
Perl version 5.16.2 documentation - encoding::warnings

Page 1http://perldoc.perl.org

NAME
encoding::warnings - Warn on implicit encoding conversions

VERSION
This document describes version 0.11 of encoding::warnings, released
 June 5, 2007.

SYNOPSIS
 use encoding::warnings; # or 'FATAL' to raise fatal exceptions

 utf8::encode($a = chr(20000)); # a byte-string (raw bytes)
 $b = chr(20000);		 # a unicode-string (wide characters)

 # "Bytes implicitly upgraded into wide characters as iso-8859-1"
 $c = $a . $b;

DESCRIPTION
Overview of the problem

By default, there is a fundamental asymmetry in Perl's unicode model:
 implicit upgrading from
byte-strings to unicode-strings assumes that
 they were encoded in ISO 8859-1 (Latin-1), but
unicode-strings are
 downgraded with UTF-8 encoding. This happens because the first 256
 codepoints
in Unicode happens to agree with Latin-1.

However, this silent upgrading can easily cause problems, if you happen
 to mix unicode strings with
non-Latin1 data -- i.e. byte-strings encoded
 in UTF-8 or other encodings. The error will not manifest
until the
 combined string is written to output, at which time it would be impossible
 to see where did the
silent upgrading occur.

Detecting the problem
This module simplifies the process of diagnosing such problems. Just put
 this line on top of your main
program:

 use encoding::warnings;

Afterwards, implicit upgrading of high-bit bytes will raise a warning.
 Ex.: Bytes implicitly
upgraded into wide characters as iso-8859-1 at
 - line 7.

However, strings composed purely of ASCII code points (0x00..0x7F)
 will not trigger this warning.

You can also make the warnings fatal by importing this module as:

 use encoding::warnings 'FATAL';

Solving the problem
Most of the time, this warning occurs when a byte-string is concatenated
 with a unicode-string. There
are a number of ways to solve it:

* Upgrade both sides to unicode-strings

If your program does not need compatibility for Perl 5.6 and earlier,
 the recommended
approach is to apply appropriate IO disciplines, so all
 data in your program become
unicode-strings. See encoding, open and "binmode" in perlfunc for how.

* Downgrade both sides to byte-strings

The other way works too, especially if you are sure that all your data
 are under the same
encoding, or if compatibility with older versions
 of Perl is desired.

Perl version 5.16.2 documentation - encoding::warnings

Page 2http://perldoc.perl.org

You may downgrade strings with Encode::encode and utf8::encode.
 See Encode and
utf8 for details.

* Specify the encoding for implicit byte-string upgrading

If you are confident that all byte-strings will be in a specific
 encoding like UTF-8, and need not
support older versions of Perl,
 use the encoding pragma:

 use encoding 'utf8';

Similarly, this will silence warnings from this module, and preserve the
 default behaviour:

 use encoding 'iso-8859-1';

However, note that use encoding actually had three distinct effects:

* PerlIO layers for STDIN and STDOUT

This is similar to what open pragma does.

* Literal conversions

This turns all literal string in your program into unicode-strings
 (equivalent to a use
utf8), by decoding them using the specified
 encoding.

* Implicit upgrading for byte-strings

This will silence warnings from this module, as shown above.

Because literal conversions also work on empty strings, it may surprise
 some people:

 use encoding 'big5';

 my $byte_string = pack("C*", 0xA4, 0x40);
 print length $a;	 # 2 here.
 $a .= "";		 # concatenating with a unicode string...
 print length $a;	 # 1 here!

In other words, do not use encoding unless you are certain that the
 program will not deal
with any raw, 8-bit binary data at all.

However, the Filter => 1 flavor of use encoding will not
 affect implicit upgrading for
byte-strings, and is thus incapable of
 silencing warnings from this module. See encoding for
more details.

CAVEATS
For Perl 5.9.4 or later, this module's effect is lexical.

For Perl versions prior to 5.9.4, this module affects the whole script,
 instead of inside its lexical block.

SEE ALSO
perlunicode, perluniintro

open, utf8, encoding, Encode

AUTHORS
Audrey Tang

COPYRIGHT
Copyright 2004, 2005, 2006, 2007 by Audrey Tang <cpan@audreyt.org>.

This program is free software; you can redistribute it and/or modify it
 under the same terms as Perl
itself.

See http://www.perl.com/perl/misc/Artistic.html

Perl version 5.16.2 documentation - encoding::warnings

Page 3http://perldoc.perl.org

