
Perl version 5.16.1 documentation - s2p

Page 1http://perldoc.perl.org

NAME
psed - a stream editor

SYNOPSIS
 psed [-an] script [file ...]
 psed [-an] [-e script] [-f script-file] [file ...]

 s2p [-an] [-e script] [-f script-file]

DESCRIPTION
A stream editor reads the input stream consisting of the specified files
 (or standard input, if none are
given), processes is line by line by
 applying a script consisting of edit commands, and writes resulting
lines
 to standard output. The filename '-' may be used to read standard input.

The edit script is composed from arguments of -e options and
 script-files, in the given order. A single
script argument may be specified
 as the first parameter.

If this program is invoked with the name s2p, it will act as a
 sed-to-Perl translator. See SED SCRIPT
TRANSLATION.

sed returns an exit code of 0 on success or >0 if an error occurred.

OPTIONS
-a

A file specified as argument to the w edit command is by default
 opened before input
processing starts. Using -a, opening of such
 files is delayed until the first line is actually written
to the file.

-e script

The editing commands defined by script are appended to the script.
 Multiple commands must
be separated by newlines.

-f script-file

Editing commands from the specified script-file are read and appended
 to the script.

-n

By default, a line is written to standard output after the editing script
 has been applied to it.
The -n option suppresses automatic printing.

COMMANDS
sed command syntax is defined as

 [address[,address]][!]function[argument]

with whitespace being permitted before or after addresses, and between
 the function character and
the argument. The addresses and the
 address inverter (!) are used to restrict the application of a

command to the selected line(s) of input.

Each command must be on a line of its own, except where noted in
 the synopses below.

The edit cycle performed on each input line consist of reading the line
 (without its trailing newline
character) into the pattern space,
 applying the applicable commands of the edit script, writing the final
contents of the pattern space and a newline to the standard output.
 A hold space is provided for
saving the contents of the
 pattern space for later use.

Perl version 5.16.1 documentation - s2p

Page 2http://perldoc.perl.org

Addresses
A sed address is either a line number or a pattern, which may be combined
 arbitrarily to construct
ranges. Lines are numbered across all input files.

Any address may be followed by an exclamation mark ('!'), selecting
 all lines not matching that
address.

number

The line with the given number is selected.

$

A dollar sign ($) is the line number of the last line of the input stream.

/regular expression/

A pattern address is a basic regular expression (see BASIC REGULAR EXPRESSIONS),
between the delimiting character /.
 Any other character except \ or newline may be used to
delimit a
 pattern address when the initial delimiter is prefixed with a
 backslash ('\').

If no address is given, the command selects every line.

If one address is given, it selects the line (or lines) matching the
 address.

Two addresses select a range that begins whenever the first address
 matches, and ends (including
that line) when the second address matches.
 If the first (second) address is a matching pattern, the
second address is not applied to the very same line to determine the end of
 the range. Likewise, if the
second address is a matching pattern, the
 first address is not applied to the very same line to
determine the
 begin of another range. If both addresses are line numbers,
 and the second line
number is less than the first line number, then
 only the first line is selected.

Functions
The maximum permitted number of addresses is indicated with each
 function synopsis below.

The argument text consists of one or more lines following the command.
 Embedded newlines in text
must be preceded with a backslash. Other
 backslashes in text are deleted and the following character
is taken
 literally.

[1addr]a\ text

Write text (which must start on the line following the command)
 to standard output immediately
before reading the next line
 of input, either by executing the N function or by beginning a new
cycle.

[2addr]b [label]

Branch to the : function with the specified label. If no label
 is given, branch to the end of the
script.

[2addr]c\ text

The line, or range of lines, selected by the address is deleted. The text (which must start on
the line following the command)
 is written to standard output. With an address range, this
occurs at
 the end of the range.

[2addr]d

Deletes the pattern space and starts the next cycle.

[2addr]D

Deletes the pattern space through the first embedded newline or to the end.
 If the pattern
space becomes empty, a new cycle is started, otherwise
 execution of the script is restarted.

[2addr]g

Perl version 5.16.1 documentation - s2p

Page 3http://perldoc.perl.org

Replace the contents of the pattern space with the hold space.

[2addr]G

Append a newline and the contents of the hold space to the pattern space.

[2addr]h

Replace the contents of the hold space with the pattern space.

[2addr]H

Append a newline and the contents of the pattern space to the hold space.

[1addr]i\ text

Write the text (which must start on the line following the command)
 to standard output.

[2addr]l

Print the contents of the pattern space: non-printable characters are
 shown in C-style escaped
form; long lines are split and have a trailing
 ^'\' at the point of the split; the true end of a line is
marked with
 a '$'. Escapes are: '\a', '\t', '\n', '\f', '\r', '\e' for
 BEL, HT, LF, FF, CR, ESC,
respectively, and '\' followed by a three-digit
 octal number for all other non-printable
characters.

[2addr]n

If automatic printing is enabled, write the pattern space to the standard
 output. Replace the
pattern space with the next line of input. If
 there is no more input, processing is terminated.

[2addr]N

Append a newline and the next line of input to the pattern space. If
 there is no more input,
processing is terminated.

[2addr]p

Print the pattern space to the standard output. (Use the -n option
 to suppress automatic
printing at the end of a cycle if you want to
 avoid double printing of lines.)

[2addr]P

Prints the pattern space through the first embedded newline or to the end.

[1addr]q

Branch to the end of the script and quit without starting a new cycle.

[1addr]r file

Copy the contents of the file to standard output immediately before
 the next attempt to read a
line of input. Any error encountered while
 reading file is silently ignored.

[2addr]s/regular expression/replacement/flags

Substitute the replacement string for the first substring in
 the pattern space that matches the
regular expression.
 Any character other than backslash or newline can be used instead of a
slash to delimit the regular expression and the replacement.
 To use the delimiter as a literal
character within the regular expression
 and the replacement, precede the character by a
backslash ('\').

Literal newlines may be embedded in the replacement string by
 preceding a newline with a
backslash.

Within the replacement, an ampersand ('&') is replaced by the string
 matching the regular
expression. The strings '\1' through '\9' are
 replaced by the corresponding subpattern (see
BASIC REGULAR EXPRESSIONS).
 To get a literal '&' or '\' in the replacement text, precede
it
 by a backslash.

Perl version 5.16.1 documentation - s2p

Page 4http://perldoc.perl.org

The following flags modify the behaviour of the s command:

g

The replacement is performed for all matching, non-overlapping substrings
 of
the pattern space.

1..9

Replace only the n-th matching substring of the pattern space.

p

If the substitution was made, print the new value of the pattern space.

w file

If the substitution was made, write the new value of the pattern space
 to the
specified file.

[2addr]t [label]

Branch to the : function with the specified label if any s
 substitutions have been made since
the most recent reading of an input line
 or execution of a t function. If no label is given, branch
to the end of
 the script.

[2addr]w file

The contents of the pattern space are written to the file.

[2addr]x

Swap the contents of the pattern space and the hold space.

[2addr]y/string1/string2/

In the pattern space, replace all characters occurring in string1 by the
 character at the
corresponding position in string2. It is possible
 to use any character (other than a backslash or
newline) instead of a
 slash to delimit the strings. Within string1 and string2, a
 backslash
followed by any character other than a newline is that literal
 character, and a backslash
followed by an 'n' is replaced by a newline
 character.

[1addr]=

Prints the current line number on the standard output.

[0addr]: [label]

The command specifies the position of the label. It has no other effect.

[2addr]{ [command]

[0addr]}

These two commands begin and end a command list. The first command may
 be given on the
same line as the opening { command. The commands
 within the list are jointly selected by the
address(es) given on the { command (but may still have individual addresses).

[0addr]# [comment]

The entire line is ignored (treated as a comment). If, however, the first
 two characters in the
script are '#n', automatic printing of output is
 suppressed, as if the -n option were given on the
command line.

BASIC REGULAR EXPRESSIONS
A Basic Regular Expression (BRE), as defined in POSIX 1003.2, consists
 of atoms, for matching
parts of a string, and bounds, specifying
 repetitions of a preceding atom.

Perl version 5.16.1 documentation - s2p

Page 5http://perldoc.perl.org

Atoms
The possible atoms of a BRE are: ., matching any single character; ^ and $, matching the null string
at the beginning or end
 of a string, respectively; a bracket expressions, enclosed
 in [and] (see
below); and any single character with no
 other significance (matching that character). A \ before one

of: ., ^, $, [, *, \, matching the character
 after the backslash. A sequence of atoms enclosed in \(and \)
becomes an atom and establishes the target for a backreference,
 consisting of the substring that
actually matches the enclosed atoms.
 Finally, \ followed by one of the digits 0 through 9 is a

backreference.

A ^ that is not first, or a $ that is not last does not have
 a special significance and need not be
preceded by a backslash to
 become literal. The same is true for a], that does not terminate
 a bracket
expression.

An unescaped backslash cannot be last in a BRE.

Bounds
The BRE bounds are: *, specifying 0 or more matches of the preceding
 atom; \{count\}, specifying
that many repetitions; \{minimum,\}, giving a lower limit; and \{minimum,maximum\} finally defines a
lower and upper
 bound.

A bound appearing as the first item in a BRE is taken literally.

Bracket Expressions
A bracket expression is a list of characters, character ranges
 and character classes enclosed in [and
] and matches any
 single character from the represented set of characters.

A character range is written as two characters separated by - and
 represents all characters (according
to the character collating sequence)
 that are not less than the first and not greater than the second.

(Ranges are very collating-sequence-dependent, and portable programs
 should avoid relying on
them.)

A character class is one of the class names

 alnum digit punct
 alpha graph space
 blank lower upper
 cntrl print xdigit

enclosed in [: and :] and represents the set of characters
 as defined in ctype(3).

If the first character after [is ^, the sense of matching is
 inverted.

To include a literal '^', place it anywhere else but first. To
 include a literal ']' place it first or
immediately after an
 initial ^. To include a literal '-' make it the first (or
 second after ^) or last
character, or the second endpoint of
 a range.

The special bracket expression constructs [[:<:]] and [[:>:]] match the null string at the
beginning and end of a word respectively.
 (Note that neither is identical to Perl's '\b' atom.)

Additional Atoms
Since some sed implementations provide additional regular expression
 atoms (not defined in POSIX
1003.2), psed is capable of translating
 the following backslash escapes:

\< This is the same as [[:>:]].

\> This is the same as [[:<:]].

\w This is an abbreviation for [[:alnum:]_].

\W This is an abbreviation for [^[:alnum:]_].

Perl version 5.16.1 documentation - s2p

Page 6http://perldoc.perl.org

\y Match the empty string at a word boundary.

\B Match the empty string between any two either word or non-word characters.

To enable this feature, the environment variable PSEDEXTBRE must be set
 to a string containing the
requested characters, e.g.: PSEDEXTBRE='<>wW'.

ENVIRONMENT
The environment variable PSEDEXTBRE may be set to extend BREs.
 See Additional Atoms.

DIAGNOSTICS
ambiguous translation for character '%s' in 'y' command

The indicated character appears twice, with different translations.

'[' cannot be last in pattern

A '[' in a BRE indicates the beginning of a bracket expression.

'\' cannot be last in pattern

A '\' in a BRE is used to make the subsequent character literal.

'\' cannot be last in substitution

A '\' in a substitution string is used to make the subsequent character literal.

conflicting flags '%s'

In an s command, either the 'g' flag and an n-th occurrence flag, or
 multiple n-th occurrence
flags are specified. Note that only the digits
 ^'1' through '9' are permitted.

duplicate label %s (first defined at %s)

excess address(es)

The command has more than the permitted number of addresses.

extra characters after command (%s)

illegal option '%s'

improper delimiter in s command

The BRE and substitution may not be delimited with '\' or newline.

invalid address after ','

invalid backreference (%s)

The specified backreference number exceeds the number of backreferences
 in the BRE.

invalid repeat clause '\{%s\}'

The repeat clause does not contain a valid integer value, or pair of
 values.

malformed regex, 1st address

malformed regex, 2nd address

malformed regular expression

malformed substitution expression

malformed 'y' command argument

The first or second string of a y command is syntactically incorrect.

maximum less than minimum in '\{%s\}'

no script command given

There must be at least one -e or one -f option specifying a
 script or script file.

Perl version 5.16.1 documentation - s2p

Page 7http://perldoc.perl.org

'\' not valid as delimiter in 'y' command

option -e requires an argument

option -f requires an argument

's' command requires argument

start of unterminated '{'

string lengths in 'y' command differ

The translation table strings in a y command must have equal lengths.

undefined label '%s'

unexpected '}'

A } command without a preceding { command was encountered.

unexpected end of script

The end of the script was reached although a text line after a a, c or i command indicated
another line.

unknown command '%s'

unterminated '['

A BRE contains an unterminated bracket expression.

unterminated '\('

A BRE contains an unterminated backreference.

'\{' without closing '\}'

A BRE contains an unterminated bounds specification.

'\)' without preceding '\('

'y' command requires argument

EXAMPLE
The basic material for the preceding section was generated by running
 the sed script

 #no autoprint
 s/^.*Warn(*"\([^"]*\)".*$/\1/
 t process
 b
 :process
 s/$!/%s/g
 s/$[_[:alnum:]]\{1,\}/%s/g
 s/\\\\/\\/g
 s/^/=item /
 p

on the program's own text, and piping the output into sort -u.

SED SCRIPT TRANSLATION
If this program is invoked with the name s2p it will act as a
 sed-to-Perl translator. After option
processing (all other
 arguments are ignored), a Perl program is printed on standard
 output, which will
process the input stream (as read from all
 arguments) in the way defined by the sed script and the
option setting
 used for the translation.

Perl version 5.16.1 documentation - s2p

Page 8http://perldoc.perl.org

SEE ALSO
perl(1), re_format(7)

BUGS
The l command will show escape characters (ESC) as '\e', but
 a vertical tab (VT) in octal.

Trailing spaces are truncated from labels in :, t and b commands.

The meaning of an empty regular expression ('//'), as defined by sed,
 is "the last pattern used, at run
time". This deviates from the Perl
 interpretation, which will re-use the "last last successfully executed

regular expression". Since keeping track of pattern usage would create
 terribly cluttered code, and
differences would only appear in obscure
 context (where other sed implementations appear to
deviate, too),
 the Perl semantics was adopted. Note that common usage of this feature,
 such as in
/abc/s//xyz/, will work as expected.

Collating elements (of bracket expressions in BREs) are not implemented.

STANDARDS
This sed implementation conforms to the IEEE Std1003.2-1992 ("POSIX.2")
 definition of sed, and is
compatible with the OpenBSD
 implementation, except where otherwise noted (see BUGS).

AUTHOR
This Perl implementation of sed was written by Wolfgang Laun, Wolfgang.Laun@alcatel.at.

COPYRIGHT and LICENSE
This program is free and open software. You may use, modify,
 distribute, and sell this program (and
any modified variants) in any
 way you wish, provided you do not restrict others from doing the same.

