
Perl version 5.16.1 documentation - perldebug

Page 1http://perldoc.perl.org

NAME
perldebug - Perl debugging

DESCRIPTION
First of all, have you tried using the -w switch?

If you're new to the Perl debugger, you may prefer to read perldebtut, which is a tutorial introduction
to the debugger.

The Perl Debugger
If you invoke Perl with the -d switch, your script runs under the
 Perl source debugger. This works like
an interactive Perl
 environment, prompting for debugger commands that let you examine
 source
code, set breakpoints, get stack backtraces, change the values of
 variables, etc. This is so convenient
that you often fire up
 the debugger all by itself just to test out Perl constructs
 interactively to see what
they do. For example:

 $ perl -d -e 42

In Perl, the debugger is not a separate program the way it usually is in the
 typical compiled
environment. Instead, the -d flag tells the compiler
 to insert source information into the parse trees it's
about to hand off
 to the interpreter. That means your code must first compile correctly
 for the
debugger to work on it. Then when the interpreter starts up, it
 preloads a special Perl library file
containing the debugger.

The program will halt right before the first run-time executable
 statement (but see below regarding
compile-time statements) and ask you
 to enter a debugger command. Contrary to popular
expectations, whenever
 the debugger halts and shows you a line of code, it always displays the
 line
it's about to execute, rather than the one it has just executed.

Any command not recognized by the debugger is directly executed
 (eval'd) as Perl code in the
current package. (The debugger
 uses the DB package for keeping its own state information.)

Note that the said eval is bound by an implicit scope. As a
 result any newly introduced lexical
variable or any modified
 capture buffer content is lost after the eval. The debugger is a
 nice
environment to learn Perl, but if you interactively experiment using
 material which should be in the
same scope, stuff it in one line.

For any text entered at the debugger prompt, leading and trailing whitespace
 is first stripped before
further processing. If a debugger command
 coincides with some function in your own program, merely
precede the
 function with something that doesn't look like a debugger command, such
 as a leading ;
or perhaps a +, or by wrapping it with parentheses
 or braces.

Calling the Debugger
There are several ways to call the debugger:

perl -d program_name

On the given program identified by program_name.

perl -d -e 0

Interactively supply an arbitrary expression using -e.

perl -d:Ptkdb program_name

Debug a given program via the Devel::Ptkdb GUI.

perl -dt threaded_program_name

Debug a given program using threads (experimental).

Perl version 5.16.1 documentation - perldebug

Page 2http://perldoc.perl.org

Debugger Commands
The interactive debugger understands the following commands:

h

Prints out a summary help message

h [command]

Prints out a help message for the given debugger command.

h h

The special argument of h h produces the entire help page, which is quite
long.

If the output of the h h command (or any command, for that matter) scrolls

past your screen, precede the command with a leading pipe symbol so
 that it's
run through your pager, as in

 DB> |h h

You may change the pager which is used via o pager=... command.

p expr

Same as print {$DB::OUT} expr in the current package. In particular,

because this is just Perl's own print function, this means that nested
 data
structures and objects are not dumped, unlike with the x command.

The DB::OUT filehandle is opened to /dev/tty, regardless of
 where STDOUT
may be redirected to.

x [maxdepth] expr

Evaluates its expression in list context and dumps out the result in a

pretty-printed fashion. Nested data structures are printed out
 recursively, unlike
the real print function in Perl. When dumping
 hashes, you'll probably prefer 'x
\%h' rather than 'x %h'.
 See Dumpvalue if you'd like to do this yourself.

The output format is governed by multiple options described under
Configurable Options.

If the maxdepth is included, it must be a numeral N; the value is
 dumped only
N levels deep, as if the dumpDepth option had been
 temporarily set to N.

V [pkg [vars]]

Display all (or some) variables in package (defaulting to main)
 using a data
pretty-printer (hashes show their keys and values so
 you see what's what,
control characters are made printable, etc.).
 Make sure you don't put the type
specifier (like $) there, just
 the symbol names, like this:

 V DB filename line

Use ~pattern and !pattern for positive and negative regexes.

This is similar to calling the x command on each applicable var.

X [vars]

Same as V currentpackage [vars].

y [level [vars]]

Display all (or some) lexical variables (mnemonic: mY variables)
 in the current
scope or level scopes higher. You can limit the
 variables that you see with vars
which works exactly as it does
 for the V and X commands. Requires the

Perl version 5.16.1 documentation - perldebug

Page 3http://perldoc.perl.org

PadWalker module
 version 0.08 or higher; will warn if this isn't installed.
Output
 is pretty-printed in the same style as for V and the format is
 controlled
by the same options.

T

Produce a stack backtrace. See below for details on its output.

s [expr]

Single step. Executes until the beginning of another
 statement, descending into
subroutine calls. If an expression is
 supplied that includes function calls, it too
will be single-stepped.

n [expr]

Next. Executes over subroutine calls, until the beginning
 of the next statement.
If an expression is supplied that includes
 function calls, those functions will be
executed with stops before
 each statement.

r

Continue until the return from the current subroutine.
 Dump the return value if
the PrintRet option is set (default).

<CR>

Repeat last n or s command.

c [line|sub]

Continue, optionally inserting a one-time-only breakpoint
 at the specified line or
subroutine.

l

List next window of lines.

l min+incr

List incr+1 lines starting at min.

l min-max

List lines min through max. l - is synonymous to -.

l line

List a single line.

l subname

List first window of lines from subroutine. subname may
 be a variable that
contains a code reference.

-

List previous window of lines.

v [line]

View a few lines of code around the current line.

.

Return the internal debugger pointer to the line last
 executed, and print out that
line.

f filename

Switch to viewing a different file or eval statement. If filename
 is not a full

Perl version 5.16.1 documentation - perldebug

Page 4http://perldoc.perl.org

pathname found in the values of %INC, it is considered
 a regex.

evaled strings (when accessible) are considered to be filenames: f (eval
7) and f eval 7\b access the body of the 7th evaled string
 (in the order of
execution). The bodies of the currently executed eval
 and of evaled strings
that define subroutines are saved and thus
 accessible.

/pattern/

Search forwards for pattern (a Perl regex); final / is optional.
 The search is
case-insensitive by default.

?pattern?

Search backwards for pattern; final ? is optional.
 The search is case-insensitive
by default.

L [abw]

List (default all) actions, breakpoints and watch expressions

S [[!]regex]

List subroutine names [not] matching the regex.

t [n]

Toggle trace mode (see also the AutoTrace option).
 Optional argument is the
maximum number of levels to trace below
 the current one; anything deeper
than that will be silent.

t [n] expr

Trace through execution of expr.
 Optional first argument is the maximum
number of levels to trace below
 the current one; anything deeper than that will
be silent.
 See "Frame Listing Output Examples" in perldebguts for examples.

b

Sets breakpoint on current line

b [line] [condition]

Set a breakpoint before the given line. If a condition
 is specified, it's evaluated
each time the statement is reached: a
 breakpoint is taken only if the condition
is true. Breakpoints may
 only be set on lines that begin an executable
statement. Conditions
 don't use if:

 b 237 $x > 30
 b 237 ++$count237 < 11
 b 33 /pattern/i

If the line number is ., sets a breakpoint on the current line:

 b . $n > 100

b [file]:[line] [condition]

Set a breakpoint before the given line in a (possibly different) file. If a
 condition
is specified, it's evaluated each time the statement is reached: a
 breakpoint is
taken only if the condition is true. Breakpoints may only be set
 on lines that
begin an executable statement. Conditions don't use if:

 b lib/MyModule.pm:237 $x > 30
 b /usr/lib/perl5/site_perl/CGI.pm:100 ++$count100 < 11

b subname [condition]

Perl version 5.16.1 documentation - perldebug

Page 5http://perldoc.perl.org

Set a breakpoint before the first line of the named subroutine. subname may
 be
a variable containing a code reference (in this case condition
 is not supported).

b postpone subname [condition]

Set a breakpoint at first line of subroutine after it is compiled.

b load filename

Set a breakpoint before the first executed line of the filename,
 which should be
a full pathname found amongst the %INC values.

b compile subname

Sets a breakpoint before the first statement executed after the specified

subroutine is compiled.

B line

Delete a breakpoint from the specified line.

B *

Delete all installed breakpoints.

disable [file]:[line]

Disable the breakpoint so it won't stop the execution of the program.
Breakpoints are enabled by default and can be re-enabled using the enable

command.

disable [line]

Disable the breakpoint so it won't stop the execution of the program.
Breakpoints are enabled by default and can be re-enabled using the enable

command.

This is done for a breakpoint in the current file.

enable [file]:[line]

Enable the breakpoint so it will stop the execution of the program.

enable [line]

Enable the breakpoint so it will stop the execution of the program.

This is done for a breakpoint in the current file.

a [line] command

Set an action to be done before the line is executed. If line is
 omitted, set an
action on the line about to be executed.
 The sequence of steps taken by the
debugger is

 1. check for a breakpoint at this line
 2. print the line if necessary (tracing)
 3. do any actions associated with that line
 4. prompt user if at a breakpoint or in single-step
 5. evaluate line

For example, this will print out $foo every time line
 53 is passed:

 a 53 print "DB FOUND $foo\n"

A line

Delete an action from the specified line.

Perl version 5.16.1 documentation - perldebug

Page 6http://perldoc.perl.org

A *

Delete all installed actions.

w expr

Add a global watch-expression. Whenever a watched global changes the

debugger will stop and display the old and new values.

W expr

Delete watch-expression

W *

Delete all watch-expressions.

o

Display all options.

o booloption ...

Set each listed Boolean option to the value 1.

o anyoption? ...

Print out the value of one or more options.

o option=value ...

Set the value of one or more options. If the value has internal
 whitespace, it
should be quoted. For example, you could set o
 pager="less
-MQeicsNfr" to call less with those specific options.
 You may use either
single or double quotes, but if you do, you must
 escape any embedded
instances of same sort of quote you began with,
 as well as any escaping any
escapes that immediately precede that
 quote but which are not meant to
escape the quote itself. In other
 words, you follow single-quoting rules
irrespective of the quote;
 eg: o option='this isn\'t bad' or o
option="She said, \"Isn't
 it?\"".

For historical reasons, the =value is optional, but defaults to
 1 only where it is
safe to do so--that is, mostly for Boolean
 options. It is always better to assign a
specific value using =.
 The option can be abbreviated, but for clarity probably
should
 not be. Several options can be set together. See Configurable Options

for a list of these.

< ?

List out all pre-prompt Perl command actions.

< [command]

Set an action (Perl command) to happen before every debugger prompt.
 A
multi-line command may be entered by backslashing the newlines.

< *

Delete all pre-prompt Perl command actions.

<< command

Add an action (Perl command) to happen before every debugger prompt.
 A
multi-line command may be entered by backwhacking the newlines.

> ?

List out post-prompt Perl command actions.

> command

Perl version 5.16.1 documentation - perldebug

Page 7http://perldoc.perl.org

Set an action (Perl command) to happen after the prompt when you've
 just
given a command to return to executing the script. A multi-line
 command may
be entered by backslashing the newlines (we bet you
 couldn't have guessed
this by now).

> *

Delete all post-prompt Perl command actions.

>> command

Adds an action (Perl command) to happen after the prompt when you've
 just
given a command to return to executing the script. A multi-line
 command may
be entered by backslashing the newlines.

{ ?

List out pre-prompt debugger commands.

{ [command]

Set an action (debugger command) to happen before every debugger prompt.

A multi-line command may be entered in the customary fashion.

Because this command is in some senses new, a warning is issued if
 you
appear to have accidentally entered a block instead. If that's
 what you mean to
do, write it as with ;{ ... } or even do { ... }.

{ *

Delete all pre-prompt debugger commands.

{{ command

Add an action (debugger command) to happen before every debugger prompt.

A multi-line command may be entered, if you can guess how: see above.

! number

Redo a previous command (defaults to the previous command).

! -number

Redo number'th previous command.

! pattern

Redo last command that started with pattern.
 See o recallCommand, too.

!! cmd

Run cmd in a subprocess (reads from DB::IN, writes to DB::OUT) See o
shellBang, also. Note that the user's current shell (well,
 their $ENV{SHELL}
variable) will be used, which can interfere
 with proper interpretation of exit
status or signal and coredump
 information.

source file

Read and execute debugger commands from file. file may itself contain
source commands.

H -number

Display last n commands. Only commands longer than one character are

listed. If number is omitted, list them all.

q or ^D

Quit. ("quit" doesn't work for this, unless you've made an alias)
 This is the only
supported way to exit the debugger, though typing exit twice might work.

Perl version 5.16.1 documentation - perldebug

Page 8http://perldoc.perl.org

Set the inhibit_exit option to 0 if you want to be able to step
 off the end
the script. You may also need to set $finished to 0
 if you want to step through
global destruction.

R

Restart the debugger by exec()ing a new session. We try to maintain
 your
history across this, but internal settings and command-line options
 may be lost.

The following setting are currently preserved: history, breakpoints,
 actions,
debugger options, and the Perl command-line
 options -w, -I, and -e.

|dbcmd

Run the debugger command, piping DB::OUT into your current pager.

||dbcmd

Same as |dbcmd but DB::OUT is temporarily selected as well.

= [alias value]

Define a command alias, like

 = quit q

or list current aliases.

command

Execute command as a Perl statement. A trailing semicolon will be
 supplied. If
the Perl statement would otherwise be confused for a
 Perl debugger, use a
leading semicolon, too.

m expr

List which methods may be called on the result of the evaluated
 expression.
The expression may evaluated to a reference to a
 blessed object, or to a
package name.

M

Display all loaded modules and their versions.

man [manpage]

Despite its name, this calls your system's default documentation
 viewer on the
given page, or on the viewer itself if manpage is
 omitted. If that viewer is man,
the current Config information
 is used to invoke man using the proper
MANPATH or -M manpath option. Failed lookups of the form XXX that match

known manpages of the form perlXXX will be retried. This lets
 you type man
debug or man op from the debugger.

On systems traditionally bereft of a usable man command, the
 debugger
invokes perldoc. Occasionally this determination is
 incorrect due to recalcitrant
vendors or rather more felicitously,
 to enterprising users. If you fall into either
category, just
 manually set the $DB::doccmd variable to whatever viewer to
view
 the Perl documentation on your system. This may be set in an rc
 file, or
through direct assignment. We're still waiting for a
 working example of
something along the lines of:

 $DB::doccmd = 'netscape -remote
http://something.here/';

Perl version 5.16.1 documentation - perldebug

Page 9http://perldoc.perl.org

Configurable Options
The debugger has numerous options settable using the o command,
 either interactively or from the
environment or an rc file.
 (./.perldb or ~/.perldb under Unix.)

recallCommand, ShellBang

The characters used to recall command or spawn shell. By
 default, both are set
to !, which is unfortunate.

pager

Program to use for output of pager-piped commands (those beginning
 with a |
character.) By default, $ENV{PAGER} will be used.
 Because the debugger
uses your current terminal characteristics
 for bold and underlining, if the
chosen pager does not pass escape
 sequences through unchanged, the output
of some debugger commands
 will not be readable when sent through the
pager.

tkRunning

Run Tk while prompting (with ReadLine).

signalLevel, warnLevel, dieLevel

Level of verbosity. By default, the debugger leaves your exceptions
 and
warnings alone, because altering them can break correctly running
 programs. It
will attempt to print a message when uncaught INT, BUS, or
 SEGV signals
arrive. (But see the mention of signals in BUGS below.)

To disable this default safe mode, set these values to something higher
 than 0.
At a level of 1, you get backtraces upon receiving any kind
 of warning (this is
often annoying) or exception (this is
 often valuable). Unfortunately, the
debugger cannot discern fatal
 exceptions from non-fatal ones. If dieLevel is
even 1, then your
 non-fatal exceptions are also traced and unceremoniously
altered if they
 came from eval'ed strings or from any kind of eval within
modules
 you're attempting to load. If dieLevel is 2, the debugger doesn't

care where they came from: It usurps your exception handler and prints
 out a
trace, then modifies all exceptions with its own embellishments.
 This may
perhaps be useful for some tracing purposes, but tends to hopelessly
 destroy
any program that takes its exception handling seriously.

AutoTrace

Trace mode (similar to t command, but can be put into PERLDB_OPTS).

LineInfo

File or pipe to print line number info to. If it is a pipe (say, |visual_perl_db),
then a short message is used. This is the
 mechanism used to interact with a
slave editor or visual debugger,
 such as the special vi or emacs hooks, or the
ddd graphical
 debugger.

inhibit_exit

If 0, allows stepping off the end of the script.

PrintRet

Print return value after r command if set (default).

ornaments

Affects screen appearance of the command line (see Term::ReadLine).
 There
is currently no way to disable these, which can render
 some output illegible on
some displays, or with some pagers.
 This is considered a bug.

Perl version 5.16.1 documentation - perldebug

Page 10http://perldoc.perl.org

frame

Affects the printing of messages upon entry and exit from subroutines. If
frame & 2 is false, messages are printed on entry only. (Printing
 on exit
might be useful if interspersed with other messages.)

If frame & 4, arguments to functions are printed, plus context
 and caller info.
If frame & 8, overloaded stringify and tied FETCH is enabled on the
printed arguments. If frame
 & 16, the return value from the subroutine is
printed.

The length at which the argument list is truncated is governed by the
 next
option:

maxTraceLen

Length to truncate the argument list when the frame option's
 bit 4 is set.

windowSize

Change the size of code list window (default is 10 lines).

The following options affect what happens with V, X, and x
 commands:

arrayDepth, hashDepth

Print only first N elements ('' for all).

dumpDepth

Limit recursion depth to N levels when dumping structures.
 Negative values are
interpreted as infinity. Default: infinity.

compactDump, veryCompact

Change the style of array and hash output. If compactDump, short array
 may
be printed on one line.

globPrint

Whether to print contents of globs.

DumpDBFiles

Dump arrays holding debugged files.

DumpPackages

Dump symbol tables of packages.

DumpReused

Dump contents of "reused" addresses.

quote, HighBit, undefPrint

Change the style of string dump. The default value for quote
 is auto; one can
enable double-quotish or single-quotish format
 by setting it to " or ',
respectively. By default, characters
 with their high bit set are printed verbatim.

UsageOnly

Rudimentary per-package memory usage dump. Calculates total
 size of strings
found in variables in the package. This does not
 include lexicals in a module's
file scope, or lost in closures.

After the rc file is read, the debugger reads the $ENV{PERLDB_OPTS}
 environment variable and
parses this as the remainder of a "O ..."
 line as one might enter at the debugger prompt. You may
place the
 initialization options TTY, noTTY, ReadLine, and NonStop
 there.

Perl version 5.16.1 documentation - perldebug

Page 11http://perldoc.perl.org

If your rc file contains:

 parse_options("NonStop=1 LineInfo=db.out AutoTrace");

then your script will run without human intervention, putting trace
 information into the file db.out. (If
you interrupt it, you'd
 better reset LineInfo to /dev/tty if you expect to see anything.)

TTY

The TTY to use for debugging I/O.

noTTY

If set, the debugger goes into NonStop mode and will not connect to a TTY. If

interrupted (or if control goes to the debugger via explicit setting of
 $DB::signal
or $DB::single from the Perl script), it connects to a TTY
 specified in the TTY
option at startup, or to a tty found at
 runtime using the Term::Rendezvous
module of your choice.

This module should implement a method named new that returns an object

with two methods: IN and OUT. These should return filehandles to use
 for
debugging input and output correspondingly. The new method should
 inspect
an argument containing the value of $ENV{PERLDB_NOTTY} at
 startup, or
"$ENV{HOME}/.perldbtty$$" otherwise. This file is not
 inspected for
proper ownership, so security hazards are theoretically
 possible.

ReadLine

If false, readline support in the debugger is disabled in order
 to debug
applications that themselves use ReadLine.

NonStop

If set, the debugger goes into non-interactive mode until interrupted, or

programmatically by setting $DB::signal or $DB::single.

Here's an example of using the $ENV{PERLDB_OPTS} variable:

 $ PERLDB_OPTS="NonStop frame=2" perl -d myprogram

That will run the script myprogram without human intervention,
 printing out the call tree with entry
and exit points. Note that NonStop=1 frame=2 is equivalent to N f=2, and that originally,
 options
could be uniquely abbreviated by the first letter (modulo
 the Dump* options). It is nevertheless
recommended that you
 always spell them out in full for legibility and future compatibility.

Other examples include

 $ PERLDB_OPTS="NonStop LineInfo=listing frame=2" perl -d myprogram

which runs script non-interactively, printing info on each entry
 into a subroutine and each executed
line into the file named listing.
 (If you interrupt it, you would better reset LineInfo to something

"interactive"!)

Other examples include (using standard shell syntax to show environment
 variable settings):

 $ (PERLDB_OPTS="NonStop frame=1 AutoTrace LineInfo=tperl.out"
 perl -d myprogram)

which may be useful for debugging a program that uses Term::ReadLine
 itself. Do not forget to
detach your shell from the TTY in the window that
 corresponds to /dev/ttyXX, say, by issuing a
command like

Perl version 5.16.1 documentation - perldebug

Page 12http://perldoc.perl.org

 $ sleep 1000000

See "Debugger Internals" in perldebguts for details.

Debugger Input/Output
Prompt

The debugger prompt is something like

 DB<8>

or even

 DB<<17>>

where that number is the command number, and which you'd use to
 access with the
built-in csh-like history mechanism. For example, !17 would repeat command number
17. The depth of the angle
 brackets indicates the nesting depth of the debugger. You
could
 get more than one set of brackets, for example, if you'd already
 at a breakpoint
and then printed the result of a function call that
 itself has a breakpoint, or you step
into an expression via s/n/t
 expression command.

Multiline commands

If you want to enter a multi-line command, such as a subroutine
 definition with several
statements or a format, escape the newline
 that would normally end the debugger
command with a backslash.
 Here's an example:

 DB<1> for (1..4) { \
 cont: print "ok\n"; \
 cont: }
 ok
 ok
 ok
 ok

Note that this business of escaping a newline is specific to interactive
 commands
typed into the debugger.

Stack backtrace

Here's an example of what a stack backtrace via T command might
 look like:

 $ = main::infested called from file 'Ambulation.pm' line 10
 @ = Ambulation::legs(1, 2, 3, 4) called from file
'camel_flea' line 7
 $ = main::pests('bactrian', 4) called from file 'camel_flea'
 line 4

The left-hand character up there indicates the context in which the
 function was called,
with $ and @ meaning scalar or list
 contexts respectively, and . meaning void context
(which is
 actually a sort of scalar context). The display above says
 that you were in the
function main::infested when you ran the
 stack dump, and that it was called in
scalar context from line
 10 of the file Ambulation.pm, but without any arguments at all,

meaning it was called as &infested. The next stack frame shows
 that the function
Ambulation::legs was called in list context
 from the camel_flea file with four
arguments. The last stack
 frame shows that main::pests was called in scalar
context,
 also from camel_flea, but from line 4.

If you execute the T command from inside an active use
 statement, the backtrace will
contain both a require frame and
 an eval frame.

Perl version 5.16.1 documentation - perldebug

Page 13http://perldoc.perl.org

Line Listing Format

This shows the sorts of output the l command can produce:

 DB<<13>> l
 101: @i{@i} = ();
 102:b @isa{@i,$pack} = ()
 103 if(exists $i{$prevpack} || exists
$isa{$pack});
 104 }
 105
 106 next
 107==> if(exists $isa{$pack});
 108
 109:a if ($extra-- > 0) {
 110: %isa = ($pack,1);

Breakable lines are marked with :. Lines with breakpoints are
 marked by b and those
with actions by a. The line that's
 about to be executed is marked by ==>.

Please be aware that code in debugger listings may not look the same
 as your original
source code. Line directives and external source
 filters can alter the code before Perl
sees it, causing code to move
 from its original positions or take on entirely different
forms.

Frame listing

When the frame option is set, the debugger would print entered (and
 optionally
exited) subroutines in different styles. See perldebguts
 for incredibly long examples of
these.

Debugging Compile-Time Statements
If you have compile-time executable statements (such as code within
 BEGIN, UNITCHECK and
CHECK blocks or use statements), these will not be stopped by debugger, although requires and
INIT blocks
 will, and compile-time statements can be traced with the AutoTrace
 option set in
PERLDB_OPTS). From your own Perl code, however, you
 can transfer control back to the debugger
using the following
 statement, which is harmless if the debugger is not running:

 $DB::single = 1;

If you set $DB::single to 2, it's equivalent to having
 just typed the n command, whereas a value of
1 means the s
 command. The $DB::trace variable should be set to 1 to simulate
 having typed the
t command.

Another way to debug compile-time code is to start the debugger, set a
 breakpoint on the load of
some module:

 DB<7> b load f:/perllib/lib/Carp.pm
 Will stop on load of 'f:/perllib/lib/Carp.pm'.

and then restart the debugger using the R command (if possible). One can use b
 compile
subname for the same purpose.

Debugger Customization
The debugger probably contains enough configuration hooks that you
 won't ever have to modify it
yourself. You may change the behaviour
 of the debugger from within the debugger using its o
command, from
 the command line via the PERLDB_OPTS environment variable, and
 from
customization files.

You can do some customization by setting up a .perldb file, which
 contains initialization code. For

Perl version 5.16.1 documentation - perldebug

Page 14http://perldoc.perl.org

instance, you could make aliases
 like these (the last one is one people expect to be there):

 $DB::alias{'len'} = 's/^len(.*)/p length($1)/';
 $DB::alias{'stop'} = 's/^stop (at|in)/b/';
 $DB::alias{'ps'} = 's/^ps\b/p scalar /';
 $DB::alias{'quit'} = 's/^quit(\s*)/exit/';

You can change options from .perldb by using calls like this one;

 parse_options("NonStop=1 LineInfo=db.out AutoTrace=1 frame=2");

The code is executed in the package DB. Note that .perldb is
 processed before processing
PERLDB_OPTS. If .perldb defines the
 subroutine afterinit, that function is called after debugger

initialization ends. .perldb may be contained in the current
 directory, or in the home directory.
Because this file is sourced
 in by Perl and may contain arbitrary commands, for security reasons,
 it
must be owned by the superuser or the current user, and writable
 by no one but its owner.

You can mock TTY input to debugger by adding arbitrary commands to
 @DB::typeahead. For
example, your .perldb file might contain:

 sub afterinit { push @DB::typeahead, "b 4", "b 6"; }

Which would attempt to set breakpoints on lines 4 and 6 immediately
 after debugger initialization.
Note that @DB::typeahead is not a supported
 interface and is subject to change in future releases.

If you want to modify the debugger, copy perl5db.pl from the
 Perl library to another name and hack it
to your heart's content.
 You'll then want to set your PERL5DB environment variable to say
 something
like this:

 BEGIN { require "myperl5db.pl" }

As a last resort, you could also use PERL5DB to customize the debugger
 by directly setting internal
variables or calling debugger functions.

Note that any variables and functions that are not documented in
 this document (or in perldebguts)
are considered for internal
 use only, and as such are subject to change without notice.

Readline Support / History in the Debugger
As shipped, the only command-line history supplied is a simplistic one
 that checks for leading
exclamation points. However, if you install
 the Term::ReadKey and Term::ReadLine modules from
CPAN (such as
 Term::ReadLine::Gnu, Term::ReadLine::Perl, ...) you will
 have full editing capabilities
much like those GNU readline(3) provides.
 Look for these in the modules/by-module/Term directory
on CPAN.
 These do not support normal vi command-line editing, however.

A rudimentary command-line completion is also available, including
 lexical variables in the current
scope if the PadWalker module
 is installed.

Without Readline support you may see the symbols "^[[A", "^[[C", "^[[B",
 "^[[D"", "^H", ... when using
the arrow keys and/or the backspace key.

Editor Support for Debugging
If you have the FSF's version of emacs installed on your system,
 it can interact with the Perl
debugger to provide an integrated
 software development environment reminiscent of its interactions

with C debuggers.

Recent versions of Emacs come with a
 start file for making emacs act like a
 syntax-directed editor
that understands (some of) Perl's syntax.
 See perlfaq3.

Perl version 5.16.1 documentation - perldebug

Page 15http://perldoc.perl.org

A similar setup by Tom Christiansen for interacting with any
 vendor-shipped vi and the X11 window
system is also available.
 This works similarly to the integrated multiwindow support that emacs
provides, where the debugger drives the editor. At the
 time of this writing, however, that tool's
eventual location in the
 Perl distribution was uncertain.

Users of vi should also look into vim and gvim, the mousey
 and windy version, for coloring of Perl
keywords.

Note that only perl can truly parse Perl, so all such CASE tools
 fall somewhat short of the mark,
especially if you don't program
 your Perl as a C programmer might.

The Perl Profiler
If you wish to supply an alternative debugger for Perl to run,
 invoke your script with a colon and a
package argument given to the -d flag. Perl's alternative debuggers include a Perl profiler,
Devel::NYTProf, which is available separately as a CPAN
 distribution. To profile your Perl program in
the file mycode.pl,
 just type:

 $ perl -d:NYTProf mycode.pl

When the script terminates the profiler will create a database of the
 profile information that you can
turn into reports using the profiler's
 tools. See <perlperf> for details.

Debugging Regular Expressions
use re 'debug' enables you to see the gory details of how the Perl
 regular expression engine
works. In order to understand this typically
 voluminous output, one must not only have some idea
about how regular
 expression matching works in general, but also know how Perl's regular

expressions are internally compiled into an automaton. These matters
 are explored in some detail in
"Debugging Regular Expressions" in perldebguts.

Debugging Memory Usage
Perl contains internal support for reporting its own memory usage,
 but this is a fairly advanced
concept that requires some understanding
 of how memory allocation works.
 See "Debugging Perl
Memory Usage" in perldebguts for the details.

SEE ALSO
You did try the -w switch, didn't you?

perldebtut, perldebguts, re, DB, Devel::NYTProf, Dumpvalue,
 and perlrun.

When debugging a script that uses #! and is thus normally found in
 $PATH, the -S option causes perl
to search $PATH for it, so you don't
 have to type the path or which $scriptname.

 $ perl -Sd foo.pl

BUGS
You cannot get stack frame information or in any fashion debug functions
 that were not compiled by
Perl, such as those from C or C++ extensions.

If you alter your @_ arguments in a subroutine (such as with shift
 or pop), the stack backtrace will
not show the original values.

The debugger does not currently work in conjunction with the -W
 command-line switch, because it
itself is not free of warnings.

If you're in a slow syscall (like waiting, accepting, or reading
 from your keyboard or a socket) and
haven't set up your own $SIG{INT}
 handler, then you won't be able to CTRL-C your way back to the
debugger,
 because the debugger's own $SIG{INT} handler doesn't understand that
 it needs to raise
an exception to longjmp(3) out of slow syscalls.

Perl version 5.16.1 documentation - perldebug

Page 16http://perldoc.perl.org

