
Perl version 5.16.1 documentation - perlref

Page 1http://perldoc.perl.org

NAME
perlref - Perl references and nested data structures

NOTE
This is complete documentation about all aspects of references.
 For a shorter, tutorial introduction to
just the essential features,
 see perlreftut.

DESCRIPTION
Before release 5 of Perl it was difficult to represent complex data
 structures, because all references
had to be symbolic--and even then
 it was difficult to refer to a variable instead of a symbol table entry.
Perl now not only makes it easier to use symbolic references to variables,
 but also lets you have
"hard" references to any piece of data or code.
 Any scalar may hold a hard reference. Because arrays
and hashes contain
 scalars, you can now easily build arrays of arrays, arrays of hashes,
 hashes of
arrays, arrays of hashes of functions, and so on.

Hard references are smart--they keep track of reference counts for you,
 automatically freeing the
thing referred to when its reference count goes
 to zero. (Reference counts for values in self-referential
or
 cyclic data structures may not go to zero without a little help; see Circular References for a detailed
explanation.)
 If that thing happens to be an object, the object is destructed. See perlobj for more
about objects. (In a sense, everything in Perl is an
 object, but we usually reserve the word for
references to objects that
 have been officially "blessed" into a class package.)

Symbolic references are names of variables or other objects, just as a
 symbolic link in a Unix
filesystem contains merely the name of a file.
 The *glob notation is something of a symbolic
reference. (Symbolic
 references are sometimes called "soft references", but please don't call
 them
that; references are confusing enough without useless synonyms.)

In contrast, hard references are more like hard links in a Unix file
 system: They are used to access an
underlying object without concern for
 what its (other) name is. When the word "reference" is used
without an
 adjective, as in the following paragraph, it is usually talking about a
 hard reference.

References are easy to use in Perl. There is just one overriding
 principle: Perl does no implicit
referencing or dereferencing. When a
 scalar is holding a reference, it always behaves as a simple
scalar. It
 doesn't magically start being an array or hash or subroutine; you have to
 tell it explicitly to do
so, by dereferencing it.

References are easy to use in Perl. There is just one overriding
 principle: in general, Perl does no
implicit referencing or dereferencing.
 When a scalar is holding a reference, it always behaves as a
simple scalar.
 It doesn't magically start being an array or hash or subroutine; you have to
 tell it
explicitly to do so, by dereferencing it.

That said, be aware that Perl version 5.14 introduces an exception
 to the rule, for syntactic
convenience. Experimental array and hash container
 function behavior allows array and hash
references to be handled by Perl as
 if they had been explicitly syntactically dereferenced. See
"Syntactical Enhancements" in perl5140delta
 and perlfunc for details.

Making References
References can be created in several ways.

1. By using the backslash operator on a variable, subroutine, or value.
 (This works much like the
& (address-of) operator in C.) This typically creates another reference to a variable, because

there's already a reference to the variable in the symbol table. But
 the symbol table reference
might go away, and you'll still have the
 reference that the backslash returned. Here are some
examples:

 $scalarref = \$foo;
 $arrayref = \@ARGV;
 $hashref = \%ENV;
 $coderef = \&handler;

Perl version 5.16.1 documentation - perlref

Page 2http://perldoc.perl.org

 $globref = *foo;

It isn't possible to create a true reference to an IO handle (filehandle
 or dirhandle) using the
backslash operator. The most you can get is a
 reference to a typeglob, which is actually a
complete symbol table entry.
 But see the explanation of the *foo{THING} syntax below.
However,
 you can still use type globs and globrefs as though they were IO handles.

2. A reference to an anonymous array can be created using square
 brackets:

 $arrayref = [1, 2, ['a', 'b', 'c']];

Here we've created a reference to an anonymous array of three elements
 whose final element
is itself a reference to another anonymous array of three
 elements. (The multidimensional
syntax described later can be used to
 access this. For example, after the above,
$arrayref->[2][1] would have
 the value "b".)

Taking a reference to an enumerated list is not the same
 as using square brackets--instead it's
the same as creating
 a list of references!

 @list = (\$a, \@b, \%c);
 @list = \($a, @b, %c);	 # same thing!

As a special case, \(@foo) returns a list of references to the contents
 of @foo, not a
reference to @foo itself. Likewise for %foo,
 except that the key references are to copies (since
the keys are just
 strings rather than full-fledged scalars).

3. A reference to an anonymous hash can be created using curly
 brackets:

 $hashref = {
	 'Adam' => 'Eve',
	 'Clyde' => 'Bonnie',
 };

Anonymous hash and array composers like these can be intermixed freely to
 produce as
complicated a structure as you want. The multidimensional
 syntax described below works for
these too. The values above are
 literals, but variables and expressions would work just as
well, because
 assignment operators in Perl (even within local() or my()) are executable

statements, not compile-time declarations.

Because curly brackets (braces) are used for several other things
 including BLOCKs, you may
occasionally have to disambiguate braces at the
 beginning of a statement by putting a + or a
return in front so
 that Perl realizes the opening brace isn't starting a BLOCK. The economy
and
 mnemonic value of using curlies is deemed worth this occasional extra
 hassle.

For example, if you wanted a function to make a new hash and return a
 reference to it, you
have these options:

 sub hashem { { @_ } } # silently wrong
 sub hashem { +{ @_ } } # ok
 sub hashem { return { @_ } } # ok

On the other hand, if you want the other meaning, you can do this:

 sub showem { { @_ } } # ambiguous (currently ok, but may
 change)
 sub showem { {; @_ } } # ok
 sub showem { { return @_ } } # ok

The leading +{ and {; always serve to disambiguate
 the expression to mean either the HASH
reference, or the BLOCK.

4. A reference to an anonymous subroutine can be created by using sub without a subname:

Perl version 5.16.1 documentation - perlref

Page 3http://perldoc.perl.org

 $coderef = sub { print "Boink!\n" };

Note the semicolon. Except for the code
 inside not being immediately executed, a sub {} is
not so much a
 declaration as it is an operator, like do{} or eval{}. (However, no
 matter how
many times you execute that particular line (unless you're in an eval("...")), $coderef will
still have a reference to the same
 anonymous subroutine.)

Anonymous subroutines act as closures with respect to my() variables,
 that is, variables
lexically visible within the current scope. Closure
 is a notion out of the Lisp world that says if
you define an anonymous
 function in a particular lexical context, it pretends to run in that

context even when it's called outside the context.

In human terms, it's a funny way of passing arguments to a subroutine when
 you define it as
well as when you call it. It's useful for setting up
 little bits of code to run later, such as
callbacks. You can even
 do object-oriented stuff with it, though Perl already provides a
different
 mechanism to do that--see perlobj.

You might also think of closure as a way to write a subroutine
 template without using eval().
Here's a small example of how
 closures work:

 sub newprint {
	 my $x = shift;
	 return sub { my $y = shift; print "$x, $y!\n"; };
 }
 $h = newprint("Howdy");
 $g = newprint("Greetings");

 # Time passes...

 &$h("world");
 &$g("earthlings");

This prints

 Howdy, world!
 Greetings, earthlings!

Note particularly that $x continues to refer to the value passed
 into newprint() despite "my $x"
having gone out of scope by the
 time the anonymous subroutine runs. That's what a closure is
all
 about.

This applies only to lexical variables, by the way. Dynamic variables
 continue to work as they
have always worked. Closure is not something
 that most Perl programmers need trouble
themselves about to begin with.

5. References are often returned by special subroutines called constructors. Perl
 objects are just
references to a special type of object that happens to know
 which package it's associated
with. Constructors are just special subroutines
 that know how to create that association. They
do so by starting with an
 ordinary reference, and it remains an ordinary reference even while
it's also
 being an object. Constructors are often named new(). You can call them
 indirectly:

 $objref = new Doggie(Tail => 'short', Ears => 'long');

But that can produce ambiguous syntax in certain cases, so it's often
 better to use the direct
method invocation approach:

 $objref = Doggie->new(Tail => 'short', Ears => 'long');

 use Term::Cap;
 $terminal = Term::Cap->Tgetent({ OSPEED => 9600 });

 use Tk;

Perl version 5.16.1 documentation - perlref

Page 4http://perldoc.perl.org

 $main = MainWindow->new();
 $menubar = $main->Frame(-relief => "raised",
 -borderwidth => 2)

6. References of the appropriate type can spring into existence if you
 dereference them in a
context that assumes they exist. Because we haven't
 talked about dereferencing yet, we can't
show you any examples yet.

7. A reference can be created by using a special syntax, lovingly known as
 the *foo{THING}
syntax. *foo{THING} returns a reference to the THING
 slot in *foo (which is the symbol table
entry which holds everything
 known as foo).

 $scalarref = *foo{SCALAR};
 $arrayref = *ARGV{ARRAY};
 $hashref = *ENV{HASH};
 $coderef = *handler{CODE};
 $ioref = *STDIN{IO};
 $globref = *foo{GLOB};
 $formatref = *foo{FORMAT};

All of these are self-explanatory except for *foo{IO}. It returns
 the IO handle, used for file
handles ("open" in perlfunc), sockets
 ("socket" in perlfunc and "socketpair" in perlfunc), and
directory
 handles ("opendir" in perlfunc). For compatibility with previous
 versions of Perl,
*foo{FILEHANDLE} is a synonym for *foo{IO}, though it
 is deprecated as of 5.8.0. If
deprecation warnings are in effect, it will warn
 of its use.

*foo{THING} returns undef if that particular THING hasn't been used yet,
 except in the case
of scalars. *foo{SCALAR} returns a reference to an
 anonymous scalar if $foo hasn't been
used yet. This might change in a
 future release.

*foo{IO} is an alternative to the *HANDLE mechanism given in "Typeglobs and Filehandles"
in perldata for passing filehandles
 into or out of subroutines, or storing into larger data
structures.
 Its disadvantage is that it won't create a new filehandle for you.
 Its advantage is
that you have less risk of clobbering more than
 you want to with a typeglob assignment. (It still
conflates file
 and directory handles, though.) However, if you assign the incoming
 value to a
scalar instead of a typeglob as we do in the examples
 below, there's no risk of that happening.

 splutter(*STDOUT);		 # pass the whole glob
 splutter(*STDOUT{IO});	 # pass both file and dir handles

 sub splutter {
	 my $fh = shift;
	 print $fh "her um well a hmmm\n";
 }

 $rec = get_rec(*STDIN);	 # pass the whole glob
 $rec = get_rec(*STDIN{IO}); # pass both file and dir handles

 sub get_rec {
	 my $fh = shift;
	 return scalar <$fh>;
 }

Using References
That's it for creating references. By now you're probably dying to
 know how to use references to get
back to your long-lost data. There
 are several basic methods.

1. Anywhere you'd put an identifier (or chain of identifiers) as part
 of a variable or subroutine

Perl version 5.16.1 documentation - perlref

Page 5http://perldoc.perl.org

name, you can replace the identifier with
 a simple scalar variable containing a reference of the
correct type:

 $bar = $$scalarref;
 push(@$arrayref, $filename);
 $$arrayref[0] = "January";
 $$hashref{"KEY"} = "VALUE";
 &$coderef(1,2,3);
 print $globref "output\n";

It's important to understand that we are specifically not dereferencing $arrayref[0] or
$hashref{"KEY"} there. The dereference of the
 scalar variable happens before it does any
key lookups. Anything more
 complicated than a simple scalar variable must use methods 2 or
3 below.
 However, a "simple scalar" includes an identifier that itself uses method
 1 recursively.
Therefore, the following prints "howdy".

 $refrefref = \\\"howdy";
 print $$$$refrefref;

2. Anywhere you'd put an identifier (or chain of identifiers) as part of a
 variable or subroutine
name, you can replace the identifier with a
 BLOCK returning a reference of the correct type. In
other words, the
 previous examples could be written like this:

 $bar = ${$scalarref};
 push(@{$arrayref}, $filename);
 ${$arrayref}[0] = "January";
 ${$hashref}{"KEY"} = "VALUE";
 &{$coderef}(1,2,3);
 $globref->print("output\n"); # iff IO::Handle is loaded

Admittedly, it's a little silly to use the curlies in this case, but
 the BLOCK can contain any
arbitrary expression, in particular,
 subscripted expressions:

 &{ $dispatch{$index} }(1,2,3);	 # call correct routine

Because of being able to omit the curlies for the simple case of $$x,
 people often make the
mistake of viewing the dereferencing symbols as
 proper operators, and wonder about their
precedence. If they were,
 though, you could use parentheses instead of braces. That's not the
case.
 Consider the difference below; case 0 is a short-hand version of case 1, not case 2:

 $$hashref{"KEY"} = "VALUE";	 # CASE 0
 ${$hashref}{"KEY"} = "VALUE";	 # CASE 1
 ${$hashref{"KEY"}} = "VALUE";	 # CASE 2
 ${$hashref->{"KEY"}} = "VALUE";	 # CASE 3

Case 2 is also deceptive in that you're accessing a variable
 called %hashref, not
dereferencing through $hashref to the hash
 it's presumably referencing. That would be case 3.

3. Subroutine calls and lookups of individual array elements arise often
 enough that it gets
cumbersome to use method 2. As a form of
 syntactic sugar, the examples for method 2 may
be written:

 $arrayref->[0] = "January"; # Array element
 $hashref->{"KEY"} = "VALUE"; # Hash element
 $coderef->(1,2,3); # Subroutine call

The left side of the arrow can be any expression returning a reference,
 including a previous
dereference. Note that $array[$x] is not the
 same thing as $array->[$x] here:

 $array[$x]->{"foo"}->[0] = "January";

Perl version 5.16.1 documentation - perlref

Page 6http://perldoc.perl.org

This is one of the cases we mentioned earlier in which references could
 spring into existence
when in an lvalue context. Before this
 statement, $array[$x] may have been undefined. If
so, it's
 automatically defined with a hash reference so that we can look up {"foo"} in it.
Likewise $array[$x]->{"foo"} will automatically get
 defined with an array reference so
that we can look up [0] in it.
 This process is called autovivification.

One more thing here. The arrow is optional between brackets
 subscripts, so you can shrink
the above down to

 $array[$x]{"foo"}[0] = "January";

Which, in the degenerate case of using only ordinary arrays, gives you
 multidimensional
arrays just like C's:

 $score[$x][$y][$z] += 42;

Well, okay, not entirely like C's arrays, actually. C doesn't know how
 to grow its arrays on
demand. Perl does.

4. If a reference happens to be a reference to an object, then there are
 probably methods to
access the things referred to, and you should probably
 stick to those methods unless you're in
the class package that defines the
 object's methods. In other words, be nice, and don't violate
the object's
 encapsulation without a very good reason. Perl does not enforce
 encapsulation.
We are not totalitarians here. We do expect some basic
 civility though.

Using a string or number as a reference produces a symbolic reference,
 as explained above. Using a
reference as a number produces an
 integer representing its storage location in memory. The only

useful thing to be done with this is to compare two references
 numerically to see whether they refer to
the same location.

 if ($ref1 == $ref2) { # cheap numeric compare of references
	 print "refs 1 and 2 refer to the same thing\n";
 }

Using a reference as a string produces both its referent's type,
 including any package blessing as
described in perlobj, as well
 as the numeric address expressed in hex. The ref() operator returns
 just
the type of thing the reference is pointing to, without the
 address. See "ref" in perlfunc for details and
examples of its use.

The bless() operator may be used to associate the object a reference
 points to with a package
functioning as an object class. See perlobj.

A typeglob may be dereferenced the same way a reference can, because
 the dereference syntax
always indicates the type of reference desired.
 So ${*foo} and ${\$foo} both indicate the same
scalar variable.

Here's a trick for interpolating a subroutine call into a string:

 print "My sub returned @{[mysub(1,2,3)]} that time.\n";

The way it works is that when the @{...} is seen in the double-quoted
 string, it's evaluated as a
block. The block creates a reference to an
 anonymous array containing the results of the call to
mysub(1,2,3). So
 the whole block returns a reference to an array, which is then
 dereferenced by
@{...} and stuck into the double-quoted string. This
 chicanery is also useful for arbitrary
expressions:

 print "That yields @{[$n + 5]} widgets\n";

Similarly, an expression that returns a reference to a scalar can be
 dereferenced via ${...}. Thus,
the above expression may be written
 as:

Perl version 5.16.1 documentation - perlref

Page 7http://perldoc.perl.org

 print "That yields ${\($n + 5)} widgets\n";

Circular References
It is possible to create a "circular reference" in Perl, which can lead
 to memory leaks. A circular
reference occurs when two references
 contain a reference to each other, like this:

 my $foo = {};
 my $bar = { foo => $foo };
 $foo->{bar} = $bar;

You can also create a circular reference with a single variable:

 my $foo;
 $foo = \$foo;

In this case, the reference count for the variables will never reach 0,
 and the references will never be
garbage-collected. This can lead to
 memory leaks.

Because objects in Perl are implemented as references, it's possible to
 have circular references with
objects as well. Imagine a TreeNode class
 where each node references its parent and child nodes.
Any node with a
 parent will be part of a circular reference.

You can break circular references by creating a "weak reference". A
 weak reference does not
increment the reference count for a variable,
 which means that the object can go out of scope and be
destroyed. You
 can weaken a reference with the weaken function exported by the Scalar::Util
module.

Here's how we can make the first example safer:

 use Scalar::Util 'weaken';

 my $foo = {};
 my $bar = { foo => $foo };
 $foo->{bar} = $bar;

 weaken $foo->{bar};

The reference from $foo to $bar has been weakened. When the $bar variable goes out of scope, it
will be garbage-collected. The
 next time you look at the value of the $foo->{bar} key, it will
 be
undef.

This action at a distance can be confusing, so you should be careful
 with your use of weaken. You
should weaken the reference in the
 variable that will go out of scope first. That way, the longer-lived

variable will contain the expected reference until it goes out of
 scope.

Symbolic references
We said that references spring into existence as necessary if they are
 undefined, but we didn't say
what happens if a value used as a
 reference is already defined, but isn't a hard reference. If you
 use it
as a reference, it'll be treated as a symbolic
 reference. That is, the value of the scalar is taken to be
the name
 of a variable, rather than a direct link to a (possibly) anonymous
 value.

People frequently expect it to work like this. So it does.

 $name = "foo";
 $$name = 1;			 # Sets $foo
 ${$name} = 2;		 # Sets $foo
 ${$name x 2} = 3;		 # Sets $foofoo

Perl version 5.16.1 documentation - perlref

Page 8http://perldoc.perl.org

 $name->[0] = 4;		 # Sets $foo[0]
 @$name = ();		 # Clears @foo
 &$name();			 # Calls &foo() (as in Perl 4)
 $pack = "THAT";
 ${"${pack}::$name"} = 5;	 # Sets $THAT::foo without eval

This is powerful, and slightly dangerous, in that it's possible
 to intend (with the utmost sincerity) to use
a hard reference, and
 accidentally use a symbolic reference instead. To protect against
 that, you can
say

 use strict 'refs';

and then only hard references will be allowed for the rest of the enclosing
 block. An inner block may
countermand that with

 no strict 'refs';

Only package variables (globals, even if localized) are visible to
 symbolic references. Lexical
variables (declared with my()) aren't in
 a symbol table, and thus are invisible to this mechanism. For
example:

 local $value = 10;
 $ref = "value";
 {
	 my $value = 20;
	 print $$ref;
 }

This will still print 10, not 20. Remember that local() affects package
 variables, which are all "global"
to the package.

Not-so-symbolic references
Since Perl verion 5.001, brackets around a symbolic reference can simply
 serve to isolate an identifier
or variable name from the rest of an
 expression, just as they always have within a string. For
example,

 $push = "pop on ";
 print "${push}over";

has always meant to print "pop on over", even though push is
 a reserved word. In 5.001, this was
generalized to work the same
 without the enclosing double quotes, so that

 print ${push} . "over";

and even

 print ${ push } . "over";

will have the same effect. (This would have been a syntax error in
 Perl 5.000, though Perl 4 allowed it
in the spaceless form.) This
 construct is not considered to be a symbolic reference when you're
 using
strict refs:

 use strict 'refs';
 ${ bareword };	 # Okay, means $bareword.
 ${ "bareword" };	 # Error, symbolic reference.

Perl version 5.16.1 documentation - perlref

Page 9http://perldoc.perl.org

Similarly, because of all the subscripting that is done using single words,
 the same rule applies to any
bareword that is used for subscripting a hash.
 So now, instead of writing

 $array{ "aaa" }{ "bbb" }{ "ccc" }

you can write just

 $array{ aaa }{ bbb }{ ccc }

and not worry about whether the subscripts are reserved words. In the
 rare event that you do wish to
do something like

 $array{ shift }

you can force interpretation as a reserved word by adding anything that
 makes it more than a
bareword:

 $array{ shift() }
 $array{ +shift }
 $array{ shift @_ }

The use warnings pragma or the -w switch will warn you if it
 interprets a reserved word as a string.

But it will no longer warn you about using lowercase words, because the
 string is effectively quoted.

Pseudo-hashes: Using an array as a hash
Pseudo-hashes have been removed from Perl. The 'fields' pragma
 remains available.

Function Templates
As explained above, an anonymous function with access to the lexical
 variables visible when that
function was compiled, creates a closure. It
 retains access to those variables even though it doesn't
get run until
 later, such as in a signal handler or a Tk callback.

Using a closure as a function template allows us to generate many functions
 that act similarly.
Suppose you wanted functions named after the colors
 that generated HTML font changes for the
various colors:

 print "Be ", red("careful"), "with that ", green("light");

The red() and green() functions would be similar. To create these,
 we'll assign a closure to a typeglob
of the name of the function we're
 trying to build.

 @colors = qw(red blue green yellow orange purple violet);
 for my $name (@colors) {
 no strict 'refs';	 # allow symbol table manipulation
 *$name = *{uc $name} = sub { "@_" };
 }

Now all those different functions appear to exist independently. You can
 call red(), RED(), blue(),
BLUE(), green(), etc. This technique saves on
 both compile time and memory use, and is less
error-prone as well, since
 syntax checks happen at compile time. It's critical that any variables in
 the
anonymous subroutine be lexicals in order to create a proper closure.
 That's the reasons for the my
on the loop iteration variable.

This is one of the only places where giving a prototype to a closure makes
 much sense. If you wanted
to impose scalar context on the arguments of
 these functions (probably not a wise idea for this
particular example),
 you could have written it this way instead:

Perl version 5.16.1 documentation - perlref

Page 10http://perldoc.perl.org

 *$name = sub ($) { "$_[0]" };

However, since prototype checking happens at compile time, the assignment
 above happens too late
to be of much use. You could address this by
 putting the whole loop of assignments within a BEGIN
block, forcing it
 to occur during compilation.

Access to lexicals that change over time--like those in the for loop
 above, basically aliases to
elements from the surrounding lexical scopes--
 only works with anonymous subs, not with named
subroutines. Generally
 said, named subroutines do not nest properly and should only be declared
 in
the main package scope.

This is because named subroutines are created at compile time so their
 lexical variables get assigned
to the parent lexicals from the first
 execution of the parent block. If a parent scope is entered a second
time, its lexicals are created again, while the nested subs still
 reference the old ones.

Anonymous subroutines get to capture each time you execute the sub
 operator, as they are created
on the fly. If you are accustomed to using
 nested subroutines in other programming languages with
their own private
 variables, you'll have to work at it a bit in Perl. The intuitive coding
 of this type of
thing incurs mysterious warnings about "will not stay
 shared" due to the reasons explained above. For
example, this won't work:

 sub outer {
 my $x = $_[0] + 35;
 sub inner { return $x * 19 } # WRONG
 return $x + inner();
 }

A work-around is the following:

 sub outer {
 my $x = $_[0] + 35;
 local *inner = sub { return $x * 19 };
 return $x + inner();
 }

Now inner() can only be called from within outer(), because of the
 temporary assignments of the
anonymous subroutine. But when it does,
 it has normal access to the lexical variable $x from the
scope of
 outer() at the time outer is invoked.

This has the interesting effect of creating a function local to another
 function, something not normally
supported in Perl.

WARNING
You may not (usefully) use a reference as the key to a hash. It will be
 converted into a string:

 $x{ \$a } = $a;

If you try to dereference the key, it won't do a hard dereference, and
 you won't accomplish what
you're attempting. You might want to do something
 more like

 $r = \@a;
 $x{ $r } = $r;

And then at least you can use the values(), which will be
 real refs, instead of the keys(), which won't.

The standard Tie::RefHash module provides a convenient workaround to this.

Perl version 5.16.1 documentation - perlref

Page 11http://perldoc.perl.org

SEE ALSO
Besides the obvious documents, source code can be instructive.
 Some pathological examples of the
use of references can be found
 in the t/op/ref.t regression test in the Perl source directory.

See also perldsc and perllol for how to use references to create
 complex data structures, and
perlootut and perlobj
 for how to use them to create objects.

