
Perl version 5.16.1 documentation - Config

Page 1http://perldoc.perl.org

NAME
Config - access Perl configuration information

SYNOPSIS
 use Config;
 if ($Config{usethreads}) {
	 print "has thread support\n"
 }

 use Config qw(myconfig config_sh config_vars config_re);

 print myconfig();

 print config_sh();

 print config_re();

 config_vars(qw(osname archname));

DESCRIPTION
The Config module contains all the information that was available to
 the Configure program at Perl
build time (over 900 values).

Shell variables from the config.sh file (written by Configure) are
 stored in the readonly-variable
%Config, indexed by their names.

Values stored in config.sh as 'undef' are returned as undefined
 values. The perl exists function can
be used to check if a
 named variable exists.

For a description of the variables, please have a look at the
 Glossary file, as written in the Porting
folder, or use the url:
 http://perl5.git.perl.org/perl.git/blob/HEAD:/Porting/Glossary

myconfig()

Returns a textual summary of the major perl configuration values.
 See also -V in "Command
Switches" in perlrun.

config_sh()

Returns the entire perl configuration information in the form of the
 original config.sh shell
variable assignment script.

config_re($regex)

Like config_sh() but returns, as a list, only the config entries who's
 names match the $regex.

config_vars(@names)

Prints to STDOUT the values of the named configuration variable. Each is
 printed on a
separate line in the form:

 name='value';

Names which are unknown are output as name='UNKNOWN';.
 See also -V:name in
"Command Switches" in perlrun.

bincompat_options()

Returns a list of C pre-processor options used when compiling this perl
 binary, which affect its
binary compatibility with extensions. bincompat_options() and

Perl version 5.16.1 documentation - Config

Page 2http://perldoc.perl.org

non_bincompat_options() are shown together in
 the output of perl -V as Compile-time
options.

non_bincompat_options()

Returns a list of C pre-processor options used when compiling this perl
 binary, which do not
affect binary compatibility with extensions.

compile_date()

Returns the compile date (as a string), equivalent to what is shown by perl -V

local_patches()

Returns a list of the names of locally applied patches, equivalent to what
 is shown by perl
-V.

header_files()

Returns a list of the header files that should be used as dependencies for
 XS code, for this
version of Perl on this platform.

EXAMPLE
Here's a more sophisticated example of using %Config:

 use Config;
 use strict;

 my %sig_num;
 my @sig_name;
 unless($Config{sig_name} && $Config{sig_num}) {
	 die "No sigs?";
 } else {
	 my @names = split ' ', $Config{sig_name};
	 @sig_num{@names} = split ' ', $Config{sig_num};
	 foreach (@names) {
	 $sig_name[$sig_num{$_}] ||= $_;
	 }
 }

 print "signal #17 = $sig_name[17]\n";
 if ($sig_num{ALRM}) {
	 print "SIGALRM is $sig_num{ALRM}\n";
 }

WARNING
Because this information is not stored within the perl executable
 itself it is possible (but unlikely) that
the information does not
 relate to the actual perl binary which is being used to access it.

The Config module is installed into the architecture and version
 specific library directory
($Config{installarchlib}) and it checks the
 perl version number when loaded.

The values stored in config.sh may be either single-quoted or
 double-quoted. Double-quoted strings
are handy for those cases where you
 need to include escape sequences in the strings. To avoid
runtime variable
 interpolation, any $ and @ characters are replaced by \$ and \@, respectively. This
isn't foolproof, of course, so don't embed \$
 or \@ in double-quoted strings unless you're willing to
deal with the
 consequences. (The slashes will end up escaped and the $ or @ will
 trigger variable
interpolation)

Perl version 5.16.1 documentation - Config

Page 3http://perldoc.perl.org

GLOSSARY
Most Config variables are determined by the Configure script
 on platforms supported by it (which
is most UNIX platforms). Some
 platforms have custom-made Config variables, and may thus not
have
 some of the variables described below, or may have extraneous variables
 specific to that
particular port. See the port specific documentation
 in such cases.

_
_a

From Unix.U:

This variable defines the extension used for ordinary library files.
 For unix, it is .a. The . is
included. Other possible
 values include .lib.

_exe

From Unix.U:

This variable defines the extension used for executable files. DJGPP, Cygwin and OS/2 use
.exe. Stratus VOS uses .pm.
 On operating systems which do not require a specific extension

for executable files, this variable is empty.

_o

From Unix.U:

This variable defines the extension used for object files.
 For unix, it is .o. The . is included.
Other possible
 values include .obj.

a
afs

From afs.U:

This variable is set to true if AFS (Andrew File System) is used
 on the system, false
otherwise. It is possible to override this
 with a hint value or command line option, but you'd
better know
 what you are doing.

afsroot

From afs.U:

This variable is by default set to /afs. In the unlikely case
 this is not the correct root, it is
possible to override this with
 a hint value or command line option. This will be used in
subsequent
 tests for AFSness in the configure and test process.

alignbytes

From alignbytes.U:

This variable holds the number of bytes required to align a
 double-- or a long double when
applicable. Usual values are
 2, 4 and 8. The default is eight, for safety.

ansi2knr

From ansi2knr.U:

This variable is set if the user needs to run ansi2knr.
 Currently, this is not supported, so we
just abort.

aphostname

From d_gethname.U:

This variable contains the command which can be used to compute the
 host name. The
command is fully qualified by its absolute path, to make
 it safe when used by a process with
super-user privileges.

api_revision

Perl version 5.16.1 documentation - Config

Page 4http://perldoc.perl.org

From patchlevel.U:

The three variables, api_revision, api_version, and
 api_subversion, specify the version of the
oldest perl binary
 compatible with the present perl. In a full version string
 such as 5.6.1,
api_revision is the 5.
 Prior to 5.5.640, the format was a floating point number,
 like 5.00563.

perl.c:incpush() and lib/lib.pm will automatically search in $sitelib/.. for older directories back to
the limit specified
 by these api_ variables. This is only useful if you have a
 perl library directory
tree structured like the default one.
 See INSTALL for how this works. The versioned site_perl

directory was introduced in 5.005, so that is the lowest
 possible value. The version list
appropriate for the current
 system is determined in inc_version_list.U.

XXX To do: Since compatibility can depend on compile time
 options (such as bincompat,
longlong, etc.) it should
 (perhaps) be set by Configure, but currently it isn't.
 Currently, we read
a hard-wired value from patchlevel.h.
 Perhaps what we ought to do is take the hard-wired
value from patchlevel.h but then modify it if the current Configure
 options warrant. patchlevel.h
then would use an #ifdef guard.

api_subversion

From patchlevel.U:

The three variables, api_revision, api_version, and
 api_subversion, specify the version of the
oldest perl binary
 compatible with the present perl. In a full version string
 such as 5.6.1,
api_subversion is the 1. See api_revision for
 full details.

api_version

From patchlevel.U:

The three variables, api_revision, api_version, and
 api_subversion, specify the version of the
oldest perl binary
 compatible with the present perl. In a full version string
 such as 5.6.1,
api_version is the 6. See api_revision for
 full details. As a special case, 5.5.0 is rendered in
the
 old-style as 5.005. (In the 5.005_0x maintenance series,
 this was the only versioned
directory in $sitelib.)

api_versionstring

From patchlevel.U:

This variable combines api_revision, api_version, and
 api_subversion in a format such as
5.6.1 (or 5_6_1) suitable
 for use as a directory name. This is filesystem dependent.

ar

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the ar
program. After Configure runs,
 the value is reset to a plain ar and is not useful.

archlib

From archlib.U:

This variable holds the name of the directory in which the user wants
 to put
architecture-dependent public library files for $package.
 It is most often a local directory such
as /usr/local/lib.
 Programs using this variable must be prepared to deal
 with filename
expansion.

archlibexp

From archlib.U:

This variable is the same as the archlib variable, but is
 filename expanded at configuration
time, for convenient use.

archname

From archname.U:

Perl version 5.16.1 documentation - Config

Page 5http://perldoc.perl.org

This variable is a short name to characterize the current
 architecture. It is used mainly to
construct the default archlib.

archname64

From use64bits.U:

This variable is used for the 64-bitness part of $archname.

archobjs

From Unix.U:

This variable defines any additional objects that must be linked
 in with the program on this
architecture. On unix, it is usually
 empty. It is typically used to include emulations of unix calls

or other facilities. For perl on OS/2, for example, this would
 include os2/os2.obj.

asctime_r_proto

From d_asctime_r.U:

This variable encodes the prototype of asctime_r.
 It is zero if d_asctime_r is undef, and one of
the REENTRANT_PROTO_T_ABC macros of reentr.h if d_asctime_r
 is defined.

awk

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the awk
program. After Configure runs,
 the value is reset to a plain awk and is not useful.

b
baserev

From baserev.U:

The base revision level of this package, from the .package file.

bash

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

bin

From bin.U:

This variable holds the name of the directory in which the user wants
 to put publicly
executable images for the package in question. It
 is most often a local directory such as
/usr/local/bin. Programs using
 this variable must be prepared to deal with ~name substitution.

bin_ELF

From dlsrc.U:

This variable saves the result from configure if generated binaries
 are in ELF format. Only set
to defined when the test has actually
 been performed, and the result was positive.

binexp

From bin.U:

This is the same as the bin variable, but is filename expanded at
 configuration time, for use in
your makefiles.

bison

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the

Perl version 5.16.1 documentation - Config

Page 6http://perldoc.perl.org

bison program. After Configure runs,
 the value is reset to a plain bison and is not useful.

byacc

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the
byacc program. After Configure runs,
 the value is reset to a plain byacc and is not useful.

byteorder

From byteorder.U:

This variable holds the byte order in a UV. In the following,
 larger digits indicate more
significance. The variable byteorder
 is either 4321 on a big-endian machine, or 1234 on a
little-endian,
 or 87654321 on a Cray ... or 3412 with weird order !

c
c

From n.U:

This variable contains the \c string if that is what causes the echo
 command to suppress
newline. Otherwise it is null. Correct usage is
 $echo $n "prompt for a question: $c".

castflags

From d_castneg.U:

This variable contains a flag that precise difficulties the
 compiler has casting odd floating
values to unsigned long:
 0 = ok
 1 = couldn't cast < 0
 2 = couldn't cast >= 0x80000000
 4 =
couldn't cast in argument expression list

cat

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the cat
program. After Configure runs,
 the value is reset to a plain cat and is not useful.

cc

From cc.U:

This variable holds the name of a command to execute a C compiler which
 can resolve
multiple global references that happen to have the same
 name. Usual values are cc and gcc.

Fervent ANSI compilers may be called c89. AIX has xlc.

cccdlflags

From dlsrc.U:

This variable contains any special flags that might need to be
 passed with cc -c to compile
modules to be used to create a shared
 library that will be used for dynamic loading. For hpux,
this
 should be +z. It is up to the makefile to use it.

ccdlflags

From dlsrc.U:

This variable contains any special flags that might need to be
 passed to cc to link with a
shared library for dynamic loading.
 It is up to the makefile to use it. For sunos 4.1, it should
 be
empty.

ccflags

From ccflags.U:

This variable contains any additional C compiler flags desired by
 the user. It is up to the
Makefile to use this.

Perl version 5.16.1 documentation - Config

Page 7http://perldoc.perl.org

ccflags_uselargefiles

From uselfs.U:

This variable contains the compiler flags needed by large file builds
 and added to ccflags by
hints files.

ccname

From Checkcc.U:

This can set either by hints files or by Configure. If using
 gcc, this is gcc, and if not, usually
equal to cc, unimpressive, no?
 Some platforms, however, make good use of this by storing the
flavor of the C compiler being used here. For example if using
 the Sun WorkShop suite,
ccname will be workshop.

ccsymbols

From Cppsym.U:

The variable contains the symbols defined by the C compiler alone.
 The symbols defined by
cpp or by cc when it calls cpp are not in
 this list, see cppsymbols and cppccsymbols.
 The list
is a space-separated list of symbol=value tokens.

ccversion

From Checkcc.U:

This can set either by hints files or by Configure. If using
 a (non-gcc) vendor cc, this variable
may contain a version for
 the compiler.

cf_by

From cf_who.U:

Login name of the person who ran the Configure script and answered the
 questions. This is
used to tag both config.sh and config_h.SH.

cf_email

From cf_email.U:

Electronic mail address of the person who ran Configure. This can be
 used by units that
require the user's e-mail, like MailList.U.

cf_time

From cf_who.U:

Holds the output of the date command when the configuration file was
 produced. This is used
to tag both config.sh and config_h.SH.

charbits

From charsize.U:

This variable contains the value of the CHARBITS symbol, which
 indicates to the C program
how many bits there are in a character.

charsize

From charsize.U:

This variable contains the value of the CHARSIZE symbol, which
 indicates to the C program
how many bytes there are in a character.

chgrp

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

Perl version 5.16.1 documentation - Config

Page 8http://perldoc.perl.org

chmod

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the
chmod program. After Configure runs,
 the value is reset to a plain chmod and is not useful.

chown

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

clocktype

From d_times.U:

This variable holds the type returned by times(). It can be long,
 or clock_t on BSD sites (in
which case <sys/types.h> should be
 included).

comm

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the
comm program. After Configure runs,
 the value is reset to a plain comm and is not useful.

compress

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

config_arg0

From Options.U:

This variable contains the string used to invoke the Configure
 command, as reported by the
shell in the $0 variable.

config_argc

From Options.U:

This variable contains the number of command-line arguments
 passed to Configure, as
reported by the shell in the $# variable.
 The individual arguments are stored as variables
config_arg1,
 config_arg2, etc.

config_args

From Options.U:

This variable contains a single string giving the command-line
 arguments passed to Configure.
Spaces within arguments,
 quotes, and escaped characters are not correctly preserved.
 To
reconstruct the command line, you must assemble the individual
 command line pieces, given
in config_arg[0-9]*.

contains

From contains.U:

This variable holds the command to do a grep with a proper return
 status. On most sane
systems it is simply grep. On insane systems
 it is a grep followed by a cat followed by a test.
This variable
 is primarily for the use of other Configure units.

cp

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the cp

Perl version 5.16.1 documentation - Config

Page 9http://perldoc.perl.org

program. After Configure runs,
 the value is reset to a plain cp and is not useful.

cpio

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

cpp

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the cpp
program. After Configure runs,
 the value is reset to a plain cpp and is not useful.

cpp_stuff

From cpp_stuff.U:

This variable contains an identification of the concatenation mechanism
 used by the C
preprocessor.

cppccsymbols

From Cppsym.U:

The variable contains the symbols defined by the C compiler
 when it calls cpp. The symbols
defined by the cc alone or cpp
 alone are not in this list, see ccsymbols and cppsymbols.
 The
list is a space-separated list of symbol=value tokens.

cppflags

From ccflags.U:

This variable holds the flags that will be passed to the C pre-
 processor. It is up to the Makefile
to use it.

cpplast

From cppstdin.U:

This variable has the same functionality as cppminus, only it applies
 to cpprun and not
cppstdin.

cppminus

From cppstdin.U:

This variable contains the second part of the string which will invoke
 the C preprocessor on
the standard input and produce to standard
 output. This variable will have the value - if
cppstdin needs
 a minus to specify standard input, otherwise the value is "".

cpprun

From cppstdin.U:

This variable contains the command which will invoke a C preprocessor
 on standard input and
put the output to stdout. It is guaranteed not
 to be a wrapper and may be a null string if no
preprocessor can be
 made directly available. This preprocessor might be different from the

one used by the C compiler. Don't forget to append cpplast after the
 preprocessor options.

cppstdin

From cppstdin.U:

This variable contains the command which will invoke the C
 preprocessor on standard input
and put the output to stdout.
 It is primarily used by other Configure units that ask about

preprocessor symbols.

cppsymbols

Perl version 5.16.1 documentation - Config

Page 10http://perldoc.perl.org

From Cppsym.U:

The variable contains the symbols defined by the C preprocessor
 alone. The symbols defined
by cc or by cc when it calls cpp are
 not in this list, see ccsymbols and cppccsymbols.
 The list
is a space-separated list of symbol=value tokens.

crypt_r_proto

From d_crypt_r.U:

This variable encodes the prototype of crypt_r.
 It is zero if d_crypt_r is undef, and one of the
REENTRANT_PROTO_T_ABC macros of reentr.h if d_crypt_r
 is defined.

cryptlib

From d_crypt.U:

This variable holds -lcrypt or the path to a libcrypt.a archive if
 the crypt() function is not defined
in the standard C library. It is
 up to the Makefile to use this.

csh

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the csh
program. After Configure runs,
 the value is reset to a plain csh and is not useful.

ctermid_r_proto

From d_ctermid_r.U:

This variable encodes the prototype of ctermid_r.
 It is zero if d_ctermid_r is undef, and one of
the REENTRANT_PROTO_T_ABC macros of reentr.h if d_ctermid_r
 is defined.

ctime_r_proto

From d_ctime_r.U:

This variable encodes the prototype of ctime_r.
 It is zero if d_ctime_r is undef, and one of the
REENTRANT_PROTO_T_ABC macros of reentr.h if d_ctime_r
 is defined.

d
d__fwalk

From d__fwalk.U:

This variable conditionally defines HAS__FWALK if _fwalk() is
 available to apply a function to
all the file handles.

d_access

From d_access.U:

This variable conditionally defines HAS_ACCESS if the access() system
 call is available to
check for access permissions using real IDs.

d_accessx

From d_accessx.U:

This variable conditionally defines the HAS_ACCESSX symbol, which
 indicates to the C
program that the accessx() routine is available.

d_aintl

From d_aintl.U:

This variable conditionally defines the HAS_AINTL symbol, which
 indicates to the C program
that the aintl() routine is available.
 If copysignl is also present we can emulate modfl.

d_alarm

Perl version 5.16.1 documentation - Config

Page 11http://perldoc.perl.org

From d_alarm.U:

This variable conditionally defines the HAS_ALARM symbol, which
 indicates to the C program
that the alarm() routine is available.

d_archlib

From archlib.U:

This variable conditionally defines ARCHLIB to hold the pathname
 of architecture-dependent
library files for $package. If
 $archlib is the same as $privlib, then this is set to undef.

d_asctime64

From d_timefuncs64.U:

This variable conditionally defines the HAS_ASCTIME64 symbol, which
 indicates to the C
program that the asctime64 () routine is available.

d_asctime_r

From d_asctime_r.U:

This variable conditionally defines the HAS_ASCTIME_R symbol,
 which indicates to the C
program that the asctime_r()
 routine is available.

d_atolf

From atolf.U:

This variable conditionally defines the HAS_ATOLF symbol, which
 indicates to the C program
that the atolf() routine is available.

d_atoll

From atoll.U:

This variable conditionally defines the HAS_ATOLL symbol, which
 indicates to the C program
that the atoll() routine is available.

d_attribute_deprecated

From d_attribut.U:

This variable conditionally defines HASATTRIBUTE_DEPRECATED, which
 indicates that GCC
can handle the attribute for marking deprecated
 APIs

d_attribute_format

From d_attribut.U:

This variable conditionally defines HASATTRIBUTE_FORMAT, which
 indicates the C compiler
can check for printf-like formats.

d_attribute_malloc

From d_attribut.U:

This variable conditionally defines HASATTRIBUTE_MALLOC, which
 indicates the C compiler
can understand functions as having
 malloc-like semantics.

d_attribute_nonnull

From d_attribut.U:

This variable conditionally defines HASATTRIBUTE_NONNULL, which
 indicates that the C
compiler can know that certain arguments
 must not be NULL, and will check accordingly at
compile time.

d_attribute_noreturn

From d_attribut.U:

Perl version 5.16.1 documentation - Config

Page 12http://perldoc.perl.org

This variable conditionally defines HASATTRIBUTE_NORETURN, which
 indicates that the C
compiler can know that certain functions
 are guaranteed never to return.

d_attribute_pure

From d_attribut.U:

This variable conditionally defines HASATTRIBUTE_PURE, which
 indicates that the C compiler
can know that certain functions
 are pure functions, meaning that they have no side effects,
and
 only rely on function input and/or global data for their results.

d_attribute_unused

From d_attribut.U:

This variable conditionally defines HASATTRIBUTE_UNUSED, which
 indicates that the C
compiler can know that certain variables
 and arguments may not always be used, and to not
throw warnings
 if they don't get used.

d_attribute_warn_unused_result

From d_attribut.U:

This variable conditionally defines HASATTRIBUTE_WARN_UNUSED_RESULT, which indicates
that the C
 compiler can know that certain functions have a return values
 that must not be
ignored, such as malloc() or open().

d_bcmp

From d_bcmp.U:

This variable conditionally defines the HAS_BCMP symbol if
 the bcmp() routine is available to
compare strings.

d_bcopy

From d_bcopy.U:

This variable conditionally defines the HAS_BCOPY symbol if
 the bcopy() routine is available to
copy strings.

d_bsd

From Guess.U:

This symbol conditionally defines the symbol BSD when running on a BSD system.

d_bsdgetpgrp

From d_getpgrp.U:

This variable conditionally defines USE_BSD_GETPGRP if
 getpgrp needs one arguments
whereas USG one needs none.

d_bsdsetpgrp

From d_setpgrp.U:

This variable conditionally defines USE_BSD_SETPGRP if
 setpgrp needs two arguments
whereas USG one needs none.
 See also d_setpgid for a POSIX interface.

d_builtin_choose_expr

From d_builtin.U:

This conditionally defines HAS_BUILTIN_CHOOSE_EXPR, which
 indicates that the compiler
supports __builtin_choose_expr(x,y,z).
 This built-in function is analogous to the x?y:z
operator in C,
 except that the expression returned has its type unaltered by
 promotion rules.
Also, the built-in function does not evaluate
 the expression that was not chosen.

d_builtin_expect

Perl version 5.16.1 documentation - Config

Page 13http://perldoc.perl.org

From d_builtin.U:

This conditionally defines HAS_BUILTIN_EXPECT, which indicates
 that the compiler supports
__builtin_expect(exp,c). You may use
 __builtin_expect to provide the compiler with branch
prediction
 information.

d_bzero

From d_bzero.U:

This variable conditionally defines the HAS_BZERO symbol if
 the bzero() routine is available to
set memory to 0.

d_c99_variadic_macros

From d_c99_variadic.U:

This variable conditionally defines the HAS_C99_VARIADIC_MACROS
 symbol, which
indicates to the C program that C99 variadic macros
 are available.

d_casti32

From d_casti32.U:

This variable conditionally defines CASTI32, which indicates
 whether the C compiler can cast
large floats to 32-bit ints.

d_castneg

From d_castneg.U:

This variable conditionally defines CASTNEG, which indicates
 whether the C compiler can cast
negative float to unsigned.

d_charvspr

From d_vprintf.U:

This variable conditionally defines CHARVSPRINTF if this system
 has vsprintf returning type
(char*). The trend seems to be to
 declare it as "int vsprintf()".

d_chown

From d_chown.U:

This variable conditionally defines the HAS_CHOWN symbol, which
 indicates to the C program
that the chown() routine is available.

d_chroot

From d_chroot.U:

This variable conditionally defines the HAS_CHROOT symbol, which
 indicates to the C program
that the chroot() routine is available.

d_chsize

From d_chsize.U:

This variable conditionally defines the CHSIZE symbol, which
 indicates to the C program that
the chsize() routine is available
 to truncate files. You might need a -lx to get this routine.

d_class

From d_class.U:

This variable conditionally defines the HAS_CLASS symbol, which
 indicates to the C program
that the class() routine is available.

d_clearenv

From d_clearenv.U:

Perl version 5.16.1 documentation - Config

Page 14http://perldoc.perl.org

This variable conditionally defines the HAS_CLEARENV symbol, which
 indicates to the C
program that the clearenv () routine is available.

d_closedir

From d_closedir.U:

This variable conditionally defines HAS_CLOSEDIR if closedir() is
 available.

d_cmsghdr_s

From d_cmsghdr_s.U:

This variable conditionally defines the HAS_STRUCT_CMSGHDR symbol,
 which indicates that
the struct cmsghdr is supported.

d_const

From d_const.U:

This variable conditionally defines the HASCONST symbol, which
 indicates to the C program
that this C compiler knows about the
 const type.

d_copysignl

From d_copysignl.U:

This variable conditionally defines the HAS_COPYSIGNL symbol, which
 indicates to the C
program that the copysignl() routine is available.
 If aintl is also present we can emulate modfl.

d_cplusplus

From d_cplusplus.U:

This variable conditionally defines the USE_CPLUSPLUS symbol, which
 indicates that a C++
compiler was used to compiled Perl and will be
 used to compile extensions.

d_crypt

From d_crypt.U:

This variable conditionally defines the CRYPT symbol, which
 indicates to the C program that
the crypt() routine is available
 to encrypt passwords and the like.

d_crypt_r

From d_crypt_r.U:

This variable conditionally defines the HAS_CRYPT_R symbol,
 which indicates to the C
program that the crypt_r()
 routine is available.

d_csh

From d_csh.U:

This variable conditionally defines the CSH symbol, which
 indicates to the C program that the
C-shell exists.

d_ctermid

From d_ctermid.U:

This variable conditionally defines CTERMID if ctermid() is
 available to generate filename for
terminal.

d_ctermid_r

From d_ctermid_r.U:

This variable conditionally defines the HAS_CTERMID_R symbol,
 which indicates to the C
program that the ctermid_r()
 routine is available.

d_ctime64

Perl version 5.16.1 documentation - Config

Page 15http://perldoc.perl.org

From d_timefuncs64.U:

This variable conditionally defines the HAS_CTIME64 symbol, which
 indicates to the C
program that the ctime64 () routine is available.

d_ctime_r

From d_ctime_r.U:

This variable conditionally defines the HAS_CTIME_R symbol,
 which indicates to the C
program that the ctime_r()
 routine is available.

d_cuserid

From d_cuserid.U:

This variable conditionally defines the HAS_CUSERID symbol, which
 indicates to the C
program that the cuserid() routine is available
 to get character login names.

d_dbl_dig

From d_dbl_dig.U:

This variable conditionally defines d_dbl_dig if this system's
 header files provide DBL_DIG,
which is the number of significant
 digits in a double precision number.

d_dbminitproto

From d_dbminitproto.U:

This variable conditionally defines the HAS_DBMINIT_PROTO symbol,
 which indicates to the C
program that the system provides
 a prototype for the dbminit() function. Otherwise, it is
 up to
the program to supply one.

d_difftime

From d_difftime.U:

This variable conditionally defines the HAS_DIFFTIME symbol, which
 indicates to the C
program that the difftime() routine is available.

d_difftime64

From d_timefuncs64.U:

This variable conditionally defines the HAS_DIFFTIME64 symbol, which
 indicates to the C
program that the difftime64 () routine is available.

d_dir_dd_fd

From d_dir_dd_fd.U:

This variable conditionally defines the HAS_DIR_DD_FD symbol, which
 indicates that the DIR
directory stream type contains a member
 variable called dd_fd.

d_dirfd

From d_dirfd.U:

This variable conditionally defines the HAS_DIRFD constant,
 which indicates to the C program
that dirfd() is available
 to return the file descriptor of a directory stream.

d_dirnamlen

From i_dirent.U:

This variable conditionally defines DIRNAMLEN, which indicates
 to the C program that the
length of directory entry names is
 provided by a d_namelen field.

d_dlerror

From d_dlerror.U:

Perl version 5.16.1 documentation - Config

Page 16http://perldoc.perl.org

This variable conditionally defines the HAS_DLERROR symbol, which
 indicates to the C
program that the dlerror() routine is available.

d_dlopen

From d_dlopen.U:

This variable conditionally defines the HAS_DLOPEN symbol, which
 indicates to the C program
that the dlopen() routine is available.

d_dlsymun

From d_dlsymun.U:

This variable conditionally defines DLSYM_NEEDS_UNDERSCORE, which
 indicates that we need
to prepend an underscore to the symbol
 name before calling dlsym().

d_dosuid

From d_dosuid.U:

This variable conditionally defines the symbol DOSUID, which
 tells the C program that it should
insert setuid emulation code
 on hosts which have setuid #! scripts disabled.

d_drand48_r

From d_drand48_r.U:

This variable conditionally defines the HAS_DRAND48_R symbol,
 which indicates to the C
program that the drand48_r()
 routine is available.

d_drand48proto

From d_drand48proto.U:

This variable conditionally defines the HAS_DRAND48_PROTO symbol,
 which indicates to
the C program that the system provides
 a prototype for the drand48() function. Otherwise, it is

up to the program to supply one.

d_dup2

From d_dup2.U:

This variable conditionally defines HAS_DUP2 if dup2() is
 available to duplicate file
descriptors.

d_eaccess

From d_eaccess.U:

This variable conditionally defines the HAS_EACCESS symbol, which
 indicates to the C
program that the eaccess() routine is available.

d_endgrent

From d_endgrent.U:

This variable conditionally defines the HAS_ENDGRENT symbol, which
 indicates to the C
program that the endgrent() routine is available
 for sequential access of the group database.

d_endgrent_r

From d_endgrent_r.U:

This variable conditionally defines the HAS_ENDGRENT_R symbol,
 which indicates to the C
program that the endgrent_r()
 routine is available.

d_endhent

From d_endhent.U:

This variable conditionally defines HAS_ENDHOSTENT if endhostent() is
 available to close
whatever was being used for host queries.

Perl version 5.16.1 documentation - Config

Page 17http://perldoc.perl.org

d_endhostent_r

From d_endhostent_r.U:

This variable conditionally defines the HAS_ENDHOSTENT_R symbol,
 which indicates to the C
program that the endhostent_r()
 routine is available.

d_endnent

From d_endnent.U:

This variable conditionally defines HAS_ENDNETENT if endnetent() is
 available to close
whatever was being used for network queries.

d_endnetent_r

From d_endnetent_r.U:

This variable conditionally defines the HAS_ENDNETENT_R symbol,
 which indicates to the C
program that the endnetent_r()
 routine is available.

d_endpent

From d_endpent.U:

This variable conditionally defines HAS_ENDPROTOENT if endprotoent() is
 available to close
whatever was being used for protocol queries.

d_endprotoent_r

From d_endprotoent_r.U:

This variable conditionally defines the HAS_ENDPROTOENT_R symbol,
 which indicates to the C
program that the endprotoent_r()
 routine is available.

d_endpwent

From d_endpwent.U:

This variable conditionally defines the HAS_ENDPWENT symbol, which
 indicates to the C
program that the endpwent() routine is available
 for sequential access of the passwd
database.

d_endpwent_r

From d_endpwent_r.U:

This variable conditionally defines the HAS_ENDPWENT_R symbol,
 which indicates to the C
program that the endpwent_r()
 routine is available.

d_endsent

From d_endsent.U:

This variable conditionally defines HAS_ENDSERVENT if endservent() is
 available to close
whatever was being used for service queries.

d_endservent_r

From d_endservent_r.U:

This variable conditionally defines the HAS_ENDSERVENT_R symbol,
 which indicates to the C
program that the endservent_r()
 routine is available.

d_eofnblk

From nblock_io.U:

This variable conditionally defines EOF_NONBLOCK if EOF can be seen
 when reading from a
non-blocking I/O source.

d_eunice

Perl version 5.16.1 documentation - Config

Page 18http://perldoc.perl.org

From Guess.U:

This variable conditionally defines the symbols EUNICE and VAX, which
 alerts the C program
that it must deal with idiosyncrasies of VMS.

d_faststdio

From d_faststdio.U:

This variable conditionally defines the HAS_FAST_STDIO symbol,
 which indicates to the C
program that the "fast stdio" is available
 to manipulate the stdio buffers directly.

d_fchdir

From d_fchdir.U:

This variable conditionally defines the HAS_FCHDIR symbol, which
 indicates to the C program
that the fchdir() routine is available.

d_fchmod

From d_fchmod.U:

This variable conditionally defines the HAS_FCHMOD symbol, which
 indicates to the C program
that the fchmod() routine is available
 to change mode of opened files.

d_fchown

From d_fchown.U:

This variable conditionally defines the HAS_FCHOWN symbol, which
 indicates to the C program
that the fchown() routine is available
 to change ownership of opened files.

d_fcntl

From d_fcntl.U:

This variable conditionally defines the HAS_FCNTL symbol, and indicates
 whether the fcntl()
function exists

d_fcntl_can_lock

From d_fcntl_can_lock.U:

This variable conditionally defines the FCNTL_CAN_LOCK symbol
 and indicates whether file
locking with fcntl() works.

d_fd_macros

From d_fd_set.U:

This variable contains the eventual value of the HAS_FD_MACROS symbol,
 which indicates if
your C compiler knows about the macros which
 manipulate an fd_set.

d_fd_set

From d_fd_set.U:

This variable contains the eventual value of the HAS_FD_SET symbol,
 which indicates if your
C compiler knows about the fd_set typedef.

d_fds_bits

From d_fd_set.U:

This variable contains the eventual value of the HAS_FDS_BITS symbol,
 which indicates if
your fd_set typedef contains the fds_bits member.
 If you have an fd_set typedef, but the
dweebs who installed it did
 a half-fast job and neglected to provide the macros to manipulate

an fd_set, HAS_FDS_BITS will let us know how to fix the gaffe.

d_fgetpos

From d_fgetpos.U:

Perl version 5.16.1 documentation - Config

Page 19http://perldoc.perl.org

This variable conditionally defines HAS_FGETPOS if fgetpos() is
 available to get the file
position indicator.

d_finite

From d_finite.U:

This variable conditionally defines the HAS_FINITE symbol, which
 indicates to the C program
that the finite() routine is available.

d_finitel

From d_finitel.U:

This variable conditionally defines the HAS_FINITEL symbol, which
 indicates to the C
program that the finitel() routine is available.

d_flexfnam

From d_flexfnam.U:

This variable conditionally defines the FLEXFILENAMES symbol, which
 indicates that the
system supports filenames longer than 14 characters.

d_flock

From d_flock.U:

This variable conditionally defines HAS_FLOCK if flock() is
 available to do file locking.

d_flockproto

From d_flockproto.U:

This variable conditionally defines the HAS_FLOCK_PROTO symbol,
 which indicates to the C
program that the system provides
 a prototype for the flock() function. Otherwise, it is
 up to the
program to supply one.

d_fork

From d_fork.U:

This variable conditionally defines the HAS_FORK symbol, which
 indicates to the C program
that the fork() routine is available.

d_fp_class

From d_fp_class.U:

This variable conditionally defines the HAS_FP_CLASS symbol, which
 indicates to the C
program that the fp_class() routine is available.

d_fpathconf

From d_pathconf.U:

This variable conditionally defines the HAS_FPATHCONF symbol, which
 indicates to the C
program that the pathconf() routine is available
 to determine file-system related limits and
options associated
 with a given open file descriptor.

d_fpclass

From d_fpclass.U:

This variable conditionally defines the HAS_FPCLASS symbol, which
 indicates to the C
program that the fpclass() routine is available.

d_fpclassify

From d_fpclassify.U:

This variable conditionally defines the HAS_FPCLASSIFY symbol, which
 indicates to the C
program that the fpclassify() routine is available.

Perl version 5.16.1 documentation - Config

Page 20http://perldoc.perl.org

d_fpclassl

From d_fpclassl.U:

This variable conditionally defines the HAS_FPCLASSL symbol, which
 indicates to the C
program that the fpclassl() routine is available.

d_fpos64_t

From d_fpos64_t.U:

This symbol will be defined if the C compiler supports fpos64_t.

d_frexpl

From d_frexpl.U:

This variable conditionally defines the HAS_FREXPL symbol, which
 indicates to the C program
that the frexpl() routine is available.

d_fs_data_s

From d_fs_data_s.U:

This variable conditionally defines the HAS_STRUCT_FS_DATA symbol,
 which indicates that
the struct fs_data is supported.

d_fseeko

From d_fseeko.U:

This variable conditionally defines the HAS_FSEEKO symbol, which
 indicates to the C program
that the fseeko() routine is available.

d_fsetpos

From d_fsetpos.U:

This variable conditionally defines HAS_FSETPOS if fsetpos() is
 available to set the file position
indicator.

d_fstatfs

From d_fstatfs.U:

This variable conditionally defines the HAS_FSTATFS symbol, which
 indicates to the C
program that the fstatfs() routine is available.

d_fstatvfs

From d_statvfs.U:

This variable conditionally defines the HAS_FSTATVFS symbol, which
 indicates to the C
program that the fstatvfs() routine is available.

d_fsync

From d_fsync.U:

This variable conditionally defines the HAS_FSYNC symbol, which
 indicates to the C program
that the fsync() routine is available.

d_ftello

From d_ftello.U:

This variable conditionally defines the HAS_FTELLO symbol, which
 indicates to the C program
that the ftello() routine is available.

d_ftime

From d_ftime.U:

This variable conditionally defines the HAS_FTIME symbol, which indicates
 that the ftime()

Perl version 5.16.1 documentation - Config

Page 21http://perldoc.perl.org

routine exists. The ftime() routine is basically
 a sub-second accuracy clock.

d_futimes

From d_futimes.U:

This variable conditionally defines the HAS_FUTIMES symbol, which
 indicates to the C
program that the futimes() routine is available.

d_Gconvert

From d_gconvert.U:

This variable holds what Gconvert is defined as to convert
 floating point numbers into strings.
By default, Configure
 sets this macro to use the first of gconvert, gcvt, or sprintf
 that pass
sprintf-%g-like behaviour tests. If perl is using
 long doubles, the macro uses the first of the
following
 functions that pass Configure's tests: qgcvt, sprintf (if
 Configure knows how to make
sprintf format long doubles--see
 sPRIgldbl), gconvert, gcvt, and sprintf (casting to double).
 The
gconvert_preference and gconvert_ld_preference variables
 can be used to alter Configure's
preferences, for doubles and
 long doubles, respectively. If present, they contain a

space-separated list of one or more of the above function
 names in the order they should be
tried.

d_Gconvert may be set to override Configure with a platform-
 specific function. If this function
expects a double, a
 different value may need to be set by the uselongdouble.cbu
 call-back
unit so that long doubles can be formatted without
 loss of precision.

d_gdbm_ndbm_h_uses_prototypes

From i_ndbm.U:

This variable conditionally defines the NDBM_H_USES_PROTOTYPES symbol,
 which indicates
that the gdbm-ndbm.h include file uses real ANSI C
 prototypes instead of K&R style function
declarations. K&R style
 declarations are unsupported in C++, so the include file requires

special handling when using a C++ compiler and this variable is
 undefined. Consult the
different d_*ndbm_h_uses_prototypes variables
 to get the same information for alternative
ndbm.h include files.

d_gdbmndbm_h_uses_prototypes

From i_ndbm.U:

This variable conditionally defines the NDBM_H_USES_PROTOTYPES symbol,
 which indicates
that the gdbm/ndbm.h include file uses real ANSI C
 prototypes instead of K&R style function
declarations. K&R style
 declarations are unsupported in C++, so the include file requires

special handling when using a C++ compiler and this variable is
 undefined. Consult the
different d_*ndbm_h_uses_prototypes variables
 to get the same information for alternative
ndbm.h include files.

d_getaddrinfo

From d_getaddrinfo.U:

This variable conditionally defines the HAS_GETADDRINFO symbol,
 which indicates to the C
program that the getaddrinfo() function
 is available.

d_getcwd

From d_getcwd.U:

This variable conditionally defines the HAS_GETCWD symbol, which
 indicates to the C program
that the getcwd() routine is available
 to get the current working directory.

d_getespwnam

From d_getespwnam.U:

This variable conditionally defines HAS_GETESPWNAM if getespwnam() is
 available to retrieve

Perl version 5.16.1 documentation - Config

Page 22http://perldoc.perl.org

enhanced (shadow) password entries by name.

d_getfsstat

From d_getfsstat.U:

This variable conditionally defines the HAS_GETFSSTAT symbol, which
 indicates to the C
program that the getfsstat() routine is available.

d_getgrent

From d_getgrent.U:

This variable conditionally defines the HAS_GETGRENT symbol, which
 indicates to the C
program that the getgrent() routine is available
 for sequential access of the group database.

d_getgrent_r

From d_getgrent_r.U:

This variable conditionally defines the HAS_GETGRENT_R symbol,
 which indicates to the C
program that the getgrent_r()
 routine is available.

d_getgrgid_r

From d_getgrgid_r.U:

This variable conditionally defines the HAS_GETGRGID_R symbol,
 which indicates to the C
program that the getgrgid_r()
 routine is available.

d_getgrnam_r

From d_getgrnam_r.U:

This variable conditionally defines the HAS_GETGRNAM_R symbol,
 which indicates to the C
program that the getgrnam_r()
 routine is available.

d_getgrps

From d_getgrps.U:

This variable conditionally defines the HAS_GETGROUPS symbol, which
 indicates to the C
program that the getgroups() routine is available
 to get the list of process groups.

d_gethbyaddr

From d_gethbyad.U:

This variable conditionally defines the HAS_GETHOSTBYADDR symbol, which
 indicates to the C
program that the gethostbyaddr() routine is available
 to look up hosts by their IP addresses.

d_gethbyname

From d_gethbynm.U:

This variable conditionally defines the HAS_GETHOSTBYNAME symbol, which
 indicates to the C
program that the gethostbyname() routine is available
 to look up host names in some data
base or other.

d_gethent

From d_gethent.U:

This variable conditionally defines HAS_GETHOSTENT if gethostent() is
 available to look up
host names in some data base or another.

d_gethname

From d_gethname.U:

This variable conditionally defines the HAS_GETHOSTNAME symbol, which
 indicates to the C
program that the gethostname() routine may be
 used to derive the host name.

Perl version 5.16.1 documentation - Config

Page 23http://perldoc.perl.org

d_gethostbyaddr_r

From d_gethostbyaddr_r.U:

This variable conditionally defines the HAS_GETHOSTBYADDR_R symbol,
 which indicates to
the C program that the gethostbyaddr_r()
 routine is available.

d_gethostbyname_r

From d_gethostbyname_r.U:

This variable conditionally defines the HAS_GETHOSTBYNAME_R symbol,
 which indicates to
the C program that the gethostbyname_r()
 routine is available.

d_gethostent_r

From d_gethostent_r.U:

This variable conditionally defines the HAS_GETHOSTENT_R symbol,
 which indicates to the C
program that the gethostent_r()
 routine is available.

d_gethostprotos

From d_gethostprotos.U:

This variable conditionally defines the HAS_GETHOST_PROTOS symbol,
 which indicates to the
C program that <netdb.h> supplies
 prototypes for the various gethost*() functions.
 See also
netdbtype.U for probing for various netdb types.

d_getitimer

From d_getitimer.U:

This variable conditionally defines the HAS_GETITIMER symbol, which
 indicates to the C
program that the getitimer() routine is available.

d_getlogin

From d_getlogin.U:

This variable conditionally defines the HAS_GETLOGIN symbol, which
 indicates to the C
program that the getlogin() routine is available
 to get the login name.

d_getlogin_r

From d_getlogin_r.U:

This variable conditionally defines the HAS_GETLOGIN_R symbol,
 which indicates to the C
program that the getlogin_r()
 routine is available.

d_getmnt

From d_getmnt.U:

This variable conditionally defines the HAS_GETMNT symbol, which
 indicates to the C program
that the getmnt() routine is available
 to retrieve one or more mount info blocks by filename.

d_getmntent

From d_getmntent.U:

This variable conditionally defines the HAS_GETMNTENT symbol, which
 indicates to the C
program that the getmntent() routine is available
 to iterate through mounted files to get their
mount info.

d_getnameinfo

From d_getnameinfo.U:

This variable conditionally defines the HAS_GETNAMEINFO symbol,
 which indicates to the C
program that the getnameinfo() function
 is available.

d_getnbyaddr

Perl version 5.16.1 documentation - Config

Page 24http://perldoc.perl.org

From d_getnbyad.U:

This variable conditionally defines the HAS_GETNETBYADDR symbol, which
 indicates to the C
program that the getnetbyaddr() routine is available
 to look up networks by their IP
addresses.

d_getnbyname

From d_getnbynm.U:

This variable conditionally defines the HAS_GETNETBYNAME symbol, which
 indicates to the C
program that the getnetbyname() routine is available
 to look up networks by their names.

d_getnent

From d_getnent.U:

This variable conditionally defines HAS_GETNETENT if getnetent() is
 available to look up
network names in some data base or another.

d_getnetbyaddr_r

From d_getnetbyaddr_r.U:

This variable conditionally defines the HAS_GETNETBYADDR_R symbol,
 which indicates to the
C program that the getnetbyaddr_r()
 routine is available.

d_getnetbyname_r

From d_getnetbyname_r.U:

This variable conditionally defines the HAS_GETNETBYNAME_R symbol,
 which indicates to the
C program that the getnetbyname_r()
 routine is available.

d_getnetent_r

From d_getnetent_r.U:

This variable conditionally defines the HAS_GETNETENT_R symbol,
 which indicates to the C
program that the getnetent_r()
 routine is available.

d_getnetprotos

From d_getnetprotos.U:

This variable conditionally defines the HAS_GETNET_PROTOS symbol,
 which indicates to the C
program that <netdb.h> supplies
 prototypes for the various getnet*() functions.
 See also
netdbtype.U for probing for various netdb types.

d_getpagsz

From d_getpagsz.U:

This variable conditionally defines HAS_GETPAGESIZE if getpagesize()
 is available to get the
system page size.

d_getpbyname

From d_getprotby.U:

This variable conditionally defines the HAS_GETPROTOBYNAME
 symbol, which indicates to the
C program that the
 getprotobyname() routine is available to look up protocols
 by their name.

d_getpbynumber

From d_getprotby.U:

This variable conditionally defines the HAS_GETPROTOBYNUMBER
 symbol, which indicates to
the C program that the
 getprotobynumber() routine is available to look up protocols
 by their
number.

d_getpent

Perl version 5.16.1 documentation - Config

Page 25http://perldoc.perl.org

From d_getpent.U:

This variable conditionally defines HAS_GETPROTOENT if getprotoent() is
 available to look up
protocols in some data base or another.

d_getpgid

From d_getpgid.U:

This variable conditionally defines the HAS_GETPGID symbol, which
 indicates to the C
program that the getpgid(pid) function
 is available to get the process group id.

d_getpgrp

From d_getpgrp.U:

This variable conditionally defines HAS_GETPGRP if getpgrp() is
 available to get the current
process group.

d_getpgrp2

From d_getpgrp2.U:

This variable conditionally defines the HAS_GETPGRP2 symbol, which
 indicates to the C
program that the getpgrp2() (as in DG/UX) routine
 is available to get the current process
group.

d_getppid

From d_getppid.U:

This variable conditionally defines the HAS_GETPPID symbol, which
 indicates to the C
program that the getppid() routine is available
 to get the parent process ID.

d_getprior

From d_getprior.U:

This variable conditionally defines HAS_GETPRIORITY if getpriority()
 is available to get a
process's priority.

d_getprotobyname_r

From d_getprotobyname_r.U:

This variable conditionally defines the HAS_GETPROTOBYNAME_R symbol,
 which indicates to
the C program that the getprotobyname_r()
 routine is available.

d_getprotobynumber_r

From d_getprotobynumber_r.U:

This variable conditionally defines the HAS_GETPROTOBYNUMBER_R symbol,
 which indicates
to the C program that the getprotobynumber_r()
 routine is available.

d_getprotoent_r

From d_getprotoent_r.U:

This variable conditionally defines the HAS_GETPROTOENT_R symbol,
 which indicates to the C
program that the getprotoent_r()
 routine is available.

d_getprotoprotos

From d_getprotoprotos.U:

This variable conditionally defines the HAS_GETPROTO_PROTOS symbol,
 which indicates to
the C program that <netdb.h> supplies
 prototypes for the various getproto*() functions.
 See
also netdbtype.U for probing for various netdb types.

d_getprpwnam

From d_getprpwnam.U:

Perl version 5.16.1 documentation - Config

Page 26http://perldoc.perl.org

This variable conditionally defines HAS_GETPRPWNAM if getprpwnam() is
 available to retrieve
protected (shadow) password entries by name.

d_getpwent

From d_getpwent.U:

This variable conditionally defines the HAS_GETPWENT symbol, which
 indicates to the C
program that the getpwent() routine is available
 for sequential access of the passwd database.

d_getpwent_r

From d_getpwent_r.U:

This variable conditionally defines the HAS_GETPWENT_R symbol,
 which indicates to the C
program that the getpwent_r()
 routine is available.

d_getpwnam_r

From d_getpwnam_r.U:

This variable conditionally defines the HAS_GETPWNAM_R symbol,
 which indicates to the C
program that the getpwnam_r()
 routine is available.

d_getpwuid_r

From d_getpwuid_r.U:

This variable conditionally defines the HAS_GETPWUID_R symbol,
 which indicates to the C
program that the getpwuid_r()
 routine is available.

d_getsbyname

From d_getsrvby.U:

This variable conditionally defines the HAS_GETSERVBYNAME
 symbol, which indicates to the C
program that the
 getservbyname() routine is available to look up services
 by their name.

d_getsbyport

From d_getsrvby.U:

This variable conditionally defines the HAS_GETSERVBYPORT
 symbol, which indicates to the C
program that the
 getservbyport() routine is available to look up services
 by their port.

d_getsent

From d_getsent.U:

This variable conditionally defines HAS_GETSERVENT if getservent() is
 available to look up
network services in some data base or another.

d_getservbyname_r

From d_getservbyname_r.U:

This variable conditionally defines the HAS_GETSERVBYNAME_R symbol,
 which indicates to
the C program that the getservbyname_r()
 routine is available.

d_getservbyport_r

From d_getservbyport_r.U:

This variable conditionally defines the HAS_GETSERVBYPORT_R symbol,
 which indicates to
the C program that the getservbyport_r()
 routine is available.

d_getservent_r

From d_getservent_r.U:

This variable conditionally defines the HAS_GETSERVENT_R symbol,
 which indicates to the C
program that the getservent_r()
 routine is available.

Perl version 5.16.1 documentation - Config

Page 27http://perldoc.perl.org

d_getservprotos

From d_getservprotos.U:

This variable conditionally defines the HAS_GETSERV_PROTOS symbol,
 which indicates to the
C program that <netdb.h> supplies
 prototypes for the various getserv*() functions.
 See also
netdbtype.U for probing for various netdb types.

d_getspnam

From d_getspnam.U:

This variable conditionally defines HAS_GETSPNAM if getspnam() is
 available to retrieve SysV
shadow password entries by name.

d_getspnam_r

From d_getspnam_r.U:

This variable conditionally defines the HAS_GETSPNAM_R symbol,
 which indicates to the C
program that the getspnam_r()
 routine is available.

d_gettimeod

From d_ftime.U:

This variable conditionally defines the HAS_GETTIMEOFDAY symbol, which
 indicates that the
gettimeofday() system call exists (to obtain a
 sub-second accuracy clock). You should
probably include <sys/resource.h>.

d_gmtime64

From d_timefuncs64.U:

This variable conditionally defines the HAS_GMTIME64 symbol, which
 indicates to the C
program that the gmtime64 () routine is available.

d_gmtime_r

From d_gmtime_r.U:

This variable conditionally defines the HAS_GMTIME_R symbol,
 which indicates to the C
program that the gmtime_r()
 routine is available.

d_gnulibc

From d_gnulibc.U:

Defined if we're dealing with the GNU C Library.

d_grpasswd

From i_grp.U:

This variable conditionally defines GRPASSWD, which indicates
 that struct group in <grp.h>
contains gr_passwd.

d_hasmntopt

From d_hasmntopt.U:

This variable conditionally defines the HAS_HASMNTOPT symbol, which
 indicates to the C
program that the hasmntopt() routine is available
 to query the mount options of file systems.

d_htonl

From d_htonl.U:

This variable conditionally defines HAS_HTONL if htonl() and its
 friends are available to do
network order byte swapping.

d_ilogbl

Perl version 5.16.1 documentation - Config

Page 28http://perldoc.perl.org

From d_ilogbl.U:

This variable conditionally defines the HAS_ILOGBL symbol, which
 indicates to the C program
that the ilogbl() routine is available.
 If scalbnl is also present we can emulate frexpl.

d_inc_version_list

From inc_version_list.U:

This variable conditionally defines PERL_INC_VERSION_LIST.
 It is set to undef when
PERL_INC_VERSION_LIST is empty.

d_index

From d_strchr.U:

This variable conditionally defines HAS_INDEX if index() and
 rindex() are available for string
searching.

d_inetaton

From d_inetaton.U:

This variable conditionally defines the HAS_INET_ATON symbol, which
 indicates to the C
program that the inet_aton() function is available
 to parse IP address dotted-quad strings.

d_inetntop

From d_inetntop.U:

This variable conditionally defines the HAS_INETNTOP symbol,
 which indicates to the C
program that the inet_ntop() function
 is available.

d_inetpton

From d_inetpton.U:

This variable conditionally defines the HAS_INETPTON symbol,
 which indicates to the C
program that the inet_pton() function
 is available.

d_int64_t

From d_int64_t.U:

This symbol will be defined if the C compiler supports int64_t.

d_ipv6_mreq

From d_socket.U:

This variable conditionally defines the HAS_IPV6_MREQ symbol, which
 indicates the
availability of a struct ipv6_mreq.

d_isascii

From d_isascii.U:

This variable conditionally defines the HAS_ISASCII constant,
 which indicates to the C
program that isascii() is available.

d_isblank

From d_isblank.U:

This variable conditionally defines the HAS_ISBLANK constant,
 which indicates to the C
program that isblank() is available.

d_isfinite

From d_isfinite.U:

This variable conditionally defines the HAS_ISFINITE symbol, which
 indicates to the C
program that the isfinite() routine is available.

Perl version 5.16.1 documentation - Config

Page 29http://perldoc.perl.org

d_isinf

From d_isinf.U:

This variable conditionally defines the HAS_ISINF symbol, which
 indicates to the C program
that the isinf() routine is available.

d_isnan

From d_isnan.U:

This variable conditionally defines the HAS_ISNAN symbol, which
 indicates to the C program
that the isnan() routine is available.

d_isnanl

From d_isnanl.U:

This variable conditionally defines the HAS_ISNANL symbol, which
 indicates to the C program
that the isnanl() routine is available.

d_killpg

From d_killpg.U:

This variable conditionally defines the HAS_KILLPG symbol, which
 indicates to the C program
that the killpg() routine is available
 to kill process groups.

d_lchown

From d_lchown.U:

This variable conditionally defines the HAS_LCHOWN symbol, which
 indicates to the C program
that the lchown() routine is available
 to operate on a symbolic link (instead of following the
link).

d_ldbl_dig

From d_ldbl_dig.U:

This variable conditionally defines d_ldbl_dig if this system's
 header files provide LDBL_DIG,
which is the number of significant
 digits in a long double precision number.

d_libm_lib_version

From d_libm_lib_version.U:

This variable conditionally defines the LIBM_LIB_VERSION symbol,
 which indicates to the C
program that math.h defines _LIB_VERSION
 being available in libm

d_link

From d_link.U:

This variable conditionally defines HAS_LINK if link() is
 available to create hard links.

d_localtime64

From d_timefuncs64.U:

This variable conditionally defines the HAS_LOCALTIME64 symbol, which
 indicates to the C
program that the localtime64 () routine is available.

d_localtime_r

From d_localtime_r.U:

This variable conditionally defines the HAS_LOCALTIME_R symbol,
 which indicates to the C
program that the localtime_r()
 routine is available.

d_localtime_r_needs_tzset

From d_localtime_r.U:

Perl version 5.16.1 documentation - Config

Page 30http://perldoc.perl.org

This variable conditionally defines the LOCALTIME_R_NEEDS_TZSET
 symbol, which makes
us call tzset before localtime_r()

d_locconv

From d_locconv.U:

This variable conditionally defines HAS_LOCALECONV if localeconv() is
 available for numeric
and monetary formatting conventions.

d_lockf

From d_lockf.U:

This variable conditionally defines HAS_LOCKF if lockf() is
 available to do file locking.

d_longdbl

From d_longdbl.U:

This variable conditionally defines HAS_LONG_DOUBLE if
 the long double type is supported.

d_longlong

From d_longlong.U:

This variable conditionally defines HAS_LONG_LONG if
 the long long type is supported.

d_lseekproto

From d_lseekproto.U:

This variable conditionally defines the HAS_LSEEK_PROTO symbol,
 which indicates to the C
program that the system provides
 a prototype for the lseek() function. Otherwise, it is
 up to the
program to supply one.

d_lstat

From d_lstat.U:

This variable conditionally defines HAS_LSTAT if lstat() is
 available to do file stats on symbolic
links.

d_madvise

From d_madvise.U:

This variable conditionally defines HAS_MADVISE if madvise() is
 available to map a file into
memory.

d_malloc_good_size

From d_malloc_size.U:

This symbol, if defined, indicates that the malloc_good_size
 routine is available for use.

d_malloc_size

From d_malloc_size.U:

This symbol, if defined, indicates that the malloc_size
 routine is available for use.

d_mblen

From d_mblen.U:

This variable conditionally defines the HAS_MBLEN symbol, which
 indicates to the C program
that the mblen() routine is available
 to find the number of bytes in a multibye character.

d_mbstowcs

From d_mbstowcs.U:

This variable conditionally defines the HAS_MBSTOWCS symbol, which
 indicates to the C

Perl version 5.16.1 documentation - Config

Page 31http://perldoc.perl.org

program that the mbstowcs() routine is available
 to convert a multibyte string into a wide
character string.

d_mbtowc

From d_mbtowc.U:

This variable conditionally defines the HAS_MBTOWC symbol, which
 indicates to the C program
that the mbtowc() routine is available
 to convert multibyte to a wide character.

d_memchr

From d_memchr.U:

This variable conditionally defines the HAS_MEMCHR symbol, which
 indicates to the C program
that the memchr() routine is available
 to locate characters within a C string.

d_memcmp

From d_memcmp.U:

This variable conditionally defines the HAS_MEMCMP symbol, which
 indicates to the C program
that the memcmp() routine is available
 to compare blocks of memory.

d_memcpy

From d_memcpy.U:

This variable conditionally defines the HAS_MEMCPY symbol, which
 indicates to the C program
that the memcpy() routine is available
 to copy blocks of memory.

d_memmove

From d_memmove.U:

This variable conditionally defines the HAS_MEMMOVE symbol, which
 indicates to the C
program that the memmove() routine is available
 to copy potentially overlapping blocks of
memory.

d_memset

From d_memset.U:

This variable conditionally defines the HAS_MEMSET symbol, which
 indicates to the C program
that the memset() routine is available
 to set blocks of memory.

d_mkdir

From d_mkdir.U:

This variable conditionally defines the HAS_MKDIR symbol, which
 indicates to the C program
that the mkdir() routine is available
 to create directories..

d_mkdtemp

From d_mkdtemp.U:

This variable conditionally defines the HAS_MKDTEMP symbol, which
 indicates to the C
program that the mkdtemp() routine is available
 to exclusively create a uniquely named
temporary directory.

d_mkfifo

From d_mkfifo.U:

This variable conditionally defines the HAS_MKFIFO symbol, which
 indicates to the C program
that the mkfifo() routine is available.

d_mkstemp

From d_mkstemp.U:

This variable conditionally defines the HAS_MKSTEMP symbol, which
 indicates to the C

Perl version 5.16.1 documentation - Config

Page 32http://perldoc.perl.org

program that the mkstemp() routine is available
 to exclusively create and open a uniquely
named temporary file.

d_mkstemps

From d_mkstemps.U:

This variable conditionally defines the HAS_MKSTEMPS symbol, which
 indicates to the C
program that the mkstemps() routine is available
 to exclusively create and open a uniquely
named (with a suffix)
 temporary file.

d_mktime

From d_mktime.U:

This variable conditionally defines the HAS_MKTIME symbol, which
 indicates to the C program
that the mktime() routine is available.

d_mktime64

From d_timefuncs64.U:

This variable conditionally defines the HAS_MKTIME64 symbol, which
 indicates to the C
program that the mktime64 () routine is available.

d_mmap

From d_mmap.U:

This variable conditionally defines HAS_MMAP if mmap() is
 available to map a file into memory.

d_modfl

From d_modfl.U:

This variable conditionally defines the HAS_MODFL symbol, which
 indicates to the C program
that the modfl() routine is available.

d_modfl_pow32_bug

From d_modfl.U:

This variable conditionally defines the HAS_MODFL_POW32_BUG symbol,
 which indicates
that modfl() is broken for long doubles >= pow(2, 32).
 For example from 4294967303.150000
one would get 4294967302.000000
 and 1.150000. The bug has been seen in certain versions
of glibc,
 release 2.2.2 is known to be okay.

d_modflproto

From d_modfl.U:

This symbol, if defined, indicates that the system provides
 a prototype for the modfl() function.
Otherwise, it is up
 to the program to supply one. C99 says it should be
 long double modfl(long
double, long double *);

d_mprotect

From d_mprotect.U:

This variable conditionally defines HAS_MPROTECT if mprotect() is
 available to modify the
access protection of a memory mapped file.

d_msg

From d_msg.U:

This variable conditionally defines the HAS_MSG symbol, which
 indicates that the entire
msg*(2) library is present.

d_msg_ctrunc

From d_socket.U:

Perl version 5.16.1 documentation - Config

Page 33http://perldoc.perl.org

This variable conditionally defines the HAS_MSG_CTRUNC symbol,
 which indicates that the
MSG_CTRUNC is available. #ifdef is
 not enough because it may be an enum, glibc has been
known to do this.

d_msg_dontroute

From d_socket.U:

This variable conditionally defines the HAS_MSG_DONTROUTE symbol,
 which indicates that the
MSG_DONTROUTE is available. #ifdef is
 not enough because it may be an enum, glibc has
been known to do this.

d_msg_oob

From d_socket.U:

This variable conditionally defines the HAS_MSG_OOB symbol,
 which indicates that the
MSG_OOB is available. #ifdef is
 not enough because it may be an enum, glibc has been known
to do this.

d_msg_peek

From d_socket.U:

This variable conditionally defines the HAS_MSG_PEEK symbol,
 which indicates that the
MSG_PEEK is available. #ifdef is
 not enough because it may be an enum, glibc has been
known to do this.

d_msg_proxy

From d_socket.U:

This variable conditionally defines the HAS_MSG_PROXY symbol,
 which indicates that the
MSG_PROXY is available. #ifdef is
 not enough because it may be an enum, glibc has been
known to do this.

d_msgctl

From d_msgctl.U:

This variable conditionally defines the HAS_MSGCTL symbol, which
 indicates to the C program
that the msgctl() routine is available.

d_msgget

From d_msgget.U:

This variable conditionally defines the HAS_MSGGET symbol, which
 indicates to the C program
that the msgget() routine is available.

d_msghdr_s

From d_msghdr_s.U:

This variable conditionally defines the HAS_STRUCT_MSGHDR symbol,
 which indicates that the
struct msghdr is supported.

d_msgrcv

From d_msgrcv.U:

This variable conditionally defines the HAS_MSGRCV symbol, which
 indicates to the C program
that the msgrcv() routine is available.

d_msgsnd

From d_msgsnd.U:

This variable conditionally defines the HAS_MSGSND symbol, which
 indicates to the C program
that the msgsnd() routine is available.

Perl version 5.16.1 documentation - Config

Page 34http://perldoc.perl.org

d_msync

From d_msync.U:

This variable conditionally defines HAS_MSYNC if msync() is
 available to synchronize a
mapped file.

d_munmap

From d_munmap.U:

This variable conditionally defines HAS_MUNMAP if munmap() is
 available to unmap a region
mapped by mmap().

d_mymalloc

From mallocsrc.U:

This variable conditionally defines MYMALLOC in case other parts
 of the source want to take
special action if MYMALLOC is used.
 This may include different sorts of profiling or error
detection.

d_ndbm

From i_ndbm.U:

This variable conditionally defines the HAS_NDBM symbol, which
 indicates that both the
ndbm.h include file and an appropriate ndbm
 library exist. Consult the different i_*ndbm
variables
 to find out the actual include location. Sometimes, a system has the
 header file but
not the library. This variable will only be set if
 the system has both.

d_ndbm_h_uses_prototypes

From i_ndbm.U:

This variable conditionally defines the NDBM_H_USES_PROTOTYPES symbol,
 which indicates
that the ndbm.h include file uses real ANSI C
 prototypes instead of K&R style function
declarations. K&R style
 declarations are unsupported in C++, so the include file requires

special handling when using a C++ compiler and this variable is
 undefined. Consult the
different d_*ndbm_h_uses_prototypes variables
 to get the same information for alternative
ndbm.h include files.

d_nice

From d_nice.U:

This variable conditionally defines the HAS_NICE symbol, which
 indicates to the C program
that the nice() routine is available.

d_nl_langinfo

From d_nl_langinfo.U:

This variable conditionally defines the HAS_NL_LANGINFO symbol, which
 indicates to the C
program that the nl_langinfo() routine is available.

d_nv_preserves_uv

From perlxv.U:

This variable indicates whether a variable of type nvtype
 can preserve all the bits a variable of
type uvtype.

d_nv_zero_is_allbits_zero

From perlxv.U:

This variable indicates whether a variable of type nvtype
 stores 0.0 in memory as all bits zero.

d_off64_t

From d_off64_t.U:

Perl version 5.16.1 documentation - Config

Page 35http://perldoc.perl.org

This symbol will be defined if the C compiler supports off64_t.

d_old_pthread_create_joinable

From d_pthrattrj.U:

This variable conditionally defines pthread_create_joinable.
 undef if pthread.h defines
PTHREAD_CREATE_JOINABLE.

d_oldpthreads

From usethreads.U:

This variable conditionally defines the OLD_PTHREADS_API symbol,
 and indicates that Perl
should be built to use the old
 draft POSIX threads API. This is only potentially meaningful if

usethreads is set.

d_oldsock

From d_socket.U:

This variable conditionally defines the OLDSOCKET symbol, which
 indicates that the BSD
socket interface is based on 4.1c and not 4.2.

d_open3

From d_open3.U:

This variable conditionally defines the HAS_OPEN3 manifest constant,
 which indicates to the
C program that the 3 argument version of
 the open(2) function is available.

d_pathconf

From d_pathconf.U:

This variable conditionally defines the HAS_PATHCONF symbol, which
 indicates to the C
program that the pathconf() routine is available
 to determine file-system related limits and
options associated
 with a given filename.

d_pause

From d_pause.U:

This variable conditionally defines the HAS_PAUSE symbol, which
 indicates to the C program
that the pause() routine is available
 to suspend a process until a signal is received.

d_perl_otherlibdirs

From otherlibdirs.U:

This variable conditionally defines PERL_OTHERLIBDIRS, which
 contains a colon-separated
set of paths for the perl binary to
 include in @INC. See also otherlibdirs.

d_phostname

From d_gethname.U:

This variable conditionally defines the HAS_PHOSTNAME symbol, which
 contains the shell
command which, when fed to popen(), may be
 used to derive the host name.

d_pipe

From d_pipe.U:

This variable conditionally defines the HAS_PIPE symbol, which
 indicates to the C program
that the pipe() routine is available
 to create an inter-process channel.

d_poll

From d_poll.U:

This variable conditionally defines the HAS_POLL symbol, which
 indicates to the C program
that the poll() routine is available
 to poll active file descriptors.

Perl version 5.16.1 documentation - Config

Page 36http://perldoc.perl.org

d_portable

From d_portable.U:

This variable conditionally defines the PORTABLE symbol, which
 indicates to the C program
that it should not assume that it is
 running on the machine it was compiled on.

d_prctl

From d_prctl.U:

This variable conditionally defines the HAS_PRCTL symbol, which
 indicates to the C program
that the prctl() routine is available.

d_prctl_set_name

From d_prctl.U:

This variable conditionally defines the HAS_PRCTL_SET_NAME symbol,
 which indicates to the
C program that the prctl() routine supports
 the PR_SET_NAME option.

d_PRId64

From quadfio.U:

This variable conditionally defines the PERL_PRId64 symbol, which
 indicates that stdio has a
symbol to print 64-bit decimal numbers.

d_PRIeldbl

From longdblfio.U:

This variable conditionally defines the PERL_PRIfldbl symbol, which
 indicates that stdio has a
symbol to print long doubles.

d_PRIEUldbl

From longdblfio.U:

This variable conditionally defines the PERL_PRIfldbl symbol, which
 indicates that stdio has a
symbol to print long doubles.
 The U in the name is to separate this from d_PRIeldbl so that
even
 case-blind systems can see the difference.

d_PRIfldbl

From longdblfio.U:

This variable conditionally defines the PERL_PRIfldbl symbol, which
 indicates that stdio has a
symbol to print long doubles.

d_PRIFUldbl

From longdblfio.U:

This variable conditionally defines the PERL_PRIfldbl symbol, which
 indicates that stdio has a
symbol to print long doubles.
 The U in the name is to separate this from d_PRIfldbl so that
even
 case-blind systems can see the difference.

d_PRIgldbl

From longdblfio.U:

This variable conditionally defines the PERL_PRIfldbl symbol, which
 indicates that stdio has a
symbol to print long doubles.

d_PRIGUldbl

From longdblfio.U:

This variable conditionally defines the PERL_PRIfldbl symbol, which
 indicates that stdio has a
symbol to print long doubles.
 The U in the name is to separate this from d_PRIgldbl so that
even
 case-blind systems can see the difference.

Perl version 5.16.1 documentation - Config

Page 37http://perldoc.perl.org

d_PRIi64

From quadfio.U:

This variable conditionally defines the PERL_PRIi64 symbol, which
 indicates that stdio has a
symbol to print 64-bit decimal numbers.

d_printf_format_null

From d_attribut.U:

This variable conditionally defines PRINTF_FORMAT_NULL_OK, which
 indicates the C
compiler allows printf-like formats to be null.

d_PRIo64

From quadfio.U:

This variable conditionally defines the PERL_PRIo64 symbol, which
 indicates that stdio has a
symbol to print 64-bit octal numbers.

d_PRIu64

From quadfio.U:

This variable conditionally defines the PERL_PRIu64 symbol, which
 indicates that stdio has a
symbol to print 64-bit unsigned decimal
 numbers.

d_PRIx64

From quadfio.U:

This variable conditionally defines the PERL_PRIx64 symbol, which
 indicates that stdio has a
symbol to print 64-bit hexadecimal numbers.

d_PRIXU64

From quadfio.U:

This variable conditionally defines the PERL_PRIXU64 symbol, which
 indicates that stdio has
a symbol to print 64-bit hExADECimAl numbers.
 The U in the name is to separate this from
d_PRIx64 so that even
 case-blind systems can see the difference.

d_procselfexe

From d_procselfexe.U:

Defined if $procselfexe is symlink to the absolute
 pathname of the executing program.

d_pseudofork

From d_vfork.U:

This variable conditionally defines the HAS_PSEUDOFORK symbol,
 which indicates that an
emulation of the fork routine is available.

d_pthread_atfork

From d_pthread_atfork.U:

This variable conditionally defines the HAS_PTHREAD_ATFORK symbol,
 which indicates to the
C program that the pthread_atfork()
 routine is available.

d_pthread_attr_setscope

From d_pthread_attr_ss.U:

This variable conditionally defines HAS_PTHREAD_ATTR_SETSCOPE if

pthread_attr_setscope() is available to set the contention scope
 attribute of a thread attribute
object.

d_pthread_yield

Perl version 5.16.1 documentation - Config

Page 38http://perldoc.perl.org

From d_pthread_y.U:

This variable conditionally defines the HAS_PTHREAD_YIELD
 symbol if the pthread_yield
routine is available to yield
 the execution of the current thread.

d_pwage

From i_pwd.U:

This variable conditionally defines PWAGE, which indicates
 that struct passwd contains
pw_age.

d_pwchange

From i_pwd.U:

This variable conditionally defines PWCHANGE, which indicates
 that struct passwd contains
pw_change.

d_pwclass

From i_pwd.U:

This variable conditionally defines PWCLASS, which indicates
 that struct passwd contains
pw_class.

d_pwcomment

From i_pwd.U:

This variable conditionally defines PWCOMMENT, which indicates
 that struct passwd contains
pw_comment.

d_pwexpire

From i_pwd.U:

This variable conditionally defines PWEXPIRE, which indicates
 that struct passwd contains
pw_expire.

d_pwgecos

From i_pwd.U:

This variable conditionally defines PWGECOS, which indicates
 that struct passwd contains
pw_gecos.

d_pwpasswd

From i_pwd.U:

This variable conditionally defines PWPASSWD, which indicates
 that struct passwd contains
pw_passwd.

d_pwquota

From i_pwd.U:

This variable conditionally defines PWQUOTA, which indicates
 that struct passwd contains
pw_quota.

d_qgcvt

From d_qgcvt.U:

This variable conditionally defines the HAS_QGCVT symbol, which
 indicates to the C program
that the qgcvt() routine is available.

d_quad

From quadtype.U:

This variable, if defined, tells that there's a 64-bit integer type,
 quadtype.

Perl version 5.16.1 documentation - Config

Page 39http://perldoc.perl.org

d_random_r

From d_random_r.U:

This variable conditionally defines the HAS_RANDOM_R symbol,
 which indicates to the C
program that the random_r()
 routine is available.

d_readdir

From d_readdir.U:

This variable conditionally defines HAS_READDIR if readdir() is
 available to read directory
entries.

d_readdir64_r

From d_readdir64_r.U:

This variable conditionally defines the HAS_READDIR64_R symbol,
 which indicates to the C
program that the readdir64_r()
 routine is available.

d_readdir_r

From d_readdir_r.U:

This variable conditionally defines the HAS_READDIR_R symbol,
 which indicates to the C
program that the readdir_r()
 routine is available.

d_readlink

From d_readlink.U:

This variable conditionally defines the HAS_READLINK symbol, which
 indicates to the C
program that the readlink() routine is available
 to read the value of a symbolic link.

d_readv

From d_readv.U:

This variable conditionally defines the HAS_READV symbol, which
 indicates to the C program
that the readv() routine is available.

d_recvmsg

From d_recvmsg.U:

This variable conditionally defines the HAS_RECVMSG symbol, which
 indicates to the C
program that the recvmsg() routine is available.

d_rename

From d_rename.U:

This variable conditionally defines the HAS_RENAME symbol, which
 indicates to the C program
that the rename() routine is available
 to rename files.

d_rewinddir

From d_readdir.U:

This variable conditionally defines HAS_REWINDDIR if rewinddir() is
 available.

d_rmdir

From d_rmdir.U:

This variable conditionally defines HAS_RMDIR if rmdir() is
 available to remove directories.

d_safebcpy

From d_safebcpy.U:

This variable conditionally defines the HAS_SAFE_BCOPY symbol if
 the bcopy() routine can do
overlapping copies. Normally, you
 should probably use memmove().

Perl version 5.16.1 documentation - Config

Page 40http://perldoc.perl.org

d_safemcpy

From d_safemcpy.U:

This variable conditionally defines the HAS_SAFE_MEMCPY symbol if
 the memcpy() routine can
do overlapping copies.
 For overlapping copies, memmove() should be used, if available.

d_sanemcmp

From d_sanemcmp.U:

This variable conditionally defines the HAS_SANE_MEMCMP symbol if
 the memcpy() routine is
available and can be used to compare relative
 magnitudes of chars with their high bits set.

d_sbrkproto

From d_sbrkproto.U:

This variable conditionally defines the HAS_SBRK_PROTO symbol,
 which indicates to the C
program that the system provides
 a prototype for the sbrk() function. Otherwise, it is
 up to the
program to supply one.

d_scalbnl

From d_scalbnl.U:

This variable conditionally defines the HAS_SCALBNL symbol, which
 indicates to the C
program that the scalbnl() routine is available.
 If ilogbl is also present we can emulate frexpl.

d_sched_yield

From d_pthread_y.U:

This variable conditionally defines the HAS_SCHED_YIELD
 symbol if the sched_yield routine is
available to yield
 the execution of the current thread.

d_scm_rights

From d_socket.U:

This variable conditionally defines the HAS_SCM_RIGHTS symbol,
 which indicates that the
SCM_RIGHTS is available. #ifdef is
 not enough because it may be an enum, glibc has been
known to do this.

d_SCNfldbl

From longdblfio.U:

This variable conditionally defines the PERL_PRIfldbl symbol, which
 indicates that stdio has a
symbol to scan long doubles.

d_seekdir

From d_readdir.U:

This variable conditionally defines HAS_SEEKDIR if seekdir() is
 available.

d_select

From d_select.U:

This variable conditionally defines HAS_SELECT if select() is
 available to select active file
descriptors. A <sys/time.h>
 inclusion may be necessary for the timeout field.

d_sem

From d_sem.U:

This variable conditionally defines the HAS_SEM symbol, which
 indicates that the entire
sem*(2) library is present.

d_semctl

Perl version 5.16.1 documentation - Config

Page 41http://perldoc.perl.org

From d_semctl.U:

This variable conditionally defines the HAS_SEMCTL symbol, which
 indicates to the C program
that the semctl() routine is available.

d_semctl_semid_ds

From d_union_semun.U:

This variable conditionally defines USE_SEMCTL_SEMID_DS, which
 indicates that struct
semid_ds * is to be used for semctl IPC_STAT.

d_semctl_semun

From d_union_semun.U:

This variable conditionally defines USE_SEMCTL_SEMUN, which
 indicates that union semun is
to be used for semctl IPC_STAT.

d_semget

From d_semget.U:

This variable conditionally defines the HAS_SEMGET symbol, which
 indicates to the C program
that the semget() routine is available.

d_semop

From d_semop.U:

This variable conditionally defines the HAS_SEMOP symbol, which
 indicates to the C program
that the semop() routine is available.

d_sendmsg

From d_sendmsg.U:

This variable conditionally defines the HAS_SENDMSG symbol, which
 indicates to the C
program that the sendmsg() routine is available.

d_setegid

From d_setegid.U:

This variable conditionally defines the HAS_SETEGID symbol, which
 indicates to the C
program that the setegid() routine is available
 to change the effective gid of the current
program.

d_seteuid

From d_seteuid.U:

This variable conditionally defines the HAS_SETEUID symbol, which
 indicates to the C
program that the seteuid() routine is available
 to change the effective uid of the current
program.

d_setgrent

From d_setgrent.U:

This variable conditionally defines the HAS_SETGRENT symbol, which
 indicates to the C
program that the setgrent() routine is available
 for initializing sequential access to the group
database.

d_setgrent_r

From d_setgrent_r.U:

This variable conditionally defines the HAS_SETGRENT_R symbol,
 which indicates to the C
program that the setgrent_r()
 routine is available.

d_setgrps

Perl version 5.16.1 documentation - Config

Page 42http://perldoc.perl.org

From d_setgrps.U:

This variable conditionally defines the HAS_SETGROUPS symbol, which
 indicates to the C
program that the setgroups() routine is available
 to set the list of process groups.

d_sethent

From d_sethent.U:

This variable conditionally defines HAS_SETHOSTENT if sethostent() is
 available.

d_sethostent_r

From d_sethostent_r.U:

This variable conditionally defines the HAS_SETHOSTENT_R symbol,
 which indicates to the C
program that the sethostent_r()
 routine is available.

d_setitimer

From d_setitimer.U:

This variable conditionally defines the HAS_SETITIMER symbol, which
 indicates to the C
program that the setitimer() routine is available.

d_setlinebuf

From d_setlnbuf.U:

This variable conditionally defines the HAS_SETLINEBUF symbol, which
 indicates to the C
program that the setlinebuf() routine is available
 to change stderr or stdout from block-buffered
or unbuffered to a
 line-buffered mode.

d_setlocale

From d_setlocale.U:

This variable conditionally defines HAS_SETLOCALE if setlocale() is
 available to handle
locale-specific ctype implementations.

d_setlocale_r

From d_setlocale_r.U:

This variable conditionally defines the HAS_SETLOCALE_R symbol,
 which indicates to the C
program that the setlocale_r()
 routine is available.

d_setnent

From d_setnent.U:

This variable conditionally defines HAS_SETNETENT if setnetent() is
 available.

d_setnetent_r

From d_setnetent_r.U:

This variable conditionally defines the HAS_SETNETENT_R symbol,
 which indicates to the C
program that the setnetent_r()
 routine is available.

d_setpent

From d_setpent.U:

This variable conditionally defines HAS_SETPROTOENT if setprotoent() is
 available.

d_setpgid

From d_setpgid.U:

This variable conditionally defines the HAS_SETPGID symbol if the
 setpgid(pid, gpid) function
is available to set process group ID.

d_setpgrp

Perl version 5.16.1 documentation - Config

Page 43http://perldoc.perl.org

From d_setpgrp.U:

This variable conditionally defines HAS_SETPGRP if setpgrp() is
 available to set the current
process group.

d_setpgrp2

From d_setpgrp2.U:

This variable conditionally defines the HAS_SETPGRP2 symbol, which
 indicates to the C
program that the setpgrp2() (as in DG/UX) routine
 is available to set the current process group.

d_setprior

From d_setprior.U:

This variable conditionally defines HAS_SETPRIORITY if setpriority()
 is available to set a
process's priority.

d_setproctitle

From d_setproctitle.U:

This variable conditionally defines the HAS_SETPROCTITLE symbol,
 which indicates to the C
program that the setproctitle() routine
 is available.

d_setprotoent_r

From d_setprotoent_r.U:

This variable conditionally defines the HAS_SETPROTOENT_R symbol,
 which indicates to the C
program that the setprotoent_r()
 routine is available.

d_setpwent

From d_setpwent.U:

This variable conditionally defines the HAS_SETPWENT symbol, which
 indicates to the C
program that the setpwent() routine is available
 for initializing sequential access to the passwd
database.

d_setpwent_r

From d_setpwent_r.U:

This variable conditionally defines the HAS_SETPWENT_R symbol,
 which indicates to the C
program that the setpwent_r()
 routine is available.

d_setregid

From d_setregid.U:

This variable conditionally defines HAS_SETREGID if setregid() is
 available to change the real
and effective gid of the current
 process.

d_setresgid

From d_setregid.U:

This variable conditionally defines HAS_SETRESGID if setresgid() is
 available to change the
real, effective and saved gid of the current
 process.

d_setresuid

From d_setreuid.U:

This variable conditionally defines HAS_SETREUID if setresuid() is
 available to change the
real, effective and saved uid of the current
 process.

d_setreuid

From d_setreuid.U:

Perl version 5.16.1 documentation - Config

Page 44http://perldoc.perl.org

This variable conditionally defines HAS_SETREUID if setreuid() is
 available to change the real
and effective uid of the current
 process.

d_setrgid

From d_setrgid.U:

This variable conditionally defines the HAS_SETRGID symbol, which
 indicates to the C
program that the setrgid() routine is available
 to change the real gid of the current program.

d_setruid

From d_setruid.U:

This variable conditionally defines the HAS_SETRUID symbol, which
 indicates to the C
program that the setruid() routine is available
 to change the real uid of the current program.

d_setsent

From d_setsent.U:

This variable conditionally defines HAS_SETSERVENT if setservent() is
 available.

d_setservent_r

From d_setservent_r.U:

This variable conditionally defines the HAS_SETSERVENT_R symbol,
 which indicates to the C
program that the setservent_r()
 routine is available.

d_setsid

From d_setsid.U:

This variable conditionally defines HAS_SETSID if setsid() is
 available to set the process
group ID.

d_setvbuf

From d_setvbuf.U:

This variable conditionally defines the HAS_SETVBUF symbol, which
 indicates to the C
program that the setvbuf() routine is available
 to change buffering on an open stdio stream.

d_sfio

From d_sfio.U:

This variable conditionally defines the USE_SFIO symbol,
 and indicates whether sfio is
available (and should be used).

d_shm

From d_shm.U:

This variable conditionally defines the HAS_SHM symbol, which
 indicates that the entire
shm*(2) library is present.

d_shmat

From d_shmat.U:

This variable conditionally defines the HAS_SHMAT symbol, which
 indicates to the C program
that the shmat() routine is available.

d_shmatprototype

From d_shmat.U:

This variable conditionally defines the HAS_SHMAT_PROTOTYPE
 symbol, which indicates that
sys/shm.h has a prototype for
 shmat.

d_shmctl

Perl version 5.16.1 documentation - Config

Page 45http://perldoc.perl.org

From d_shmctl.U:

This variable conditionally defines the HAS_SHMCTL symbol, which
 indicates to the C program
that the shmctl() routine is available.

d_shmdt

From d_shmdt.U:

This variable conditionally defines the HAS_SHMDT symbol, which
 indicates to the C program
that the shmdt() routine is available.

d_shmget

From d_shmget.U:

This variable conditionally defines the HAS_SHMGET symbol, which
 indicates to the C program
that the shmget() routine is available.

d_sigaction

From d_sigaction.U:

This variable conditionally defines the HAS_SIGACTION symbol, which
 indicates that the Vr4
sigaction() routine is available.

d_signbit

From d_signbit.U:

This variable conditionally defines the HAS_SIGNBIT symbol, which
 indicates to the C
program that the signbit() routine is available
 and safe to use with perl's intern NV type.

d_sigprocmask

From d_sigprocmask.U:

This variable conditionally defines HAS_SIGPROCMASK
 if sigprocmask() is available to
examine or change the signal mask
 of the calling process.

d_sigsetjmp

From d_sigsetjmp.U:

This variable conditionally defines the HAS_SIGSETJMP symbol,
 which indicates that the
sigsetjmp() routine is available to
 call setjmp() and optionally save the process's signal mask.

d_sin6_scope_id

From d_socket.U:

This variable conditionally defines the HAS_SIN6_SCOPE_ID symbol, which
 indicates that a
struct sockaddr_in6 structure has the sin6_scope_id
 member.

d_sitearch

From sitearch.U:

This variable conditionally defines SITEARCH to hold the pathname
 of architecture-dependent
library files for $package. If
 $sitearch is the same as $archlib, then this is set to undef.

d_snprintf

From d_snprintf.U:

This variable conditionally defines the HAS_SNPRINTF symbol, which
 indicates to the C
program that the snprintf () library function
 is available.

d_sockaddr_in6

From d_socket.U:

This variable conditionally defines the HAS_SOCKADDR_IN6 symbol, which
 indicates the

Perl version 5.16.1 documentation - Config

Page 46http://perldoc.perl.org

availability of a struct sockaddr_in6.

d_sockaddr_sa_len

From d_socket.U:

This variable conditionally defines the HAS_SOCKADDR_SA_LEN symbol,
 which indicates that
a struct sockaddr structure has the sa_len
 member.

d_sockatmark

From d_sockatmark.U:

This variable conditionally defines the HAS_SOCKATMARK symbol, which
 indicates to the C
program that the sockatmark() routine is available.

d_sockatmarkproto

From d_sockatmarkproto.U:

This variable conditionally defines the HAS_SOCKATMARK_PROTO symbol,
 which indicates to
the C program that the system provides
 a prototype for the sockatmark() function. Otherwise,
it is
 up to the program to supply one.

d_socket

From d_socket.U:

This variable conditionally defines HAS_SOCKET, which indicates
 that the BSD socket interface
is supported.

d_socklen_t

From d_socklen_t.U:

This symbol will be defined if the C compiler supports socklen_t.

d_sockpair

From d_socket.U:

This variable conditionally defines the HAS_SOCKETPAIR symbol, which
 indicates that the
BSD socketpair() is supported.

d_socks5_init

From d_socks5_init.U:

This variable conditionally defines the HAS_SOCKS5_INIT symbol, which
 indicates to the C
program that the socks5_init() routine is available.

d_sprintf_returns_strlen

From d_sprintf_len.U:

This variable defines whether sprintf returns the length of the string
 (as per the ANSI spec).
Some C libraries retain compatibility with
 pre-ANSI C and return a pointer to the passed in
buffer; for these
 this variable will be undef.

d_sqrtl

From d_sqrtl.U:

This variable conditionally defines the HAS_SQRTL symbol, which
 indicates to the C program
that the sqrtl() routine is available.

d_srand48_r

From d_srand48_r.U:

This variable conditionally defines the HAS_SRAND48_R symbol,
 which indicates to the C
program that the srand48_r()
 routine is available.

Perl version 5.16.1 documentation - Config

Page 47http://perldoc.perl.org

d_srandom_r

From d_srandom_r.U:

This variable conditionally defines the HAS_SRANDOM_R symbol,
 which indicates to the C
program that the srandom_r()
 routine is available.

d_sresgproto

From d_sresgproto.U:

This variable conditionally defines the HAS_SETRESGID_PROTO symbol,
 which indicates to
the C program that the system provides
 a prototype for the setresgid() function. Otherwise, it
is
 up to the program to supply one.

d_sresuproto

From d_sresuproto.U:

This variable conditionally defines the HAS_SETRESUID_PROTO symbol,
 which indicates to
the C program that the system provides
 a prototype for the setresuid() function. Otherwise, it
is
 up to the program to supply one.

d_statblks

From d_statblks.U:

This variable conditionally defines USE_STAT_BLOCKS
 if this system has a stat structure
declaring
 st_blksize and st_blocks.

d_statfs_f_flags

From d_statfs_f_flags.U:

This variable conditionally defines the HAS_STRUCT_STATFS_F_FLAGS
 symbol, which
indicates to struct statfs from has f_flags member.
 This kind of struct statfs is coming from
sys/mount.h (BSD),
 not from sys/statfs.h (SYSV).

d_statfs_s

From d_statfs_s.U:

This variable conditionally defines the HAS_STRUCT_STATFS symbol,
 which indicates that the
struct statfs is supported.

d_static_inline

From d_static_inline.U:

This variable conditionally defines the HAS_STATIC_INLINE symbol,
 which indicates that the
C compiler supports C99-style static
 inline. That is, the function can't be called from another

translation unit.

d_statvfs

From d_statvfs.U:

This variable conditionally defines the HAS_STATVFS symbol, which
 indicates to the C
program that the statvfs() routine is available.

d_stdio_cnt_lval

From d_stdstdio.U:

This variable conditionally defines STDIO_CNT_LVALUE if the FILE_cnt macro can be used
as an lvalue.

d_stdio_ptr_lval

From d_stdstdio.U:

This variable conditionally defines STDIO_PTR_LVALUE if the FILE_ptr macro can be used

Perl version 5.16.1 documentation - Config

Page 48http://perldoc.perl.org

as an lvalue.

d_stdio_ptr_lval_nochange_cnt

From d_stdstdio.U:

This symbol is defined if using the FILE_ptr macro as an lvalue
 to increase the pointer by n
leaves File_cnt(fp) unchanged.

d_stdio_ptr_lval_sets_cnt

From d_stdstdio.U:

This symbol is defined if using the FILE_ptr macro as an lvalue
 to increase the pointer by n
has the side effect of decreasing the
 value of File_cnt(fp) by n.

d_stdio_stream_array

From stdio_streams.U:

This variable tells whether there is an array holding
 the stdio streams.

d_stdiobase

From d_stdstdio.U:

This variable conditionally defines USE_STDIO_BASE if this system
 has a FILE structure
declaring a usable _base field (or equivalent)
 in stdio.h.

d_stdstdio

From d_stdstdio.U:

This variable conditionally defines USE_STDIO_PTR if this system
 has a FILE structure
declaring usable _ptr and _cnt fields (or
 equivalent) in stdio.h.

d_strchr

From d_strchr.U:

This variable conditionally defines HAS_STRCHR if strchr() and
 strrchr() are available for string
searching.

d_strcoll

From d_strcoll.U:

This variable conditionally defines HAS_STRCOLL if strcoll() is
 available to compare strings
using collating information.

d_strctcpy

From d_strctcpy.U:

This variable conditionally defines the USE_STRUCT_COPY symbol, which
 indicates to the C
program that this C compiler knows how to copy
 structures.

d_strerrm

From d_strerror.U:

This variable holds what Strerrr is defined as to translate an error
 code condition into an error
message string. It could be strerror
 or a more complex macro emulating strrror with
sys_errlist[], or the unknown string when both strerror and sys_errlist are missing.

d_strerror

From d_strerror.U:

This variable conditionally defines HAS_STRERROR if strerror() is
 available to translate error
numbers to strings.

d_strerror_r

Perl version 5.16.1 documentation - Config

Page 49http://perldoc.perl.org

From d_strerror_r.U:

This variable conditionally defines the HAS_STRERROR_R symbol,
 which indicates to the C
program that the strerror_r()
 routine is available.

d_strftime

From d_strftime.U:

This variable conditionally defines the HAS_STRFTIME symbol, which
 indicates to the C
program that the strftime() routine is available.

d_strlcat

From d_strlcat.U:

This variable conditionally defines the HAS_STRLCAT symbol, which
 indicates to the C
program that the strlcat () routine is available.

d_strlcpy

From d_strlcpy.U:

This variable conditionally defines the HAS_STRLCPY symbol, which
 indicates to the C
program that the strlcpy () routine is available.

d_strtod

From d_strtod.U:

This variable conditionally defines the HAS_STRTOD symbol, which
 indicates to the C program
that the strtod() routine is available
 to provide better numeric string conversion than atof().

d_strtol

From d_strtol.U:

This variable conditionally defines the HAS_STRTOL symbol, which
 indicates to the C program
that the strtol() routine is available
 to provide better numeric string conversion than atoi() and
friends.

d_strtold

From d_strtold.U:

This variable conditionally defines the HAS_STRTOLD symbol, which
 indicates to the C
program that the strtold() routine is available.

d_strtoll

From d_strtoll.U:

This variable conditionally defines the HAS_STRTOLL symbol, which
 indicates to the C
program that the strtoll() routine is available.

d_strtoq

From d_strtoq.U:

This variable conditionally defines the HAS_STRTOQ symbol, which
 indicates to the C program
that the strtoq() routine is available.

d_strtoul

From d_strtoul.U:

This variable conditionally defines the HAS_STRTOUL symbol, which
 indicates to the C
program that the strtoul() routine is available
 to provide conversion of strings to unsigned long.

d_strtoull

From d_strtoull.U:

Perl version 5.16.1 documentation - Config

Page 50http://perldoc.perl.org

This variable conditionally defines the HAS_STRTOULL symbol, which
 indicates to the C
program that the strtoull() routine is available.

d_strtouq

From d_strtouq.U:

This variable conditionally defines the HAS_STRTOUQ symbol, which
 indicates to the C
program that the strtouq() routine is available.

d_strxfrm

From d_strxfrm.U:

This variable conditionally defines HAS_STRXFRM if strxfrm() is
 available to transform strings.

d_suidsafe

From d_dosuid.U:

This variable conditionally defines SETUID_SCRIPTS_ARE_SECURE_NOW
 if setuid scripts can
be secure. This test looks in /dev/fd/.

d_symlink

From d_symlink.U:

This variable conditionally defines the HAS_SYMLINK symbol, which
 indicates to the C
program that the symlink() routine is available
 to create symbolic links.

d_syscall

From d_syscall.U:

This variable conditionally defines HAS_SYSCALL if syscall() is
 available call arbitrary system
calls.

d_syscallproto

From d_syscallproto.U:

This variable conditionally defines the HAS_SYSCALL_PROTO symbol,
 which indicates to the C
program that the system provides
 a prototype for the syscall() function. Otherwise, it is
 up to
the program to supply one.

d_sysconf

From d_sysconf.U:

This variable conditionally defines the HAS_SYSCONF symbol, which
 indicates to the C
program that the sysconf() routine is available
 to determine system related limits and options.

d_sysernlst

From d_strerror.U:

This variable conditionally defines HAS_SYS_ERRNOLIST if sys_errnolist[]
 is available to
translate error numbers to the symbolic name.

d_syserrlst

From d_strerror.U:

This variable conditionally defines HAS_SYS_ERRLIST if sys_errlist[] is
 available to translate
error numbers to strings.

d_system

From d_system.U:

This variable conditionally defines HAS_SYSTEM if system() is
 available to issue a shell
command.

Perl version 5.16.1 documentation - Config

Page 51http://perldoc.perl.org

d_tcgetpgrp

From d_tcgtpgrp.U:

This variable conditionally defines the HAS_TCGETPGRP symbol, which
 indicates to the C
program that the tcgetpgrp() routine is available.
 to get foreground process group ID.

d_tcsetpgrp

From d_tcstpgrp.U:

This variable conditionally defines the HAS_TCSETPGRP symbol, which
 indicates to the C
program that the tcsetpgrp() routine is available
 to set foreground process group ID.

d_telldir

From d_readdir.U:

This variable conditionally defines HAS_TELLDIR if telldir() is
 available.

d_telldirproto

From d_telldirproto.U:

This variable conditionally defines the HAS_TELLDIR_PROTO symbol,
 which indicates to the C
program that the system provides
 a prototype for the telldir() function. Otherwise, it is
 up to the
program to supply one.

d_time

From d_time.U:

This variable conditionally defines the HAS_TIME symbol, which indicates
 that the time()
routine exists. The time() routine is normally
 provided on UNIX systems.

d_timegm

From d_timegm.U:

This variable conditionally defines the HAS_TIMEGM symbol, which
 indicates to the C program
that the timegm () routine is available.

d_times

From d_times.U:

This variable conditionally defines the HAS_TIMES symbol, which indicates
 that the times()
routine exists. The times() routine is normally
 provided on UNIX systems. You may have to
include <sys/times.h>.

d_tm_tm_gmtoff

From i_time.U:

This variable conditionally defines HAS_TM_TM_GMTOFF, which indicates
 indicates to the C
program that the struct tm has the tm_gmtoff field.

d_tm_tm_zone

From i_time.U:

This variable conditionally defines HAS_TM_TM_ZONE, which indicates
 indicates to the C
program that the struct tm has the tm_zone field.

d_tmpnam_r

From d_tmpnam_r.U:

This variable conditionally defines the HAS_TMPNAM_R symbol,
 which indicates to the C
program that the tmpnam_r()
 routine is available.

d_truncate

Perl version 5.16.1 documentation - Config

Page 52http://perldoc.perl.org

From d_truncate.U:

This variable conditionally defines HAS_TRUNCATE if truncate() is
 available to truncate files.

d_ttyname_r

From d_ttyname_r.U:

This variable conditionally defines the HAS_TTYNAME_R symbol,
 which indicates to the C
program that the ttyname_r()
 routine is available.

d_tzname

From d_tzname.U:

This variable conditionally defines HAS_TZNAME if tzname[] is
 available to access timezone
names.

d_u32align

From d_u32align.U:

This variable tells whether you must access character data
 through U32-aligned pointers.

d_ualarm

From d_ualarm.U:

This variable conditionally defines the HAS_UALARM symbol, which
 indicates to the C program
that the ualarm() routine is available.

d_umask

From d_umask.U:

This variable conditionally defines the HAS_UMASK symbol, which
 indicates to the C program
that the umask() routine is available.
 to set and get the value of the file creation mask.

d_uname

From d_gethname.U:

This variable conditionally defines the HAS_UNAME symbol, which
 indicates to the C program
that the uname() routine may be
 used to derive the host name.

d_union_semun

From d_union_semun.U:

This variable conditionally defines HAS_UNION_SEMUN if the
 union semun is defined by
including <sys/sem.h>.

d_unordered

From d_unordered.U:

This variable conditionally defines the HAS_UNORDERED symbol, which
 indicates to the C
program that the unordered() routine is available.

d_unsetenv

From d_unsetenv.U:

This variable conditionally defines the HAS_UNSETENV symbol, which
 indicates to the C
program that the unsetenv () routine is available.

d_usleep

From d_usleep.U:

This variable conditionally defines HAS_USLEEP if usleep() is
 available to do high granularity
sleeps.

d_usleepproto

Perl version 5.16.1 documentation - Config

Page 53http://perldoc.perl.org

From d_usleepproto.U:

This variable conditionally defines the HAS_USLEEP_PROTO symbol,
 which indicates to the C
program that the system provides
 a prototype for the usleep() function. Otherwise, it is
 up to
the program to supply one.

d_ustat

From d_ustat.U:

This variable conditionally defines HAS_USTAT if ustat() is
 available to query file system
statistics by dev_t.

d_vendorarch

From vendorarch.U:

This variable conditionally defined PERL_VENDORARCH.

d_vendorbin

From vendorbin.U:

This variable conditionally defines PERL_VENDORBIN.

d_vendorlib

From vendorlib.U:

This variable conditionally defines PERL_VENDORLIB.

d_vendorscript

From vendorscript.U:

This variable conditionally defines PERL_VENDORSCRIPT.

d_vfork

From d_vfork.U:

This variable conditionally defines the HAS_VFORK symbol, which
 indicates the vfork() routine
is available.

d_void_closedir

From d_closedir.U:

This variable conditionally defines VOID_CLOSEDIR if closedir()
 does not return a value.

d_voidsig

From d_voidsig.U:

This variable conditionally defines VOIDSIG if this system
 declares "void (*signal(...))()" in
signal.h. The old way was to
 declare it as "int (*signal(...))()".

d_voidtty

From i_sysioctl.U:

This variable conditionally defines USE_IOCNOTTY to indicate that the
 ioctl() call with
TIOCNOTTY should be used to void tty association.
 Otherwise (on USG probably), it is enough
to close the standard file
 descriptors and do a setpgrp().

d_volatile

From d_volatile.U:

This variable conditionally defines the HASVOLATILE symbol, which
 indicates to the C
program that this C compiler knows about the
 volatile declaration.

d_vprintf

Perl version 5.16.1 documentation - Config

Page 54http://perldoc.perl.org

From d_vprintf.U:

This variable conditionally defines the HAS_VPRINTF symbol, which
 indicates to the C
program that the vprintf() routine is available
 to printf with a pointer to an argument list.

d_vsnprintf

From d_snprintf.U:

This variable conditionally defines the HAS_VSNPRINTF symbol, which
 indicates to the C
program that the vsnprintf () library function
 is available.

d_wait4

From d_wait4.U:

This variable conditionally defines the HAS_WAIT4 symbol, which
 indicates the wait4() routine
is available.

d_waitpid

From d_waitpid.U:

This variable conditionally defines HAS_WAITPID if waitpid() is
 available to wait for child
process.

d_wcstombs

From d_wcstombs.U:

This variable conditionally defines the HAS_WCSTOMBS symbol, which
 indicates to the C
program that the wcstombs() routine is available
 to convert wide character strings to multibyte
strings.

d_wctomb

From d_wctomb.U:

This variable conditionally defines the HAS_WCTOMB symbol, which
 indicates to the C program
that the wctomb() routine is available
 to convert a wide character to a multibyte.

d_writev

From d_writev.U:

This variable conditionally defines the HAS_WRITEV symbol, which
 indicates to the C program
that the writev() routine is available.

d_xenix

From Guess.U:

This variable conditionally defines the symbol XENIX, which alerts
 the C program that it runs
under Xenix.

date

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the date
program. After Configure runs,
 the value is reset to a plain date and is not useful.

db_hashtype

From i_db.U:

This variable contains the type of the hash structure element
 in the <db.h> header file. In older
versions of DB, it was
 int, while in newer ones it is u_int32_t.

db_prefixtype

From i_db.U:

Perl version 5.16.1 documentation - Config

Page 55http://perldoc.perl.org

This variable contains the type of the prefix structure element
 in the <db.h> header file. In
older versions of DB, it was
 int, while in newer ones it is size_t.

db_version_major

From i_db.U:

This variable contains the major version number of
 Berkeley DB found in the <db.h> header
file.

db_version_minor

From i_db.U:

This variable contains the minor version number of
 Berkeley DB found in the <db.h> header
file.
 For DB version 1 this is always 0.

db_version_patch

From i_db.U:

This variable contains the patch version number of
 Berkeley DB found in the <db.h> header
file.
 For DB version 1 this is always 0.

defvoidused

From voidflags.U:

This variable contains the default value of the VOIDUSED symbol (15).

direntrytype

From i_dirent.U:

This symbol is set to struct direct or struct dirent depending on
 whether dirent is
available or not. You should use this pseudo type to
 portably declare your directory entries.

dlext

From dlext.U:

This variable contains the extension that is to be used for the
 dynamically loaded modules that
perl generaties.

dlsrc

From dlsrc.U:

This variable contains the name of the dynamic loading file that
 will be used with the package.

doublesize

From doublesize.U:

This variable contains the value of the DOUBLESIZE symbol, which
 indicates to the C program
how many bytes there are in a double.

drand01

From randfunc.U:

Indicates the macro to be used to generate normalized
 random numbers. Uses randfunc,
often divided by
 (double) (((unsigned long) 1 << randbits)) in order to
 normalize the result.
 In C
programs, the macro Drand01 is mapped to drand01.

drand48_r_proto

From d_drand48_r.U:

This variable encodes the prototype of drand48_r.
 It is zero if d_drand48_r is undef, and one
of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_drand48_r
 is defined.

dtrace

Perl version 5.16.1 documentation - Config

Page 56http://perldoc.perl.org

From usedtrace.U:

This variable holds the location of the dtrace executable.

dynamic_ext

From Extensions.U:

This variable holds a list of XS extension files we want to
 link dynamically into the package. It
is used by Makefile.

e
eagain

From nblock_io.U:

This variable bears the symbolic errno code set by read() when no
 data is present on the file
and non-blocking I/O was enabled (otherwise,
 read() blocks naturally).

ebcdic

From ebcdic.U:

This variable conditionally defines EBCDIC if this
 system uses EBCDIC encoding. Among
other things, this
 means that the character ranges are not contiguous.
 See trnl.U

echo

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the echo
program. After Configure runs,
 the value is reset to a plain echo and is not useful.

egrep

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the
egrep program. After Configure runs,
 the value is reset to a plain egrep and is not useful.

emacs

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

endgrent_r_proto

From d_endgrent_r.U:

This variable encodes the prototype of endgrent_r.
 It is zero if d_endgrent_r is undef, and one
of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_endgrent_r
 is defined.

endhostent_r_proto

From d_endhostent_r.U:

This variable encodes the prototype of endhostent_r.
 It is zero if d_endhostent_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_endhostent_r
 is defined.

endnetent_r_proto

From d_endnetent_r.U:

This variable encodes the prototype of endnetent_r.
 It is zero if d_endnetent_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_endnetent_r
 is defined.

endprotoent_r_proto

From d_endprotoent_r.U:

This variable encodes the prototype of endprotoent_r.
 It is zero if d_endprotoent_r is undef,

Perl version 5.16.1 documentation - Config

Page 57http://perldoc.perl.org

and one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_endprotoent_r
 is defined.

endpwent_r_proto

From d_endpwent_r.U:

This variable encodes the prototype of endpwent_r.
 It is zero if d_endpwent_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_endpwent_r
 is defined.

endservent_r_proto

From d_endservent_r.U:

This variable encodes the prototype of endservent_r.
 It is zero if d_endservent_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_endservent_r
 is defined.

eunicefix

From Init.U:

When running under Eunice this variable contains a command which will
 convert a shell script
to the proper form of text file for it to be
 executable by the shell. On other systems it is a
no-op.

exe_ext

From Unix.U:

This is an old synonym for _exe.

expr

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the expr
program. After Configure runs,
 the value is reset to a plain expr and is not useful.

extensions

From Extensions.U:

This variable holds a list of all extension files (both XS and
 non-xs linked into the package. It is
propagated to Config.pm
 and is typically used to test whether a particular extension
 is
available.

extern_C

From Csym.U:

ANSI C requires extern where C++ requires 'extern C'. This
 variable can be used in
Configure to do the right thing.

extras

From Extras.U:

This variable holds a list of extra modules to install.

f
fflushall

From fflushall.U:

This symbol, if defined, tells that to flush
 all pending stdio output one must loop through all
 the
stdio file handles stored in an array and fflush them.
 Note that if fflushNULL is defined, fflushall
will not
 even be probed for and will be left undefined.

fflushNULL

From fflushall.U:

This symbol, if defined, tells that fflush(NULL) does flush
 all pending stdio output.

Perl version 5.16.1 documentation - Config

Page 58http://perldoc.perl.org

find

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

firstmakefile

From Unix.U:

This variable defines the first file searched by make. On unix,
 it is makefile (then Makefile). On
case-insensitive systems,
 it might be something else. This is only used to deal with
 convoluted
make depend tricks.

flex

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

fpossize

From fpossize.U:

This variable contains the size of a fpostype in bytes.

fpostype

From fpostype.U:

This variable defines Fpos_t to be something like fpos_t, long,
 uint, or whatever type is used
to declare file positions in libc.

freetype

From mallocsrc.U:

This variable contains the return type of free(). It is usually
 void, but occasionally int.

from

From Cross.U:

This variable contains the command used by Configure
 to copy files from the target host.
Useful and available
 only during Perl build.
 The string : if not cross-compiling.

full_ar

From Loc_ar.U:

This variable contains the full pathname to ar, whether or
 not the user has specified
portability. This is only used
 in the Makefile.SH.

full_csh

From d_csh.U:

This variable contains the full pathname to csh, whether or
 not the user has specified
portability. This is only used
 in the compiled C program, and we assume that all systems
which
 can share this executable will have the same full pathname to csh.

full_sed

From Loc_sed.U:

This variable contains the full pathname to sed, whether or
 not the user has specified
portability. This is only used
 in the compiled C program, and we assume that all systems
which
 can share this executable will have the same full pathname to sed.

Perl version 5.16.1 documentation - Config

Page 59http://perldoc.perl.org

g
gccansipedantic

From gccvers.U:

If GNU cc (gcc) is used, this variable will enable (if set) the
 -ansi and -pedantic ccflags for
building core files (through
 cflags script). (See Porting/pumpkin.pod for full description).

gccosandvers

From gccvers.U:

If GNU cc (gcc) is used, this variable holds the operating system
 and version used to compile
gcc. It is set to '' if not gcc,
 or if nothing useful can be parsed as the os version.

gccversion

From gccvers.U:

If GNU cc (gcc) is used, this variable holds 1 or 2 to
 indicate whether the compiler is version 1
or 2. This is used in
 setting some of the default cflags. It is set to '' if not gcc.

getgrent_r_proto

From d_getgrent_r.U:

This variable encodes the prototype of getgrent_r.
 It is zero if d_getgrent_r is undef, and one
of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getgrent_r
 is defined.

getgrgid_r_proto

From d_getgrgid_r.U:

This variable encodes the prototype of getgrgid_r.
 It is zero if d_getgrgid_r is undef, and one
of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getgrgid_r
 is defined.

getgrnam_r_proto

From d_getgrnam_r.U:

This variable encodes the prototype of getgrnam_r.
 It is zero if d_getgrnam_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getgrnam_r
 is defined.

gethostbyaddr_r_proto

From d_gethostbyaddr_r.U:

This variable encodes the prototype of gethostbyaddr_r.
 It is zero if d_gethostbyaddr_r is
undef, and one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_gethostbyaddr_r
 is
defined.

gethostbyname_r_proto

From d_gethostbyname_r.U:

This variable encodes the prototype of gethostbyname_r.
 It is zero if d_gethostbyname_r is
undef, and one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_gethostbyname_r
 is
defined.

gethostent_r_proto

From d_gethostent_r.U:

This variable encodes the prototype of gethostent_r.
 It is zero if d_gethostent_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_gethostent_r
 is defined.

getlogin_r_proto

From d_getlogin_r.U:

This variable encodes the prototype of getlogin_r.
 It is zero if d_getlogin_r is undef, and one of
the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getlogin_r
 is defined.

Perl version 5.16.1 documentation - Config

Page 60http://perldoc.perl.org

getnetbyaddr_r_proto

From d_getnetbyaddr_r.U:

This variable encodes the prototype of getnetbyaddr_r.
 It is zero if d_getnetbyaddr_r is undef,
and one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getnetbyaddr_r
 is defined.

getnetbyname_r_proto

From d_getnetbyname_r.U:

This variable encodes the prototype of getnetbyname_r.
 It is zero if d_getnetbyname_r is
undef, and one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getnetbyname_r
 is
defined.

getnetent_r_proto

From d_getnetent_r.U:

This variable encodes the prototype of getnetent_r.
 It is zero if d_getnetent_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getnetent_r
 is defined.

getprotobyname_r_proto

From d_getprotobyname_r.U:

This variable encodes the prototype of getprotobyname_r.
 It is zero if d_getprotobyname_r is
undef, and one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getprotobyname_r

is defined.

getprotobynumber_r_proto

From d_getprotobynumber_r.U:

This variable encodes the prototype of getprotobynumber_r.
 It is zero if d_getprotobynumber_r
is undef, and one of the REENTRANT_PROTO_T_ABC macros of reentr.h if
d_getprotobynumber_r
 is defined.

getprotoent_r_proto

From d_getprotoent_r.U:

This variable encodes the prototype of getprotoent_r.
 It is zero if d_getprotoent_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getprotoent_r
 is defined.

getpwent_r_proto

From d_getpwent_r.U:

This variable encodes the prototype of getpwent_r.
 It is zero if d_getpwent_r is undef, and one
of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getpwent_r
 is defined.

getpwnam_r_proto

From d_getpwnam_r.U:

This variable encodes the prototype of getpwnam_r.
 It is zero if d_getpwnam_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getpwnam_r
 is defined.

getpwuid_r_proto

From d_getpwuid_r.U:

This variable encodes the prototype of getpwuid_r.
 It is zero if d_getpwuid_r is undef, and one
of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getpwuid_r
 is defined.

getservbyname_r_proto

From d_getservbyname_r.U:

This variable encodes the prototype of getservbyname_r.
 It is zero if d_getservbyname_r is
undef, and one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getservbyname_r
 is

Perl version 5.16.1 documentation - Config

Page 61http://perldoc.perl.org

defined.

getservbyport_r_proto

From d_getservbyport_r.U:

This variable encodes the prototype of getservbyport_r.
 It is zero if d_getservbyport_r is undef,
and one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getservbyport_r
 is defined.

getservent_r_proto

From d_getservent_r.U:

This variable encodes the prototype of getservent_r.
 It is zero if d_getservent_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getservent_r
 is defined.

getspnam_r_proto

From d_getspnam_r.U:

This variable encodes the prototype of getspnam_r.
 It is zero if d_getspnam_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_getspnam_r
 is defined.

gidformat

From gidf.U:

This variable contains the format string used for printing a Gid_t.

gidsign

From gidsign.U:

This variable contains the signedness of a gidtype.
 1 for unsigned, -1 for signed.

gidsize

From gidsize.U:

This variable contains the size of a gidtype in bytes.

gidtype

From gidtype.U:

This variable defines Gid_t to be something like gid_t, int,
 ushort, or whatever type is used to
declare the return type
 of getgid(). Typically, it is the type of group ids in the kernel.

glibpth

From libpth.U:

This variable holds the general path (space-separated) used to
 find libraries. It may contain
directories that do not exist on
 this platform, libpth is the cleaned-up version.

gmake

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the
gmake program. After Configure runs,
 the value is reset to a plain gmake and is not useful.

gmtime_r_proto

From d_gmtime_r.U:

This variable encodes the prototype of gmtime_r.
 It is zero if d_gmtime_r is undef, and one of
the REENTRANT_PROTO_T_ABC macros of reentr.h if d_gmtime_r
 is defined.

gnulibc_version

From d_gnulibc.U:

This variable contains the version number of the GNU C library.
 It is usually something like

Perl version 5.16.1 documentation - Config

Page 62http://perldoc.perl.org

2.2.5. It is a plain '' if this
 is not the GNU C library, or if the version is unknown.

grep

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the grep
program. After Configure runs,
 the value is reset to a plain grep and is not useful.

groupcat

From nis.U:

This variable contains a command that produces the text of the /etc/group file. This is normally
"cat /etc/group", but can be
 "ypcat group" when NIS is used.
 On some systems, such as
os390, there may be no equivalent
 command, in which case this variable is unset.

groupstype

From groupstype.U:

This variable defines Groups_t to be something like gid_t, int,
 ushort, or whatever type is used
for the second argument to
 getgroups() and setgroups(). Usually, this is the same as
 gidtype
(gid_t), but sometimes it isn't.

gzip

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the gzip
program. After Configure runs,
 the value is reset to a plain gzip and is not useful.

h
h_fcntl

From h_fcntl.U:

This is variable gets set in various places to tell i_fcntl that
 <fcntl.h> should be included.

h_sysfile

From h_sysfile.U:

This is variable gets set in various places to tell i_sys_file that
 <sys/file.h> should be included.

hint

From Oldconfig.U:

Gives the type of hints used for previous answers. May be one of default, recommended or
previous.

hostcat

From nis.U:

This variable contains a command that produces the text of the /etc/hosts file. This is normally
"cat /etc/hosts", but can be
 "ypcat hosts" when NIS is used.
 On some systems, such as
os390, there may be no equivalent
 command, in which case this variable is unset.

html1dir

From html1dir.U:

This variable contains the name of the directory in which html
 source pages are to be put. This
directory is for pages
 that describe whole programs, not libraries or modules. It
 is intended to
correspond roughly to section 1 of the Unix
 manuals.

html1direxp

From html1dir.U:

Perl version 5.16.1 documentation - Config

Page 63http://perldoc.perl.org

This variable is the same as the html1dir variable, but is filename
 expanded at configuration
time, for convenient use in makefiles.

html3dir

From html3dir.U:

This variable contains the name of the directory in which html
 source pages are to be put. This
directory is for pages
 that describe libraries or modules. It is intended to
 correspond roughly to
section 3 of the Unix manuals.

html3direxp

From html3dir.U:

This variable is the same as the html3dir variable, but is filename
 expanded at configuration
time, for convenient use in makefiles.

i
i16size

From perlxv.U:

This variable is the size of an I16 in bytes.

i16type

From perlxv.U:

This variable contains the C type used for Perl's I16.

i32size

From perlxv.U:

This variable is the size of an I32 in bytes.

i32type

From perlxv.U:

This variable contains the C type used for Perl's I32.

i64size

From perlxv.U:

This variable is the size of an I64 in bytes.

i64type

From perlxv.U:

This variable contains the C type used for Perl's I64.

i8size

From perlxv.U:

This variable is the size of an I8 in bytes.

i8type

From perlxv.U:

This variable contains the C type used for Perl's I8.

i_arpainet

From i_arpainet.U:

This variable conditionally defines the I_ARPA_INET symbol,
 and indicates whether a C
program should include <arpa/inet.h>.

Perl version 5.16.1 documentation - Config

Page 64http://perldoc.perl.org

i_assert

From i_assert.U:

This variable conditionally defines the I_ASSERT symbol, which
 indicates to the C program
that <assert.h> exists and could be
 included.

i_bsdioctl

From i_sysioctl.U:

This variable conditionally defines the I_SYS_BSDIOCTL symbol, which
 indicates to the C
program that <sys/bsdioctl.h> exists and should
 be included.

i_crypt

From i_crypt.U:

This variable conditionally defines the I_CRYPT symbol, and indicates
 whether a C program
should include <crypt.h>.

i_db

From i_db.U:

This variable conditionally defines the I_DB symbol, and indicates
 whether a C program may
include Berkeley's DB include file <db.h>.

i_dbm

From i_dbm.U:

This variable conditionally defines the I_DBM symbol, which
 indicates to the C program that
<dbm.h> exists and should
 be included.

i_dirent

From i_dirent.U:

This variable conditionally defines I_DIRENT, which indicates
 to the C program that it should
include <dirent.h>.

i_dld

From i_dld.U:

This variable conditionally defines the I_DLD symbol, which
 indicates to the C program that
<dld.h> (GNU dynamic loading)
 exists and should be included.

i_dlfcn

From i_dlfcn.U:

This variable conditionally defines the I_DLFCN symbol, which
 indicates to the C program that
<dlfcn.h> exists and should
 be included.

i_fcntl

From i_fcntl.U:

This variable controls the value of I_FCNTL (which tells
 the C program to include <fcntl.h>).

i_float

From i_float.U:

This variable conditionally defines the I_FLOAT symbol, and indicates
 whether a C program
may include <float.h> to get symbols like DBL_MAX
 or DBL_MIN, i.e. machine dependent
floating point values.

i_fp

From i_fp.U:

Perl version 5.16.1 documentation - Config

Page 65http://perldoc.perl.org

This variable conditionally defines the I_FP symbol, and indicates
 whether a C program
should include <fp.h>.

i_fp_class

From i_fp_class.U:

This variable conditionally defines the I_FP_CLASS symbol, and indicates
 whether a C
program should include <fp_class.h>.

i_gdbm

From i_gdbm.U:

This variable conditionally defines the I_GDBM symbol, which
 indicates to the C program that
<gdbm.h> exists and should
 be included.

i_gdbm_ndbm

From i_ndbm.U:

This variable conditionally defines the I_GDBM_NDBM symbol, which
 indicates to the C
program that <gdbm-ndbm.h> exists and should
 be included. This is the location of the
ndbm.h compatibility file
 in Debian 4.0.

i_gdbmndbm

From i_ndbm.U:

This variable conditionally defines the I_GDBMNDBM symbol, which
 indicates to the C program
that <gdbm/ndbm.h> exists and should
 be included. This was the location of the ndbm.h
compatibility file
 in RedHat 7.1.

i_grp

From i_grp.U:

This variable conditionally defines the I_GRP symbol, and indicates
 whether a C program
should include <grp.h>.

i_ieeefp

From i_ieeefp.U:

This variable conditionally defines the I_IEEEFP symbol, and indicates
 whether a C program
should include <ieeefp.h>.

i_inttypes

From i_inttypes.U:

This variable conditionally defines the I_INTTYPES symbol,
 and indicates whether a C
program should include <inttypes.h>.

i_langinfo

From i_langinfo.U:

This variable conditionally defines the I_LANGINFO symbol,
 and indicates whether a C
program should include <langinfo.h>.

i_libutil

From i_libutil.U:

This variable conditionally defines the I_LIBUTIL symbol, and indicates
 whether a C
program should include <libutil.h>.

i_limits

From i_limits.U:

This variable conditionally defines the I_LIMITS symbol, and indicates
 whether a C program

Perl version 5.16.1 documentation - Config

Page 66http://perldoc.perl.org

may include <limits.h> to get symbols like WORD_BIT
 and friends.

i_locale

From i_locale.U:

This variable conditionally defines the I_LOCALE symbol,
 and indicates whether a C program
should include <locale.h>.

i_machcthr

From i_machcthr.U:

This variable conditionally defines the I_MACH_CTHREADS symbol,
 and indicates whether a C
program should include <mach/cthreads.h>.

i_malloc

From i_malloc.U:

This variable conditionally defines the I_MALLOC symbol, and indicates
 whether a C program
should include <malloc.h>.

i_mallocmalloc

From i_mallocmalloc.U:

This variable conditionally defines the I_MALLOCMALLOC symbol,
 and indicates whether a C
program should include <malloc/malloc.h>.

i_math

From i_math.U:

This variable conditionally defines the I_MATH symbol, and indicates
 whether a C program
may include <math.h>.

i_memory

From i_memory.U:

This variable conditionally defines the I_MEMORY symbol, and indicates
 whether a C program
should include <memory.h>.

i_mntent

From i_mntent.U:

This variable conditionally defines the I_MNTENT symbol, and indicates
 whether a C program
should include <mntent.h>.

i_ndbm

From i_ndbm.U:

This variable conditionally defines the I_NDBM symbol, which
 indicates to the C program that
<ndbm.h> exists and should
 be included.

i_netdb

From i_netdb.U:

This variable conditionally defines the I_NETDB symbol, and indicates
 whether a C program
should include <netdb.h>.

i_neterrno

From i_neterrno.U:

This variable conditionally defines the I_NET_ERRNO symbol, which
 indicates to the C
program that <net/errno.h> exists and should
 be included.

i_netinettcp

Perl version 5.16.1 documentation - Config

Page 67http://perldoc.perl.org

From i_netinettcp.U:

This variable conditionally defines the I_NETINET_TCP symbol,
 and indicates whether a C
program should include <netinet/tcp.h>.

i_niin

From i_niin.U:

This variable conditionally defines I_NETINET_IN, which indicates
 to the C program that it
should include <netinet/in.h>. Otherwise,
 you may try <sys/in.h>.

i_poll

From i_poll.U:

This variable conditionally defines the I_POLL symbol, and indicates
 whether a C program
should include <poll.h>.

i_prot

From i_prot.U:

This variable conditionally defines the I_PROT symbol, and indicates
 whether a C program
should include <prot.h>.

i_pthread

From i_pthread.U:

This variable conditionally defines the I_PTHREAD symbol,
 and indicates whether a C
program should include <pthread.h>.

i_pwd

From i_pwd.U:

This variable conditionally defines I_PWD, which indicates
 to the C program that it should
include <pwd.h>.

i_rpcsvcdbm

From i_dbm.U:

This variable conditionally defines the I_RPCSVC_DBM symbol, which
 indicates to the C
program that <rpcsvc/dbm.h> exists and should
 be included. Some System V systems might
need this instead of <dbm.h>.

i_sfio

From i_sfio.U:

This variable conditionally defines the I_SFIO symbol,
 and indicates whether a C program
should include <sfio.h>.

i_sgtty

From i_termio.U:

This variable conditionally defines the I_SGTTY symbol, which
 indicates to the C program that
it should include <sgtty.h> rather
 than <termio.h>.

i_shadow

From i_shadow.U:

This variable conditionally defines the I_SHADOW symbol, and indicates
 whether a C program
should include <shadow.h>.

i_socks

From i_socks.U:

Perl version 5.16.1 documentation - Config

Page 68http://perldoc.perl.org

This variable conditionally defines the I_SOCKS symbol, and indicates
 whether a C program
should include <socks.h>.

i_stdarg

From i_varhdr.U:

This variable conditionally defines the I_STDARG symbol, which
 indicates to the C program
that <stdarg.h> exists and should
 be included.

i_stdbool

From i_stdbool.U:

This variable conditionally defines the I_STDBOOL symbol, which
 indicates to the C program
that <stdbool.h> exists and should
 be included.

i_stddef

From i_stddef.U:

This variable conditionally defines the I_STDDEF symbol, which
 indicates to the C program
that <stddef.h> exists and should
 be included.

i_stdlib

From i_stdlib.U:

This variable conditionally defines the I_STDLIB symbol, which
 indicates to the C program
that <stdlib.h> exists and should
 be included.

i_string

From i_string.U:

This variable conditionally defines the I_STRING symbol, which
 indicates that <string.h>
should be included rather than <strings.h>.

i_sunmath

From i_sunmath.U:

This variable conditionally defines the I_SUNMATH symbol, and indicates
 whether a C
program should include <sunmath.h>.

i_sysaccess

From i_sysaccess.U:

This variable conditionally defines the I_SYS_ACCESS symbol,
 and indicates whether a C
program should include <sys/access.h>.

i_sysdir

From i_sysdir.U:

This variable conditionally defines the I_SYS_DIR symbol, and indicates
 whether a C
program should include <sys/dir.h>.

i_sysfile

From i_sysfile.U:

This variable conditionally defines the I_SYS_FILE symbol, and indicates
 whether a C
program should include <sys/file.h> to get R_OK and friends.

i_sysfilio

From i_sysioctl.U:

This variable conditionally defines the I_SYS_FILIO symbol, which
 indicates to the C
program that <sys/filio.h> exists and should
 be included in preference to <sys/ioctl.h>.

Perl version 5.16.1 documentation - Config

Page 69http://perldoc.perl.org

i_sysin

From i_niin.U:

This variable conditionally defines I_SYS_IN, which indicates
 to the C program that it should
include <sys/in.h> instead of
 <netinet/in.h>.

i_sysioctl

From i_sysioctl.U:

This variable conditionally defines the I_SYS_IOCTL symbol, which
 indicates to the C
program that <sys/ioctl.h> exists and should
 be included.

i_syslog

From i_syslog.U:

This variable conditionally defines the I_SYSLOG symbol,
 and indicates whether a C program
should include <syslog.h>.

i_sysmman

From i_sysmman.U:

This variable conditionally defines the I_SYS_MMAN symbol, and
 indicates whether a C
program should include <sys/mman.h>.

i_sysmode

From i_sysmode.U:

This variable conditionally defines the I_SYSMODE symbol,
 and indicates whether a C
program should include <sys/mode.h>.

i_sysmount

From i_sysmount.U:

This variable conditionally defines the I_SYSMOUNT symbol,
 and indicates whether a C
program should include <sys/mount.h>.

i_sysndir

From i_sysndir.U:

This variable conditionally defines the I_SYS_NDIR symbol, and indicates
 whether a C
program should include <sys/ndir.h>.

i_sysparam

From i_sysparam.U:

This variable conditionally defines the I_SYS_PARAM symbol, and indicates
 whether a C
program should include <sys/param.h>.

i_syspoll

From i_syspoll.U:

This variable conditionally defines the I_SYS_POLL symbol, which
 indicates to the C program
that it should include <sys/poll.h>.

i_sysresrc

From i_sysresrc.U:

This variable conditionally defines the I_SYS_RESOURCE symbol,
 and indicates whether a C
program should include <sys/resource.h>.

i_syssecrt

From i_syssecrt.U:

Perl version 5.16.1 documentation - Config

Page 70http://perldoc.perl.org

This variable conditionally defines the I_SYS_SECURITY symbol,
 and indicates whether a C
program should include <sys/security.h>.

i_sysselct

From i_sysselct.U:

This variable conditionally defines I_SYS_SELECT, which indicates
 to the C program that it
should include <sys/select.h> in order to
 get the definition of struct timeval.

i_syssockio

From i_sysioctl.U:

This variable conditionally defines I_SYS_SOCKIO to indicate to the
 C program that socket
ioctl codes may be found in <sys/sockio.h>
 instead of <sys/ioctl.h>.

i_sysstat

From i_sysstat.U:

This variable conditionally defines the I_SYS_STAT symbol,
 and indicates whether a C
program should include <sys/stat.h>.

i_sysstatfs

From i_sysstatfs.U:

This variable conditionally defines the I_SYSSTATFS symbol,
 and indicates whether a C
program should include <sys/statfs.h>.

i_sysstatvfs

From i_sysstatvfs.U:

This variable conditionally defines the I_SYSSTATVFS symbol,
 and indicates whether a C
program should include <sys/statvfs.h>.

i_systime

From i_time.U:

This variable conditionally defines I_SYS_TIME, which indicates
 to the C program that it
should include <sys/time.h>.

i_systimek

From i_time.U:

This variable conditionally defines I_SYS_TIME_KERNEL, which
 indicates to the C program
that it should include <sys/time.h>
 with KERNEL defined.

i_systimes

From i_systimes.U:

This variable conditionally defines the I_SYS_TIMES symbol, and indicates
 whether a C
program should include <sys/times.h>.

i_systypes

From i_systypes.U:

This variable conditionally defines the I_SYS_TYPES symbol,
 and indicates whether a C
program should include <sys/types.h>.

i_sysuio

From i_sysuio.U:

This variable conditionally defines the I_SYSUIO symbol, and indicates
 whether a C program
should include <sys/uio.h>.

Perl version 5.16.1 documentation - Config

Page 71http://perldoc.perl.org

i_sysun

From i_sysun.U:

This variable conditionally defines I_SYS_UN, which indicates
 to the C program that it should
include <sys/un.h> to get UNIX
 domain socket definitions.

i_sysutsname

From i_sysutsname.U:

This variable conditionally defines the I_SYSUTSNAME symbol,
 and indicates whether a C
program should include <sys/utsname.h>.

i_sysvfs

From i_sysvfs.U:

This variable conditionally defines the I_SYSVFS symbol,
 and indicates whether a C program
should include <sys/vfs.h>.

i_syswait

From i_syswait.U:

This variable conditionally defines I_SYS_WAIT, which indicates
 to the C program that it
should include <sys/wait.h>.

i_termio

From i_termio.U:

This variable conditionally defines the I_TERMIO symbol, which
 indicates to the C program
that it should include <termio.h> rather
 than <sgtty.h>.

i_termios

From i_termio.U:

This variable conditionally defines the I_TERMIOS symbol, which
 indicates to the C program
that the POSIX <termios.h> file is
 to be included.

i_time

From i_time.U:

This variable conditionally defines I_TIME, which indicates
 to the C program that it should
include <time.h>.

i_unistd

From i_unistd.U:

This variable conditionally defines the I_UNISTD symbol, and indicates
 whether a C program
should include <unistd.h>.

i_ustat

From i_ustat.U:

This variable conditionally defines the I_USTAT symbol, and indicates
 whether a C program
should include <ustat.h>.

i_utime

From i_utime.U:

This variable conditionally defines the I_UTIME symbol, and indicates
 whether a C program
should include <utime.h>.

i_values

From i_values.U:

Perl version 5.16.1 documentation - Config

Page 72http://perldoc.perl.org

This variable conditionally defines the I_VALUES symbol, and indicates
 whether a C program
may include <values.h> to get symbols like MAXLONG
 and friends.

i_varargs

From i_varhdr.U:

This variable conditionally defines I_VARARGS, which indicates
 to the C program that it should
include <varargs.h>.

i_varhdr

From i_varhdr.U:

Contains the name of the header to be included to get va_dcl definition.
 Typically one of
varargs.h or stdarg.h.

i_vfork

From i_vfork.U:

This variable conditionally defines the I_VFORK symbol, and indicates
 whether a C program
should include vfork.h.

ignore_versioned_solibs

From libs.U:

This variable should be non-empty if non-versioned shared
 libraries (libfoo.so.x.y) are to be
ignored (because they
 cannot be linked against).

inc_version_list

From inc_version_list.U:

This variable specifies the list of subdirectories in over
 which perl.c:incpush() and lib/lib.pm will
automatically
 search when adding directories to @INC. The elements in
 the list are separated
by spaces. This is only useful
 if you have a perl library directory tree structured like the
 default
one. See INSTALL for how this works. The versioned
 site_perl directory was introduced in
5.005, so that is the
 lowest possible value.

This list includes architecture-dependent directories back to
 version $api_versionstring (e.g.
5.5.640) and
 architecture-independent directories all the way back to
 5.005.

inc_version_list_init

From inc_version_list.U:

This variable holds the same list as inc_version_list, but
 each item is enclosed in double
quotes and separated by commas,
 suitable for use in the PERL_INC_VERSION_LIST
initialization.

incpath

From usrinc.U:

This variable must precede the normal include path to get the
 right one, as in $
incpath/usr/include or $incpath/usr/lib.
 Value can be "" or /bsd43 on mips.

inews

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

initialinstalllocation

From bin.U:

When userelocatableinc is true, this variable holds the location
 that make install should copy
the perl binary to, with all the
 run-time relocatable paths calculated from this at install time.

Perl version 5.16.1 documentation - Config

Page 73http://perldoc.perl.org

When used, it is initialised to the original value of binexp, and
 then binexp is set to .../, as the
other binaries are found
 relative to the perl binary.

installarchlib

From archlib.U:

This variable is really the same as archlibexp but may differ on
 those systems using AFS. For
extra portability, only this variable
 should be used in makefiles.

installbin

From bin.U:

This variable is the same as binexp unless AFS is running in which case
 the user is explicitly
prompted for it. This variable should always
 be used in your makefiles for maximum portability.

installhtml1dir

From html1dir.U:

This variable is really the same as html1direxp, unless you are
 using a different installprefix.
For extra portability, you
 should only use this variable within your makefiles.

installhtml3dir

From html3dir.U:

This variable is really the same as html3direxp, unless you are
 using a different installprefix.
For extra portability, you
 should only use this variable within your makefiles.

installman1dir

From man1dir.U:

This variable is really the same as man1direxp, unless you are using AFS in which case it
points to the read/write location whereas
 man1direxp only points to the read-only access
location. For extra
 portability, you should only use this variable within your makefiles.

installman3dir

From man3dir.U:

This variable is really the same as man3direxp, unless you are using AFS in which case it
points to the read/write location whereas
 man3direxp only points to the read-only access
location. For extra
 portability, you should only use this variable within your makefiles.

installprefix

From installprefix.U:

This variable holds the name of the directory below which
 "make install" will install the
package. For most users, this
 is the same as prefix. However, it is useful for
 installing the
software into a different (usually temporary)
 location after which it can be bundled up and
moved somehow
 to the final location specified by prefix.

installprefixexp

From installprefix.U:

This variable holds the full absolute path of installprefix
 with all ~-expansion done.

installprivlib

From privlib.U:

This variable is really the same as privlibexp but may differ on
 those systems using AFS. For
extra portability, only this variable
 should be used in makefiles.

installscript

From scriptdir.U:

Perl version 5.16.1 documentation - Config

Page 74http://perldoc.perl.org

This variable is usually the same as scriptdirexp, unless you are on
 a system running AFS, in
which case they may differ slightly. You
 should always use this variable within your makefiles
for portability.

installsitearch

From sitearch.U:

This variable is really the same as sitearchexp but may differ on
 those systems using AFS. For
extra portability, only this variable
 should be used in makefiles.

installsitebin

From sitebin.U:

This variable is usually the same as sitebinexp, unless you are on
 a system running AFS, in
which case they may differ slightly. You
 should always use this variable within your makefiles
for portability.

installsitehtml1dir

From sitehtml1dir.U:

This variable is really the same as sitehtml1direxp, unless you are using AFS in which case it
points to the read/write location whereas
 html1direxp only points to the read-only access
location. For extra
 portability, you should only use this variable within your makefiles.

installsitehtml3dir

From sitehtml3dir.U:

This variable is really the same as sitehtml3direxp, unless you are using AFS in which case it
points to the read/write location whereas
 html3direxp only points to the read-only access
location. For extra
 portability, you should only use this variable within your makefiles.

installsitelib

From sitelib.U:

This variable is really the same as sitelibexp but may differ on
 those systems using AFS. For
extra portability, only this variable
 should be used in makefiles.

installsiteman1dir

From siteman1dir.U:

This variable is really the same as siteman1direxp, unless you are using AFS in which case it
points to the read/write location whereas
 man1direxp only points to the read-only access
location. For extra
 portability, you should only use this variable within your makefiles.

installsiteman3dir

From siteman3dir.U:

This variable is really the same as siteman3direxp, unless you are using AFS in which case it
points to the read/write location whereas
 man3direxp only points to the read-only access
location. For extra
 portability, you should only use this variable within your makefiles.

installsitescript

From sitescript.U:

This variable is usually the same as sitescriptexp, unless you are on
 a system running AFS, in
which case they may differ slightly. You
 should always use this variable within your makefiles
for portability.

installstyle

From installstyle.U:

This variable describes the style of the perl installation.
 This is intended to be useful for tools

Perl version 5.16.1 documentation - Config

Page 75http://perldoc.perl.org

that need to
 manipulate entire perl distributions. Perl itself doesn't use
 this to find its libraries --
the library directories are
 stored directly in Config.pm. Currently, there are only two
 styles: lib
and lib/perl5. The default library locations
 (e.g. privlib, sitelib) are either $prefix/lib or
$prefix/lib/perl5. The former is useful if $prefix is a
 directory dedicated to perl (e.g. /opt/perl),
while the latter
 is useful if $prefix is shared by many packages, e.g. if
 $prefix=/usr/local.

Unfortunately, while this style variable is used to set
 defaults for all three directory
hierarchies (core, vendor, and
 site), there is no guarantee that the same style is actually

appropriate for all those directories. For example, $prefix
 might be /opt/perl, but $siteprefix
might be /usr/local.
 (Perhaps, in retrospect, the lib style should never have been
 supported,
but it did seem like a nice idea at the time.)

The situation is even less clear for tools such as MakeMaker
 that can be used to install
additional modules into
 non-standard places. For example, if a user intends to install
 a module
into a private directory (perhaps by setting PREFIX on
 the Makefile.PL command line), then
there is no reason to
 assume that the Configure-time $installstyle setting will be
 relevant for
that PREFIX.

This may later be extended to include other information, so
 be careful with pattern-matching
on the results.

For compatibility with perl5.005 and earlier, the default
 setting is based on whether or not
$prefix contains the string perl.

installusrbinperl

From instubperl.U:

This variable tells whether Perl should be installed also as /usr/bin/perl in addition to
$installbin/perl

installvendorarch

From vendorarch.U:

This variable is really the same as vendorarchexp but may differ on
 those systems using AFS.
For extra portability, only this variable
 should be used in makefiles.

installvendorbin

From vendorbin.U:

This variable is really the same as vendorbinexp but may differ on
 those systems using AFS.
For extra portability, only this variable
 should be used in makefiles.

installvendorhtml1dir

From vendorhtml1dir.U:

This variable is really the same as vendorhtml1direxp but may differ on
 those systems using
AFS. For extra portability, only this variable
 should be used in makefiles.

installvendorhtml3dir

From vendorhtml3dir.U:

This variable is really the same as vendorhtml3direxp but may differ on
 those systems using
AFS. For extra portability, only this variable
 should be used in makefiles.

installvendorlib

From vendorlib.U:

This variable is really the same as vendorlibexp but may differ on
 those systems using AFS.
For extra portability, only this variable
 should be used in makefiles.

installvendorman1dir

From vendorman1dir.U:

Perl version 5.16.1 documentation - Config

Page 76http://perldoc.perl.org

This variable is really the same as vendorman1direxp but may differ on
 those systems using
AFS. For extra portability, only this variable
 should be used in makefiles.

installvendorman3dir

From vendorman3dir.U:

This variable is really the same as vendorman3direxp but may differ on
 those systems using
AFS. For extra portability, only this variable
 should be used in makefiles.

installvendorscript

From vendorscript.U:

This variable is really the same as vendorscriptexp but may differ on
 those systems using AFS
. For extra portability, only this variable
 should be used in makefiles.

intsize

From intsize.U:

This variable contains the value of the INTSIZE symbol, which
 indicates to the C program
how many bytes there are in an int.

issymlink

From issymlink.U:

This variable holds the test command to test for a symbolic link
 (if they are supported). Typical
values include test -h and test -L.

ivdformat

From perlxvf.U:

This variable contains the format string used for printing
 a Perl IV as a signed decimal integer.

ivsize

From perlxv.U:

This variable is the size of an IV in bytes.

ivtype

From perlxv.U:

This variable contains the C type used for Perl's IV.

k
known_extensions

From Extensions.U:

This variable holds a list of all XS extensions included in
 the package.

ksh

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

l
ld

From dlsrc.U:

This variable indicates the program to be used to link
 libraries for dynamic loading. On some
systems, it is ld.
 On ELF systems, it should be $cc. Mostly, we'll try to respect
 the hint file
setting.

Perl version 5.16.1 documentation - Config

Page 77http://perldoc.perl.org

ld_can_script

From dlsrc.U:

This variable shows if the loader accepts scripts in the form of
 -Wl,--version-script=ld.script.
This is currently only supported
 for GNU ld on ELF in dynamic loading builds.

lddlflags

From dlsrc.U:

This variable contains any special flags that might need to be
 passed to $ld to create a shared
library suitable for dynamic
 loading. It is up to the makefile to use it. For hpux, it
 should be -b.
For sunos 4.1, it is empty.

ldflags

From ccflags.U:

This variable contains any additional C loader flags desired by
 the user. It is up to the Makefile
to use this.

ldflags_uselargefiles

From uselfs.U:

This variable contains the loader flags needed by large file builds
 and added to ldflags by hints
files.

ldlibpthname

From libperl.U:

This variable holds the name of the shared library
 search path, often LD_LIBRARY_PATH. To
get an empty
 string, the hints file must set this to none.

less

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the less
program. After Configure runs,
 the value is reset to a plain less and is not useful.

lib_ext

From Unix.U:

This is an old synonym for _a.

libc

From libc.U:

This variable contains the location of the C library.

libperl

From libperl.U:

The perl executable is obtained by linking perlmain.c with
 libperl, any static extensions
(usually just DynaLoader),
 and any other libraries needed on this system. libperl
 is usually
libperl.a, but can also be libperl.so.xxx if
 the user wishes to build a perl executable with a
shared
 library.

libpth

From libpth.U:

This variable holds the general path (space-separated) used to find
 libraries. It is intended to
be used by other units.

libs

Perl version 5.16.1 documentation - Config

Page 78http://perldoc.perl.org

From libs.U:

This variable holds the additional libraries we want to use.
 It is up to the Makefile to deal with
it. The list can be empty.

libsdirs

From libs.U:

This variable holds the directory names aka dirnames of the libraries
 we found and accepted,
duplicates are removed.

libsfiles

From libs.U:

This variable holds the filenames aka basenames of the libraries
 we found and accepted.

libsfound

From libs.U:

This variable holds the full pathnames of the libraries
 we found and accepted.

libspath

From libs.U:

This variable holds the directory names probed for libraries.

libswanted

From Myinit.U:

This variable holds a list of all the libraries we want to
 search. The order is chosen to pick up
the c library
 ahead of ucb or bsd libraries for SVR4.

libswanted_uselargefiles

From uselfs.U:

This variable contains the libraries needed by large file builds
 and added to ldflags by hints
files. It is a space separated list
 of the library names without the lib prefix or any suffix, just

like libswanted..

line

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

lint

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

lkflags

From ccflags.U:

This variable contains any additional C partial linker flags desired by
 the user. It is up to the
Makefile to use this.

ln

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the ln
program. After Configure runs,
 the value is reset to a plain ln and is not useful.

lns

Perl version 5.16.1 documentation - Config

Page 79http://perldoc.perl.org

From lns.U:

This variable holds the name of the command to make
 symbolic links (if they are supported). It
can be used
 in the Makefile. It is either ln -s or ln

localtime_r_proto

From d_localtime_r.U:

This variable encodes the prototype of localtime_r.
 It is zero if d_localtime_r is undef, and one
of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_localtime_r
 is defined.

locincpth

From ccflags.U:

This variable contains a list of additional directories to be
 searched by the compiler. The
appropriate -I directives will
 be added to ccflags. This is intended to simplify setting
 local
directories from the Configure command line.
 It's not much, but it parallels the loclibpth stuff in
libpth.U.

loclibpth

From libpth.U:

This variable holds the paths (space-separated) used to find local
 libraries. It is prepended to
libpth, and is intended to be easily
 set from the command line.

longdblsize

From d_longdbl.U:

This variable contains the value of the LONG_DOUBLESIZE symbol, which
 indicates to the C
program how many bytes there are in a long double,
 if this system supports long doubles.

longlongsize

From d_longlong.U:

This variable contains the value of the LONGLONGSIZE symbol, which
 indicates to the C
program how many bytes there are in a long long,
 if this system supports long long.

longsize

From intsize.U:

This variable contains the value of the LONGSIZE symbol, which
 indicates to the C program
how many bytes there are in a long.

lp

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

lpr

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

ls

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the ls
program. After Configure runs,
 the value is reset to a plain ls and is not useful.

lseeksize

From lseektype.U:

Perl version 5.16.1 documentation - Config

Page 80http://perldoc.perl.org

This variable defines lseektype to be something like off_t, long,
 or whatever type is used to
declare lseek offset's type in the
 kernel (which also appears to be lseek's return type).

lseektype

From lseektype.U:

This variable defines lseektype to be something like off_t, long,
 or whatever type is used to
declare lseek offset's type in the
 kernel (which also appears to be lseek's return type).

m
mad

From mad.U:

This variable indicates that the Misc Attribute Definition code is to
 be compiled.

madlyh

From mad.U:

If the Misc Attribute Decoration is to be compiled, this variable is
 set to the name of the extra
header files to be used, else it is ''

madlyobj

From mad.U:

If the Misc Attribute Decoration is to be compiled, this variable is
 set to the name of the extra
object files to be used, else it is ''

madlysrc

From mad.U:

If the Misc Attribute Decoration is to be compiled, this variable is
 set to the name of the extra
C source files to be used, else it is ''

mail

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

mailx

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

make

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the
make program. After Configure runs,
 the value is reset to a plain make and is not useful.

make_set_make

From make.U:

Some versions of make set the variable MAKE. Others do not.
 This variable contains the string
to be included in Makefile.SH
 so that MAKE is set if needed, and not if not needed.
 Possible
values are:

make_set_make=#	 # If your make program handles this for you,

make_set_make=MAKE=$make	 # if it doesn't.

This uses a comment character so that we can distinguish a set value (from a previous
config.sh or Configure -D option)
 from an uncomputed value.

Perl version 5.16.1 documentation - Config

Page 81http://perldoc.perl.org

mallocobj

From mallocsrc.U:

This variable contains the name of the malloc.o that this package
 generates, if that malloc.o is
preferred over the system malloc.
 Otherwise the value is null. This variable is intended for
generating
 Makefiles. See mallocsrc.

mallocsrc

From mallocsrc.U:

This variable contains the name of the malloc.c that comes with
 the package, if that malloc.c is
preferred over the system malloc.
 Otherwise the value is null. This variable is intended for
generating
 Makefiles.

malloctype

From mallocsrc.U:

This variable contains the kind of ptr returned by malloc and realloc.

man1dir

From man1dir.U:

This variable contains the name of the directory in which manual
 source pages are to be put. It
is the responsibility of the Makefile.SH to get the value of this into the proper command.
 You
must be prepared to do the ~name expansion yourself.

man1direxp

From man1dir.U:

This variable is the same as the man1dir variable, but is filename
 expanded at configuration
time, for convenient use in makefiles.

man1ext

From man1dir.U:

This variable contains the extension that the manual page should
 have: one of n, l, or 1. The
Makefile must supply the ..
 See man1dir.

man3dir

From man3dir.U:

This variable contains the name of the directory in which manual
 source pages are to be put. It
is the responsibility of the Makefile.SH to get the value of this into the proper command.
 You
must be prepared to do the ~name expansion yourself.

man3direxp

From man3dir.U:

This variable is the same as the man3dir variable, but is filename
 expanded at configuration
time, for convenient use in makefiles.

man3ext

From man3dir.U:

This variable contains the extension that the manual page should
 have: one of n, l, or 3. The
Makefile must supply the ..
 See man3dir.

mips_type

From usrinc.U:

This variable holds the environment type for the mips system.
 Possible values are "BSD 4.3"
and "System V".

Perl version 5.16.1 documentation - Config

Page 82http://perldoc.perl.org

mistrustnm

From Csym.U:

This variable can be used to establish a fallthrough for the cases
 where nm fails to find a
symbol. If usenm is false or usenm is true
 and mistrustnm is false, this variable has no effect.
If usenm is true
 and mistrustnm is compile, a test program will be compiled to try to
 find any
symbol that can't be located via nm lookup. If mistrustnm is run, the test program will be run
as well as being compiled.

mkdir

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the
mkdir program. After Configure runs,
 the value is reset to a plain mkdir and is not useful.

mmaptype

From d_mmap.U:

This symbol contains the type of pointer returned by mmap()
 (and simultaneously the type of
the first argument).
 It can be void * or caddr_t.

modetype

From modetype.U:

This variable defines modetype to be something like mode_t,
 int, unsigned short, or whatever
type is used to declare file
 modes for system calls.

more

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the
more program. After Configure runs,
 the value is reset to a plain more and is not useful.

multiarch

From multiarch.U:

This variable conditionally defines the MULTIARCH symbol
 which signifies the presence of
multiplatform files.
 This is normally set by hints files.

mv

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

myarchname

From archname.U:

This variable holds the architecture name computed by Configure in
 a previous run. It is not
intended to be perused by any user and
 should never be set in a hint file.

mydomain

From myhostname.U:

This variable contains the eventual value of the MYDOMAIN symbol,
 which is the domain of the
host the program is going to run on.
 The domain must be appended to myhostname to form a
complete host name.
 The dot comes with mydomain, and need not be supplied by the
program.

myhostname

From myhostname.U:

Perl version 5.16.1 documentation - Config

Page 83http://perldoc.perl.org

This variable contains the eventual value of the MYHOSTNAME symbol,
 which is the name of
the host the program is going to run on.
 The domain is not kept with hostname, but must be
gotten from mydomain.
 The dot comes with mydomain, and need not be supplied by the
program.

myuname

From Oldconfig.U:

The output of uname -a if available, otherwise the hostname. On Xenix,
 pseudo variables
assignments in the output are stripped, thank you. The
 whole thing is then lower-cased.

n
n

From n.U:

This variable contains the -n flag if that is what causes the echo
 command to suppress
newline. Otherwise it is null. Correct usage is
 $echo $n "prompt for a question: $c".

need_va_copy

From need_va_copy.U:

This symbol, if defined, indicates that the system stores
 the variable argument list datatype,
va_list, in a format
 that cannot be copied by simple assignment, so that some
 other means
must be used when copying is required.
 As such systems vary in their provision (or
non-provision)
 of copying mechanisms, handy.h defines a platform- independent macro,
Perl_va_copy(src, dst), to do the job.

netdb_hlen_type

From netdbtype.U:

This variable holds the type used for the 2nd argument to
 gethostbyaddr(). Usually, this is int
or size_t or unsigned.
 This is only useful if you have gethostbyaddr(), naturally.

netdb_host_type

From netdbtype.U:

This variable holds the type used for the 1st argument to
 gethostbyaddr(). Usually, this is char
* or void *, possibly
 with or without a const prefix.
 This is only useful if you have
gethostbyaddr(), naturally.

netdb_name_type

From netdbtype.U:

This variable holds the type used for the argument to
 gethostbyname(). Usually, this is char *
or const char *.
 This is only useful if you have gethostbyname(), naturally.

netdb_net_type

From netdbtype.U:

This variable holds the type used for the 1st argument to
 getnetbyaddr(). Usually, this is int or
long.
 This is only useful if you have getnetbyaddr(), naturally.

nm

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the nm
program. After Configure runs,
 the value is reset to a plain nm and is not useful.

nm_opt

From usenm.U:

This variable holds the options that may be necessary for nm.

Perl version 5.16.1 documentation - Config

Page 84http://perldoc.perl.org

nm_so_opt

From usenm.U:

This variable holds the options that may be necessary for nm
 to work on a shared library but
that can not be used on an
 archive library. Currently, this is only used by Linux, where
 nm
--dynamic is *required* to get symbols from an ELF library which
 has been stripped, but nm
--dynamic is *fatal* on an archive library.
 Maybe Linux should just always set usenm=false.

nonxs_ext

From Extensions.U:

This variable holds a list of all non-xs extensions included
 in the package. All of them will be
built.

nroff

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the nroff
program. After Configure runs,
 the value is reset to a plain nroff and is not useful.

nv_overflows_integers_at

From perlxv.U:

This variable gives the largest integer value that NVs can hold
 as a constant floating point
expression.
 If it could not be determined, it holds the value 0.

nv_preserves_uv_bits

From perlxv.U:

This variable indicates how many of bits type uvtype
 a variable nvtype can preserve.

nveformat

From perlxvf.U:

This variable contains the format string used for printing
 a Perl NV using %e-ish floating point
format.

nvEUformat

From perlxvf.U:

This variable contains the format string used for printing
 a Perl NV using %E-ish floating point
format.

nvfformat

From perlxvf.U:

This variable confains the format string used for printing
 a Perl NV using %f-ish floating point
format.

nvFUformat

From perlxvf.U:

This variable confains the format string used for printing
 a Perl NV using %F-ish floating point
format.

nvgformat

From perlxvf.U:

This variable contains the format string used for printing
 a Perl NV using %g-ish floating point
format.

nvGUformat

Perl version 5.16.1 documentation - Config

Page 85http://perldoc.perl.org

From perlxvf.U:

This variable contains the format string used for printing
 a Perl NV using %G-ish floating point
format.

nvsize

From perlxv.U:

This variable is the size of an NV in bytes.

nvtype

From perlxv.U:

This variable contains the C type used for Perl's NV.

o
o_nonblock

From nblock_io.U:

This variable bears the symbol value to be used during open() or fcntl()
 to turn on
non-blocking I/O for a file descriptor. If you wish to switch
 between blocking and non-blocking,
you may try ioctl(FIOSNBIO) instead,
 but that is only supported by some devices.

obj_ext

From Unix.U:

This is an old synonym for _o.

old_pthread_create_joinable

From d_pthrattrj.U:

This variable defines the constant to use for creating joinable
 (aka undetached) pthreads.
Unused if pthread.h defines PTHREAD_CREATE_JOINABLE. If used, possible values are
PTHREAD_CREATE_UNDETACHED and __UNDETACHED.

optimize

From ccflags.U:

This variable contains any optimizer/debugger flag that should be used.
 It is up to the Makefile
to use it.

orderlib

From orderlib.U:

This variable is true if the components of libraries must be ordered
 (with `lorder $* | tsort`)
before placing them in an archive. Set to false if ranlib or ar can generate random libraries.

osname

From Oldconfig.U:

This variable contains the operating system name (e.g. sunos,
 solaris, hpux, etc.). It can be
useful later on for setting
 defaults. Any spaces are replaced with underscores. It is set
 to a null
string if we can't figure it out.

osvers

From Oldconfig.U:

This variable contains the operating system version (e.g.
 4.1.3, 5.2, etc.). It is primarily used
for helping select
 an appropriate hints file, but might be useful elsewhere for
 setting defaults. It
is set to '' if we can't figure it out.
 We try to be flexible about how much of the version number

to keep, e.g. if 4.1.1, 4.1.2, and 4.1.3 are essentially the
 same for this package, hints files
might just be os_4.0 or os_4.1, etc., not keeping separate files for each little release.

Perl version 5.16.1 documentation - Config

Page 86http://perldoc.perl.org

otherlibdirs

From otherlibdirs.U:

This variable contains a colon-separated set of paths for the perl
 binary to search for
additional library files or modules.
 These directories will be tacked to the end of @INC.
 Perl
will automatically search below each path for version-
 and architecture-specific directories.
See inc_version_list
 for more details.
 A value of means none and is used to preserve this
value
 for the next run through Configure.

p
package

From package.U:

This variable contains the name of the package being constructed.
 It is primarily intended for
the use of later Configure units.

pager

From pager.U:

This variable contains the name of the preferred pager on the system.
 Usual values are (the
full pathnames of) more, less, pg, or cat.

passcat

From nis.U:

This variable contains a command that produces the text of the /etc/passwd file. This is
normally "cat /etc/passwd", but can be
 "ypcat passwd" when NIS is used.
 On some systems,
such as os390, there may be no equivalent
 command, in which case this variable is unset.

patchlevel

From patchlevel.U:

The patchlevel level of this package.
 The value of patchlevel comes from the patchlevel.h file.

In a version number such as 5.6.1, this is the 6.
 In patchlevel.h, this is referred to as
PERL_VERSION.

path_sep

From Unix.U:

This is an old synonym for p_ in Head.U, the character
 used to separate elements in the
command shell search PATH.

perl

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the perl
program. After Configure runs,
 the value is reset to a plain perl and is not useful.

perl5

From perl5.U:

This variable contains the full path (if any) to a previously
 installed perl5.005 or later suitable
for running the script
 to determine inc_version_list.

P
PERL_API_REVISION

From patchlevel.h:

This number describes the earliest compatible PERL_REVISION of
 Perl (compatibility
here being defined as sufficient binary/API
 compatibility to run XS code built with the older
version).
 Normally this does not change across maintenance releases.
 Please read the

Perl version 5.16.1 documentation - Config

Page 87http://perldoc.perl.org

comment in patchlevel.h.

PERL_API_SUBVERSION

From patchlevel.h:

This number describes the earliest compatible PERL_SUBVERSION of
 Perl (compatibility
here being defined as sufficient binary/API
 compatibility to run XS code built with the older
version).
 Normally this does not change across maintenance releases.
 Please read the
comment in patchlevel.h.

PERL_API_VERSION

From patchlevel.h:

This number describes the earliest compatible PERL_VERSION of
 Perl (compatibility here
being defined as sufficient binary/API
 compatibility to run XS code built with the older version).
Normally this does not change across maintenance releases.
 Please read the comment in
patchlevel.h.

PERL_CONFIG_SH

From Oldsyms.U:

This is set to true in config.sh so that a shell script
 sourcing config.sh can tell if it has been
sourced already.

PERL_PATCHLEVEL

From Oldsyms.U:

This symbol reflects the patchlevel, if available. Will usually
 come from the .patch file, which is
available when the perl
 source tree was fetched with rsync.

perl_patchlevel

From patchlevel.U:

This is the Perl patch level, a numeric change identifier,
 as defined by whichever source code
maintenance system
 is used to maintain the patches; currently Perforce.
 It does not correlate
with the Perl version numbers or
 the maintenance versus development dichotomy except
 by
also being increasing.

PERL_REVISION

From Oldsyms.U:

In a Perl version number such as 5.6.2, this is the 5.
 This value is manually set in patchlevel.h

perl_static_inline

From d_static_inline.U:

This variable defines the PERL_STATIC_INLINE symbol to
 the best-guess incantation to use
for static inline functions.
 Possibilities include
 static inline (c99)
 static __inline__ (gcc -ansi)

static __inline (MSVC)
 static _inline (older MSVC)
 static (c89 compilers)

PERL_SUBVERSION

From Oldsyms.U:

In a Perl version number such as 5.6.2, this is the 2.
 Values greater than 50 represent
potentially unstable
 development subversions.
 This value is manually set in patchlevel.h

PERL_VERSION

From Oldsyms.U:

In a Perl version number such as 5.6.2, this is the 6.
 This value is manually set in patchlevel.h

perladmin

Perl version 5.16.1 documentation - Config

Page 88http://perldoc.perl.org

From perladmin.U:

Electronic mail address of the perl5 administrator.

perllibs

From End.U:

The list of libraries needed by Perl only (any libraries needed
 by extensions only will by
dropped, if using dynamic loading).

perlpath

From perlpath.U:

This variable contains the eventual value of the PERLPATH symbol,
 which contains the name
of the perl interpreter to be used in
 shell scripts and in the "eval exec" idiom. This variable is

not necessarily the pathname of the file containing the perl
 interpreter; you must append the
executable extension (_exe) if
 it is not already present. Note that Perl code that runs during

the Perl build process cannot reference this variable, as Perl
 may not have been installed, or
even if installed, may be a
 different version of Perl.

pg

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the pg
program. After Configure runs,
 the value is reset to a plain pg and is not useful.

phostname

From myhostname.U:

This variable contains the eventual value of the PHOSTNAME symbol,
 which is a command that
can be fed to popen() to get the host name.
 The program should probably not presume that
the domain is or isn't
 there already.

pidtype

From pidtype.U:

This variable defines PIDTYPE to be something like pid_t, int,
 ushort, or whatever type is used
to declare process ids in the kernel.

plibpth

From libpth.U:

Holds the private path used by Configure to find out the libraries.
 Its value is prepend to libpth.
This variable takes care of special
 machines, like the mips. Usually, it should be empty.

pmake

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

pr

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

prefix

From prefix.U:

This variable holds the name of the directory below which the
 user will install the package.
Usually, this is /usr/local, and
 executables go in /usr/local/bin, library stuff in /usr/local/lib,
 man
pages in /usr/local/man, etc. It is only used to set defaults
 for things in bin.U, mansrc.U,

Perl version 5.16.1 documentation - Config

Page 89http://perldoc.perl.org

privlib.U, or scriptdir.U.

prefixexp

From prefix.U:

This variable holds the full absolute path of the directory below
 which the user will install the
package. Derived from prefix.

privlib

From privlib.U:

This variable contains the eventual value of the PRIVLIB symbol,
 which is the name of the
private library for this package. It may
 have a ~ on the front. It is up to the makefile to
eventually create
 this directory while performing installation (with ~ substitution).

privlibexp

From privlib.U:

This variable is the ~name expanded version of privlib, so that you
 may use it directly in
Makefiles or shell scripts.

procselfexe

From d_procselfexe.U:

If d_procselfexe is defined, $procselfexe is the filename
 of the symbolic link pointing to the
absolute pathname of
 the executing program.

prototype

From prototype.U:

This variable holds the eventual value of CAN_PROTOTYPE, which
 indicates the C compiler
can handle funciton prototypes.

ptrsize

From ptrsize.U:

This variable contains the value of the PTRSIZE symbol, which
 indicates to the C program
how many bytes there are in a pointer.

q
quadkind

From quadtype.U:

This variable, if defined, encodes the type of a quad:
 1 = int, 2 = long, 3 = long long, 4 =
int64_t.

quadtype

From quadtype.U:

This variable defines Quad_t to be something like long, int,
 long long, int64_t, or whatever
type is used for 64-bit integers.

r
randbits

From randfunc.U:

Indicates how many bits are produced by the function used to
 generate normalized random
numbers.

randfunc

From randfunc.U:

Perl version 5.16.1 documentation - Config

Page 90http://perldoc.perl.org

Indicates the name of the random number function to use.
 Values include drand48, random,
and rand. In C programs,
 the Drand01 macro is defined to generate uniformly distributed

random numbers over the range [0., 1.[(see drand01 and nrand).

random_r_proto

From d_random_r.U:

This variable encodes the prototype of random_r.
 It is zero if d_random_r is undef, and one of
the REENTRANT_PROTO_T_ABC macros of reentr.h if d_random_r
 is defined.

randseedtype

From randfunc.U:

Indicates the type of the argument of the seedfunc.

ranlib

From orderlib.U:

This variable is set to the pathname of the ranlib program, if it is
 needed to generate random
libraries. Set to : if ar can generate
 random libraries or if random libraries are not supported

rd_nodata

From nblock_io.U:

This variable holds the return code from read() when no data is
 present. It should be -1, but
some systems return 0 when O_NDELAY is
 used, which is a shame because you cannot make
the difference between
 no data and an EOF.. Sigh!

readdir64_r_proto

From d_readdir64_r.U:

This variable encodes the prototype of readdir64_r.
 It is zero if d_readdir64_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_readdir64_r
 is defined.

readdir_r_proto

From d_readdir_r.U:

This variable encodes the prototype of readdir_r.
 It is zero if d_readdir_r is undef, and one of
the REENTRANT_PROTO_T_ABC macros of reentr.h if d_readdir_r
 is defined.

revision

From patchlevel.U:

The value of revision comes from the patchlevel.h file.
 In a version number such as 5.6.1, this
is the 5.
 In patchlevel.h, this is referred to as PERL_REVISION.

rm

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the rm
program. After Configure runs,
 the value is reset to a plain rm and is not useful.

rm_try

From Unix.U:

This is a cleanup variable for try test programs.
 Internal Configure use only.

rmail

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

Perl version 5.16.1 documentation - Config

Page 91http://perldoc.perl.org

run

From Cross.U:

This variable contains the command used by Configure
 to copy and execute a cross-compiled
executable in the
 target host. Useful and available only during Perl build.
 Empty string '' if not
cross-compiling.

runnm

From usenm.U:

This variable contains true or false depending whether the
 nm extraction should be
performed or not, according to the value
 of usenm and the flags on the Configure command
line.

s
sched_yield

From d_pthread_y.U:

This variable defines the way to yield the execution
 of the current thread.

scriptdir

From scriptdir.U:

This variable holds the name of the directory in which the user wants
 to put publicly scripts for
the package in question. It is either
 the same directory as for binaries, or a special one that
can be
 mounted across different architectures, like /usr/share. Programs
 must be prepared to
deal with ~name expansion.

scriptdirexp

From scriptdir.U:

This variable is the same as scriptdir, but is filename expanded
 at configuration time, for
programs not wanting to bother with it.

sed

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the sed
program. After Configure runs,
 the value is reset to a plain sed and is not useful.

seedfunc

From randfunc.U:

Indicates the random number generating seed function.
 Values include srand48, srandom,
and srand.

selectminbits

From selectminbits.U:

This variable holds the minimum number of bits operated by select.
 That is, if you do select(n,
...), how many bits at least will be
 cleared in the masks if some activity is detected. Usually this
is either n or 32*ceil(n/32), especially many little-endians do
 the latter. This is only useful if you
have select(), naturally.

selecttype

From selecttype.U:

This variable holds the type used for the 2nd, 3rd, and 4th
 arguments to select. Usually, this is
fd_set *, if HAS_FD_SET
 is defined, and int * otherwise. This is only useful if you
 have
select(), naturally.

sendmail

Perl version 5.16.1 documentation - Config

Page 92http://perldoc.perl.org

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

setgrent_r_proto

From d_setgrent_r.U:

This variable encodes the prototype of setgrent_r.
 It is zero if d_setgrent_r is undef, and one
of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_setgrent_r
 is defined.

sethostent_r_proto

From d_sethostent_r.U:

This variable encodes the prototype of sethostent_r.
 It is zero if d_sethostent_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_sethostent_r
 is defined.

setlocale_r_proto

From d_setlocale_r.U:

This variable encodes the prototype of setlocale_r.
 It is zero if d_setlocale_r is undef, and one
of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_setlocale_r
 is defined.

setnetent_r_proto

From d_setnetent_r.U:

This variable encodes the prototype of setnetent_r.
 It is zero if d_setnetent_r is undef, and one
of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_setnetent_r
 is defined.

setprotoent_r_proto

From d_setprotoent_r.U:

This variable encodes the prototype of setprotoent_r.
 It is zero if d_setprotoent_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_setprotoent_r
 is defined.

setpwent_r_proto

From d_setpwent_r.U:

This variable encodes the prototype of setpwent_r.
 It is zero if d_setpwent_r is undef, and one
of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_setpwent_r
 is defined.

setservent_r_proto

From d_setservent_r.U:

This variable encodes the prototype of setservent_r.
 It is zero if d_setservent_r is undef, and
one of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_setservent_r
 is defined.

sGMTIME_max

From time_size.U:

This variable defines the maximum value of the time_t offset that
 the system function gmtime
() accepts

sGMTIME_min

From time_size.U:

This variable defines the minimum value of the time_t offset that
 the system function gmtime ()
accepts

sh

From sh.U:

This variable contains the full pathname of the shell used
 on this system to execute Bourne

Perl version 5.16.1 documentation - Config

Page 93http://perldoc.perl.org

shell scripts. Usually, this will be /bin/sh, though it's possible that some systems will have
/bin/ksh, /bin/pdksh, /bin/ash, /bin/bash, or even something such as
 D:/bin/sh.exe.
 This unit
comes before Options.U, so you can't set sh with a -D
 option, though you can override this
(and startsh)
 with -O -Dsh=/bin/whatever -Dstartsh=whatever

shar

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

sharpbang

From spitshell.U:

This variable contains the string #! if this system supports that
 construct.

shmattype

From d_shmat.U:

This symbol contains the type of pointer returned by shmat().
 It can be void * or char *.

shortsize

From intsize.U:

This variable contains the value of the SHORTSIZE symbol which
 indicates to the C program
how many bytes there are in a short.

shrpenv

From libperl.U:

If the user builds a shared libperl.so, then we need to tell the perl executable where it will be
able to find the installed libperl.so.
 One way to do this on some systems is to set the
environment variable LD_RUN_PATH to the directory that will be the final location of the
 shared
libperl.so. The makefile can use this with something like
 $shrpenv $(CC) -o perl perlmain.o
$libperl $libs
 Typical values are
 shrpenv="env LD_RUN_PATH=$archlibexp/CORE"
 or

shrpenv=''
 See the main perl Makefile.SH for actual working usage.
 Alternatively, we might be
able to use a command line option such
 as -R $archlibexp/CORE (Solaris) or -Wl,-rpath
$archlibexp/CORE (Linux).

shsharp

From spitshell.U:

This variable tells further Configure units whether your sh can
 handle # comments.

sig_count

From sig_name.U:

This variable holds a number larger than the largest valid
 signal number. This is usually the
same as the NSIG macro.

sig_name

From sig_name.U:

This variable holds the signal names, space separated. The leading SIG in signal name is
removed. A ZERO is prepended to the list.
 This is currently not used, sig_name_init is used
instead.

sig_name_init

From sig_name.U:

This variable holds the signal names, enclosed in double quotes and
 separated by commas,
suitable for use in the SIG_NAME definition
 below. A ZERO is prepended to the list, and the list

Perl version 5.16.1 documentation - Config

Page 94http://perldoc.perl.org

is
 terminated with a plain 0. The leading SIG in signal names
 is removed. See sig_num.

sig_num

From sig_name.U:

This variable holds the signal numbers, space separated. A ZERO is
 prepended to the list
(corresponding to the fake SIGZERO).
 Those numbers correspond to the value of the signal
listed
 in the same place within the sig_name list.
 This is currently not used, sig_num_init is
used instead.

sig_num_init

From sig_name.U:

This variable holds the signal numbers, enclosed in double quotes and
 separated by commas,
suitable for use in the SIG_NUM definition
 below. A ZERO is prepended to the list, and the list
is
 terminated with a plain 0.

sig_size

From sig_name.U:

This variable contains the number of elements of the sig_name
 and sig_num arrays.

signal_t

From d_voidsig.U:

This variable holds the type of the signal handler (void or int).

sitearch

From sitearch.U:

This variable contains the eventual value of the SITEARCH symbol,
 which is the name of the
private library for this package. It may
 have a ~ on the front. It is up to the makefile to
eventually create
 this directory while performing installation (with ~ substitution).
 The standard
distribution will put nothing in this directory.
 After perl has been installed, users may install
their own local
 architecture-dependent modules in this directory with
 MakeMaker Makefile.PL

or equivalent. See INSTALL for details.

sitearchexp

From sitearch.U:

This variable is the ~name expanded version of sitearch, so that you
 may use it directly in
Makefiles or shell scripts.

sitebin

From sitebin.U:

This variable holds the name of the directory in which the user wants
 to put add-on publicly
executable files for the package in question. It
 is most often a local directory such as
/usr/local/bin. Programs using
 this variable must be prepared to deal with ~name substitution.

The standard distribution will put nothing in this directory.
 After perl has been installed, users
may install their own local
 executables in this directory with
 MakeMaker Makefile.PL
 or
equivalent. See INSTALL for details.

sitebinexp

From sitebin.U:

This is the same as the sitebin variable, but is filename expanded at
 configuration time, for
use in your makefiles.

sitehtml1dir

From sitehtml1dir.U:

Perl version 5.16.1 documentation - Config

Page 95http://perldoc.perl.org

This variable contains the name of the directory in which site-specific
 html source pages are to
be put. It is the responsibility of the Makefile.SH to get the value of this into the proper
command.
 You must be prepared to do the ~name expansion yourself.
 The standard
distribution will put nothing in this directory.
 After perl has been installed, users may install
their own local
 html pages in this directory with
 MakeMaker Makefile.PL
 or equivalent. See
INSTALL for details.

sitehtml1direxp

From sitehtml1dir.U:

This variable is the same as the sitehtml1dir variable, but is filename
 expanded at
configuration time, for convenient use in makefiles.

sitehtml3dir

From sitehtml3dir.U:

This variable contains the name of the directory in which site-specific
 library html source
pages are to be put. It is the responsibility of the Makefile.SH to get the value of this into the
proper command.
 You must be prepared to do the ~name expansion yourself.
 The standard
distribution will put nothing in this directory.
 After perl has been installed, users may install
their own local
 library html pages in this directory with
 MakeMaker Makefile.PL
 or equivalent.
See INSTALL for details.

sitehtml3direxp

From sitehtml3dir.U:

This variable is the same as the sitehtml3dir variable, but is filename
 expanded at
configuration time, for convenient use in makefiles.

sitelib

From sitelib.U:

This variable contains the eventual value of the SITELIB symbol,
 which is the name of the
private library for this package. It may
 have a ~ on the front. It is up to the makefile to
eventually create
 this directory while performing installation (with ~ substitution).
 The standard
distribution will put nothing in this directory.
 After perl has been installed, users may install
their own local
 architecture-independent modules in this directory with
 MakeMaker
Makefile.PL
 or equivalent. See INSTALL for details.

sitelib_stem

From sitelib.U:

This variable is $sitelibexp with any trailing version-specific component
 removed. The
elements in inc_version_list (inc_version_list.U) can
 be tacked onto this variable to generate a
list of directories to search.

sitelibexp

From sitelib.U:

This variable is the ~name expanded version of sitelib, so that you
 may use it directly in
Makefiles or shell scripts.

siteman1dir

From siteman1dir.U:

This variable contains the name of the directory in which site-specific
 manual source pages
are to be put. It is the responsibility of the Makefile.SH to get the value of this into the proper
command.
 You must be prepared to do the ~name expansion yourself.
 The standard
distribution will put nothing in this directory.
 After perl has been installed, users may install
their own local
 man1 pages in this directory with
 MakeMaker Makefile.PL
 or equivalent. See
INSTALL for details.

Perl version 5.16.1 documentation - Config

Page 96http://perldoc.perl.org

siteman1direxp

From siteman1dir.U:

This variable is the same as the siteman1dir variable, but is filename
 expanded at
configuration time, for convenient use in makefiles.

siteman3dir

From siteman3dir.U:

This variable contains the name of the directory in which site-specific
 library man source
pages are to be put. It is the responsibility of the Makefile.SH to get the value of this into the
proper command.
 You must be prepared to do the ~name expansion yourself.
 The standard
distribution will put nothing in this directory.
 After perl has been installed, users may install
their own local
 man3 pages in this directory with
 MakeMaker Makefile.PL
 or equivalent. See
INSTALL for details.

siteman3direxp

From siteman3dir.U:

This variable is the same as the siteman3dir variable, but is filename
 expanded at
configuration time, for convenient use in makefiles.

siteprefix

From siteprefix.U:

This variable holds the full absolute path of the directory below
 which the user will install
add-on packages.
 See INSTALL for usage and examples.

siteprefixexp

From siteprefix.U:

This variable holds the full absolute path of the directory below
 which the user will install
add-on packages. Derived from siteprefix.

sitescript

From sitescript.U:

This variable holds the name of the directory in which the user wants
 to put add-on publicly
executable files for the package in question. It
 is most often a local directory such as
/usr/local/bin. Programs using
 this variable must be prepared to deal with ~name substitution.

The standard distribution will put nothing in this directory.
 After perl has been installed, users
may install their own local
 scripts in this directory with
 MakeMaker Makefile.PL
 or equivalent.
See INSTALL for details.

sitescriptexp

From sitescript.U:

This is the same as the sitescript variable, but is filename expanded at
 configuration time, for
use in your makefiles.

sizesize

From sizesize.U:

This variable contains the size of a sizetype in bytes.

sizetype

From sizetype.U:

This variable defines sizetype to be something like size_t,
 unsigned long, or whatever type is
used to declare length
 parameters for string functions.

sleep

Perl version 5.16.1 documentation - Config

Page 97http://perldoc.perl.org

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

sLOCALTIME_max

From time_size.U:

This variable defines the maximum value of the time_t offset that
 the system function localtime
() accepts

sLOCALTIME_min

From time_size.U:

This variable defines the minimum value of the time_t offset that
 the system function localtime
() accepts

smail

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

so

From so.U:

This variable holds the extension used to identify shared libraries
 (also known as shared
objects) on the system. Usually set to so.

sockethdr

From d_socket.U:

This variable has any cpp -I flags needed for socket support.

socketlib

From d_socket.U:

This variable has the names of any libraries needed for socket support.

socksizetype

From socksizetype.U:

This variable holds the type used for the size argument
 for various socket calls like accept.
Usual values include
 socklen_t, size_t, and int.

sort

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the sort
program. After Configure runs,
 the value is reset to a plain sort and is not useful.

spackage

From package.U:

This variable contains the name of the package being constructed,
 with the first letter
uppercased, i.e. suitable for starting
 sentences.

spitshell

From spitshell.U:

This variable contains the command necessary to spit out a runnable
 shell on this system. It is
either cat or a grep -v for # comments.

sPRId64

Perl version 5.16.1 documentation - Config

Page 98http://perldoc.perl.org

From quadfio.U:

This variable, if defined, contains the string used by stdio to
 format 64-bit decimal numbers
(format d) for output.

sPRIeldbl

From longdblfio.U:

This variable, if defined, contains the string used by stdio to
 format long doubles (format e) for
output.

sPRIEUldbl

From longdblfio.U:

This variable, if defined, contains the string used by stdio to
 format long doubles (format E) for
output.
 The U in the name is to separate this from sPRIeldbl so that even
 case-blind systems
can see the difference.

sPRIfldbl

From longdblfio.U:

This variable, if defined, contains the string used by stdio to
 format long doubles (format f) for
output.

sPRIFUldbl

From longdblfio.U:

This variable, if defined, contains the string used by stdio to
 format long doubles (format F) for
output.
 The U in the name is to separate this from sPRIfldbl so that even
 case-blind systems
can see the difference.

sPRIgldbl

From longdblfio.U:

This variable, if defined, contains the string used by stdio to
 format long doubles (format g) for
output.

sPRIGUldbl

From longdblfio.U:

This variable, if defined, contains the string used by stdio to
 format long doubles (format G) for
output.
 The U in the name is to separate this from sPRIgldbl so that even
 case-blind systems
can see the difference.

sPRIi64

From quadfio.U:

This variable, if defined, contains the string used by stdio to
 format 64-bit decimal numbers
(format i) for output.

sPRIo64

From quadfio.U:

This variable, if defined, contains the string used by stdio to
 format 64-bit octal numbers
(format o) for output.

sPRIu64

From quadfio.U:

This variable, if defined, contains the string used by stdio to
 format 64-bit unsigned decimal
numbers (format u) for output.

sPRIx64

Perl version 5.16.1 documentation - Config

Page 99http://perldoc.perl.org

From quadfio.U:

This variable, if defined, contains the string used by stdio to
 format 64-bit hexadecimal
numbers (format x) for output.

sPRIXU64

From quadfio.U:

This variable, if defined, contains the string used by stdio to
 format 64-bit hExADECimAl
numbers (format X) for output.
 The U in the name is to separate this from sPRIx64 so that
even
 case-blind systems can see the difference.

srand48_r_proto

From d_srand48_r.U:

This variable encodes the prototype of srand48_r.
 It is zero if d_srand48_r is undef, and one
of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_srand48_r
 is defined.

srandom_r_proto

From d_srandom_r.U:

This variable encodes the prototype of srandom_r.
 It is zero if d_srandom_r is undef, and one
of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_srandom_r
 is defined.

src

From src.U:

This variable holds the (possibly relative) path of the package source.
 It is up to the Makefile
to use this variable and set VPATH accordingly
 to find the sources remotely. Use $pkgsrc to
have an absolute path.

sSCNfldbl

From longdblfio.U:

This variable, if defined, contains the string used by stdio to
 format long doubles (format f) for
input.

ssizetype

From ssizetype.U:

This variable defines ssizetype to be something like ssize_t,
 long or int. It is used by functions
that return a count
 of bytes or an error condition. It must be a signed type.
 We will pick a type
such that sizeof(SSize_t) == sizeof(Size_t).

st_ino_sign

From st_ino_def.U:

This variable contains the signedness of struct stat's st_ino.
 1 for unsigned, -1 for signed.

st_ino_size

From st_ino_def.U:

This variable contains the size of struct stat's st_ino in bytes.

startperl

From startperl.U:

This variable contains the string to put on the front of a perl
 script to make sure (hopefully) that
it runs with perl and not some
 shell. Of course, that leading line must be followed by the
classical
 perl idiom:
 eval 'exec perl -S $0 ${1+$@}'
 if $running_under_some_shell;
 to
guarantee perl startup should the shell execute the script. Note
 that this magic incantation is
not understood by csh.

Perl version 5.16.1 documentation - Config

Page 100http://perldoc.perl.org

startsh

From startsh.U:

This variable contains the string to put on the front of a shell
 script to make sure (hopefully)
that it runs with sh and not some
 other shell.

static_ext

From Extensions.U:

This variable holds a list of XS extension files we want to
 link statically into the package. It is
used by Makefile.

stdchar

From stdchar.U:

This variable conditionally defines STDCHAR to be the type of char
 used in stdio.h. It has the
values "unsigned char" or char.

stdio_base

From d_stdstdio.U:

This variable defines how, given a FILE pointer, fp, to access the
 _base field (or equivalent)
of stdio.h's FILE structure. This will
 be used to define the macro FILE_base(fp).

stdio_bufsiz

From d_stdstdio.U:

This variable defines how, given a FILE pointer, fp, to determine
 the number of bytes store in
the I/O buffer pointer to by the
 _base field (or equivalent) of stdio.h's FILE structure. This will

be used to define the macro FILE_bufsiz(fp).

stdio_cnt

From d_stdstdio.U:

This variable defines how, given a FILE pointer, fp, to access the
 _cnt field (or equivalent) of
stdio.h's FILE structure. This will
 be used to define the macro FILE_cnt(fp).

stdio_filbuf

From d_stdstdio.U:

This variable defines how, given a FILE pointer, fp, to tell
 stdio to refill its internal buffers (?).
This will
 be used to define the macro FILE_filbuf(fp).

stdio_ptr

From d_stdstdio.U:

This variable defines how, given a FILE pointer, fp, to access the
 _ptr field (or equivalent) of
stdio.h's FILE structure. This will
 be used to define the macro FILE_ptr(fp).

stdio_stream_array

From stdio_streams.U:

This variable tells the name of the array holding the stdio streams.
 Usual values include _iob,
__iob, and __sF.

strerror_r_proto

From d_strerror_r.U:

This variable encodes the prototype of strerror_r.
 It is zero if d_strerror_r is undef, and one of
the REENTRANT_PROTO_T_ABC macros of reentr.h if d_strerror_r
 is defined.

strings

Perl version 5.16.1 documentation - Config

Page 101http://perldoc.perl.org

From i_string.U:

This variable holds the full path of the string header that will be
 used. Typically
/usr/include/string.h or /usr/include/strings.h.

submit

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

subversion

From patchlevel.U:

The subversion level of this package.
 The value of subversion comes from the patchlevel.h
file.
 In a version number such as 5.6.1, this is the 1.
 In patchlevel.h, this is referred to as
PERL_SUBVERSION.
 This is unique to perl.

sysman

From sysman.U:

This variable holds the place where the manual is located on this
 system. It is not the place
where the user wants to put his manual
 pages. Rather it is the place where Configure may
look to find manual
 for unix commands (section 1 of the manual usually). See mansrc.

t
tail

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

tar

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

targetarch

From Cross.U:

If cross-compiling, this variable contains the target architecture.
 If not, this will be empty.

tbl

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

tee

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

test

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the test
program. After Configure runs,
 the value is reset to a plain test and is not useful.

timeincl

Perl version 5.16.1 documentation - Config

Page 102http://perldoc.perl.org

From i_time.U:

This variable holds the full path of the included time header(s).

timetype

From d_time.U:

This variable holds the type returned by time(). It can be long,
 or time_t on BSD sites (in which
case <sys/types.h> should be
 included). Anyway, the type Time_t should be used.

tmpnam_r_proto

From d_tmpnam_r.U:

This variable encodes the prototype of tmpnam_r.
 It is zero if d_tmpnam_r is undef, and one
of the REENTRANT_PROTO_T_ABC macros of reentr.h if d_tmpnam_r
 is defined.

to

From Cross.U:

This variable contains the command used by Configure
 to copy to from the target host. Useful
and available
 only during Perl build.
 The string : if not cross-compiling.

touch

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the
touch program. After Configure runs,
 the value is reset to a plain touch and is not useful.

tr

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the tr
program. After Configure runs,
 the value is reset to a plain tr and is not useful.

trnl

From trnl.U:

This variable contains the value to be passed to the tr(1)
 command to transliterate a newline.
Typical values are \012 and \n. This is needed for EBCDIC systems where
 newline is not
necessarily \012.

troff

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

ttyname_r_proto

From d_ttyname_r.U:

This variable encodes the prototype of ttyname_r.
 It is zero if d_ttyname_r is undef, and one of
the REENTRANT_PROTO_T_ABC macros of reentr.h if d_ttyname_r
 is defined.

u
u16size

From perlxv.U:

This variable is the size of an U16 in bytes.

u16type

From perlxv.U:

This variable contains the C type used for Perl's U16.

Perl version 5.16.1 documentation - Config

Page 103http://perldoc.perl.org

u32size

From perlxv.U:

This variable is the size of an U32 in bytes.

u32type

From perlxv.U:

This variable contains the C type used for Perl's U32.

u64size

From perlxv.U:

This variable is the size of an U64 in bytes.

u64type

From perlxv.U:

This variable contains the C type used for Perl's U64.

u8size

From perlxv.U:

This variable is the size of an U8 in bytes.

u8type

From perlxv.U:

This variable contains the C type used for Perl's U8.

uidformat

From uidf.U:

This variable contains the format string used for printing a Uid_t.

uidsign

From uidsign.U:

This variable contains the signedness of a uidtype.
 1 for unsigned, -1 for signed.

uidsize

From uidsize.U:

This variable contains the size of a uidtype in bytes.

uidtype

From uidtype.U:

This variable defines Uid_t to be something like uid_t, int,
 ushort, or whatever type is used to
declare user ids in the kernel.

uname

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the
uname program. After Configure runs,
 the value is reset to a plain uname and is not useful.

uniq

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the uniq
program. After Configure runs,
 the value is reset to a plain uniq and is not useful.

uquadtype

Perl version 5.16.1 documentation - Config

Page 104http://perldoc.perl.org

From quadtype.U:

This variable defines Uquad_t to be something like unsigned long,
 unsigned int, unsigned long
long, uint64_t, or whatever type is
 used for 64-bit integers.

use5005threads

From usethreads.U:

This variable conditionally defines the USE_5005THREADS symbol,
 and indicates that Perl
should be built to use the 5.005-based
 threading implementation. Only valid up to 5.8.x.

use64bitall

From use64bits.U:

This variable conditionally defines the USE_64_BIT_ALL symbol,
 and indicates that 64-bit
integer types should be used
 when available. The maximal possible
 64-bitness is employed:
LP64 or ILP64, meaning that you will
 be able to use more than 2 gigabytes of memory. This
mode is
 even more binary incompatible than USE_64_BIT_INT. You may not
 be able to run
the resulting executable in a 32-bit CPU at all or
 you may need at least to reboot your OS to
64-bit mode.

use64bitint

From use64bits.U:

This variable conditionally defines the USE_64_BIT_INT symbol,
 and indicates that 64-bit
integer types should be used
 when available. The minimal possible 64-bitness
 is employed,
just enough to get 64-bit integers into Perl.
 This may mean using for example "long longs",
while your memory
 may still be limited to 2 gigabytes.

usecrosscompile

From Cross.U:

This variable conditionally defines the USE_CROSS_COMPILE symbol,
 and indicates that Perl
has been cross-compiled.

usedevel

From Devel.U:

This variable indicates that Perl was configured with development
 features enabled. This
should not be done for production builds.

usedl

From dlsrc.U:

This variable indicates if the system supports dynamic
 loading of some sort. See also dlsrc
and dlobj.

usedtrace

From usedtrace.U:

This variable indicates whether we are compiling with dtrace
 support. See also dtrace.

usefaststdio

From usefaststdio.U:

This variable conditionally defines the USE_FAST_STDIO symbol,
 and indicates that Perl
should be built to use fast stdio.
 Defaults to define in Perls 5.8 and earlier, to undef later.

useithreads

From usethreads.U:

This variable conditionally defines the USE_ITHREADS symbol,
 and indicates that Perl should
be built to use the interpreter-based
 threading implementation.

Perl version 5.16.1 documentation - Config

Page 105http://perldoc.perl.org

usekernprocpathname

From usekernprocpathname.U:

This variable, indicates that we can use sysctl with KERN_PROC_PATHNAME to get a full path
for the executable, and hence
 convert $^X to an absolute path.

uselargefiles

From uselfs.U:

This variable conditionally defines the USE_LARGE_FILES symbol,
 and indicates that large
file interfaces should be used when
 available.

uselongdouble

From uselongdbl.U:

This variable conditionally defines the USE_LONG_DOUBLE symbol,
 and indicates that long
doubles should be used when available.

usemallocwrap

From mallocsrc.U:

This variable contains y if we are wrapping malloc to prevent
 integer overflow during size
calculations.

usemorebits

From usemorebits.U:

This variable conditionally defines the USE_MORE_BITS symbol,
 and indicates that explicit
64-bit interfaces and long doubles
 should be used when available.

usemultiplicity

From usemultiplicity.U:

This variable conditionally defines the MULTIPLICITY symbol,
 and indicates that Perl should
be built to use multiplicity.

usemymalloc

From mallocsrc.U:

This variable contains y if the malloc that comes with this package
 is desired over the system's
version of malloc. People often include
 special versions of malloc for efficiency, but such
versions are often
 less portable. See also mallocsrc and mallocobj.
 If this is y, then -lmalloc is
removed from $libs.

usenm

From usenm.U:

This variable contains true or false depending whether the
 nm extraction is wanted or not.

usensgetexecutablepath

From usensgetexecutablepath.U:

This symbol, if defined, indicates that we can use _NSGetExecutablePath
 and realpath to get
a full path for the executable, and hence convert
 $^X to an absolute path.

useopcode

From Extensions.U:

This variable holds either true or false to indicate
 whether the Opcode extension should be
used. The sole
 use for this currently is to allow an easy mechanism
 for users to skip the
Opcode extension from the Configure
 command line.

useperlio

Perl version 5.16.1 documentation - Config

Page 106http://perldoc.perl.org

From useperlio.U:

This variable conditionally defines the USE_PERLIO symbol,
 and indicates that the PerlIO
abstraction should be
 used throughout.

useposix

From Extensions.U:

This variable holds either true or false to indicate
 whether the POSIX extension should be
used. The sole
 use for this currently is to allow an easy mechanism
 for hints files to indicate
that POSIX will not compile
 on a particular system.

usereentrant

From usethreads.U:

This variable conditionally defines the USE_REENTRANT_API symbol,
 which indicates that the
thread code may try to use the various
 _r versions of library functions. This is only potentially

meaningful if usethreads is set and is very experimental, it is
 not even prompted for.

userelocatableinc

From bin.U:

This variable is set to true to indicate that perl should relocate
 @INC entries at runtime based
on the path to the perl binary.
 Any @INC paths starting .../ are relocated relative to the
directory
 containing the perl binary, and a logical cleanup of the path is then
 made around the
join point (removing dir/../ pairs)

usesfio

From d_sfio.U:

This variable is set to true when the user agrees to use sfio.
 It is set to false when sfio is not
available or when the user
 explicitly requests not to use sfio. It is here primarily so
 that
command-line settings can override the auto-detection of
 d_sfio without running into a "WHOA
THERE".

useshrplib

From libperl.U:

This variable is set to true if the user wishes
 to build a shared libperl, and false otherwise.

usesitecustomize

From d_sitecustomize.U:

This variable is set to true when the user requires a mechanism that
 allows the sysadmin to
add entries to @INC at runtime. This variable
 being set, makes perl run $
sitelib/sitecustomize.pl at startup.

usesocks

From usesocks.U:

This variable conditionally defines the USE_SOCKS symbol,
 and indicates that Perl should be
built to use SOCKS.

usethreads

From usethreads.U:

This variable conditionally defines the USE_THREADS symbol,
 and indicates that Perl should
be built to use threads.

usevendorprefix

From vendorprefix.U:

This variable tells whether the vendorprefix
 and consequently other vendor* paths are in use.

Perl version 5.16.1 documentation - Config

Page 107http://perldoc.perl.org

usevfork

From d_vfork.U:

This variable is set to true when the user accepts to use vfork.
 It is set to false when no vfork
is available or when the user
 explicitly requests not to use vfork.

usrinc

From usrinc.U:

This variable holds the path of the include files, which is
 usually /usr/include. It is mainly used
by other Configure units.

uuname

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

uvoformat

From perlxvf.U:

This variable contains the format string used for printing
 a Perl UV as an unsigned octal
integer.

uvsize

From perlxv.U:

This variable is the size of a UV in bytes.

uvtype

From perlxv.U:

This variable contains the C type used for Perl's UV.

uvuformat

From perlxvf.U:

This variable contains the format string used for printing
 a Perl UV as an unsigned decimal
integer.

uvxformat

From perlxvf.U:

This variable contains the format string used for printing
 a Perl UV as an unsigned
hexadecimal integer in lowercase abcdef.

uvXUformat

From perlxvf.U:

This variable contains the format string used for printing
 a Perl UV as an unsigned
hexadecimal integer in uppercase ABCDEF.

v
vaproto

From vaproto.U:

This variable conditionally defines CAN_VAPROTO on systems supporting
 prototype declaration
of functions with a variable number of
 arguments. See also prototype.

vendorarch

From vendorarch.U:

This variable contains the value of the PERL_VENDORARCH symbol.
 It may have a ~ on the

Perl version 5.16.1 documentation - Config

Page 108http://perldoc.perl.org

front.
 The standard distribution will put nothing in this directory.
 Vendors who distribute perl
may wish to place their own
 architecture-dependent modules and extensions in this directory
with
 MakeMaker Makefile.PL INSTALLDIRS=vendor
 or equivalent. See INSTALL for details.

vendorarchexp

From vendorarch.U:

This variable is the ~name expanded version of vendorarch, so that you
 may use it directly in
Makefiles or shell scripts.

vendorbin

From vendorbin.U:

This variable contains the eventual value of the VENDORBIN symbol.
 It may have a ~ on the
front.
 The standard distribution will put nothing in this directory.
 Vendors who distribute perl
may wish to place additional
 binaries in this directory with
 MakeMaker Makefile.PL
INSTALLDIRS=vendor
 or equivalent. See INSTALL for details.

vendorbinexp

From vendorbin.U:

This variable is the ~name expanded version of vendorbin, so that you
 may use it directly in
Makefiles or shell scripts.

vendorhtml1dir

From vendorhtml1dir.U:

This variable contains the name of the directory for html
 pages. It may have a ~ on the front.

The standard distribution will put nothing in this directory.
 Vendors who distribute perl may
wish to place their own
 html pages in this directory with
 MakeMaker Makefile.PL
INSTALLDIRS=vendor
 or equivalent. See INSTALL for details.

vendorhtml1direxp

From vendorhtml1dir.U:

This variable is the ~name expanded version of vendorhtml1dir, so that you
 may use it directly
in Makefiles or shell scripts.

vendorhtml3dir

From vendorhtml3dir.U:

This variable contains the name of the directory for html
 library pages. It may have a ~ on the
front.
 The standard distribution will put nothing in this directory.
 Vendors who distribute perl
may wish to place their own
 html pages for modules and extensions in this directory with

MakeMaker Makefile.PL INSTALLDIRS=vendor
 or equivalent. See INSTALL for details.

vendorhtml3direxp

From vendorhtml3dir.U:

This variable is the ~name expanded version of vendorhtml3dir, so that you
 may use it directly
in Makefiles or shell scripts.

vendorlib

From vendorlib.U:

This variable contains the eventual value of the VENDORLIB symbol,
 which is the name of the
private library for this package.
 The standard distribution will put nothing in this directory.

Vendors who distribute perl may wish to place their own
 modules in this directory with

MakeMaker Makefile.PL INSTALLDIRS=vendor
 or equivalent. See INSTALL for details.

vendorlib_stem

Perl version 5.16.1 documentation - Config

Page 109http://perldoc.perl.org

From vendorlib.U:

This variable is $vendorlibexp with any trailing version-specific component
 removed. The
elements in inc_version_list (inc_version_list.U) can
 be tacked onto this variable to generate a
list of directories to search.

vendorlibexp

From vendorlib.U:

This variable is the ~name expanded version of vendorlib, so that you
 may use it directly in
Makefiles or shell scripts.

vendorman1dir

From vendorman1dir.U:

This variable contains the name of the directory for man1
 pages. It may have a ~ on the front.

The standard distribution will put nothing in this directory.
 Vendors who distribute perl may
wish to place their own
 man1 pages in this directory with
 MakeMaker Makefile.PL
INSTALLDIRS=vendor
 or equivalent. See INSTALL for details.

vendorman1direxp

From vendorman1dir.U:

This variable is the ~name expanded version of vendorman1dir, so that you
 may use it directly
in Makefiles or shell scripts.

vendorman3dir

From vendorman3dir.U:

This variable contains the name of the directory for man3
 pages. It may have a ~ on the front.

The standard distribution will put nothing in this directory.
 Vendors who distribute perl may
wish to place their own
 man3 pages in this directory with
 MakeMaker Makefile.PL
INSTALLDIRS=vendor
 or equivalent. See INSTALL for details.

vendorman3direxp

From vendorman3dir.U:

This variable is the ~name expanded version of vendorman3dir, so that you
 may use it directly
in Makefiles or shell scripts.

vendorprefix

From vendorprefix.U:

This variable holds the full absolute path of the directory below
 which the vendor will install
add-on packages.
 See INSTALL for usage and examples.

vendorprefixexp

From vendorprefix.U:

This variable holds the full absolute path of the directory below
 which the vendor will install
add-on packages. Derived from vendorprefix.

vendorscript

From vendorscript.U:

This variable contains the eventual value of the VENDORSCRIPT symbol.
 It may have a ~ on
the front.
 The standard distribution will put nothing in this directory.
 Vendors who distribute
perl may wish to place additional
 executable scripts in this directory with
 MakeMaker
Makefile.PL INSTALLDIRS=vendor
 or equivalent. See INSTALL for details.

vendorscriptexp

From vendorscript.U:

Perl version 5.16.1 documentation - Config

Page 110http://perldoc.perl.org

This variable is the ~name expanded version of vendorscript, so that you
 may use it directly in
Makefiles or shell scripts.

version

From patchlevel.U:

The full version number of this package, such as 5.6.1 (or 5_6_1).
 This combines revision,
patchlevel, and subversion to get the
 full version number, including any possible subversions.

This is suitable for use as a directory name, and hence is
 filesystem dependent.

version_patchlevel_string

From patchlevel.U:

This is a string combining version, subversion and
 perl_patchlevel (if perl_patchlevel is
non-zero).
 It is typically something like
 'version 7 subversion 1' or
 'version 7 subversion 1
patchlevel 11224'
 It is computed here to avoid duplication of code in myconfig.SH
 and
lib/Config.pm.

versiononly

From versiononly.U:

If set, this symbol indicates that only the version-specific
 components of a perl installation
should be installed.
 This may be useful for making a test installation of a new
 version without
disturbing the existing installation.
 Setting versiononly is equivalent to setting installperl's -v
option.
 In particular, the non-versioned scripts and programs such as
 a2p, c2ph, h2xs, pod2*,
and perldoc are not installed
 (see INSTALL for a more complete list). Nor are the man
 pages
installed.
 Usually, this is undef.

vi

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

voidflags

From voidflags.U:

This variable contains the eventual value of the VOIDFLAGS symbol,
 which indicates how
much support of the void type is given by this
 compiler. See VOIDFLAGS for more info.

x
xlibpth

From libpth.U:

This variable holds extra path (space-separated) used to find
 libraries on this platform, for
example CPU-specific libraries
 (on multi-CPU platforms) may be listed here.

y
yacc

From yacc.U:

This variable holds the name of the compiler compiler we
 want to use in the Makefile. It can be
yacc, byacc, or bison -y.

yaccflags

From yacc.U:

This variable contains any additional yacc flags desired by the
 user. It is up to the Makefile to
use this.

Perl version 5.16.1 documentation - Config

Page 111http://perldoc.perl.org

z
zcat

From Loc.U:

This variable is defined but not used by Configure.
 The value is the empty string and is not
useful.

zip

From Loc.U:

This variable is used internally by Configure to determine the
 full pathname (if any) of the zip
program. After Configure runs,
 the value is reset to a plain zip and is not useful.

GIT DATA
Information on the git commit from which the current perl binary was compiled
 can be found in the
variable $Config::Git_Data. The variable is a
 structured string that looks something like this:

 git_commit_id='ea0c2dbd5f5ac6845ecc7ec6696415bf8e27bd52'
 git_describe='GitLive-blead-1076-gea0c2db'
 git_branch='smartmatch'
 git_uncommitted_changes=''
 git_commit_id_title='Commit id:'
 git_commit_date='2009-05-09 17:47:31 +0200'

Its format is not guaranteed not to change over time.

NOTE
This module contains a good example of how to use tie to implement a
 cache and an example of how
to make a tied variable readonly to those
 outside of it.

