
Perl version 5.16.1 documentation - perlrun

Page 1http://perldoc.perl.org

NAME
perlrun - how to execute the Perl interpreter

SYNOPSIS
perl [-sTtuUWX] [-hv] [-V[:configvar]] [-cw] [-d[t][:debugger]] [-D[number/list]] [-pna] [-F
pattern] [-l[octal]] [-0[octal/hexadecimal]] [-Idir] [-m[-]module] [-M[-]'module...'] [-f] [-C [
number/list]] [-S] [-x[dir]] [-i[extension]] [[-e|-E] 'command'] [--] [programfile] [argument]...

DESCRIPTION
The normal way to run a Perl program is by making it directly
 executable, or else by passing the name
of the source file as an
 argument on the command line. (An interactive Perl environment
 is also
possible--see perldebug for details on how to do that.)
 Upon startup, Perl looks for your program in
one of the following
 places:

1. Specified line by line via -e or -E switches on the command line.

2. Contained in the file specified by the first filename on the command line.
 (Note that systems
supporting the #! notation invoke interpreters this
 way. See Location of Perl.)

3. Passed in implicitly via standard input. This works only if there are
 no filename arguments--to
pass arguments to a STDIN-read program you
 must explicitly specify a "-" for the program
name.

With methods 2 and 3, Perl starts parsing the input file from the
 beginning, unless you've specified a
-x switch, in which case it
 scans for the first line starting with #! and containing the word
 "perl", and
starts there instead. This is useful for running a program
 embedded in a larger message. (In this case
you would indicate the end
 of the program using the __END__ token.)

The #! line is always examined for switches as the line is being
 parsed. Thus, if you're on a machine
that allows only one argument
 with the #! line, or worse, doesn't even recognize the #! line, you
 still
can get consistent switch behaviour regardless of how Perl was
 invoked, even if -x was used to find
the beginning of the program.

Because historically some operating systems silently chopped off
 kernel interpretation of the #! line
after 32 characters, some
 switches may be passed in on the command line, and some may not;
 you
could even get a "-" without its letter, if you're not careful.
 You probably want to make sure that all
your switches fall either
 before or after that 32-character boundary. Most switches don't
 actually care
if they're processed redundantly, but getting a "-"
 instead of a complete switch could cause Perl to try
to execute
 standard input instead of your program. And a partial -I switch
 could also cause odd
results.

Some switches do care if they are processed twice, for instance
 combinations of -l and -0. Either put
all the switches after
 the 32-character boundary (if applicable), or replace the use of -0digits by
BEGIN{ $/ = "\0digits"; }.

Parsing of the #! switches starts wherever "perl" is mentioned in the line.
 The sequences "-*" and "- "
are specifically ignored so that you could,
 if you were so inclined, say

 #!/bin/sh
 #! -*-perl-*-
 eval 'exec perl -x -wS $0 ${1+"$@"}'
 if 0;

to let Perl see the -p switch.

A similar trick involves the env program, if you have it.

 #!/usr/bin/env perl

Perl version 5.16.1 documentation - perlrun

Page 2http://perldoc.perl.org

The examples above use a relative path to the perl interpreter,
 getting whatever version is first in the
user's path. If you want
 a specific version of Perl, say, perl5.005_57, you should place
 that directly in
the #! line's path.

If the #! line does not contain the word "perl" nor the word "indir"
 the program named after the #! is
executed instead of the Perl
 interpreter. This is slightly bizarre, but it helps people on machines
 that
don't do #!, because they can tell a program that their SHELL is /usr/bin/perl, and Perl will then
dispatch the program to the correct
 interpreter for them.

After locating your program, Perl compiles the entire program to an
 internal form. If there are any
compilation errors, execution of the
 program is not attempted. (This is unlike the typical shell script,

which might run part-way through before finding a syntax error.)

If the program is syntactically correct, it is executed. If the program
 runs off the end without hitting an
exit() or die() operator, an implicit exit(0) is provided to indicate successful completion.

#! and quoting on non-Unix systems
Unix's #! technique can be simulated on other systems:

OS/2

Put

 extproc perl -S -your_switches

as the first line in *.cmd file (-S due to a bug in cmd.exe's
 `extproc' handling).

MS-DOS

Create a batch file to run your program, and codify it in ALTERNATE_SHEBANG (see the
dosish.h file in the source
 distribution for more information).

Win95/NT

The Win95/NT installation, when using the ActiveState installer for Perl,
 will modify the
Registry to associate the .pl extension with the perl
 interpreter. If you install Perl by other
means (including building from
 the sources), you may have to modify the Registry yourself.
Note that
 this means you can no longer tell the difference between an executable
 Perl
program and a Perl library file.

VMS

Put

 $ perl -mysw 'f$env("procedure")' 'p1' 'p2' 'p3' 'p4' 'p5' 'p6' 'p7'
 'p8' !
 $ exit++ + ++$status != 0 and $exit = $status = undef;

at the top of your program, where -mysw are any command line switches you
 want to pass to
Perl. You can now invoke the program directly, by saying perl program, or as a DCL
procedure, by saying @program (or implicitly
 via DCL$PATH by just using the name of the
program).

This incantation is a bit much to remember, but Perl will display it for
 you if you say perl
"-V:startperl".

Command-interpreters on non-Unix systems have rather different ideas
 on quoting than Unix shells.
You'll need to learn the special
 characters in your command-interpreter (*, \ and " are
 common) and
how to protect whitespace and these characters to run
 one-liners (see -e below).

On some systems, you may have to change single-quotes to double ones,
 which you must not do on
Unix or Plan 9 systems. You might also
 have to change a single % to a %%.

For example:

Perl version 5.16.1 documentation - perlrun

Page 3http://perldoc.perl.org

 # Unix
 perl -e 'print "Hello world\n"'

 # MS-DOS, etc.
 perl -e "print \"Hello world\n\""

 # VMS
 perl -e "print ""Hello world\n"""

The problem is that none of this is reliable: it depends on the
 command and it is entirely possible
neither works. If 4DOS were
 the command shell, this would probably work better:

 perl -e "print <Ctrl-x>"Hello world\n<Ctrl-x>""

CMD.EXE in Windows NT slipped a lot of standard Unix functionality in
 when nobody was looking, but
just try to find documentation for its
 quoting rules.

There is no general solution to all of this. It's just a mess.

Location of Perl
It may seem obvious to say, but Perl is useful only when users can
 easily find it. When possible, it's
good for both /usr/bin/perl
 and /usr/local/bin/perl to be symlinks to the actual binary. If
 that can't be
done, system administrators are strongly encouraged
 to put (symlinks to) perl and its accompanying
utilities into a
 directory typically found along a user's PATH, or in some other
 obvious and convenient
place.

In this documentation, #!/usr/bin/perl on the first line of the program
 will stand in for whatever
method works on your system. You are
 advised to use a specific path if you care about a specific
version.

 #!/usr/local/bin/perl5.00554

or if you just want to be running at least version, place a statement
 like this at the top of your program:

 use 5.005_54;

Command Switches
As with all standard commands, a single-character switch may be
 clustered with the following switch,
if any.

 #!/usr/bin/perl -spi.orig	 # same as -s -p -i.orig

Switches include:

-0[octal/hexadecimal]

specifies the input record separator ($/) as an octal or
 hexadecimal number. If there are no
digits, the null character is the
 separator. Other switches may precede or follow the digits.
For
 example, if you have a version of find which can print filenames
 terminated by the null
character, you can say this:

 find . -name '*.orig' -print0 | perl -n0e unlink

The special value 00 will cause Perl to slurp files in paragraph mode.
 Any value 0400 or
above will cause Perl to slurp files whole, but by convention
 the value 0777 is the one
normally used for this purpose.

You can also specify the separator character using hexadecimal notation: -0xHHH..., where

Perl version 5.16.1 documentation - perlrun

Page 4http://perldoc.perl.org

the H are valid hexadecimal digits. Unlike
 the octal form, this one may be used to specify
any Unicode character, even
 those beyond 0xFF. So if you really want a record separator of
0777,
 specify it as -0x1FF. (This means that you cannot use the -x option
 with a directory
name that consists of hexadecimal digits, or else Perl
 will think you have specified a hex
number to -0.)

-a

turns on autosplit mode when used with a -n or -p. An implicit
 split command to the @F
array is done as the first thing inside the
 implicit while loop produced by the -n or -p.

 perl -ane 'print pop(@F), "\n";'

is equivalent to

 while (<>) {
	 @F = split(' ');
	 print pop(@F), "\n";
 }

An alternate delimiter may be specified using -F.

-C [number/list]

The -C flag controls some of the Perl Unicode features.

As of 5.8.1, the -C can be followed either by a number or a list
 of option letters. The letters,
their numeric values, and effects
 are as follows; listing the letters is equal to summing the
numbers.

 I 1 STDIN is assumed to be in UTF-8
 O 2 STDOUT will be in UTF-8
 E 4 STDERR will be in UTF-8
 S 7 I + O + E
 i 8 UTF-8 is the default PerlIO layer for input streams
 o 16 UTF-8 is the default PerlIO layer for output streams
 D 24 i + o
 A 32 the @ARGV elements are expected to be strings encoded
 in UTF-8
 L 64 normally the "IOEioA" are unconditional, the L makes
 them conditional on the locale environment variables
 (the LC_ALL, LC_TYPE, and LANG, in the order of
 decreasing precedence) -- if the variables indicate
 UTF-8, then the selected "IOEioA" are in effect
 a 256 Set ${^UTF8CACHE} to -1, to run the UTF-8 caching
 code in debugging mode.

For example, -COE and -C6 will both turn on UTF-8-ness on both
 STDOUT and STDERR.
Repeating letters is just redundant, not cumulative
 nor toggling.

The io options mean that any subsequent open() (or similar I/O
 operations) in the current
file scope will have the :utf8 PerlIO layer
 implicitly applied to them, in other words, UTF-8
is expected from any
 input stream, and UTF-8 is produced to any output stream. This is just

the default, with explicit layers in open() and with binmode() one can
 manipulate streams as
usual.

-C on its own (not followed by any number or option list), or the
 empty string "" for the
PERL_UNICODE environment variable, has the
 same effect as -CSDL. In other words, the
standard I/O handles and
 the default open() layer are UTF-8-fied but only if the locale

environment variables indicate a UTF-8 locale. This behaviour follows
 the implicit (and
problematic) UTF-8 behaviour of Perl 5.8.0.
 (See "UTF-8 no longer default under UTF-8
locales" in perl581delta.)

Perl version 5.16.1 documentation - perlrun

Page 5http://perldoc.perl.org

You can use -C0 (or "0" for PERL_UNICODE) to explicitly
 disable all the above Unicode
features.

The read-only magic variable ${^UNICODE} reflects the numeric value
 of this setting. This
variable is set during Perl startup and is
 thereafter read-only. If you want runtime effects, use
the three-arg
 open() (see "open" in perlfunc), the two-arg binmode() (see "binmode" in
perlfunc),
 and the open pragma (see open).

(In Perls earlier than 5.8.1 the -C switch was a Win32-only switch
 that enabled the use of
Unicode-aware "wide system call" Win32 APIs.
 This feature was practically unused,
however, and the command line
 switch was therefore "recycled".)

Note: Since perl 5.10.1, if the -C option is used on the #! line,
 it must be specified on the
command line as well, since the standard streams
 are already set up at this point in the
execution of the perl interpreter.
 You can also use binmode() to set the encoding of an I/O
stream.

-c

causes Perl to check the syntax of the program and then exit without
 executing it. Actually, it
will execute and BEGIN, UNITCHECK,
 or CHECK blocks and any use statements: these are
considered as
 occurring outside the execution of your program. INIT and END
 blocks,
however, will be skipped.

-d

-dt

runs the program under the Perl debugger. See perldebug.
 If t is specified, it indicates to the
debugger that threads
 will be used in the code being debugged.

-d:MOD[=bar,baz]

-dt:MOD[=bar,baz]

runs the program under the control of a debugging, profiling, or tracing
 module installed as
Devel::MOD. E.g., -d:DProf executes the
 program using the Devel::DProf profiler. As
with the -M flag, options
 may be passed to the Devel::MOD package where they will be
received
 and interpreted by the Devel::MOD::import routine. Again, like -M,
 use --d:-
MOD to call Devel::MOD::unimport instead of import. The
 comma-separated list of
options must follow a = character. If t is
 specified, it indicates to the debugger that threads
will be used in the
 code being debugged. See perldebug.

-Dletters

-Dnumber

sets debugging flags. To watch how it executes your program, use -Dtls. (This works only if
debugging is compiled into your
 Perl.) Another nice value is -Dx, which lists your compiled

syntax tree. And -Dr displays compiled regular expressions;
 the format of the output is
explained in perldebguts.

As an alternative, specify a number instead of list of letters (e.g., -D14 is equivalent to -Dtls):

 1 p Tokenizing and parsing (with v, displays parse stack)
 2 s Stack snapshots (with v, displays all stacks)
 4 l Context (loop) stack processing
 8 t Trace execution
 16 o Method and overloading resolution
 32 c String/numeric conversions
 64 P Print profiling info, source file input state
 128 m Memory and SV allocation
 256 f Format processing
 512 r Regular expression parsing and execution
 1024 x Syntax tree dump

Perl version 5.16.1 documentation - perlrun

Page 6http://perldoc.perl.org

 2048 u Tainting checks
 4096 U Unofficial, User hacking (reserved for private,
 unreleased use)
 8192 H Hash dump -- usurps values()
 16384 X Scratchpad allocation
 32768 D Cleaning up
 131072 T Tokenizing
 262144 R Include reference counts of dumped variables (eg when
 using -Ds)
 524288 J show s,t,P-debug (don't Jump over) on opcodes within
 package DB
 1048576 v Verbose: use in conjunction with other flags
 2097152 C Copy On Write
 4194304 A Consistency checks on internal structures
 8388608 q quiet - currently only suppresses the "EXECUTING"
 message
 16777216 M trace smart match resolution
 33554432 B dump suBroutine definitions, including special Blocks
 like BEGIN

All these flags require -DDEBUGGING when you compile the Perl
 executable (but see :opd
in Devel::Peek or "'debug' mode" in re
 which may change this).
 See the INSTALL file in the
Perl source distribution
 for how to do this. This flag is automatically set if you include -g

option when Configure asks you about optimizer/debugger flags.

If you're just trying to get a print out of each line of Perl code
 as it executes, the way that sh
 -x provides for shell scripts,
 you can't use Perl's -D switch. Instead do this

 # If you have "env" utility
 env PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl -dS program

 # Bourne shell syntax
 $ PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl -dS program

 # csh syntax
 % (setenv PERLDB_OPTS "NonStop=1 AutoTrace=1 frame=2"; perl -dS
program)

See perldebug for details and variations.

-e commandline

may be used to enter one line of program. If -e is given, Perl
 will not look for a filename in
the argument list. Multiple -e
 commands may be given to build up a multi-line script. Make
sure
 to use semicolons where you would in a normal program.

-E commandline

behaves just like -e, except that it implicitly enables all
 optional features (in the main
compilation unit). See feature.

-f

Disable executing $Config{sitelib}/sitecustomize.pl at startup.

Perl can be built so that it by default will try to execute $Config{sitelib}/sitecustomize.pl at
startup (in a BEGIN block).
 This is a hook that allows the sysadmin to customize how Perl
behaves.
 It can for instance be used to add entries to the @INC array to make Perl
 find
modules in non-standard locations.

Perl actually inserts the following code:

Perl version 5.16.1 documentation - perlrun

Page 7http://perldoc.perl.org

 BEGIN {
 do { local $!; -f "$Config{sitelib}/sitecustomize.pl"; }
 && do "$Config{sitelib}/sitecustomize.pl";
 }

Since it is an actual do (not a require), sitecustomize.pl
 doesn't need to return a true
value. The code is run in package main,
 in its own lexical scope. However, if the script dies,
$@ will not
 be set.

The value of $Config{sitelib} is also determined in C code and not
 read from
Config.pm, which is not loaded.

The code is executed very early. For example, any changes made to @INC will show up in
the output of `perl -V`. Of course, END
 blocks will be likewise executed very late.

To determine at runtime if this capability has been compiled in your
 perl, you can check the
value of $Config{usesitecustomize}.

-Fpattern

specifies the pattern to split on if -a is also in effect. The
 pattern may be surrounded by //,
"", or '', otherwise it will be
 put in single quotes. You can't use literal whitespace in the
pattern.

-h

prints a summary of the options.

-i[extension]

specifies that files processed by the <> construct are to be
 edited in-place. It does this by
renaming the input file, opening the
 output file by the original name, and selecting that
output file as the
 default for print() statements. The extension, if supplied, is used to
 modify
the name of the old file to make a backup copy, following these
 rules:

If no extension is supplied, no backup is made and the current file is
 overwritten.

If the extension doesn't contain a *, then it is appended to the
 end of the current filename as
a suffix. If the extension does
 contain one or more * characters, then each * is replaced

with the current filename. In Perl terms, you could think of this
 as:

 ($backup = $extension) =~ s/*/$file_name/g;

This allows you to add a prefix to the backup file, instead of (or in
 addition to) a suffix:

 $ perl -pi'orig_*' -e 's/bar/baz/' fileA # backup to
 # 'orig_fileA'

Or even to place backup copies of the original files into another
 directory (provided the
directory already exists):

 $ perl -pi'old/*.orig' -e 's/bar/baz/' fileA # backup to
 # 'old/fileA.orig'

These sets of one-liners are equivalent:

 $ perl -pi -e 's/bar/baz/' fileA # overwrite current file
 $ perl -pi'*' -e 's/bar/baz/' fileA # overwrite current file

 $ perl -pi'.orig' -e 's/bar/baz/' fileA # backup to 'fileA.orig'
 $ perl -pi'*.orig' -e 's/bar/baz/' fileA # backup to 'fileA.orig'

From the shell, saying

 $ perl -p -i.orig -e "s/foo/bar/; ... "

Perl version 5.16.1 documentation - perlrun

Page 8http://perldoc.perl.org

is the same as using the program:

 #!/usr/bin/perl -pi.orig
 s/foo/bar/;

which is equivalent to

 #!/usr/bin/perl
 $extension = '.orig';
 LINE: while (<>) {
	 if ($ARGV ne $oldargv) {
	 if ($extension !~ /*/) {
		 $backup = $ARGV . $extension;
	 }
	 else {
		 ($backup = $extension) =~ s/*/$ARGV/g;
	 }
	 rename($ARGV, $backup);
	 open(ARGVOUT, ">$ARGV");
	 select(ARGVOUT);
	 $oldargv = $ARGV;
	 }
	 s/foo/bar/;
 }
 continue {
	 print;	 # this prints to original filename
 }
 select(STDOUT);

except that the -i form doesn't need to compare $ARGV to $oldargv to
 know when the
filename has changed. It does, however, use ARGVOUT for
 the selected filehandle. Note
that STDOUT is restored as the default
 output filehandle after the loop.

As shown above, Perl creates the backup file whether or not any output
 is actually changed.
So this is just a fancy way to copy files:

 $ perl -p -i'/some/file/path/*' -e 1 file1 file2 file3...
or
 $ perl -p -i'.orig' -e 1 file1 file2 file3...

You can use eof without parentheses to locate the end of each input
 file, in case you want
to append to each file, or reset line numbering
 (see example in "eof" in perlfunc).

If, for a given file, Perl is unable to create the backup file as
 specified in the extension then it
will skip that file and continue on
 with the next one (if it exists).

For a discussion of issues surrounding file permissions and -i,
 see "Why does Perl let me
delete read-only files? Why does -i clobber protected files? Isn't this a bug in Perl?" in
perlfaq5.

You cannot use -i to create directories or to strip extensions from
 files.

Perl does not expand ~ in filenames, which is good, since some
 folks use it for their backup
files:

 $ perl -pi~ -e 's/foo/bar/' file1 file2 file3...

Note that because -i renames or deletes the original file before
 creating a new file of the
same name, Unix-style soft and hard links will
 not be preserved.

Finally, the -i switch does not impede execution when no
 files are given on the command
line. In this case, no backup is made
 (the original file cannot, of course, be determined) and
processing
 proceeds from STDIN to STDOUT as might be expected.

Perl version 5.16.1 documentation - perlrun

Page 9http://perldoc.perl.org

-Idirectory

Directories specified by -I are prepended to the search path for
 modules (@INC).

-l[octnum]

enables automatic line-ending processing. It has two separate
 effects. First, it automatically
chomps $/ (the input record
 separator) when used with -n or -p. Second, it assigns $\
 (the
output record separator) to have the value of octnum so
 that any print statements will have
that separator added back on.
 If octnum is omitted, sets $\ to the current value of $/. For
instance, to trim lines to 80 columns:

 perl -lpe 'substr($_, 80) = ""'

Note that the assignment $\ = $/ is done when the switch is processed,
 so the input
record separator can be different than the output record
 separator if the -l switch is followed
by a -0 switch:

 gnufind / -print0 | perl -ln0e 'print "found $_" if -p'

This sets $\ to newline and then sets $/ to the null character.

-m[-]module

-M[-]module

-M[-]'module ...'

-[mM][-]module=arg[,arg]...

-mmodule executes use module (); before executing your
 program.

-Mmodule executes use module ; before executing your
 program. You can use quotes to
add extra code after the module name,
 e.g., '-MMODULE qw(foo bar)'.

If the first character after the -M or -m is a dash (-)
 then the 'use' is replaced with 'no'.

A little builtin syntactic sugar means you can also say -mMODULE=foo,bar or -MMODULE
=foo,bar as a shortcut for '-MMODULE qw(foo bar)'. This avoids the need to use quotes
when
 importing symbols. The actual code generated by -MMODULE=foo,bar is use
module split(/,/,q{foo,bar}). Note that the = form
 removes the distinction between
-m and -M.

A consequence of this is that -MMODULE=number never does a version check,
 unless
MODULE::import() itself is set up to do a version check, which
 could happen for example
if MODULE inherits from Exporter.

-n

causes Perl to assume the following loop around your program, which
 makes it iterate over
filename arguments somewhat like sed -n or awk:

 LINE:
 while (<>) {
	 ...		 # your program goes here
 }

Note that the lines are not printed by default. See -p to have
 lines printed. If a file named by
an argument cannot be opened for
 some reason, Perl warns you about it and moves on to
the next file.

Also note that <> passes command line arguments to "open" in perlfunc, which doesn't
necessarily interpret them as file names.
 See perlop for possible security implications.

Here is an efficient way to delete all files that haven't been modified for
 at least a week:

 find . -mtime +7 -print | perl -nle unlink

Perl version 5.16.1 documentation - perlrun

Page 10http://perldoc.perl.org

This is faster than using the -exec switch of find because you don't
 have to start a process
on every filename found. It does suffer from
 the bug of mishandling newlines in pathnames,
which you can fix if
 you follow the example under -0.

BEGIN and END blocks may be used to capture control before or after
 the implicit program
loop, just as in awk.

-p

causes Perl to assume the following loop around your program, which
 makes it iterate over
filename arguments somewhat like sed:

 LINE:
 while (<>) {
	 ...		 # your program goes here
 } continue {
	 print or die "-p destination: $!\n";
 }

If a file named by an argument cannot be opened for some reason, Perl
 warns you about it,
and moves on to the next file. Note that the
 lines are printed automatically. An error
occurring during printing is
 treated as fatal. To suppress printing use the -n switch. A -p

overrides a -n switch.

BEGIN and END blocks may be used to capture control before or after
 the implicit loop, just
as in awk.

-s

enables rudimentary switch parsing for switches on the command
 line after the program
name but before any filename arguments (or before
 an argument of --). Any switch found
there is removed from @ARGV and sets the
 corresponding variable in the Perl program.
The following program
 prints "1" if the program is invoked with a -xyz switch, and "abc"
 if it is
invoked with -xyz=abc.

 #!/usr/bin/perl -s
 if ($xyz) { print "$xyz\n" }

Do note that a switch like --help creates the variable ${-help}, which is not compliant
 with
use strict "refs". Also, when using this option on a script with
 warnings enabled you
may get a lot of spurious "used only once" warnings.

-S

makes Perl use the PATH environment variable to search for the
 program unless the name
of the program contains path separators.

On some platforms, this also makes Perl append suffixes to the
 filename while searching for
it. For example, on Win32 platforms,
 the ".bat" and ".cmd" suffixes are appended if a lookup
for the
 original name fails, and if the name does not already end in one
 of those suffixes. If
your Perl was compiled with DEBUGGING turned
 on, using the -Dp switch to Perl shows how
the search progresses.

Typically this is used to emulate #! startup on platforms that don't
 support #!. It's also
convenient when debugging a script that uses #!,
 and is thus normally found by the shell's
$PATH search mechanism.

This example works on many platforms that have a shell compatible with
 Bourne shell:

 #!/usr/bin/perl
 eval 'exec /usr/bin/perl -wS $0 ${1+"$@"}'
	 if $running_under_some_shell;

The system ignores the first line and feeds the program to /bin/sh,
 which proceeds to try to

Perl version 5.16.1 documentation - perlrun

Page 11http://perldoc.perl.org

execute the Perl program as a shell script.
 The shell executes the second line as a normal
shell command, and thus
 starts up the Perl interpreter. On some systems $0 doesn't always

contain the full pathname, so the -S tells Perl to search for the
 program if necessary. After
Perl locates the program, it parses the
 lines and ignores them because the variable
$running_under_some_shell
 is never true. If the program will be interpreted by csh, you will
need
 to replace ${1+"$@"} with $*, even though that doesn't understand
 embedded
spaces (and such) in the argument list. To start up sh rather
 than csh, some systems may
have to replace the #! line with a line
 containing just a colon, which will be politely ignored
by Perl. Other
 systems can't control that, and need a totally devious construct that
 will work
under any of csh, sh, or Perl, such as the following:

	 eval '(exit $?0)' && eval 'exec perl -wS $0 ${1+"$@"}'
	 & eval 'exec /usr/bin/perl -wS $0 $argv:q'
		 if $running_under_some_shell;

If the filename supplied contains directory separators (and so is an
 absolute or relative
pathname), and if that file is not found,
 platforms that append file extensions will do so and
try to look
 for the file with those extensions added, one by one.

On DOS-like platforms, if the program does not contain directory
 separators, it will first be
searched for in the current directory
 before being searched for on the PATH. On Unix
platforms, the
 program will be searched for strictly on the PATH.

-t

Like -T, but taint checks will issue warnings rather than fatal
 errors. These warnings can now
be controlled normally with no warnings
 qw(taint).

Note: This is not a substitute for -T! This is meant to be
 used only as a temporary
development aid while securing legacy code:
 for real production code and for new secure
code written from scratch,
 always use the real -T.

-T

turns on "taint" so you can test them. Ordinarily
 these checks are done only when running
setuid or setgid. It's a
 good idea to turn them on explicitly for programs that run on behalf
 of
someone else whom you might not necessarily trust, such as CGI
 programs or any internet
servers you might write in Perl. See perlsec for details. For security reasons, this option
must be
 seen by Perl quite early; usually this means it must appear early
 on the command
line or in the #! line for systems which support
 that construct.

-u

This switch causes Perl to dump core after compiling your
 program. You can then in theory
take this core dump and turn it
 into an executable file by using the undump program (not
supplied).
 This speeds startup at the expense of some disk space (which you
 can minimize
by stripping the executable). (Still, a "hello world"
 executable comes out to about 200K on
my machine.) If you want to
 execute a portion of your program before dumping, use the
dump()
 operator instead. Note: availability of undump is platform
 specific and may not be
available for a specific port of Perl.

-U

allows Perl to do unsafe operations. Currently the only "unsafe"
 operations are attempting to
unlink directories while running as superuser
 and running setuid programs with fatal taint
checks turned into warnings.
 Note that warnings must be enabled along with this option to
actually generate the taint-check warnings.

-v

prints the version and patchlevel of your perl executable.

-V

Perl version 5.16.1 documentation - perlrun

Page 12http://perldoc.perl.org

prints summary of the major perl configuration values and the current
 values of @INC.

-V:configvar

Prints to STDOUT the value of the named configuration variable(s),
 with multiples when your
configvar argument looks like a regex (has
 non-letters). For example:

 $ perl -V:libc
	 libc='/lib/libc-2.2.4.so';
 $ perl -V:lib.
	 libs='-lnsl -lgdbm -ldb -ldl -lm -lcrypt -lutil -lc';
	 libc='/lib/libc-2.2.4.so';
 $ perl -V:lib.*
	 libpth='/usr/local/lib /lib /usr/lib';
	 libs='-lnsl -lgdbm -ldb -ldl -lm -lcrypt -lutil -lc';
	 lib_ext='.a';
	 libc='/lib/libc-2.2.4.so';
	 libperl='libperl.a';
	

Additionally, extra colons can be used to control formatting. A
 trailing colon suppresses the
linefeed and terminator ";", allowing
 you to embed queries into shell commands. (mnemonic:
PATH separator
 ":".)

 $ echo "compression-vars: " `perl -V:z.*: ` " are here !"
 compression-vars: zcat='' zip='zip' are here !

A leading colon removes the "name=" part of the response, this allows
 you to map to the
name you need. (mnemonic: empty label)

 $ echo "goodvfork="`./perl -Ilib -V::usevfork`
 goodvfork=false;

Leading and trailing colons can be used together if you need
 positional parameter values
without the names. Note that in the case
 below, the PERL_API params are returned in
alphabetical order.

 $ echo building_on `perl -V::osname: -V::PERL_API_.*:` now
 building_on 'linux' '5' '1' '9' now

-w

prints warnings about dubious constructs, such as variable names
 mentioned only once and
scalar variables used
 before being set; redefined subroutines; references to undefined

filehandles; filehandles opened read-only that you are attempting
 to write on; values used as
a number that don't look like numbers;
 using an array as though it were a scalar; if your
subroutines
 recurse more than 100 deep; and innumerable other things.

This switch really just enables the global $^W variable; normally,
 the lexically scoped use
warnings pragma is preferred. You
 can disable or promote into fatal errors specific
warnings using __WARN__ hooks, as described in perlvar and "warn" in perlfunc.
 See also
perldiag and perltrap. A fine-grained warning
 facility is also available if you want to
manipulate entire classes
 of warnings; see warnings or perllexwarn.

-W

Enables all warnings regardless of no warnings or $^W.
 See perllexwarn.

-X

Disables all warnings regardless of use warnings or $^W.
 See perllexwarn.

-x

Perl version 5.16.1 documentation - perlrun

Page 13http://perldoc.perl.org

-xdirectory

tells Perl that the program is embedded in a larger chunk of unrelated
 text, such as in a mail
message. Leading garbage will be
 discarded until the first line that starts with #! and
contains the
 string "perl". Any meaningful switches on that line will be applied.

All references to line numbers by the program (warnings, errors, ...)
 will treat the #! line as
the first line.
 Thus a warning on the 2nd line of the program, which is on the 100th
 line in the
file will be reported as line 2, not as line 100.
 This can be overridden by using the #line
directive.
 (See "Plain Old Comments (Not!)" in perlsyn)

If a directory name is specified, Perl will switch to that directory
 before running the program.
The -x switch controls only the
 disposal of leading garbage. The program must be
terminated with __END__ if there is trailing garbage to be ignored; the program
 can process
any or all of the trailing garbage via the DATA filehandle
 if desired.

The directory, if specified, must appear immediately following the -x
 with no intervening
whitespace.

ENVIRONMENT
HOME

Used if chdir has no argument.

LOGDIR

Used if chdir has no argument and HOME is not set.

PATH

Used in executing subprocesses, and in finding the program if -S is
 used.

PERL5LIB

A list of directories in which to look for Perl library
 files before looking in the
standard library and the current
 directory. Any architecture-specific directories
under the specified
 locations are automatically included if they exist, with this
lookup
 done at interpreter startup time.

If PERL5LIB is not defined, PERLLIB is used. Directories are separated
 (like in
PATH) by a colon on Unixish platforms and by a semicolon on
 Windows (the
proper path separator being given by the command perl
 -V:path_sep).

When running taint checks, either because the program was running setuid or

setgid, or the -T or -t switch was specified, neither PERL5LIB nor
 PERLLIB is
consulted. The program should instead say:

 use lib "/my/directory";

PERL5OPT

Command-line options (switches). Switches in this variable are treated
 as if
they were on every Perl command line. Only the -[CDIMUdmtwW]
 switches
are allowed. When running taint checks (either because the
 program was
running setuid or setgid, or because the -T or -t
 switch was used), this variable
is ignored. If PERL5OPT begins with - T, tainting will be enabled and
subsequent options ignored. If
 PERL5OPT begins with -t, tainting will be
enabled, a writable dot
 removed from @INC, and subsequent options honored.

PERLIO

A space (or colon) separated list of PerlIO layers. If perl is built
 to use PerlIO
system for IO (the default) these layers affect Perl's IO.

It is conventional to start layer names with a colon (for example, :perlio) to

emphasize their similarity to variable "attributes". But the code that parses
 layer

Perl version 5.16.1 documentation - perlrun

Page 14http://perldoc.perl.org

specification strings, which is also used to decode the PERLIO
 environment
variable, treats the colon as a separator.

An unset or empty PERLIO is equivalent to the default set of layers for
 your
platform; for example, :unix:perlio on Unix-like systems
 and :unix:crlf
on Windows and other DOS-like systems.

The list becomes the default for all Perl's IO. Consequently only built-in
 layers
can appear in this list, as external layers (such as :encoding()) need
 IO in
order to load them!. See open pragma for how to add external
 encodings as
defaults.

Layers it makes sense to include in the PERLIO environment
 variable are
briefly summarized below. For more details see PerlIO.

:bytes

A pseudolayer that turns the :utf8 flag off for the layer below;

unlikely to be useful on its own in the global PERLIO
environment variable.
 You perhaps were thinking of
:crlf:bytes or :perlio:bytes.

:crlf

A layer which does CRLF to "\n" translation distinguishing
"text" and
 "binary" files in the manner of MS-DOS and similar
operating systems.
 (It currently does not mimic MS-DOS as far
as treating of Control-Z
 as being an end-of-file marker.)

:mmap

A layer that implements "reading" of files by using mmap(2) to

make an entire file appear in the process's address space, and
then
 using that as PerlIO's "buffer".

:perlio

This is a re-implementation of stdio-like buffering written as a

PerlIO layer. As such it will call whatever layer is below it for
 its
operations, typically :unix.

:pop

An experimental pseudolayer that removes the topmost layer.

Use with the same care as is reserved for nitroglycerine.

:raw

A pseudolayer that manipulates other layers. Applying the :raw
layer is equivalent to calling binmode($fh). It makes the
stream
 pass each byte as-is without translation. In particular,
both CRLF
 translation and intuiting :utf8 from the locale are
disabled.

Unlike in earlier versions of Perl, :raw is not
 just the inverse of
:crlf: other layers which would affect the
 binary nature of the
stream are also removed or disabled.

:stdio

This layer provides a PerlIO interface by wrapping system's
ANSI C "stdio"
 library calls. The layer provides both buffering
and IO.
 Note that the :stdio layer does not do CRLF
translation even if that
 is the platform's normal behaviour. You
will need a :crlf layer above it
 to do that.

Perl version 5.16.1 documentation - perlrun

Page 15http://perldoc.perl.org

:unix

Low-level layer that calls read, write, lseek, etc.

:utf8

A pseudolayer that enables a flag in the layer below to tell Perl

that output should be in utf8 and that input should be regarded
as
 already in valid utf8 form. WARNING: It does not check for
validity and as such
 should be handled with extreme
caution for input, because security violations
 can occur
with non-shortest UTF-8 encodings, etc. Generally
:encoding(utf8) is
 the best option when reading UTF-8
encoded data.

:win32

On Win32 platforms this experimental layer uses native
"handle" IO
 rather than a Unix-like numeric file descriptor layer.
Known to be
 buggy in this release (5.14).

The default set of layers should give acceptable results on all platforms

For Unix platforms that will be the equivalent of "unix perlio" or "stdio".

Configure is set up to prefer the "stdio" implementation if the system's library

provides for fast access to the buffer; otherwise, it uses the "unix perlio"

implementation.

On Win32 the default in this release (5.14) is "unix crlf". Win32's "stdio"
 has a
number of bugs/mis-features for Perl IO which are somewhat depending
 on the
version and vendor of the C compiler. Using our own crlf layer as
 the buffer
avoids those issues and makes things more uniform. The crlf
 layer provides
CRLF conversion as well as buffering.

This release (5.14) uses unix as the bottom layer on Win32, and so still
 uses
the C compiler's numeric file descriptor routines. There is an
 experimental
native win32 layer, which is expected to be enhanced and
 should eventually
become the default under Win32.

The PERLIO environment variable is completely ignored when Perl
 is run in
taint mode.

PERLIO_DEBUG

If set to the name of a file or device, certain operations of PerlIO
 subsystem will
be logged to that file, which is opened in append mode
 Typical uses are in
Unix:

 % env PERLIO_DEBUG=/dev/tty perl script ...

and under Win32, the approximately equivalent:

 > set PERLIO_DEBUG=CON
 perl script ...

This functionality is disabled for setuid scripts and for scripts run
 with -T.

PERLLIB

A list of directories in which to look for Perl library
 files before looking in the
standard library and the current directory.
 If PERL5LIB is defined, PERLLIB is
not used.

The PERLLIB environment variable is completely ignored when Perl
 is run in
taint mode.

Perl version 5.16.1 documentation - perlrun

Page 16http://perldoc.perl.org

PERL5DB

The command used to load the debugger code. The default is:

	 BEGIN { require "perl5db.pl" }

The PERL5DB environment variable is only used when Perl is started with
 a
bare -d switch.

PERL5DB_THREADED

If set to a true value, indicates to the debugger that the code being
 debugged
uses threads.

PERL5SHELL (specific to the Win32 port)

On Win32 ports only, may be set to an alternative shell that Perl must use

internally for executing "backtick" commands or system(). Default is cmd.exe
/x/d/c on WindowsNT and command.com /c on Windows95. The
 value is
considered space-separated. Precede any character that
 needs to be
protected, like a space or backslash, with another backslash.

Note that Perl doesn't use COMSPEC for this purpose because
 COMSPEC
has a high degree of variability among users, leading to
 portability concerns.
Besides, Perl can use a shell that may not be
 fit for interactive use, and setting
COMSPEC to such a shell may
 interfere with the proper functioning of other
programs (which usually
 look in COMSPEC to find a shell fit for interactive
use).

Before Perl 5.10.0 and 5.8.8, PERL5SHELL was not taint checked
 when
running external commands. It is recommended that
 you explicitly set (or
delete) $ENV{PERL5SHELL} when running
 in taint mode under Windows.

PERL_ALLOW_NON_IFS_LSP (specific to the Win32 port)

Set to 1 to allow the use of non-IFS compatible LSPs (Layered Service
Providers).
 Perl normally searches for an IFS-compatible LSP because this is
required
 for its emulation of Windows sockets as real filehandles. However, this
may
 cause problems if you have a firewall such as McAfee Guardian, which
requires
 that all applications use its LSP but which is not IFS-compatible,
because clearly
 Perl will normally avoid using such an LSP.

Setting this environment variable to 1 means that Perl will simply use the
 first
suitable LSP enumerated in the catalog, which keeps McAfee Guardian

happy--and in that particular case Perl still works too because McAfee

Guardian's LSP actually plays other games which allow applications
 requiring
IFS compatibility to work.

PERL_DEBUG_MSTATS

Relevant only if Perl is compiled with the malloc included with the Perl

distribution; that is, if perl -V:d_mymalloc is "define".

If set, this dumps out memory statistics after execution. If set
 to an integer
greater than one, also dumps out memory statistics
 after compilation.

PERL_DESTRUCT_LEVEL

Relevant only if your Perl executable was built with -DDEBUGGING,
 this
controls the behaviour of global destruction of objects and other
 references.
See "PERL_DESTRUCT_LEVEL" in perlhacktips for more information.

PERL_DL_NONLAZY

Set to "1" to have Perl resolve all undefined symbols when it loads
 a dynamic
library. The default behaviour is to resolve symbols when
 they are used.

Perl version 5.16.1 documentation - perlrun

Page 17http://perldoc.perl.org

Setting this variable is useful during testing of
 extensions, as it ensures that
you get an error on misspelled function
 names even if the test suite doesn't call
them.

PERL_ENCODING

If using the use encoding pragma without an explicit encoding name, the

PERL_ENCODING environment variable is consulted for an encoding name.

PERL_HASH_SEED

(Since Perl 5.8.1.) Used to randomize Perl's internal hash function.
 To emulate
the pre-5.8.1 behaviour, set to an integer; "0" means
 exactly the same order
as in 5.8.0. "Pre-5.8.1" means, among other
 things, that hash keys will always
have the same ordering between
 different runs of Perl.

Most hashes by default return elements in the same order as in Perl 5.8.0.
 On
a hash by hash basis, if pathological data is detected during a hash
 key
insertion, then that hash will switch to an alternative random hash
 seed.

The default behaviour is to randomize unless the PERL_HASH_SEED is set.
 If
Perl has been compiled with -DUSE_HASH_SEED_EXPLICIT, the default

behaviour is not to randomize unless the PERL_HASH_SEED is set.

If PERL_HASH_SEED is unset or set to a non-numeric string, Perl uses
 the
pseudorandom seed supplied by the operating system and libraries.

PLEASE NOTE: The hash seed is sensitive information. Hashes are

randomized to protect against local and remote attacks against Perl
 code. By
manually setting a seed, this protection may be partially or
 completely lost.

See "Algorithmic Complexity Attacks" in perlsec and
PERL_HASH_SEED_DEBUG for more information.

PERL_HASH_SEED_DEBUG

(Since Perl 5.8.1.) Set to "1" to display (to STDERR) the value of
 the hash
seed at the beginning of execution. This, combined with PERL_HASH_SEED
is intended to aid in debugging nondeterministic
 behaviour caused by hash
randomization.

Note that the hash seed is sensitive information: by knowing it, one
 can
craft a denial-of-service attack against Perl code, even remotely;
 see
"Algorithmic Complexity Attacks" in perlsec for more information. Do not
disclose the hash seed to people who don't need to know it.
 See also
hash_seed() in Hash::Util.

PERL_MEM_LOG

If your Perl was configured with -Accflags=-DPERL_MEM_LOG, setting
 the
environment variable PERL_MEM_LOG enables logging debug
 messages. The
value has the form <number>[m][s][t], where number is the file descriptor
number you want to write to (2 is
 default), and the combination of letters
specifies that you want
 information about (m)emory and/or (s)v, optionally with

(t)imestamps. For example, PERL_MEM_LOG=1mst logs all
 information to
stdout. You can write to other opened file descriptors
 in a variety of ways:

 $ 3>foo3 PERL_MEM_LOG=3m perl ...

PERL_ROOT (specific to the VMS port)

A translation-concealed rooted logical name that contains Perl and the
 logical
device for the @INC path on VMS only. Other logical names that
 affect Perl on
VMS include PERLSHR, PERL_ENV_TABLES, and

SYS$TIMEZONE_DIFFERENTIAL, but are optional and discussed further in

Perl version 5.16.1 documentation - perlrun

Page 18http://perldoc.perl.org

perlvms and in README.vms in the Perl source distribution.

PERL_SIGNALS

Available in Perls 5.8.1 and later. If set to "unsafe", the pre-Perl-5.8.0
 signal
behaviour (which is immediate but unsafe) is restored. If set
 to safe, then safe
(but deferred) signals are used. See "Deferred Signals (Safe Signals)" in
perlipc.

PERL_UNICODE

Equivalent to the -C command-line switch. Note that this is not
 a boolean
variable. Setting this to "1" is not the right way to
 "enable Unicode" (whatever
that would mean). You can use "0" to
 "disable Unicode", though (or
alternatively unset PERL_UNICODE in
 your shell before starting Perl). See the
description of the -C
 switch for more information.

SYS$LOGIN (specific to the VMS port)

Used if chdir has no argument and HOME and LOGDIR are not set.

Perl also has environment variables that control how Perl handles data
 specific to particular natural
languages; see perllocale.

Perl and its various modules and components, including its test frameworks,
 may sometimes make
use of certain other environment variables. Some of
 these are specific to a particular platform. Please
consult the
 appropriate module documentation and any documentation for your platform
 (like
perlsolaris, perllinux, perlmacosx, perlwin32, etc) for
 variables peculiar to those specific situations.

Perl makes all environment variables available to the program being
 executed, and passes these
along to any child processes it starts.
 However, programs running setuid would do well to execute the
following
 lines before doing anything else, just to keep people honest:

 $ENV{PATH} = "/bin:/usr/bin"; # or whatever you need
 $ENV{SHELL} = "/bin/sh" if exists $ENV{SHELL};
 delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

