
Perl version 5.16.1 documentation - perl5140delta

Page 1http://perldoc.perl.org

NAME
perl5140delta - what is new for perl v5.14.0

DESCRIPTION
This document describes differences between the 5.12.0 release and
 the 5.14.0 release.

If you are upgrading from an earlier release such as 5.10.0, first read perl5120delta, which describes
differences between 5.10.0 and
 5.12.0.

Some of the bug fixes in this release have been backported to subsequent
 releases of 5.12.x. Those
are indicated with the 5.12.x version in
 parentheses.

Notice
As described in perlpolicy, the release of Perl 5.14.0 marks the
 official end of support for Perl 5.10.
Users of Perl 5.10 or earlier
 should consider upgrading to a more recent release of Perl.

Core Enhancements
Unicode
Unicode Version 6.0 is now supported (mostly)

Perl comes with the Unicode 6.0 data base updated with Corrigendum #8,
 with one exception noted
below.
 See http://unicode.org/versions/Unicode6.0.0/ for details on the new
 release. Perl does not
support any Unicode provisional properties,
 including the new ones for this release.

Unicode 6.0 has chosen to use the name BELL for the character at U+1F514,
 which is a symbol that
looks like a bell, and is used in Japanese cell
 phones. This conflicts with the long-standing Perl usage
of having BELL mean the ASCII BEL character, U+0007. In Perl 5.14, \N{BELL} continues to mean
U+0007, but its use generates a
 deprecation warning message unless such warnings are turned off.
The
 new name for U+0007 in Perl is ALERT, which corresponds nicely
 with the existing shorthand
sequence for it, "\a". \N{BEL}
 means U+0007, with no warning given. The character at U+1F514
has no
 name in 5.14, but can be referred to by \N{U+1F514}. In Perl 5.16, \N{BELL} will refer to
U+1F514; all code
 that uses \N{BELL} should be converted to use \N{ALERT}, \N{BEL}, or "\a"
before upgrading.

Full functionality for use feature 'unicode_strings'

This release provides full functionality for use feature
 'unicode_strings'. Under its scope, all
string operations executed and
 regular expressions compiled (even if executed outside its scope)
have
 Unicode semantics. See "the 'unicode_strings' feature" in feature.
 However, see Inverted
bracketed character classes and multi-character folds,
 below.

This feature avoids most forms of the "Unicode Bug" (see "The "Unicode Bug"" in perlunicode for
details). If there is any
 possibility that your code will process Unicode strings, you are strongly
encouraged to use this subpragma to avoid nasty surprises.

\N{NAME} and charnames enhancements

\N{NAME} and charnames::vianame now know about the abbreviated
 character names
listed by Unicode, such as NBSP, SHY, LRO, ZWJ, etc.; all
 customary abbreviations for the
C0 and C1 control characters (such as
 ACK, BEL, CAN, etc.); and a few new variants of some
C1 full names that
 are in common usage.

Unicode has several named character sequences, in which particular sequences
 of code
points are given names. \N{NAME} now recognizes these.

\N{NAME}, charnames::vianame, and charnames::viacode
 now know about every
character in Unicode. In earlier releases of
 Perl, they didn't know about the Hangul syllables
nor several
 CJK (Chinese/Japanese/Korean) characters.

It is now possible to override Perl's abbreviations with your own custom aliases.

Perl version 5.16.1 documentation - perl5140delta

Page 2http://perldoc.perl.org

You can now create a custom alias of the ordinal of a
 character, known by \N{NAME},
charnames::vianame(), and charnames::viacode(). Previously, aliases had to be to
official
 Unicode character names. This made it impossible to create an alias for
 unnamed code
points, such as those reserved for private
 use.

The new function charnames::string_vianame() is a run-time version
 of \N{NAME}}, returning
the string of characters whose Unicode
 name is its parameter. It can handle Unicode named
character
 sequences, whereas the pre-existing charnames::vianame() cannot,
 as the latter
returns a single code point.

See charnames for details on all these changes.

New warnings categories for problematic (non-)Unicode code points.

Three new warnings subcategories of "utf8" have been added. These
 allow you to turn off some "utf8"
warnings, while allowing
 other warnings to remain on. The three categories are: surrogate when
UTF-16 surrogates are encountered; nonchar when Unicode non-character code points are
encountered;
 and non_unicode when code points above the legal Unicode
 maximum of 0x10FFFF
are encountered.

Any unsigned value can be encoded as a character

With this release, Perl is adopting a model that any unsigned value
 can be treated as a code point
and encoded internally (as utf8)
 without warnings, not just the code points that are legal in Unicode.

However, unless utf8 or the corresponding sub-category (see previous
 item) of lexical warnings have
been explicitly turned off, outputting
 or executing a Unicode-defined operation such as upper-casing

on such a code point generates a warning. Attempting to input these
 using strict rules (such as with
the :encoding(UTF-8) layer)
 will continue to fail. Prior to this release, handling was
 inconsistent
and in places, incorrect.

Unicode non-characters, some of which previously were erroneously
 considered illegal in places by
Perl, contrary to the Unicode Standard,
 are now always legal internally. Inputting or outputting them
works the same as with the non-legal Unicode code points, because the Unicode
 Standard says they
are (only) illegal for "open interchange".

Unicode database files not installed

The Unicode database files are no longer installed with Perl. This
 doesn't affect any functionality in
Perl and saves significant disk
 space. If you need these files, you can download them from
http://www.unicode.org/Public/zipped/6.0.0/.

Regular Expressions
(?^...) construct signifies default modifiers

An ASCII caret "^" immediately following a "(?" in a regular
 expression now means that the
subexpression does not inherit surrounding
 modifiers such as /i, but reverts to the Perl defaults. Any
modifiers
 following the caret override the defaults.

Stringification of regular expressions now uses this notation. For example, qr/hlagh/i would
previously be stringified as (?i-xsm:hlagh), but now it's stringified as (?^i:hlagh).

The main purpose of this change is to allow tests that rely on the
 stringification not to have to change
whenever new modifiers are added.
 See "Extended Patterns" in perlre.

This change is likely to break code that compares stringified regular
 expressions with fixed strings
containing ?-xism.

/d, /l, /u, and /a modifiers

Four new regular expression modifiers have been added. These are mutually
 exclusive: one only can
be turned on at a time.

The /l modifier says to compile the regular expression as if it were
 in the scope of use

Perl version 5.16.1 documentation - perl5140delta

Page 3http://perldoc.perl.org

locale, even if it is not.

The /u modifier says to compile the regular expression as if it were
 in the scope of a use
feature 'unicode_strings' pragma.

The /d (default) modifier is used to override any use locale and use feature
'unicode_strings' pragmas in effect at the time
 of compiling the regular expression.

The /a regular expression modifier restricts \s, \d and \w and
 the POSIX ([[:posix:]])
character classes to the ASCII range. Their
 complements and \b and \B are correspondingly

affected. Otherwise, /a behaves like the /u modifier, in that
 case-insensitive matching uses
Unicode semantics.

If the /a modifier is repeated, then additionally in case-insensitive
 matching, no ASCII
character can match a non-ASCII character.
 For example,

 "k" =~ /\N{KELVIN SIGN}/ai
 "\xDF" =~ /ss/ai

match but

 "k" =~ /\N{KELVIN SIGN}/aai
 "\xDF" =~ /ss/aai

do not match.

See "Modifiers" in perlre for more detail.

Non-destructive substitution

The substitution (s///) and transliteration
 (y///) operators now support an /r option that
 copies the
input variable, carries out the substitution on
 the copy, and returns the result. The original remains
unmodified.

 my $old = "cat";
 my $new = $old =~ s/cat/dog/r;
 # $old is "cat" and $new is "dog"

This is particularly useful with map. See perlop for more examples.

Re-entrant regular expression engine

It is now safe to use regular expressions within (?{...}) and (??{...}) code blocks inside
regular expressions.

These blocks are still experimental, however, and still have problems with
 lexical (my) variables and
abnormal exiting.

use re '/flags'

The re pragma now has the ability to turn on regular expression flags
 till the end of the lexical scope:

 use re "/x";
 "foo" =~ / (.+) /; # /x implied

See "'/flags' mode" in re for details.

\o{...} for octals

There is a new octal escape sequence, "\o", in doublequote-like
 contexts. This construct allows
large octal ordinals beyond the
 current max of 0777 to be represented. It also allows you to specify a

character in octal which can safely be concatenated with other regex
 snippets and which won't be
confused with being a backreference to
 a regex capture group. See "Capture groups" in perlre.

Perl version 5.16.1 documentation - perl5140delta

Page 4http://perldoc.perl.org

Add \p{Titlecase} as a synonym for \p{Title}

This synonym is added for symmetry with the Unicode property names \p{Uppercase} and
\p{Lowercase}.

Regular expression debugging output improvement

Regular expression debugging output (turned on by use re 'debug') now
 uses hexadecimal when
escaping non-ASCII characters, instead of octal.

Return value of delete $+{...}

Custom regular expression engines can now determine the return value of delete on an entry of %+
or %-.

Syntactical Enhancements
Array and hash container functions accept references

Warning: This feature is considered experimental, as the exact behaviour
 may change in a future
version of Perl.

All builtin functions that operate directly on array or hash
 containers now also accept unblessed hard
references to arrays
 or hashes:

 |----------------------------+---------------------------|
 | Traditional syntax | Terse syntax |
 |----------------------------+---------------------------|
push @$arrayref, @stuff	push $arrayref, @stuff
unshift @$arrayref, @stuff	unshift $arrayref, @stuff
pop @$arrayref	pop $arrayref
shift @$arrayref	shift $arrayref
splice @$arrayref, 0, 2	splice $arrayref, 0, 2
keys %$hashref	keys $hashref
keys @$arrayref	keys $arrayref
values %$hashref	values $hashref
values @$arrayref	values $arrayref
($k,$v) = each %$hashref	($k,$v) = each $hashref
($k,$v) = each @$arrayref	($k,$v) = each $arrayref
----------------------------+---------------------------	

This allows these builtin functions to act on long dereferencing chains
 or on the return value of
subroutines without needing to wrap them in @{} or %{}:

 push @{$obj->tags}, $new_tag; # old way
 push $obj->tags, $new_tag; # new way

 for (keys %{$hoh->{genres}{artists}}) {...} # old way
 for (keys $hoh->{genres}{artists}) {...} # new way

Single term prototype

The + prototype is a special alternative to $ that acts like \[@%] when given a literal array or hash
variable, but will otherwise
 force scalar context on the argument. See "Prototypes" in perlsub.

package block syntax

A package declaration can now contain a code block, in which case the
 declaration is in scope inside
that block only. So package Foo { ... }
 is precisely equivalent to { package Foo; ... }. It
also works with
 a version number in the declaration, as in package Foo 1.2 { ... }, which is its
most attractive feature. See perlfunc.

Perl version 5.16.1 documentation - perl5140delta

Page 5http://perldoc.perl.org

Statement labels can appear in more places

Statement labels can now occur before any type of statement or declaration,
 such as package.

Stacked labels

Multiple statement labels can now appear before a single statement.

Uppercase X/B allowed in hexadecimal/binary literals

Literals may now use either upper case 0X... or 0B... prefixes,
 in addition to the already supported
0x... and 0b...
 syntax [perl #76296].

C, Ruby, Python, and PHP already support this syntax, and it makes
 Perl more internally consistent: a
round-trip with eval sprintf
 "%#X", 0x10 now returns 16, just like eval sprintf "%#x",
0x10.

Overridable tie functions

tie, tied and untie can now be overridden [perl #75902].

Exception Handling
To make them more reliable and consistent, several changes have been made
 to how die, warn,
and $@ behave.

When an exception is thrown inside an eval, the exception is no
 longer at risk of being
clobbered by destructor code running during unwinding.
 Previously, the exception was written
into $@
 early in the throwing process, and would be overwritten if eval was
 used internally in
the destructor for an object that had to be freed
 while exiting from the outer eval. Now the
exception is written
 into $@ last thing before exiting the outer eval, so the code
 running
immediately thereafter can rely on the value in $@ correctly
 corresponding to that eval. ($@ is
still also set before exiting the eval, for the sake of destructors that rely on this.)

Likewise, a local $@ inside an eval no longer clobbers any
 exception thrown in its scope.
Previously, the restoration of $@ upon
 unwinding would overwrite any exception being thrown.
Now the exception
 gets to the eval anyway. So local $@ is safe before a die.

Exceptions thrown from object destructors no longer modify the $@
 of the surrounding context.
(If the surrounding context was exception
 unwinding, this used to be another way to clobber
the exception being
 thrown.) Previously such an exception was
 sometimes emitted as a
warning, and then either was
 string-appended to the surrounding $@ or completely replaced
the
 surrounding $@, depending on whether that exception and the surrounding $@ were strings
or objects. Now, an exception in this situation is
 always emitted as a warning, leaving the
surrounding $@ untouched.
 In addition to object destructors, this also affects any function call

run by XS code using the G_KEEPERR flag.

Warnings for warn can now be objects in the same way as exceptions
 for die. If an
object-based warning gets the default handling
 of writing to standard error, it is stringified as
before with the
 filename and line number appended. But a $SIG{__WARN__} handler now

receives an object-based warning as an object, where previously it
 was passed the result of
stringifying the object.

Other Enhancements
Assignment to $0 sets the legacy process name with prctl() on Linux

On Linux the legacy process name is now set with prctl(2), in
 addition to altering the POSIX name via
argv[0], as Perl has done
 since version 4.000. Now system utilities that read the legacy process

name such as ps, top, and killall recognize the name you set when
 assigning to $0. The string you
supply is truncated at 16 bytes;
 this limitation is imposed by Linux.

srand() now returns the seed

This allows programs that need to have repeatable results not to have to come
 up with their own
seed-generating mechanism. Instead, they can use srand()
 and stash the return value for future use.

Perl version 5.16.1 documentation - perl5140delta

Page 6http://perldoc.perl.org

One example is a test program with
 too many combinations to test comprehensively in the time
available for
 each run. It can test a random subset each time and, should there be a failure,
 log the
seed used for that run so this can later be used to produce the same results.

printf-like functions understand post-1980 size modifiers

Perl's printf and sprintf operators, and Perl's internal printf replacement
 function, now understand the
C90 size modifiers "hh" (char), "z"
 (size_t), and "t" (ptrdiff_t). Also, when compiled with a C99

compiler, Perl now understands the size modifier "j" (intmax_t) (but this is not portable).

So, for example, on any modern machine, sprintf("%hhd", 257) returns "1".

New global variable ${^GLOBAL_PHASE}

A new global variable, ${^GLOBAL_PHASE}, has been added to allow
 introspection of the current
phase of the Perl interpreter. It's explained in
 detail in "${^GLOBAL_PHASE}" in perlvar and in
"BEGIN, UNITCHECK, CHECK, INIT and END" in perlmod.

-d:-foo calls Devel::foo::unimport

The syntax -d:foo was extended in 5.6.1 to make -d:foo=bar
 equivalent to -MDevel::foo=bar, which
expands
 internally to use Devel::foo 'bar'.
 Perl now allows prefixing the module name with -,
with the same
 semantics as -M; that is:

-d:-foo

Equivalent to -M-Devel::foo: expands to no Devel::foo and calls
Devel::foo->unimport()
 if that method exists.

-d:-foo=bar

Equivalent to -M-Devel::foo=bar: expands to no Devel::foo 'bar',
 and calls
Devel::foo->unimport("bar") if that method exists.

This is particularly useful for suppressing the default actions of a Devel::* module's import
method whilst still loading it for debugging.

Filehandle method calls load IO::File on demand

When a method call on a filehandle would die because the method cannot
 be resolved and IO::File
has not been loaded, Perl now loads IO::File
 via require and attempts method resolution again:

 open my $fh, ">", $file;
 $fh->binmode(":raw"); # loads IO::File and succeeds

This also works for globs like STDOUT, STDERR, and STDIN:

 STDOUT->autoflush(1);

Because this on-demand load happens only if method resolution fails, the
 legacy approach of
manually loading an IO::File parent class for partial
 method support still works as expected:

 use IO::Handle;
 open my $fh, ">", $file;
 $fh->autoflush(1); # IO::File not loaded

Improved IPv6 support

The Socket module provides new affordances for IPv6,
 including implementations of the
Socket::getaddrinfo() and Socket::getnameinfo() functions, along with related constants
and a
 handful of new functions. See Socket.

Perl version 5.16.1 documentation - perl5140delta

Page 7http://perldoc.perl.org

DTrace probes now include package name

The DTrace probes now include an additional argument, arg3, which contains
 the package the
subroutine being entered or left was compiled in.

For example, using the following DTrace script:

 perl$target:::sub-entry
 {
 printf("%s::%s\n", copyinstr(arg0), copyinstr(arg3));
 }

and then running:

 $ perl -e 'sub test { }; test'

DTrace will print:

 main::test

New C APIs
See Internal Changes.

Security
User-defined regular expression properties

"User-Defined Character Properties" in perlunicode documented that you can
 create custom
properties by defining subroutines whose names begin with
 "In" or "Is". However, Perl did not actually
enforce that naming
 restriction, so \p{foo::bar} could call foo::bar() if it existed. The documented

convention is now enforced.

Also, Perl no longer allows tainted regular expressions to invoke a
 user-defined property. It simply
dies instead [perl #82616].

Incompatible Changes
Perl 5.14.0 is not binary-compatible with any previous stable release.

In addition to the sections that follow, see C API Changes.

Regular Expressions and String Escapes
Inverted bracketed character classes and multi-character folds

Some characters match a sequence of two or three characters in /i
 regular expression matching
under Unicode rules. One example is LATIN SMALL LETTER SHARP S which matches the
sequence ss.

 'ss' =~ /\A[\N{LATIN SMALL LETTER SHARP S}]\z/i # Matches

This, however, can lead to very counter-intuitive results, especially
 when inverted. Because of this,
Perl 5.14 does not use multi-character /i
 matching in inverted character classes.

 'ss' =~ /\A[^\N{LATIN SMALL LETTER SHARP S}]+\z/i # ???

This should match any sequences of characters that aren't the SHARP S
 nor what SHARP S matches
under /i. "s" isn't SHARP S, but
 Unicode says that "ss" is what SHARP S matches under /i. So

which one "wins"? Do you fail the match because the string has ss or
 accept it because it has an s
followed by another s?

Earlier releases of Perl did allow this multi-character matching,
 but due to bugs, it mostly did not work.

Perl version 5.16.1 documentation - perl5140delta

Page 8http://perldoc.perl.org

\400-\777

In certain circumstances, \400-\777 in regexes have behaved
 differently than they behave in all
other doublequote-like contexts.
 Since 5.10.1, Perl has issued a deprecation warning when this
happens.
 Now, these literals behave the same in all doublequote-like contexts,
 namely to be
equivalent to \x{100}-\x{1FF}, with no deprecation
 warning.

Use of \400-\777 in the command-line option -0 retain their
 conventional meaning. They slurp whole
input files; previously, this
 was documented only for -0777.

Because of various ambiguities, you should use the new \o{...} construct to represent characters
in octal instead.

Most \p{} properties are now immune to case-insensitive matching

For most Unicode properties, it doesn't make sense to have them match
 differently under /i
case-insensitive matching. Doing so can lead
 to unexpected results and potential security holes. For
example

 m/\p{ASCII_Hex_Digit}+/i

could previously match non-ASCII characters because of the Unicode
 matching rules (although there
were several bugs with this). Now
 matching under /i gives the same results as non-/i matching
except
 for those few properties where people have come to expect differences,
 namely the ones
where casing is an integral part of their meaning, such
 as m/\p{Uppercase}/i and
m/\p{Lowercase}/i, both of which match
 the same code points as matched by m/\p{Cased}/i.

Details are in "Unicode Properties" in perlrecharclass.

User-defined property handlers that need to match differently under /i
 must be changed to read the
new boolean parameter passed to them, which
 is non-zero if case-insensitive matching is in effect
and 0 otherwise.
 See "User-Defined Character Properties" in perlunicode.

\p{} implies Unicode semantics

Specifying a Unicode property in the pattern indicates
 that the pattern is meant for matching
according to Unicode rules, the way \N{NAME} does.

Regular expressions retain their localeness when interpolated

Regular expressions compiled under use locale now retain this when
 interpolated into a new
regular expression compiled outside a use locale, and vice-versa.

Previously, one regular expression interpolated into another inherited
 the localeness of the
surrounding regex, losing whatever state it
 originally had. This is considered a bug fix, but may trip up
code that
 has come to rely on the incorrect behaviour.

Stringification of regexes has changed

Default regular expression modifiers are now notated using (?^...). Code relying on the old
stringification will fail. This is so that when new modifiers are added, such code won't
 have to keep
changing each time this happens, because the stringification will automatically incorporate the new
modifiers.

Code that needs to work properly with both old- and new-style regexes
 can avoid the whole issue by
using (for perls since 5.9.5; see re):

 use re qw(regexp_pattern);
 my ($pat, $mods) = regexp_pattern($re_ref);

If the actual stringification is important or older Perls need to be
 supported, you can use something
like the following:

 # Accept both old and new-style stringification

Perl version 5.16.1 documentation - perl5140delta

Page 9http://perldoc.perl.org

 my $modifiers = (qr/foobar/ =~ /\Q(?^/) ? "^" : "-xism";

And then use $modifiers instead of -xism.

Run-time code blocks in regular expressions inherit pragmata

Code blocks in regular expressions ((?{...}) and (??{...})) previously
 did not inherit pragmata
(strict, warnings, etc.) if the regular expression
 was compiled at run time as happens in cases like
these two:

 use re "eval";
 $foo =~ $bar; # when $bar contains (?{...})
 $foo =~ /$bar(?{ $finished = 1 })/;

This bug has now been fixed, but code that relied on the buggy behaviour
 may need to be fixed to
account for the correct behaviour.

Stashes and Package Variables
Localised tied hashes and arrays are no longed tied

In the following:

 tie @a, ...;
 {
	 local @a;
	 # here, @a is a now a new, untied array
 }
 # here, @a refers again to the old, tied array

Earlier versions of Perl incorrectly tied the new local array. This has
 now been fixed. This fix could
however potentially cause a change in
 behaviour of some code.

Stashes are now always defined

defined %Foo:: now always returns true, even when no symbols have yet been
 defined in that
package.

This is a side-effect of removing a special-case kludge in the tokeniser,
 added for 5.10.0, to hide
side-effects of changes to the internal storage of
 hashes. The fix drastically reduces hashes' memory
overhead.

Calling defined on a stash has been deprecated since 5.6.0, warned on
 lexicals since 5.6.0, and
warned for stashes and other package
 variables since 5.12.0. defined %hash has always exposed
an
 implementation detail: emptying a hash by deleting all entries from it does
 not make defined
%hash false. Hence defined %hash is not valid code to
 determine whether an arbitrary hash is
empty. Instead, use the behaviour
 of an empty %hash always returning false in scalar context.

Clearing stashes

Stash list assignment %foo:: = () used to make the stash temporarily anonymous while it was
being emptied. Consequently, any of its
 subroutines referenced elsewhere would become
anonymous, showing up as
 "(unknown)" in caller. They now retain their package names such that
caller returns the original sub name if there is still a reference
 to its typeglob and "foo::__ANON__"
otherwise [perl #79208].

Dereferencing typeglobs

If you assign a typeglob to a scalar variable:

 $glob = *foo;

Perl version 5.16.1 documentation - perl5140delta

Page 10http://perldoc.perl.org

the glob that is copied to $glob is marked with a special flag
 indicating that the glob is just a copy.
This allows subsequent
 assignments to $glob to overwrite the glob. The original glob,
 however, is
immutable.

Some Perl operators did not distinguish between these two types of globs.
 This would result in
strange behaviour in edge cases: untie $scalar
 would not untie the scalar if the last thing
assigned to it was a glob
 (because it treated it as untie *$scalar, which unties a handle).

Assignment to a glob slot (such as *$glob = \@some_array) would simply
 assign \@some_array
to $glob.

To fix this, the *{} operator (including its *foo and *$foo forms)
 has been modified to make a new
immutable glob if its operand is a glob
 copy. This allows operators that make a distinction between
globs and
 scalars to be modified to treat only immutable globs as globs. (tie, tied and untie have
been left as they are for compatibility's sake,
 but will warn. See Deprecations.)

This causes an incompatible change in code that assigns a glob to the
 return value of *{} when that
operator was passed a glob copy. Take the
 following code, for instance:

 $glob = *foo;
 *$glob = *bar;

The *$glob on the second line returns a new immutable glob. That new
 glob is made an alias to
*bar. Then it is discarded. So the second
 assignment has no effect.

See http://rt.perl.org/rt3/Public/Bug/Display.html?id=77810 for
 more detail.

Magic variables outside the main package

In previous versions of Perl, magic variables like $!, %SIG, etc. would
 "leak" into other packages. So
%foo::SIG could be used to access signals, ${"foo::!"} (with strict mode off) to access C's
errno, etc.

This was a bug, or an "unintentional" feature, which caused various ill effects,
 such as signal handlers
being wiped when modules were loaded, etc.

This has been fixed (or the feature has been removed, depending on how you see
 it).

local($_) strips all magic from $_

local() on scalar variables gives them a new value but keeps all
 their magic intact. This has proven
problematic for the default
 scalar variable $_, where perlsub recommends that any subroutine
 that
assigns to $_ should first localize it. This would throw an
 exception if $_ is aliased to a read-only
variable, and could in general have
 various unintentional side-effects.

Therefore, as an exception to the general rule, local($_) will not
 only assign a new value to $_, but
also remove all existing magic from
 it as well.

Parsing of package and variable names

Parsing the names of packages and package variables has changed: multiple adjacent pairs of
colons, as in foo::::bar, are now all treated as package separators.

Regardless of this change, the exact parsing of package separators has
 never been guaranteed and
is subject to change in future Perl versions.

Changes to Syntax or to Perl Operators
given return values

given blocks now return the last evaluated
 expression, or an empty list if the block was exited by
break. Thus you
 can now write:

 my $type = do {
 given ($num) {

Perl version 5.16.1 documentation - perl5140delta

Page 11http://perldoc.perl.org

 break when undef;
 "integer" when /^[+-]?[0-9]+$/;
 "float" when /^[+-]?[0-9]+(?:\.[0-9]+)?$/;
 "unknown";
 }
 };

See "Return value" in perlsyn for details.

Change in parsing of certain prototypes

Functions declared with the following prototypes now behave correctly as unary
 functions:

 *
 \$ \% \@ * \&
 \[...]
 ;$;*
 ;\$;\% etc.
 ;\[...]

Due to this bug fix [perl #75904], functions
 using the (*), (;$) and (;*) prototypes
 are parsed with
higher precedence than before. So
 in the following example:

 sub foo(;$);
 foo $a < $b;

the second line is now parsed correctly as foo($a) < $b, rather than foo($a < $b). This
happens when one of these operators is used in
 an unparenthesised argument:

 < > <= >= lt gt le ge
 == != <=> eq ne cmp ~~
 &
 | ^
 &&
 || //

 ?:
 = += -= *= etc.
 , =>

Smart-matching against array slices

Previously, the following code resulted in a successful match:

 my @a = qw(a y0 z);
 my @b = qw(a x0 z);
 @a[0 .. $#b] ~~ @b;

This odd behaviour has now been fixed [perl #77468].

Negation treats strings differently from before

The unary negation operator, -, now treats strings that look like numbers
 as numbers [perl #57706].

Negative zero

Negative zero (-0.0), when converted to a string, now becomes "0" on all
 platforms. It used to become
"-0" on some, but "0" on others.

If you still need to determine whether a zero is negative, use sprintf("%g", $zero) =~ /^-/ or

Perl version 5.16.1 documentation - perl5140delta

Page 12http://perldoc.perl.org

the Data::Float module on CPAN.

:= is now a syntax error

Previously my $pi := 4 was exactly equivalent to my $pi : = 4,
 with the : being treated as the
start of an attribute list, ending before
 the =. The use of := to mean : = was deprecated in 5.12.0,
and is
 now a syntax error. This allows future use of := as a new token.

Outside the core's tests for it, we find no Perl 5 code on CPAN
 using this construction, so we believe
that this change will have
 little impact on real-world codebases.

If it is absolutely necessary to have empty attribute lists (for example,
 because of a code generator),
simply avoid the error by adding a space before
 the =.

Change in the parsing of identifiers

Characters outside the Unicode "XIDStart" set are no longer allowed at the
 beginning of an identifier.
This means that certain accents and marks
 that normally follow an alphabetic character may no
longer be the first
 character of an identifier.

Threads and Processes
Directory handles not copied to threads

On systems other than Windows that do not have
 a fchdir function, newly-created threads no

longer inherit directory handles from their parent threads. Such programs
 would usually have crashed
anyway [perl #75154].

close on shared pipes

To avoid deadlocks, the close function no longer waits for the
 child process to exit if the underlying
file descriptor is still
 in use by another thread. It returns true in such cases.

fork() emulation will not wait for signalled children

On Windows parent processes would not terminate until all forked
 children had terminated first.
However, kill("KILL", ...) is
 inherently unstable on pseudo-processes, and kill("TERM",
...)
 might not get delivered if the child is blocked in a system call.

To avoid the deadlock and still provide a safe mechanism to terminate
 the hosting process, Perl now
no longer waits for children that
 have been sent a SIGTERM signal. It is up to the parent process to

waitpid() for these children if child-cleanup processing must be
 allowed to finish. However, it is also
then the responsibility of the
 parent to avoid the deadlock by making sure the child process
 can't be
blocked on I/O.

See perlfork for more information about the fork() emulation on
 Windows.

Configuration
Naming fixes in Policy_sh.SH may invalidate Policy.sh

Several long-standing typos and naming confusions in Policy_sh.SH have
 been fixed, standardizing
on the variable names used in config.sh.

This will change the behaviour of Policy.sh if you happen to have been
 accidentally relying on its
incorrect behaviour.

Perl source code is read in text mode on Windows

Perl scripts used to be read in binary mode on Windows for the benefit
 of the ByteLoader module
(which is no longer part of core Perl). This
 had the side-effect of breaking various operations on the
DATA filehandle,
 including seek()/tell(), and even simply reading from DATA after filehandles
 have
been flushed by a call to system(), backticks, fork() etc.

The default build options for Windows have been changed to read Perl source
 code on Windows in
text mode now. ByteLoader will (hopefully) be updated on
 CPAN to automatically handle this situation

Perl version 5.16.1 documentation - perl5140delta

Page 13http://perldoc.perl.org

[perl #28106].

Deprecations
See also Deprecated C APIs.

Omitting a space between a regular expression and subsequent word
Omitting the space between a regular expression operator or
 its modifiers and the following word is
deprecated. For
 example, m/foo/sand $bar is for now still parsed
 as m/foo/s and $bar, but
will now issue a warning.

\cX
The backslash-c construct was designed as a way of specifying
 non-printable characters, but there
were no restrictions (on ASCII
 platforms) on what the character following the c could be. Now,
 a
deprecation warning is raised if that character isn't an ASCII character.
 Also, a deprecation warning is
raised for "\c{" (which is the same
 as simply saying ";").

"\b{" and "\B{"
In regular expressions, a literal "{" immediately following a "\b"
 (not in a bracketed character class)
or a "\B{" is now deprecated
 to allow for its future use by Perl itself.

Perl 4-era .pl libraries
Perl bundles a handful of library files that predate Perl 5.
 This bundling is now deprecated for most of
these files, which are now
 available from CPAN. The affected files now warn when run, if they were

installed as part of the core.

This is a mandatory warning, not obeying -X or lexical warning bits.
 The warning is modelled on that
supplied by deprecate.pm for
 deprecated-in-core .pm libraries. It points to the specific CPAN

distribution that contains the .pl libraries. The CPAN versions, of
 course, do not generate the warning.

List assignment to $[
Assignment to $[was deprecated and started to give warnings in
 Perl version 5.12.0. This version of
Perl (5.14) now also emits a warning when assigning to $[in list context. This fixes an oversight in
5.12.0.

Use of qw(...) as parentheses
Historically the parser fooled itself into thinking that qw(...) literals
 were always enclosed in
parentheses, and as a result you could sometimes omit
 parentheses around them:

 for $x qw(a b c) { ... }

The parser no longer lies to itself in this way. Wrap the list literal in
 parentheses like this:

 for $x (qw(a b c)) { ... }

This is being deprecated because the parentheses in for $i (1,2,3) { ... }
 are not part of
expression syntax. They are part of the statement
 syntax, with the for statement wanting literal
parentheses.
 The synthetic parentheses that a qw expression acquired were only
 intended to be
treated as part of expression syntax.

Note that this does not change the behaviour of cases like:

 use POSIX qw(setlocale localeconv);
 our @EXPORT = qw(foo bar baz);

where parentheses were never required around the expression.

Perl version 5.16.1 documentation - perl5140delta

Page 14http://perldoc.perl.org

\N{BELL}
This is because Unicode is using that name for a different character.
 See Unicode Version 6.0 is now
supported (mostly) for more
 explanation.

?PATTERN?
?PATTERN? (without the initial m) has been deprecated and now produces
 a warning. This is to allow
future use of ? in new operators.
 The match-once functionality is still available as m?PATTERN?.

Tie functions on scalars holding typeglobs
Calling a tie function (tie, tied, untie) with a scalar argument
 acts on a filehandle if the scalar
happens to hold a typeglob.

This is a long-standing bug that will be removed in Perl 5.16, as
 there is currently no way to tie the
scalar itself when it holds
 a typeglob, and no way to untie a scalar that has had a typeglob
 assigned to
it.

Now there is a deprecation warning whenever a tie
 function is used on a handle without an explicit *.

User-defined case-mapping
This feature is being deprecated due to its many issues, as documented in "User-Defined Case
Mappings (for serious hackers only)" in perlunicode.
 This feature will be removed in Perl 5.16. Instead
use the CPAN module Unicode::Casing, which provides improved functionality.

Deprecated modules
The following module will be removed from the core distribution in a
 future release, and should be
installed from CPAN instead. Distributions
 on CPAN that require this should add it to their
prerequisites. The
 core version of these module now issues a deprecation warning.

If you ship a packaged version of Perl, either alone or as part of a
 larger system, then you should
carefully consider the repercussions of
 core module deprecations. You may want to consider shipping
your default
 build of Perl with a package for the deprecated module that
 installs into vendor or site
Perl library directories. This will
 inhibit the deprecation warnings.

Alternatively, you may want to consider patching lib/deprecate.pm
 to provide deprecation warnings
specific to your packaging system
 or distribution of Perl, consistent with how your packaging system

or distribution manages a staged transition from a release where the
 installation of a single package
provides the given functionality, to
 a later release where the system administrator needs to know to
install
 multiple packages to get that same functionality.

You can silence these deprecation warnings by installing the module
 in question from CPAN. To
install the latest version of it by role
 rather than by name, just install Task::Deprecations::5_14.

Devel::DProf

We strongly recommend that you install and use Devel::NYTProf instead
 of Devel::DProf, as
Devel::NYTProf offers significantly
 improved profiling and reporting.

Performance Enhancements
"Safe signals" optimisation

Signal dispatch has been moved from the runloop into control ops.
 This should give a few percent
speed increase, and eliminates nearly
 all the speed penalty caused by the introduction of "safe
signals"
 in 5.8.0. Signals should still be dispatched within the same
 statement as they were
previously. If this does not happen, or
 if you find it possible to create uninterruptible loops, this is a

bug, and reports are encouraged of how to recreate such issues.

Optimisation of shift() and pop() calls without arguments
Two fewer OPs are used for shift() and pop() calls with no argument (with
 implicit @_). This change
makes shift() 5% faster than shift @_
 on non-threaded perls, and 25% faster on threaded ones.

Perl version 5.16.1 documentation - perl5140delta

Page 15http://perldoc.perl.org

Optimisation of regexp engine string comparison work
The foldEQ_utf8 API function for case-insensitive comparison of strings (which
 is used heavily by
the regexp engine) was substantially refactored and
 optimised -- and its documentation much
improved as a free bonus.

Regular expression compilation speed-up
Compiling regular expressions has been made faster when upgrading
 the regex to utf8 is necessary
but this isn't known when the compilation begins.

String appending is 100 times faster
When doing a lot of string appending, perls built to use the system's malloc could end up allocating
a lot more memory than needed in a
 inefficient way.

sv_grow, the function used to allocate more memory if necessary
 when appending to a string, has
been taught to round up the memory
 it requests to a certain geometric progression, making it much
faster on
 certain platforms and configurations. On Win32, it's now about 100 times
 faster.

Eliminate PL_* accessor functions under ithreads
When MULTIPLICITY was first developed, and interpreter state moved into
 an interpreter struct,
thread- and interpreter-local PL_* variables
 were defined as macros that called accessor functions
(returning the
 address of the value) outside the Perl core. The intent was to allow
 members within the
interpreter struct to change size without breaking
 binary compatibility, so that bug fixes could be
merged to a maintenance
 branch that necessitated such a size change. This mechanism was
redundant
 and penalised well-behaved code. It has been removed.

Freeing weak references
When there are many weak references to an object, freeing that object
 can under some
circumstances take O(N*N) time to free, where N is the number of references. The circumstances in
which this can happen
 have been reduced [perl #75254]

Lexical array and hash assignments
An earlier optimisation to speed up my @array = ... and my %hash = ... assignments caused
a bug and was disabled in Perl 5.12.0.

Now we have found another way to speed up these assignments [perl #82110].

@_ uses less memory
Previously, @_ was allocated for every subroutine at compile time with
 enough space for four entries.
Now this allocation is done on demand when
 the subroutine is called [perl #72416].

Size optimisations to SV and HV structures
xhv_fill has been eliminated from struct xpvhv, saving 1 IV per hash and
 on some systems
will cause struct xpvhv to become cache-aligned. To avoid
 this memory saving causing a
slowdown elsewhere, boolean use of HvFILL
 now calls HvTOTALKEYS instead (which is equivalent),
so while the fill
 data when actually required are now calculated on demand, cases when
 this needs to
be done should be rare.

The order of structure elements in SV bodies has changed. Effectively,
 the NV slot has swapped
location with STASH and MAGIC. As all access to
 SV members is via macros, this should be
completely transparent. This
 change allows the space saving for PVHVs documented above, and may
reduce
 the memory allocation needed for PVIVs on some architectures.

XPV, XPVIV, and XPVNV now allocate only the parts of the SV body
 they actually use, saving some
space.

Scalars containing regular expressions now allocate only the part of the SV
 body they actually use,
saving some space.

Perl version 5.16.1 documentation - perl5140delta

Page 16http://perldoc.perl.org

Memory consumption improvements to Exporter
The @EXPORT_FAIL AV is no longer created unless needed, hence neither is
 the typeglob backing it.
This saves about 200 bytes for every package that
 uses Exporter but doesn't use this functionality.

Memory savings for weak references
For weak references, the common case of just a single weak reference
 per referent has been
optimised to reduce the storage required. In this
 case it saves the equivalent of one small Perl array
per referent.

%+ and %- use less memory
The bulk of the Tie::Hash::NamedCapture module used to be in the Perl
 core. It has now been
moved to an XS module to reduce overhead for
 programs that do not use %+ or %-.

Multiple small improvements to threads
The internal structures of threading now make fewer API calls and fewer
 allocations, resulting in
noticeably smaller object code. Additionally,
 many thread context checks have been deferred so
they're done only as needed (although this is only possible for non-debugging builds).

Adjacent pairs of nextstate opcodes are now optimized away
Previously, in code such as

 use constant DEBUG => 0;

 sub GAK {
 warn if DEBUG;
 print "stuff\n";
 }

the ops for warn if DEBUG would be folded to a null op (ex-const), but
 the nextstate op
would remain, resulting in a runtime op dispatch of nextstate, nextstate, etc.

The execution of a sequence of nextstate ops is indistinguishable from just
 the last nextstate op
so the peephole optimizer now eliminates the first of
 a pair of nextstate ops except when the first
carries a label, since labels
 must not be eliminated by the optimizer, and label usage isn't conclusively
known
 at compile time.

Modules and Pragmata
New Modules and Pragmata

CPAN::Meta::YAML 0.003 has been added as a dual-life module. It supports a
 subset of
YAML sufficient for reading and writing META.yml and MYMETA.yml files
 included with CPAN
distributions or generated by the module installation
 toolchain. It should not be used for any
other general YAML parsing or
 generation task.

CPAN::Meta version 2.110440 has been added as a dual-life module. It
 provides a standard
library to read, interpret and write CPAN distribution
 metadata files (like META.json and
META.yml) that describe a
 distribution, its contents, and the requirements for building it and

installing it. The latest CPAN distribution metadata specification is
 included as
CPAN::Meta::Spec and notes on changes in the specification
 over time are given in
CPAN::Meta::History.

HTTP::Tiny 0.012 has been added as a dual-life module. It is a very
 small, simple HTTP/1.1
client designed for simple GET requests and file
 mirroring. It has been added so that
CPAN.pm and CPANPLUS can
 "bootstrap" HTTP access to CPAN using pure Perl without
relying on external
 binaries like curl(1) or wget(1).

JSON::PP 2.27105 has been added as a dual-life module to allow CPAN
 clients to read

Perl version 5.16.1 documentation - perl5140delta

Page 17http://perldoc.perl.org

META.json files in CPAN distributions.

Module::Metadata 1.000004 has been added as a dual-life module. It gathers
 package and
POD information from Perl module files. It is a standalone module
 based on
Module::Build::ModuleInfo for use by other module installation
 toolchain components.
Module::Build::ModuleInfo has been deprecated in
 favor of this module instead.

Perl::OSType 1.002 has been added as a dual-life module. It maps Perl
 operating system
names (like "dragonfly" or "MSWin32") to more generic types
 with standardized names (like
"Unix" or "Windows"). It has been refactored
 out of Module::Build and ExtUtils::CBuilder and
consolidates such mappings into
 a single location for easier maintenance.

The following modules were added by the Unicode::Collate upgrade. See below for details.

Unicode::Collate::CJK::Big5

Unicode::Collate::CJK::GB2312

Unicode::Collate::CJK::JISX0208

Unicode::Collate::CJK::Korean

Unicode::Collate::CJK::Pinyin

Unicode::Collate::CJK::Stroke

Version::Requirements version 0.101020 has been added as a dual-life
 module. It provides a
standard library to model and manipulates module
 prerequisites and version constraints
defined in CPAN::Meta::Spec.

Updated Modules and Pragma
attributes has been upgraded from version 0.12 to 0.14.

Archive::Extract has been upgraded from version 0.38 to 0.48.

Updates since 0.38 include: a safe print method that guards Archive::Extract from changes to
$\; a fix to the tests when run in core
 Perl; support for TZ files; a modification for the lzma

logic to favour IO::Uncompress::Unlzma; and a fix
 for an issue with NetBSD-current and its
new unzip(1)
 executable.

Archive::Tar has been upgraded from version 1.54 to 1.76.

Important changes since 1.54 include the following:

Compatibility with busybox implementations of tar(1).

A fix so that write() and create_archive()
 close only filehandles they themselves
opened.

A bug was fixed regarding the exit code of extract_archive.

The ptar(1) utility has a new option to allow safe creation of
 tarballs without
world-writable files on Windows, allowing those
 archives to be uploaded to CPAN.

A new ptargrep(1) utility for using regular expressions against the contents of files in a
tar archive.

pax extended headers are now skipped.

Attribute::Handlers has been upgraded from version 0.87 to 0.89.

autodie has been upgraded from version 2.06_01 to 2.1001.

AutoLoader has been upgraded from version 5.70 to 5.71.

The B module has been upgraded from version 1.23 to 1.29.

Perl version 5.16.1 documentation - perl5140delta

Page 18http://perldoc.perl.org

It no longer crashes when taking apart a y/// containing characters
 outside the octet range
or compiled in a use utf8 scope.

The size of the shared object has been reduced by about 40%, with no
 reduction in
functionality.

B::Concise has been upgraded from version 0.78 to 0.83.

B::Concise marks rv2sv(), rv2av(), and rv2hv() ops with the new OPpDEREF flag as "DREFed".

It no longer produces mangled output with the -tree option
 [perl #80632].

B::Debug has been upgraded from version 1.12 to 1.16.

B::Deparse has been upgraded from version 0.96 to 1.03.

The deparsing of a nextstate op has changed when it has both a
 change of package
relative to the previous nextstate, or a change of %^H or other state and a label. The label was
previously emitted
 first, but is now emitted last (5.12.1).

The no 5.13.2 or similar form is now correctly handled by B::Deparse
 (5.12.3).

B::Deparse now properly handles the code that applies a conditional
 pattern match against
implicit $_ as it was fixed in [perl #20444].

Deparsing of our followed by a variable with funny characters
 (as permitted under the use
utf8 pragma) has also been fixed [perl #33752].

B::Lint has been upgraded from version 1.11_01 to 1.13.

base has been upgraded from version 2.15 to 2.16.

Benchmark has been upgraded from version 1.11 to 1.12.

bignum has been upgraded from version 0.23 to 0.27.

Carp has been upgraded from version 1.15 to 1.20.

Carp now detects incomplete caller()
 overrides and avoids using bogus @DB::args. To
provide backtraces,
 Carp relies on particular behaviour of the caller() builtin. Carp now detects
if other code has overridden this with an
 incomplete implementation, and modifies its
backtrace accordingly.
 Previously incomplete overrides would cause incorrect values in

backtraces (best case), or obscure fatal errors (worst case).

This fixes certain cases of "Bizarre copy of ARRAY" caused by modules
 overriding caller()
incorrectly (5.12.2).

It now also avoids using regular expressions that cause Perl to
 load its Unicode tables, so as
to avoid the "BEGIN not safe after
 errors" error that ensue if there has been a syntax error

[perl #82854].

CGI has been upgraded from version 3.48 to 3.52.

This provides the following security fixes: the MIME boundary in multipart_init() is now random
and the handling of newlines embedded in header values has been improved.

Compress::Raw::Bzip2 has been upgraded from version 2.024 to 2.033.

It has been updated to use bzip2(1) 1.0.6.

Compress::Raw::Zlib has been upgraded from version 2.024 to 2.033.

constant has been upgraded from version 1.20 to 1.21.

Unicode constants work once more. They have been broken since Perl 5.10.0
 [CPAN RT
#67525].

CPAN has been upgraded from version 1.94_56 to 1.9600.

Major highlights:

Perl version 5.16.1 documentation - perl5140delta

Page 19http://perldoc.perl.org

* much less configuration dialog hassle

* support for META/MYMETA.json

* support for local::lib

* support for HTTP::Tiny to reduce the dependency on FTP sites

* automatic mirror selection

* iron out all known bugs in configure_requires

* support for distributions compressed with bzip2(1)

* allow Foo/Bar.pm on the command line to mean Foo::Bar

CPANPLUS has been upgraded from version 0.90 to 0.9103.

A change to cpanp-run-perl
 resolves RT #55964
 and RT #57106, both
 of which related to
failures to install distributions that use Module::Install::DSL (5.12.2).

A dependency on Config was not recognised as a
 core module dependency. This has been
fixed.

CPANPLUS now includes support for META.json and MYMETA.json.

CPANPLUS::Dist::Build has been upgraded from version 0.46 to 0.54.

Data::Dumper has been upgraded from version 2.125 to 2.130_02.

The indentation used to be off when $Data::Dumper::Terse was set. This
 has been fixed
[perl #73604].

This upgrade also fixes a crash when using custom sort functions that might
 cause the stack
to change [perl #74170].

Dumpxs no longer crashes with globs returned by *$io_ref
 [perl #72332].

DB_File has been upgraded from version 1.820 to 1.821.

DBM_Filter has been upgraded from version 0.03 to 0.04.

Devel::DProf has been upgraded from version 20080331.00 to 20110228.00.

Merely loading Devel::DProf now no longer triggers profiling to start.
 Both use
Devel::DProf and perl -d:DProf ... behave as before and start
 the profiler.

NOTE: Devel::DProf is deprecated and will be removed from a future
 version of Perl. We
strongly recommend that you install and use Devel::NYTProf instead, as it offers significantly
improved
 profiling and reporting.

Devel::Peek has been upgraded from version 1.04 to 1.07.

Devel::SelfStubber has been upgraded from version 1.03 to 1.05.

diagnostics has been upgraded from version 1.19 to 1.22.

It now renders pod links slightly better, and has been taught to find
 descriptions for messages
that share their descriptions with other
 messages.

Digest::MD5 has been upgraded from version 2.39 to 2.51.

It is now safe to use this module in combination with threads.

Digest::SHA has been upgraded from version 5.47 to 5.61.

shasum now more closely mimics sha1sum(1)/md5sum(1).

addfile accepts all POSIX filenames.

New SHA-512/224 and SHA-512/256 transforms (ref. NIST Draft FIPS 180-4
 [February 2011])

DirHandle has been upgraded from version 1.03 to 1.04.

Perl version 5.16.1 documentation - perl5140delta

Page 20http://perldoc.perl.org

Dumpvalue has been upgraded from version 1.13 to 1.16.

DynaLoader has been upgraded from version 1.10 to 1.13.

It fixes a buffer overflow when passed a very long file name.

It no longer inherits from AutoLoader; hence it no longer
 produces weird error messages for
unsuccessful method calls on classes that
 inherit from DynaLoader [perl #84358].

Encode has been upgraded from version 2.39 to 2.42.

Now, all 66 Unicode non-characters are treated the same way U+FFFF has
 always been
treated: in cases when it was disallowed, all 66 are
 disallowed, and in cases where it warned,
all 66 warn.

Env has been upgraded from version 1.01 to 1.02.

Errno has been upgraded from version 1.11 to 1.13.

The implementation of Errno has been refactored to use about 55% less memory.

On some platforms with unusual header files, like Win32 gcc(1) using mingw64
 headers,
some constants that weren't actually error numbers have been exposed
 by Errno. This has
been fixed [perl #77416].

Exporter has been upgraded from version 5.64_01 to 5.64_03.

Exporter no longer overrides $SIG{__WARN__} [perl #74472]

ExtUtils::CBuilder has been upgraded from version 0.27 to 0.280203.

ExtUtils::Command has been upgraded from version 1.16 to 1.17.

ExtUtils::Constant has been upgraded from 0.22 to 0.23.

The AUTOLOAD helper code generated by ExtUtils::Constant::ProxySubs
 can now
croak() for missing constants, or generate a complete AUTOLOAD
 subroutine in XS, allowing
simplification of many modules that use it
 (Fcntl, File::Glob, GDBM_File, I18N::Langinfo,
POSIX, Socket).

ExtUtils::Constant::ProxySubs can now optionally push the names of all
 constants onto the
package's @EXPORT_OK.

ExtUtils::Install has been upgraded from version 1.55 to 1.56.

ExtUtils::MakeMaker has been upgraded from version 6.56 to 6.57_05.

ExtUtils::Manifest has been upgraded from version 1.57 to 1.58.

ExtUtils::ParseXS has been upgraded from version 2.21 to 2.2210.

Fcntl has been upgraded from version 1.06 to 1.11.

File::Basename has been upgraded from version 2.78 to 2.82.

File::CheckTree has been upgraded from version 4.4 to 4.41.

File::Copy has been upgraded from version 2.17 to 2.21.

File::DosGlob has been upgraded from version 1.01 to 1.04.

It allows patterns containing literal parentheses: they no longer need to
 be escaped. On
Windows, it no longer
 adds an extra ./ to file names
 returned when the pattern is a relative
glob with a drive specification,
 like C:*.pl [perl #71712].

File::Fetch has been upgraded from version 0.24 to 0.32.

HTTP::Lite is now supported for the "http" scheme.

Perl version 5.16.1 documentation - perl5140delta

Page 21http://perldoc.perl.org

The fetch(1) utility is supported on FreeBSD, NetBSD, and
 Dragonfly BSD for the http and
ftp schemes.

File::Find has been upgraded from version 1.15 to 1.19.

It improves handling of backslashes on Windows, so that paths like C:\dir\/file are no longer
generated [perl #71710].

File::Glob has been upgraded from version 1.07 to 1.12.

File::Spec has been upgraded from version 3.31 to 3.33.

Several portability fixes were made in File::Spec::VMS: a colon is now
 recognized as a
delimiter in native filespecs; caret-escaped delimiters are
 recognized for better handling of
extended filespecs; catpath() returns
 an empty directory rather than the current directory if the
input directory
 name is empty; and abs2rel() properly handles Unix-style input (5.12.2).

File::stat has been upgraded from 1.02 to 1.05.

The -x and -X file test operators now work correctly when run
 by the superuser.

Filter::Simple has been upgraded from version 0.84 to 0.86.

GDBM_File has been upgraded from 1.10 to 1.14.

This fixes a memory leak when DBM filters are used.

Hash::Util has been upgraded from 0.07 to 0.11.

Hash::Util no longer emits spurious "uninitialized" warnings when
 recursively locking hashes
that have undefined values [perl #74280].

Hash::Util::FieldHash has been upgraded from version 1.04 to 1.09.

I18N::Collate has been upgraded from version 1.01 to 1.02.

I18N::Langinfo has been upgraded from version 0.03 to 0.08.

langinfo() now defaults to using $_ if there is no argument given, just
 as the documentation
has always claimed.

I18N::LangTags has been upgraded from version 0.35 to 0.35_01.

if has been upgraded from version 0.05 to 0.0601.

IO has been upgraded from version 1.25_02 to 1.25_04.

This version of IO includes a new IO::Select, which now allows IO::Handle
 objects (and
objects in derived classes) to be removed from an IO::Select set
 even if the underlying file
descriptor is closed or invalid.

IPC::Cmd has been upgraded from version 0.54 to 0.70.

Resolves an issue with splitting Win32 command lines. An argument
 consisting of the single
character "0" used to be omitted (CPAN RT #62961).

IPC::Open3 has been upgraded from 1.05 to 1.09.

open3() now produces an error if the exec call fails, allowing this
 condition to be distinguished
from a child process that exited with a
 non-zero status [perl #72016].

The internal xclose() routine now knows how to handle file descriptors as
 documented, so
duplicating STDIN in a child process using its file
 descriptor now works [perl #76474].

IPC::SysV has been upgraded from version 2.01 to 2.03.

lib has been upgraded from version 0.62 to 0.63.

Locale::Maketext has been upgraded from version 1.14 to 1.19.

Perl version 5.16.1 documentation - perl5140delta

Page 22http://perldoc.perl.org

Locale::Maketext now supports external caches.

This upgrade also fixes an infinite loop in Locale::Maketext::Guts::_compile() when

working with tainted values (CPAN RT #40727).

->maketext calls now back up and restore $@ so error
 messages are not suppressed
(CPAN RT #34182).

Log::Message has been upgraded from version 0.02 to 0.04.

Log::Message::Simple has been upgraded from version 0.06 to 0.08.

Math::BigInt has been upgraded from version 1.89_01 to 1.994.

This fixes, among other things, incorrect results when computing binomial
 coefficients [perl
#77640].

It also prevents sqrt($int) from crashing under use bigrat.
 [perl #73534].

Math::BigInt::FastCalc has been upgraded from version 0.19 to 0.28.

Math::BigRat has been upgraded from version 0.24 to 0.26_02.

Memoize has been upgraded from version 1.01_03 to 1.02.

MIME::Base64 has been upgraded from 3.08 to 3.13.

Includes new functions to calculate the length of encoded and decoded
 base64 strings.

Now provides encode_base64url() and decode_base64url() functions to process
 the base64
scheme for "URL applications".

Module::Build has been upgraded from version 0.3603 to 0.3800.

A notable change is the deprecation of several modules. Module::Build::Version has been
deprecated and Module::Build now
 relies on the version pragma directly.
Module::Build::ModuleInfo has
 been deprecated in favor of a standalone copy called
Module::Metadata. Module::Build::YAML has been deprecated in favor of CPAN::Meta::YAML.

Module::Build now also generates META.json and MYMETA.json files
 in accordance with
version 2 of the CPAN distribution metadata specification, CPAN::Meta::Spec. The older
format META.yml and MYMETA.yml files are
 still generated.

Module::CoreList has been upgraded from version 2.29 to 2.47.

Besides listing the updated core modules of this release, it also stops listing
 the Filespec
module. That module never existed in core. The scripts
 generating Module::CoreList confused
it with VMS::Filespec, which actually
 is a core module as of Perl 5.8.7.

Module::Load has been upgraded from version 0.16 to 0.18.

Module::Load::Conditional has been upgraded from version 0.34 to 0.44.

The mro pragma has been upgraded from version 1.02 to 1.07.

NDBM_File has been upgraded from version 1.08 to 1.12.

This fixes a memory leak when DBM filters are used.

Net::Ping has been upgraded from version 2.36 to 2.38.

NEXT has been upgraded from version 0.64 to 0.65.

Object::Accessor has been upgraded from version 0.36 to 0.38.

ODBM_File has been upgraded from version 1.07 to 1.10.

This fixes a memory leak when DBM filters are used.

Perl version 5.16.1 documentation - perl5140delta

Page 23http://perldoc.perl.org

Opcode has been upgraded from version 1.15 to 1.18.

The overload pragma has been upgraded from 1.10 to 1.13.

overload::Method can now handle subroutines that are themselves blessed
 into
overloaded classes [perl #71998].

The documentation has greatly improved. See Documentation below.

Params::Check has been upgraded from version 0.26 to 0.28.

The parent pragma has been upgraded from version 0.223 to 0.225.

Parse::CPAN::Meta has been upgraded from version 1.40 to 1.4401.

The latest Parse::CPAN::Meta can now read YAML and JSON files using CPAN::Meta::YAML
and JSON::PP, which are now part of the Perl core.

PerlIO::encoding has been upgraded from version 0.12 to 0.14.

PerlIO::scalar has been upgraded from 0.07 to 0.11.

A read() after a seek() beyond the end of the string no longer thinks it
 has data to read [perl
#78716].

PerlIO::via has been upgraded from version 0.09 to 0.11.

Pod::Html has been upgraded from version 1.09 to 1.11.

Pod::LaTeX has been upgraded from version 0.58 to 0.59.

Pod::Perldoc has been upgraded from version 3.15_02 to 3.15_03.

Pod::Simple has been upgraded from version 3.13 to 3.16.

POSIX has been upgraded from 1.19 to 1.24.

It now includes constants for POSIX signal constants.

The re pragma has been upgraded from version 0.11 to 0.18.

The use re '/flags' subpragma is new.

The regmust() function used to crash when called on a regular expression
 belonging to a
pluggable engine. Now it croaks instead.

regmust() no longer leaks memory.

Safe has been upgraded from version 2.25 to 2.29.

Coderefs returned by reval() and rdo() are now wrapped via
 wrap_code_refs() (5.12.1).

This fixes a possible infinite loop when looking for coderefs.

It adds several version::vxs::* routines to the default share.

SDBM_File has been upgraded from version 1.06 to 1.09.

SelfLoader has been upgraded from 1.17 to 1.18.

It now works in taint mode [perl #72062].

The sigtrap pragma has been upgraded from version 1.04 to 1.05.

It no longer tries to modify read-only arguments when generating a
 backtrace [perl #72340].

Socket has been upgraded from version 1.87 to 1.94.

See Improved IPv6 support above.

Storable has been upgraded from version 2.22 to 2.27.

Perl version 5.16.1 documentation - perl5140delta

Page 24http://perldoc.perl.org

Includes performance improvement for overloaded classes.

This adds support for serialising code references that contain UTF-8 strings
 correctly. The
Storable minor version
 number changed as a result, meaning that Storable users who set
$Storable::accept_future_minor to a FALSE value
 will see errors (see "FORWARD
COMPATIBILITY" in Storable for more details).

Freezing no longer gets confused if the Perl stack gets reallocated
 during freezing [perl
#80074].

Sys::Hostname has been upgraded from version 1.11 to 1.16.

Term::ANSIColor has been upgraded from version 2.02 to 3.00.

Term::UI has been upgraded from version 0.20 to 0.26.

Test::Harness has been upgraded from version 3.17 to 3.23.

Test::Simple has been upgraded from version 0.94 to 0.98.

Among many other things, subtests without a plan or no_plan now have an
 implicit
done_testing() added to them.

Thread::Semaphore has been upgraded from version 2.09 to 2.12.

It provides two new methods that give more control over the decrementing of
 semaphores:
down_nb and down_force.

Thread::Queue has been upgraded from version 2.11 to 2.12.

The threads pragma has been upgraded from version 1.75 to 1.83.

The threads::shared pragma has been upgraded from version 1.32 to 1.37.

Tie::Hash has been upgraded from version 1.03 to 1.04.

Calling Tie::Hash->TIEHASH() used to loop forever. Now it croaks.

Tie::Hash::NamedCapture has been upgraded from version 0.06 to 0.08.

Tie::RefHash has been upgraded from version 1.38 to 1.39.

Time::HiRes has been upgraded from version 1.9719 to 1.9721_01.

Time::Local has been upgraded from version 1.1901_01 to 1.2000.

Time::Piece has been upgraded from version 1.15_01 to 1.20_01.

Unicode::Collate has been upgraded from version 0.52_01 to 0.73.

Unicode::Collate has been updated to use Unicode 6.0.0.

Unicode::Collate::Locale now supports a plethora of new locales: ar, be,
 bg, de__phonebook,
hu, hy, kk, mk, nso, om, tn, vi, hr, ig, ja, ko, ru, sq, se, sr, to, uk, zh, zh__big5han,
zh__gb2312han, zh__pinyin, and zh__stroke.

The following modules have been added:

Unicode::Collate::CJK::Big5 for zh__big5han which makes tailoring of CJK Unified
Ideographs in the order of CLDR's big5han ordering.

Unicode::Collate::CJK::GB2312 for zh__gb2312han which makes
 tailoring of CJK Unified
Ideographs in the order of CLDR's gb2312han ordering.

Unicode::Collate::CJK::JISX0208 which makes tailoring of 6355 kanji (CJK Unified
Ideographs) in the JIS X 0208 order.

Unicode::Collate::CJK::Korean which makes tailoring of CJK Unified Ideographs in the order
of CLDR's Korean ordering.

Perl version 5.16.1 documentation - perl5140delta

Page 25http://perldoc.perl.org

Unicode::Collate::CJK::Pinyin for zh__pinyin which makes
 tailoring of CJK Unified
Ideographs in the order of CLDR's pinyin ordering.

Unicode::Collate::CJK::Stroke for zh__stroke which makes
 tailoring of CJK Unified
Ideographs in the order of CLDR's stroke ordering.

This also sees the switch from using the pure-Perl version of this
 module to the XS version.

Unicode::Normalize has been upgraded from version 1.03 to 1.10.

Unicode::UCD has been upgraded from version 0.27 to 0.32.

A new function, Unicode::UCD::num(), has been added. This function
 returns the numeric
value of the string passed it or undef if the string
 in its entirety has no "safe" numeric value.
(For more detail, and for the
 definition of "safe", see "num()" in Unicode::UCD.)

This upgrade also includes several bug fixes:

charinfo()

It is now updated to Unicode Version 6.0.0 with Corrigendum #8, excepting
that, just as with Perl 5.14, the code point at U+1F514 has no name.

Hangul syllable code points have the correct names, and their
 decompositions
are always output without requiring Lingua::KO::Hangul::Util
 to be installed.

CJK (Chinese-Japanese-Korean) code points U+2A700 to U+2B734
 and
U+2B740 to U+2B81D are now properly handled.

Numeric values are now output for those CJK code points that have them.

Names output for code points with multiple aliases are now the
 corrected ones.

charscript()

This now correctly returns "Unknown" instead of undef for the script
 of a code point
that hasn't been assigned another one.

charblock()

This now correctly returns "No_Block" instead of undef for the block
 of a code point
that hasn't been assigned to another one.

The version pragma has been upgraded from 0.82 to 0.88.

Because of a bug, now fixed, the is_strict() and is_lax() functions did not
 work when exported
(5.12.1).

The warnings pragma has been upgraded from version 1.09 to 1.12.

Calling use warnings without arguments is now significantly more efficient.

The warnings::register pragma has been upgraded from version 1.01 to 1.02.

It is now possible to register warning categories other than the names of
 packages using
warnings::register. See perllexwarn(1) for more information.

XSLoader has been upgraded from version 0.10 to 0.13.

VMS::DCLsym has been upgraded from version 1.03 to 1.05.

Two bugs have been fixed [perl #84086]:

The symbol table name was lost when tying a hash, due to a thinko in TIEHASH. The result
was that all tied hashes interacted with the
 local symbol table.

Unless a symbol table name had been explicitly specified in the call
 to the constructor,
querying the special key :LOCAL failed to
 identify objects connected to the local symbol table.

The Win32 module has been upgraded from version 0.39 to 0.44.

Perl version 5.16.1 documentation - perl5140delta

Page 26http://perldoc.perl.org

This release has several new functions: Win32::GetSystemMetrics(),
 Win32::GetProductInfo(),
Win32::GetOSDisplayName().

The names returned by Win32::GetOSName() and Win32::GetOSDisplayName()
 have been
corrected.

XS::Typemap has been upgraded from version 0.03 to 0.05.

Removed Modules and Pragmata
As promised in Perl 5.12.0's release notes, the following modules have
 been removed from the core
distribution, and if needed should be installed
 from CPAN instead.

Class::ISA has been removed from the Perl core. Prior version was 0.36.

Pod::Plainer has been removed from the Perl core. Prior version was 1.02.

Switch has been removed from the Perl core. Prior version was 2.16.

The removal of Shell has been deferred until after 5.14, as the
 implementation of Shell shipped with
5.12.0 did not correctly issue the
 warning that it was to be removed from core.

Documentation
New Documentation
perlgpl

perlgpl has been updated to contain GPL version 1, as is included in the README distributed with
Perl (5.12.1).

Perl 5.12.x delta files

The perldelta files for Perl 5.12.1 to 5.12.3 have been added from the
 maintenance branch:
perl5121delta, perl5122delta, perl5123delta.

perlpodstyle

New style guide for POD documentation,
 split mostly from the NOTES section of the pod2man(1)
manpage.

perlsource, perlinterp, perlhacktut, and perlhacktips

See perlhack and perlrepository revamp, below.

Changes to Existing Documentation
perlmodlib is now complete

The perlmodlib manpage that came with Perl 5.12.0 was missing several
 modules due to a bug in the
script that generates the list. This has been
 fixed [perl #74332] (5.12.1).

Replace incorrect tr/// table in perlebcdic

perlebcdic contains a helpful table to use in tr/// to convert
 between EBCDIC and Latin1/ASCII.
The table was the inverse of the one
 it describes, though the code that used the table worked
correctly for
 the specific example given.

The table has been corrected and the sample code changed to correspond.

The table has also been changed to hex from octal, and the recipes in the
 pod have been altered to
print out leading zeros to make all values
 the same length.

Tricks for user-defined casing

perlunicode now contains an explanation of how to override, mangle
 and otherwise tweak the way
Perl handles upper-, lower- and other-case
 conversions on Unicode data, and how to provide scoped
changes to alter
 one's own code's behaviour without stomping on anybody else's.

Perl version 5.16.1 documentation - perl5140delta

Page 27http://perldoc.perl.org

INSTALL explicitly states that Perl requires a C89 compiler

This was already true, but it's now Officially Stated For The Record
 (5.12.2).

Explanation of \xHH and \oOOO escapes

perlop has been updated with more detailed explanation of these two
 character escapes.

-0NNN switch

In perlrun, the behaviour of the -0NNN switch for -0400 or higher
 has been clarified (5.12.2).

Maintenance policy

perlpolicy now contains the policy on what patches are acceptable for
 maintenance branches (5.12.1).

Deprecation policy

perlpolicy now contains the policy on compatibility and deprecation
 along with definitions of terms like
"deprecation" (5.12.2).

New descriptions in perldiag

The following existing diagnostics are now documented:

Ambiguous use of %c resolved as operator %c

Ambiguous use of %c{%s} resolved to %c%s

Ambiguous use of %c{%s[...]} resolved to %c%s[...]

Ambiguous use of %c{%s{...}} resolved to %c%s{...}

Ambiguous use of -%s resolved as -&%s()

Invalid strict version format (%s)

Invalid version format (%s)

Invalid version object

perlbook

perlbook has been expanded to cover many more popular books.

SvTRUE macro

The documentation for the SvTRUE macro in perlapi was simply wrong in stating that
 get-magic is not
processed. It has been corrected.

op manipulation functions

Several API functions that process optrees have been newly documented.

perlvar revamp

perlvar reorders the variables and groups them by topic. Each variable
 introduced after Perl 5.000
notes the first version in which it is available. perlvar also has a new section for deprecated variables
to
 note when they were removed.

Array and hash slices in scalar context

These are now documented in perldata.

use locale and formats

perlform and perllocale have been corrected to state that use locale affects formats.

Perl version 5.16.1 documentation - perl5140delta

Page 28http://perldoc.perl.org

overload

overload's documentation has practically undergone a rewrite. It
 is now much more straightforward
and clear.

perlhack and perlrepository revamp

The perlhack document is now much shorter, and focuses on the Perl 5
 development process and
submitting patches to Perl. The technical content
 has been moved to several new documents,
perlsource, perlinterp, perlhacktut, and perlhacktips. This technical content has been only lightly
edited.

The perlrepository document has been renamed to perlgit. This new
 document is just a how-to on
using git with the Perl source code.
 Any other content that used to be in perlrepository has been
moved
 to perlhack.

Time::Piece examples

Examples in perlfaq4 have been updated to show the use of Time::Piece.

Diagnostics
The following additions or changes have been made to diagnostic output,
 including warnings and fatal
error messages. For the complete list of
 diagnostic messages, see perldiag.

New Diagnostics
New Errors

Closure prototype called

This error occurs when a subroutine reference passed to an attribute
 handler is called, if the
subroutine is a closure [perl #68560].

Insecure user-defined property %s

Perl detected tainted data when trying to compile a regular
 expression that contains a call to a
user-defined character property
 function, meaning \p{IsFoo} or \p{InFoo}.
 See
"User-Defined Character Properties" in perlunicode and perlsec.

panic: gp_free failed to free glob pointer - something is repeatedly re-creating entries

This new error is triggered if a destructor called on an object in a
 typeglob that is being freed
creates a new typeglob entry containing an
 object with a destructor that creates a new entry
containing an object etc.

Parsing code internal error (%s)

This new fatal error is produced when parsing
 code supplied by an extension violates the

parser's API in a detectable way.

refcnt: fd %d%s

This new error only occurs if a internal consistency check fails when a
 pipe is about to be
closed.

Regexp modifier "/%c" may not appear twice

The regular expression pattern has one of the
 mutually exclusive modifiers repeated.

Regexp modifiers "/%c" and "/%c" are mutually exclusive

The regular expression pattern has more than one of the mutually
 exclusive modifiers.

Using !~ with %s doesn't make sense

This error occurs when !~ is used with s///r or y///r.

Perl version 5.16.1 documentation - perl5140delta

Page 29http://perldoc.perl.org

New Warnings

"\b{" is deprecated; use "\b\{" instead

"\B{" is deprecated; use "\B\{" instead

Use of an unescaped "{" immediately following a \b or \B is now
 deprecated in order to
reserve its use for Perl itself in a future release.

Operation "%s" returns its argument for ...

Performing an operation requiring Unicode semantics (such as case-folding)
 on a Unicode
surrogate or a non-Unicode character now triggers this
 warning.

Use of qw(...) as parentheses is deprecated

See Use of qw(...) as parentheses, above, for details.

Changes to Existing Diagnostics
The "Variable $foo is not imported" warning that precedes a strict 'vars' error has now
been assigned the "misc" category, so that no warnings will suppress it [perl #73712].

warn() and die() now produce "Wide character" warnings when fed a
 character outside the
byte range if STDERR is a byte-sized handle.

The "Layer does not match this perl" error message has been replaced with
 these more
helpful messages [perl #73754]:

PerlIO layer function table size (%d) does not match size expected by this
 perl (%d)

PerlIO layer instance size (%d) does not match size expected by this perl
 (%d)

The "Found = in conditional" warning that is emitted when a constant is
 assigned to a variable
in a condition is now withheld if the constant is
 actually a subroutine or one generated by use
 constant, since the value
 of the constant may not be known at the time the program is
written
 [perl #77762].

Previously, if none of the gethostbyaddr(), gethostbyname() and
 gethostent() functions were
implemented on a given platform, they would
 all die with the message "Unsupported socket
function 'gethostent' called",
 with analogous messages for getnet*() and getserv*(). This has
been
 corrected.

The warning message about unrecognized regular expression escapes passed
 through has
been changed to include any literal "{" following the
 two-character escape. For example, "\q{"
is now emitted instead of "\q".

Utility Changes
perlbug(1)

perlbug now looks in the EMAIL environment variable for a return address
 if the REPLY-TO
and REPLYTO variables are empty.

perlbug did not previously generate a "From:" header, potentially
 resulting in dropped mail; it
now includes that header.

The user's address is now used as the Return-Path.

Many systems these days don't have a valid Internet domain name, and
 perlbug@perl.org
does not accept email with a return-path that does
 not resolve. So the user's address is now
passed to sendmail so it's
 less likely to get stuck in a mail queue somewhere [perl #82996].

perlbug now always gives the reporter a chance to change the email
 address it guesses for
them (5.12.2).

perlbug should no longer warn about uninitialized values when using the -d
 and -v options

Perl version 5.16.1 documentation - perl5140delta

Page 30http://perldoc.perl.org

(5.12.2).perl5db.pl

The remote terminal works after forking and spawns new sessions, one
 per forked process.

ptargrep

ptargrep is a new utility to apply pattern matching to the contents of
 files in a tar archive. It
comes with Archive::Tar.

Configuration and Compilation
See also Naming fixes in Policy_sh.SH may invalidate Policy.sh,
 above.

CCINCDIR and CCLIBDIR for the mingw64 cross-compiler are now correctly
 under
$(CCHOME)\mingw\include and \lib rather than immediately below $(CCHOME).

This means the "incpath", "libpth", "ldflags", "lddlflags" and
 "ldflags_nolargefiles" values in
Config.pm and Config_heavy.pl are now
 set correctly.

make test.valgrind has been adjusted to account for cpan/dist/ext
 separation.

On compilers that support it, -Wwrite-strings is now added to cflags by
 default.

The Encode module can now (once again) be included in a static Perl
 build. The special-case
handling for this situation got broken in Perl
 5.11.0, and has now been repaired.

The previous default size of a PerlIO buffer (4096 bytes) has been increased
 to the larger of
8192 bytes and your local BUFSIZ. Benchmarks show that doubling
 this decade-old default
increases read and write performance by around
 25% to 50% when using the default layers of
perlio on top of unix. To choose
 a non-default size, such as to get back the old value or to
obtain an even
 larger value, configure with:

 ./Configure -Accflags=-DPERLIOBUF_DEFAULT_BUFSIZ=N

where N is the desired size in bytes; it should probably be a multiple of
 your page size.

An "incompatible operand types" error in ternary expressions when building
 with clang has
been fixed (5.12.2).

Perl now skips setuid File::Copy tests on partitions it detects mounted
 as nosuid (5.12.2).

Platform Support
New Platforms

AIX

Perl now builds on AIX 4.2 (5.12.1).

Discontinued Platforms
Apollo DomainOS

The last vestiges of support for this platform have been excised from
 the Perl distribution. It
was officially discontinued in version 5.12.0.
 It had not worked for years before that.

MacOS Classic

The last vestiges of support for this platform have been excised from the
 Perl distribution. It
was officially discontinued in an earlier version.

Platform-Specific Notes
AIX

README.aix has been updated with information about the XL C/C++ V11 compiler
 suite
(5.12.2).

Perl version 5.16.1 documentation - perl5140delta

Page 31http://perldoc.perl.org

ARM

The d_u32align configuration probe on ARM has been fixed (5.12.2).

Cygwin

MakeMaker has been updated to build manpages on cygwin.

Improved rebase behaviour

If a DLL is updated on cygwin the old imagebase address is reused.
 This solves most rebase
errors, especially when updating on core DLL's.
 See
http://www.tishler.net/jason/software/rebase/rebase-2.4.2.README for more information.

Support for the standard cygwin dll prefix (needed for FFIs)

Updated build hints file

FreeBSD 7

FreeBSD 7 no longer contains /usr/bin/objformat. At build time,
 Perl now skips the objformat
check for versions 7 and higher and
 assumes ELF (5.12.1).

HP-UX

Perl now allows -Duse64bitint without promoting to use64bitall on HP-UX
 (5.12.1).

IRIX

Conversion of strings to floating-point numbers is now more accurate on
 IRIX systems [perl
#32380].

Mac OS X

Early versions of Mac OS X (Darwin) had buggy implementations of the
 setregid(), setreuid(),
setrgid(,) and setruid() functions, so Perl
 would pretend they did not exist.

These functions are now recognised on Mac OS 10.5 (Leopard; Darwin 9) and
 higher, as they
have been fixed [perl #72990].

MirBSD

Previously if you built Perl with a shared libperl.so on MirBSD (the
 default config), it would
work up to the installation; however, once
 installed, it would be unable to find libperl. Path
handling is now
 treated as in the other BSD dialects.

NetBSD

The NetBSD hints file has been changed to make the system malloc the
 default.

OpenBSD

OpenBSD > 3.7 has a new malloc implementation which is mmap-based,
 and as such can
release memory back to the OS; however, Perl's use of
 this malloc causes a substantial
slowdown, so we now default to using
 Perl's malloc instead [perl #75742].

OpenVOS

Perl now builds again with OpenVOS (formerly known as Stratus VOS)
 [perl #78132] (5.12.3).

Solaris

DTrace is now supported on Solaris. There used to be build failures, but
 these have been
fixed [perl #73630] (5.12.3).

VMS

Extension building on older (pre 7.3-2) VMS systems was broken because
 configure.com hit
the DCL symbol length limit of 1K. We now work within
 this limit when assembling the list of
extensions in the core build (5.12.1).

Perl version 5.16.1 documentation - perl5140delta

Page 32http://perldoc.perl.org

We fixed configuring and building Perl with -Uuseperlio (5.12.1).

PerlIOUnix_open now honours the default permissions on VMS.

When perlio became the default and unix became the default bottom layer,
 the most
common path for creating files from Perl became PerlIOUnix_open,
 which has always
explicitly used 0666 as the permission mask. This prevents
 inheriting permissions from RMS
defaults and ACLs, so to avoid that problem,
 we now pass 0777 to open(). In the VMS CRTL,
0777 has a special
 meaning over and above intersecting with the current umask; specifically,
it
 allows Unix syscalls to preserve native default permissions (5.12.3).

The shortening of symbols longer than 31 characters in the core C sources
 and in extensions
is now by default done by the C compiler rather than by
 xsubpp (which could only do so for
generated symbols in XS code). You can
 reenable xsubpp's symbol shortening by configuring
with -Uuseshortenedsymbols,
 but you'll have some work to do to get the core sources to
compile.

Record-oriented files (record format variable or variable with fixed control)
 opened for write by
the perlio layer will now be line-buffered to prevent the
 introduction of spurious line breaks
whenever the perlio buffer fills up.

git_version.h is now installed on VMS. This was an oversight in v5.12.0 which
 caused some
extensions to fail to build (5.12.2).

Several memory leaks in stat() have been fixed (5.12.2).

A memory leak in Perl_rename() due to a double allocation has been
 fixed (5.12.2).

A memory leak in vms_fid_to_name() (used by realpath() and
 realname()> has been fixed
(5.12.2).

Windows

See also fork() emulation will not wait for signalled children and Perl source code is read in text mode
on Windows, above.

Fixed build process for SDK2003SP1 compilers.

Compilation with Visual Studio 2010 is now supported.

When using old 32-bit compilers, the define _USE_32BIT_TIME_T is now
 set in
$Config{ccflags}. This improves portability when compiling
 XS extensions using new
compilers, but for a Perl compiled with old 32-bit
 compilers.

$Config{gccversion} is now set correctly when Perl is built using the
 mingw64 compiler
from http://mingw64.org [perl #73754].

When building Perl with the mingw64 x64 cross-compiler incpath, libpth, ldflags,
lddlflags and ldflags_nolargefiles values
 in Config.pm and Config_heavy.pl were
not previously being set
 correctly because, with that compiler, the include and lib directories

are not immediately below $(CCHOME) (5.12.2).

The build process proceeds more smoothly with mingw and dmake when C:\MSYS\bin is in
the PATH, due to a Cwd fix.

Support for building with Visual C++ 2010 is now underway, but is not yet
 complete. See
README.win32 or perlwin32 for more details.

The option to use an externally-supplied crypt(), or to build with no
 crypt() at all, has been
removed. Perl supplies its own crypt()
 implementation for Windows, and the political situation
that required
 this part of the distribution to sometimes be omitted is long gone.

Perl version 5.16.1 documentation - perl5140delta

Page 33http://perldoc.perl.org

Internal Changes
New APIs
CLONE_PARAMS structure added to ease correct thread creation

Modules that create threads should now create CLONE_PARAMS structures
 by calling the new function
Perl_clone_params_new(), and free them with
 Perl_clone_params_del(). This will ensure
compatibility with any future
 changes to the internals of the CLONE_PARAMS structure layout, and that

it is correctly allocated and initialised.

New parsing functions

Several functions have been added for parsing Perl statements and
 expressions. These functions are
meant to be used by XS code invoked
 during Perl parsing, in a recursive-descent manner, to allow
modules to
 augment the standard Perl syntax.

parse_stmtseq()
 parses a sequence of statements, up to closing brace or EOF.

parse_fullstmt()
 parses a complete Perl statement, including optional label.

parse_barestmt()
 parses a statement without a label.

parse_block()
 parses a code block.

parse_label()
 parses a statement label, separate from statements.

parse_fullexpr(), parse_listexpr(), parse_termexpr(), and
parse_arithexpr()
 parse expressions at various precedence levels.

Hints hash API

A new C API for introspecting the hinthash %^H at runtime has been
 added. See cop_hints_2hv,
cop_hints_fetchpvn, cop_hints_fetchpvs, cop_hints_fetchsv, and hv_copy_hints_hv
in perlapi for details.

A new, experimental API has been added for accessing the internal
 structure that Perl uses for %^H.
See the functions beginning with cophh_ in perlapi.

C interface to caller()

The caller_cx function has been added as an XSUB-writer's equivalent of
 caller(). See perlapi for
details.

Custom per-subroutine check hooks

XS code in an extension module can now annotate a subroutine (whether
 implemented in XS or in
Perl) so that nominated XS code will be called
 at compile time (specifically as part of op checking) to
change the op
 tree of that subroutine. The compile-time check function (supplied by
 the extension
module) can implement argument processing that can't be
 expressed as a prototype, generate
customised compile-time warnings,
 perform constant folding for a pure function, inline a subroutine

consisting of sufficiently simple ops, replace the whole call with a
 custom op, and so on. This was
previously all possible by hooking the entersub op checker, but the new mechanism makes it easy
to tie the
 hook to a specific subroutine. See "cv_set_call_checker" in perlapi.

To help in writing custom check hooks, several subtasks within standard entersub op checking have
been separated out and exposed in the API.

Improved support for custom OPs

Custom ops can now be registered with the new custom_op_register C
 function and the XOP
structure. This will make it easier to add new
 properties of custom ops in the future. Two new
properties have been added
 already, xop_class and xop_peep.

xop_class is one of the OA_*OP constants. It allows B and other
 introspection mechanisms to work
with custom ops
 that aren't BASEOPs. xop_peep is a pointer to
 a function that will be called for ops

Perl version 5.16.1 documentation - perl5140delta

Page 34http://perldoc.perl.org

of this
 type from Perl_rpeep.

See "Custom Operators" in perlguts and "Custom Operators" in perlapi for more
 detail.

The old PL_custom_op_names/PL_custom_op_descs interface is still
 supported but discouraged.

Scope hooks

It is now possible for XS code to hook into Perl's lexical scope
 mechanism at compile time, using the
new Perl_blockhook_register
 function. See "Compile-time scope hooks" in perlguts.

The recursive part of the peephole optimizer is now hookable

In addition to PL_peepp, for hooking into the toplevel peephole optimizer, a PL_rpeepp is now
available to hook into the optimizer recursing into
 side-chains of the optree.

New non-magical variants of existing functions

The following functions/macros have been added to the API. The *_nomg
 macros are equivalent to
their non-_nomg variants, except that they ignore
 get-magic. Those ending in _flags allow one to
specify whether
 get-magic is processed.

 sv_2bool_flags
 SvTRUE_nomg
 sv_2nv_flags
 SvNV_nomg
 sv_cmp_flags
 sv_cmp_locale_flags
 sv_eq_flags
 sv_collxfrm_flags

In some of these cases, the non-_flags functions have
 been replaced with wrappers around the new
functions.

pv/pvs/sv versions of existing functions

Many functions ending with pvn now have equivalent pv/pvs/sv versions.

List op-building functions

List op-building functions have been added to the
 API. See op_append_elem, op_append_list, and
op_prepend_elem in perlapi.

LINKLIST

The LINKLIST macro, part of op building that
 constructs the execution-order op chain, has been
added to the API.

Localisation functions

The save_freeop, save_op, save_pushi32ptr and save_pushptrptr
 functions have been
added to the API.

Stash names

A stash can now have a list of effective names in addition to its usual
 name. The first effective name
can be accessed via the HvENAME macro,
 which is now the recommended name to use in MRO
linearisations (HvNAME
 being a fallback if there is no HvENAME).

These names are added and deleted via hv_ename_add and hv_ename_delete. These two
functions are not part of the API.

New functions for finding and removing magic

The mg_findext() and sv_unmagicext()
 functions have been added to the API.
 They allow
extension authors to find and remove magic attached to
 scalars based on both the magic type and the

Perl version 5.16.1 documentation - perl5140delta

Page 35http://perldoc.perl.org

magic virtual table, similar to how
 sv_magicext() attaches magic of a certain type and with a given
virtual table
 to a scalar. This eliminates the need for extensions to walk the list of MAGIC pointers of
an SV to find the magic that belongs to them.

find_rundefsv

This function returns the SV representing $_, whether it's lexical
 or dynamic.

Perl_croak_no_modify

Perl_croak_no_modify() is short-hand for Perl_croak("%s", PL_no_modify).

PERL_STATIC_INLINE define

The PERL_STATIC_INLINE define has been added to provide the best-guess
 incantation to use for
static inline functions, if the C compiler supports
 C99-style static inline. If it doesn't, it'll give a plain
static.

HAS_STATIC_INLINE can be used to check if the compiler actually supports
 inline functions.

New pv_escape option for hexadecimal escapes

A new option, PERL_PV_ESCAPE_NONASCII, has been added to pv_escape to
 dump all characters
above ASCII in hexadecimal. Before, one could get all
 characters as hexadecimal or the Latin1
non-ASCII as octal.

lex_start

lex_start has been added to the API, but is considered experimental.

op_scope() and op_lvalue()

The op_scope() and op_lvalue() functions have been added to the API,
 but are considered
experimental.

C API Changes
PERL_POLLUTE has been removed

The option to define PERL_POLLUTE to expose older 5.005 symbols for
 backwards compatibility has
been removed. Its use was always discouraged,
 and MakeMaker contains a more specific escape
hatch:

 perl Makefile.PL POLLUTE=1

This can be used for modules that have not been upgraded to 5.6 naming
 conventions (and really
should be completely obsolete by now).

Check API compatibility when loading XS modules

When Perl's API changes in incompatible ways (which usually happens between
 major releases), XS
modules compiled for previous versions of Perl will no
 longer work. They need to be recompiled
against the new Perl.

The XS_APIVERSION_BOOTCHECK macro has been added to ensure that modules
 are recompiled
and to prevent users from accidentally loading modules
 compiled for old perls into newer perls. That
macro, which is called when
 loading every newly compiled extension, compares the API version of
the
 running perl with the version a module has been compiled for and raises an
 exception if they don't
match.

Perl_fetch_cop_label

The first argument of the C API function Perl_fetch_cop_label has changed
 from struct
refcounted_he * to COP *, to insulate the user from
 implementation details.

This API function was marked as "may change", and likely isn't in use outside
 the core. (Neither an
unpacked CPAN nor Google's codesearch finds any other
 references to it.)

Perl version 5.16.1 documentation - perl5140delta

Page 36http://perldoc.perl.org

GvCV() and GvGP() are no longer lvalues

The new GvCV_set() and GvGP_set() macros are now provided to replace
 assignment to those two
macros.

This allows a future commit to eliminate some backref magic between GV
 and CVs, which will require
complete control over assignment to the gp_cv slot.

CvGV() is no longer an lvalue

Under some circumstances, the CvGV() field of a CV is now
 reference-counted. To ensure consistent
behaviour, direct assignment to
 it, for example CvGV(cv) = gv is now a compile-time error. A new
macro, CvGV_set(cv,gv) has been introduced to run this operation
 safely. Note that modification of
this field is not part of the public
 API, regardless of this new macro (and despite its being listed in this
section).

CvSTASH() is no longer an lvalue

The CvSTASH() macro can now only be used as an rvalue. CvSTASH_set()
 has been added to
replace assignment to CvSTASH(). This is to ensure
 that backreferences are handled properly. These
macros are not part of the
 API.

Calling conventions for newFOROP and newWHILEOP

The way the parser handles labels has been cleaned up and refactored. As a
 result, the newFOROP()
constructor function no longer takes a parameter
 stating what label is to go in the state op.

The newWHILEOP() and newFOROP() functions no longer accept a line
 number as a parameter.

Flags passed to uvuni_to_utf8_flags and utf8n_to_uvuni

Some of the flags parameters to uvuni_to_utf8_flags() and
 utf8n_to_uvuni() have changed. This is a
result of Perl's now allowing
 internal storage and manipulation of code points that are problematic
 in
some situations. Hence, the default actions for these functions has
 been complemented to allow
these code points. The new flags are
 documented in perlapi. Code that requires the problematic code

points to be rejected needs to change to use the new flags. Some flag
 names are retained for
backward source compatibility, though they do
 nothing, as they are now the default. However the
flags UNICODE_ALLOW_FDD0, UNICODE_ALLOW_FFFF, UNICODE_ILLEGAL, and
UNICODE_IS_ILLEGAL have been removed, as they stem from a
 fundamentally broken model of
how the Unicode non-character code points
 should be handled, which is now described in
"Non-character code points" in perlunicode. See also the Unicode section
 under Selected Bug Fixes.

Deprecated C APIs
Perl_ptr_table_clear

Perl_ptr_table_clear is no longer part of Perl's public API. Calling it
 now generates a
deprecation warning, and it will be removed in a future
 release.

sv_compile_2op

The sv_compile_2op() API function is now deprecated. Searches suggest
 that nothing on
CPAN is using it, so this should have zero impact.

It attempted to provide an API to compile code down to an optree, but failed
 to bind correctly
to lexicals in the enclosing scope. It's not possible to
 fix this problem within the constraints of
its parameters and return value.

find_rundefsvoffset

The find_rundefsvoffset function has been deprecated. It appeared that
 its design was
insufficient for reliably getting the lexical $_ at
 run-time.

Use the new find_rundefsv function or the UNDERBAR macro
 instead. They directly return
the right SV
 representing $_, whether it's
 lexical or dynamic.

CALL_FPTR and CPERLscope

Perl version 5.16.1 documentation - perl5140delta

Page 37http://perldoc.perl.org

Those are left from an old implementation of MULTIPLICITY using C++ objects,
 which was
removed in Perl 5.8. Nowadays these macros do exactly nothing, so
 they shouldn't be used
anymore.

For compatibility, they are still defined for external XS code. Only
 extensions defining
PERL_CORE must be updated now.

Other Internal Changes
Stack unwinding

The protocol for unwinding the C stack at the last stage of a die
 has changed how it identifies the
target stack frame. This now uses
 a separate variable PL_restartjmpenv, where previously it
relied on
 the blk_eval.cur_top_env pointer in the eval context frame that
 has nominally just
been discarded. This change means that code running
 during various stages of Perl-level unwinding
no longer needs to take
 care to avoid destroying the ghost frame.

Scope stack entries

The format of entries on the scope stack has been changed, resulting in a
 reduction of memory usage
of about 10%. In particular, the memory used by
 the scope stack to record each active lexical variable
has been halved.

Memory allocation for pointer tables

Memory allocation for pointer tables has been changed. Previously Perl_ptr_table_store
allocated memory from the same arena system as SV bodies and HEs, with freed memory remaining
bound to those arenas
 until interpreter exit. Now it allocates memory from arenas private to the

specific pointer table, and that memory is returned to the system when Perl_ptr_table_free is
called. Additionally, allocation and release are
 both less CPU intensive.

UNDERBAR

The UNDERBAR macro now calls find_rundefsv. dUNDERBAR is now a
 noop but should still be
used to ensure past and future compatibility.

String comparison routines renamed

The ibcmp_* functions have been renamed and are now called foldEQ, foldEQ_locale, and
foldEQ_utf8. The old names are still available as
 macros.

chop and chomp implementations merged

The opcode bodies for chop and chomp and for schop and schomp
 have been merged. The
implementation functions Perl_do_chop() and
 Perl_do_chomp(), never part of the public API, have
been merged and
 moved to a static function in pp.c. This shrinks the Perl binary
 slightly, and should
not affect any code outside the core (unless it is
 relying on the order of side-effects when chomp is
passed a list of
 values).

Selected Bug Fixes
I/O

Perl no longer produces this warning:

 $ perl -we 'open(my $f, ">", \my $x); binmode($f, "scalar")'
 Use of uninitialized value in binmode at -e line 1.

Opening a glob reference via open($fh, ">", *glob) no longer
 causes the glob to be
corrupted when the filehandle is printed to. This would
 cause Perl to crash whenever the
glob's contents were accessed
 [perl #77492].

PerlIO no longer crashes when called recursively, such as from a signal
 handler. Now it just
leaks memory [perl #75556].

Most I/O functions were not warning for unopened handles unless the
 "closed" and

Perl version 5.16.1 documentation - perl5140delta

Page 38http://perldoc.perl.org

"unopened" warnings categories were both enabled. Now only use warnings 'unopened'
is necessary to trigger these warnings, as
 had always been the intention.

There have been several fixes to PerlIO layers:

When binmode(FH, ":crlf") pushes the :crlf layer on top of the stack,
 it no longer
enables crlf layers lower in the stack so as to avoid
 unexpected results [perl #38456].

Opening a file in :raw mode now does what it advertises to do (first
 open the file, then
binmode it), instead of simply leaving off the top
 layer [perl #80764].

The three layers :pop, :utf8, and :bytes didn't allow stacking when
 opening a file. For
example
 this:

 open(FH, ">:pop:perlio", "some.file") or die $!;

would throw an "Invalid argument" error. This has been fixed in this
 release [perl #82484].

Regular Expression Bug Fixes
The regular expression engine no longer loops when matching "\N{LATIN SMALL
LIGATURE FF}" =~ /f+/i and similar expressions
 [perl #72998] (5.12.1).

The trie runtime code should no longer allocate massive amounts of memory,
 fixing #74484.

Syntax errors in (?{...}) blocks no longer cause panic messages
 [perl #2353].

A pattern like (?:(o){2})? no longer causes a "panic" error
 [perl #39233].

A fatal error in regular expressions containing (.*?) when processing
 UTF-8 data has been
fixed [perl #75680] (5.12.2).

An erroneous regular expression engine optimisation that caused regex verbs like *COMMIT
sometimes to be ignored has been removed.

The regular expression bracketed character class [\8\9] was effectively the
 same as
[89\000], incorrectly matching a NULL character. It also gave
 incorrect warnings that the 8
and 9 were ignored. Now [\8\9] is the
 same as [89] and gives legitimate warnings that \8
and \9 are
 unrecognized escape sequences, passed-through.

A regular expression match in the right-hand side of a global substitution
 (s///g) that is in the
same scope will no longer cause match variables
 to have the wrong values on subsequent
iterations. This can happen when an
 array or hash subscript is interpolated in the right-hand
side, as in s|(.)|@a{ print($1), /./ }|g [perl #19078].

Several cases in which characters in the Latin-1 non-ASCII range (0x80 to
 0xFF) used not to
match themselves, or used to match both a character class
 and its complement, have been
fixed. For instance, U+00E2 could match both \w and \W [perl #78464] [perl #18281] [perl
#60156].

Matching a Unicode character against an alternation containing characters
 that happened to
match continuation bytes in the former's UTF8
 representation (like qq{\x{30ab}} =~
/\xab|\xa9/) would cause erroneous
 warnings [perl #70998].

The trie optimisation was not taking empty groups into account, preventing
 "foo" from
matching /\A(?:(?:)foo|bar|zot)\z/ [perl #78356].

A pattern containing a + inside a lookahead would sometimes cause an
 incorrect match failure
in a global match (for example, /(?=(\S+))/g)
 [perl #68564].

A regular expression optimisation would sometimes cause a match with a {n,m} quantifier to
fail when it should have matched [perl #79152].

Case-insensitive matching in regular expressions compiled under use locale now works

Perl version 5.16.1 documentation - perl5140delta

Page 39http://perldoc.perl.org

much more sanely when the pattern or target
 string is internally encoded in UTF8. Previously,
under these
 conditions the localeness was completely lost. Now, code points
 above 255 are
treated as Unicode, but code points between 0 and 255
 are treated using the current locale
rules, regardless of whether
 the pattern or the string is encoded in UTF8. The few
case-insensitive
 matches that cross the 255/256 boundary are not allowed. For
 example,
0xFF does not caselessly match the character at 0x178,
 LATIN CAPITAL LETTER Y WITH
DIAERESIS, because 0xFF may not be LATIN
 SMALL LETTER Y in the current locale, and
Perl has no way of knowing
 if that character even exists in the locale, much less what code

point it is.

The (?|...) regular expression construct no longer crashes if the final
 branch has more sets
of capturing parentheses than any other branch. This
 was fixed in Perl 5.10.1 for the case of a
single branch, but that fix did
 not take multiple branches into account [perl #84746].

A bug has been fixed in the implementation of {...} quantifiers in
 regular expressions that
prevented the code block in /((\w+)(?{ print $2 })){2}/ from seeing the $2
sometimes
 [perl #84294].

Syntax/Parsing Bugs
when (scalar) {...} no longer crashes, but produces a syntax error
 [perl #74114]
(5.12.1).

A label right before a string eval (foo: eval $string) no longer causes
 the label to be
associated also with the first statement inside the eval
 [perl #74290] (5.12.1).

The no 5.13.2 form of no no longer tries to turn on features or
 pragmata (like strict) [perl
#70075] (5.12.2).

BEGIN {require 5.12.0} now behaves as documented, rather than behaving
 identically
to use 5.12.0. Previously, require in a BEGIN block
 was erroneously executing the use
feature ':5.12.0' and use strict behaviour, which only use was documented to

provide [perl #69050].

A regression introduced in Perl 5.12.0, making my $x = 3; $x = length(undef) result
in $x set to 3 has been
 fixed. $x will now be undef [perl #85508] (5.12.2).

When strict "refs" mode is off, %{...} in rvalue context returns undef if its argument is
undefined. An optimisation introduced in Perl
 5.12.0 to make keys %{...} faster when used
as a boolean did not take
 this into account, causing keys %{+undef} (and keys %$foo
when $foo is undefined) to be an error, which it should be so in strict
 mode only [perl
#81750].

Constant-folding used to cause

 $text =~ (1 ? /phoo/ : /bear/)

to turn into

 $text =~ /phoo/

at compile time. Now it correctly matches against $_ [perl #20444].

Parsing Perl code (either with string eval or by loading modules) from
 within a UNITCHECK
block no longer causes the interpreter to crash
 [perl #70614].

String evals no longer fail after 2 billion scopes have been
 compiled [perl #83364].

The parser no longer hangs when encountering certain Unicode characters,
 such as U+387
[perl #74022].

Defining a constant with the same name as one of Perl's special blocks
 (like INIT) stopped

Perl version 5.16.1 documentation - perl5140delta

Page 40http://perldoc.perl.org

working in 5.12.0, but has now been fixed
 [perl #78634].

A reference to a literal value used as a hash key ($hash{\"foo"}) used
 to be stringified,
even if the hash was tied [perl #79178].

A closure containing an if statement followed by a constant or variable
 is no longer treated
as a constant [perl #63540].

state can now be used with attributes. It
 used to mean the same thing as my if any attributes
were present [perl #68658].

Expressions like @$a > 3 no longer cause $a to be mentioned in
 the "Use of uninitialized
value in numeric gt" warning when $a is
 undefined (since it is not part of the > expression, but
the operand
 of the @) [perl #72090].

Accessing an element of a package array with a hard-coded number (as
 opposed to an
arbitrary expression) would crash if the array did not exist.
 Usually the array would be
autovivified during compilation, but typeglob
 manipulation could remove it, as in these two
cases which used to crash:

 *d = *a; print $d[0];
 undef *d; print $d[0];

The -C command-line option, when used on the shebang line, can now be
 followed by other
options [perl #72434].

The B module was returning B::OPs instead of B::LOGOPs for entertry [perl #80622]. This
was due to a bug in the Perl core,
 not in B itself.

Stashes, Globs and Method Lookup
Perl 5.10.0 introduced a new internal mechanism for caching MROs (method
 resolution orders, or lists
of parent classes; aka "isa" caches) to make
 method lookup faster (so @ISA arrays would not have to
be searched
 repeatedly). Unfortunately, this brought with it quite a few bugs. Almost
 all of these have
been fixed now, along with a few MRO-related bugs that
 existed before 5.10.0:

The following used to have erratic effects on method resolution, because
 the "isa" caches
were not reset or otherwise ended up listing the wrong
 classes. These have been fixed.

Aliasing packages by assigning to globs [perl #77358]

Deleting packages by deleting their containing stash elements

Undefining the glob containing a package (undef *Foo::)

Undefining an ISA glob (undef *Foo::ISA)

Deleting an ISA stash element (delete $Foo::{ISA})

Sharing @ISA arrays between classes (via *Foo::ISA = \@Bar::ISA or *Foo::ISA =
*Bar::ISA) [perl #77238]

undef *Foo::ISA would even stop a new @Foo::ISA array from updating
 caches.

Typeglob assignments would crash if the glob's stash no longer existed, so
 long as the glob
assigned to were named ISA or the glob on either side of
 the assignment contained a
subroutine.

PL_isarev, which is accessible to Perl via mro::get_isarev is now
 updated properly
when packages are deleted or removed from the @ISA of
 other classes. This allows many
packages to be created and deleted without
 causing a memory leak [perl #75176].

In addition, various other bugs related to typeglobs and stashes have been
 fixed:

Some work has been done on the internal pointers that link between symbol
 tables (stashes),

Perl version 5.16.1 documentation - perl5140delta

Page 41http://perldoc.perl.org

typeglobs, and subroutines. This has the effect that
 various edge cases related to deleting
stashes or stash entries (for example,
 <%FOO:: = ()>), and complex typeglob or
code-reference aliasing, will no
 longer crash the interpreter.

Assigning a reference to a glob copy now assigns to a glob slot instead of
 overwriting the glob
with a scalar [perl #1804] [perl #77508].

A bug when replacing the glob of a loop variable within the loop has been fixed
 [perl #21469].
This
 means the following code will no longer crash:

 for $x (...) {
 *x = *y;
 }

Assigning a glob to a PVLV used to convert it to a plain string. Now it
 works correctly, and a
PVLV can hold a glob. This would happen when a
 nonexistent hash or array element was
passed to a subroutine:

 sub { $_[0] = *foo }->($hash{key});
 # $_[0] would have been the string "*main::foo"

It also happened when a glob was assigned to, or returned from, an element
 of a tied array or
hash [perl #36051].

When trying to report Use of uninitialized value $Foo::BAR, crashes could
 occur if
the glob holding the global variable in question had been detached
 from its original stash by,
for example, delete $::{"Foo::"}. This has
 been fixed by disabling the reporting of
variable names in those
 cases.

During the restoration of a localised typeglob on scope exit, any
 destructors called as a result
would be able to see the typeglob in an
 inconsistent state, containing freed entries, which
could result in a
 crash. This would affect code like this:

 local *@;
 eval { die bless [] }; # puts an object in $@
 sub DESTROY {
 local $@; # boom
 }

Now the glob entries are cleared before any destructors are called. This
 also means that
destructors can vivify entries in the glob. So Perl tries
 again and, if the entries are re-created
too many times, dies with a
 "panic: gp_free ..." error message.

If a typeglob is freed while a subroutine attached to it is still
 referenced elsewhere, the
subroutine is renamed to __ANON__ in the same
 package, unless the package has been
undefined, in which case the __ANON__
 package is used. This could cause packages to be
sometimes autovivified,
 such as if the package had been deleted. Now this no longer occurs.

The __ANON__ package is also now used when the original package is
 no longer attached to
the symbol table. This avoids memory leaks in some
 cases [perl #87664].

Subroutines and package variables inside a package whose name ends with :: can now be
accessed with a fully qualified name.

Unicode
What has become known as "the Unicode Bug" is almost completely resolved in
 this release.
Under use feature 'unicode_strings' (which is
 automatically selected by use 5.012
and above), the internal
 storage format of a string no longer affects the external semantics.

[perl #58182].

There are two known exceptions:

Perl version 5.16.1 documentation - perl5140delta

Page 42http://perldoc.perl.org

1 The now-deprecated, user-defined case-changing
 functions require utf8-encoded
strings to operate. The CPAN module Unicode::Casing has been written to replace this
feature without its
 drawbacks, and the feature is scheduled to be removed in 5.16.

2 quotemeta() (and its in-line equivalent \Q) can also give different
 results depending on
whether a string is encoded in UTF-8. See "The "Unicode Bug"" in perlunicode.

Handling of Unicode non-character code points has changed.
 Previously they were mostly
considered illegal, except that in some
 place only one of the 66 of them was known. The
Unicode Standard
 considers them all legal, but forbids their "open interchange".
 This is part of
the change to allow internal use of any code
 point (see Core Enhancements). Together, these
changes resolve
 [perl #38722], [perl #51918], [perl #51936], and [perl #63446].

Case-insensitive "/i" regular expression matching of Unicode
 characters that match multiple
characters now works much more as
 intended. For example

 "\N{LATIN SMALL LIGATURE FFI}" =~ /ffi/ui

and

 "ffi" =~ /\N{LATIN SMALL LIGATURE FFI}/ui

are both true. Previously, there were many bugs with this feature.
 What hasn't been fixed are
the places where the pattern contains the
 multiple characters, but the characters are split up
by other things,
 such as in

 "\N{LATIN SMALL LIGATURE FFI}" =~ /(f)(f)i/ui

or

 "\N{LATIN SMALL LIGATURE FFI}" =~ /ffi*/ui

or

 "\N{LATIN SMALL LIGATURE FFI}" =~ /[a-f][f-m][g-z]/ui

None of these match.

Also, this matching doesn't fully conform to the current Unicode
 Standard, which asks that the
matching be made upon the NFD
 (Normalization Form Decomposed) of the text. However, as
of this
 writing (April 2010), the Unicode Standard is currently in flux about
 what they will
recommend doing with regard in such scenarios. It may be
 that they will throw out the whole
concept of multi-character matches.
 [perl #71736].

Naming a deprecated character in \N{NAME} no longer leaks memory.

We fixed a bug that could cause \N{NAME} constructs followed by
 a single "." to be parsed
incorrectly [perl #74978] (5.12.1).

chop now correctly handles characters above "\x{7fffffff}"
 [perl #73246].

Passing to index an offset beyond the end of the string when the string
 is encoded internally
in UTF8 no longer causes panics [perl #75898].

warn() and die() now respect utf8-encoded scalars [perl #45549].

Sometimes the UTF8 length cache would not be reset on a value
 returned by substr, causing
length(substr($uni_string, ...)) to give
 wrong answers. With ${^UTF8CACHE} set
to -1, it would also produce
 a "panic" error message [perl #77692].

Perl version 5.16.1 documentation - perl5140delta

Page 43http://perldoc.perl.org

Ties, Overloading and Other Magic
Overloading now works properly in conjunction with tied
 variables. What formerly happened
was that most ops checked their
 arguments for overloading before checking for magic, so for
example
 an overloaded object returned by a tied array access would usually be
 treated as not
overloaded [RT #57012].

Various instances of magic (like tie methods) being called on tied variables
 too many or too
few times have been fixed:

$tied->() did not always call FETCH [perl #8438].

Filetest operators and y/// and tr/// were calling FETCH too
 many times.

The = operator used to ignore magic on its right-hand side if the
 scalar happened to
hold a typeglob (if a typeglob was the last thing
 returned from or assigned to a tied
scalar) [perl #77498].

Dereference operators used to ignore magic if the argument was a
 reference already
(such as from a previous FETCH) [perl #72144].

splice now calls set-magic (so changes made
 by splice @ISA are respected by
method calls) [perl #78400].

In-memory files created by open($fh, ">", \$buffer) were not calling

FETCH/STORE at all [perl #43789] (5.12.2).

utf8::is_utf8() now respects get-magic (like $1) (5.12.1).

Non-commutative binary operators used to swap their operands if the same
 tied scalar was
used for both operands and returned a different value for
 each FETCH. For instance, if $t
returned 2 the first time and 3 the
 second, then $t/$t would evaluate to 1.5. This has been
fixed
 [perl #87708].

String eval now detects taintedness of overloaded or tied
 arguments [perl #75716].

String eval and regular expression matches against objects with string
 overloading no longer
cause memory corruption or crashes [perl #77084].

readline now honors <> overloading on tied
 arguments.

<expr> always respects overloading now if the expression is
 overloaded.

Because "<> as glob" was parsed differently from
 "<> as filehandle" from 5.6 onwards,
something like <$foo[0]> did
 not handle overloading, even if $foo[0] was an overloaded
object. This
 was contrary to the documentation for overload, and meant that <>
 could not be
used as a general overloaded iterator operator.

The fallback behaviour of overloading on binary operators was asymmetric
 [perl #71286].

Magic applied to variables in the main package no longer affects other packages.
 See Magic
variables outside the main package above [perl #76138].

Sometimes magic (ties, taintedness, etc.) attached to variables could cause
 an object to last
longer than it should, or cause a crash if a tied
 variable were freed from within a tie method.
These have been fixed
 [perl #81230].

DESTROY methods of objects implementing ties are no longer able to crash by
 accessing the
tied variable through a weak reference [perl #86328].

Fixed a regression of kill() when a match variable is used for the
 process ID to kill [perl
#75812].

$AUTOLOAD used to remain tainted forever if it ever became tainted. Now
 it is correctly

Perl version 5.16.1 documentation - perl5140delta

Page 44http://perldoc.perl.org

untainted if an autoloaded method is called and the method
 name was not tainted.

sprintf now dies when passed a tainted scalar for the format. It did
 already die for arbitrary
expressions, but not for simple scalars
 [perl #82250].

lc, uc, lcfirst, and ucfirst no longer return untainted strings
 when the argument is
tainted. This has been broken since perl 5.8.9
 [perl #87336].

The Debugger
The Perl debugger now also works in taint mode [perl #76872].

Subroutine redefinition works once more in the debugger [perl #48332].

When -d is used on the shebang (#!) line, the debugger now has access
 to the lines of the
main program. In the past, this sometimes worked and
 sometimes did not, depending on the
order in which things happened to be
 arranged in memory [perl #71806].

A possible memory leak when using caller() to set @DB::args has been fixed (5.12.2).

Perl no longer stomps on $DB::single, $DB::trace, and $DB::signal if these variables
already have values when $^P is assigned to [perl #72422].

#line directives in string evals were not properly updating the arrays
 of lines of code (@{"_<
 ..."}) that the debugger (or any debugging or
 profiling module) uses. In threaded builds,
they were not being updated at
 all. In non-threaded builds, the line number was ignored, so
any change to
 the existing line number would cause the lines to be misnumbered
 [perl
#79442].

Threads
Perl no longer accidentally clones lexicals in scope within active stack
 frames in the parent
when creating a child thread [perl #73086].

Several memory leaks in cloning and freeing threaded Perl interpreters have been
 fixed [perl
#77352].

Creating a new thread when directory handles were open used to cause a
 crash, because the
handles were not cloned, but simply passed to the new
 thread, resulting in a double free.

Now directory handles are cloned properly on Windows
 and on systems that have a fchdir
function. On other
 systems, new threads simply do not inherit directory
 handles from their
parent threads [perl #75154].

The typeglob *,, which holds the scalar variable $, (output field
 separator), had the wrong
reference count in child threads.

[perl #78494] When pipes are shared between threads, the close function
 (and any implicit
close, such as on thread exit) no longer blocks.

Perl now does a timely cleanup of SVs that are cloned into a new
 thread but then discovered
to be orphaned (that is, their owners
 are not cloned). This eliminates several "scalars leaked"

warnings when joining threads.

Scoping and Subroutines
Lvalue subroutines are again able to return copy-on-write scalars. This
 had been broken since
version 5.10.0 [perl #75656] (5.12.3).

require no longer causes caller to return the wrong file name for
 the scope that called
require and other scopes higher up that had the
 same file name [perl #68712].

sort with a ($$)-prototyped comparison routine used to cause the value
 of @_ to leak out of
the sort. Taking a reference to @_ within the
 sorting routine could cause a crash [perl #72334].

Perl version 5.16.1 documentation - perl5140delta

Page 45http://perldoc.perl.org

Match variables (like $1) no longer persist between calls to a sort
 subroutine [perl #76026].

Iterating with foreach over an array returned by an lvalue sub now works
 [perl #23790].

$@ is now localised during calls to binmode to prevent action at a
 distance [perl #78844].

Calling a closure prototype (what is passed to an attribute handler for a
 closure) now results in
a "Closure prototype called" error message instead
 of a crash [perl #68560].

Mentioning a read-only lexical variable from the enclosing scope in a
 string eval no longer
causes the variable to become writable
 [perl #19135].

Signals
Within signal handlers, $! is now implicitly localized.

CHLD signals are no longer unblocked after a signal handler is called if
 they were blocked
before by POSIX::sigprocmask [perl #82040].

A signal handler called within a signal handler could cause leaks or
 double-frees. Now fixed
[perl #76248].

Miscellaneous Memory Leaks
Several memory leaks when loading XS modules were fixed (5.12.2).

substr(), pos(), keys(),
 and vec() could, when used in combination
 with lvalues, result in
leaking the scalar value they operate on, and cause its
 destruction to happen too late. This
has now been fixed.

The postincrement and postdecrement operators, ++ and --, used to cause
 leaks when used
on references. This has now been fixed.

Nested map and grep blocks no longer leak memory when processing
 large lists [perl
#48004].

use VERSION and no VERSION no longer leak memory [perl #78436]
 [perl #69050].

.= followed by <> or readline would leak memory if $/
 contained characters beyond the
octet range and the scalar assigned to
 happened to be encoded as UTF8 internally [perl
#72246].

eval 'BEGIN{die}' no longer leaks memory on non-threaded builds.

Memory Corruption and Crashes
glob() no longer crashes when %File::Glob:: is empty and CORE::GLOBAL::glob isn't
present [perl #75464] (5.12.2).

readline() has been fixed when interrupted by signals so it no longer
 returns the "same thing"
as before or random memory.

When assigning a list with duplicated keys to a hash, the assignment used to
 return garbage
and/or freed values:

 @a = %h = (list with some duplicate keys);

This has now been fixed [perl #31865].

The mechanism for freeing objects in globs used to leave dangling
 pointers to freed SVs,
meaning Perl users could see corrupted state
 during destruction.

Perl now frees only the affected slots of the GV, rather than freeing
 the GV itself. This makes
sure that there are no dangling refs or
 corrupted state during destruction.

The interpreter no longer crashes when freeing deeply-nested arrays of
 arrays. Hashes have

Perl version 5.16.1 documentation - perl5140delta

Page 46http://perldoc.perl.org

not been fixed yet [perl #44225].

Concatenating long strings under use encoding no longer causes Perl to
 crash [perl
#78674].

Calling ->import on a class lacking an import method could corrupt
 the stack, resulting in
strange behaviour. For instance,

 push @a, "foo", $b = bar->import;

would assign "foo" to $b [perl #63790].

The recv function could crash when called with the MSG_TRUNC flag
 [perl #75082].

formline no longer crashes when passed a tainted format picture. It also
 taints $^A now if
its arguments are tainted [perl #79138].

A bug in how we process filetest operations could cause a segfault.
 Filetests don't always
expect an op on the stack, so we now use
 TOPs only if we're sure that we're not stating the
_ filehandle.
 This is indicated by OPf_KIDS (as checked in ck_ftst) [perl #74542]
 (5.12.1).

unpack() now handles scalar context correctly for %32H and %32u,
 fixing a potential crash.
split() would crash because the third item
 on the stack wasn't the regular expression it
expected. unpack("%2H",
 ...) would return both the unpacked result and the checksum
on the stack,
 as would unpack("%2u", ...) [perl #73814] (5.12.2).

Fixes to Various Perl Operators
The &, |, and ^ bitwise operators no longer coerce read-only arguments
 [perl #20661].

Stringifying a scalar containing "-0.0" no longer has the effect of turning
 false into true [perl
#45133].

Some numeric operators were converting integers to floating point,
 resulting in loss of
precision on 64-bit platforms [perl #77456].

sprintf() was ignoring locales when called with constant arguments
 [perl #78632].

Combining the vector (%v) flag and dynamic precision would
 cause sprintf to confuse the
order of its arguments, making it treat the string as the precision and vice-versa [perl #83194].

Bugs Relating to the C API
The C-level lex_stuff_pvn function would sometimes cause a spurious
 syntax error on the
last line of the file if it lacked a final semicolon
 [perl #74006] (5.12.1).

The eval_sv and eval_pv C functions now set $@ correctly when
 there is a syntax error and
no G_KEEPERR flag, and never set it if the G_KEEPERR flag is present [perl #3719].

The XS multicall API no longer causes subroutines to lose reference counts
 if called via the
multicall interface from within those very subroutines.
 This affects modules like List::Util.
Calling one of its functions with an
 active subroutine as the first argument could cause a crash
[perl #78070].

The SvPVbyte function available to XS modules now calls magic before
 downgrading the SV,
to avoid warnings about wide characters [perl #72398].

The ref types in the typemap for XS bindings now support magical variables
 [perl #72684].

sv_catsv_flags no longer calls mg_get on its second argument (the
 source string) if the
flags passed to it do not include SV_GMAGIC. So it
 now matches the documentation.

my_strftime no longer leaks memory. This fixes a memory leak in POSIX::strftime [perl
#73520].

Perl version 5.16.1 documentation - perl5140delta

Page 47http://perldoc.perl.org

XSUB.h now correctly redefines fgets under PERL_IMPLICIT_SYS [perl #55049]
 (5.12.1).

XS code using fputc() or fputs() on Windows could cause an error
 due to their arguments
being swapped [perl #72704] (5.12.1).

A possible segfault in the T_PTROBJ default typemap has been fixed
 (5.12.2).

A bug that could cause "Unknown error" messages when call_sv(code, G_EVAL) is
called from an XS destructor has been fixed
 (5.12.2).

Known Problems
This is a list of significant unresolved issues which are regressions
 from earlier versions of Perl or
which affect widely-used CPAN modules.

List::Util::first misbehaves in the presence of a lexical $_
 (typically introduced by my
 $_ or implicitly by given). The variable
 that gets set for each iteration is the package
variable $_, not the
 lexical $_.

A similar issue may occur in other modules that provide functions which
 take a block as their
first argument, like

 foo { ... $_ ...} list

See also: http://rt.perl.org/rt3/Public/Bug/Display.html?id=67694

readline() returns an empty string instead of a cached previous value
 when it is interrupted by
a signal

The changes in prototype handling break Switch. A patch has been sent
 upstream and will
hopefully appear on CPAN soon.

The upgrade to ExtUtils-MakeMaker-6.57_05 has caused
 some tests in the Module-Install
distribution on CPAN to
 fail. (Specifically, 02_mymeta.t tests 5 and 21; 18_all_from.t
 tests 6
and 15; 19_authors.t tests 5, 13, 21, and 29; and 20_authors_with_special_characters.t tests
6, 15, and 23 in version
 1.00 of that distribution now fail.)

On VMS, Time::HiRes tests will fail due to a bug in the CRTL's
 implementation of
setitimer: previous timer values would be cleared
 if a timer expired but not if the timer was
reset before expiring. HP
 OpenVMS Engineering have corrected the problem and will release
a patch
 in due course (Quix case # QXCM1001115136).

On VMS, there were a handful of Module::Build test failures we didn't
 get to before the
release; please watch CPAN for updates.

Errata
keys(), values(), and each() work on arrays

You can now use the keys(), values(), and each() builtins on arrays;
 previously you could use them
only on hashes. See perlfunc for details.
 This is actually a change introduced in perl 5.12.0, but it was
missed from
 that release's perl5120delta.

split() and @_
split() no longer modifies @_ when called in scalar or void context.
 In void context it now produces a
"Useless use of split" warning.
 This was also a perl 5.12.0 change that missed the perldelta.

Obituary
Randy Kobes, creator of http://kobesearch.cpan.org/ and
 contributor/maintainer to several core Perl
toolchain modules, passed
 away on September 18, 2010 after a battle with lung cancer. The
community
 was richer for his involvement. He will be missed.

Perl version 5.16.1 documentation - perl5140delta

Page 48http://perldoc.perl.org

Acknowledgements
Perl 5.14.0 represents one year of development since
 Perl 5.12.0 and contains nearly 550,000 lines
of changes across nearly
 3,000 files from 150 authors and committers.

Perl continues to flourish into its third decade thanks to a vibrant
 community of users and developers.
The following people are known to
 have contributed the improvements that became Perl 5.14.0:

Aaron Crane, Abhijit Menon-Sen, Abigail, Ã†var ArnfjÃ¶rÃ° Bjarmason,
 Alastair Douglas, Alexander
Alekseev, Alexander Hartmaier, Alexandr
 Ciornii, Alex Davies, Alex Vandiver, Ali Polatel, Allen Smith,
Andreas
 KÃ¶nig, Andrew Rodland, Andy Armstrong, Andy Dougherty, Aristotle
 Pagaltzis, Arkturuz,
Arvan, A. Sinan Unur, Ben Morrow, Bo Lindbergh,
 Boris Ratner, Brad Gilbert, Bram, brian d foy, Brian
Phillips, Casey
 West, Charles Bailey, Chas. Owens, Chip Salzenberg, Chris 'BinGOs'
 Williams,
chromatic, Craig A. Berry, Curtis Jewell, Dagfinn Ilmari
 MannsÃ¥ker, Dan Dascalescu, Dave Rolsky,
David Caldwell, David Cantrell,
 David Golden, David Leadbeater, David Mitchell, David Wheeler, Eric

Brine, Father Chrysostomos, Fingle Nark, Florian Ragwitz, Frank Wiegand,
 Franz Fasching, Gene
Sullivan, George Greer, Gerard Goossen, Gisle Aas,
 Goro Fuji, Grant McLean, gregor herrmann,
H.Merijn Brand, Hongwen Qiu,
 Hugo van der Sanden, Ian Goodacre, James E Keenan, James
Mastros, Jan
 Dubois, Jay Hannah, Jerry D. Hedden, Jesse Vincent, Jim Cromie, Jirka
 HruÅ¡ka, John
Peacock, Joshua ben Jore, Joshua Pritikin, Karl Williamson,
 Kevin Ryde, kmx, Lars
DÉªá´‡á´„á´‹á´•á´¡ è¿ªæ‹‰æ–¯, Larwan Berke, Leon Brocard, Leon
 Timmermans, Lubomir Rintel,
Lukas Mai, Maik Hentsche, Marty Pauley,
 Marvin Humphrey, Matt Johnson, Matt S Trout, Max
Maischein, Michael
 Breen, Michael Fig, Michael G Schwern, Michael Parker, Michael Stevens,

Michael Witten, Mike Kelly, Moritz Lenz, Nicholas Clark, Nick Cleaton,
 Nick Johnston, Nicolas Kaiser,
Niko Tyni, Noirin Shirley, Nuno Carvalho,
 Paul Evans, Paul Green, Paul Johnson, Paul Marquess,
Peter J. Holzer,
 Peter John Acklam, Peter Martini, Philippe Bruhat (BooK), Piotr Fusik,
 Rafael
Garcia-Suarez, Rainer Tammer, Reini Urban, Renee Baecker, Ricardo
 Signes, Richard MÃ¶hn,
Richard Soderberg, Rob Hoelz, Robin Barker, Ruslan
 Zakirov, Salvador FandiÃ±o, Salvador Ortiz
Garcia, Shlomi Fish, Sinan
 Unur, Sisyphus, Slaven Rezic, Steffen MÃ¼ller, Steve Hay, Steven

Schubiger, Steve Peters, Sullivan Beck, Tatsuhiko Miyagawa, Tim Bunce,
 Todd Rinaldo, Tom
Christiansen, Tom Hukins, Tony Cook, Tye McQueen,
 Vadim Konovalov, Vernon Lyon, Vincent Pit,
Walt Mankowski, Wolfram
 Humann, Yves Orton, Zefram, and ZsbÃ¡n Ambrus.

This is woefully incomplete as it's automatically generated from version
 control history. In particular, it
doesn't include the names of the
 (very much appreciated) contributors who reported issues in
previous
 versions of Perl that helped make Perl 5.14.0 better. For a more complete
 list of all of Perl's
historical contributors, please see the AUTHORS
 file in the Perl 5.14.0 distribution.

Many of the changes included in this version originated in the CPAN
 modules included in Perl's core.
We're grateful to the entire CPAN
 community for helping Perl to flourish.

Reporting Bugs
If you find what you think is a bug, you might check the articles
 recently posted to the
comp.lang.perl.misc newsgroup and the Perl
 bug database at http://rt.perl.org/perlbug/ . There may
also be
 information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug
 program included with your
release. Be sure to trim your bug down
 to a tiny but sufficient test case. Your bug report, along with
the
 output of perl -V, will be sent off to perlbug@perl.org to be
 analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it
 inappropriate to send to a publicly
archived mailing list, then please send
 it to perl5-security-report@perl.org. This points to a closed
subscription
 unarchived mailing list, which includes all the core committers, who are able
 to help
assess the impact of issues, figure out a resolution, and help
 co-ordinate the release of patches to
mitigate or fix the problem across all
 platforms on which Perl is supported. Please use this address for
security issues in the Perl core only, not for modules independently
 distributed on CPAN.

Perl version 5.16.1 documentation - perl5140delta

Page 49http://perldoc.perl.org

SEE ALSO
The Changes file for an explanation of how to view exhaustive details
 on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

