
Perl version 5.16.1 documentation - ExtUtils::Embed

Page 1http://perldoc.perl.org

NAME
ExtUtils::Embed - Utilities for embedding Perl in C/C++ applications

SYNOPSIS
 perl -MExtUtils::Embed -e xsinit
 perl -MExtUtils::Embed -e ccopts
 perl -MExtUtils::Embed -e ldopts

DESCRIPTION
ExtUtils::Embed provides utility functions for embedding a Perl interpreter
 and extensions in your
C/C++ applications. Typically, an application Makefile will invoke ExtUtils::Embed
 functions while
building your application.

@EXPORT
ExtUtils::Embed exports the following functions:

xsinit(), ldopts(), ccopts(), perl_inc(), ccflags(), ccdlflags(), xsi_header(), xsi_protos(), xsi_body()

FUNCTIONS
xsinit()

Generate C/C++ code for the XS initializer function.

When invoked as `perl -MExtUtils::Embed -e xsinit --`
 the following options are
recognized:

-o <output filename> (Defaults to perlxsi.c)

-o STDOUT will print to STDOUT.

-std (Write code for extensions that are linked with the current Perl.)

Any additional arguments are expected to be names of modules
 to generate code for.

When invoked with parameters the following are accepted and optional:

xsinit($filename,$std,[@modules])

Where,

$filename is equivalent to the -o option.

$std is boolean, equivalent to the -std option.

[@modules] is an array ref, same as additional arguments mentioned above.

Examples

 perl -MExtUtils::Embed -e xsinit -- -o xsinit.c Socket

This will generate code with an xs_init function that glues the perl Socket::bootstrap function
to the C boot_Socket function and writes it to a file named xsinit.c.

Note that DynaLoader is a special case where it must call boot_DynaLoader directly.

 perl -MExtUtils::Embed -e xsinit

This will generate code for linking with DynaLoader and each static extension found in
$Config{static_ext}.
 The code is written to the default file name perlxsi.c.

 perl -MExtUtils::Embed -e xsinit -- -o xsinit.c -std DBI DBD::Oracle

Here, code is written for all the currently linked extensions along with code
 for DBI and
DBD::Oracle.

If you have a working DynaLoader then there is rarely any need to statically link in any other
extensions.

Perl version 5.16.1 documentation - ExtUtils::Embed

Page 2http://perldoc.perl.org

ldopts()

Output arguments for linking the Perl library and extensions to your
 application.

When invoked as `perl -MExtUtils::Embed -e ldopts --`
 the following options are
recognized:

-std

Output arguments for linking the Perl library and any extensions linked
 with the current Perl.

-I <path1:path2>

Search path for ModuleName.a archives. Default path is @INC.
 Library archives are expected
to be found as /some/path/auto/ModuleName/ModuleName.a
 For example, when looking
for Socket.a relative to a search path, we should find auto/Socket/Socket.a

When looking for DBD::Oracle relative to a search path,
 we should find
auto/DBD/Oracle/Oracle.a

Keep in mind that you can always supply /my/own/path/ModuleName.a
 as an additional
linker argument.

-- <list of linker args>

Additional linker arguments to be considered.

Any additional arguments found before the -- token are expected to be names of modules to
generate code for.

When invoked with parameters the following are accepted and optional:

ldopts($std,[@modules],[@link_args],$path)

Where:

$std is boolean, equivalent to the -std option.

[@modules] is equivalent to additional arguments found before the -- token.

[@link_args] is equivalent to arguments found after the -- token.

$path is equivalent to the -I option.

In addition, when ldopts is called with parameters, it will return the argument string
 rather than
print it to STDOUT.

Examples

 perl -MExtUtils::Embed -e ldopts

This will print arguments for linking with libperl and
 extensions found in $Config{static_ext}.
This includes libraries
 found in $Config{libs} and the first ModuleName.a library
 for each
extension that is found by searching @INC or the path specified by the -I option. In addition,
when ModuleName.a is found, additional linker arguments
 are picked up from the extralibs.ld
file in the same directory.

 perl -MExtUtils::Embed -e ldopts -- -std Socket

This will do the same as the above example, along with printing additional arguments for
linking with the Socket extension.

 perl -MExtUtils::Embed -e ldopts -- -std Msql -- -L/usr/msql/lib
-lmsql

Any arguments after the second '--' token are additional linker
 arguments that will be
examined for potential conflict. If there is no
 conflict, the additional arguments will be part of
the output.

perl_inc()

For including perl header files this function simply prints:

Perl version 5.16.1 documentation - ExtUtils::Embed

Page 3http://perldoc.perl.org

 -I$Config{archlibexp}/CORE

So, rather than having to say:

 perl -MConfig -e 'print "-I$Config{archlibexp}/CORE"'

Just say:

 perl -MExtUtils::Embed -e perl_inc

ccflags(), ccdlflags()

These functions simply print $Config{ccflags} and $Config{ccdlflags}

ccopts()

This function combines perl_inc(), ccflags() and ccdlflags() into one.

xsi_header()

This function simply returns a string defining the same EXTERN_C macro as perlmain.c
along with #including perl.h and EXTERN.h.

xsi_protos(@modules)

This function returns a string of boot_$ModuleName prototypes for each @modules.

xsi_body(@modules)

This function returns a string of calls to newXS() that glue the module bootstrap
 function to
boot_ModuleName for each @modules.

xsinit() uses the xsi_* functions to generate most of its code.

EXAMPLES
For examples on how to use ExtUtils::Embed for building C/C++ applications
 with embedded perl,
see perlembed.

SEE ALSO
perlembed

AUTHOR
Doug MacEachern <dougm@osf.org>

Based on ideas from Tim Bunce <Tim.Bunce@ig.co.uk> and minimod.pl by Andreas Koenig <
k@anna.in-berlin.de> and Tim Bunce.

