it's much faster.)

You can use a string as if it were a reference. If you use the string "foo" as an array
reference, it's taken to be a reference to the
 array @foo. This is called a soft reference or
symbolic
 reference. The declaration use strict 'refs' disables this
 feature, which can
cause all sorts of trouble if you use it by accident.

You might prefer to go on to perllol instead of perlref; it
 discusses lists of lists and multidimensional
arrays in detail. After
 that, you should move on to perldsc; it's a Data Structure Cookbook
 that shows
recipes for using and printing out arrays of hashes, hashes
 of arrays, and other kinds of data.

Summary
Everyone needs compound data structures, and in Perl the way you get
 them is with references.
There are four important rules for managing
 references: Two for making references and two for using
them. Once
 you know these rules you can do most of the important things you need
 to do with
references.

Credits
Author: Mark Jason Dominus, Plover Systems (mjd-perl-ref+@plover.com)

This article originally appeared in The Perl Journal
 (http://www.tpj.com/) volume 3, #2. Reprinted
with permission.

The original title was Understand References Today.

Distribution Conditions
Copyright 1998 The Perl Journal.

This documentation is free; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Irrespective of its distribution, all code examples in these files are
 hereby placed into the public
domain. You are permitted and
 encouraged to use this code in your own programs for fun or for profit

as you see fit. A simple comment in the code giving credit would be
 courteous but is not required.

