
Perl version 5.16.1 documentation - Pod::Simple::PullParser

Page 1http://perldoc.perl.org

NAME
Pod::Simple::PullParser -- a pull-parser interface to parsing Pod

SYNOPSIS
 my $parser = SomePodProcessor->new;
 $parser->set_source("whatever.pod");
 $parser->run;

Or:

 my $parser = SomePodProcessor->new;
 $parser->set_source($some_filehandle_object);
 $parser->run;

Or:

 my $parser = SomePodProcessor->new;
 $parser->set_source(\$document_source);
 $parser->run;

Or:

 my $parser = SomePodProcessor->new;
 $parser->set_source(\@document_lines);
 $parser->run;

And elsewhere:

 require 5;
 package SomePodProcessor;
 use strict;
 use base qw(Pod::Simple::PullParser);

 sub run {
 my $self = shift;
 Token:
 while(my $token = $self->get_token) {
 ...process each token...
 }
 }

DESCRIPTION
This class is for using Pod::Simple to build a Pod processor -- but
 one that uses an interface based on
a stream of token objects,
 instead of based on events.

This is a subclass of Pod::Simple and inherits all its methods.

A subclass of Pod::Simple::PullParser should define a run method
 that calls $token =
$parser->get_token to pull tokens.

See the source for Pod::Simple::RTF for an example of a formatter
 that uses Pod::Simple::PullParser.

METHODS
my $token = $parser->get_token

This returns the next token object (which will be of a subclass of

Perl version 5.16.1 documentation - Pod::Simple::PullParser

Page 2http://perldoc.perl.org

Pod::Simple::PullParserToken), or undef if the parser-stream has hit
 the end of the document.

$parser->unget_token($token)

$parser->unget_token($token1, $token2, ...)

This restores the token object(s) to the front of the parser stream.

The source has to be set before you can parse anything. The lowest-level
 way is to call set_source:

$parser->set_source($filename)

$parser->set_source($filehandle_object)

$parser->set_source(\$document_source)

$parser->set_source(\@document_lines)

Or you can call these methods, which Pod::Simple::PullParser has defined
 to work just like
Pod::Simple's same-named methods:

$parser->parse_file(...)

$parser->parse_string_document(...)

$parser->filter(...)

$parser->parse_from_file(...)

For those to work, the Pod-processing subclass of
 Pod::Simple::PullParser has to have defined a
$parser->run method --
 so it is advised that all Pod::Simple::PullParser subclasses do so.
 See the
Synopsis above, or the source for Pod::Simple::RTF.

Authors of formatter subclasses might find these methods useful to
 call on a parser object that you
haven't started pulling tokens
 from yet:

my $title_string = $parser->get_title

This tries to get the title string out of $parser, by getting some tokens,
 and scanning them for
the title, and then ungetting them so that you can
 process the token-stream from the
beginning.

For example, suppose you have a document that starts out:

 =head1 NAME

 Hoo::Boy::Wowza -- Stuff B<wow> yeah!

$parser->get_title on that document will return "Hoo::Boy::Wowza --
 Stuff wow yeah!". If the
document starts with:

 =head1 Name

 Hoo::Boy::W00t -- Stuff B<w00t> yeah!

Then you'll need to pass the nocase option in order to recognize "Name":

 $parser->get_title(nocase => 1);

In cases where get_title can't find the title, it will return empty-string
 ("").

my $title_string = $parser->get_short_title

This is just like get_title, except that it returns just the modulename, if
 the title seems to be of
the form "SomeModuleName -- description".

For example, suppose you have a document that starts out:

 =head1 NAME

Perl version 5.16.1 documentation - Pod::Simple::PullParser

Page 3http://perldoc.perl.org

 Hoo::Boy::Wowza -- Stuff B<wow> yeah!

then $parser->get_short_title on that document will return
 "Hoo::Boy::Wowza".

But if the document starts out:

 =head1 NAME

 Hooboy, stuff B<wow> yeah!

then $parser->get_short_title on that document will return "Hooboy,
 stuff wow yeah!". If the
document starts with:

 =head1 Name

 Hoo::Boy::W00t -- Stuff B<w00t> yeah!

Then you'll need to pass the nocase option in order to recognize "Name":

 $parser->get_short_title(nocase => 1);

If the title can't be found, then get_short_title returns empty-string
 ("").

$author_name = $parser->get_author

This works like get_title except that it returns the contents of the
 "=head1
AUTHOR\n\nParagraph...\n" section, assuming that that section
 isn't terribly long. To
recognize a "=head1 Author\n\nParagraph\n"
 section, pass the nocase otpion:

 $parser->get_author(nocase => 1);

(This method tolerates "AUTHORS" instead of "AUTHOR" too.)

$description_name = $parser->get_description

This works like get_title except that it returns the contents of the
 "=head1
DESCRIPTION\n\nParagraph...\n" section, assuming that that section
 isn't terribly long. To
recognize a "=head1 Description\n\nParagraph\n"
 section, pass the nocase otpion:

 $parser->get_description(nocase => 1);

$version_block = $parser->get_version

This works like get_title except that it returns the contents of
 the "=head1 VERSION\n\n[BIG
BLOCK]\n" block. Note that this does NOT
 return the module's $VERSION!! To recognize a

"=head1 Version\n\n[BIG BLOCK]\n" section, pass the nocase otpion:

 $parser->get_version(nocase => 1);

NOTE
You don't actually have to define a run method. If you're
 writing a Pod-formatter class, you should
define a run just so
 that users can call parse_file etc, but you don't have to.

And if you're not writing a formatter class, but are instead just
 writing a program that does something
simple with a Pod::PullParser
 object (and not an object of a subclass), then there's no reason to

bother subclassing to add a run method.

SEE ALSO
Pod::Simple

Pod::Simple::PullParserToken -- and its subclasses Pod::Simple::PullParserStartToken,
Pod::Simple::PullParserTextToken, and Pod::Simple::PullParserEndToken.

Perl version 5.16.1 documentation - Pod::Simple::PullParser

Page 4http://perldoc.perl.org

HTML::TokeParser, which inspired this.

SUPPORT
Questions or discussion about POD and Pod::Simple should be sent to the
 pod-people@perl.org mail
list. Send an empty email to
 pod-people-subscribe@perl.org to subscribe.

This module is managed in an open GitHub repository, http://github.com/theory/pod-simple/. Feel free
to fork and contribute, or
 to clone git://github.com/theory/pod-simple.git and send patches!

Patches against Pod::Simple are welcome. Please send bug reports to

<bug-pod-simple@rt.cpan.org>.

COPYRIGHT AND DISCLAIMERS
Copyright (c) 2002 Sean M. Burke.

This library is free software; you can redistribute it and/or modify it
 under the same terms as Perl
itself.

This program is distributed in the hope that it will be useful, but
 without any warranty; without even the
implied warranty of
 merchantability or fitness for a particular purpose.

AUTHOR
Pod::Simple was created by Sean M. Burke <sburke@cpan.org>.
 But don't bother him, he's retired.

Pod::Simple is maintained by:

* Allison Randal allison@perl.org

* Hans Dieter Pearcey hdp@cpan.org

* David E. Wheeler dwheeler@cpan.org

