
Perl version 5.16.1 documentation - CGI::Cookie

Page 1http://perldoc.perl.org

NAME
CGI::Cookie - Interface to HTTP Cookies

SYNOPSIS
 use CGI qw/:standard/;
 use CGI::Cookie;

 # Create new cookies and send them
 $cookie1 = CGI::Cookie->new(-name=>'ID',-value=>123456);
 $cookie2 = CGI::Cookie->new(-name=>'preferences',
 -value=>{ font => Helvetica,
 size => 12 }
);
 print header(-cookie=>[$cookie1,$cookie2]);

 # fetch existing cookies
 %cookies = CGI::Cookie->fetch;
 $id = $cookies{'ID'}->value;

 # create cookies returned from an external source
 %cookies = CGI::Cookie->parse($ENV{COOKIE});

DESCRIPTION
CGI::Cookie is an interface to HTTP/1.1 cookies, an
 innovation that allows Web servers to store
persistent information on
 the browser's side of the connection. Although CGI::Cookie is
 intended to be
used in conjunction with CGI.pm (and is in fact used by
 it internally), you can use this module
independently.

For full information on cookies see

	 http://tools.ietf.org/html/rfc2109
	 http://tools.ietf.org/html/rfc2965
	 http://tools.ietf.org/html/draft-ietf-httpstate-cookie

USING CGI::Cookie
CGI::Cookie is object oriented. Each cookie object has a name and a
 value. The name is any scalar
value. The value is any scalar or
 array value (associative arrays are also allowed). Cookies also have

several optional attributes, including:

1. expiration date

The expiration date tells the browser how long to hang on to the
 cookie. If the cookie specifies
an expiration date in the future, the
 browser will store the cookie information in a disk file and
return it
 to the server every time the user reconnects (until the expiration
 date is reached). If
the cookie species an expiration date in the
 past, the browser will remove the cookie from the
disk file. If the
 expiration date is not specified, the cookie will persist only until
 the user quits
the browser.

2. domain

This is a partial or complete domain name for which the cookie is valid. The browser will return
the cookie to any host that matches
 the partial domain name. For example, if you specify a
domain name
 of ".capricorn.com", then the browser will return the cookie to
 Web servers
running on any of the machines "www.capricorn.com", "ftp.capricorn.com",
"feckless.capricorn.com", etc. Domain names
 must contain at least two periods to prevent
attempts to match
 on top level domains like ".edu". If no domain is specified, then
 the browser

Perl version 5.16.1 documentation - CGI::Cookie

Page 2http://perldoc.perl.org

will only return the cookie to servers on the host the
 cookie originated from.

3. path

If you provide a cookie path attribute, the browser will check it
 against your script's URL before
returning the cookie. For example,
 if you specify the path "/cgi-bin", then the cookie will be
returned
 to each of the scripts "/cgi-bin/tally.pl", "/cgi-bin/order.pl", and

"/cgi-bin/customer_service/complain.pl", but not to the script
 "/cgi-private/site_admin.pl". By
default, the path is set to "/", so
 that all scripts at your site will receive the cookie.

4. secure flag

If the "secure" attribute is set, the cookie will only be sent to your
 script if the CGI request is
occurring on a secure channel, such as SSL.

5. httponly flag

If the "httponly" attribute is set, the cookie will only be accessible
 through HTTP Requests.
This cookie will be inaccessible via JavaScript
 (to prevent XSS attacks).

This feature is only supported by recent browsers like Internet Explorer
 6 Service Pack 1,
Firefox 3.0 and Opera 9.5 (and later of course).

See these URLs for more information:

	 http://msdn.microsoft.com/en-us/library/ms533046.aspx
	 http://www.owasp.org/index.php/HTTPOnly#Browsers_Supporting_HTTPOnly

Creating New Cookies
	 my $c = CGI::Cookie->new(-name => 'foo',
 -value => 'bar',
 -expires => '+3M',
 -domain => '.capricorn.com',
 -path => '/cgi-bin/database',
 -secure => 1
);

Create cookies from scratch with the new method. The -name and -value parameters are required.
The name must be a scalar value.
 The value can be a scalar, an array reference, or a hash reference.
(At some point in the future cookies will support one of the Perl
 object serialization protocols for full
generality).

-expires accepts any of the relative or absolute date formats
 recognized by CGI.pm, for example
"+3M" for three months in the
 future. See CGI.pm's documentation for details.

-max-age accepts the same data formats as -expires, but sets a
 relative value instead of an absolute
like -expires. This is intended to be
 more secure since a clock could be changed to fake an absolute
time. In
 practice, as of 2011, -max-age still does not enjoy the widespread support
 that -expires
has. You can set both, and browsers that support -max-age should ignore the Expires header. The
drawback
 to this approach is the bit of bandwidth for sending an extra header on each cookie.

-domain points to a domain name or to a fully qualified host name.
 If not specified, the cookie will be
returned only to the Web server
 that created it.

-path points to a partial URL on the current server. The cookie
 will be returned to all URLs beginning
with the specified path. If
 not specified, it defaults to '/', which returns the cookie to all
 pages at your
site.

-secure if set to a true value instructs the browser to return the
 cookie only when a cryptographic
protocol is in use.

-httponly if set to a true value, the cookie will not be accessible
 via JavaScript.

Perl version 5.16.1 documentation - CGI::Cookie

Page 3http://perldoc.perl.org

For compatibility with Apache::Cookie, you may optionally pass in
 a mod_perl request object as the
first argument to new(). It will
 simply be ignored:

 my $c = CGI::Cookie->new($r,
 -name => 'foo',
 -value => ['bar','baz']);

Sending the Cookie to the Browser
The simplest way to send a cookie to the browser is by calling the bake()
 method:

 $c->bake;

This will print the Set-Cookie HTTP header to STDOUT using CGI.pm. CGI.pm
 will be loaded for this
purpose if it is not already. Otherwise CGI.pm is not
 required or used by this module.

Under mod_perl, pass in an Apache request object:

 $c->bake($r);

If you want to set the cookie yourself, Within a CGI script you can send
 a cookie to the browser by
creating one or more Set-Cookie: fields in the
 HTTP header. Here is a typical sequence:

 my $c = CGI::Cookie->new(-name => 'foo',
 -value => ['bar','baz'],
 -expires => '+3M');

 print "Set-Cookie: $c\n";
 print "Content-Type: text/html\n\n";

To send more than one cookie, create several Set-Cookie: fields.

If you are using CGI.pm, you send cookies by providing a -cookie
 argument to the header() method:

 print header(-cookie=>$c);

Mod_perl users can set cookies using the request object's header_out()
 method:

 $r->headers_out->set('Set-Cookie' => $c);

Internally, Cookie overloads the "" operator to call its as_string()
 method when incorporated into the
HTTP header. as_string() turns the
 Cookie's internal representation into an RFC-compliant text

representation. You may call as_string() yourself if you prefer:

 print "Set-Cookie: ",$c->as_string,"\n";

Recovering Previous Cookies
	 %cookies = CGI::Cookie->fetch;

fetch returns an associative array consisting of all cookies
 returned by the browser. The keys of the
array are the cookie names. You
 can iterate through the cookies this way:

	 %cookies = CGI::Cookie->fetch;
	 for (keys %cookies) {
	 do_something($cookies{$_});
 }

Perl version 5.16.1 documentation - CGI::Cookie

Page 4http://perldoc.perl.org

In a scalar context, fetch() returns a hash reference, which may be more
 efficient if you are
manipulating multiple cookies.

CGI.pm uses the URL escaping methods to save and restore reserved characters
 in its cookies. If
you are trying to retrieve a cookie set by a foreign server,
 this escaping method may trip you up. Use
raw_fetch() instead, which has the
 same semantics as fetch(), but performs no unescaping.

You may also retrieve cookies that were stored in some external
 form using the parse() class method:

 $COOKIES = `cat /usr/tmp/Cookie_stash`;
 %cookies = CGI::Cookie->parse($COOKIES);

If you are in a mod_perl environment, you can save some overhead by
 passing the request object to
fetch() like this:

 CGI::Cookie->fetch($r);

If the value passed to parse() is undefined, an empty array will returned in list
 contact, and an empty
hashref will be returned in scalar context.

Manipulating Cookies
Cookie objects have a series of accessor methods to get and set cookie
 attributes. Each accessor
has a similar syntax. Called without
 arguments, the accessor returns the current value of the attribute.
Called with an argument, the accessor changes the attribute and
 returns its new value.

name()

Get or set the cookie's name. Example:

	 $name = $c->name;
	 $new_name = $c->name('fred');

value()

Get or set the cookie's value. Example:

	 $value = $c->value;
	 @new_value = $c->value(['a','b','c','d']);

value() is context sensitive. In a list context it will return
 the current value of the cookie as an
array. In a scalar context it
 will return the first value of a multivalued cookie.

domain()

Get or set the cookie's domain.

path()

Get or set the cookie's path.

expires()

Get or set the cookie's expiration time.

AUTHOR INFORMATION
Copyright 1997-1998, Lincoln D. Stein. All rights reserved.

This library is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

Address bug reports and comments to: lstein@cshl.org

Perl version 5.16.1 documentation - CGI::Cookie

Page 5http://perldoc.perl.org

BUGS
This section intentionally left blank.

SEE ALSO
CGI::Carp, CGI

RFC 2109, RFC 2695

