
Perl version 5.16.1 documentation - Devel::Peek

Page 1http://perldoc.perl.org

NAME
Devel::Peek - A data debugging tool for the XS programmer

SYNOPSIS
 use Devel::Peek;
 Dump($a);
 Dump($a, 5);
 DumpArray(5, $a, $b, ...);
	 mstat "Point 5";

 use Devel::Peek ':opd=st';

DESCRIPTION
Devel::Peek contains functions which allows raw Perl datatypes to be
 manipulated from a Perl script.
This is used by those who do XS programming
 to check that the data they are sending from C to Perl
looks as they think
 it should look. The trick, then, is to know what the raw datatype is
 supposed to
look like when it gets to Perl. This document offers some tips
 and hints to describe good and bad raw
data.

It is very possible that this document will fall far short of being useful
 to the casual reader. The reader
is expected to understand the material in
 the first few sections of perlguts.

Devel::Peek supplies a Dump() function which can dump a raw Perl
 datatype, and
mstat("marker") function to report on memory usage
 (if perl is compiled with corresponding
option). The function
 DeadCode() provides statistics on the data "frozen" into inactive CV. Devel::Peek
also supplies SvREFCNT(), SvREFCNT_inc(), and SvREFCNT_dec() which can query, increment,
and decrement reference
 counts on SVs. This document will take a passive, and safe, approach
 to
data debugging and for that it will describe only the Dump()
 function.

Function DumpArray() allows dumping of multiple values (useful when you
 need to analyze returns
of functions).

The global variable $Devel::Peek::pv_limit can be set to limit the
 number of character printed in
various string values. Setting it to 0
 means no limit.

If use Devel::Peek directive has a :opd=FLAGS argument,
 this switches on debugging of opcode
dispatch. FLAGS should be a
 combination of s, t, and P (see -D flags in perlrun). :opd is a shortcut
for :opd=st.

Runtime debugging
CvGV($cv) return one of the globs associated to a subroutine reference $cv.

debug_flags() returns a string representation of $^D (similar to
 what is allowed for -D flag). When
called with a numeric argument,
 sets $^D to the corresponding value. When called with an argument
of
 the form "flags-flags", set on/off bits of $^D corresponding to
 letters before/after -. (The
returned value is for $^D before
 the modification.)

runops_debug() returns true if the current opcode dispatcher is the
 debugging one. When called with
an argument, switches to debugging or
 non-debugging dispatcher depending on the argument (active
for
 newly-entered subs/etc only). (The returned value is for the dispatcher before the modification.)

Memory footprint debugging
When perl is compiled with support for memory footprint debugging
 (default with Perl's malloc()),
Devel::Peek provides an access to this API.

Use mstat() function to emit a memory state statistic to the terminal.
 For more information on the
format of output of mstat() see "Using $ENV{PERL_DEBUG_MSTATS}" in perldebguts.

Perl version 5.16.1 documentation - Devel::Peek

Page 2http://perldoc.perl.org

Three additional functions allow access to this statistic from Perl.
 First, use
mstats_fillhash(%hash) to get the information contained
 in the output of mstat() into %hash.
The field of this hash are

 minbucket nbuckets sbrk_good sbrk_slack sbrked_remains sbrks start_slack
 topbucket topbucket_ev topbucket_odd total total_chain total_sbrk totfree

Two additional fields free, used contain array references which
 provide per-bucket count of free and
used chunks. Two other fields mem_size, available_size contain array references which provide

the information about the allocated size and usable size of chunks in
 each bucket. Again, see "Using
$ENV{PERL_DEBUG_MSTATS}" in perldebguts
 for details.

Keep in mind that only the first several "odd-numbered" buckets are
 used, so the information on size
of the "odd-numbered" buckets which are
 not used is probably meaningless.

The information in

 mem_size available_size minbucket nbuckets

is the property of a particular build of perl, and does not depend on
 the current process. If you do not
provide the optional argument to
 the functions mstats_fillhash(), fill_mstats(), mstats2hash(), then
 the
information in fields mem_size, available_size is not
 updated.

fill_mstats($buf) is a much cheaper call (both speedwise and
 memory-wise) which collects the
statistic into $buf in
 machine-readable form. At a later moment you may need to call
mstats2hash($buf, %hash) to use this information to fill %hash.

All three APIs fill_mstats($buf), mstats_fillhash(%hash), and mstats2hash($buf,
%hash) are designed to allocate no memory if used the second time on the same $buf and/or %hash.

So, if you want to collect memory info in a cycle, you may call

 $#buf = 999;
 fill_mstats($_) for @buf;
 mstats_fillhash(%report, 1);		 # Static info too

 foreach (@buf) {
 # Do something...
 fill_mstats $_;			 # Collect statistic
 }
 foreach (@buf) {
 mstats2hash($_, %report);		 # Preserve static info
 # Do something with %report
 }

EXAMPLES
The following examples don't attempt to show everything as that would be a
 monumental task, and,
frankly, we don't want this manpage to be an internals
 document for Perl. The examples do
demonstrate some basics of the raw Perl
 datatypes, and should suffice to get most determined
people on their way.
 There are no guidewires or safety nets, nor blazed trails, so be prepared to
 travel
alone from this point and on and, if at all possible, don't fall into
 the quicksand (it's bad for business).

Oh, one final bit of advice: take perlguts with you. When you return we
 expect to see it well-thumbed.

A simple scalar string
Let's begin by looking a simple scalar which is holding a string.

 use Devel::Peek;

Perl version 5.16.1 documentation - Devel::Peek

Page 3http://perldoc.perl.org

 $a = 42; $a = "hello";
 Dump $a;

The output:

 SV = PVIV(0xbc288) at 0xbe9a8
 REFCNT = 1
 FLAGS = (POK,pPOK)
 IV = 42
 PV = 0xb2048 "hello"\0
 CUR = 5
 LEN = 8

This says $a is an SV, a scalar. The scalar type is a PVIV, which is
 capable of holding an integer (IV)
and/or a string (PV) value. The scalar's
 head is allocated at address 0xbe9a8, while the body is at
0xbc288.
 Its reference count is 1. It has the POK flag set, meaning its
 current PV field is valid.
Because POK is set we look at the PV item
 to see what is in the scalar. The \0 at the end indicate that
this
 PV is properly NUL-terminated.
 Note that the IV field still contains its old numeric value, but
because
 FLAGS doesn't have IOK set, we must ignore the IV item.
 CUR indicates the number of
characters in the PV. LEN indicates the
 number of bytes allocated for the PV (at least one more than
CUR, because
 LEN includes an extra byte for the end-of-string marker, then usually
 rounded up to
some efficient allocation unit).

A simple scalar number
If the scalar contains a number the raw SV will be leaner.

 use Devel::Peek;
 $a = 42;
 Dump $a;

The output:

 SV = IV(0xbc818) at 0xbe9a8
 REFCNT = 1
 FLAGS = (IOK,pIOK)
 IV = 42

This says $a is an SV, a scalar. The scalar is an IV, a number. Its
 reference count is 1. It has the IOK
flag set, meaning it is currently
 being evaluated as a number. Because IOK is set we look at the IV
item to
 see what is in the scalar.

A simple scalar with an extra reference
If the scalar from the previous example had an extra reference:

 use Devel::Peek;
 $a = 42;
 $b = \$a;
 Dump $a;

The output:

 SV = IV(0xbe860) at 0xbe9a8
 REFCNT = 2
 FLAGS = (IOK,pIOK)
 IV = 42

Perl version 5.16.1 documentation - Devel::Peek

Page 4http://perldoc.perl.org

Notice that this example differs from the previous example only in its
 reference count. Compare this to
the next example, where we dump $b
 instead of $a.

A reference to a simple scalar
This shows what a reference looks like when it references a simple scalar.

 use Devel::Peek;
 $a = 42;
 $b = \$a;
 Dump $b;

The output:

 SV = IV(0xf041c) at 0xbe9a0
 REFCNT = 1
 FLAGS = (ROK)
 RV = 0xbab08
 SV = IV(0xbe860) at 0xbe9a8
 REFCNT = 2
 FLAGS = (IOK,pIOK)
 IV = 42

Starting from the top, this says $b is an SV. The scalar is an IV,
 which is capable of holding an integer
or reference value.
 It has the ROK flag set, meaning it is a reference (rather than an
 integer or string).
Notice that Dump
 follows the reference and shows us what $b was referencing. We see the
 same $a
that we found in the previous example.

Note that the value of RV coincides with the numbers we see when we
 stringify $b. The addresses
inside IV() are addresses of X*** structures which hold the current state of an SV. This
 address may
change during lifetime of an SV.

A reference to an array
This shows what a reference to an array looks like.

 use Devel::Peek;
 $a = [42];
 Dump $a;

The output:

 SV = IV(0xc85998) at 0xc859a8
 REFCNT = 1
 FLAGS = (ROK)
 RV = 0xc70de8
 SV = PVAV(0xc71e10) at 0xc70de8
 REFCNT = 1
 FLAGS = ()
 ARRAY = 0xc7e820
 FILL = 0
 MAX = 0
 ARYLEN = 0x0
 FLAGS = (REAL)
 Elt No. 0
 SV = IV(0xc70f88) at 0xc70f98
 REFCNT = 1
 FLAGS = (IOK,pIOK)
 IV = 42

Perl version 5.16.1 documentation - Devel::Peek

Page 5http://perldoc.perl.org

This says $a is a reference (ROK), which points to
 another SV which is a PVAV, an array. The array
has one element,
 element zero, which is another SV. The field FILL above indicates
 the last element
in the array, similar to $#$a.

If $a pointed to an array of two elements then we would see the
 following.

 use Devel::Peek 'Dump';
 $a = [42,24];
 Dump $a;

The output:

 SV = IV(0x158c998) at 0x158c9a8
 REFCNT = 1
 FLAGS = (ROK)
 RV = 0x1577de8
 SV = PVAV(0x1578e10) at 0x1577de8
 REFCNT = 1
 FLAGS = ()
 ARRAY = 0x1585820
 FILL = 1
 MAX = 1
 ARYLEN = 0x0
 FLAGS = (REAL)
 Elt No. 0
 SV = IV(0x1577f88) at 0x1577f98
 REFCNT = 1
 FLAGS = (IOK,pIOK)
 IV = 42
 Elt No. 1
 SV = IV(0x158be88) at 0x158be98
 REFCNT = 1
 FLAGS = (IOK,pIOK)
 IV = 24

Note that Dump will not report all the elements in the array,
 only several first (depending on how deep
it already went into the
 report tree).

A reference to a hash
The following shows the raw form of a reference to a hash.

 use Devel::Peek;
 $a = {hello=>42};
 Dump $a;

The output:

	 SV = IV(0x8177858) at 0x816a618
	 REFCNT = 1
	 FLAGS = (ROK)
	 RV = 0x814fc10
	 SV = PVHV(0x8167768) at 0x814fc10
	 REFCNT = 1
	 FLAGS = (SHAREKEYS)
	 ARRAY = 0x816c5b8 (0:7, 1:1)
	 hash quality = 100.0%
	 KEYS = 1

Perl version 5.16.1 documentation - Devel::Peek

Page 6http://perldoc.perl.org

	 FILL = 1
	 MAX = 7
	 RITER = -1
	 EITER = 0x0
	 Elt "hello" HASH = 0xc8fd181b
	 SV = IV(0x816c030) at 0x814fcf4
	 REFCNT = 1
	 FLAGS = (IOK,pIOK)
	 IV = 42

This shows $a is a reference pointing to an SV. That SV is a PVHV, a
 hash. Fields RITER and EITER
are used by "each" in perlfunc.

The "quality" of a hash is defined as the total number of comparisons needed
 to access every
element once, relative to the expected number needed for a
 random hash. The value can go over
100%.

The total number of comparisons is equal to the sum of the squares of the
 number of entries in each
bucket. For a random hash of <n> keys into <k> buckets, the expected value is:

		 n + n(n-1)/2k

Dumping a large array or hash
The Dump() function, by default, dumps up to 4 elements from a
 toplevel array or hash. This number
can be increased by supplying a
 second argument to the function.

 use Devel::Peek;
 $a = [10,11,12,13,14];
 Dump $a;

Notice that Dump() prints only elements 10 through 13 in the above code.
 The following code will
print all of the elements.

 use Devel::Peek 'Dump';
 $a = [10,11,12,13,14];
 Dump $a, 5;

A reference to an SV which holds a C pointer
This is what you really need to know as an XS programmer, of course. When
 an XSUB returns a
pointer to a C structure that pointer is stored in an SV
 and a reference to that SV is placed on the
XSUB stack. So the output from
 an XSUB which uses something like the T_PTROBJ map might look
something like
 this:

 SV = IV(0xf381c) at 0xc859a8
 REFCNT = 1
 FLAGS = (ROK)
 RV = 0xb8ad8
 SV = PVMG(0xbb3c8) at 0xc859a0
 REFCNT = 1
 FLAGS = (OBJECT,IOK,pIOK)
 IV = 729160
 NV = 0
 PV = 0
 STASH = 0xc1d10 "CookBookB::Opaque"

This shows that we have an SV which is a reference, which points at another
 SV. In this case that

Perl version 5.16.1 documentation - Devel::Peek

Page 7http://perldoc.perl.org

second SV is a PVMG, a blessed scalar. Because it is
 blessed it has the OBJECT flag set. Note that
an SV which holds a C
 pointer also has the IOK flag set. The STASH is set to the package
 name
which this SV was blessed into.

The output from an XSUB which uses something like the T_PTRREF map, which
 doesn't bless the
object, might look something like this:

 SV = IV(0xf381c) at 0xc859a8
 REFCNT = 1
 FLAGS = (ROK)
 RV = 0xb8ad8
 SV = PVMG(0xbb3c8) at 0xc859a0
 REFCNT = 1
 FLAGS = (IOK,pIOK)
 IV = 729160
 NV = 0
 PV = 0

A reference to a subroutine
Looks like this:

	 SV = IV(0x24d2dd8) at 0x24d2de8
	 REFCNT = 1
	 FLAGS = (TEMP,ROK)
	 RV = 0x24e79d8
	 SV = PVCV(0x24e5798) at 0x24e79d8
	 REFCNT = 2
	 FLAGS = ()
	 COMP_STASH = 0x22c9c50	 "main"
	 START = 0x22eed60 ===> 0
	 ROOT = 0x22ee490
	 GVGV::GV = 0x22de9d8	 "MY" :: "top_targets"
	 FILE = "(eval 5)"
	 DEPTH = 0
	 FLAGS = 0x0
	 OUTSIDE_SEQ = 93
	 PADLIST = 0x22e9ed8
	 PADNAME = 0x22e9ec0(0x22eed00) PAD = 0x22e9ea8(0x22eecd0)
	 OUTSIDE = 0x22c9fb0 (MAIN)

This shows that

the subroutine is not an XSUB (since START and ROOT are
 non-zero, and XSUB is not listed,
and is thus null);

that it was compiled in the package main;

under the name MY::top_targets;

inside a 5th eval in the program;

it is not currently executed (see DEPTH);

it has no prototype (PROTOTYPE field is missing).

EXPORTS
Dump, mstat, DeadCode, DumpArray, DumpWithOP and DumpProg, fill_mstats,
mstats_fillhash, mstats2hash by
 default. Additionally available SvREFCNT, SvREFCNT_inc

Perl version 5.16.1 documentation - Devel::Peek

Page 8http://perldoc.perl.org

and SvREFCNT_dec.

BUGS
Readers have been known to skip important parts of perlguts, causing much
 frustration for all.

AUTHOR
Ilya Zakharevich	 ilya@math.ohio-state.edu

Copyright (c) 1995-98 Ilya Zakharevich. All rights reserved.
 This program is free software; you can
redistribute it and/or
 modify it under the same terms as Perl itself.

Author of this software makes no claim whatsoever about suitability,
 reliability, edability, editability or
usability of this product, and
 should not be kept liable for any damage resulting from the use of
 it. If
you can use it, you are in luck, if not, I should not be kept
 responsible. Keep a handy copy of your
backup tape at hand.

SEE ALSO
perlguts, and perlguts, again.

