
Perl version 5.16.1 documentation - Test

Page 1http://perldoc.perl.org

NAME
Test - provides a simple framework for writing test scripts

SYNOPSIS
 use strict;
 use Test;

 # use a BEGIN block so we print our plan before MyModule is loaded
 BEGIN { plan tests => 14, todo => [3,4] }

 # load your module...
 use MyModule;

 # Helpful notes. All note-lines must start with a "#".
 print "# I'm testing MyModule version $MyModule::VERSION\n";

 ok(0); # failure
 ok(1); # success

 ok(0); # ok, expected failure (see todo list, above)
 ok(1); # surprise success!

 ok(0,1); # failure: '0' ne '1'
 ok('broke','fixed'); # failure: 'broke' ne 'fixed'
 ok('fixed','fixed'); # success: 'fixed' eq 'fixed'
 ok('fixed',qr/x/); # success: 'fixed' =~ qr/x/

 ok(sub { 1+1 }, 2); # success: '2' eq '2'
 ok(sub { 1+1 }, 3); # failure: '2' ne '3'

 my @list = (0,0);
 ok @list, 3, "\@list=".join(',',@list); #extra notes
 ok 'segmentation fault', '/(?i)success/'; #regex match

 skip(
 $^O =~ m/MSWin/ ? "Skip if MSWin" : 0, # whether to skip
 $foo, $bar # arguments just like for ok(...)
);
 skip(
 $^O =~ m/MSWin/ ? 0 : "Skip unless MSWin", # whether to skip
 $foo, $bar # arguments just like for ok(...)
);

DESCRIPTION
This module simplifies the task of writing test files for Perl modules,
 such that their output is in the
format that Test::Harness expects to see.

QUICK START GUIDE
To write a test for your new (and probably not even done) module, create
 a new file called t/test.t (in a
new t directory). If you have
 multiple test files, to test the "foo", "bar", and "baz" feature sets,
 then feel
free to call your files t/foo.t, t/bar.t, and t/baz.t

Perl version 5.16.1 documentation - Test

Page 2http://perldoc.perl.org

Functions
This module defines three public functions, plan(...), ok(...),
 and skip(...). By default, all
three are exported by
 the use Test; statement.

plan(...)

 BEGIN { plan %theplan; }

This should be the first thing you call in your test script. It
 declares your testing plan, how
many there will be, if any of them
 should be allowed to fail, and so on.

Typical usage is just:

 use Test;
 BEGIN { plan tests => 23 }

These are the things that you can put in the parameters to plan:

tests => number

The number of tests in your script.
 This means all ok() and skip() calls.

todo => [1,5,14]

A reference to a list of tests which are allowed to fail.
 See TODO TESTS.

onfail => sub { ... }

onfail => \&some_sub

A subroutine reference to be run at the end of the test script, if
 any of the tests fail. See
ONFAIL.

You must call plan(...) once and only once. You should call it
 in a BEGIN {...} block,
like so:

 BEGIN { plan tests => 23 }

_to_value

 my $value = _to_value($input);

Converts an ok parameter to its value. Typically this just means
 running it, if it's a code
reference. You should run all inputted
 values through this.

ok(...)

 ok(1 + 1 == 2);
 ok($have, $expect);
 ok($have, $expect, $diagnostics);

This function is the reason for Test's existence. It's
 the basic function that
 handles printing "
ok" or "not ok", along with the
 current test number. (That's what Test::Harness wants to
see.)

In its most basic usage, ok(...) simply takes a single scalar
 expression. If its value is true,
the test passes; if false,
 the test fails. Examples:

 # Examples of ok(scalar)

 ok(1 + 1 == 2); # ok if 1 + 1 == 2
 ok($foo =~ /bar/); # ok if $foo contains 'bar'
 ok(baz($x + $y) eq 'Armondo'); # ok if baz($x + $y) returns
 # 'Armondo'
 ok(@a == @b); # ok if @a and @b are the same length

Perl version 5.16.1 documentation - Test

Page 3http://perldoc.perl.org

The expression is evaluated in scalar context. So the following will
 work:

 ok(@stuff); # ok if @stuff has any
elements
 ok(!grep !defined $_, @stuff); # ok if everything in @stuff
is
 # defined.

A special case is if the expression is a subroutine reference (in either sub {...} syntax or
\&foo syntax). In
 that case, it is executed and its value (true or false) determines if
 the test
passes or fails. For example,

 ok(sub { # See whether sleep works at least passably
 my $start_time = time;
 sleep 5;
 time() - $start_time >= 4
 });

In its two-argument form, ok(arg1, arg2) compares the two
 scalar values to see if they
match. They match if both are undefined,
 or if arg2 is a regex that matches arg1, or if they
compare equal
 with eq.

 # Example of ok(scalar, scalar)

 ok("this", "that"); # not ok, 'this' ne 'that'
 ok("", undef); # not ok, "" is defined

The second argument is considered a regex if it is either a regex
 object or a string that looks
like a regex. Regex objects are
 constructed with the qr// operator in recent versions of perl. A

string is considered to look like a regex if its first and last
 characters are "/", or if the first
character is "m"
 and its second and last characters are both the
 same non-alphanumeric
non-whitespace character. These regexp

Regex examples:

 ok('JaffO', '/Jaff/'); # ok, 'JaffO' =~ /Jaff/
 ok('JaffO', 'm|Jaff|'); # ok, 'JaffO' =~ m|Jaff|
 ok('JaffO', qr/Jaff/); # ok, 'JaffO' =~ qr/Jaff/;
 ok('JaffO', '/(?i)jaff/); # ok, 'JaffO' =~ /jaff/i;

If either (or both!) is a subroutine reference, it is run and used
 as the value for comparing. For
example:

 ok sub {
 open(OUT, ">x.dat") || die $!;
 print OUT "\x{e000}";
 close OUT;
 my $bytecount = -s 'x.dat';
 unlink 'x.dat' or warn "Can't unlink : $!";
 return $bytecount;
 },
 4
 ;

The above test passes two values to ok(arg1, arg2) -- the first a coderef, and the second
is the number 4. Before ok compares them,
 it calls the coderef, and uses its return value as
the real value of
 this parameter. Assuming that $bytecount returns 4, ok ends up
 testing 4
eq 4. Since that's true, this test passes.

Finally, you can append an optional third argument, in ok(arg1,arg2, note), where note is
a string value that
 will be printed if the test fails. This should be some useful
 information about

Perl version 5.16.1 documentation - Test

Page 4http://perldoc.perl.org

the test, pertaining to why it failed, and/or
 a description of the test. For example:

 ok(grep($_ eq 'something unique', @stuff), 1,
 "Something that should be unique isn't!\n".
 '@stuff = '.join ', ', @stuff
);

Unfortunately, a note cannot be used with the single argument
 style of ok(). That is, if you try
ok(arg1, note), then Test will interpret this as ok(arg1, arg2), and probably
 end up
testing arg1 eq arg2 -- and that's not what you want!

All of the above special cases can occasionally cause some
 problems. See BUGS and
CAVEATS.

skip(skip_if_true, args...)

This is used for tests that under some conditions can be skipped. It's
 basically equivalent to:

 if($skip_if_true) {
 ok(1);
 } else {
 ok(args...);
 }

...except that the ok(1) emits not just "ok testnum" but
 actually "ok testnum #
skip_if_true_value".

The arguments after the skip_if_true are what is fed to ok(...) if
 this test isn't skipped.

Example usage:

 my $if_MSWin =
 $^O =~ m/MSWin/ ? 'Skip if under MSWin' : '';

 # A test to be skipped if under MSWin (i.e., run except under
MSWin)
 skip($if_MSWin, thing($foo), thing($bar));

Or, going the other way:

 my $unless_MSWin =
 $^O =~ m/MSWin/ ? '' : 'Skip unless under MSWin';

 # A test to be skipped unless under MSWin (i.e., run only under
MSWin)
 skip($unless_MSWin, thing($foo), thing($bar));

The tricky thing to remember is that the first parameter is true if
 you want to skip the test, not
run it; and it also doubles as a
 note about why it's being skipped. So in the first codeblock
above, read
 the code as "skip if MSWin -- (otherwise) test whether thing($foo) is
thing($bar)" or for the second case, "skip unless MSWin...".

Also, when your skip_if_reason string is true, it really should (for
 backwards compatibility with
older Test.pm versions) start with the
 string "Skip", as shown in the above examples.

Note that in the above cases, thing($foo) and thing($bar) are evaluated -- but as long
as the skip_if_true is true,
 then we skip(...) just tosses out their value (i.e., not

bothering to treat them like values to ok(...). But if
 you need to not eval the arguments
when skipping the
 test, use
 this format:

 skip($unless_MSWin,
 sub {
 # This code returns true if the test passes.
 # (But it doesn't even get called if the test is skipped.)

Perl version 5.16.1 documentation - Test

Page 5http://perldoc.perl.org

 thing($foo) eq thing($bar)
 }
);

or even this, which is basically equivalent:

 skip($unless_MSWin,
 sub { thing($foo) }, sub { thing($bar) }
);

That is, both are like this:

 if($unless_MSWin) {
 ok(1); # but it actually appends "# $unless_MSWin"
 # so that Test::Harness can tell it's a skip
 } else {
 # Not skipping, so actually call and evaluate...
 ok(sub { thing($foo) }, sub { thing($bar) });
 }

TEST TYPES
* NORMAL TESTS

These tests are expected to succeed. Usually, most or all of your tests
 are in this category. If a
normal test doesn't succeed, then that
 means that something is wrong.

* SKIPPED TESTS

The skip(...) function is for tests that might or might not be
 possible to run, depending
 on
the availability of platform-specific features. The first argument
 should evaluate to true (think
"yes, please skip") if the required
 feature is not available. After the first argument, skip(...)
works
 exactly the same way as ok(...) does.

* TODO TESTS

TODO tests are designed for maintaining an executable TODO list.
 These tests are expected
to fail. If a TODO test does succeed,
 then the feature in question shouldn't be on the TODO
list, now
 should it?

Packages should NOT be released with succeeding TODO tests. As soon
 as a TODO test
starts working, it should be promoted to a normal test,
 and the newly working feature should
be documented in the release
 notes or in the change log.

ONFAIL
 BEGIN { plan test => 4, onfail => sub { warn "CALL 911!" } }

Although test failures should be enough, extra diagnostics can be
 triggered at the end of a test run.
onfail is passed an array ref
 of hash refs that describe each test failure. Each hash will contain
 at
least the following fields: package, repetition, and result. (You shouldn't rely on any other
fields being present.) If the test
 had an expected value or a diagnostic (or "note") string, these will also
be
 included.

The optional onfail hook might be used simply to print out the
 version of your package and/or how
to report problems. It might also
 be used to generate extremely sophisticated diagnostics for a

particularly bizarre test failure. However it's not a panacea. Core
 dumps or other unrecoverable errors
prevent the onfail hook from
 running. (It is run inside an END block.) Besides, onfail is
 probably
over-kill in most cases. (Your test code should be simpler
 than the code it is testing, yes?)

Perl version 5.16.1 documentation - Test

Page 6http://perldoc.perl.org

BUGS and CAVEATS
ok(...)'s special handing of strings which look like they might be
 regexes can also cause
unexpected behavior. An innocent:

 ok($fileglob, '/path/to/some/*stuff/');

will fail, since Test.pm considers the second argument to be a regex!
 The best bet is to use
the one-argument form:

 ok($fileglob eq '/path/to/some/*stuff/');

ok(...)'s use of string eq can sometimes cause odd problems
 when comparing
 numbers,
especially if you're casting a string to a number:

 $foo = "1.0";
 ok($foo, 1); # not ok, "1.0" ne 1

Your best bet is to use the single argument form:

 ok($foo == 1); # ok "1.0" == 1

As you may have inferred from the above documentation and examples, ok's prototype is
($;$$) (and, incidentally, skip's is ($;$$$)). This means, for example, that you can do ok
 @foo, @bar
 to compare the size of the two arrays. But don't be fooled into
 thinking that ok
 @foo, @bar means a comparison of the contents of two
 arrays -- you're comparing just the
number of elements of each. It's
 so easy to make that mistake in reading ok @foo, @bar
that you might
 want to be very explicit about it, and instead write ok scalar(@foo),

scalar(@bar).

This almost definitely doesn't do what you expect:

 ok $thingy->can('some_method');

Why? Because can returns a coderef to mean "yes it can (and the
 method is this...)", and then
ok sees a coderef and thinks you're
 passing a function that you want it to call and consider the
truth of
 the result of! I.e., just like:

 ok $thingy->can('some_method')->();

What you probably want instead is this:

 ok $thingy->can('some_method') && 1;

If the can returns false, then that is passed to ok. If it
 returns true, then the larger expression
$thingy->can('some_method') && 1 returns 1, which ok sees as
 a simple signal of
success, as you would expect.

The syntax for skip is about the only way it can be, but it's still
 quite confusing. Just start with
the above examples and you'll
 be okay.

Moreover, users may expect this:

 skip $unless_mswin, foo($bar), baz($quux);

to not evaluate foo($bar) and baz($quux) when the test is being
 skipped. But in reality,
they are evaluated, but skip just won't
 bother comparing them if $unless_mswin is true.

You could do this:

 skip $unless_mswin, sub{foo($bar)}, sub{baz($quux)};

But that's not terribly pretty. You may find it simpler or clearer in
 the long run to just do things
like this:

Perl version 5.16.1 documentation - Test

Page 7http://perldoc.perl.org

 if($^O =~ m/MSWin/) {
 print "# Yay, we're under $^O\n";
 ok foo($bar), baz($quux);
 ok thing($whatever), baz($stuff);
 ok blorp($quux, $whatever);
 ok foo($barzbarz), thang($quux);
 } else {
 print "# Feh, we're under $^O. Watch me skip some tests...\n";
 for(1 .. 4) { skip "Skip unless under MSWin" }
 }

But be quite sure that ok is called exactly as many times in the
 first block as skip is called in
the second block.

ENVIRONMENT
If PERL_TEST_DIFF environment variable is set, it will be used as a
 command for comparing
unexpected multiline results. If you have GNU
 diff installed, you might want to set PERL_TEST_DIFF
to diff -u.
 If you don't have a suitable program, you might install the Text::Diff module and
then set PERL_TEST_DIFF to be perl
 -MText::Diff -e 'print diff(@ARGV)'. If
PERL_TEST_DIFF isn't set
 but the Algorithm::Diff module is available, then it will be used
 to
show the differences in multiline results.

NOTE
A past developer of this module once said that it was no longer being
 actively developed. However,
rumors of its demise were greatly
 exaggerated. Feedback and suggestions are quite welcome.

Be aware that the main value of this module is its simplicity. Note
 that there are already more
ambitious modules out there, such as Test::More and Test::Unit.

Some earlier versions of this module had docs with some confusing
 typos in the description of
skip(...).

SEE ALSO
Test::Harness

Test::Simple, Test::More, Devel::Cover

Test::Builder for building your own testing library.

Test::Unit is an interesting XUnit-style testing library.

Test::Inline and SelfTest let you embed tests in code.

AUTHOR
Copyright (c) 1998-2000 Joshua Nathaniel Pritikin.

Copyright (c) 2001-2002 Michael G. Schwern.

Copyright (c) 2002-2004 Sean M. Burke.

Current maintainer: Jesse Vincent. <jesse@bestpractical.com>

This package is free software and is provided "as is" without express
 or implied warranty. It may be
used, redistributed and/or modified
 under the same terms as Perl itself.

