
Perl version 5.16.1 documentation - perlrebackslash

Page 1http://perldoc.perl.org

NAME
perlrebackslash - Perl Regular Expression Backslash Sequences and Escapes

DESCRIPTION
The top level documentation about Perl regular expressions
 is found in perlre.

This document describes all backslash and escape sequences. After
 explaining the role of the
backslash, it lists all the sequences that have
 a special meaning in Perl regular expressions (in
alphabetical order),
 then describes each of them.

Most sequences are described in detail in different documents; the primary
 purpose of this document
is to have a quick reference guide describing all
 backslash and escape sequences.

The backslash
In a regular expression, the backslash can perform one of two tasks:
 it either takes away the special
meaning of the character following it
 (for instance, \| matches a vertical bar, it's not an alternation),

or it is the start of a backslash or escape sequence.

The rules determining what it is are quite simple: if the character
 following the backslash is an ASCII
punctuation (non-word) character (that is,
 anything that is not a letter, digit, or underscore), then the
backslash just
 takes away any special meaning of the character following it.

If the character following the backslash is an ASCII letter or an ASCII digit,
 then the sequence may be
special; if so, it's listed below. A few letters have
 not been used yet, so escaping them with a
backslash doesn't change them to be
 special. A future version of Perl may assign a special meaning
to them, so if
 you have warnings turned on, Perl issues a warning if you use such a
 sequence. [1].

It is however guaranteed that backslash or escape sequences never have a
 punctuation character
following the backslash, not now, and not in a future
 version of Perl 5. So it is safe to put a backslash
in front of a non-word
 character.

Note that the backslash itself is special; if you want to match a backslash,
 you have to escape the
backslash with a backslash: /\\/ matches a single
 backslash.

[1]

There is one exception. If you use an alphanumeric character as the
 delimiter of your pattern
(which you probably shouldn't do for readability
 reasons), you have to escape the delimiter if
you want to match
 it. Perl won't warn then. See also "Gory details of parsing quoted
constructs" in perlop.

All the sequences and escapes
Those not usable within a bracketed character class (like [\da-z]) are marked
 as Not in [].

 \000 Octal escape sequence. See also \o{}.
 \1 Absolute backreference. Not in [].
 \a Alarm or bell.
 \A Beginning of string. Not in [].
 \b Word/non-word boundary. (Backspace in []).
 \B Not a word/non-word boundary. Not in [].
 \cX Control-X
 \C Single octet, even under UTF-8. Not in [].
 \d Character class for digits.
 \D Character class for non-digits.
 \e Escape character.
 \E Turn off \Q, \L and \U processing. Not in [].
 \f Form feed.
 \F Foldcase till \E. Not in [].
 \g{}, \g1 Named, absolute or relative backreference. Not in []

Perl version 5.16.1 documentation - perlrebackslash

Page 2http://perldoc.perl.org

 \G Pos assertion. Not in [].
 \h Character class for horizontal whitespace.
 \H Character class for non horizontal whitespace.
 \k{}, \k<>, \k'' Named backreference. Not in [].
 \K Keep the stuff left of \K. Not in [].
 \l Lowercase next character. Not in [].
 \L Lowercase till \E. Not in [].
 \n (Logical) newline character.
 \N Any character but newline. Experimental. Not in [].
 \N{} Named or numbered (Unicode) character or sequence.
 \o{} Octal escape sequence.
 \p{}, \pP Character with the given Unicode property.
 \P{}, \PP Character without the given Unicode property.
 \Q Quote (disable) pattern metacharacters till \E. Not
 in [].
 \r Return character.
 \R Generic new line. Not in [].
 \s Character class for whitespace.
 \S Character class for non whitespace.
 \t Tab character.
 \u Titlecase next character. Not in [].
 \U Uppercase till \E. Not in [].
 \v Character class for vertical whitespace.
 \V Character class for non vertical whitespace.
 \w Character class for word characters.
 \W Character class for non-word characters.
 \x{}, \x00 Hexadecimal escape sequence.
 \X Unicode "extended grapheme cluster". Not in [].
 \z End of string. Not in [].
 \Z End of string. Not in [].

Character Escapes
Fixed characters

A handful of characters have a dedicated character escape. The following
 table shows them, along
with their ASCII code points (in decimal and hex),
 their ASCII name, the control escape on ASCII
platforms and a short
 description. (For EBCDIC platforms, see "OPERATOR DIFFERENCES" in
perlebcdic.)

 Seq. Code Point ASCII Cntrl Description.
 Dec Hex
 \a 7 07 BEL \cG alarm or bell
 \b 8 08 BS \cH backspace [1]
 \e 27 1B ESC \c[escape character
 \f 12 0C FF \cL form feed
 \n 10 0A LF \cJ line feed [2]
 \r 13 0D CR \cM carriage return
 \t 9 09 TAB \cI tab

[1]

\b is the backspace character only inside a character class. Outside a
 character class, \b is a
word/non-word boundary.

[2]

\n matches a logical newline. Perl converts between \n and your
 OS's native newline
character when reading from or writing to text files.

Perl version 5.16.1 documentation - perlrebackslash

Page 3http://perldoc.perl.org

Example

 $str =~ /\t/; # Matches if $str contains a (horizontal) tab.

Control characters

\c is used to denote a control character; the character following \c
 determines the value of the
construct. For example the value of \cA is chr(1), and the value of \cb is chr(2), etc.
 The gory
details are in "Regexp Quote-Like Operators" in perlop. A complete
 list of what chr(1), etc. means
for ASCII and EBCDIC platforms is in "OPERATOR DIFFERENCES" in perlebcdic.

Note that \c\ alone at the end of a regular expression (or doubled-quoted
 string) is not valid. The
backslash must be followed by another character.
 That is, \c\X means chr(28) . 'X' for all
characters X.

To write platform-independent code, you must use \N{NAME} instead, like \N{ESCAPE} or
\N{U+001B}, see charnames.

Mnemonic: control character.

Example

 $str =~ /\cK/; # Matches if $str contains a vertical tab (control-K).

Named or numbered characters and character sequences

Unicode characters have a Unicode name and numeric code point (ordinal)
 value. Use the \N{}
construct to specify a character by either of these values.
 Certain sequences of characters also have
names.

To specify by name, the name of the character or character sequence goes
 between the curly braces.

To specify a character by Unicode code point, use the form \N{U+code
 point}, where code point
is a number in hexadecimal that gives the
 code point that Unicode has assigned to the desired
character. It is
 customary but not required to use leading zeros to pad the number to 4
 digits. Thus
\N{U+0041} means LATIN CAPITAL LETTER A, and you will
 rarely see it written without the two
leading zeros. \N{U+0041} means
 "A" even on EBCDIC machines (where the ordinal value of "A" is
not 0x41).

It is even possible to give your own names to characters and character
 sequences. For details, see
charnames.

(There is an expanded internal form that you may see in debug output: \N{U+code point.code
point...}.
 The ... means any number of these code points separated by dots.
 This represents
the sequence formed by the characters. This is an internal
 form only, subject to change, and you
should not try to use it yourself.)

Mnemonic: Named character.

Note that a character or character sequence expressed as a named
 or numbered character is
considered a character without special
 meaning by the regex engine, and will match "as is".

Example

 $str =~ /\N{THAI CHARACTER SO SO}/; # Matches the Thai SO SO character

 use charnames 'Cyrillic'; # Loads Cyrillic names.
 $str =~ /\N{ZHE}\N{KA}/; # Match "ZHE" followed by "KA".

Perl version 5.16.1 documentation - perlrebackslash

Page 4http://perldoc.perl.org

Octal escapes

There are two forms of octal escapes. Each is used to specify a character by
 its code point specified
in octal notation.

One form, available starting in Perl 5.14 looks like \o{...}, where the dots
 represent one or more
octal digits. It can be used for any Unicode character.

It was introduced to avoid the potential problems with the other form,
 available in all Perls. That form
consists of a backslash followed by three
 octal digits. One problem with this form is that it can look
exactly like an
 old-style backreference (see Disambiguation rules between old-style octal escapes
and backreferences
 below.) You can avoid this by making the first of the three digits always a
 zero,
but that makes \077 the largest code point specifiable.

In some contexts, a backslash followed by two or even one octal digits may be
 interpreted as an octal
escape, sometimes with a warning, and because of some
 bugs, sometimes with surprising results.
Also, if you are creating a regex
 out of smaller snippets concatenated together, and you use fewer
than three
 digits, the beginning of one snippet may be interpreted as adding digits to the
 ending of the
snippet before it. See Absolute referencing for more
 discussion and examples of the snippet problem.

Note that a character expressed as an octal escape is considered
 a character without special
meaning by the regex engine, and will match
 "as is".

To summarize, the \o{} form is always safe to use, and the other form is
 safe to use for code points
through \077 when you use exactly three digits to
 specify them.

Mnemonic: 0ctal or octal.

Examples (assuming an ASCII platform)

 $str = "Perl";
 $str =~ /\o{120}/; # Match, "\120" is "P".
 $str =~ /\120/; # Same.
 $str =~ /\o{120}+/; # Match, "\120" is "P", it's repeated at least once
 $str =~ /\120+/; # Same.
 $str =~ /P\053/; # No match, "\053" is "+" and taken literally.
 /\o{23073}/ # Black foreground, white background smiling face.
 /\o{4801234567}/ # Raises a warning, and yields chr(4)

Disambiguation rules between old-style octal escapes and backreferences

Octal escapes of the \000 form outside of bracketed character classes
 potentially clash with old-style
backreferences. (see Absolute referencing
 below). They both consist of a backslash followed by
numbers. So Perl has to
 use heuristics to determine whether it is a backreference or an octal escape.

Perl uses the following rules to disambiguate:

1 If the backslash is followed by a single digit, it's a backreference.

2 If the first digit following the backslash is a 0, it's an octal escape.

3 If the number following the backslash is N (in decimal), and Perl already
 has seen N capture
groups, Perl considers this a backreference. Otherwise,
 it considers it an octal escape. If N
has more than three digits, Perl
 takes only the first three for the octal escape; the rest are
matched as is.

 my $pat = "(" x 999;
 $pat .= "a";
 $pat .= ")" x 999;
 /^($pat)\1000$/; # Matches 'aa'; there are 1000 capture groups.
 /^$pat\1000$/; # Matches 'a@0'; there are 999 capture groups
 # and \1000 is seen as \100 (a '@') and a '0'

Perl version 5.16.1 documentation - perlrebackslash

Page 5http://perldoc.perl.org

You can force a backreference interpretation always by using the \g{...}
 form. You can the force
an octal interpretation always by using the \o{...}
 form, or for numbers up through \077 (= 63
decimal), by using three digits,
 beginning with a "0".

Hexadecimal escapes

Like octal escapes, there are two forms of hexadecimal escapes, but both start
 with the same thing,
\x. This is followed by either exactly two hexadecimal
 digits forming a number, or a hexadecimal
number of arbitrary length surrounded
 by curly braces. The hexadecimal number is the code point of
the character you
 want to express.

Note that a character expressed as one of these escapes is considered a
 character without special
meaning by the regex engine, and will match
 "as is".

Mnemonic: hexadecimal.

Examples (assuming an ASCII platform)

 $str = "Perl";
 $str =~ /\x50/; # Match, "\x50" is "P".
 $str =~ /\x50+/; # Match, "\x50" is "P", it is repeated at least once
 $str =~ /P\x2B/; # No match, "\x2B" is "+" and taken literally.

 /\x{2603}\x{2602}/ # Snowman with an umbrella.
 # The Unicode character 2603 is a snowman,
 # the Unicode character 2602 is an umbrella.
 /\x{263B}/ # Black smiling face.
 /\x{263b}/ # Same, the hex digits A - F are case insensitive.

Modifiers
A number of backslash sequences have to do with changing the character,
 or characters following
them. \l will lowercase the character following
 it, while \u will uppercase (or, more accurately,
titlecase) the
 character following it. They provide functionality similar to the
 functions lcfirst and
ucfirst.

To uppercase or lowercase several characters, one might want to use \L or \U, which will
lowercase/uppercase all characters following
 them, until either the end of the pattern or the next
occurrence of \E, whichever comes first. They provide functionality similar to what
 the functions lc
and uc provide.

\Q is used to quote (disable) pattern metacharacters, up to the next \E or the end of the pattern. \Q
adds a backslash to any character
 that could have special meaning to Perl. In the ASCII range, it
quotes
 every character that isn't a letter, digit, or underscore. See "quotemeta" in perlfunc for details
on what gets quoted for non-ASCII
 code points. Using this ensures that any character between \Q
and \E will be matched literally, not interpreted as a metacharacter by
 the regex engine.

\F can be used to casefold all characters following, up to the next \E
 or the end of the pattern. It
provides the functionality similar to
 the fc function.

Mnemonic: Lowercase, Uppercase, Fold-case, Quotemeta, End.

Examples

 $sid = "sid";
 $greg = "GrEg";
 $miranda = "(Miranda)";
 $str =~ /\u$sid/; # Matches 'Sid'
 $str =~ /\L$greg/; # Matches 'greg'
 $str =~ /\Q$miranda\E/; # Matches '(Miranda)', as if the pattern
 # had been written as /\(Miranda\)/

Perl version 5.16.1 documentation - perlrebackslash

Page 6http://perldoc.perl.org

Character classes
Perl regular expressions have a large range of character classes. Some of
 the character classes are
written as a backslash sequence. We will briefly
 discuss those here; full details of character classes
can be found in perlrecharclass.

\w is a character class that matches any single word character
 (letters, digits, Unicode marks, and
connector punctuation (like the
 underscore)). \d is a character class that matches any decimal
 digit,
while the character class \s matches any whitespace character.
 New in perl 5.10.0 are the classes
\h and \v which match horizontal
 and vertical whitespace characters.

The exact set of characters matched by \d, \s, and \w varies
 depending on various pragma and
regular expression modifiers. It is
 possible to restrict the match to the ASCII range by using the /a

regular expression modifier. See perlrecharclass.

The uppercase variants (\W, \D, \S, \H, and \V) are
 character classes that match, respectively, any
character that isn't a
 word character, digit, whitespace, horizontal whitespace, or vertical
 whitespace.

Mnemonics: word, digit, space, horizontal, vertical.

Unicode classes

\pP (where P is a single letter) and \p{Property} are used to
 match a character that matches the
given Unicode property; properties
 include things like "letter", or "thai character". Capitalizing the

sequence to \PP and \P{Property} make the sequence match a character
 that doesn't match the
given Unicode property. For more details, see "Backslash sequences" in perlrecharclass and
"Unicode Character Properties" in perlunicode.

Mnemonic: property.

Referencing
If capturing parenthesis are used in a regular expression, we can refer
 to the part of the source string
that was matched, and match exactly the
 same thing. There are three ways of referring to such
backreference:
 absolutely, relatively, and by name.

Absolute referencing

Either \gN (starting in Perl 5.10.0), or \N (old-style) where N
 is a positive (unsigned) decimal number
of any length is an absolute reference
 to a capturing group.

N refers to the Nth set of parentheses, so \gN refers to whatever has
 been matched by that set of
parentheses. Thus \g1 refers to the first
 capture group in the regex.

The \gN form can be equivalently written as \g{N}
 which avoids ambiguity when building a regex by
concatenating shorter
 strings. Otherwise if you had a regex qr/ab/, and $a contained "\g1", and
$b contained "37", you would get /\g137/ which is
 probably not what you intended.

In the \N form, N must not begin with a "0", and there must be at
 least N capturing groups, or else N
is considered an octal escape
 (but something like \18 is the same as \0018; that is, the octal escape
"\001" followed by a literal digit "8").

Mnemonic: group.

Examples

 /(\w+) \g1/; # Finds a duplicated word, (e.g. "cat cat").
 /(\w+) \1/; # Same thing; written old-style
 /(.)(.)\g2\g1/; # Match a four letter palindrome (e.g. "ABBA").

Relative referencing

\g-N (starting in Perl 5.10.0) is used for relative addressing. (It can
 be written as \g{-N.) It refers to
the Nth group before the \g{-N}.

Perl version 5.16.1 documentation - perlrebackslash

Page 7http://perldoc.perl.org

The big advantage of this form is that it makes it much easier to write
 patterns with references that
can be interpolated in larger patterns,
 even if the larger pattern also contains capture groups.

Examples

 /(A) # Group 1
 (# Group 2
 (B) # Group 3
 \g{-1} # Refers to group 3 (B)
 \g{-3} # Refers to group 1 (A)
)
 /x; # Matches "ABBA".

 my $qr = qr /(.)(.)\g{-2}\g{-1}/; # Matches 'abab', 'cdcd', etc.
 /qrqr/ # Matches 'ababcdcd'.

Named referencing

\g{name} (starting in Perl 5.10.0) can be used to back refer to a
 named capture group, dispensing
completely with having to think about capture
 buffer positions.

To be compatible with .Net regular expressions, \g{name} may also be
 written as \k{name},
\k<name> or \k'name'.

To prevent any ambiguity, name must not start with a digit nor contain a
 hyphen.

Examples

 /(?<word>\w+) \g{word}/ # Finds duplicated word, (e.g. "cat cat")
 /(?<word>\w+) \k{word}/ # Same.
 /(?<word>\w+) \k<word>/ # Same.
 /(?<letter1>.)(?<letter2>.)\g{letter2}\g{letter1}/
 # Match a four letter palindrome (e.g. "ABBA")

Assertions
Assertions are conditions that have to be true; they don't actually
 match parts of the substring. There
are six assertions that are written as
 backslash sequences.

\A

\A only matches at the beginning of the string. If the /m modifier
 isn't used, then /\A/ is
equivalent to /^/. However, if the /m
 modifier is used, then /^/ matches internal newlines,
but the meaning
 of /\A/ isn't changed by the /m modifier. \A matches at the beginning
 of the
string regardless whether the /m modifier is used.

\z, \Z

\z and \Z match at the end of the string. If the /m modifier isn't
 used, then /\Z/ is equivalent
to /$/; that is, it matches at the
 end of the string, or one before the newline at the end of the
string. If the /m modifier is used, then /$/ matches at internal newlines, but the
 meaning of
/\Z/ isn't changed by the /m modifier. \Z matches at
 the end of the string (or just before a
trailing newline) regardless whether
 the /m modifier is used.

\z is just like \Z, except that it does not match before a trailing
 newline. \z matches at the
end of the string only, regardless of the
 modifiers used, and not just before a newline. It is how
to anchor the
 match to the true end of the string under all conditions.

\G

\G is usually used only in combination with the /g modifier. If the /g modifier is used and the
match is done in scalar context, Perl remembers where in the source string the last match
ended, and the next time,
 it will start the match from where it ended the previous time.

Perl version 5.16.1 documentation - perlrebackslash

Page 8http://perldoc.perl.org

\G matches the point where the previous match on that string ended, or the beginning of that
string if there was no previous match.

Mnemonic: Global.

\b, \B

\b matches at any place between a word and a non-word character; \B
 matches at any place
between characters where \b doesn't match. \b
 and \B assume there's a non-word character
before the beginning and after
 the end of the source string; so \b will match at the beginning
(or end)
 of the source string if the source string begins (or ends) with a word
 character.
Otherwise, \B will match.

Do not use something like \b=head\d\b and expect it to match the
 beginning of a line. It
can't, because for there to be a boundary before
 the non-word "=", there must be a word
character immediately previous. All boundary determinations look for word characters alone,
not for
 non-words characters nor for string ends. It may help to understand how
 <\b> and <\B>
work by equating them as follows:

 \b	 really means	 (?:(?<=\w)(?!\w)|(?<!\w)(?=\w))
 \B	 really means	 (?:(?<=\w)(?=\w)|(?<!\w)(?!\w))

Mnemonic: boundary.

Examples

 "cat" =~ /\Acat/; # Match.
 "cat" =~ /cat\Z/; # Match.
 "cat\n" =~ /cat\Z/; # Match.
 "cat\n" =~ /cat\z/; # No match.

 "cat" =~ /\bcat\b/; # Matches.
 "cats" =~ /\bcat\b/; # No match.
 "cat" =~ /\bcat\B/; # No match.
 "cats" =~ /\bcat\B/; # Match.

 while ("cat dog" =~ /(\w+)/g) {
 print $1; # Prints 'catdog'
 }
 while ("cat dog" =~ /\G(\w+)/g) {
 print $1; # Prints 'cat'
 }

Misc
Here we document the backslash sequences that don't fall in one of the
 categories above. These are:

\C

\C always matches a single octet, even if the source string is encoded
 in UTF-8 format, and
the character to be matched is a multi-octet character. \C was introduced in perl 5.6. This is
very dangerous, because it violates
 the logical character abstraction and can cause UTF-8
sequences to become malformed.

Mnemonic: oCtet.

\K

This appeared in perl 5.10.0. Anything matched left of \K is
 not included in $&, and will not be
replaced if the pattern is
 used in a substitution. This lets you write s/PAT1 \K
PAT2/REPL/x
 instead of s/(PAT1) PAT2/${1}REPL/x or s/(?<=PAT1) PAT2/REPL/x.

Mnemonic: Keep.

Perl version 5.16.1 documentation - perlrebackslash

Page 9http://perldoc.perl.org

\N

This is an experimental feature new to perl 5.12.0. It matches any character
 that is not a
newline. It is a short-hand for writing [^\n], and is
 identical to the . metasymbol, except
under the /s flag, which changes
 the meaning of ., but not \N.

Note that \N{...} can mean a named or numbered character .

Mnemonic: Complement of \n.

\R

\R matches a generic newline; that is, anything considered a
 linebreak sequence by Unicode.
This includes all characters matched by \v (vertical whitespace), and the multi character
sequence "\x0D\x0A"
 (carriage return followed by a line feed, sometimes called the network
newline; it's the end of line sequence used in Microsoft text files opened
 in binary mode). \R is
equivalent to (?>\x0D\x0A|\v). (The
 reason it doesn't backtrack is that the sequence is
considered
 inseparable. That means that

 "\x0D\x0A" =~ /^\R\x0A$/ # No match

fails, because the \R matches the entire string, and won't backtrack
 to match just the "\x0D"
.) Since \R can match a sequence of more than one character, it cannot be put
 inside a
bracketed character class; /[\R]/ is an error; use \v
 instead. \R was introduced in perl
5.10.0.

Note that this does not respect any locale that might be in effect; it
 matches according to the
platform's native character set.

Mnemonic: none really. \R was picked because PCRE already uses \R,
 and more importantly
because Unicode recommends such a regular expression
 metacharacter, and suggests \R as
its notation.

\X

This matches a Unicode extended grapheme cluster.

\X matches quite well what normal (non-Unicode-programmer) usage
 would consider a single
character. As an example, consider a G with some sort
 of diacritic mark, such as an arrow.
There is no such single character in
 Unicode, but one can be composed by using a G followed
by a Unicode "COMBINING
 UPWARDS ARROW BELOW", and would be displayed by
Unicode-aware software as if it
 were a single character.

Mnemonic: eXtended Unicode character.

Examples

 "\x{256}" =~ /^\C\C$/; # Match as chr (0x256) takes 2 octets in UTF-8.

 $str =~ s/foo\Kbar/baz/g; # Change any 'bar' following a 'foo' to 'baz'
 $str =~ s/(.)\K\g1//g; # Delete duplicated characters.

 "\n" =~ /^\R$/; # Match, \n is a generic newline.
 "\r" =~ /^\R$/; # Match, \r is a generic newline.
 "\r\n" =~ /^\R$/; # Match, \r\n is a generic newline.

 "P\x{307}" =~ /^\X$/ # \X matches a P with a dot above.

