
Perl version 5.16.1 documentation - perlpodspec

Page 1http://perldoc.perl.org

NAME
perlpodspec - Plain Old Documentation: format specification and notes

DESCRIPTION
This document is detailed notes on the Pod markup language. Most
 people will only have to read
perlpod to know how to write
 in Pod, but this document may answer some incidental questions to do

with parsing and rendering Pod.

In this document, "must" / "must not", "should" /
 "should not", and "may" have their conventional (cf.
RFC 2119)
 meanings: "X must do Y" means that if X doesn't do Y, it's against
 this specification, and
should really be fixed. "X should do Y"
 means that it's recommended, but X may fail to do Y, if there's
a
 good reason. "X may do Y" is merely a note that X can do Y at
 will (although it is up to the reader to
detect any connotation of
 "and I think it would be nice if X did Y" versus "it wouldn't
 really bother me if
X did Y").

Notably, when I say "the parser should do Y", the
 parser may fail to do Y, if the calling application
explicitly
 requests that the parser not do Y. I often phrase this as
 "the parser should, by default, do Y."
This doesn't require
 the parser to provide an option for turning off whatever
 feature Y is (like
expanding tabs in verbatim paragraphs), although
 it implicates that such an option may be provided.

Pod Definitions
Pod is embedded in files, typically Perl source files, although you
 can write a file that's nothing but
Pod.

A line in a file consists of zero or more non-newline characters,
 terminated by either a newline or the
end of the file.

A newline sequence is usually a platform-dependent concept, but
 Pod parsers should understand it
to mean any of CR (ASCII 13), LF
 (ASCII 10), or a CRLF (ASCII 13 followed immediately by ASCII
10), in
 addition to any other system-specific meaning. The first CR/CRLF/LF
 sequence in the file may
be used as the basis for identifying the
 newline sequence for parsing the rest of the file.

A blank line is a line consisting entirely of zero or more spaces
 (ASCII 32) or tabs (ASCII 9), and
terminated by a newline or end-of-file.
 A non-blank line is a line containing one or more characters
other
 than space or tab (and terminated by a newline or end-of-file).

(Note: Many older Pod parsers did not accept a line consisting of
 spaces/tabs and then a newline as a
blank line. The only lines they
 considered blank were lines consisting of no characters at all,

terminated by a newline.)

Whitespace is used in this document as a blanket term for spaces,
 tabs, and newline sequences. (By
itself, this term usually refers
 to literal whitespace. That is, sequences of whitespace characters
 in
Pod source, as opposed to "E<32>", which is a formatting
 code that denotes a whitespace character.)

A Pod parser is a module meant for parsing Pod (regardless of
 whether this involves calling
callbacks or building a parse tree or
 directly formatting it). A Pod formatter (or Pod translator)
 is a
module or program that converts Pod to some other format (HTML,
 plaintext, TeX, PostScript, RTF).
A Pod processor might be a
 formatter or translator, or might be a program that does something
 else
with the Pod (like counting words, scanning for index points,
 etc.).

Pod content is contained in Pod blocks. A Pod block starts with a
 line that matches
<m/\A=[a-zA-Z]/>, and continues up to the next line
 that matches m/\A=cut/ or up to the end of the
file if there is
 no m/\A=cut/ line.

Within a Pod block, there are Pod paragraphs. A Pod paragraph
 consists of non-blank lines of text,
separated by one or more blank
 lines.

For purposes of Pod processing, there are four types of paragraphs in
 a Pod block:

A command paragraph (also called a "directive"). The first line of
 this paragraph must match

Perl version 5.16.1 documentation - perlpodspec

Page 2http://perldoc.perl.org

m/\A=[a-zA-Z]/. Command paragraphs are
 typically one line, as in:

 =head1 NOTES

 =item *

But they may span several (non-blank) lines:

 =for comment
 Hm, I wonder what it would look like if
 you tried to write a BNF for Pod from this.

 =head3 Dr. Strangelove, or: How I Learned to
 Stop Worrying and Love the Bomb

Some command paragraphs allow formatting codes in their content
 (i.e., after the part that
matches m/\A=[a-zA-Z]\S*\s*/), as in:

 =head1 Did You Remember to C<use strict;>?

In other words, the Pod processing handler for "head1" will apply the
 same processing to "Did
You Remember to C<use strict;>?" that it
 would to an ordinary paragraph (i.e., formatting
codes like
 "C<...>") are parsed and presumably formatted appropriately, and
 whitespace in the
form of literal spaces and/or tabs is not
 significant.

A verbatim paragraph. The first line of this paragraph must be a
 literal space or tab, and this
paragraph must not be inside a "=begin identifier", ... "=end identifier" sequence unless
 "
identifier" begins with a colon (":"). That is, if a paragraph
 starts with a literal space or tab, but
is inside a
 "=begin identifier", ... "=end identifier" region, then it's
 a data paragraph, unless "
identifier" begins with a colon.

Whitespace is significant in verbatim paragraphs (although, in
 processing, tabs are probably
expanded).

An ordinary paragraph. A paragraph is an ordinary paragraph
 if its first line matches neither
m/\A=[a-zA-Z]/ nor m/\A[\t]/, and if it's not inside a "=begin identifier",
 ... "=end
identifier" sequence unless "identifier" begins with
 a colon (":").

A data paragraph. This is a paragraph that is inside a "=begin identifier" ... "=end identifier"
sequence where
 "identifier" does not begin with a literal colon (":"). In
 some sense, a data
paragraph is not part of Pod at all (i.e.,
 effectively it's "out-of-band"), since it's not subject to
most kinds
 of Pod parsing; but it is specified here, since Pod
 parsers need to be able to call an
event for it, or store it in some
 form in a parse tree, or at least just parse around it.

For example: consider the following paragraphs:

 # <- that's the 0th column

 =head1 Foo

 Stuff

 $foo->bar

 =cut

Here, "=head1 Foo" and "=cut" are command paragraphs because the first
 line of each matches
m/\A=[a-zA-Z]/. "[space][space]$foo->bar"
 is a verbatim paragraph, because its first line starts
with a literal
 whitespace character (and there's no "=begin"..."=end" region around).

Perl version 5.16.1 documentation - perlpodspec

Page 3http://perldoc.perl.org

The "=begin identifier" ... "=end identifier" commands stop
 paragraphs that they surround from being
parsed as ordinary or verbatim
 paragraphs, if identifier doesn't begin with a colon. This
 is discussed in
detail in the section About Data Paragraphs and "=begin/=end" Regions.

Pod Commands
This section is intended to supplement and clarify the discussion in "Command Paragraph" in perlpod.
These are the currently recognized
 Pod commands:

"=head1", "=head2", "=head3", "=head4"

This command indicates that the text in the remainder of the paragraph
 is a heading. That text
may contain formatting codes. Examples:

 =head1 Object Attributes

 =head3 What B<Not> to Do!

"=pod"

This command indicates that this paragraph begins a Pod block. (If we
 are already in the
middle of a Pod block, this command has no effect at
 all.) If there is any text in this command
paragraph after "=pod",
 it must be ignored. Examples:

 =pod

 This is a plain Pod paragraph.

 =pod This text is ignored.

"=cut"

This command indicates that this line is the end of this previously
 started Pod block. If there is
any text after "=cut" on the line, it must be
 ignored. Examples:

 =cut

 =cut The documentation ends here.

 =cut
 # This is the first line of program text.
 sub foo { # This is the second.

It is an error to try to start a Pod block with a "=cut" command. In
 that case, the Pod processor
must halt parsing of the input file, and
 must by default emit a warning.

"=over"

This command indicates that this is the start of a list/indent
 region. If there is any text following
the "=over", it must consist
 of only a nonzero positive numeral. The semantics of this numeral
is
 explained in the About =over...=back Regions section, further
 below. Formatting codes are
not expanded. Examples:

 =over 3

 =over 3.5

 =over

"=item"

This command indicates that an item in a list begins here. Formatting
 codes are processed.
The semantics of the (optional) text in the
 remainder of this paragraph are
 explained in the

Perl version 5.16.1 documentation - perlpodspec

Page 4http://perldoc.perl.org

About =over...=back Regions section, further
 below. Examples:

 =item

 =item *

 =item *

 =item 14

 =item 3.

 =item C<< $thing->stuff(I<dodad>) >>

 =item For transporting us beyond seas to be tried for pretended
 offenses

 =item He is at this time transporting large armies of foreign
 mercenaries to complete the works of death, desolation and
 tyranny, already begun with circumstances of cruelty and perfidy
 scarcely paralleled in the most barbarous ages, and totally
 unworthy the head of a civilized nation.

"=back"

This command indicates that this is the end of the region begun
 by the most recent "=over"
command. It permits no text after the
 "=back" command.

"=begin formatname"

"=begin formatname parameter"

This marks the following paragraphs (until the matching "=end
 formatname") as being for
some special kind of processing. Unless
 "formatname" begins with a colon, the contained
non-command
 paragraphs are data paragraphs. But if "formatname" does begin
 with a colon,
then non-command paragraphs are ordinary paragraphs
 or data paragraphs. This is
discussed in detail in the section About Data Paragraphs and "=begin/=end" Regions.

It is advised that formatnames match the regexp m/\A:?[-a-zA-Z0-9_]+\z/. Everything
following whitespace after the
 formatname is a parameter that may be used by the formatter
when dealing
 with this region. This parameter must not be repeated in the "=end"
 paragraph.
Implementors should anticipate future expansion in the
 semantics and syntax of the first
parameter to "=begin"/"=end"/"=for".

"=end formatname"

This marks the end of the region opened by the matching
 "=begin formatname" region. If
"formatname" is not the formatname
 of the most recent open "=begin formatname" region,
then this
 is an error, and must generate an error message. This
 is discussed in detail in the
section About Data Paragraphs and "=begin/=end" Regions.

"=for formatname text..."

This is synonymous with:

 =begin formatname

 text...

 =end formatname

That is, it creates a region consisting of a single paragraph; that
 paragraph is to be treated as

Perl version 5.16.1 documentation - perlpodspec

Page 5http://perldoc.perl.org

a normal paragraph if "formatname"
 begins with a ":"; if "formatname" doesn't begin with a
colon,
 then "text..." will constitute a data paragraph. There is no way
 to use "=for formatname
text..." to express "text..." as a verbatim
 paragraph.

"=encoding encodingname"

This command, which should occur early in the document (at least
 before any non-US-ASCII
data!), declares that this document is
 encoded in the encoding encodingname, which must be

an encoding name that Encode recognizes. (Encode's list
 of supported encodings, in
Encode::Supported, is useful here.)
 If the Pod parser cannot decode the declared encoding, it
should emit a warning and may abort parsing the document
 altogether.

A document having more than one "=encoding" line should be
 considered an error. Pod
processors may silently tolerate this if
 the not-first "=encoding" lines are just duplicates of the

first one (e.g., if there's a "=encoding utf8" line, and later on
 another "=encoding utf8" line). But
Pod processors should complain if
 there are contradictory "=encoding" lines in the same
document
 (e.g., if there is a "=encoding utf8" early in the document and
 "=encoding big5"
later). Pod processors that recognize BOMs
 may also complain if they see an "=encoding" line
that contradicts the BOM (e.g., if a document with a UTF-16LE
 BOM has an "=encoding
shiftjis" line).

If a Pod processor sees any command other than the ones listed
 above (like "=head", or "=haed1", or
"=stuff", or "=cuttlefish",
 or "=w123"), that processor must by default treat this as an
 error. It must not
process the paragraph beginning with that
 command, must by default warn of this as an error, and
may
 abort the parse. A Pod parser may allow a way for particular
 applications to add to the above list
of known commands, and to
 stipulate, for each additional command, whether formatting
 codes should
be processed.

Future versions of this specification may add additional
 commands.

Pod Formatting Codes
(Note that in previous drafts of this document and of perlpod,
 formatting codes were referred to as
"interior sequences", and
 this term may still be found in the documentation for Pod parsers,
 and in
error messages from Pod processors.)

There are two syntaxes for formatting codes:

A formatting code starts with a capital letter (just US-ASCII [A-Z])
 followed by a "<", any
number of characters, and ending with the first
 matching ">". Examples:

 That's what I<you> think!

 What's C<dump()> for?

 X<C<chmod> and C<unlink()> Under Different Operating Systems>

A formatting code starts with a capital letter (just US-ASCII [A-Z])
 followed by two or more
"<"'s, one or more whitespace characters,
 any number of characters, one or more whitespace
characters,
 and ending with the first matching sequence of two or more ">"'s, where
 the
number of ">"'s equals the number of "<"'s in the opening of this
 formatting code. Examples:

 That's what I<< you >> think!

 C<<< open(X, ">>thing.dat") || die $! >>>

 B<< $foo->bar(); >>

With this syntax, the whitespace character(s) after the "C<<<"
 and before the ">>" (or
whatever letter) are not renderable. They
 do not signify whitespace, are merely part of the
formatting codes
 themselves. That is, these are all synonymous:

Perl version 5.16.1 documentation - perlpodspec

Page 6http://perldoc.perl.org

 C<thing>
 C<< thing >>
 C<< thing >>
 C<<< thing >>>
 C<<<<
 thing
 >>>>

and so on.

Finally, the multiple-angle-bracket form does not alter the interpretation
 of nested formatting
codes, meaning that the following four example lines are
 identical in meaning:

 B<example: C<$a E<lt>=E<gt> $b>>

 B<example: C<< $a <=> $b >>>

 B<example: C<< $a E<lt>=E<gt> $b >>>

 B<<< example: C<< $a E<lt>=E<gt> $b >> >>>

In parsing Pod, a notably tricky part is the correct parsing of
 (potentially nested!) formatting codes.
Implementors should
 consult the code in the parse_text routine in Pod::Parser as an
 example of a
correct implementation.

I<text> -- italic text

See the brief discussion in "Formatting Codes" in perlpod.

B<text> -- bold text

See the brief discussion in "Formatting Codes" in perlpod.

C<code> -- code text

See the brief discussion in "Formatting Codes" in perlpod.

F<filename> -- style for filenames

See the brief discussion in "Formatting Codes" in perlpod.

X<topic name> -- an index entry

See the brief discussion in "Formatting Codes" in perlpod.

This code is unusual in that most formatters completely discard
 this code and its content.
Other formatters will render it with
 invisible codes that can be used in building an index of
 the
current document.

Z<> -- a null (zero-effect) formatting code

Discussed briefly in "Formatting Codes" in perlpod.

This code is unusual is that it should have no content. That is,
 a processor may complain if it
sees Z<potatoes>. Whether
 or not it complains, the potatoes text should ignored.

L<name> -- a hyperlink

The complicated syntaxes of this code are discussed at length in "Formatting Codes" in
perlpod, and implementation details are
 discussed below, in About L<...> Codes. Parsing the

contents of L<content> is tricky. Notably, the content has to be
 checked for whether it looks
like a URL, or whether it has to be split
 on literal "|" and/or "/" (in the right order!), and so on,
before E<...> codes are resolved.

E<escape> -- a character escape

Perl version 5.16.1 documentation - perlpodspec

Page 7http://perldoc.perl.org

See "Formatting Codes" in perlpod, and several points in Notes on Implementing Pod
Processors.

S<text> -- text contains non-breaking spaces

This formatting code is syntactically simple, but semantically
 complex. What it means is that
each space in the printable
 content of this code signifies a non-breaking space.

Consider:

 C<$x ? $y : $z>

 S<C<$x ? $y : $z>>

Both signify the monospace (c[ode] style) text consisting of
 "$x", one space, "?", one space,
":", one space, "$z". The
 difference is that in the latter, with the S code, those spaces
 are not
"normal" spaces, but instead are non-breaking spaces.

If a Pod processor sees any formatting code other than the ones
 listed above (as in "N<...>", or "Q<
...>", etc.), that
 processor must by default treat this as an error.
 A Pod parser may allow a way for
particular
 applications to add to the above list of known formatting codes;
 a Pod parser might even
allow a way to stipulate, for each additional
 command, whether it requires some form of special
processing, as
 L<...> does.

Future versions of this specification may add additional
 formatting codes.

Historical note: A few older Pod processors would not see a ">" as
 closing a "C<" code, if the ">" was
immediately preceded by
 a "-". This was so that this:

 C<$foo->bar>

would parse as equivalent to this:

 C<$foo-E<gt>bar>

instead of as equivalent to a "C" formatting code containing only "$foo-", and then a "bar>" outside the
"C" formatting code. This
 problem has since been solved by the addition of syntaxes like this:

 C<< $foo->bar >>

Compliant parsers must not treat "->" as special.

Formatting codes absolutely cannot span paragraphs. If a code is
 opened in one paragraph, and no
closing code is found by the end of
 that paragraph, the Pod parser must close that formatting code,

and should complain (as in "Unterminated I code in the paragraph
 starting at line 123: 'Time objects
are not...'"). So these
 two paragraphs:

 I<I told you not to do this!

 Don't make me say it again!>

...must not be parsed as two paragraphs in italics (with the I
 code starting in one paragraph and
starting in another.) Instead,
 the first paragraph should generate a warning, but that aside, the
 above
code must parse as if it were:

 I<I told you not to do this!>

 Don't make me say it again!E<gt>

Perl version 5.16.1 documentation - perlpodspec

Page 8http://perldoc.perl.org

(In SGMLish jargon, all Pod commands are like block-level
 elements, whereas all Pod formatting
codes are like inline-level
 elements.)

Notes on Implementing Pod Processors
The following is a long section of miscellaneous requirements
 and suggestions to do with Pod
processing.

Pod formatters should tolerate lines in verbatim blocks that are of
 any length, even if that
means having to break them (possibly several
 times, for very long lines) to avoid text running
off the side of the
 page. Pod formatters may warn of such line-breaking. Such warnings
 are
particularly appropriate for lines are over 100 characters long, which
 are usually not
intentional.

Pod parsers must recognize all of the three well-known newline
 formats: CR, LF, and CRLF.
See perlport.

Pod parsers should accept input lines that are of any length.

Since Perl recognizes a Unicode Byte Order Mark at the start of files
 as signaling that the file
is Unicode encoded as in UTF-16 (whether
 big-endian or little-endian) or UTF-8, Pod parsers
should do the
 same. Otherwise, the character encoding should be understood as
 being UTF-8
if the first highbit byte sequence in the file seems
 valid as a UTF-8 sequence, or otherwise as
Latin-1.

Future versions of this specification may specify
 how Pod can accept other encodings.
Presumably treatment of other
 encodings in Pod parsing would be as in XML parsing:
whatever the
 encoding declared by a particular Pod file, content is to be
 stored in memory as
Unicode characters.

The well known Unicode Byte Order Marks are as follows: if the
 file begins with the two literal
byte values 0xFE 0xFF, this is
 the BOM for big-endian UTF-16. If the file begins with the two

literal byte value 0xFF 0xFE, this is the BOM for little-endian
 UTF-16. If the file begins with the
three literal byte values
 0xEF 0xBB 0xBF, this is the BOM for UTF-8.

A naive but sufficient heuristic for testing the first highbit
 byte-sequence in a BOM-less file
(whether in code or in Pod!), to see
 whether that sequence is valid as UTF-8 (RFC 2279) is to
check whether
 that the first byte in the sequence is in the range 0xC0 - 0xFD and whether the
next byte is in the range
 0x80 - 0xBF. If so, the parser may conclude that this file is in
 UTF-8,
and all highbit sequences in the file should be assumed to
 be UTF-8. Otherwise the parser
should treat the file as being
 in Latin-1. In the unlikely circumstance that the first highbit

sequence in a truly non-UTF-8 file happens to appear to be UTF-8, one
 can cater to our
heuristic (as well as any more intelligent heuristic)
 by prefacing that line with a comment line
containing a highbit
 sequence that is clearly not valid as UTF-8. A line consisting
 of simply "#",
an e-acute, and any non-highbit byte,
 is sufficient to establish this file's encoding.

This document's requirements and suggestions about encodings
 do not apply to Pod
processors running on non-ASCII platforms,
 notably EBCDIC platforms.

Pod processors must treat a "=for [label] [content...]" paragraph as
 meaning the same thing as
a "=begin [label]" paragraph, content, and
 an "=end [label]" paragraph. (The parser may
conflate these two
 constructs, or may leave them distinct, in the expectation that the
 formatter
will nevertheless treat them the same.)

When rendering Pod to a format that allows comments (i.e., to nearly
 any format other than
plaintext), a Pod formatter must insert comment
 text identifying its name and version number,
and the name and
 version numbers of any modules it might be using to process the Pod.

Minimal examples:

 %% POD::Pod2PS v3.14159, using POD::Parser v1.92

Perl version 5.16.1 documentation - perlpodspec

Page 9http://perldoc.perl.org

 <!-- Pod::HTML v3.14159, using POD::Parser v1.92 -->

 {\doccomm generated by Pod::Tree::RTF 3.14159 using Pod::Tree 1.08}

 .\" Pod::Man version 3.14159, using POD::Parser version 1.92

Formatters may also insert additional comments, including: the
 release date of the Pod
formatter program, the contact address for
 the author(s) of the formatter, the current time, the
name of input
 file, the formatting options in effect, version of Perl used, etc.

Formatters may also choose to note errors/warnings as comments,
 besides or instead of
emitting them otherwise (as in messages to
 STDERR, or dieing).

Pod parsers may emit warnings or error messages ("Unknown E code
 E<zslig>!") to STDERR
(whether through printing to STDERR, or warning/carping, or dieing/croaking), but must
allow
 suppressing all such STDERR output, and instead allow an option for
 reporting
errors/warnings
 in some other way, whether by triggering a callback, or noting errors
 in some
attribute of the document object, or some similarly unobtrusive
 mechanism -- or even by
appending a "Pod Errors" section to the end of
 the parsed form of the document.

In cases of exceptionally aberrant documents, Pod parsers may abort the
 parse. Even then,
using dieing/croaking is to be avoided; where
 possible, the parser library may simply close
the input file
 and add text like "*** Formatting Aborted ***" to the end of the
 (partial) in-memory
document.

In paragraphs where formatting codes (like E<...>, B<...>)
 are understood (i.e., not verbatim
paragraphs, but including
 ordinary paragraphs, and command paragraphs that produce
renderable
 text, like "=head1"), literal whitespace should generally be considered

"insignificant", in that one literal space has the same meaning as any
 (nonzero) number of
literal spaces, literal newlines, and literal tabs
 (as long as this produces no blank lines, since
those would terminate
 the paragraph). Pod parsers should compact literal whitespace in each

processed paragraph, but may provide an option for overriding this
 (since some processing
tasks do not require it), or may follow
 additional special rules (for example, specially treating

period-space-space or period-newline sequences).

Pod parsers should not, by default, try to coerce apostrophe (') and
 quote (") into smart quotes
(little 9's, 66's, 99's, etc), nor try to
 turn backtick (`) into anything else but a single backtick
character
 (distinct from an open quote character!), nor "--" into anything but
 two minus signs.
They must never do any of those things to text
 in C<...> formatting codes, and never ever to
text in verbatim
 paragraphs.

When rendering Pod to a format that has two kinds of hyphens (-), one
 that's a non-breaking
hyphen, and another that's a breakable hyphen
 (as in "object-oriented", which can be split
across lines as
 "object-", newline, "oriented"), formatters are encouraged to
 generally translate
"-" to non-breaking hyphen, but may apply
 heuristics to convert some of these to breaking
hyphens.

Pod formatters should make reasonable efforts to keep words of Perl
 code from being broken
across lines. For example, "Foo::Bar" in some
 formatting systems is seen as eligible for being
broken across lines
 as "Foo::" newline "Bar" or even "Foo::-" newline "Bar". This should
 be
avoided where possible, either by disabling all line-breaking in
 mid-word, or by wrapping
particular words with internal punctuation
 in "don't break this across lines" codes (which in
some formats may
 not be a single code, but might be a matter of inserting non-breaking

zero-width spaces between every pair of characters in a word.)

Pod parsers should, by default, expand tabs in verbatim paragraphs as
 they are processed,
before passing them to the formatter or other
 processor. Parsers may also allow an option for
overriding this.

Perl version 5.16.1 documentation - perlpodspec

Page 10http://perldoc.perl.org

Pod parsers should, by default, remove newlines from the end of
 ordinary and verbatim
paragraphs before passing them to the
 formatter. For example, while the paragraph you're
reading now
 could be considered, in Pod source, to end with (and contain)
 the newline(s) that
end it, it should be processed as ending with
 (and containing) the period character that ends
this sentence.

Pod parsers, when reporting errors, should make some effort to report
 an approximate line
number ("Nested E<>'s in Paragraph #52, near
 line 633 of Thing/Foo.pm!"), instead of merely
noting the paragraph
 number ("Nested E<>'s in Paragraph #52 of Thing/Foo.pm!"). Where
 this
is problematic, the paragraph number should at least be
 accompanied by an excerpt from the
paragraph ("Nested E<>'s in
 Paragraph #52 of Thing/Foo.pm, which begins 'Read/write
accessor for
 the C<interest rate> attribute...'").

Pod parsers, when processing a series of verbatim paragraphs one
 after another, should
consider them to be one large verbatim
 paragraph that happens to contain blank lines. I.e.,
these two
 lines, which have a blank line between them:

	 use Foo;

	 print Foo->VERSION

should be unified into one paragraph ("\tuse Foo;\n\n\tprint
 Foo->VERSION") before being
passed to the formatter or other
 processor. Parsers may also allow an option for overriding
this.

While this might be too cumbersome to implement in event-based Pod
 parsers, it is
straightforward for parsers that return parse trees.

Pod formatters, where feasible, are advised to avoid splitting short
 verbatim paragraphs
(under twelve lines, say) across pages.

Pod parsers must treat a line with only spaces and/or tabs on it as a
 "blank line" such as
separates paragraphs. (Some older parsers
 recognized only two adjacent newlines as a
"blank line" but would not
 recognize a newline, a space, and a newline, as a blank line. This
 is
noncompliant behavior.)

Authors of Pod formatters/processors should make every effort to
 avoid writing their own Pod
parser. There are already several in
 CPAN, with a wide range of interface styles -- and one of
them,
 Pod::Parser, comes with modern versions of Perl.

Characters in Pod documents may be conveyed either as literals, or by
 number in E<n>
codes, or by an equivalent mnemonic, as in
 E<eacute> which is exactly equivalent to E<233>.

Characters in the range 32-126 refer to those well known US-ASCII
 characters (also defined
there by Unicode, with the same meaning),
 which all Pod formatters must render faithfully.
Characters
 in the ranges 0-31 and 127-159 should not be used (neither as
 literals, nor as E<
number> codes), except for the
 literal byte-sequences for newline (13, 13 10, or 10), and tab
(9).

Characters in the range 160-255 refer to Latin-1 characters (also
 defined there by Unicode,
with the same meaning). Characters above
 255 should be understood to refer to Unicode
characters.

Be warned
 that some formatters cannot reliably render characters outside 32-126;
 and many
are able to handle 32-126 and 160-255, but nothing above
 255.

Besides the well-known "E<lt>" and "E<gt>" codes for
 less-than and greater-than, Pod parsers
must understand "E<sol>"
 for "/" (solidus, slash), and "E<verbar>" for "|" (vertical bar,
 pipe).
Pod parsers should also understand "E<lchevron>" and
 "E<rchevron>" as legacy codes for
characters 171 and 187, i.e.,
 "left-pointing double angle quotation mark" = "left pointing

guillemet" and "right-pointing double angle quotation mark" = "right
 pointing guillemet". (These

Perl version 5.16.1 documentation - perlpodspec

Page 11http://perldoc.perl.org

look like little "<<" and ">>", and they
 are now preferably expressed with the HTML/XHTML
codes "E<laquo>"
 and "E<raquo>".)

Pod parsers should understand all "E<html>" codes as defined
 in the entity declarations in the
most recent XHTML specification at www.W3.org. Pod parsers must understand at least the
entities
 that define characters in the range 160-255 (Latin-1). Pod parsers,
 when faced with
some unknown "E<identifier>" code,
 shouldn't simply replace it with nullstring (by default, at
least),
 but may pass it through as a string consisting of the literal characters
 E, less-than,
identifier, greater-than. Or Pod parsers may offer the
 alternative option of processing such
unknown
 "E<identifier>" codes by firing an event especially
 for such codes, or by adding a
special node-type to the in-memory
 document tree. Such "E<identifier>" may have special
meaning
 to some processors, or some processors may choose to add them to
 a special error
report.

Pod parsers must also support the XHTML codes "E<quot>" for
 character 34 (doublequote, "),
"E<amp>" for character 38
 (ampersand, &), and "E<apos>" for character 39 (apostrophe, ').

Note that in all cases of "E<whatever>", whatever (whether
 an htmlname, or a number in any
base) must consist only of
 alphanumeric characters -- that is, whatever must watch
m/\A\w+\z/. So "E< 0 1 2 3 >" is invalid, because
 it contains spaces, which aren't
alphanumeric characters. This
 presumably does not need special treatment by a Pod
processor;
 " 0 1 2 3 " doesn't look like a number in any base, so it would
 presumably be
looked up in the table of HTML-like names. Since
 there isn't (and cannot be) an HTML-like
entity called " 0 1 2 3 ",
 this will be treated as an error. However, Pod processors may
 treat "E
< 0 1 2 3 >" or "E<e-acute>" as syntactically
 invalid, potentially earning a different error
message than the
 error message (or warning, or event) generated by a merely unknown
 (but
theoretically valid) htmlname, as in "E<qacute>"
 [sic]. However, Pod parsers are not required
to make this
 distinction.

Note that E<number> must not be interpreted as simply
 "codepoint number in the
current/native character set". It always
 means only "the character represented by codepoint
number in
 Unicode." (This is identical to the semantics of &#number; in XML.)

This will likely require many formatters to have tables mapping from
 treatable Unicode
codepoints (such as the "\xE9" for the e-acute
 character) to the escape sequences or codes
necessary for conveying
 such sequences in the target output format. A converter to *roff

would, for example know that "\xE9" (whether conveyed literally, or via
 a E<...> sequence) is
to be conveyed as "e*'".
 Similarly, a program rendering Pod in a Mac OS application window,
would
 presumably need to know that "\xE9" maps to codepoint 142 in MacRoman
 encoding
that (at time of writing) is native for Mac OS. Such
 Unicode2whatever mappings are
presumably already widely available for
 common output formats. (Such mappings may be
incomplete! Implementers
 are not expected to bend over backwards in an attempt to render

Cherokee syllabics, Etruscan runes, Byzantine musical symbols, or any
 of the other weird
things that Unicode can encode.) And
 if a Pod document uses a character not found in such a
mapping, the
 formatter should consider it an unrenderable character.

If, surprisingly, the implementor of a Pod formatter can't find a
 satisfactory pre-existing table
mapping from Unicode characters to
 escapes in the target format (e.g., a decent table of
Unicode
 characters to *roff escapes), it will be necessary to build such a
 table. If you are in
this circumstance, you should begin with the
 characters in the range 0x00A0 - 0x00FF, which
is mostly the heavily
 used accented characters. Then proceed (as patience permits and

fastidiousness compels) through the characters that the (X)HTML
 standards groups judged
important enough to merit mnemonics
 for. These are declared in the (X)HTML specifications
at the
 www.W3.org site. At time of writing (September 2001), the most recent
 entity
declaration files are:

 http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent
 http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent
 http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent

Perl version 5.16.1 documentation - perlpodspec

Page 12http://perldoc.perl.org

Then you can progress through any remaining notable Unicode characters
 in the range
0x2000-0x204D (consult the character tables at
 www.unicode.org), and whatever else strikes
your fancy. For example,
 in xhtml-symbol.ent, there is the entry:

 <!ENTITY infin "∞"> <!-- infinity, U+221E ISOtech -->

While the mapping "infin" to the character "\x{221E}" will (hopefully)
 have been already
handled by the Pod parser, the presence of the
 character in this file means that it's reasonably
important enough to
 include in a formatter's table that maps from notable Unicode characters

to the codes necessary for rendering them. So for a Unicode-to-*roff
 mapping, for example,
this would merit the entry:

 "\x{221E}" => '\(in',

It is eagerly hoped that in the future, increasing numbers of formats
 (and formatters) will
support Unicode characters directly (as (X)HTML
 does with ∞, ∞, or
∞), reducing the need
 for idiosyncratic mappings of Unicode-to-my_escapes.

It is up to individual Pod formatter to display good judgement when
 confronted with an
unrenderable character (which is distinct from an
 unknown E<thing> sequence that the parser
couldn't resolve to
 anything, renderable or not). It is good practice to map Latin letters
 with
diacritics (like "E<eacute>"/"E<233>") to the corresponding
 unaccented US-ASCII letters (like
a simple character 101, "e"), but
 clearly this is often not feasible, and an unrenderable
character may
 be represented as "?", or the like. In attempting a sane fallback
 (as from E<
233> to "e"), Pod formatters may use the
 %Latin1Code_to_fallback table in Pod::Escapes, or
Text::Unidecode, if available.

For example, this Pod text:

 magic is enabled if you set C<$Currency> to 'E<euro>'.

may be rendered as:
 "magic is enabled if you set $Currency to '?'" or as
 "magic is enabled if
you set $Currency to '[euro]'", or as
 "magic is enabled if you set $Currency to '[x20AC]',
etc.

A Pod formatter may also note, in a comment or warning, a list of what
 unrenderable
characters were encountered.

E<...> may freely appear in any formatting code (other than
 in another E<...> or in an Z<>).
That is, "X<The
 E<euro>1,000,000 Solution>" is valid, as is "L<The
 E<euro>1,000,000
Solution|Million::Euros>".

Some Pod formatters output to formats that implement non-breaking
 spaces as an individual
character (which I'll call "NBSP"), and
 others output to formats that implement non-breaking
spaces just as
 spaces wrapped in a "don't break this across lines" code. Note that
 at the level
of Pod, both sorts of codes can occur: Pod can contain a
 NBSP character (whether as a
literal, or as a "E<160>" or
 "E<nbsp>" code); and Pod can contain "S<foo
 I<bar> baz>" codes,
where "mere spaces" (character 32) in
 such codes are taken to represent non-breaking
spaces. Pod
 parsers should consider supporting the optional parsing of "S<foo
 I<bar> baz>"
as if it were
 "fooNBSPI<bar>NBSPbaz", and, going the other way, the
 optional parsing of
groups of words joined by NBSP's as if each group
 were in a S<...> code, so that formatters
may use the
 representation that maps best to what the output format demands.

Some processors may find that the S<...> code is easiest to
 implement by replacing each
space in the parse tree under the content
 of the S, with an NBSP. But note: the replacement
should apply not to
 spaces in all text, but only to spaces in printable text. (This
 distinction may
or may not be evident in the particular tree/event
 model implemented by the Pod parser.) For
example, consider this
 unusual case:

 S<L</Autoloaded Functions>>

Perl version 5.16.1 documentation - perlpodspec

Page 13http://perldoc.perl.org

This means that the space in the middle of the visible link text must
 not be broken across
lines. In other words, it's the same as this:

 L<"AutoloadedE<160>Functions"/Autoloaded Functions>

However, a misapplied space-to-NBSP replacement could (wrongly)
 produce something
equivalent to this:

 L<"AutoloadedE<160>Functions"/AutoloadedE<160>Functions>

...which is almost definitely not going to work as a hyperlink (assuming
 this formatter outputs a
format supporting hypertext).

Formatters may choose to just not support the S format code,
 especially in cases where the
output format simply has no NBSP
 character/code and no code for "don't break this stuff
across lines".

Besides the NBSP character discussed above, implementors are reminded
 of the existence of
the other "special" character in Latin-1, the
 "soft hyphen" character, also known as
"discretionary hyphen",
 i.e. E<173> = E<0xAD> = E<shy>). This character expresses an
optional hyphenation
 point. That is, it normally renders as nothing, but may render as a
 "-" if a
formatter breaks the word at that point. Pod formatters
 should, as appropriate, do one of the
following: 1) render this with
 a code with the same meaning (e.g., "\-" in RTF), 2) pass it
through
 in the expectation that the formatter understands this character as
 such, or 3) delete
it.

For example:

 sigE<shy>action
 manuE<shy>script
 JarkE<shy>ko HieE<shy>taE<shy>nieE<shy>mi

These signal to a formatter that if it is to hyphenate "sigaction"
 or "manuscript", then it should
be done as
 "sig-[linebreak]action" or "manu-[linebreak]script"
 (and if it doesn't hyphenate it,
then the E<shy> doesn't
 show up at all). And if it is
 to hyphenate "Jarkko" and/or "Hietaniemi",
it can do
 so only at the points where there is a E<shy> code.

In practice, it is anticipated that this character will not be used
 often, but formatters should
either support it, or delete it.

If you think that you want to add a new command to Pod (like, say, a
 "=biblio" command),
consider whether you could get the same
 effect with a for or begin/end sequence: "=for biblio
..." or "=begin
 biblio" ... "=end biblio". Pod processors that don't understand
 "=for biblio", etc,
will simply ignore it, whereas they may complain
 loudly if they see "=biblio".

Throughout this document, "Pod" has been the preferred spelling for
 the name of the
documentation format. One may also use "POD" or
 "pod". For the documentation that is
(typically) in the Pod
 format, you may use "pod", or "Pod", or "POD". Understanding these

distinctions is useful; but obsessing over how to spell them, usually
 is not.

About L<...> Codes
As you can tell from a glance at perlpod, the L<...>
 code is the most complex of the Pod formatting
codes. The points below
 will hopefully clarify what it means and how processors should deal
 with it.

In parsing an L<...> code, Pod parsers must distinguish at least
 four attributes:

First:

The link-text. If there is none, this must be undef. (E.g., in
 "L<Perl
Functions|perlfunc>", the link-text is "Perl Functions".
 In "L<Time::HiRes>" and even "L
<|Time::HiRes>", there is no
 link text. Note that link text may contain formatting.)

Second:

Perl version 5.16.1 documentation - perlpodspec

Page 14http://perldoc.perl.org

The possibly inferred link-text; i.e., if there was no real link
 text, then this is the text that
we'll infer in its place. (E.g., for
 "L<Getopt::Std>", the inferred link text is "Getopt::Std".)

Third:

The name or URL, or undef if none. (E.g., in "L<Perl
 Functions|perlfunc>", the name
(also sometimes called the page)
 is "perlfunc". In "L</CAVEATS>", the name is undef.)

Fourth:

The section (AKA "item" in older perlpods), or undef if none. E.g.,
 in "L<
Getopt::Std/DESCRIPTION>", "DESCRIPTION" is the section. (Note
 that this is not
the same as a manpage section like the "5" in "man 5
 crontab". "Section Foo" in the
Pod sense means the part of the text
 that's introduced by the heading or item whose
text is "Foo".)

Pod parsers may also note additional attributes including:

Fifth:

A flag for whether item 3 (if present) is a URL (like
 "http://lists.perl.org" is), in which
case there should be no section
 attribute; a Pod name (like "perldoc" and "Getopt::Std"
are); or
 possibly a man page name (like "crontab(5)" is).

Sixth:

The raw original L<...> content, before text is split on
 "|", "/", etc, and before E<...>
codes are expanded.

(The above were numbered only for concise reference below. It is not
 a requirement that
these be passed as an actual list or array.)

For example:

 L<Foo::Bar>
 => undef, # link text
 "Foo::Bar", # possibly inferred link text
 "Foo::Bar", # name
 undef, # section
 'pod', # what sort of link
 "Foo::Bar" # original content

 L<Perlport's section on NL's|perlport/Newlines>
 => "Perlport's section on NL's", # link text
 "Perlport's section on NL's", # possibly inferred link text
 "perlport", # name
 "Newlines", # section
 'pod', # what sort of link
 "Perlport's section on NL's|perlport/Newlines" # orig.
content

 L<perlport/Newlines>
 => undef, # link text
 '"Newlines" in perlport', # possibly inferred link text
 "perlport", # name
 "Newlines", # section
 'pod', # what sort of link
 "perlport/Newlines" # original content

 L<crontab(5)/"DESCRIPTION">
 => undef, # link text
 '"DESCRIPTION" in crontab(5)', # possibly inferred link text

Perl version 5.16.1 documentation - perlpodspec

Page 15http://perldoc.perl.org

 "crontab(5)", # name
 "DESCRIPTION", # section
 'man', # what sort of link
 'crontab(5)/"DESCRIPTION"' # original content

 L</Object Attributes>
 => undef, # link text
 '"Object Attributes"', # possibly inferred link text
 undef, # name
 "Object Attributes", # section
 'pod', # what sort of link
 "/Object Attributes" # original content

 L<http://www.perl.org/>
 => undef, # link text
 "http://www.perl.org/", # possibly inferred link text
 "http://www.perl.org/", # name
 undef, # section
 'url', # what sort of link
 "http://www.perl.org/" # original content

 L<Perl.org|http://www.perl.org/>
 => "Perl.org", # link text
 "http://www.perl.org/", # possibly inferred link text
 "http://www.perl.org/", # name
 undef, # section
 'url', # what sort of link
 "Perl.org|http://www.perl.org/" # original content

Note that you can distinguish URL-links from anything else by the
 fact that they match
m/\A\w+:[^:\s]\S*\z/. So L<http://www.perl.com> is a URL, but L<
HTTP::Response> isn't.

In case of L<...> codes with no "text|" part in them,
 older formatters have exhibited great
variation in actually displaying
 the link or cross reference. For example, L<crontab(5)> would
render
 as "the crontab(5) manpage", or "in the crontab(5) manpage"
 or just "
crontab(5)".

Pod processors must now treat "text|"-less links as follows:

 L<name> => L<name|name>
 L</section> => L<"section"|/section>
 L<name/section> => L<"section" in name|name/section>

Note that section names might contain markup. I.e., if a section
 starts with:

 =head2 About the C<-M> Operator

or with:

 =item About the C<-M> Operator

then a link to it would look like this:

 L<somedoc/About the C<-M> Operator>

Formatters may choose to ignore the markup for purposes of resolving
 the link and use only
the renderable characters in the section name,
 as in:

 <h1>About the <code>-M</code>

Perl version 5.16.1 documentation - perlpodspec

Page 16http://perldoc.perl.org

 Operator</h1>

 ...

 About the <code>-M</code>
 Operator" in somedoc

Previous versions of perlpod distinguished L<name/"section">
 links from L<name/item>
links (and their targets). These
 have been merged syntactically and semantically in the current
specification, and section can refer either to a "=headn Heading
 Content" command or to a
"=item Item Content" command. This
 specification does not specify what behavior should be in
the case
 of a given document having several things all seeming to produce the
 same section
identifier (e.g., in HTML, several things all producing
 the same anchorname in <a name="
anchorname">...
 elements). Where Pod processors can control this behavior, they should
use the first such anchor. That is, L<Foo/Bar> refers to the first "Bar" section in Foo.

But for some processors/formats this cannot be easily controlled; as
 with the HTML example,
the behavior of multiple ambiguous
 ... is most easily just left up
to
 browsers to decide.

In a L<text|...> code, text may contain formatting codes
 for formatting or for E<...>
escapes, as in:

 L<B<ummE<234>stuff>|...>

For L<...> codes without a "name|" part, only E<...> and Z<> codes may occur. That is,

authors should not use "L<B<Foo::Bar>>".

Note, however, that formatting codes and Z<>'s can occur in any
 and all parts of an L<...>
(i.e., in name, section, text,
 and url).

Authors must not nest L<...> codes. For example, "L<The
 L<Foo::Bar> man page>" should be
treated as an error.

Note that Pod authors may use formatting codes inside the "text"
 part of "L<text|name>" (and
so on for L<text|/"sec">).

In other words, this is valid:

 Go read L<the docs on C<$.>|perlvar/"$.">

Some output formats that do allow rendering "L<...>" codes as
 hypertext, might not allow the
link-text to be formatted; in
 that case, formatters will have to just ignore that formatting.

At time of writing, L<name> values are of two types:
 either the name of a Pod page like L<
Foo::Bar> (which
 might be a real Perl module or program in an @INC / PATH
 directory, or a
.pod file in those places); or the name of a Unix
 man page, like L<crontab(5)>. In theory, L
<chmod>
 in ambiguous between a Pod page called "chmod", or the Unix man page
 "chmod"
(in whatever man-section). However, the presence of a string
 in parens, as in "crontab(5)", is
sufficient to signal that what
 is being discussed is not a Pod page, and so is presumably a

Unix man page. The distinction is of no importance to many
 Pod processors, but some
processors that render to hypertext formats
 may need to distinguish them in order to know
how to render a
 given L<foo> code.

Previous versions of perlpod allowed for a L<section> syntax (as in L<Object
Attributes>), which was not easily distinguishable from L<name> syntax and for L<
"section"> which was only
 slightly less ambiguous. This syntax is no longer in the
specification, and
 has been replaced by the L</section> syntax (where the slash was

formerly optional). Pod parsers should tolerate the L<"section">
 syntax, for a while at least.
The suggested heuristic for distinguishing L<section> from L<name> is that if it contains
any
 whitespace, it's a section. Pod processors should warn about this being
 deprecated

Perl version 5.16.1 documentation - perlpodspec

Page 17http://perldoc.perl.org

syntax.About =over...=back Regions
"=over"..."=back" regions are used for various kinds of list-like
 structures. (I use the term "region" here
simply as a collective
 term for everything from the "=over" to the matching "=back".)

The non-zero numeric indentlevel in "=over indentlevel" ...
 "=back" is used for giving the
formatter a clue as to how many
 "spaces" (ems, or roughly equivalent units) it should tab over,
although many formatters will have to convert this to an absolute
 measurement that may not
exactly match with the size of spaces (or M's)
 in the document's base font. Other formatters
may have to completely
 ignore the number. The lack of any explicit indentlevel parameter is

equivalent to an indentlevel value of 4. Pod processors may
 complain if indentlevel is present
but is not a positive number
 matching m/\A(\d*\.)?\d+\z/.

Authors of Pod formatters are reminded that "=over" ... "=back" may
 map to several different
constructs in your output format. For
 example, in converting Pod to (X)HTML, it can map to
any of
 ..., ..., <dl>...</dl>, or
 <blockquote>...</blockquote>. Similarly,
"=item" can map to or
 <dt>.

Each "=over" ... "=back" region should be one of the following:

An "=over" ... "=back" region containing only "=item *" commands,
 each followed by
some number of ordinary/verbatim paragraphs, other
 nested "=over" ... "=back"
regions, "=for..." paragraphs, and
 "=begin"..."=end" regions.

(Pod processors must tolerate a bare "=item" as if it were "=item
 ".) Whether "" is
rendered as a literal asterisk, an "o", or as
 some kind of real bullet character, is left up
to the Pod formatter,
 and may depend on the level of nesting.

An "=over" ... "=back" region containing only m/\A=item\s+\d+\.?\s*\z/
paragraphs, each one (or each group of them)
 followed by some number of
ordinary/verbatim paragraphs, other nested
 "=over" ... "=back" regions, "=for..."
paragraphs, and/or
 "=begin"..."=end" codes. Note that the numbers must start at 1
 in
each section, and must proceed in order and without skipping
 numbers.

(Pod processors must tolerate lines like "=item 1" as if they were
 "=item 1.", with the
period.)

An "=over" ... "=back" region containing only "=item [text]"
 commands, each one (or
each group of them) followed by some number of
 ordinary/verbatim paragraphs, other
nested "=over" ... "=back"
 regions, or "=for..." paragraphs, and "=begin"..."=end"
regions.

The "=item [text]" paragraph should not match m/\A=item\s+\d+\.?\s*\z/ or
m/\A=item\s+*\s*\z/, nor should it
 match just m/\A=item\s*\z/.

An "=over" ... "=back" region containing no "=item" paragraphs at
 all, and containing
only some number of ordinary/verbatim paragraphs, and possibly also some nested
"=over"
 ... "=back" regions, "=for..." paragraphs, and "=begin"..."=end"
 regions. Such
an itemless "=over" ... "=back" region in Pod is
 equivalent in meaning to a
"<blockquote>...</blockquote>" element in
 HTML.

Note that with all the above cases, you can determine which type of
 "=over" ... "=back" you
have, by examining the first (non-"=cut", non-"=pod") Pod paragraph after the "=over"
command.

Pod formatters must tolerate arbitrarily large amounts of text
 in the "=item text..." paragraph. In
practice, most such
 paragraphs are short, as in:

 =item For cutting off our trade with all parts of the world

But they may be arbitrarily long:

 =item For transporting us beyond seas to be tried for pretended

Perl version 5.16.1 documentation - perlpodspec

Page 18http://perldoc.perl.org

 offenses

 =item He is at this time transporting large armies of foreign
 mercenaries to complete the works of death, desolation and
 tyranny, already begun with circumstances of cruelty and perfidy
 scarcely paralleled in the most barbarous ages, and totally
 unworthy the head of a civilized nation.

Pod processors should tolerate "=item *" / "=item number" commands
 with no accompanying
paragraph. The middle item is an example:

 =over

 =item 1

 Pick up dry cleaning.

 =item 2

 =item 3

 Stop by the store. Get Abba Zabas, Stoli, and cheap lawn chairs.

 =back

No "=over" ... "=back" region can contain headings. Processors may
 treat such a heading as
an error.

Note that an "=over" ... "=back" region should have some
 content. That is, authors should not
have an empty region like this:

 =over

 =back

Pod processors seeing such a contentless "=over" ... "=back" region,
 may ignore it, or may
report it as an error.

Processors must tolerate an "=over" list that goes off the end of the
 document (i.e., which has
no matching "=back"), but they may warn
 about such a list.

Authors of Pod formatters should note that this construct:

 =item Neque

 =item Porro

 =item Quisquam Est

 Qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
 velit, sed quia non numquam eius modi tempora incidunt ut
 labore et dolore magnam aliquam quaerat voluptatem.

 =item Ut Enim

is semantically ambiguous, in a way that makes formatting decisions
 a bit difficult. On the one
hand, it could be mention of an item
 "Neque", mention of another item "Porro", and mention of
another
 item "Quisquam Est", with just the last one requiring the explanatory
 paragraph "Qui

Perl version 5.16.1 documentation - perlpodspec

Page 19http://perldoc.perl.org

dolorem ipsum quia dolor..."; and then an item
 "Ut Enim". In that case, you'd want to format it
like so:

 Neque

 Porro

 Quisquam Est
 Qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
 velit, sed quia non numquam eius modi tempora incidunt ut
 labore et dolore magnam aliquam quaerat voluptatem.

 Ut Enim

But it could equally well be a discussion of three (related or equivalent)
 items, "Neque",
"Porro", and "Quisquam Est", followed by a paragraph
 explaining them all, and then a new
item "Ut Enim". In that case, you'd
 probably want to format it like so:

 Neque
 Porro
 Quisquam Est
 Qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
 velit, sed quia non numquam eius modi tempora incidunt ut
 labore et dolore magnam aliquam quaerat voluptatem.

 Ut Enim

But (for the foreseeable future), Pod does not provide any way for Pod
 authors to distinguish
which grouping is meant by the above
 "=item"-cluster structure. So formatters should format it
like so:

 Neque

 Porro

 Quisquam Est

 Qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
 velit, sed quia non numquam eius modi tempora incidunt ut
 labore et dolore magnam aliquam quaerat voluptatem.

 Ut Enim

That is, there should be (at least roughly) equal spacing between
 items as between
paragraphs (although that spacing may well be less
 than the full height of a line of text). This
leaves it to the reader
 to use (con)textual cues to figure out whether the "Qui dolorem

ipsum..." paragraph applies to the "Quisquam Est" item or to all three
 items "Neque", "Porro",
and "Quisquam Est". While not an ideal
 situation, this is preferable to providing formatting
cues that may
 be actually contrary to the author's intent.

About Data Paragraphs and "=begin/=end" Regions
Data paragraphs are typically used for inlining non-Pod data that is
 to be used (typically passed
through) when rendering the document to
 a specific format:

 =begin rtf

 \par{\pard\qr\sa4500{\i Printed\~\chdate\~\chtime}\par}

Perl version 5.16.1 documentation - perlpodspec

Page 20http://perldoc.perl.org

 =end rtf

The exact same effect could, incidentally, be achieved with a single
 "=for" paragraph:

 =for rtf \par{\pard\qr\sa4500{\i Printed\~\chdate\~\chtime}\par}

(Although that is not formally a data paragraph, it has the same
 meaning as one, and Pod parsers
may parse it as one.)

Another example of a data paragraph:

 =begin html

 I like PIE!

 <hr>Especially pecan pie!

 =end html

If these were ordinary paragraphs, the Pod parser would try to
 expand the "E" (in the first
paragraph) as a formatting
 code, just like "E<lt>" or "E<eacute>". But since this
 is in a "=begin
identifier"..."=end identifier" region and
 the identifier "html" doesn't begin have a ":" prefix, the contents
of this region are stored as data paragraphs, instead of being
 processed as ordinary paragraphs (or if
they began with a spaces
 and/or tabs, as verbatim paragraphs).

As a further example: At time of writing, no "biblio" identifier is
 supported, but suppose some
processor were written to recognize it as
 a way of (say) denoting a bibliographic reference
(necessarily
 containing formatting codes in ordinary paragraphs). The fact that
 "biblio" paragraphs
were meant for ordinary processing would be
 indicated by prefacing each "biblio" identifier with a
colon:

 =begin :biblio

 Wirth, Niklaus. 1976. I<Algorithms + Data Structures =
 Programs.> Prentice-Hall, Englewood Cliffs, NJ.

 =end :biblio

This would signal to the parser that paragraphs in this begin...end
 region are subject to normal
handling as ordinary/verbatim paragraphs
 (while still tagged as meant only for processors that
understand the
 "biblio" identifier). The same effect could be had with:

 =for :biblio
 Wirth, Niklaus. 1976. I<Algorithms + Data Structures =
 Programs.> Prentice-Hall, Englewood Cliffs, NJ.

The ":" on these identifiers means simply "process this stuff
 normally, even though the result will be
for some special target".
 I suggest that parser APIs report "biblio" as the target identifier,
 but also
report that it had a ":" prefix. (And similarly, with the
 above "html", report "html" as the target identifier,
and note the lack of a ":" prefix.)

Note that a "=begin identifier"..."=end identifier" region where identifier begins with a colon, can
contain commands. For example:

 =begin :biblio

Perl version 5.16.1 documentation - perlpodspec

Page 21http://perldoc.perl.org

 Wirth's classic is available in several editions, including:

 =for comment
 hm, check abebooks.com for how much used copies cost.

 =over

 =item

 Wirth, Niklaus. 1975. I<Algorithmen und Datenstrukturen.>
 Teubner, Stuttgart. [Yes, it's in German.]

 =item

 Wirth, Niklaus. 1976. I<Algorithms + Data Structures =
 Programs.> Prentice-Hall, Englewood Cliffs, NJ.

 =back

 =end :biblio

Note, however, a "=begin identifier"..."=end identifier"
 region where identifier does not begin with a
colon, should not
 directly contain "=head1" ... "=head4" commands, nor "=over", nor "=back",
 nor
"=item". For example, this may be considered invalid:

 =begin somedata

 This is a data paragraph.

 =head1 Don't do this!

 This is a data paragraph too.

 =end somedata

A Pod processor may signal that the above (specifically the "=head1"
 paragraph) is an error. Note,
however, that the following should not be treated as an error:

 =begin somedata

 This is a data paragraph.

 =cut

 # Yup, this isn't Pod anymore.
 sub excl { (rand() > .5) ? "hoo!" : "hah!" }

 =pod

 This is a data paragraph too.

Perl version 5.16.1 documentation - perlpodspec

Page 22http://perldoc.perl.org

 =end somedata

And this too is valid:

 =begin someformat

 This is a data paragraph.

 And this is a data paragraph.

 =begin someotherformat

 This is a data paragraph too.

 And this is a data paragraph too.

 =begin :yetanotherformat

 =head2 This is a command paragraph!

 This is an ordinary paragraph!

 And this is a verbatim paragraph!

 =end :yetanotherformat

 =end someotherformat

 Another data paragraph!

 =end someformat

The contents of the above "=begin :yetanotherformat" ...
 "=end :yetanotherformat" region aren't data
paragraphs, because
 the immediately containing region's identifier (":yetanotherformat")
 begins with a
colon. In practice, most regions that contain
 data paragraphs will contain only data paragraphs;
however, the above nesting is syntactically valid as Pod, even if it is
 rare. However, the handlers for
some formats, like "html",
 will accept only data paragraphs, not nested regions; and they may

complain if they see (targeted for them) nested regions, or commands,
 other than "=end", "=pod", and
"=cut".

Also consider this valid structure:

 =begin :biblio

 Wirth's classic is available in several editions, including:

 =over

 =item

 Wirth, Niklaus. 1975. I<Algorithmen und Datenstrukturen.>

Perl version 5.16.1 documentation - perlpodspec

Page 23http://perldoc.perl.org

 Teubner, Stuttgart. [Yes, it's in German.]

 =item

 Wirth, Niklaus. 1976. I<Algorithms + Data Structures =
 Programs.> Prentice-Hall, Englewood Cliffs, NJ.

 =back

 Buy buy buy!

 =begin html

 <hr>

 =end html

 Now now now!

 =end :biblio

There, the "=begin html"..."=end html" region is nested inside
 the larger "=begin :biblio"..."=end :biblio"
region. Note that the
 content of the "=begin html"..."=end html" region is data
 paragraph(s), because
the immediately containing region's identifier
 ("html") doesn't begin with a colon.

Pod parsers, when processing a series of data paragraphs one
 after another (within a single region),
should consider them to
 be one large data paragraph that happens to contain blank lines. So
 the
content of the above "=begin html"..."=end html" may be stored
 as two data paragraphs (one
consisting of
 "\n"
 and another consisting of "<hr>\n"), but
should be stored as
 a single data paragraph (consisting of "<img
src='wirth_spokesmodeling_book.png'>\n\n<hr>\n").

Pod processors should tolerate empty
 "=begin something"..."=end something" regions,
 empty "=begin
:something"..."=end :something" regions, and
 contentless "=for something" and "=for :something"

paragraphs. I.e., these should be tolerated:

 =for html

 =begin html

 =end html

 =begin :biblio

 =end :biblio

Incidentally, note that there's no easy way to express a data
 paragraph starting with something that
looks like a command. Consider:

 =begin stuff

Perl version 5.16.1 documentation - perlpodspec

Page 24http://perldoc.perl.org

 =shazbot

 =end stuff

There, "=shazbot" will be parsed as a Pod command "shazbot", not as a data
 paragraph "=shazbot\n".
However, you can express a data paragraph consisting
 of "=shazbot\n" using this code:

 =for stuff =shazbot

The situation where this is necessary, is presumably quite rare.

Note that =end commands must match the currently open =begin command. That
 is, they must
properly nest. For example, this is valid:

 =begin outer

 X

 =begin inner

 Y

 =end inner

 Z

 =end outer

while this is invalid:

 =begin outer

 X

 =begin inner

 Y

 =end outer

 Z

 =end inner

This latter is improper because when the "=end outer" command is seen, the
 currently open region
has the formatname "inner", not "outer". (It just
 happens that "outer" is the format name of a higher-up
region.) This is
 an error. Processors must by default report this as an error, and may halt
 processing
the document containing that error. A corollary of this is that
 regions cannot "overlap". That is, the
latter block above does not represent
 a region called "outer" which contains X and Y, overlapping a
region called
 "inner" which contains Y and Z. But because it is invalid (as all
 apparently overlapping
regions would be), it doesn't represent that, or
 anything at all.

Perl version 5.16.1 documentation - perlpodspec

Page 25http://perldoc.perl.org

Similarly, this is invalid:

 =begin thing

 =end hting

This is an error because the region is opened by "thing", and the "=end"
 tries to close "hting" [sic].

This is also invalid:

 =begin thing

 =end

This is invalid because every "=end" command must have a formatname
 parameter.

SEE ALSO
perlpod, "PODs: Embedded Documentation" in perlsyn, podchecker

AUTHOR
Sean M. Burke

