
Perl version 5.16.1 documentation - Getopt::Long

Page 1http://perldoc.perl.org

NAME
Getopt::Long - Extended processing of command line options

SYNOPSIS
 use Getopt::Long;
 my $data = "file.dat";
 my $length = 24;
 my $verbose;
 $result = GetOptions ("length=i" => \$length, # numeric
 "file=s" => \$data, # string
			 "verbose" => \$verbose); # flag

DESCRIPTION
The Getopt::Long module implements an extended getopt function called
 GetOptions(). This function
adheres to the POSIX syntax for command
 line options, with GNU extensions. In general, this means
that options
 have long names instead of single letters, and are introduced with a
 double dash "--".
Support for bundling of command line options, as was
 the case with the more traditional single-letter
approach, is provided
 but not enabled by default.

Command Line Options, an Introduction
Command line operated programs traditionally take their arguments from
 the command line, for
example filenames or other information that the
 program needs to know. Besides arguments, these
programs often take
 command line options as well. Options are not necessary for the
 program to
work, hence the name 'option', but are used to modify its
 default behaviour. For example, a program
could do its job quietly,
 but with a suitable option it could provide verbose information about
 what it
did.

Command line options come in several flavours. Historically, they are
 preceded by a single dash -,
and consist of a single letter.

 -l -a -c

Usually, these single-character options can be bundled:

 -lac

Options can have values, the value is placed after the option
 character. Sometimes with whitespace
in between, sometimes not:

 -s 24 -s24

Due to the very cryptic nature of these options, another style was
 developed that used long names.
So instead of a cryptic -l one
 could use the more descriptive --long. To distinguish between a

bundle of single-character options and a long one, two dashes are used
 to precede the option name.
Early implementations of long options used
 a plus + instead. Also, option values could be specified
either
 like

 --size=24

or

 --size 24

The + form is now obsolete and strongly deprecated.

Perl version 5.16.1 documentation - Getopt::Long

Page 2http://perldoc.perl.org

Getting Started with Getopt::Long
Getopt::Long is the Perl5 successor of newgetopt.pl. This was the
 first Perl module that provided
support for handling the new style of
 command line options, hence the name Getopt::Long. This
module also
 supports single-character options and bundling. Single character
 options may be any
alphabetic character, a question mark, and a dash.
 Long options may consist of a series of letters,
digits, and dashes.
 Although this is currently not enforced by Getopt::Long, multiple
 consecutive
dashes are not allowed, and the option name must not end
 with a dash.

To use Getopt::Long from a Perl program, you must include the
 following line in your Perl program:

 use Getopt::Long;

This will load the core of the Getopt::Long module and prepare your
 program for using it. Most of the
actual Getopt::Long code is not
 loaded until you really call one of its functions.

In the default configuration, options names may be abbreviated to
 uniqueness, case does not matter,
and a single dash is sufficient,
 even for long option names. Also, options may be placed between

non-option arguments. See Configuring Getopt::Long for more
 details on how to configure
Getopt::Long.

Simple options
The most simple options are the ones that take no values. Their mere
 presence on the command line
enables the option. Popular examples are:

 --all --verbose --quiet --debug

Handling simple options is straightforward:

 my $verbose = '';	 # option variable with default value (false)
 my $all = '';	 # option variable with default value (false)
 GetOptions ('verbose' => \$verbose, 'all' => \$all);

The call to GetOptions() parses the command line arguments that are
 present in @ARGV and sets the
option variable to the value 1 if
 the option did occur on the command line. Otherwise, the option

variable is not touched. Setting the option value to true is often
 called enabling the option.

The option name as specified to the GetOptions() function is called
 the option specification. Later we'll
see that this specification
 can contain more than just the option name. The reference to the
 variable is
called the option destination.

GetOptions() will return a true value if the command line could be
 processed successfully. Otherwise,
it will write error messages to
 STDERR, and return a false result.

A little bit less simple options
Getopt::Long supports two useful variants of simple options: negatable options and incremental
options.

A negatable option is specified with an exclamation mark ! after the
 option name:

 my $verbose = '';	 # option variable with default value (false)
 GetOptions ('verbose!' => \$verbose);

Now, using --verbose on the command line will enable $verbose,
 as expected. But it is also
allowed to use --noverbose, which will
 disable $verbose by setting its value to 0. Using a suitable

default value, the program can find out whether $verbose is false
 by default, or disabled by using
--noverbose.

An incremental option is specified with a plus + after the
 option name:

Perl version 5.16.1 documentation - Getopt::Long

Page 3http://perldoc.perl.org

 my $verbose = '';	 # option variable with default value (false)
 GetOptions ('verbose+' => \$verbose);

Using --verbose on the command line will increment the value of $verbose. This way the program
can keep track of how many times the
 option occurred on the command line. For example, each
occurrence of --verbose could increase the verbosity level of the program.

Mixing command line option with other arguments
Usually programs take command line options as well as other arguments,
 for example, file names. It
is good practice to always specify the
 options first, and the other arguments last. Getopt::Long will,

however, allow the options and arguments to be mixed and 'filter out'
 all the options before passing
the rest of the arguments to the
 program. To stop Getopt::Long from processing further arguments,

insert a double dash -- on the command line:

 --size 24 -- --all

In this example, --all will not be treated as an option, but
 passed to the program unharmed, in
@ARGV.

Options with values
For options that take values it must be specified whether the option
 value is required or not, and what
kind of value the option expects.

Three kinds of values are supported: integer numbers, floating point
 numbers, and strings.

If the option value is required, Getopt::Long will take the
 command line argument that follows the
option and assign this to the
 option variable. If, however, the option value is specified as
 optional, this
will only be done if that value does not look like a
 valid command line option itself.

 my $tag = '';	 # option variable with default value
 GetOptions ('tag=s' => \$tag);

In the option specification, the option name is followed by an equals
 sign = and the letter s. The
equals sign indicates that this
 option requires a value. The letter s indicates that this value is
 an
arbitrary string. Other possible value types are i for integer
 values, and f for floating point values.
Using a colon : instead
 of the equals sign indicates that the option value is optional. In
 this case, if no
suitable value is supplied, string valued options get
 an empty string '' assigned, while numeric
options are set to 0.

Options with multiple values
Options sometimes take several values. For example, a program could
 use multiple directories to
search for library files:

 --library lib/stdlib --library lib/extlib

To accomplish this behaviour, simply specify an array reference as the
 destination for the option:

 GetOptions ("library=s" => \@libfiles);

Alternatively, you can specify that the option can have multiple
 values by adding a "@", and pass a
scalar reference as the
 destination:

 GetOptions ("library=s@" => \$libfiles);

Used with the example above, @libfiles (or @$libfiles) would
 contain two strings upon
completion: "lib/srdlib" and "lib/extlib", in that order. It is also possible to specify that
 only

Perl version 5.16.1 documentation - Getopt::Long

Page 4http://perldoc.perl.org

integer or floating point numbers are acceptable values.

Often it is useful to allow comma-separated lists of values as well as
 multiple occurrences of the
options. This is easy using Perl's split()
 and join() operators:

 GetOptions ("library=s" => \@libfiles);
 @libfiles = split(/,/,join(',',@libfiles));

Of course, it is important to choose the right separator string for
 each purpose.

Warning: What follows is an experimental feature.

Options can take multiple values at once, for example

 --coordinates 52.2 16.4 --rgbcolor 255 255 149

This can be accomplished by adding a repeat specifier to the option
 specification. Repeat specifiers
are very similar to the {...}
 repeat specifiers that can be used with regular expression patterns.
 For
example, the above command line would be handled as follows:

 GetOptions('coordinates=f{2}' => \@coor, 'rgbcolor=i{3}' => \@color);

The destination for the option must be an array or array reference.

It is also possible to specify the minimal and maximal number of
 arguments an option takes.
foo=s{2,4} indicates an option that
 takes at least two and at most 4 arguments. foo=s{,}
indicates one
 or more values; foo:s{,} indicates zero or more option values.

Options with hash values
If the option destination is a reference to a hash, the option will
 take, as value, strings of the form key
=value. The value will
 be stored with the specified key in the hash.

 GetOptions ("define=s" => \%defines);

Alternatively you can use:

 GetOptions ("define=s%" => \$defines);

When used with command line options:

 --define os=linux --define vendor=redhat

the hash %defines (or %$defines) will contain two keys, "os"
 with value "linux" and "vendor"
with value "redhat". It is
 also possible to specify that only integer or floating point numbers
 are
acceptable values. The keys are always taken to be strings.

User-defined subroutines to handle options
Ultimate control over what should be done when (actually: each time)
 an option is encountered on the
command line can be achieved by
 designating a reference to a subroutine (or an anonymous
subroutine)
 as the option destination. When GetOptions() encounters the option, it
 will call the
subroutine with two or three arguments. The first
 argument is the name of the option. (Actually, it is an
object that
 stringifies to the name of the option.) For a scalar or array destination,
 the second
argument is the value to be stored. For a hash destination,
 the second arguments is the key to the
hash, and the third argument
 the value to be stored. It is up to the subroutine to store the value,
 or do
whatever it thinks is appropriate.

A trivial application of this mechanism is to implement options that
 are related to each other. For
example:

Perl version 5.16.1 documentation - Getopt::Long

Page 5http://perldoc.perl.org

 my $verbose = '';	 # option variable with default value (false)
 GetOptions ('verbose' => \$verbose,
	 'quiet' => sub { $verbose = 0 });

Here --verbose and --quiet control the same variable $verbose, but with opposite values.

If the subroutine needs to signal an error, it should call die() with
 the desired error message as its
argument. GetOptions() will catch the
 die(), issue the error message, and record that an error result
must
 be returned upon completion.

If the text of the error message starts with an exclamation mark !
 it is interpreted specially by
GetOptions(). There is currently one
 special command implemented: die("!FINISH") will cause
GetOptions()
 to stop processing options, as if it encountered a double dash --.

In version 2.37 the first argument to the callback function was
 changed from string to object. This was
done to make room for
 extensions and more detailed control. The object stringifies to the
 option name
so this change should not introduce compatibility
 problems.

Options with multiple names
Often it is user friendly to supply alternate mnemonic names for
 options. For example --height
could be an alternate name for --length. Alternate names can be included in the option

specification, separated by vertical bar | characters. To implement
 the above example:

 GetOptions ('length|height=f' => \$length);

The first name is called the primary name, the other names are
 called aliases. When using a hash to
store options, the key will
 always be the primary name.

Multiple alternate names are possible.

Case and abbreviations
Without additional configuration, GetOptions() will ignore the case of
 option names, and allow the
options to be abbreviated to uniqueness.

 GetOptions ('length|height=f' => \$length, "head" => \$head);

This call will allow --l and --L for the length option, but
 requires a least --hea and --hei for the
head and height options.

Summary of Option Specifications
Each option specifier consists of two parts: the name specification
 and the argument specification.

The name specification contains the name of the option, optionally
 followed by a list of alternative
names separated by vertical bar
 characters.

 length	 option name is "length"
 length|size|l name is "length", aliases are "size" and "l"

The argument specification is optional. If omitted, the option is
 considered boolean, a value of 1 will
be assigned when the option is
 used on the command line.

The argument specification can be

!

The option does not take an argument and may be negated by prefixing
 it with "no" or "no-".
E.g. "foo!" will allow --foo (a value of
 1 will be assigned) as well as --nofoo and
--no-foo (a value of
 0 will be assigned). If the option has aliases, this applies to the
 aliases
as well.

Perl version 5.16.1 documentation - Getopt::Long

Page 6http://perldoc.perl.org

Using negation on a single letter option when bundling is in effect is
 pointless and will result in
a warning.

+

The option does not take an argument and will be incremented by 1
 every time it appears on
the command line. E.g. "more+", when used
 with --more --more --more, will increment
the value three times,
 resulting in a value of 3 (provided it was 0 or undefined at first).

The + specifier is ignored if the option destination is not a scalar.

= type [desttype] [repeat]

The option requires an argument of the given type. Supported types
 are:

s

String. An arbitrary sequence of characters. It is valid for the
 argument to start with -
or --.

i

Integer. An optional leading plus or minus sign, followed by a
 sequence of digits.

o

Extended integer, Perl style. This can be either an optional leading
 plus or minus sign,
followed by a sequence of digits, or an octal
 string (a zero, optionally followed by '0',
'1', .. '7'), or a
 hexadecimal string (0x followed by '0' .. '9', 'a' .. 'f', case
 insensitive), or a
binary string (0b followed by a series of '0'
 and '1').

f

Real number. For example 3.14, -6.23E24 and so on.

The desttype can be @ or % to specify that the option is
 list or a hash valued. This is only
needed when the destination for
 the option value is not otherwise specified. It should be
omitted when
 not needed.

The repeat specifies the number of values this option takes per
 occurrence on the command
line. It has the format { [min] [, [max]] }.

min denotes the minimal number of arguments. It defaults to 1 for
 options with = and to 0 for
options with :, see below. Note that min overrules the = / : semantics.

max denotes the maximum number of arguments. It must be at least min. If max is omitted,
but the comma is not, there is no
 upper bound to the number of argument values taken.

: type [desttype]

Like =, but designates the argument as optional.
 If omitted, an empty string will be assigned to
string values options,
 and the value zero to numeric options.

Note that if a string argument starts with - or --, it will be
 considered an option on itself.

: number [desttype]

Like :i, but if the value is omitted, the number will be assigned.

: + [desttype]

Like :i, but if the value is omitted, the current value for the
 option will be incremented.

Advanced Possibilities
Object oriented interface

Getopt::Long can be used in an object oriented way as well:

 use Getopt::Long;
 $p = new Getopt::Long::Parser;

Perl version 5.16.1 documentation - Getopt::Long

Page 7http://perldoc.perl.org

 $p->configure(...configuration options...);
 if ($p->getoptions(...options descriptions...)) ...

Configuration options can be passed to the constructor:

 $p = new Getopt::Long::Parser
 config => [...configuration options...];

Thread Safety
Getopt::Long is thread safe when using ithreads as of Perl 5.8. It is not thread safe when using the
older (experimental and now
 obsolete) threads implementation that was added to Perl 5.005.

Documentation and help texts
Getopt::Long encourages the use of Pod::Usage to produce help
 messages. For example:

 use Getopt::Long;
 use Pod::Usage;

 my $man = 0;
 my $help = 0;

 GetOptions('help|?' => \$help, man => \$man) or pod2usage(2);
 pod2usage(1) if $help;
 pod2usage(-exitstatus => 0, -verbose => 2) if $man;

 __END__

 =head1 NAME

 sample - Using Getopt::Long and Pod::Usage

 =head1 SYNOPSIS

 sample [options] [file ...]

 Options:
 -help brief help message
 -man full documentation

 =head1 OPTIONS

 =over 8

 =item B<-help>

 Print a brief help message and exits.

 =item B<-man>

 Prints the manual page and exits.

Perl version 5.16.1 documentation - Getopt::Long

Page 8http://perldoc.perl.org

 =back

 =head1 DESCRIPTION

 B<This program> will read the given input file(s) and do something
 useful with the contents thereof.

 =cut

See Pod::Usage for details.

Parsing options from an arbitrary array
By default, GetOptions parses the options that are present in the
 global array @ARGV. A special entry
GetOptionsFromArray can be
 used to parse options from an arbitrary array.

 use Getopt::Long qw(GetOptionsFromArray);
 $ret = GetOptionsFromArray(\@myopts, ...);

When used like this, the global @ARGV is not touched at all.

The following two calls behave identically:

 $ret = GetOptions(...);
 $ret = GetOptionsFromArray(\@ARGV, ...);

Parsing options from an arbitrary string
A special entry GetOptionsFromString can be used to parse options
 from an arbitrary string.

 use Getopt::Long qw(GetOptionsFromString);
 $ret = GetOptionsFromString($string, ...);

The contents of the string are split into arguments using a call to
Text::ParseWords::shellwords. As with GetOptionsFromArray, the
 global @ARGV is not
touched.

It is possible that, upon completion, not all arguments in the string
 have been processed.
GetOptionsFromString will, when called in list
 context, return both the return status and an array
reference to any
 remaining arguments:

 ($ret, $args) = GetOptionsFromString($string, ...);

If any arguments remain, and GetOptionsFromString was not called in
 list context, a message will
be given and GetOptionsFromString will
 return failure.

Storing options values in a hash
Sometimes, for example when there are a lot of options, having a
 separate variable for each of them
can be cumbersome. GetOptions()
 supports, as an alternative mechanism, storing options values in a
hash.

To obtain this, a reference to a hash must be passed as the first
 argument to GetOptions(). For each
option that is specified on the
 command line, the option value will be stored in the hash with the
 option
name as key. Options that are not actually used on the command
 line will not be put in the hash, on
other words, exists($h{option}) (or defined()) can be used to test if an option
 was used. The
drawback is that warnings will be issued if the program
 runs under use strict and uses
$h{option} without testing with
 exists() or defined() first.

Perl version 5.16.1 documentation - Getopt::Long

Page 9http://perldoc.perl.org

 my %h = ();
 GetOptions (\%h, 'length=i');	 # will store in $h{length}

For options that take list or hash values, it is necessary to indicate
 this by appending an @ or % sign
after the type:

 GetOptions (\%h, 'colours=s@');	 # will push to @{$h{colours}}

To make things more complicated, the hash may contain references to
 the actual destinations, for
example:

 my $len = 0;
 my %h = ('length' => \$len);
 GetOptions (\%h, 'length=i');	 # will store in $len

This example is fully equivalent with:

 my $len = 0;
 GetOptions ('length=i' => \$len);	 # will store in $len

Any mixture is possible. For example, the most frequently used options
 could be stored in variables
while all other options get stored in the
 hash:

 my $verbose = 0;			 # frequently referred
 my $debug = 0;			 # frequently referred
 my %h = ('verbose' => \$verbose, 'debug' => \$debug);
 GetOptions (\%h, 'verbose', 'debug', 'filter', 'size=i');
 if ($verbose) { ... }
 if (exists $h{filter}) { ... option 'filter' was specified ... }

Bundling
With bundling it is possible to set several single-character options
 at once. For example if a, v and x
are all valid options,

 -vax

would set all three.

Getopt::Long supports two levels of bundling. To enable bundling, a
 call to Getopt::Long::Configure is
required.

The first level of bundling can be enabled with:

 Getopt::Long::Configure ("bundling");

Configured this way, single-character options can be bundled but long
 options must always start with
a double dash -- to avoid
 ambiguity. For example, when vax, a, v and x are all valid
 options,

 -vax

would set a, v and x, but

 --vax

would set vax.

Perl version 5.16.1 documentation - Getopt::Long

Page 10http://perldoc.perl.org

The second level of bundling lifts this restriction. It can be enabled
 with:

 Getopt::Long::Configure ("bundling_override");

Now, -vax would set the option vax.

When any level of bundling is enabled, option values may be inserted
 in the bundle. For example:

 -h24w80

is equivalent to

 -h 24 -w 80

When configured for bundling, single-character options are matched
 case sensitive while long options
are matched case insensitive. To
 have the single-character options matched case insensitive as well,

use:

 Getopt::Long::Configure ("bundling", "ignorecase_always");

It goes without saying that bundling can be quite confusing.

The lonesome dash
Normally, a lone dash - on the command line will not be considered
 an option. Option processing will
terminate (unless "permute" is
 configured) and the dash will be left in @ARGV.

It is possible to get special treatment for a lone dash. This can be
 achieved by adding an option
specification with an empty name, for
 example:

 GetOptions ('' => \$stdio);

A lone dash on the command line will now be a legal option, and using
 it will set variable $stdio.

Argument callback
A special option 'name' <> can be used to designate a subroutine
 to handle non-option arguments.
When GetOptions() encounters an
 argument that does not look like an option, it will immediately call
this
 subroutine and passes it one parameter: the argument name. Well, actually
 it is an object that
stringifies to the argument name.

For example:

 my $width = 80;
 sub process { ... }
 GetOptions ('width=i' => \$width, '<>' => \&process);

When applied to the following command line:

 arg1 --width=72 arg2 --width=60 arg3

This will call process("arg1") while $width is 80, process("arg2") while $width is 72, and
process("arg3") while $width is 60.

This feature requires configuration option permute, see section Configuring Getopt::Long.

Configuring Getopt::Long
Getopt::Long can be configured by calling subroutine
 Getopt::Long::Configure(). This subroutine takes
a list of quoted
 strings, each specifying a configuration option to be enabled, e.g. ignore_case, or

Perl version 5.16.1 documentation - Getopt::Long

Page 11http://perldoc.perl.org

disabled, e.g. no_ignore_case. Case does not
 matter. Multiple calls to Configure() are possible.

Alternatively, as of version 2.24, the configuration options may be
 passed together with the use
statement:

 use Getopt::Long qw(:config no_ignore_case bundling);

The following options are available:

default

This option causes all configuration options to be reset to their
 default values.

posix_default

This option causes all configuration options to be reset to their
 default values
as if the environment variable POSIXLY_CORRECT had
 been set.

auto_abbrev

Allow option names to be abbreviated to uniqueness.
 Default is enabled unless
environment variable
 POSIXLY_CORRECT has been set, in which case
auto_abbrev is disabled.

getopt_compat

Allow + to start options.
 Default is enabled unless environment variable

POSIXLY_CORRECT has been set, in which case getopt_compat is
disabled.

gnu_compat

gnu_compat controls whether --opt= is allowed, and what it should
 do.
Without gnu_compat, --opt= gives an error. With gnu_compat, --opt= will
give option opt and empty value.
 This is the way GNU getopt_long() does it.

gnu_getopt

This is a short way of setting gnu_compat bundling permute
no_getopt_compat. With gnu_getopt, command line handling should be

fully compatible with GNU getopt_long().

require_order

Whether command line arguments are allowed to be mixed with options.

Default is disabled unless environment variable
 POSIXLY_CORRECT has
been set, in which case require_order is enabled.

See also permute, which is the opposite of require_order.

permute

Whether command line arguments are allowed to be mixed with options.

Default is enabled unless environment variable
 POSIXLY_CORRECT has
been set, in which case permute is disabled.
 Note that permute is the
opposite of require_order.

If permute is enabled, this means that

 --foo arg1 --bar arg2 arg3

is equivalent to

 --foo --bar arg1 arg2 arg3

If an argument callback routine is specified, @ARGV will always be
 empty upon
successful return of GetOptions() since all options have been
 processed. The

Perl version 5.16.1 documentation - Getopt::Long

Page 12http://perldoc.perl.org

only exception is when -- is used:

 --foo arg1 --bar arg2 -- arg3

This will call the callback routine for arg1 and arg2, and then
 terminate
GetOptions() leaving "arg3" in @ARGV.

If require_order is enabled, options processing
 terminates when the first
non-option is encountered.

 --foo arg1 --bar arg2 arg3

is equivalent to

 --foo -- arg1 --bar arg2 arg3

If pass_through is also enabled, options processing will terminate
 at the first
unrecognized option, or non-option, whichever comes
 first.

bundling (default: disabled)

Enabling this option will allow single-character options to be
 bundled. To
distinguish bundles from long option names, long options must be introduced
with -- and bundles with -.

Note that, if you have options a, l and all, and
 auto_abbrev enabled,
possible arguments and option settings are:

 using argument sets option(s)
 --
 -a, --a a
 -l, --l l
 -al, -la, -ala, -all,... a, l
 --al, --all all

The surprising part is that --a sets option a (due to auto
 completion), not all.

Note: disabling bundling also disables bundling_override.

bundling_override (default: disabled)

If bundling_override is enabled, bundling is enabled as with bundling
but now long option names override option bundles.

Note: disabling bundling_override also disables bundling.

Note: Using option bundling can easily lead to unexpected results,
 especially
when mixing long options and bundles. Caveat emptor.

ignore_case (default: enabled)

If enabled, case is ignored when matching long option names. If,
 however,
bundling is enabled as well, single character options will be
 treated
case-sensitive.

With ignore_case, option specifications for options that only
 differ in case,
e.g., "foo" and "Foo", will be flagged as
 duplicates.

Note: disabling ignore_case also disables ignore_case_always.

ignore_case_always (default: disabled)

When bundling is in effect, case is ignored on single-character
 options also.

Note: disabling ignore_case_always also disables ignore_case.

auto_version (default:disabled)

Automatically provide support for the --version option if
 the application did not

Perl version 5.16.1 documentation - Getopt::Long

Page 13http://perldoc.perl.org

specify a handler for this option itself.

Getopt::Long will provide a standard version message that includes the

program name, its version (if $main::VERSION is defined), and the
 versions of
Getopt::Long and Perl. The message will be written to
 standard output and
processing will terminate.

auto_version will be enabled if the calling program explicitly
 specified a
version number higher than 2.32 in the use or require statement.

auto_help (default:disabled)

Automatically provide support for the --help and -? options if
 the application did
not specify a handler for this option itself.

Getopt::Long will provide a help message using module Pod::Usage. The

message, derived from the SYNOPSIS POD section, will be written to
 standard
output and processing will terminate.

auto_help will be enabled if the calling program explicitly
 specified a version
number higher than 2.32 in the use or require statement.

pass_through (default: disabled)

Options that are unknown, ambiguous or supplied with an invalid option
 value
are passed through in @ARGV instead of being flagged as
 errors. This makes it
possible to write wrapper scripts that process
 only part of the user supplied
command line arguments, and pass the
 remaining options to some other
program.

If require_order is enabled, options processing will terminate at
 the first
unrecognized option, or non-option, whichever comes first.
 However, if
permute is enabled instead, results can become confusing.

Note that the options terminator (default --), if present, will
 also be passed
through in @ARGV.

prefix

The string that starts options. If a constant string is not
 sufficient, see
prefix_pattern.

prefix_pattern

A Perl pattern that identifies the strings that introduce options.
 Default is
--|-|\+ unless environment variable
 POSIXLY_CORRECT has been set, in
which case it is --|-.

long_prefix_pattern

A Perl pattern that allows the disambiguation of long and short
 prefixes. Default
is --.

Typically you only need to set this if you are using nonstandard
 prefixes and
want some or all of them to have the same semantics as
 '--' does under normal
circumstances.

For example, setting prefix_pattern to --|-|\+|\/ and
 long_prefix_pattern to
--|\/ would add Win32 style argument
 handling.

debug (default: disabled)

Enable debugging output.

Exportable Methods
VersionMessage

This subroutine provides a standard version message. Its argument can be:

Perl version 5.16.1 documentation - Getopt::Long

Page 14http://perldoc.perl.org

A string containing the text of a message to print before printing
 the standard
message.

A numeric value corresponding to the desired exit status.

A reference to a hash.

If more than one argument is given then the entire argument list is
 assumed to be a hash. If a
hash is supplied (either as a reference or
 as a list) it should contain one or more elements with
the following
 keys:

-message

-msg

The text of a message to print immediately prior to printing the
 program's usage
message.

-exitval

The desired exit status to pass to the exit() function.
 This should be an integer, or else
the string "NOEXIT" to
 indicate that control should simply be returned without

terminating the invoking process.

-output

A reference to a filehandle, or the pathname of a file to which the
 usage message
should be written. The default is *STDERR unless the
 exit value is less than 2 (in
which case the default is *STDOUT).

You cannot tie this routine directly to an option, e.g.:

 GetOptions("version" => \&VersionMessage);

Use this instead:

 GetOptions("version" => sub { VersionMessage() });

HelpMessage

This subroutine produces a standard help message, derived from the
 program's POD section
SYNOPSIS using Pod::Usage. It takes the same
 arguments as VersionMessage(). In
particular, you cannot tie it
 directly to an option, e.g.:

 GetOptions("help" => \&HelpMessage);

Use this instead:

 GetOptions("help" => sub { HelpMessage() });

Return values and Errors
Configuration errors and errors in the option definitions are
 signalled using die() and will terminate the
calling program unless
 the call to Getopt::Long::GetOptions() was embedded in eval { ...
 }, or
die() was trapped using $SIG{__DIE__}.

GetOptions returns true to indicate success.
 It returns false when the function detected one or more
errors during
 option parsing. These errors are signalled using warn() and can be
 trapped with
$SIG{__WARN__}.

Legacy
The earliest development of newgetopt.pl started in 1990, with Perl
 version 4. As a result, its
development, and the development of
 Getopt::Long, has gone through several stages. Since
backward
 compatibility has always been extremely important, the current version
 of Getopt::Long still
supports a lot of constructs that nowadays are
 no longer necessary or otherwise unwanted. This

Perl version 5.16.1 documentation - Getopt::Long

Page 15http://perldoc.perl.org

section describes
 briefly some of these 'features'.

Default destinations
When no destination is specified for an option, GetOptions will store
 the resultant value in a global
variable named opt_XXX, where XXX is the primary name of this option. When a progam executes

under use strict (recommended), these variables must be
 pre-declared with our() or use vars.

 our $opt_length = 0;
 GetOptions ('length=i');	 # will store in $opt_length

To yield a usable Perl variable, characters that are not part of the
 syntax for variables are translated
to underscores. For example, --fpp-struct-return will set the variable
$opt_fpp_struct_return. Note that this variable resides in the
 namespace of the calling
program, not necessarily main. For
 example:

 GetOptions ("size=i", "sizes=i@");

with command line "-size 10 -sizes 24 -sizes 48" will perform the
 equivalent of the assignments

 $opt_size = 10;
 @opt_sizes = (24, 48);

Alternative option starters
A string of alternative option starter characters may be passed as the
 first argument (or the first
argument after a leading hash reference
 argument).

 my $len = 0;
 GetOptions ('/', 'length=i' => $len);

Now the command line may look like:

 /length 24 -- arg

Note that to terminate options processing still requires a double dash --.

GetOptions() will not interpret a leading "<>" as option starters
 if the next argument is a reference.
To force "<" and ">" as
 option starters, use "><". Confusing? Well, using a starter
 argument is
strongly deprecated anyway.

Configuration variables
Previous versions of Getopt::Long used variables for the purpose of
 configuring. Although
manipulating these variables still work, it is
 strongly encouraged to use the Configure routine that
was introduced
 in version 2.17. Besides, it is much easier.

Tips and Techniques
Pushing multiple values in a hash option

Sometimes you want to combine the best of hashes and arrays. For
 example, the command line:

 --list add=first --list add=second --list add=third

where each successive 'list add' option will push the value of add
 into array ref $list->{'add'}. The
result would be like

 $list->{add} = [qw(first second third)];

This can be accomplished with a destination routine:

Perl version 5.16.1 documentation - Getopt::Long

Page 16http://perldoc.perl.org

 GetOptions('list=s%' =>
 sub { push(@{$list{$_[1]}}, $_[2]) });

Troubleshooting
GetOptions does not return a false result when an option is not supplied

That's why they're called 'options'.

GetOptions does not split the command line correctly
The command line is not split by GetOptions, but by the command line
 interpreter (CLI). On Unix, this
is the shell. On Windows, it is
 COMMAND.COM or CMD.EXE. Other operating systems have other
CLIs.

It is important to know that these CLIs may behave different when the
 command line contains special
characters, in particular quotes or
 backslashes. For example, with Unix shells you can use single
quotes
 (') and double quotes (") to group words together. The following
 alternatives are equivalent
on Unix:

 "two words"
 'two words'
 two\ words

In case of doubt, insert the following statement in front of your Perl
 program:

 print STDERR (join("|",@ARGV),"\n");

to verify how your CLI passes the arguments to the program.

Undefined subroutine &main::GetOptions called
Are you running Windows, and did you write

 use GetOpt::Long;

(note the capital 'O')?

How do I put a "-?" option into a Getopt::Long?
You can only obtain this using an alias, and Getopt::Long of at least
 version 2.13.

 use Getopt::Long;
 GetOptions ("help|?"); # -help and -? will both set $opt_help

AUTHOR
Johan Vromans <jvromans@squirrel.nl>

COPYRIGHT AND DISCLAIMER
This program is Copyright 1990,2009 by Johan Vromans.
 This program is free software; you can
redistribute it and/or
 modify it under the terms of the Perl Artistic License or the
 GNU General Public
License as published by the Free Software
 Foundation; either version 2 of the License, or (at your
option) any
 later version.

This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without
even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the
 GNU General Public License for more details.

If you do not have a copy of the GNU General Public License write to
 the Free Software Foundation,
Inc., 675 Mass Ave, Cambridge,
 MA 02139, USA.

