
Perl version 5.18.0 documentation - Pod::Simple::Search

Page 1http://perldoc.perl.org

NAME
Pod::Simple::Search - find POD documents in directory trees

SYNOPSIS
 use Pod::Simple::Search;
 my $name2path = Pod::Simple::Search->new->limit_glob('LWP::*')->survey;
 print "Looky see what I found: ",
 join(' ', sort keys %$name2path), "\n";

 print "LWPUA docs = ",
 Pod::Simple::Search->new->find('LWP::UserAgent') || "?",
 "\n";

DESCRIPTION
Pod::Simple::Search is a class that you use for running searches
 for Pod files. An object of this
class has several attributes
 (mostly options for controlling search options), and some methods
 for
searching based on those attributes.

The way to use this class is to make a new object of this class,
 set any options, and then call one of
the search options
 (probably survey or find). The sections below discuss the
 syntaxes for doing all
that.

CONSTRUCTOR
This class provides the one constructor, called new.
 It takes no parameters:

 use Pod::Simple::Search;
 my $search = Pod::Simple::Search->new;

ACCESSORS
This class defines several methods for setting (and, occasionally,
 reading) the contents of an object.
With two exceptions (discussed at
 the end of this section), these attributes are just for controlling the

way searches are carried out.

Note that each of these return $self when you call them as $self->whatever(value). That's so
that you can chain
 together set-attribute calls like this:

 my $name2path =
 Pod::Simple::Search->new
 -> inc(0) -> verbose(1) -> callback(\&blab)
 ->survey(@there);

...which works exactly as if you'd done this:

 my $search = Pod::Simple::Search->new;
 $search->inc(0);
 $search->verbose(1);
 $search->callback(\&blab);
 my $name2path = $search->survey(@there);

$search->inc(true-or-false);

This attribute, if set to a true value, means that searches should
 implicitly add perl's @INC
paths. This
 automatically considers paths specified in the PERL5LIB environment
 as this is
prepended to @INC by the Perl interpreter itself.
 This attribute's default value is TRUE. If you
want to search
 only specific directories, set $self->inc(0) before calling
 $inc->survey or
$inc->find.

Perl version 5.18.0 documentation - Pod::Simple::Search

Page 2http://perldoc.perl.org

$search->verbose(nonnegative-number);

This attribute, if set to a nonzero positive value, will make searches output
 (via warn) notes
about what they're doing as they do it.
 This option may be useful for debugging a pod-related
module.
 This attribute's default value is zero, meaning that no warn messages
 are produced.
(Setting verbose to 1 turns on some messages, and setting
 it to 2 turns on even more
messages, i.e., makes the following search(es)
 even more verbose than 1 would make them.)

$search->limit_glob(some-glob-string);

This option means that you want to limit the results just to items whose
 podnames match the
given glob/wildcard expression. For example, you
 might limit your search to just "LWP::*", to
search only for modules
 starting with "LWP::*" (but not including the module "LWP" itself); or

you might limit your search to "LW*" to see only modules whose (full)
 names begin with "LW";
or you might search for "*Find*" to search for
 all modules with "Find" somewhere in their full
name. (You can also use
 "?" in a glob expression; so "DB?" will match "DBI" and "DBD".)

$search->callback(\&some_routine);

This attribute means that every time this search sees a matching
 Pod file, it should call this
callback routine. The routine is called
 with two parameters: the current file's filespec, and its
pod name.
 (For example: ("/etc/perljunk/File/Crunk.pm", "File::Crunk")
would
 be in @_.)

The callback routine's return value is not used for anything.

This attribute's default value is false, meaning that no callback
 is called.

$search->laborious(true-or-false);

Unless you set this attribute to a true value, Pod::Search will apply Perl-specific heuristics to
find the correct module PODs quickly.
 This attribute's default value is false. You won't
normally need
 to set this to true.

Specifically: Turning on this option will disable the heuristics for
 seeing only files with Perl-like
extensions, omitting subdirectories
 that are numeric but do not match the current Perl
interpreter's
 version ID, suppressing site_perl as a module hierarchy name, etc.

$search->shadows(true-or-false);

Unless you set this attribute to a true value, Pod::Simple::Search will
 consider only the first file
of a given modulename as it looks thru the
 specified directories; that is, with this option off, if

Pod::Simple::Search has seen a somepathdir/Foo/Bar.pm already in this
 search, then it
won't bother looking at a somelaterpathdir/Foo/Bar.pm
 later on in that search, because
that file is merely a "shadow". But if
 you turn on $self->shadows(1), then these "shadow"
files are
 inspected too, and are noted in the pathname2podname return hash.

This attribute's default value is false; and normally you won't
 need to turn it on.

$search->limit_re(some-regxp);

Setting this attribute (to a value that's a regexp) means that you want
 to limit the results just to
items whose podnames match the given
 regexp. Normally this option is not needed, and the
more efficient limit_glob attribute is used instead.

$search->dir_prefix(some-string-value);

Setting this attribute to a string value means that the searches should
 begin in the specified
subdirectory name (like "Pod" or "File::Find",
 also expressable as "File/Find"). For example,
the search option $search->limit_glob("File::Find::R*")
 is the same as the
combination of the search options $search->limit_re("^File::Find::R") ->
dir_prefix("File::Find").

Normally you don't need to know about the dir_prefix option, but I
 include it in case it
might prove useful for someone somewhere.

(Implementationally, searching with limit_glob ends up setting limit_re
 and usually dir_prefix.)

Perl version 5.18.0 documentation - Pod::Simple::Search

Page 3http://perldoc.perl.org

$search->progress(some-progress-object);

If you set a value for this attribute, the value is expected
 to be an object (probably of a class
that you define) that has a reach method and a done method. This is meant for reporting

progress during the search, if you don't want to use a simple
 callback.

Normally you don't need to know about the progress option, but I
 include it in case it might
prove useful for someone somewhere.

While a search is in progress, the progress object's reach and done methods are called like
this:

 # Every time a file is being scanned for pod:
 $progress->reach($count, "Scanning $file"); ++$count;

 # And then at the end of the search:
 $progress->done("Noted $count Pod files total");

Internally, we often set this to an object of class
 Pod::Simple::Progress. That class is probably
undocumented,
 but you may wish to look at its source.

$name2path = $self->name2path;

This attribute is not a search parameter, but is used to report the
 result of survey method, as
discussed in the next section.

$path2name = $self->path2name;

This attribute is not a search parameter, but is used to report the
 result of survey method, as
discussed in the next section.

MAIN SEARCH METHODS
Once you've actually set any options you want (if any), you can go
 ahead and use the following
methods to search for Pod files
 in particular ways.

$search->survey(@directories)
The method survey searches for POD documents in a given set of
 files and/or directories. This runs
the search according to the various
 options set by the accessors above. (For example, if the inc
attribute
 is on, as it is by default, then the perl @INC directories are implicitly
 added to the list of
directories (if any) that you specify.)

The return value of survey is two hashes:

name2path

A hash that maps from each pod-name to the filespec (like
 "Stuff::Thing" =>
"/whatever/plib/Stuff/Thing.pm")

path2name

A hash that maps from each Pod filespec to its pod-name (like
 "/whatever/plib/Stuff/Thing.pm"
=> "Stuff::Thing")

Besides saving these hashes as the hashref attributes name2path and path2name, calling this
function also returns
 these hashrefs. In list context, the return value of $search->survey is the list
(\%name2path, \%path2name).
 In scalar context, the return value is \%name2path.
 Or you can
just call this in void context.

Regardless of calling context, calling survey saves
 its results in its name2path and path2name
attributes.

E.g., when searching in $HOME/perl5lib, the file $HOME/perl5lib/MyModule.pm would get the POD
name MyModule,
 whereas $HOME/perl5lib/Myclass/Subclass.pm would be Myclass::Subclass. The
name information can be used for POD
 translators.

Perl version 5.18.0 documentation - Pod::Simple::Search

Page 4http://perldoc.perl.org

Only text files containing at least one valid POD command are found.

In verbose mode, a warning is printed if shadows are found (i.e., more
 than one POD file with the
same POD name is found, e.g. CPAN.pm in
 different directories). This usually indicates duplicate
occurrences of
 modules in the @INC search path, which is occasionally inadvertent
 (but is often
simply a case of a user's path dir having a more recent
 version than the system's general path dirs in
general.)

The options to this argument is a list of either directories that are
 searched recursively, or files.
(Usually you wouldn't specify files,
 but just dirs.) Or you can just specify an empty-list, as in

$name2path; with the inc option on, as it is by default, teh

The POD names of files are the plain basenames with any Perl-like
 extension (.pm, .pl, .pod) stripped,
and path separators replaced by ::'s.

Calling Pod::Simple::Search->search(...) is short for
 Pod::Simple::Search->new->search(...). That is, a
throwaway object
 with default attribute values is used.

$search->simplify_name($str)
The method simplify_name is equivalent to basename, but also
 strips Perl-like extensions (.pm, .pl,
.pod) and extensions like .bat, .cmd on Win32 and OS/2, or .com on VMS, respectively.

$search->find($pod)
$search->find($pod, @search_dirs)

Returns the location of a Pod file, given a Pod/module/script name
 (like "Foo::Bar" or "perlvar" or
"perldoc"), and an idea of
 what files/directories to look in.
 It searches according to the various options
set by the accessors above.
 (For example, if the inc attribute is on, as it is by default, then
 the perl
@INC directories are implicitly added to the list of
 directories (if any) that you specify.)

This returns the full path of the first occurrence to the file.
 Package names (eg 'A::B') are
automatically converted to directory
 names in the selected directory. Additionally, '.pm', '.pl' and '.pod'

are automatically appended to the search as required.
 (So, for example, under Unix, "A::B" is
converted to "somedir/A/B.pm",
 "somedir/A/B.pod", or "somedir/A/B.pl", as appropriate.)

If no such Pod file is found, this method returns undef.

If any of the given search directories contains a pod/ subdirectory,
 then it is searched. (That's how we
manage to find perlfunc,
 for example, which is usually in pod/perlfunc in most Perl dists.)

The verbose and inc attributes influence the behavior of this
 search; notably, inc, if true, adds
@INC and also
 $Config::Config{'scriptdir'} to the list of directories to search.

It is common to simply say $filename = Pod::Simple::Search-> new

->find("perlvar") so that just the @INC (well, and scriptdir)
 directories are searched. (This
happens because the inc
 attribute is true by default.)

Calling Pod::Simple::Search->find(...) is short for
 Pod::Simple::Search->new->find(...). That is, a
throwaway object
 with default attribute values is used.

$self->contains_pod($file)
Returns true if the supplied filename (not POD module) contains some Pod
 documentation.
 =head1
SUPPORT

Questions or discussion about POD and Pod::Simple should be sent to the
 pod-people@perl.org mail
list. Send an empty email to
 pod-people-subscribe@perl.org to subscribe.

This module is managed in an open GitHub repository, https://github.com/theory/pod-simple/. Feel
free to fork and contribute, or
 to clone git://github.com/theory/pod-simple.git and send patches!

Patches against Pod::Simple are welcome. Please send bug reports to

Perl version 5.18.0 documentation - Pod::Simple::Search

Page 5http://perldoc.perl.org

<bug-pod-simple@rt.cpan.org>.COPYRIGHT AND DISCLAIMERS
Copyright (c) 2002 Sean M. Burke.

This library is free software; you can redistribute it and/or modify it
 under the same terms as Perl
itself.

This program is distributed in the hope that it will be useful, but
 without any warranty; without even the
implied warranty of
 merchantability or fitness for a particular purpose.

AUTHOR
Pod::Simple was created by Sean M. Burke <sburke@cpan.org> with code borrowed
 from Marek
Rouchal's Pod::Find, which in turn heavily borrowed code from
 Nick Ing-Simmons' PodToHtml.

But don't bother him, he's retired.

Pod::Simple is maintained by:

* Allison Randal allison@perl.org

* Hans Dieter Pearcey hdp@cpan.org

* David E. Wheeler dwheeler@cpan.org

