
Perl version 5.18.0 documentation - autodie::hints

Page 1http://perldoc.perl.org

NAME
autodie::hints - Provide hints about user subroutines to autodie

SYNOPSIS
 package Your::Module;

 our %DOES = ('autodie::hints::provider' => 1);

 sub AUTODIE_HINTS {
 return {
 foo => { scalar => HINTS, list => SOME_HINTS },
 bar => { scalar => HINTS, list => MORE_HINTS },
 }
 }

 # Later, in your main program...

 use Your::Module qw(foo bar);
 use autodie qw(:default foo bar);

 foo(); # succeeds or dies based on scalar hints

 # Alternatively, hints can be set on subroutines we've
 # imported.

 use autodie::hints;
 use Some::Module qw(think_positive);

 BEGIN {
 autodie::hints->set_hints_for(
 \&think_positive,
 {
 fail => sub { $_[0] <= 0 }
 }
)
 }
 use autodie qw(think_positive);

 think_positive(...); # Returns positive or dies.

DESCRIPTION
Introduction

The autodie pragma is very smart when it comes to working with
 Perl's built-in functions. The
behaviour for these functions are
 fixed, and autodie knows exactly how they try to signal failure.

But what about user-defined subroutines from modules? If you use autodie on a user-defined
subroutine then it assumes the following
 behaviour to demonstrate failure:

A false value, in scalar context

An empty list, in list context

A list containing a single undef, in list context

Perl version 5.18.0 documentation - autodie::hints

Page 2http://perldoc.perl.org

All other return values (including the list of the single zero, and the
 list containing a single empty
string) are considered successful. However,
 real-world code isn't always that easy. Perhaps the code
you're working
 with returns a string containing the word "FAIL" upon failure, or a
 two element list
containing (undef, "human error message"). To make
 autodie work with these sorts of
subroutines, we have
 the hinting interface.

The hinting interface allows hints to be provided to autodie
 on how it should detect failure from
user-defined subroutines. While
 these can be provided by the end-user of autodie, they are ideally

written into the module itself, or into a helper module or sub-class
 of autodie itself.

What are hints?
A hint is a subroutine or value that is checked against the
 return value of an autodying subroutine. If
the match returns true, autodie considers the subroutine to have failed.

If the hint provided is a subroutine, then autodie will pass
 the complete return value to that
subroutine. If the hint is
 any other value, then autodie will smart-match against the
 value provided.
In Perl 5.8.x there is no smart-match operator, and as such
 only subroutine hints are supported in
these versions.

Hints can be provided for both scalar and list contexts. Note
 that an autodying subroutine will never
see a void context, as autodie always needs to capture the return value for examination.
 Autodying
subroutines called in void context act as if they're called
 in a scalar context, but their return value is
discarded after it
 has been checked.

Example hints
Hints may consist of scalars, array references, regular expressions and
 subroutine references. You
can specify different hints for how
 failure should be identified in scalar and list contexts.

These examples apply for use in the AUTODIE_HINTS subroutine and when
 calling
autodie::hints-set_hints_for()>.

The most common context-specific hints are:

 # Scalar failures always return undef:
 { scalar => undef }

 # Scalar failures return any false value [default expectation]:
 { scalar => sub { ! $_[0] } }

 # Scalar failures always return zero explicitly:
 { scalar => '0' }

 # List failures always return an empty list:
 { list => [] }

 # List failures return () or (undef) [default expectation]:
 { list => sub { ! @_ || @_ == 1 && !defined $_[0] } }

 # List failures return () or a single false value:
 { list => sub { ! @_ || @_ == 1 && !$_[0] } }

 # List failures return (undef, "some string")
 { list => sub { @_ == 2 && !defined $_[0] } }

 # Unsuccessful foo() returns 'FAIL' or '_FAIL' in scalar context,
 # returns (-1) in list context...

Perl version 5.18.0 documentation - autodie::hints

Page 3http://perldoc.perl.org

 autodie::hints->set_hints_for(
 \&foo,
 {
 scalar => qr/^ _? FAIL $/xms,
 list => [-1],
 }
);

 # Unsuccessful foo() returns 0 in all contexts...
 autodie::hints->set_hints_for(
 \&foo,
 {
 scalar => 0,
 list => [0],
 }
);

This "in all contexts" construction is very common, and can be
 abbreviated, using the 'fail' key. This
sets both the scalar
 and list hints to the same value:

 # Unsuccessful foo() returns 0 in all contexts...
 autodie::hints->set_hints_for(
 \&foo,
 {
 fail => sub { @_ == 1 and defined $_[0] and $_[0] == 0 }
 }
);

 # Unsuccessful think_positive() returns negative number on
failure...
 autodie::hints->set_hints_for(
 \&think_positive,
 {
 fail => sub { $_[0] < 0 }
 }
);

 # Unsuccessful my_system() returns non-zero on failure...
 autodie::hints->set_hints_for(
 \&my_system,
 {
 fail => sub { $_[0] != 0 }
 }
);

Manually setting hints from within your program
If you are using a module which returns something special on failure, then
 you can manually create
hints for each of the desired subroutines. Once
 the hints are specified, they are available for all files
and modules loaded
 thereafter, thus you can move this work into a module and it will still
 work.

	 use Some::Module qw(foo bar);
	 use autodie::hints;

	 autodie::hints->set_hints_for(

Perl version 5.18.0 documentation - autodie::hints

Page 4http://perldoc.perl.org

		 \&foo,
		 {
			 scalar => SCALAR_HINT,
			 list => LIST_HINT,
		 }
);
	 autodie::hints->set_hints_for(
		 \&bar,
 { fail => SOME_HINT, }
);

It is possible to pass either a subroutine reference (recommended) or a fully
 qualified subroutine
name as the first argument. This means you can set hints
 on modules that might get loaded:

	 use autodie::hints;
	 autodie::hints->set_hints_for(
		 'Some::Module:bar', { fail => SCALAR_HINT, }
);

This technique is most useful when you have a project that uses a
 lot of third-party modules. You can
define all your possible hints
 in one-place. This can even be in a sub-class of autodie. For
 example:

 package my::autodie;

 use parent qw(autodie);
 use autodie::hints;

 autodie::hints->set_hints_for(...);

 1;

You can now use my::autodie, which will work just like the standard autodie, but is now aware
of any hints that you've set.

Adding hints to your module
autodie provides a passive interface to allow you to declare hints for
 your module. These hints will
be found and used by autodie if it
 is loaded, but otherwise have no effect (or dependencies) without
autodie.
 To set these, your module needs to declare that it does the autodie::hints::provider
role. This can be done by writing your
 own DOES method, using a system such as Class::DOES to
handle
 the heavy-lifting for you, or declaring a %DOES package variable
 with a
autodie::hints::provider key and a corresponding true value.

Note that checking for a %DOES hash is an autodie-only
 short-cut. Other modules do not use this
mechanism for checking
 roles, although you can use the Class::DOES module from the
 CPAN to
allow it.

In addition, you must define a AUTODIE_HINTS subroutine that returns
 a hash-reference containing
the hints for your subroutines:

 package Your::Module;

 # We can use the Class::DOES from the CPAN to declare adherence
 # to a role.

 use Class::DOES 'autodie::hints::provider' => 1;

Perl version 5.18.0 documentation - autodie::hints

Page 5http://perldoc.perl.org

 # Alternatively, we can declare the role in %DOES. Note that
 # this is an autodie specific optimisation, although Class::DOES
 # can be used to promote this to a true role declaration.

 our %DOES = ('autodie::hints::provider' => 1);

 # Finally, we must define the hints themselves.

	 sub AUTODIE_HINTS {
	 return {
	 foo => { scalar => HINTS, list => SOME_HINTS },
	 bar => { scalar => HINTS, list => MORE_HINTS },
	 baz => { fail => HINTS },
	 }
	 }

This allows your code to set hints without relying on autodie and autodie::hints being loaded,
or even installed. In this way your
 code can do the right thing when autodie is installed, but does not
need to depend upon it to function.

Insisting on hints
When a user-defined subroutine is wrapped by autodie, it will
 use hints if they are available, and
otherwise reverts to the default behaviour described in the introduction of this document.
 This can be
problematic if we expect a hint to exist, but (for
 whatever reason) it has not been loaded.

We can ask autodie to insist that a hint be used by prefixing
 an exclamation mark to the start of the
subroutine name. A lone
 exclamation mark indicates that all subroutines after it must
 have hints
declared.

	 # foo() and bar() must have their hints defined
	 use autodie qw(!foo !bar baz);

	 # Everything must have hints (recommended).
	 use autodie qw(! foo bar baz);

	 # bar() and baz() must have their hints defined
	 use autodie qw(foo ! bar baz);

 # Enable autodie for all of Perl's supported built-ins,
 # as well as for foo(), bar() and baz(). Everything must
 # have hints.
 use autodie qw(! :all foo bar baz);

If hints are not available for the specified subroutines, this will cause a
 compile-time error. Insisting on
hints for Perl's built-in functions
 (eg, open and close) is always successful.

Insisting on hints is strongly recommended.

Diagnostics
Attempts to set_hints_for unidentifiable subroutine

You've called autodie::hints->set_hints_for() using a subroutine
 reference, but that
reference could not be resolved back to a
 subroutine name. It may be an anonymous
subroutine (which can't
 be made autodying), or may lack a name for other reasons.

If you receive this error with a subroutine that has a real name,
 then you may have found a

Perl version 5.18.0 documentation - autodie::hints

Page 6http://perldoc.perl.org

bug in autodie. See "BUGS" in autodie
 for how to report this.

fail hints cannot be provided with either scalar or list hints for %s

When defining hints, you can either supply both list and scalar keywords, or you can
provide a single fail keyword.
 You can't mix and match them.

%s hint missing for %s

You've provided either a scalar hint without supplying
 a list hint, or vice-versa. You must
supply both scalar
 and list hints, or a single fail hint.

ACKNOWLEDGEMENTS
Dr Damian Conway for suggesting the hinting interface and providing the
 example usage.

Jacinta Richardson for translating much of my ideas into this
 documentation.

AUTHOR
Copyright 2009, Paul Fenwick <pjf@perltraining.com.au>

LICENSE
This module is free software. You may distribute it under the
 same terms as Perl itself.

SEE ALSO
autodie, Class::DOES

