
Perl version 5.16.1 documentation - threads

Page 1http://perldoc.perl.org

NAME
threads - Perl interpreter-based threads

VERSION
This document describes threads version 1.86

SYNOPSIS
 use threads ('yield',
 'stack_size' => 64*4096,
 'exit' => 'threads_only',
 'stringify');

 sub start_thread {
 my @args = @_;
 print('Thread started: ', join(' ', @args), "\n");
 }
 my $thr = threads->create('start_thread', 'argument');
 $thr->join();

 threads->create(sub { print("I am a thread\n"); })->join();

 my $thr2 = async { foreach (@files) { ... } };
 $thr2->join();
 if (my $err = $thr2->error()) {
 warn("Thread error: $err\n");
 }

 # Invoke thread in list context (implicit) so it can return a list
 my ($thr) = threads->create(sub { return (qw/a b c/); });
 # or specify list context explicitly
 my $thr = threads->create({'context' => 'list'},
 sub { return (qw/a b c/); });
 my @results = $thr->join();

 $thr->detach();

 # Get a thread's object
 $thr = threads->self();
 $thr = threads->object($tid);

 # Get a thread's ID
 $tid = threads->tid();
 $tid = $thr->tid();
 $tid = "$thr";

 # Give other threads a chance to run
 threads->yield();
 yield();

 # Lists of non-detached threads
 my @threads = threads->list();
 my $thread_count = threads->list();

Perl version 5.16.1 documentation - threads

Page 2http://perldoc.perl.org

 my @running = threads->list(threads::running);
 my @joinable = threads->list(threads::joinable);

 # Test thread objects
 if ($thr1 == $thr2) {
 ...
 }

 # Manage thread stack size
 $stack_size = threads->get_stack_size();
 $old_size = threads->set_stack_size(32*4096);

 # Create a thread with a specific context and stack size
 my $thr = threads->create({ 'context' => 'list',
 'stack_size' => 32*4096,
 'exit' => 'thread_only' },
 \&foo);

 # Get thread's context
 my $wantarray = $thr->wantarray();

 # Check thread's state
 if ($thr->is_running()) {
 sleep(1);
 }
 if ($thr->is_joinable()) {
 $thr->join();
 }

 # Send a signal to a thread
 $thr->kill('SIGUSR1');

 # Exit a thread
 threads->exit();

DESCRIPTION
Since Perl 5.8, thread programming has been available using a model called interpreter threads which
provides a new Perl interpreter for each
 thread, and, by default, results in no data or state information
being shared
 between threads.

(Prior to Perl 5.8, 5005threads was available through the Thread.pm API.
 This threading model has
been deprecated, and was removed as of Perl 5.10.0.)

As just mentioned, all variables are, by default, thread local. To use shared
 variables, you need to
also load threads::shared:

 use threads;
 use threads::shared;

When loading threads::shared, you must use threads before you use threads::shared. (
threads will emit a warning if you do it the
 other way around.)

It is strongly recommended that you enable threads via use threads as early
 as possible in your
script.

Perl version 5.16.1 documentation - threads

Page 3http://perldoc.perl.org

If needed, scripts can be written so as to run on both threaded and
 non-threaded Perls:

 my $can_use_threads = eval 'use threads; 1';
 if ($can_use_threads) {
 # Do processing using threads
 ...
 } else {
 # Do it without using threads
 ...
 }

$thr = threads->create(FUNCTION, ARGS)

This will create a new thread that will begin execution with the specified
 entry point function,
and give it the ARGS list as parameters. It will
 return the corresponding threads object, or
undef if thread creation failed.

FUNCTION may either be the name of a function, an anonymous subroutine, or
 a code ref.

 my $thr = threads->create('func_name', ...);
 # or
 my $thr = threads->create(sub { ... }, ...);
 # or
 my $thr = threads->create(\&func, ...);

The ->new() method is an alias for ->create().

$thr->join()

This will wait for the corresponding thread to complete its execution. When
 the thread finishes,
->join() will return the return value(s) of the
 entry point function.

The context (void, scalar or list) for the return value(s) for ->join()
 is determined at the time
of thread creation.

 # Create thread in list context (implicit)
 my ($thr1) = threads->create(sub {
 my @results = qw(a b c);
 return (@results);
 });
 # or (explicit)
 my $thr1 = threads->create({'context' => 'list'},
 sub {
 my @results = qw(a b c);
 return (@results);
 });
 # Retrieve list results from thread
 my @res1 = $thr1->join();

 # Create thread in scalar context (implicit)
 my $thr2 = threads->create(sub {
 my $result = 42;
 return ($result);
 });
 # Retrieve scalar result from thread
 my $res2 = $thr2->join();

 # Create a thread in void context (explicit)
 my $thr3 = threads->create({'void' => 1},
 sub { print("Hello, world\n"); });

Perl version 5.16.1 documentation - threads

Page 4http://perldoc.perl.org

 # Join the thread in void context (i.e., no return value)
 $thr3->join();

See THREAD CONTEXT for more details.

If the program exits without all threads having either been joined or
 detached, then a warning
will be issued.

Calling ->join() or ->detach() on an already joined thread will
 cause an error to be
thrown.

$thr->detach()

Makes the thread unjoinable, and causes any eventual return value to be
 discarded. When the
program exits, any detached threads that are still
 running are silently terminated.

If the program exits without all threads having either been joined or
 detached, then a warning
will be issued.

Calling ->join() or ->detach() on an already detached thread
 will cause an error to be
thrown.

threads->detach()

Class method that allows a thread to detach itself.

threads->self()

Class method that allows a thread to obtain its own threads object.

$thr->tid()

Returns the ID of the thread. Thread IDs are unique integers with the main
 thread in a
program being 0, and incrementing by 1 for every thread created.

threads->tid()

Class method that allows a thread to obtain its own ID.

"$thr"

If you add the stringify import option to your use threads declaration,
 then using a
threads object in a string or a string context (e.g., as a hash
 key) will cause its ID to be used
as the value:

 use threads qw(stringify);

 my $thr = threads->create(...);
 print("Thread $thr started...\n"); # Prints out: Thread 1
started...

threads->object($tid)

This will return the threads object for the active thread associated
 with the specified thread ID.
If $tid is the value for the current thread,
 then this call works the same as ->self().
Otherwise, returns undef
 if there is no thread associated with the TID, if the thread is joined
or
 detached, if no TID is specified or if the specified TID is undef.

threads->yield()

This is a suggestion to the OS to let this thread yield CPU time to other
 threads. What actually
happens is highly dependent upon the underlying
 thread implementation.

You may do use threads qw(yield), and then just use yield() in your
 code.

threads->list()

threads->list(threads::all)

Perl version 5.16.1 documentation - threads

Page 5http://perldoc.perl.org

threads->list(threads::running)

threads->list(threads::joinable)

With no arguments (or using threads::all) and in a list context, returns a
 list of all
non-joined, non-detached threads objects. In a scalar context,
 returns a count of the same.

With a true argument (using threads::running), returns a list of all
 non-joined,
non-detached threads objects that are still running.

With a false argument (using threads::joinable), returns a list of all
 non-joined,
non-detached threads objects that have finished running (i.e.,
 for which ->join() will not
block).

$thr1->equal($thr2)

Tests if two threads objects are the same thread or not. This is overloaded
 to the more natural
forms:

 if ($thr1 == $thr2) {
 print("Threads are the same\n");
 }
 # or
 if ($thr1 != $thr2) {
 print("Threads differ\n");
 }

(Thread comparison is based on thread IDs.)

async BLOCK;

async creates a thread to execute the block immediately following
 it. This block is treated as
an anonymous subroutine, and so must have a
 semicolon after the closing brace. Like
threads->create(), async
 returns a threads object.

$thr->error()

Threads are executed in an eval context. This method will return undef
 if the thread
terminates normally. Otherwise, it returns the value of $@ associated with the thread's
execution status in its eval context.

$thr->_handle()

This private method returns the memory location of the internal thread
 structure associated
with a threads object. For Win32, this is a pointer to
 the HANDLE value returned by
CreateThread (i.e., HANDLE *); for other
 platforms, it is a pointer to the pthread_t
structure used in the pthread_create call (i.e., pthread_t *).

This method is of no use for general Perl threads programming. Its intent is
 to provide other
(XS-based) thread modules with the capability to access, and
 possibly manipulate, the
underlying thread structure associated with a Perl
 thread.

threads->_handle()

Class method that allows a thread to obtain its own handle.

EXITING A THREAD
The usual method for terminating a thread is to return() from the entry point function with the

appropriate return value(s).

threads->exit()

If needed, a thread can be exited at any time by calling threads->exit(). This will cause
the thread to return undef in a
 scalar context, or the empty list in a list context.

When called from the main thread, this behaves the same as exit(0).

Perl version 5.16.1 documentation - threads

Page 6http://perldoc.perl.org

threads->exit(status)

When called from a thread, this behaves like threads->exit() (i.e., the
 exit status code is
ignored).

When called from the main thread, this behaves the same as exit(status).

die()

Calling die() in a thread indicates an abnormal exit for the thread. Any $SIG{__DIE__}
handler in the thread will be called first, and then the
 thread will exit with a warning message
that will contain any arguments passed
 in the die() call.

exit(status)

Calling exit() inside a thread causes the whole
 application to terminate. Because of this, the
use of exit() inside
 threaded code, or in modules that might be used in threaded
applications, is
 strongly discouraged.

If exit() really is needed, then consider using the following:

 threads->exit() if threads->can('exit'); # Thread friendly
 exit(status);

use threads 'exit' => 'threads_only'

This globally overrides the default behavior of calling exit() inside a
 thread, and effectively
causes such calls to behave the same as threads->exit(). In other words, with this
setting, calling exit()
 causes only the thread to terminate.

Because of its global effect, this setting should not be used inside modules
 or the like.

The main thread is unaffected by this setting.

threads->create({'exit' => 'thread_only'}, ...)

This overrides the default behavior of exit() inside the newly created
 thread only.

$thr->set_thread_exit_only(boolean)

This can be used to change the exit thread only behavior for a thread after
 it has been
created. With a true argument, exit() will cause only the
 thread to exit. With a false
argument, exit() will terminate the
 application.

The main thread is unaffected by this call.

threads->set_thread_exit_only(boolean)

Class method for use inside a thread to change its own behavior for exit().

The main thread is unaffected by this call.

THREAD STATE
The following boolean methods are useful in determining the state of a
 thread.

$thr->is_running()

Returns true if a thread is still running (i.e., if its entry point function
 has not yet finished or
exited).

$thr->is_joinable()

Returns true if the thread has finished running, is not detached and has not
 yet been joined. In
other words, the thread is ready to be joined, and a call
 to $thr->join() will not block.

$thr->is_detached()

Returns true if the thread has been detached.

threads->is_detached()

Perl version 5.16.1 documentation - threads

Page 7http://perldoc.perl.org

Class method that allows a thread to determine whether or not it is detached.

THREAD CONTEXT
As with subroutines, the type of value returned from a thread's entry point
 function may be determined
by the thread's context: list, scalar or void.
 The thread's context is determined at thread creation. This
is necessary so
 that the context is available to the entry point function via wantarray(). The thread
may then specify a value of
 the appropriate type to be returned from ->join().

Explicit context
Because thread creation and thread joining may occur in different contexts, it
 may be desirable to
state the context explicitly to the thread's entry point
 function. This may be done by calling ->
create() with a hash reference
 as the first argument:

 my $thr = threads->create({'context' => 'list'}, \&foo);
 ...
 my @results = $thr->join();

In the above, the threads object is returned to the parent thread in scalar
 context, and the thread's
entry point function foo will be called in list
 (array) context such that the parent thread can receive a
list (array) from
 the ->join() call. ('array' is synonymous with 'list'.)

Similarly, if you need the threads object, but your thread will not be
 returning a value (i.e., void
context), you would do the following:

 my $thr = threads->create({'context' => 'void'}, \&foo);
 ...
 $thr->join();

The context type may also be used as the key in the hash reference followed
 by a true value:

 threads->create({'scalar' => 1}, \&foo);
 ...
 my ($thr) = threads->list();
 my $result = $thr->join();

Implicit context
If not explicitly stated, the thread's context is implied from the context
 of the ->create() call:

 # Create thread in list context
 my ($thr) = threads->create(...);

 # Create thread in scalar context
 my $thr = threads->create(...);

 # Create thread in void context
 threads->create(...);

$thr->wantarray()
This returns the thread's context in the same manner as wantarray().

threads->wantarray()
Class method to return the current thread's context. This returns the same
 value as running
wantarray() inside the current
 thread's entry point function.

Perl version 5.16.1 documentation - threads

Page 8http://perldoc.perl.org

THREAD STACK SIZE
The default per-thread stack size for different platforms varies
 significantly, and is almost always far
more than is needed for most
 applications. On Win32, Perl's makefile explicitly sets the default stack
to
 16 MB; on most other platforms, the system default is used, which again may be
 much larger than
is needed.

By tuning the stack size to more accurately reflect your application's needs,
 you may significantly
reduce your application's memory usage, and increase the
 number of simultaneously running threads.

Note that on Windows, address space allocation granularity is 64 KB,
 therefore, setting the stack
smaller than that on Win32 Perl will not save any
 more memory.

threads->get_stack_size();

Returns the current default per-thread stack size. The default is zero, which
 means the system
default stack size is currently in use.

$size = $thr->get_stack_size();

Returns the stack size for a particular thread. A return value of zero
 indicates the system
default stack size was used for the thread.

$old_size = threads->set_stack_size($new_size);

Sets a new default per-thread stack size, and returns the previous setting.

Some platforms have a minimum thread stack size. Trying to set the stack size
 below this
value will result in a warning, and the minimum stack size will be
 used.

Some Linux platforms have a maximum stack size. Setting too large of a stack
 size will cause
thread creation to fail.

If needed, $new_size will be rounded up to the next multiple of the memory
 page size
(usually 4096 or 8192).

Threads created after the stack size is set will then either call
pthread_attr_setstacksize() (for pthreads platforms), or supply the
 stack size to
CreateThread() (for Win32 Perl).

(Obviously, this call does not affect any currently extant threads.)

use threads ('stack_size' => VALUE);

This sets the default per-thread stack size at the start of the application.

$ENV{'PERL5_ITHREADS_STACK_SIZE'}

The default per-thread stack size may be set at the start of the application
 through the use of
the environment variable PERL5_ITHREADS_STACK_SIZE:

 PERL5_ITHREADS_STACK_SIZE=1048576
 export PERL5_ITHREADS_STACK_SIZE
 perl -e'use threads; print(threads->get_stack_size(), "\n")'

This value overrides any stack_size parameter given to use threads. Its
 primary purpose
is to permit setting the per-thread stack size for legacy
 threaded applications.

threads->create({'stack_size' => VALUE}, FUNCTION, ARGS)

To specify a particular stack size for any individual thread, call ->create() with a hash
reference as the first argument:

 my $thr = threads->create({'stack_size' => 32*4096}, \&foo,
@args);

$thr2 = $thr1->create(FUNCTION, ARGS)

Perl version 5.16.1 documentation - threads

Page 9http://perldoc.perl.org

This creates a new thread ($thr2) that inherits the stack size from an
 existing thread ($thr1
). This is shorthand for the following:

 my $stack_size = $thr1->get_stack_size();
 my $thr2 = threads->create({'stack_size' => $stack_size},
FUNCTION, ARGS);

THREAD SIGNALLING
When safe signals is in effect (the default behavior - see Unsafe signals
 for more details), then signals
may be sent and acted upon by individual
 threads.

$thr->kill('SIG...');

Sends the specified signal to the thread. Signal names and (positive) signal
 numbers are the
same as those supported by kill(). For example, 'SIGTERM', 'TERM' and
 (depending on the
OS) 15 are all valid arguments to ->kill().

Returns the thread object to allow for method chaining:

 $thr->kill('SIG...')->join();

Signal handlers need to be set up in the threads for the signals they are
 expected to act upon. Here's
an example for cancelling a thread:

 use threads;

 sub thr_func
 {
 # Thread 'cancellation' signal handler
 $SIG{'KILL'} = sub { threads->exit(); };

 ...
 }

 # Create a thread
 my $thr = threads->create('thr_func');

 ...

 # Signal the thread to terminate, and then detach
 # it so that it will get cleaned up automatically
 $thr->kill('KILL')->detach();

Here's another simplistic example that illustrates the use of thread
 signalling in conjunction with a
semaphore to provide rudimentary suspend
 and resume capabilities:

 use threads;
 use Thread::Semaphore;

 sub thr_func
 {
 my $sema = shift;

 # Thread 'suspend/resume' signal handler
 $SIG{'STOP'} = sub {
 $sema->down(); # Thread suspended

Perl version 5.16.1 documentation - threads

Page 10http://perldoc.perl.org

 $sema->up(); # Thread resumes
 };

 ...
 }

 # Create a semaphore and pass it to a thread
 my $sema = Thread::Semaphore->new();
 my $thr = threads->create('thr_func', $sema);

 # Suspend the thread
 $sema->down();
 $thr->kill('STOP');

 ...

 # Allow the thread to continue
 $sema->up();

CAVEAT: The thread signalling capability provided by this module does not
 actually send signals via
the OS. It emulates signals at the Perl-level
 such that signal handlers are called in the appropriate
thread. For example,
 sending $thr->kill('STOP') does not actually suspend a thread (or the

whole process), but does cause a $SIG{'STOP'} handler to be called in that
 thread (as illustrated
above).

As such, signals that would normally not be appropriate to use in the kill() command (e.g.,
kill('KILL', $$)) are okay to use with the ->kill() method (again, as illustrated above).

Correspondingly, sending a signal to a thread does not disrupt the operation
 the thread is currently
working on: The signal will be acted upon after the
 current operation has completed. For instance, if
the thread is stuck on
 an I/O call, sending it a signal will not cause the I/O call to be interrupted
 such
that the signal is acted up immediately.

Sending a signal to a terminated thread is ignored.

WARNINGS
Perl exited with active threads:

If the program exits without all threads having either been joined or
 detached, then this
warning will be issued.

NOTE: If the main thread exits, then this warning cannot be suppressed
 using no warnings
 'threads'; as suggested below.

Thread creation failed: pthread_create returned #

See the appropriate man page for pthread_create to determine the actual
 cause for the
failure.

Thread # terminated abnormally: ...

A thread terminated in some manner other than just returning from its entry
 point function, or
by using threads->exit(). For example, the thread
 may have terminated because of an
error, or by using die.

Using minimum thread stack size of #

Some platforms have a minimum thread stack size. Trying to set the stack size
 below this
value will result in the above warning, and the stack size will be
 set to the minimum.

Perl version 5.16.1 documentation - threads

Page 11http://perldoc.perl.org

Thread creation failed: pthread_attr_setstacksize(SIZE) returned 22

The specified SIZE exceeds the system's maximum stack size. Use a smaller
 value for the
stack size.

If needed, thread warnings can be suppressed by using:

 no warnings 'threads';

in the appropriate scope.

ERRORS
This Perl not built to support threads

The particular copy of Perl that you're trying to use was not built using the useithreads
configuration option.

Having threads support requires all of Perl and all of the XS modules in the
 Perl installation to
be rebuilt; it is not just a question of adding the threads module (i.e., threaded and
non-threaded Perls are binary
 incompatible.)

Cannot change stack size of an existing thread

The stack size of currently extant threads cannot be changed, therefore, the
 following results
in the above error:

 $thr->set_stack_size($size);

Cannot signal threads without safe signals

Safe signals must be in effect to use the ->kill() signalling method.
 See Unsafe signals for
more details.

Unrecognized signal name: ...

The particular copy of Perl that you're trying to use does not support the
 specified signal being
used in a ->kill() call.

BUGS AND LIMITATIONS
Before you consider posting a bug report, please consult, and possibly post a
 message to the
discussion forum to see if what you've encountered is a known
 problem.

Thread-safe modules

See "Making your module threadsafe" in perlmod when creating modules that may
 be used in
threaded applications, especially if those modules use non-Perl
 data, or XS code.

Using non-thread-safe modules

Unfortunately, you may encounter Perl modules that are not thread-safe.
 For example, they
may crash the Perl interpreter during execution, or may dump
 core on termination. Depending
on the module and the requirements of your
 application, it may be possible to work around
such difficulties.

If the module will only be used inside a thread, you can try loading the
 module from inside the
thread entry point function using require (and import if needed):

 sub thr_func
 {
 require Unsafe::Module
 # Unsafe::Module->import(...);

 }

Perl version 5.16.1 documentation - threads

Page 12http://perldoc.perl.org

If the module is needed inside the main thread, try modifying your
 application so that the
module is loaded (again using require and ->import()) after any threads are started, and
in such a way that no
 other threads are started afterwards.

If the above does not work, or is not adequate for your application, then file
 a bug report on
http://rt.cpan.org/Public/ against the problematic module.

Memory consumption

On most systems, frequent and continual creation and destruction of threads
 can lead to
ever-increasing growth in the memory footprint of the Perl
 interpreter. While it is simple to just
launch threads and then ->join() or ->detach() them, for long-lived applications, it is

better to maintain a pool of threads, and to reuse them for the work needed,
 using queues to
notify threads of pending work. The CPAN
 distribution of this module contains a simple
example
 (examples/pool_reuse.pl) illustrating the creation, use and monitoring of a
 pool of
reusable threads.

Current working directory

On all platforms except MSWin32, the setting for the current working directory
 is shared
among all threads such that changing it in one thread (e.g., using chdir()) will affect all the
threads in the application.

On MSWin32, each thread maintains its own the current working directory
 setting.

Environment variables

Currently, on all platforms except MSWin32, all system calls (e.g., using system() or
back-ticks) made from threads use the environment variable
 settings from the main thread. In
other words, changes made to %ENV in
 a thread will not be visible in system calls made by that
thread.

To work around this, set environment variables as part of the system call.
 For example:

 my $msg = 'hello';
 system("FOO=$msg; echo \$FOO"); # Outputs 'hello' to STDOUT

On MSWin32, each thread maintains its own set of environment variables.

Catching signals

Signals are caught by the main thread (thread ID = 0) of a script.
 Therefore, setting up signal
handlers in threads for purposes other than THREAD SIGNALLING as documented above will
not accomplish what is
 intended.

This is especially true if trying to catch SIGALRM in a thread. To handle
 alarms in threads, set
up a signal handler in the main thread, and then use THREAD SIGNALLING to relay the
signal to the thread:

 # Create thread with a task that may time out
 my $thr->create(sub {
 threads->yield();
 eval {
 $SIG{ALRM} = sub { die("Timeout\n"); };
 alarm(10);
 ... # Do work here
 alarm(0);
 };
 if ($@ =~ /Timeout/) {
 warn("Task in thread timed out\n");
 }
 };

 # Set signal handler to relay SIGALRM to thread

Perl version 5.16.1 documentation - threads

Page 13http://perldoc.perl.org

 $SIG{ALRM} = sub { $thr->kill('ALRM') };

 ... # Main thread continues working

Parent-child threads

On some platforms, it might not be possible to destroy parent threads while
 there are still
existing child threads.

Creating threads inside special blocks

Creating threads inside BEGIN, CHECK or INIT blocks should not be
 relied upon. Depending
on the Perl version and the application code, results
 may range from success, to (apparently
harmless) warnings of leaked scalar, or
 all the way up to crashing of the Perl interpreter.

Unsafe signals

Since Perl 5.8.0, signals have been made safer in Perl by postponing their
 handling until the
interpreter is in a safe state. See "Safe Signals" in perl58delta and "Deferred Signals (Safe
Signals)" in perlipc
 for more details.

Safe signals is the default behavior, and the old, immediate, unsafe
 signalling behavior is only
in effect in the following situations:

* Perl has been built with PERL_OLD_SIGNALS (see perl -V).

* The environment variable PERL_SIGNALS is set to unsafe (see "PERL_SIGNALS" in
perlrun).

* The module Perl::Unsafe::Signals is used.

If unsafe signals is in effect, then signal handling is not thread-safe, and
 the ->kill()
signalling method cannot be used.

Returning closures from threads

Returning closures from threads should not be relied upon. Depending of the
 Perl version and
the application code, results may range from success, to
 (apparently harmless) warnings of
leaked scalar, or all the way up to crashing
 of the Perl interpreter.

Returning objects from threads

Returning objects from threads does not work. Depending on the classes
 involved, you may
be able to work around this by returning a serialized
 version of the object (e.g., using
Data::Dumper or Storable), and then
 reconstituting it in the joining thread. If you're using Perl
5.10.0 or
 later, and if the class supports shared objects,
 you can pass them via shared queues
.

END blocks in threads

It is possible to add END blocks to threads by using require or eval with the appropriate code.
These END blocks
 will then be executed when the thread's interpreter is destroyed (i.e., either

during a ->join() call, or at program termination).

However, calling any threads methods in such an END block will most
 likely fail (e.g., the
application may hang, or generate an error) due to
 mutexes that are needed to control
functionality within the threads module.

For this reason, the use of END blocks in threads is strongly
 discouraged.

Open directory handles

In perl 5.14 and higher, on systems other than Windows that do
 not support the fchdir C
function, directory handles (see opendir) will not be copied to new
 threads. You can use the
d_fchdir variable in Config.pm to
 determine whether your system supports it.

In prior perl versions, spawning threads with open directory handles would
 crash the

Perl version 5.16.1 documentation - threads

Page 14http://perldoc.perl.org

interpreter. [perl #75154]

Perl Bugs and the CPAN Version of threads

Support for threads extends beyond the code in this module (i.e., threads.pm and threads.xs),
and into the Perl interpreter itself. Older
 versions of Perl contain bugs that may manifest
themselves despite using the
 latest version of threads from CPAN. There is no workaround for
this other
 than upgrading to the latest version of Perl.

Even with the latest version of Perl, it is known that certain constructs
 with threads may result
in warning messages concerning leaked scalars or
 unreferenced scalars. However, such
warnings are harmless, and may safely be
 ignored.

You can search for threads related bug reports at http://rt.cpan.org/Public/. If needed submit
any new bugs, problems,
 patches, etc. to:
http://rt.cpan.org/Public/Dist/Display.html?Name=threads

REQUIREMENTS
Perl 5.8.0 or later

SEE ALSO
threads Discussion Forum on CPAN: http://www.cpanforum.com/dist/threads

threads::shared, perlthrtut

http://www.perl.com/pub/a/2002/06/11/threads.html and
http://www.perl.com/pub/a/2002/09/04/threads.html

Perl threads mailing list: http://lists.perl.org/list/ithreads.html

Stack size discussion: http://www.perlmonks.org/?node_id=532956

AUTHOR
Artur Bergman <sky AT crucially DOT net>

CPAN version produced by Jerry D. Hedden <jdhedden AT cpan DOT org>

LICENSE
threads is released under the same license as Perl.

ACKNOWLEDGEMENTS
Richard Soderberg <perl AT crystalflame DOT net> -
 Helping me out tons, trying to find reasons for
races and other weird bugs!

Simon Cozens <simon AT brecon DOT co DOT uk> -
 Being there to answer zillions of annoying
questions

Rocco Caputo <troc AT netrus DOT net>

Vipul Ved Prakash <mail AT vipul DOT net> -
 Helping with debugging

Dean Arnold <darnold AT presicient DOT com> -
 Stack size API

