
Perl version 5.16.1 documentation - Filter::Simple

Page 1http://perldoc.perl.org

NAME
Filter::Simple - Simplified source filtering

SYNOPSIS
 # in MyFilter.pm:

 package MyFilter;

 use Filter::Simple;

 FILTER { ... };

 # or just:
 #
 # use Filter::Simple sub { ... };

 # in user's code:

 use MyFilter;

 # this code is filtered

 no MyFilter;

 # this code is not

DESCRIPTION
The Problem

Source filtering is an immensely powerful feature of recent versions of Perl.
 It allows one to extend the
language itself (e.g. the Switch module), to simplify the language (e.g. Language::Pythonesque), or to
completely recast the
 language (e.g. Lingua::Romana::Perligata). Effectively, it allows one to use
 the
full power of Perl as its own, recursively applied, macro language.

The excellent Filter::Util::Call module (by Paul Marquess) provides a
 usable Perl interface to source
filtering, but it is often too powerful
 and not nearly as simple as it could be.

To use the module it is necessary to do the following:

1. Download, build, and install the Filter::Util::Call module.
 (If you have Perl 5.7.1 or later, this is
already done for you.)

2. Set up a module that does a use Filter::Util::Call.

3. Within that module, create an import subroutine.

4. Within the import subroutine do a call to filter_add, passing
 it either a subroutine
reference.

5. Within the subroutine reference, call filter_read or filter_read_exact
 to "prime" $_
with source code data from the source file that will use your module. Check the status value
returned to see if any
 source code was actually read in.

6. Process the contents of $_ to change the source code in the desired manner.

7. Return the status value.

Perl version 5.16.1 documentation - Filter::Simple

Page 2http://perldoc.perl.org

8. If the act of unimporting your module (via a no) should cause source
 code filtering to cease,
create an unimport subroutine, and have it call filter_del. Make sure that the call to
filter_read or filter_read_exact in step 5 will not accidentally read past the no.
Effectively this limits source code filters to line-by-line
 operation, unless the import
subroutine does some fancy
 pre-pre-parsing of the source code it's filtering.

For example, here is a minimal source code filter in a module named
 BANG.pm. It simply converts
every occurrence of the sequence BANG\s+BANG
 to the sequence die 'BANG' if $BANG in any
piece of code following a use BANG; statement (until the next no BANG; statement, if any):

 package BANG;

 use Filter::Util::Call ;

 sub import {
 filter_add(sub {
 my $caller = caller;
 my ($status, $no_seen, $data);
 while ($status = filter_read()) {
 if (/^\s*no\s+$caller\s*;\s*?$/) {
 $no_seen=1;
 last;
 }
 $data .= $_;
 $_ = "";
 }
 $_ = $data;
 s/BANG\s+BANG/die 'BANG' if \$BANG/g
 unless $status < 0;
 $_ .= "no $class;\n" if $no_seen;
 return 1;
 })
 }

 sub unimport {
 filter_del();
 }

 1 ;

This level of sophistication puts filtering out of the reach of
 many programmers.

A Solution
The Filter::Simple module provides a simplified interface to
 Filter::Util::Call; one that is sufficient for
most common cases.

Instead of the above process, with Filter::Simple the task of setting up
 a source code filter is reduced
to:

1. Download and install the Filter::Simple module.
 (If you have Perl 5.7.1 or later, this is already
done for you.)

2. Set up a module that does a use Filter::Simple and then
 calls FILTER { ... }.

3. Within the anonymous subroutine or block that is passed to FILTER, process the contents of

Perl version 5.16.1 documentation - Filter::Simple

Page 3http://perldoc.perl.org

$_ to change the source code in
 the desired manner.

In other words, the previous example, would become:

 package BANG;
 use Filter::Simple;

 FILTER {
 s/BANG\s+BANG/die 'BANG' if \$BANG/g;
 };

 1 ;

Note that the source code is passed as a single string, so any regex that
 uses ^ or $ to detect line
boundaries will need the /m flag.

Disabling or changing <no> behaviour
By default, the installed filter only filters up to a line consisting of one of
 the three standard source
"terminators":

 no ModuleName; # optional comment

or:

 __END__

or:

 __DATA__

but this can be altered by passing a second argument to use Filter::Simple
 or FILTER (just
remember: there's no comma after the initial block when
 you use FILTER).

That second argument may be either a qr'd regular expression (which is then
 used to match the
terminator line), or a defined false value (which indicates
 that no terminator line should be looked for),
or a reference to a hash
 (in which case the terminator is the value associated with the key
'terminator'.

For example, to cause the previous filter to filter only up to a line of the
 form:

 GNAB esu;

you would write:

 package BANG;
 use Filter::Simple;

 FILTER {
 s/BANG\s+BANG/die 'BANG' if \$BANG/g;
 }
 qr/^\s*GNAB\s+esu\s*;\s*?$/;

or:

 FILTER {
 s/BANG\s+BANG/die 'BANG' if \$BANG/g;

Perl version 5.16.1 documentation - Filter::Simple

Page 4http://perldoc.perl.org

 }
 { terminator => qr/^\s*GNAB\s+esu\s*;\s*?$/ };

and to prevent the filter's being turned off in any way:

 package BANG;
 use Filter::Simple;

 FILTER {
 s/BANG\s+BANG/die 'BANG' if \$BANG/g;
 }
 ""; # or: 0

or:

 FILTER {
 s/BANG\s+BANG/die 'BANG' if \$BANG/g;
 }
 { terminator => "" };

Note that, no matter what you set the terminator pattern to,
 the actual terminator itself must be
contained on a single source line.

All-in-one interface
Separating the loading of Filter::Simple:

 use Filter::Simple;

from the setting up of the filtering:

 FILTER { ... };

is useful because it allows other code (typically parser support code
 or caching variables) to be
defined before the filter is invoked.
 However, there is often no need for such a separation.

In those cases, it is easier to just append the filtering subroutine and
 any terminator specification
directly to the use statement that loads
 Filter::Simple, like so:

 use Filter::Simple sub {
 s/BANG\s+BANG/die 'BANG' if \$BANG/g;
 };

This is exactly the same as:

 use Filter::Simple;
 BEGIN {
 Filter::Simple::FILTER {
 s/BANG\s+BANG/die 'BANG' if \$BANG/g;
 };
 }

except that the FILTER subroutine is not exported by Filter::Simple.

Filtering only specific components of source code
One of the problems with a filter like:

Perl version 5.16.1 documentation - Filter::Simple

Page 5http://perldoc.perl.org

 use Filter::Simple;

 FILTER { s/BANG\s+BANG/die 'BANG' if \$BANG/g };

is that it indiscriminately applies the specified transformation to
 the entire text of your source program.
So something like:

 warn 'BANG BANG, YOU'RE DEAD';
 BANG BANG;

will become:

 warn 'die 'BANG' if $BANG, YOU'RE DEAD';
 die 'BANG' if $BANG;

It is very common when filtering source to only want to apply the filter
 to the non-character-string parts
of the code, or alternatively to only
 the character strings.

Filter::Simple supports this type of filtering by automatically
 exporting the FILTER_ONLY subroutine.

FILTER_ONLY takes a sequence of specifiers that install separate
 (and possibly multiple) filters that
act on only parts of the source code.
 For example:

 use Filter::Simple;

 FILTER_ONLY
 code => sub { s/BANG\s+BANG/die 'BANG' if \$BANG/g },
 quotelike => sub { s/BANG\s+BANG/CHITTY CHITTY/g };

The "code" subroutine will only be used to filter parts of the source
 code that are not quotelikes,
POD, or __DATA__. The quotelike
 subroutine only filters Perl quotelikes (including here
documents).

The full list of alternatives is:

"code"

Filters only those sections of the source code that are not quotelikes, POD, or __DATA__.

"code_no_comments"

Filters only those sections of the source code that are not quotelikes, POD,
 comments, or
__DATA__.

"executable"

Filters only those sections of the source code that are not POD or __DATA__.

"executable_no_comments"

Filters only those sections of the source code that are not POD, comments, or __DATA__.

"quotelike"

Filters only Perl quotelikes (as interpreted by &Text::Balanced::extract_quotelike).

"string"

Filters only the string literal parts of a Perl quotelike (i.e. the contents of a string literal, either
half of a tr///, the second
 half of an s///).

"regex"

Perl version 5.16.1 documentation - Filter::Simple

Page 6http://perldoc.perl.org

Filters only the pattern literal parts of a Perl quotelike (i.e. the contents of a qr// or an m//,
the first half of an s///).

"all"

Filters everything. Identical in effect to FILTER.

Except for FILTER_ONLY code => sub {...}, each of
 the component filters is called repeatedly,
once for each component
 found in the source code.

Note that you can also apply two or more of the same type of filter in
 a single FILTER_ONLY. For
example, here's a simple macro-preprocessor that is only applied within regexes,
 with a final
debugging pass that prints the resulting source code:

 use Regexp::Common;
 FILTER_ONLY
 regex => sub { s/!\[/[^/g },
 regex => sub { s/%d/$RE{num}{int}/g },
 regex => sub { s/%f/$RE{num}{real}/g },
 all => sub { print if $::DEBUG };

Filtering only the code parts of source code
Most source code ceases to be grammatically correct when it is broken up
 into the pieces between
string literals and regexes. So the 'code'
 and 'code_no_comments' component filter behave
slightly differently
 from the other partial filters described in the previous section.

Rather than calling the specified processor on each individual piece of
 code (i.e. on the bits between
quotelikes), the 'code...' partial
 filters operate on the entire source code, but with the quotelike
bits
 (and, in the case of 'code_no_comments', the comments) "blanked out".

That is, a 'code...' filter replaces each quoted string, quotelike,
 regex, POD, and __DATA__
section with a placeholder. The
 delimiters of this placeholder are the contents of the $; variable
 at the
time the filter is applied (normally "\034"). The remaining
 four bytes are a unique identifier for the
component being replaced.

This approach makes it comparatively easy to write code preprocessors
 without worrying about the
form or contents of strings, regexes, etc.

For convenience, during a 'code...' filtering operation, Filter::Simple
 provides a package variable (
$Filter::Simple::placeholder) that
 contains a pre-compiled regex that matches any
placeholder...and
 captures the identifier within the placeholder. Placeholders can be
 moved and
re-ordered within the source code as needed.

In addition, a second package variable (@Filter::Simple::components)
 contains a list of the
various pieces of $_, as they were originally split
 up to allow placeholders to be inserted.

Once the filtering has been applied, the original strings, regexes, POD,
 etc. are re-inserted into the
code, by replacing each placeholder with
 the corresponding original component (from @components
). Note that
 this means that the @components variable must be treated with extreme
 care within the
filter. The @components array stores the "back-
 translations" of each placeholder inserted into $_, as
well as the
 interstitial source code between placeholders. If the placeholder
 backtranslations are
altered in @components, they will be similarly
 changed when the placeholders are removed from $_
after the filter
 is complete.

For example, the following filter detects concatenated pairs of
 strings/quotelikes and reverses the
order in which they are
 concatenated:

 package DemoRevCat;
 use Filter::Simple;

Perl version 5.16.1 documentation - Filter::Simple

Page 7http://perldoc.perl.org

 FILTER_ONLY code => sub {
 my $ph = $Filter::Simple::placeholder;
 s{ ($ph) \s* [.] \s* ($ph) }{ $2.$1 }gx
 };

Thus, the following code:

 use DemoRevCat;

 my $str = "abc" . q(def);

 print "$str\n";

would become:

 my $str = q(def)."abc";

 print "$str\n";

and hence print:

 defabc

Using Filter::Simple with an explicit import subroutine
Filter::Simple generates a special import subroutine for
 your module (see How it works) which would
normally replace any import subroutine you might have explicitly declared.

However, Filter::Simple is smart enough to notice your existing import and Do The Right Thing with
it.
 That is, if you explicitly define an import subroutine in a package
 that's using Filter::Simple, that
import subroutine will still
 be invoked immediately after any filter you install.

The only thing you have to remember is that the import subroutine must be declared before the filter
is installed. If you use FILTER
 to install the filter:

 package Filter::TurnItUpTo11;

 use Filter::Simple;

 FILTER { s/(\w+)/\U$1/ };

that will almost never be a problem, but if you install a filtering
 subroutine by passing it directly to the
use Filter::Simple
 statement:

 package Filter::TurnItUpTo11;

 use Filter::Simple sub{ s/(\w+)/\U$1/ };

then you must make sure that your import subroutine appears before
 that use statement.

Using Filter::Simple and Exporter together
Likewise, Filter::Simple is also smart enough
 to Do The Right Thing if you use Exporter:

 package Switch;
 use base Exporter;

Perl version 5.16.1 documentation - Filter::Simple

Page 8http://perldoc.perl.org

 use Filter::Simple;

 @EXPORT = qw(switch case);
 @EXPORT_OK = qw(given when);

 FILTER { $_ = magic_Perl_filter($_) }

Immediately after the filter has been applied to the source,
 Filter::Simple will pass control to Exporter,
so it can do its magic too.

Of course, here too, Filter::Simple has to know you're using Exporter
 before it applies the filter. That's
almost never a problem, but if you're
 nervous about it, you can guarantee that things will work
correctly by
 ensuring that your use base Exporter always precedes your use Filter::Simple
.

How it works
The Filter::Simple module exports into the package that calls FILTER
 (or uses it directly) -- such as
package "BANG" in the above example --
 two automagically constructed
 subroutines -- import and
unimport -- which take care of all the
 nasty details.

In addition, the generated import subroutine passes its own argument
 list to the filtering subroutine,
so the BANG.pm filter could easily be made parametric:

 package BANG;

 use Filter::Simple;

 FILTER {
 my ($die_msg, $var_name) = @_;
 s/BANG\s+BANG/die '$die_msg' if \${$var_name}/g;
 };

 # and in some user code:

 use BANG "BOOM", "BAM"; # "BANG BANG" becomes: die 'BOOM' if $BAM

The specified filtering subroutine is called every time a use BANG is
 encountered, and passed all the
source code following that call, up to
 either the next no BANG; (or whatever terminator you've set) or
the
 end of the source file, whichever occurs first. By default, any no
 BANG; call must appear by itself
on a separate line, or it is ignored.

AUTHOR
Damian Conway

CONTACT
Filter::Simple is now maintained by the Perl5-Porters.
 Please submit bug via the perlbug tool that
comes with your perl.
 For usage instructions, read perldoc perlbug or possibly man perlbug.

For mostly anything else, please contact <perl5-porters@perl.org>.

Maintainer of the CPAN release is Steffen Mueller <smueller@cpan.org>.
 Contact him with technical
difficulties with respect to the packaging of the
 CPAN module.

Praise of the module, flowers, and presents still go to the author,
 Damian Conway <
damian@conway.org>.

Perl version 5.16.1 documentation - Filter::Simple

Page 9http://perldoc.perl.org

COPYRIGHT AND LICENSE
 Copyright (c) 2000-2008, Damian Conway. All Rights Reserved.
 This module is free software. It may be used, redistributed
 and/or modified under the same terms as Perl itself.

