
Perl version 5.16.1 documentation - DB

Page 1http://perldoc.perl.org

NAME
DB - programmatic interface to the Perl debugging API

SYNOPSIS
 package CLIENT;
 use DB;
 @ISA = qw(DB);

 # these (inherited) methods can be called by the client

 CLIENT->register() # register a client package name
 CLIENT->done() # de-register from the debugging API
 CLIENT->skippkg('hide::hide') # ask DB not to stop in this package
 CLIENT->cont([WHERE]) # run some more (until BREAK or another
breakpt)
 CLIENT->step() # single step
 CLIENT->next() # step over
 CLIENT->ret() # return from current subroutine
 CLIENT->backtrace() # return the call stack description
 CLIENT->ready() # call when client setup is done
 CLIENT->trace_toggle() # toggle subroutine call trace mode
 CLIENT->subs([SUBS]) # return subroutine information
 CLIENT->files() # return list of all files known to DB
 CLIENT->lines() # return lines in currently loaded file
 CLIENT->loadfile(FILE,LINE) # load a file and let other clients know
 CLIENT->lineevents() # return info on lines with actions
 CLIENT->set_break([WHERE],[COND])
 CLIENT->set_tbreak([WHERE])
 CLIENT->clr_breaks([LIST])
 CLIENT->set_action(WHERE,ACTION)
 CLIENT->clr_actions([LIST])
 CLIENT->evalcode(STRING) # eval STRING in executing code's context
 CLIENT->prestop([STRING]) # execute in code context before stopping
 CLIENT->poststop([STRING])# execute in code context before resuming

 # These methods will be called at the appropriate times.
 # Stub versions provided do nothing.
 # None of these can block.

 CLIENT->init() # called when debug API inits itself
 CLIENT->stop(FILE,LINE) # when execution stops
 CLIENT->idle() # while stopped (can be a client event loop)
 CLIENT->cleanup() # just before exit
 CLIENT->output(LIST) # called to print any output that API must show

DESCRIPTION
Perl debug information is frequently required not just by debuggers,
 but also by modules that need
some "special" information to do their
 job properly, like profilers.

This module abstracts and provides all of the hooks into Perl internal
 debugging functionality, so that
various implementations of Perl debuggers
 (or packages that want to simply get at the "privileged"
debugging data)
 can all benefit from the development of this common code. Currently used
 by Swat,
the perl/Tk GUI debugger.

Perl version 5.16.1 documentation - DB

Page 2http://perldoc.perl.org

Note that multiple "front-ends" can latch into this debugging API
 simultaneously. This is intended to
facilitate things like
 debugging with a command line and GUI at the same time, debugging debuggers
etc. [Sounds nice, but this needs some serious support -- GSAR]

In particular, this API does not provide the following functions:

data display

command processing

command alias management

user interface (tty or graphical)

These are intended to be services performed by the clients of this API.

This module attempts to be squeaky clean w.r.t use strict; and when
 warnings are enabled.

Global Variables
The following "public" global names can be read by clients of this API.
 Beware that these should be
considered "readonly".

$DB::sub

Name of current executing subroutine.

%DB::sub

The keys of this hash are the names of all the known subroutines. Each value
 is an
encoded string that has the sprintf(3) format ("%s:%d-%d", filename,
fromline, toline).

$DB::single

Single-step flag. Will be true if the API will stop at the next statement.

$DB::signal

Signal flag. Will be set to a true value if a signal was caught. Clients may
 check for this
flag to abort time-consuming operations.

$DB::trace

This flag is set to true if the API is tracing through subroutine calls.

@DB::args

Contains the arguments of current subroutine, or the @ARGV array if in the toplevel
context.

@DB::dbline

List of lines in currently loaded file.

%DB::dbline

Actions in current file (keys are line numbers). The values are strings that
 have the
sprintf(3) format ("%s\000%s", breakcondition, actioncode).

$DB::package

Package namespace of currently executing code.

$DB::filename

Currently loaded filename.

$DB::subname

Perl version 5.16.1 documentation - DB

Page 3http://perldoc.perl.org

Fully qualified name of currently executing subroutine.

$DB::lineno

Line number that will be executed next.

API Methods
The following are methods in the DB base class. A client must
 access these methods by inheritance
(*not* by calling them directly),
 since the API keeps track of clients through the inheritance

mechanism.

CLIENT->register()

register a client object/package

CLIENT->evalcode(STRING)

eval STRING in executing code context

CLIENT->skippkg('D::hide')

ask DB not to stop in these packages

CLIENT->run()

run some more (until a breakpt is reached)

CLIENT->step()

single step

CLIENT->next()

step over

CLIENT->done()

de-register from the debugging API

Client Callback Methods
The following "virtual" methods can be defined by the client. They will
 be called by the API at
appropriate points. Note that unless specified
 otherwise, the debug API only defines empty,
non-functional default versions
 of these methods.

CLIENT->init()

Called after debug API inits itself.

CLIENT->prestop([STRING])

Usually inherited from DB package. If no arguments are passed,
 returns the prestop
action string.

CLIENT->stop()

Called when execution stops (w/ args file, line).

CLIENT->idle()

Called while stopped (can be a client event loop).

CLIENT->poststop([STRING])

Usually inherited from DB package. If no arguments are passed,
 returns the poststop
action string.

CLIENT->evalcode(STRING)

Usually inherited from DB package. Ask for a STRING to be eval-ed
 in executing
code context.

Perl version 5.16.1 documentation - DB

Page 4http://perldoc.perl.org

CLIENT->cleanup()

Called just before exit.

CLIENT->output(LIST)

Called when API must show a message (warnings, errors etc.).

BUGS
The interface defined by this module is missing some of the later additions
 to perl's debugging
functionality. As such, this interface should be considered
 highly experimental and subject to change.

AUTHOR
Gurusamy Sarathy	 gsar@activestate.com

This code heavily adapted from an early version of perl5db.pl attributable
 to Larry Wall and the Perl
Porters.

