
Perl version 5.16.1 documentation - Time::Piece

Page 1http://perldoc.perl.org

NAME
Time::Piece - Object Oriented time objects

SYNOPSIS
 use Time::Piece;

 my $t = localtime;
 print "Time is $t\n";
 print "Year is ", $t->year, "\n";

DESCRIPTION
This module replaces the standard localtime and gmtime functions with
 implementations that return
objects. It does so in a backwards
 compatible manner, so that using localtime/gmtime in the way
documented
 in perlfunc will still return what you expect.

The module actually implements most of an interface described by
 Larry Wall on the perl5-porters
mailing list here:
 http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2000-01/msg00241.html

USAGE
After importing this module, when you use localtime or gmtime in a scalar
 context, rather than getting
an ordinary scalar string representing the
 date and time, you get a Time::Piece object, whose
stringification happens
 to produce the same effect as the localtime and gmtime functions. There is
also a new() constructor provided, which is the same as localtime(), except
 when passed a
Time::Piece object, in which case it's a copy constructor. The
 following methods are available on the
object:

 $t->sec # also available as $t->second
 $t->min # also available as $t->minute
 $t->hour # 24 hour
 $t->mday # also available as $t->day_of_month
 $t->mon # 1 = January
 $t->_mon # 0 = January
 $t->monname # Feb
 $t->month # same as $t->monname
 $t->fullmonth # February
 $t->year # based at 0 (year 0 AD is, of course 1 BC)
 $t->_year # year minus 1900
 $t->yy # 2 digit year
 $t->wday # 1 = Sunday
 $t->_wday # 0 = Sunday
 $t->day_of_week # 0 = Sunday
 $t->wdayname # Tue
 $t->day # same as wdayname
 $t->fullday # Tuesday
 $t->yday # also available as $t->day_of_year, 0 = Jan 01
 $t->isdst # also available as $t->daylight_savings

 $t->hms # 12:34:56
 $t->hms(".") # 12.34.56
 $t->time # same as $t->hms

 $t->ymd # 2000-02-29
 $t->date # same as $t->ymd
 $t->mdy # 02-29-2000
 $t->mdy("/") # 02/29/2000

Perl version 5.16.1 documentation - Time::Piece

Page 2http://perldoc.perl.org

 $t->dmy # 29-02-2000
 $t->dmy(".") # 29.02.2000
 $t->datetime # 2000-02-29T12:34:56 (ISO 8601)
 $t->cdate # Tue Feb 29 12:34:56 2000
 "$t" # same as $t->cdate

 $t->epoch # seconds since the epoch
 $t->tzoffset # timezone offset in a Time::Seconds object

 $t->julian_day # number of days since Julian period began
 $t->mjd # modified Julian date (JD-2400000.5 days)

 $t->week # week number (ISO 8601)

 $t->is_leap_year # true if it its
 $t->month_last_day # 28-31

 $t->time_separator($s) # set the default separator (default ":")
 $t->date_separator($s) # set the default separator (default "-")
 $t->day_list(@days) # set the default weekdays
 $t->mon_list(@days) # set the default months

 $t->strftime(FORMAT) # same as POSIX::strftime (without the overhead
 # of the full POSIX extension)
 $t->strftime() # "Tue, 29 Feb 2000 12:34:56 GMT"

 Time::Piece->strptime(STRING, FORMAT)
 # see strptime man page. Creates a new
 # Time::Piece object

Local Locales
Both wdayname (day) and monname (month) allow passing in a list to use
 to index the name of the
days against. This can be useful if you need
 to implement some form of localisation without actually
installing or
 using locales.

 my @days = qw(Dimanche Lundi Merdi Mercredi Jeudi Vendredi Samedi);

 my $french_day = localtime->day(@days);

These settings can be overriden globally too:

 Time::Piece::day_list(@days);

Or for months:

 Time::Piece::mon_list(@months);

And locally for months:

 print localtime->month(@months);

Perl version 5.16.1 documentation - Time::Piece

Page 3http://perldoc.perl.org

Date Calculations
It's possible to use simple addition and subtraction of objects:

 use Time::Seconds;

 my $seconds = $t1 - $t2;
 $t1 += ONE_DAY; # add 1 day (constant from Time::Seconds)

The following are valid ($t1 and $t2 are Time::Piece objects):

 $t1 - $t2; # returns Time::Seconds object
 $t1 - 42; # returns Time::Piece object
 $t1 + 533; # returns Time::Piece object

However adding a Time::Piece object to another Time::Piece object
 will cause a runtime error.

Note that the first of the above returns a Time::Seconds object, so
 while examining the object will print
the number of seconds (because
 of the overloading), you can also get the number of minutes, hours,

days, weeks and years in that delta, using the Time::Seconds API.

In addition to adding seconds, there are two APIs for adding months and
 years:

 $t->add_months(6);
 $t->add_years(5);

The months and years can be negative for subtractions. Note that there
 is some "strange" behaviour
when adding and subtracting months at the
 ends of months. Generally when the resulting month is
shorter than the
 starting month then the number of overlap days is added. For example
 subtracting a
month from 2008-03-31 will not result in 2008-02-31 as this
 is an impossible date. Instead you will get
2008-03-02. This appears to
 be consistent with other date manipulation tools.

Date Comparisons
Date comparisons are also possible, using the full suite of "<", ">",
 "<=", ">=", "<=>", "==" and "!=".

Date Parsing
Time::Piece has a built-in strptime() function (from FreeBSD), allowing
 you incredibly flexible date
parsing routines. For example:

 my $t = Time::Piece->strptime("Sunday 3rd Nov, 1943",
 "%A %drd %b, %Y");

 print $t->strftime("%a, %d %b %Y");

Outputs:

 Wed, 03 Nov 1943

(see, it's even smart enough to fix my obvious date bug)

For more information see "man strptime", which should be on all unix
 systems.

Alternatively look here: http://www.unix.com/man-page/FreeBSD/3/strftime/

YYYY-MM-DDThh:mm:ss
The ISO 8601 standard defines the date format to be YYYY-MM-DD, and
 the time format to be
hh:mm:ss (24 hour clock), and if combined, they
 should be concatenated with date first and with a

Perl version 5.16.1 documentation - Time::Piece

Page 4http://perldoc.perl.org

capital 'T' in front
 of the time.

Week Number
The week number may be an unknown concept to some readers. The ISO
 8601 standard defines that
weeks begin on a Monday and week 1 of the
 year is the week that includes both January 4th and the
first Thursday
 of the year. In other words, if the first Monday of January is the
 2nd, 3rd, or 4th, the
preceding days of the January are part of the
 last week of the preceding year. Week numbers range
from 1 to 53.

Global Overriding
Finally, it's possible to override localtime and gmtime everywhere, by
 including the ':override' tag in
the import list:

 use Time::Piece ':override';

CAVEATS
Setting $ENV{TZ} in Threads on Win32

Note that when using perl in the default build configuration on Win32
 (specifically, when perl is built
with PERL_IMPLICIT_SYS), each perl
 interpreter maintains its own copy of the environment and only
the main
 interpreter will update the process environment seen by strftime.

Therefore, if you make changes to $ENV{TZ} from inside a thread other than
 the main thread then
those changes will not be seen by strftime if you
 subsequently call that with the %Z formatting code.
You must change $ENV{TZ}
 in the main thread to have the desired effect in this case (and you must

also call _tzset() in the main thread to register the environment change).

Furthermore, remember that this caveat also applies to fork(), which is
 emulated by threads on
Win32.

Use of epoch seconds
This module internally uses the epoch seconds system that is provided via
 the perl time() function
and supported by gmtime() and localtime().

If your perl does not support times larger than 2^31 seconds then this
 module is likely to fail at
processing dates beyond the year 2038. There are
 moves afoot to fix that in perl. Alternatively use 64
bit perl. Or if none
 of those are options, use the DateTime module which has support for years
 well
into the future and past.

AUTHOR
Matt Sergeant, matt@sergeant.org
 Jarkko Hietaniemi, jhi@iki.fi (while creating Time::Piece for core
perl)

License
This module is free software, you may distribute it under the same terms
 as Perl.

SEE ALSO
The excellent Calendar FAQ at http://www.tondering.dk/claus/calendar.html

BUGS
The test harness leaves much to be desired. Patches welcome.

