
Perl version 5.18.0 documentation - Math::BigInt

Page 1http://perldoc.perl.org

NAME
Math::BigInt - Arbitrary size integer/float math package

SYNOPSIS
 use Math::BigInt;

 # or make it faster with huge numbers: install (optional)
 # Math::BigInt::GMP and always use (it will fall back to
 # pure Perl if the GMP library is not installed):
 # (See also the L<MATH LIBRARY> section!)

 # will warn if Math::BigInt::GMP cannot be found
 use Math::BigInt lib => 'GMP';

 # to suppress the warning use this:
 # use Math::BigInt try => 'GMP';

 # dies if GMP cannot be loaded:
 # use Math::BigInt only => 'GMP';

 my $str = '1234567890';
 my @values = (64,74,18);
 my $n = 1; my $sign = '-';

 # Number creation
 my $x = Math::BigInt->new($str);	 # defaults to 0
 my $y = $x->copy();			 # make a true copy
 my $nan = Math::BigInt->bnan(); 	 # create a NotANumber
 my $zero = Math::BigInt->bzero();	 # create a +0
 my $inf = Math::BigInt->binf();	 # create a +inf
 my $inf = Math::BigInt->binf('-');	 # create a -inf
 my $one = Math::BigInt->bone();	 # create a +1
 my $mone = Math::BigInt->bone('-');	 # create a -1

 my $pi = Math::BigInt->bpi();		 # returns '3'
					 # see Math::BigFloat::bpi()

 $h = Math::BigInt->new('0x123');	 # from hexadecimal
 $b = Math::BigInt->new('0b101');	 # from binary
 $o = Math::BigInt->from_oct('0101');	 # from octal

 # Testing (don't modify their arguments)
 # (return true if the condition is met, otherwise false)

 $x->is_zero();	 # if $x is +0
 $x->is_nan();		 # if $x is NaN
 $x->is_one();		 # if $x is +1
 $x->is_one('-');	 # if $x is -1
 $x->is_odd();		 # if $x is odd
 $x->is_even();	 # if $x is even
 $x->is_pos();		 # if $x > 0
 $x->is_neg();		 # if $x < 0

Perl version 5.18.0 documentation - Math::BigInt

Page 2http://perldoc.perl.org

 $x->is_inf($sign);	 # if $x is +inf, or -inf (sign is default '+')
 $x->is_int();		 # if $x is an integer (not a float)

 # comparing and digit/sign extraction
 $x->bcmp($y);		 # compare numbers (undef,<0,=0,>0)
 $x->bacmp($y);	 # compare absolutely (undef,<0,=0,>0)
 $x->sign();		 # return the sign, either +,- or NaN
 $x->digit($n);	 # return the nth digit, counting from right
 $x->digit(-$n);	 # return the nth digit, counting from left

 # The following all modify their first argument. If you want to pre-
 # serve $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for
 # why this is necessary when mixing $a = $b assignments with non-over-
 # loaded math.

 $x->bzero();		 # set $x to 0
 $x->bnan();		 # set $x to NaN
 $x->bone();		 # set $x to +1
 $x->bone('-');	 # set $x to -1
 $x->binf();		 # set $x to inf
 $x->binf('-');	 # set $x to -inf

 $x->bneg();		 # negation
 $x->babs();		 # absolute value
 $x->bsgn();		 # sign function (-1, 0, 1, or NaN)
 $x->bnorm();		 # normalize (no-op in BigInt)
 $x->bnot();		 # two's complement (bit wise not)
 $x->binc();		 # increment $x by 1
 $x->bdec();		 # decrement $x by 1

 $x->badd($y);		 # addition (add $y to $x)
 $x->bsub($y);		 # subtraction (subtract $y from $x)
 $x->bmul($y);		 # multiplication (multiply $x by $y)
 $x->bdiv($y);		 # divide, set $x to quotient
			 # return (quo,rem) or quo if scalar

 $x->bmuladd($y,$z);	 # $x = $x * $y + $z

 $x->bmod($y);		 # modulus (x % y)
 $x->bmodpow($y,$mod); # modular exponentiation (($x ** $y) % $mod)
 $x->bmodinv($mod); # modular multiplicative inverse
 $x->bpow($y);		 # power of arguments (x ** y)
 $x->blsft($y);	 # left shift in base 2
 $x->brsft($y);	 # right shift in base 2
			 # returns (quo,rem) or quo if in sca-
			 # lar context
 $x->blsft($y,$n);	 # left shift by $y places in base $n
 $x->brsft($y,$n);	 # right shift by $y places in base $n
			 # returns (quo,rem) or quo if in sca-
			 # lar context

 $x->band($y);		 # bitwise and
 $x->bior($y);		 # bitwise inclusive or

Perl version 5.18.0 documentation - Math::BigInt

Page 3http://perldoc.perl.org

 $x->bxor($y);		 # bitwise exclusive or
 $x->bnot();		 # bitwise not (two's complement)

 $x->bsqrt();		 # calculate square-root
 $x->broot($y);	 # $y'th root of $x (e.g. $y == 3 => cubic root)
 $x->bfac();		 # factorial of $x (1*2*3*4*..$x)

 $x->bnok($y);		 # x over y (binomial coefficient n over k)

 $x->blog();		 # logarithm of $x to base e (Euler's number)
 $x->blog($base);	 # logarithm of $x to base $base (f.i. 2)
 $x->bexp();		 # calculate e ** $x where e is Euler's number

 $x->round($A,$P,$mode); # round to accuracy or precision using
			 # mode $mode
 $x->bround($n);	 # accuracy: preserve $n digits
 $x->bfround($n);	 # $n > 0: round $nth digits,
			 # $n < 0: round to the $nth digit after the
			 # dot, no-op for BigInts

 # The following do not modify their arguments in BigInt (are no-ops),
 # but do so in BigFloat:

 $x->bfloor();		 # return integer less or equal than $x
 $x->bceil();		 # return integer greater or equal than $x

 # The following do not modify their arguments:

 # greatest common divisor (no OO style)
 my $gcd = Math::BigInt::bgcd(@values);
 # lowest common multiple (no OO style)
 my $lcm = Math::BigInt::blcm(@values);

 $x->length();		 # return number of digits in number
 ($xl,$f) = $x->length(); # length of number and length of fraction
			 # part, latter is always 0 digits long
			 # for BigInts

 $x->exponent();	 # return exponent as BigInt
 $x->mantissa();	 # return (signed) mantissa as BigInt
 $x->parts();		 # return (mantissa,exponent) as BigInt
 $x->copy();		 # make a true copy of $x (unlike $y = $x;)
 $x->as_int();		 # return as BigInt (in BigInt: same as copy())
 $x->numify();		 # return as scalar (might overflow!)

 # conversion to string (do not modify their argument)
 $x->bstr();	 # normalized string (e.g. '3')
 $x->bsstr();	 # norm. string in scientific notation (e.g. '3E0')
 $x->as_hex();	 # as signed hexadecimal string with prefixed 0x
 $x->as_bin();	 # as signed binary string with prefixed 0b
 $x->as_oct();	 # as signed octal string with prefixed 0

Perl version 5.18.0 documentation - Math::BigInt

Page 4http://perldoc.perl.org

 # precision and accuracy (see section about rounding for more)
 $x->precision();	 # return P of $x (or global, if P of $x undef)
 $x->precision($n);	 # set P of $x to $n
 $x->accuracy();	 # return A of $x (or global, if A of $x undef)
 $x->accuracy($n);	 # set A $x to $n

 # Global methods
 Math::BigInt->precision(); # get/set global P for all BigInt objects
 Math::BigInt->accuracy(); # get/set global A for all BigInt objects
 Math::BigInt->round_mode(); # get/set global round mode, one of
			 # 'even', 'odd', '+inf', '-inf', 'zero',
			 # 'trunc' or 'common'
 Math::BigInt->config(); # return hash containing configuration

DESCRIPTION
All operators (including basic math operations) are overloaded if you
 declare your big integers as

 $i = new Math::BigInt '123_456_789_123_456_789';

Operations with overloaded operators preserve the arguments which is
 exactly what you expect.

Input

Input values to these routines may be any string, that looks like a number
 and results in an
integer, including hexadecimal and binary numbers.

Scalars holding numbers may also be passed, but note that non-integer numbers
 may already
have lost precision due to the conversion to float. Quote
 your input if you want BigInt to see all the
digits:

	 $x = Math::BigInt->new(12345678890123456789);	 # bad
	 $x = Math::BigInt->new('12345678901234567890');	 # good

You can include one underscore between any two digits.

This means integer values like 1.01E2 or even 1000E-2 are also accepted.
 Non-integer values
result in NaN.

Hexadecimal (prefixed with "0x") and binary numbers (prefixed with "0b")
 are accepted, too.
Please note that octal numbers are not recognized
 by new(), so the following will print "123":

	 perl -MMath::BigInt -le 'print Math::BigInt->new("0123")'

To convert an octal number, use from_oct();

	 perl -MMath::BigInt -le 'print Math::BigInt->from_oct("0123")'

Currently, Math::BigInt::new() defaults to 0, while Math::BigInt::new('')
 results in 'NaN'. This might
change in the future, so use always the following
 explicit forms to get a zero or NaN:

	 $zero = Math::BigInt->bzero();
	 $nan = Math::BigInt->bnan();

bnorm() on a BigInt object is now effectively a no-op, since the numbers are always stored in
normalized form. If passed a string, creates a BigInt object from the input.

Output

Output values are BigInt objects (normalized), except for the methods which
 return a string (see
SYNOPSIS).

Some routines (is_odd(), is_even(), is_zero(), is_one(), is_nan(), etc.) return true or

Perl version 5.18.0 documentation - Math::BigInt

Page 5http://perldoc.perl.org

false, while others (bcmp(), bacmp())
 return either undef (if NaN is involved), <0, 0 or >0 and
are suited for sort.

METHODS
Each of the methods below (except config(), accuracy() and precision())
 accepts three additional
parameters. These arguments $A, $P and $R
 are accuracy, precision and round_mode. Please
see the section about ACCURACY and PRECISION for more information.

config()
	 use Data::Dumper;

	 print Dumper (Math::BigInt->config());
	 print Math::BigInt->config()->{lib},"\n";

Returns a hash containing the configuration, e.g. the version number, lib
 loaded etc. The following
hash keys are currently filled in with the
 appropriate information.

	 key	 Description
		 Example
	 ==
	 lib	 Name of the low-level math library
		 Math::BigInt::Calc
	 lib_version Version of low-level math library (see 'lib')
		 0.30
	 class	 The class name of config() you just called
		 Math::BigInt
	 upgrade	 To which class math operations might be upgraded
		 Math::BigFloat
	 downgrade To which class math operations might be downgraded
		 undef
	 precision Global precision
		 undef
	 accuracy Global accuracy
		 undef
	 round_mode Global round mode
		 even
	 version	 version number of the class you used
		 1.61
	 div_scale Fallback accuracy for div
		 40
	 trap_nan If true, traps creation of NaN via croak()
		 1
	 trap_inf If true, traps creation of +inf/-inf via croak()
		 1

The following values can be set by passing config() a reference to a hash:

	 trap_inf trap_nan
 upgrade downgrade precision accuracy round_mode div_scale

Example:

	 $new_cfg = Math::BigInt->config(
	 { trap_inf => 1, precision => 5 }
);

Perl version 5.18.0 documentation - Math::BigInt

Page 6http://perldoc.perl.org

accuracy()
 $x->accuracy(5);	 # local for $x
 CLASS->accuracy(5);	 # global for all members of CLASS
 			 # Note: This also applies to new()!

 $A = $x->accuracy(); # read out accuracy that affects $x
 $A = CLASS->accuracy(); # read out global accuracy

Set or get the global or local accuracy, aka how many significant digits the
 results have. If you set a
global accuracy, then this also applies to new()!

Warning! The accuracy sticks, e.g. once you created a number under the
 influence of
CLASS->accuracy($A), all results from math operations with
 that number will also be rounded.

In most cases, you should probably round the results explicitly using one of round(), bround() or
bfround() or by passing the desired accuracy
 to the math operation as additional parameter:

 my $x = Math::BigInt->new(30000);
 my $y = Math::BigInt->new(7);
 print scalar $x->copy()->bdiv($y, 2);		 # print 4300
 print scalar $x->copy()->bdiv($y)->bround(2);	 # print 4300

Please see the section about ACCURACY and PRECISION for further details.

Value must be greater than zero. Pass an undef value to disable it:

 $x->accuracy(undef);
 Math::BigInt->accuracy(undef);

Returns the current accuracy. For $x->accuracy() it will return either
 the local accuracy, or if not
defined, the global. This means the return value
 represents the accuracy that will be in effect for $x:

 $y = Math::BigInt->new(1234567);	 # unrounded
 print Math::BigInt->accuracy(4),"\n"; # set 4, print 4
 $x = Math::BigInt->new(123456);	 # $x will be automatic-
					 # ally rounded!
 print "$x $y\n";			 # '123500 1234567'
 print $x->accuracy(),"\n";		 # will be 4
 print $y->accuracy(),"\n";		 # also 4, since global is 4
 print Math::BigInt->accuracy(5),"\n"; # set to 5, print 5
 print $x->accuracy(),"\n";		 # still 4
 print $y->accuracy(),"\n";		 # 5, since global is 5

Note: Works also for subclasses like Math::BigFloat. Each class has it's own
 globals separated from
Math::BigInt, but it is possible to subclass
 Math::BigInt and make the globals of the subclass aliases
to the ones from
 Math::BigInt.

precision()
 $x->precision(-2);		 # local for $x, round at the second
 				 # digit right of the dot
 $x->precision(2);		 # ditto, round at the second digit left
 				 # of the dot

 CLASS->precision(5);	 # Global for all members of CLASS
 				 # This also applies to new()!
 CLASS->precision(-5);	 # ditto

Perl version 5.18.0 documentation - Math::BigInt

Page 7http://perldoc.perl.org

 $P = CLASS->precision();	 # read out global precision
 $P = $x->precision();	 # read out precision that affects $x

Note: You probably want to use accuracy() instead. With accuracy() you
 set the number of digits each
result should have, with precision() you
 set the place where to round!

precision() sets or gets the global or local precision, aka at which digit
 before or after the dot to
round all results. A set global precision also
 applies to all newly created numbers!

In Math::BigInt, passing a negative number precision has no effect since no
 numbers have digits after
the dot. In Math::BigFloat, it will round all
 results to P digits after the dot.

Please see the section about ACCURACY and PRECISION for further details.

Pass an undef value to disable it:

 $x->precision(undef);
 Math::BigInt->precision(undef);

Returns the current precision. For $x->precision() it will return either
 the local precision of $x, or
if not defined, the global. This means the return
 value represents the prevision that will be in effect for
$x:

 $y = Math::BigInt->new(1234567);	 # unrounded
 print Math::BigInt->precision(4),"\n"; # set 4, print 4
 $x = Math::BigInt->new(123456);	 # will be automatically rounded
 print $x;				 # print "120000"!

Note: Works also for subclasses like Math::BigFloat. Each class has its
 own globals separated from
Math::BigInt, but it is possible to subclass
 Math::BigInt and make the globals of the subclass aliases
to the ones from
 Math::BigInt.

brsft()
	 $x->brsft($y,$n);

Shifts $x right by $y in base $n. Default is base 2, used are usually 10 and
 2, but others work, too.

Right shifting usually amounts to dividing $x by $n ** $y and truncating the
 result:

	 $x = Math::BigInt->new(10);
	 $x->brsft(1);			 # same as $x >> 1: 5
	 $x = Math::BigInt->new(1234);
	 $x->brsft(2,10);		 # result 12

There is one exception, and that is base 2 with negative $x:

	 $x = Math::BigInt->new(-5);
	 print $x->brsft(1);

This will print -3, not -2 (as it would if you divide -5 by 2 and truncate the
 result).

new()
 	 $x = Math::BigInt->new($str,$A,$P,$R);

Creates a new BigInt object from a scalar or another BigInt object. The
 input is accepted as decimal,
hex (with leading '0x') or binary (with leading
 '0b').

Perl version 5.18.0 documentation - Math::BigInt

Page 8http://perldoc.perl.org

See Input for more info on accepted input formats.

from_oct()
	 $x = Math::BigInt->from_oct("0775");	 # input is octal

Interpret the input as an octal string and return the corresponding value. A
 "0" (zero) prefix is optional.
A single underscore character may be placed
 right after the prefix, if present, or between any two
digits. If the input is
 invalid, a NaN is returned.

from_hex()
	 $x = Math::BigInt->from_hex("0xcafe");	 # input is hexadecimal

Interpret input as a hexadecimal string. A "0x" or "x" prefix is optional. A
 single underscore character
may be placed right after the prefix, if present,
 or between any two digits. If the input is invalid, a NaN
is returned.

from_bin()
	 $x = Math::BigInt->from_bin("0b10011");	 # input is binary

Interpret the input as a binary string. A "0b" or "b" prefix is optional. A
 single underscore character
may be placed right after the prefix, if present,
 or between any two digits. If the input is invalid, a NaN
is returned.

bnan()
 	 $x = Math::BigInt->bnan();

Creates a new BigInt object representing NaN (Not A Number).
 If used on an object, it will set it to
NaN:

	 $x->bnan();

bzero()
 	 $x = Math::BigInt->bzero();

Creates a new BigInt object representing zero.
 If used on an object, it will set it to zero:

	 $x->bzero();

binf()
 	 $x = Math::BigInt->binf($sign);

Creates a new BigInt object representing infinity. The optional argument is
 either '-' or '+', indicating
whether you want infinity or minus infinity.
 If used on an object, it will set it to infinity:

	 $x->binf();
	 $x->binf('-');

bone()
 	 $x = Math::BigInt->binf($sign);

Creates a new BigInt object representing one. The optional argument is
 either '-' or '+', indicating
whether you want one or minus one.
 If used on an object, it will set it to one:

Perl version 5.18.0 documentation - Math::BigInt

Page 9http://perldoc.perl.org

	 $x->bone();		 # +1
	 $x->bone('-');		 # -1

is_one()/is_zero()/is_nan()/is_inf()
	 $x->is_zero();		 # true if arg is +0
	 $x->is_nan();		 # true if arg is NaN
	 $x->is_one();		 # true if arg is +1
	 $x->is_one('-');	 # true if arg is -1
	 $x->is_inf();		 # true if +inf
	 $x->is_inf('-');	 # true if -inf (sign is default '+')

These methods all test the BigInt for being one specific value and return
 true or false depending on
the input. These are faster than doing something
 like:

	 if ($x == 0)

is_pos()/is_neg()/is_positive()/is_negative()
	 $x->is_pos();			 # true if > 0
	 $x->is_neg();			 # true if < 0

The methods return true if the argument is positive or negative, respectively. NaN is neither positive
nor negative, while +inf counts as positive, and -inf is negative. A zero is neither positive nor
negative.

These methods are only testing the sign, and not the value.

is_positive() and is_negative() are aliases to is_pos() and is_neg(), respectively.
is_positive() and is_negative() were
 introduced in v1.36, while is_pos() and is_neg()
were only introduced
 in v1.68.

is_odd()/is_even()/is_int()
	 $x->is_odd();			 # true if odd, false for even
	 $x->is_even();			 # true if even, false for odd
	 $x->is_int();			 # true if $x is an integer

The return true when the argument satisfies the condition. NaN, +inf, -inf are not integers and are
neither odd nor even.

In BigInt, all numbers except NaN, +inf and -inf are integers.

bcmp()
	 $x->bcmp($y);

Compares $x with $y and takes the sign into account.
 Returns -1, 0, 1 or undef.

bacmp()
	 $x->bacmp($y);

Compares $x with $y while ignoring their sign. Returns -1, 0, 1 or undef.

sign()
	 $x->sign();

Return the sign, of $x, meaning either +, -, -inf, +inf or NaN.

Perl version 5.18.0 documentation - Math::BigInt

Page 10http://perldoc.perl.org

If you want $x to have a certain sign, use one of the following methods:

	 $x->babs();		 # '+'
	 $x->babs()->bneg();	 # '-'
	 $x->bnan();		 # 'NaN'
	 $x->binf();		 # '+inf'
	 $x->binf('-');		 # '-inf'

digit()
	 $x->digit($n);	 # return the nth digit, counting from right

If $n is negative, returns the digit counting from left.

bneg()
	 $x->bneg();

Negate the number, e.g. change the sign between '+' and '-', or between '+inf'
 and '-inf', respectively.
Does nothing for NaN or zero.

babs()
	 $x->babs();

Set the number to its absolute value, e.g. change the sign from '-' to '+'
 and from '-inf' to '+inf',
respectively. Does nothing for NaN or positive
 numbers.

bsgn()
	 $x->bsgn();

Signum function. Set the number to -1, 0, or 1, depending on whether the
 number is negative, zero, or
positive, respectivly. Does not modify NaNs.

bnorm()
	 $x->bnorm();			 # normalize (no-op)

bnot()
	 $x->bnot();

Two's complement (bitwise not). This is equivalent to

	 $x->binc()->bneg();

but faster.

binc()
	 $x->binc();		 # increment x by 1

bdec()
	 $x->bdec();		 # decrement x by 1

badd()
	 $x->badd($y);		 # addition (add $y to $x)

Perl version 5.18.0 documentation - Math::BigInt

Page 11http://perldoc.perl.org

bsub()
	 $x->bsub($y);		 # subtraction (subtract $y from $x)

bmul()
	 $x->bmul($y);		 # multiplication (multiply $x by $y)

bmuladd()
	 $x->bmuladd($y,$z);

Multiply $x by $y, and then add $z to the result,

This method was added in v1.87 of Math::BigInt (June 2007).

bdiv()
	 $x->bdiv($y);		 # divide, set $x to quotient
				 # return (quo,rem) or quo if scalar

bmod()
	 $x->bmod($y);		 # modulus (x % y)

bmodinv()
	 $x->bmodinv($mod);	 # modular multiplicative inverse

Returns the multiplicative inverse of $x modulo $mod. If

 $y = $x -> copy() -> bmodinv($mod)

then $y is the number closest to zero, and with the same sign as $mod,
 satisfying

 ($x * $y) % $mod = 1 % $mod

If $x and $y are non-zero, they must be relative primes, i.e., bgcd($y, $mod)==1. 'NaN' is returned
when no modular multiplicative
 inverse exists.

bmodpow()
	 $num->bmodpow($exp,$mod);	 # modular exponentiation
					 # ($num**$exp % $mod)

Returns the value of $num taken to the power $exp in the modulus $mod using binary exponentiation.
bmodpow is far superior to
 writing

	 $num ** $exp % $mod

because it is much faster - it reduces internal variables into
 the modulus whenever possible, so it
operates on smaller numbers.

bmodpow also supports negative exponents.

	 bmodpow($num, -1, $mod)

is exactly equivalent to

	 bmodinv($num, $mod)

Perl version 5.18.0 documentation - Math::BigInt

Page 12http://perldoc.perl.org

bpow()
	 $x->bpow($y);		 # power of arguments (x ** y)

blog()
	 $x->blog($base, $accuracy); # logarithm of x to the base $base

If $base is not defined, Euler's number (e) is used:

	 print $x->blog(undef, 100); # log(x) to 100 digits

bexp()
	 $x->bexp($accuracy);	 # calculate e ** X

Calculates the expression e ** $x where e is Euler's number.

This method was added in v1.82 of Math::BigInt (April 2007).

See also blog().

bnok()
	 $x->bnok($y);	 # x over y (binomial coefficient n over k)

Calculates the binomial coefficient n over k, also called the "choose"
 function. The result is equivalent
to:

	 (n) n!
	 | - | = -------
	 (k) k!(n-k)!

This method was added in v1.84 of Math::BigInt (April 2007).

bpi()
	 print Math::BigInt->bpi(100), "\n";		 # 3

Returns PI truncated to an integer, with the argument being ignored. This means
 under BigInt this
always returns 3.

If upgrading is in effect, returns PI, rounded to N digits with the
 current rounding mode:

	 use Math::BigFloat;
	 use Math::BigInt upgrade => Math::BigFloat;
	 print Math::BigInt->bpi(3), "\n";		 # 3.14
	 print Math::BigInt->bpi(100), "\n";		 # 3.1415....

This method was added in v1.87 of Math::BigInt (June 2007).

bcos()
	 my $x = Math::BigInt->new(1);
	 print $x->bcos(100), "\n";

Calculate the cosinus of $x, modifying $x in place.

In BigInt, unless upgrading is in effect, the result is truncated to an
 integer.

This method was added in v1.87 of Math::BigInt (June 2007).

Perl version 5.18.0 documentation - Math::BigInt

Page 13http://perldoc.perl.org

bsin()
	 my $x = Math::BigInt->new(1);
	 print $x->bsin(100), "\n";

Calculate the sinus of $x, modifying $x in place.

In BigInt, unless upgrading is in effect, the result is truncated to an
 integer.

This method was added in v1.87 of Math::BigInt (June 2007).

batan2()
	 my $x = Math::BigInt->new(1);
	 my $y = Math::BigInt->new(1);
	 print $y->batan2($x), "\n";

Calculate the arcus tangens of $y divided by $x, modifying $y in place.

In BigInt, unless upgrading is in effect, the result is truncated to an
 integer.

This method was added in v1.87 of Math::BigInt (June 2007).

batan()
	 my $x = Math::BigFloat->new(0.5);
	 print $x->batan(100), "\n";

Calculate the arcus tangens of $x, modifying $x in place.

In BigInt, unless upgrading is in effect, the result is truncated to an
 integer.

This method was added in v1.87 of Math::BigInt (June 2007).

blsft()
	 $x->blsft($y);		 # left shift in base 2
	 $x->blsft($y,$n);	 # left shift, in base $n (like 10)

brsft()
	 $x->brsft($y);		 # right shift in base 2
	 $x->brsft($y,$n);	 # right shift, in base $n (like 10)

band()
	 $x->band($y);			 # bitwise and

bior()
	 $x->bior($y);			 # bitwise inclusive or

bxor()
	 $x->bxor($y);			 # bitwise exclusive or

bnot()
	 $x->bnot();			 # bitwise not (two's complement)

Perl version 5.18.0 documentation - Math::BigInt

Page 14http://perldoc.perl.org

bsqrt()
	 $x->bsqrt();			 # calculate square-root

broot()
	 $x->broot($N);

Calculates the N'th root of $x.

bfac()
	 $x->bfac();			 # factorial of $x (1*2*3*4*..$x)

round()
	 $x->round($A,$P,$round_mode);

Round $x to accuracy $A or precision $P using the round mode $round_mode.

bround()
	 $x->bround($N); # accuracy: preserve $N digits

bfround()
	 $x->bfround($N);

If N is > 0, rounds to the Nth digit from the left. If N < 0, rounds to
 the Nth digit after the dot. Since
BigInts are integers, the case N < 0
 is a no-op for them.

Examples:

	 Input		 N		 Result
	 ===
	 123456.123456	 3		 123500
	 123456.123456	 2		 123450
	 123456.123456	 -2		 123456.12
	 123456.123456	 -3		 123456.123

bfloor()
	 $x->bfloor();

Set $x to the integer less or equal than $x. This is a no-op in BigInt, but
 does change $x in BigFloat.

bceil()
	 $x->bceil();

Set $x to the integer greater or equal than $x. This is a no-op in BigInt, but
 does change $x in
BigFloat.

bgcd()
	 bgcd(@values);		 # greatest common divisor (no OO style)

blcm()
	 blcm(@values);		 # lowest common multiple (no OO style)

Perl version 5.18.0 documentation - Math::BigInt

Page 15http://perldoc.perl.org

head2 length()

	 $x->length();
 ($xl,$fl) = $x->length();

Returns the number of digits in the decimal representation of the number.
 In list context, returns the
length of the integer and fraction part. For
 BigInt's, the length of the fraction part will always be 0.

exponent()
	 $x->exponent();

Return the exponent of $x as BigInt.

mantissa()
	 $x->mantissa();

Return the signed mantissa of $x as BigInt.

parts()
	 $x->parts();	 # return (mantissa,exponent) as BigInt

copy()
	 $x->copy();	 # make a true copy of $x (unlike $y = $x;)

as_int()/as_number()
	 $x->as_int();

Returns $x as a BigInt (truncated towards zero). In BigInt this is the same as copy().

as_number() is an alias to this method. as_number was introduced in
 v1.22, while as_int() was
only introduced in v1.68.

bstr()
	 $x->bstr();

Returns a normalized string representation of $x.

bsstr()
	 $x->bsstr();	 # normalized string in scientific notation

as_hex()
	 $x->as_hex();	 # as signed hexadecimal string with prefixed 0x

as_bin()
	 $x->as_bin();	 # as signed binary string with prefixed 0b

as_oct()
	 $x->as_oct();	 # as signed octal string with prefixed 0

Perl version 5.18.0 documentation - Math::BigInt

Page 16http://perldoc.perl.org

numify()
	 print $x->numify();

This returns a normal Perl scalar from $x. It is used automatically
 whenever a scalar is needed, for
instance in array index operations.

This loses precision, to avoid this use as_int() instead.

modify()
	 $x->modify('bpowd');

This method returns 0 if the object can be modified with the given
 operation, or 1 if not.

This is used for instance by Math::BigInt::Constant.

upgrade()/downgrade()
Set/get the class for downgrade/upgrade operations. Thuis is used
 for instance by bignum. The
defaults are '', thus the following
 operation will create a BigInt, not a BigFloat:

	 my $i = Math::BigInt->new(123);
	 my $f = Math::BigFloat->new('123.1');

	 print $i + $f,"\n";			 # print 246

div_scale()
Set/get the number of digits for the default precision in divide
 operations.

round_mode()
Set/get the current round mode.

ACCURACY and PRECISION
Since version v1.33, Math::BigInt and Math::BigFloat have full support for
 accuracy and precision
based rounding, both automatically after every
 operation, as well as manually.

This section describes the accuracy/precision handling in Math::Big* as it
 used to be and as it is now,
complete with an explanation of all terms and
 abbreviations.

Not yet implemented things (but with correct description) are marked with '!',
 things that need to be
answered are marked with '?'.

In the next paragraph follows a short description of terms used here (because
 these may differ from
terms used by others people or documentation).

During the rest of this document, the shortcuts A (for accuracy), P (for
 precision), F (fallback) and R
(rounding mode) will be used.

Precision P
A fixed number of digits before (positive) or after (negative)
 the decimal point. For example, 123.45
has a precision of -2. 0 means an
 integer like 123 (or 120). A precision of 2 means two digits to the
left
 of the decimal point are zero, so 123 with P = 1 becomes 120. Note that
 numbers with zeros
before the decimal point may have different precisions,
 because 1200 can have p = 0, 1 or 2
(depending on what the initial value
 was). It could also have p < 0, when the digits after the decimal
point
 are zero.

The string output (of floating point numbers) will be padded with zeros:

	 Initial value P A	 Result String

Perl version 5.18.0 documentation - Math::BigInt

Page 17http://perldoc.perl.org

	 --
	 1234.01 -3 	 1000 1000
	 1234 -2 	 1200 1200
	 1234.5 -1 	 1230 1230
	 1234.001 1 	 1234 1234.0
	 1234.01 0 	 1234 1234
	 1234.01 2 	 1234.01		 1234.01
	 1234.01 5 	 1234.01		 1234.01000

For BigInts, no padding occurs.

Accuracy A
Number of significant digits. Leading zeros are not counted. A
 number may have an accuracy greater
than the non-zero digits
 when there are zeros in it or trailing zeros. For example, 123.456 has
 A of 6,
10203 has 5, 123.0506 has 7, 123.450000 has 8 and 0.000123 has 3.

The string output (of floating point numbers) will be padded with zeros:

	 Initial value P A	 Result String
	 --
	 1234.01			 3	 1230		 1230
	 1234.01			 6	 1234.01		 1234.01
	 1234.1			 8	 1234.1		 1234.1000

For BigInts, no padding occurs.

Fallback F
When both A and P are undefined, this is used as a fallback accuracy when
 dividing numbers.

Rounding mode R
When rounding a number, different 'styles' or 'kinds'
 of rounding are possible. (Note that random
rounding, as in
 Math::Round, is not implemented.)

'trunc'

truncation invariably removes all digits following the
 rounding place, replacing them with zeros.
Thus, 987.65 rounded
 to tens (P=1) becomes 980, and rounded to the fourth sigdig
 becomes
987.6 (A=4). 123.456 rounded to the second place after the
 decimal point (P=-2) becomes
123.46.

All other implemented styles of rounding attempt to round to the
 "nearest digit." If the digit D
immediately to the right of the
 rounding place (skipping the decimal point) is greater than 5, the

number is incremented at the rounding place (possibly causing a
 cascade of incrementation): e.g.
when rounding to units, 0.9 rounds
 to 1, and -19.9 rounds to -20. If D < 5, the number is similarly

truncated at the rounding place: e.g. when rounding to units, 0.4
 rounds to 0, and -19.4 rounds to
-19.

However the results of other styles of rounding differ if the
 digit immediately to the right of the
rounding place (skipping the
 decimal point) is 5 and if there are no digits, or no digits other
 than 0,
after that 5. In such cases:

'even'

rounds the digit at the rounding place to 0, 2, 4, 6, or 8
 if it is not already. E.g., when rounding to
the first sigdig, 0.45
 becomes 0.4, -0.55 becomes -0.6, but 0.4501 becomes 0.5.

'odd'

rounds the digit at the rounding place to 1, 3, 5, 7, or 9 if
 it is not already. E.g., when rounding to
the first sigdig, 0.45
 becomes 0.5, -0.55 becomes -0.5, but 0.5501 becomes 0.6.

Perl version 5.18.0 documentation - Math::BigInt

Page 18http://perldoc.perl.org

'+inf'

round to plus infinity, i.e. always round up. E.g., when
 rounding to the first sigdig, 0.45 becomes
0.5, -0.55 becomes -0.5,
 and 0.4501 also becomes 0.5.

'-inf'

round to minus infinity, i.e. always round down. E.g., when
 rounding to the first sigdig, 0.45
becomes 0.4, -0.55 becomes -0.6,
 but 0.4501 becomes 0.5.

'zero'

round to zero, i.e. positive numbers down, negative ones up.
 E.g., when rounding to the first
sigdig, 0.45 becomes 0.4, -0.55
 becomes -0.5, but 0.4501 becomes 0.5.

'common'

round up if the digit immediately to the right of the rounding place
 is 5 or greater, otherwise round
down. E.g., 0.15 becomes 0.2 and
 0.149 becomes 0.1.

The handling of A & P in MBI/MBF (the old core code shipped with Perl
 versions <= 5.7.2) is like this:

Precision

 * ffround($p) is able to round to $p number of digits after the
decimal
 point
 * otherwise P is unused

Accuracy (significant digits)

 * fround($a) rounds to $a significant digits
 * only fdiv() and fsqrt() take A as (optional) parameter
 + other operations simply create the same number (fneg etc), or more
 (fmul)
 of digits
 + rounding/truncating is only done when explicitly calling one of
fround
 or ffround, and never for BigInt (not implemented)
 * fsqrt() simply hands its accuracy argument over to fdiv.
 * the documentation and the comment in the code indicate two different
 ways
 on how fdiv() determines the maximum number of digits it should
calculate,
 and the actual code does yet another thing
 POD:
 max($Math::BigFloat::div_scale,length(dividend)+length(divisor))
 Comment:
 result has at most max(scale, length(dividend), length(divisor))
digits
 Actual code:
 scale = max(scale, length(dividend)-1,length(divisor)-1);
 scale += length(divisor) - length(dividend);
 So for lx = 3, ly = 9, scale = 10, scale will actually be 16
(10+9-3).
 Actually, the 'difference' added to the scale is calculated from the
 number of "significant digits" in dividend and divisor, which is
derived
 by looking at the length of the mantissa. Which is wrong, since it
includes
 the + sign (oops) and actually gets 2 for '+100' and 4 for '+101'.

Perl version 5.18.0 documentation - Math::BigInt

Page 19http://perldoc.perl.org

Oops again. Thus 124/3 with div_scale=1 will get you '41.3' based on
the strange
 assumption that 124 has 3 significant digits, while 120/7 will get
you
 '17', not '17.1' since 120 is thought to have 2 significant digits.
 The rounding after the division then uses the remainder and $y to
determine
 whether it must round up or down.
 ? I have no idea which is the right way. That's why I used a slightly
more
 ? simple scheme and tweaked the few failing testcases to match it.

This is how it works now:

Setting/Accessing

 * You can set the A global via Math::BigInt->accuracy() or
 Math::BigFloat->accuracy() or whatever class you are using.
 * You can also set P globally by using Math::SomeClass->precision()
 likewise.
 * Globals are classwide, and not inherited by subclasses.
 * to undefine A, use Math::SomeCLass->accuracy(undef);
 * to undefine P, use Math::SomeClass->precision(undef);
 * Setting Math::SomeClass->accuracy() clears automatically
 Math::SomeClass->precision(), and vice versa.
 * To be valid, A must be > 0, P can have any value.
 * If P is negative, this means round to the P'th place to the right of
 the
 decimal point; positive values mean to the left of the decimal
point.
 P of 0 means round to integer.
 * to find out the current global A, use Math::SomeClass->accuracy()
 * to find out the current global P, use Math::SomeClass->precision()
 * use $x->accuracy() respective $x->precision() for the local
 setting of $x.
 * Please note that $x->accuracy() respective $x->precision()
 return eventually defined global A or P, when $x's A or P is not
 set.

Creating numbers

 * When you create a number, you can give the desired A or P via:
 $x = Math::BigInt->new($number,$A,$P);
 * Only one of A or P can be defined, otherwise the result is NaN
 * If no A or P is give ($x = Math::BigInt->new($number) form), then
the
 globals (if set) will be used. Thus changing the global defaults
later on
 will not change the A or P of previously created numbers (i.e., A
and P of
 $x will be what was in effect when $x was created)
 * If given undef for A and P, NO rounding will occur, and the globals
will
 NOT be used. This is used by subclasses to create numbers without
 suffering rounding in the parent. Thus a subclass is able to have
its own
 globals enforced upon creation of a number by using

Perl version 5.18.0 documentation - Math::BigInt

Page 20http://perldoc.perl.org

 $x = Math::BigInt->new($number,undef,undef):

	 use Math::BigInt::SomeSubclass;
	 use Math::BigInt;

	 Math::BigInt->accuracy(2);
	 Math::BigInt::SomeSubClass->accuracy(3);
	 $x = Math::BigInt::SomeSubClass->new(1234);

 $x is now 1230, and not 1200. A subclass might choose to implement
 this otherwise, e.g. falling back to the parent's A and P.

Usage

 * If A or P are enabled/defined, they are used to round the result of
each
 operation according to the rules below
 * Negative P is ignored in Math::BigInt, since BigInts never have
digits
 after the decimal point
 * Math::BigFloat uses Math::BigInt internally, but setting A or P
inside
 Math::BigInt as globals does not tamper with the parts of a
BigFloat.
 A flag is used to mark all Math::BigFloat numbers as 'never round'.

Precedence

 * It only makes sense that a number has only one of A or P at a time.
 If you set either A or P on one object, or globally, the other one
will
 be automatically cleared.
 * If two objects are involved in an operation, and one of them has A
in
 effect, and the other P, this results in an error (NaN).
 * A takes precedence over P (Hint: A comes before P).
 If neither of them is defined, nothing is used, i.e. the result will
 have
 as many digits as it can (with an exception for fdiv/fsqrt) and will
 not
 be rounded.
 * There is another setting for fdiv() (and thus for fsqrt()). If
neither of
 A or P is defined, fdiv() will use a fallback (F) of $div_scale
digits.
 If either the dividend's or the divisor's mantissa has more digits
than
 the value of F, the higher value will be used instead of F.
 This is to limit the digits (A) of the result (just consider what
would
 happen with unlimited A and P in the case of 1/3 :-)
 * fdiv will calculate (at least) 4 more digits than required
(determined by
 A, P or F), and, if F is not used, round the result
 (this will still fail in the case of a result like 0.12345000000001
with A
 or P of 5, but this can not be helped - or can it?)

Perl version 5.18.0 documentation - Math::BigInt

Page 21http://perldoc.perl.org

 * Thus you can have the math done by on Math::Big* class in two modi:
 + never round (this is the default):
 This is done by setting A and P to undef. No math operation
 will round the result, with fdiv() and fsqrt() as exceptions to
guard
 against overflows. You must explicitly call bround(), bfround() or
 round() (the latter with parameters).
 Note: Once you have rounded a number, the settings will 'stick' on
 it
 and 'infect' all other numbers engaged in math operations with it,
 since
 local settings have the highest precedence. So, to get
SaferRound[tm],
 use a copy() before rounding like this:

 $x = Math::BigFloat->new(12.34);
 $y = Math::BigFloat->new(98.76);
 $z = $x * $y; # 1218.6984
 print $x->copy()->fround(3); # 12.3 (but A is now 3!)
 $z = $x * $y; # still 1218.6984,
without
 # copy would have been
1210!

 + round after each op:
 After each single operation (except for testing like is_zero()),
the
 method round() is called and the result is rounded appropriately.
By
 setting proper values for A and P, you can have all-the-same-A or
 all-the-same-P modes. For example, Math::Currency might set A to
undef,
 and P to -2, globally.

 ?Maybe an extra option that forbids local A & P settings would be in
order,
 ?so that intermediate rounding does not 'poison' further math?

Overriding globals

 * you will be able to give A, P and R as an argument to all the
calculation
 routines; the second parameter is A, the third one is P, and the
fourth is
 R (shift right by one for binary operations like badd). P is used
only if
 the first parameter (A) is undefined. These three parameters
override the
 globals in the order detailed as follows, i.e. the first defined
value
 wins:
 (local: per object, global: global default, parameter: argument to
sub)
 + parameter A
 + parameter P
 + local A (if defined on both of the operands: smaller one is

Perl version 5.18.0 documentation - Math::BigInt

Page 22http://perldoc.perl.org

taken) + local P (if defined on both of the operands: bigger one is
 taken)
 + global A
 + global P
 + global F
 * fsqrt() will hand its arguments to fdiv(), as it used to, only now
for two
 arguments (A and P) instead of one

Local settings

 * You can set A or P locally by using $x->accuracy() or
 $x->precision()
 and thus force different A and P for different objects/numbers.
 * Setting A or P this way immediately rounds $x to the new value.
 * $x->accuracy() clears $x->precision(), and vice versa.

Rounding

 * the rounding routines will use the respective global or local
settings.
 fround()/bround() is for accuracy rounding, while
ffround()/bfround()
 is for precision
 * the two rounding functions take as the second parameter one of the
 following rounding modes (R):
 'even', 'odd', '+inf', '-inf', 'zero', 'trunc', 'common'
 * you can set/get the global R by using Math::SomeClass->round_mode()
 or by setting $Math::SomeClass::round_mode
 * after each operation, $result->round() is called, and the result may
 eventually be rounded (that is, if A or P were set either locally,
 globally or as parameter to the operation)
 * to manually round a number, call $x->round($A,$P,$round_mode);
 this will round the number by using the appropriate rounding
function
 and then normalize it.
 * rounding modifies the local settings of the number:

 $x = Math::BigFloat->new(123.456);
 $x->accuracy(5);
 $x->bround(4);

 Here 4 takes precedence over 5, so 123.5 is the result and
$x->accuracy()
 will be 4 from now on.

Default values

 * R: 'even'
 * F: 40
 * A: undef
 * P: undef

Remarks

 * The defaults are set up so that the new code gives the same results
as

Perl version 5.18.0 documentation - Math::BigInt

Page 23http://perldoc.perl.org

 the old code (except in a few cases on fdiv):
 + Both A and P are undefined and thus will not be used for rounding
 after each operation.
 + round() is thus a no-op, unless given extra parameters A and P

Infinity and Not a Number
While BigInt has extensive handling of inf and NaN, certain quirks remain.

oct()/hex()

These perl routines currently (as of Perl v.5.8.6) cannot handle passed
 inf.

	 te@linux:~> perl -wle 'print 2 ** 3333'
	 inf
	 te@linux:~> perl -wle 'print 2 ** 3333 == 2 ** 3333'
	 1
	 te@linux:~> perl -wle 'print oct(2 ** 3333)'
	 0
	 te@linux:~> perl -wle 'print hex(2 ** 3333)'
	 Illegal hexadecimal digit 'i' ignored at -e line 1.
	 0

The same problems occur if you pass them Math::BigInt->binf() objects. Since
 overloading these
routines is not possible, this cannot be fixed from BigInt.

==, !=, <, >, <=, >= with NaNs

BigInt's bcmp() routine currently returns undef to signal that a NaN was
 involved in a comparison.
However, the overload code turns that into
 either 1 or '' and thus operations like NaN != NaN
might return
 wrong values.

log(-inf)

log(-inf) is highly weird. Since log(-x)=pi*i+log(x), then
 log(-inf)=pi*i+inf. However, since the
imaginary part is finite, the real
 infinity "overshadows" it, so the number might as well just be
infinity.
 However, the result is a complex number, and since BigInt/BigFloat can only
 have real
numbers as results, the result is NaN.

exp(), cos(), sin(), atan2()

These all might have problems handling infinity right.

INTERNALS
The actual numbers are stored as unsigned big integers (with separate sign).

You should neither care about nor depend on the internal representation; it
 might change without
notice. Use ONLY method calls like $x->sign();
 instead relying on the internal representation.

MATH LIBRARY
Math with the numbers is done (by default) by a module called Math::BigInt::Calc. This is
equivalent to saying:

	 use Math::BigInt try => 'Calc';

You can change this backend library by using:

	 use Math::BigInt try => 'GMP';

Note: General purpose packages should not be explicit about the library
 to use; let the script author
decide which is best.

Perl version 5.18.0 documentation - Math::BigInt

Page 24http://perldoc.perl.org

If your script works with huge numbers and Calc is too slow for them,
 you can also for the loading of
one of these libraries and if none
 of them can be used, the code will die:

	 use Math::BigInt only => 'GMP,Pari';

The following would first try to find Math::BigInt::Foo, then
 Math::BigInt::Bar, and when this also fails,
revert to Math::BigInt::Calc:

	 use Math::BigInt try => 'Foo,Math::BigInt::Bar';

The library that is loaded last will be used. Note that this can be
 overwritten at any time by loading a
different library, and numbers
 constructed with different libraries cannot be used in math operations

together.

What library to use?

Note: General purpose packages should not be explicit about the library
 to use; let the script author
decide which is best.

Math::BigInt::GMP and Math::BigInt::Pari are in cases involving big
 numbers much faster than Calc,
however it is slower when dealing with very
 small numbers (less than about 20 digits) and when
converting very large
 numbers to decimal (for instance for printing, rounding, calculating their
 length in
decimal etc).

So please select carefully what library you want to use.

Different low-level libraries use different formats to store the numbers.
 However, you should NOT
depend on the number having a specific format
 internally.

See the respective math library module documentation for further details.

SIGN
The sign is either '+', '-', 'NaN', '+inf' or '-inf'.

A sign of 'NaN' is used to represent the result when input arguments are not
 numbers or as a result of
0/0. '+inf' and '-inf' represent plus respectively
 minus infinity. You will get '+inf' when dividing a positive
number by 0, and
 '-inf' when dividing any negative number by 0.

mantissa(), exponent() and parts()
mantissa() and exponent() return the said parts of the BigInt such
 that:

 $m = $x->mantissa();
 $e = $x->exponent();
 $y = $m * (10 ** $e);
 print "ok\n" if $x == $y;

($m,$e) = $x->parts() is just a shortcut that gives you both of them
 in one go. Both the returned
mantissa and exponent have a sign.

Currently, for BigInts $e is always 0, except +inf and -inf, where it is +inf; and for NaN, where it is
NaN; and for $x == 0, where it is 1
 (to be compatible with Math::BigFloat's internal representation of
a zero as 0E1).

$m is currently just a copy of the original number. The relation between $e and $m will stay always the
same, though their real values might
 change.

EXAMPLES
 use Math::BigInt;

Perl version 5.18.0 documentation - Math::BigInt

Page 25http://perldoc.perl.org

 sub bint { Math::BigInt->new(shift); }

 $x = Math::BigInt->bstr("1234") 	 # string "1234"
 $x = "$x"; 	 # same as bstr()
 $x = Math::BigInt->bneg("1234"); 	 # BigInt "-1234"
 $x = Math::BigInt->babs("-12345"); 	 # BigInt "12345"
 $x = Math::BigInt->bnorm("-0.00"); 	 # BigInt "0"
 $x = bint(1) + bint(2); 	 # BigInt "3"
 $x = bint(1) + "2"; 	 # ditto (auto-BigIntify of "2")
 $x = bint(1); 	 # BigInt "1"
 $x = $x + 5 / 2; 	 # BigInt "3"
 $x = $x ** 3; 	 # BigInt "27"
 $x *= 2; 	 # BigInt "54"
 $x = Math::BigInt->new(0); 	 # BigInt "0"
 $x--; 	 # BigInt "-1"
 $x = Math::BigInt->badd(4,5)		 # BigInt "9"
 print $x->bsstr();			 # 9e+0

Examples for rounding:

 use Math::BigFloat;
 use Test;

 $x = Math::BigFloat->new(123.4567);
 $y = Math::BigFloat->new(123.456789);
 Math::BigFloat->accuracy(4);		 # no more A than 4

 ok ($x->copy()->fround(),123.4);	 # even rounding
 print $x->copy()->fround(),"\n";	 # 123.4
 Math::BigFloat->round_mode('odd');	 # round to odd
 print $x->copy()->fround(),"\n";	 # 123.5
 Math::BigFloat->accuracy(5);		 # no more A than 5
 Math::BigFloat->round_mode('odd');	 # round to odd
 print $x->copy()->fround(),"\n";	 # 123.46
 $y = $x->copy()->fround(4),"\n";	 # A = 4: 123.4
 print "$y, ",$y->accuracy(),"\n";	 # 123.4, 4

 Math::BigFloat->accuracy(undef);	 # A not important now
 Math::BigFloat->precision(2); 	 # P important
 print $x->copy()->bnorm(),"\n";	 # 123.46
 print $x->copy()->fround(),"\n";	 # 123.46

Examples for converting:

 my $x = Math::BigInt->new('0b1'.'01' x 123);
 print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\n";

Autocreating constants
After use Math::BigInt ':constant' all the integer decimal, hexadecimal
 and binary
constants in the given scope are converted to Math::BigInt.
 This conversion happens at compile
time.

In particular,

 perl -MMath::BigInt=:constant -e 'print 2**100,"\n"'

Perl version 5.18.0 documentation - Math::BigInt

Page 26http://perldoc.perl.org

prints the integer value of 2**100. Note that without conversion of constants the expression 2**100
will be calculated as perl scalar.

Please note that strings and floating point constants are not affected,
 so that

 	 use Math::BigInt qw/:constant/;

	 $x = 1234567890123456789012345678901234567890
		 + 123456789123456789;
	 $y = '1234567890123456789012345678901234567890'
		 + '123456789123456789';

do not work. You need an explicit Math::BigInt->new() around one of the
 operands. You should also
quote large constants to protect loss of precision:

	 use Math::BigInt;

	 $x = Math::BigInt->new('1234567889123456789123456789123456789');

Without the quotes Perl would convert the large number to a floating point
 constant at compile time
and then hand the result to BigInt, which results in
 an truncated result or a NaN.

This also applies to integers that look like floating point constants:

	 use Math::BigInt ':constant';

	 print ref(123e2),"\n";
	 print ref(123.2e2),"\n";

will print nothing but newlines. Use either bignum or Math::BigFloat
 to get this to work.

PERFORMANCE
Using the form $x += $y; etc over $x = $x + $y is faster, since a copy of $x
 must be made in the
second case. For long numbers, the copy can eat up to 20%
 of the work (in the case of
addition/subtraction, less for
 multiplication/division). If $y is very small compared to $x, the form
 $x +=
$y is MUCH faster than $x = $x + $y since making the copy of $x takes
 more time then the actual
addition.

With a technique called copy-on-write, the cost of copying with overload could
 be minimized or even
completely avoided. A test implementation of COW did show
 performance gains for overloaded math,
but introduced a performance loss due
 to a constant overhead for all other operations. So
Math::BigInt does currently
 not COW.

The rewritten version of this module (vs. v0.01) is slower on certain
 operations, like new(), bstr()
and numify(). The reason are that it
 does now more work and handles much more cases. The time
spent in these
 operations is usually gained in the other math operations so that code on
 the average
should get (much) faster. If they don't, please contact the author.

Some operations may be slower for small numbers, but are significantly faster
 for big numbers. Other
operations are now constant (O(1), like bneg(), babs() etc), instead of O(N) and thus nearly always
take much less time.
 These optimizations were done on purpose.

If you find the Calc module to slow, try to install any of the replacement
 modules and see if they help
you.

Perl version 5.18.0 documentation - Math::BigInt

Page 27http://perldoc.perl.org

Alternative math libraries
You can use an alternative library to drive Math::BigInt. See the section MATH LIBRARY for more
information.

For more benchmark results see http://bloodgate.com/perl/benchmarks.html.

SUBCLASSING
Subclassing Math::BigInt

The basic design of Math::BigInt allows simple subclasses with very little
 work, as long as a few
simple rules are followed:

The public API must remain consistent, i.e. if a sub-class is overloading
 addition, the sub-class
must use the same name, in this case badd(). The
 reason for this is that Math::BigInt is optimized
to call the object methods
 directly.

The private object hash keys like $x->{sign} may not be changed, but
 additional keys can be
added, like $x->{_custom}.

Accessor functions are available for all existing object hash keys and should
 be used instead of
directly accessing the internal hash keys. The reason for
 this is that Math::BigInt itself has a
pluggable interface which permits it
 to support different storage methods.

More complex sub-classes may have to replicate more of the logic internal of
 Math::BigInt if they need
to change more basic behaviors. A subclass that
 needs to merely change the output only needs to
overload bstr().

All other object methods and overloaded functions can be directly inherited
 from the parent class.

At the very minimum, any subclass will need to provide its own new() and can
 store additional hash
keys in the object. There are also some package globals
 that must be defined, e.g.:

 # Globals
 $accuracy = undef;
 $precision = -2; # round to 2 decimal places
 $round_mode = 'even';
 $div_scale = 40;

Additionally, you might want to provide the following two globals to allow
 auto-upgrading and
auto-downgrading to work correctly:

 $upgrade = undef;
 $downgrade = undef;

This allows Math::BigInt to correctly retrieve package globals from the subclass, like
$SubClass::precision. See t/Math/BigInt/Subclass.pm or
 t/Math/BigFloat/SubClass.pm
completely functional subclass examples.

Don't forget to

	 use overload;

in your subclass to automatically inherit the overloading from the parent. If
 you like, you can change
part of the overloading, look at Math::String for an
 example.

UPGRADING
When used like this:

	 use Math::BigInt upgrade => 'Foo::Bar';

Perl version 5.18.0 documentation - Math::BigInt

Page 28http://perldoc.perl.org

certain operations will 'upgrade' their calculation and thus the result to
 the class Foo::Bar. Usually this
is used in conjunction with Math::BigFloat:

	 use Math::BigInt upgrade => 'Math::BigFloat';

As a shortcut, you can use the module bignum:

	 use bignum;

Also good for one-liners:

	 perl -Mbignum -le 'print 2 ** 255'

This makes it possible to mix arguments of different classes (as in 2.5 + 2)
 as well es preserve
accuracy (as in sqrt(3)).

Beware: This feature is not fully implemented yet.

Auto-upgrade
The following methods upgrade themselves unconditionally; that is if upgrade
 is in effect, they will
always hand up their work:

bsqrt()

div()

blog()

bexp()

Beware: This list is not complete.

All other methods upgrade themselves only when one (or all) of their
 arguments are of the class
mentioned in $upgrade (This might change in later
 versions to a more sophisticated scheme):

EXPORTS
Math::BigInt exports nothing by default, but can export the following methods:

	 bgcd
	 blcm

CAVEATS
Some things might not work as you expect them. Below is documented what is
 known to be
troublesome:

bstr(), bsstr() and 'cmp'

Both bstr() and bsstr() as well as automated stringify via overload now
 drop the leading '+'.
The old code would return '+3', the new returns '3'.
 This is to be consistent with Perl and to make
cmp (especially with
 overloading) to work as you expect. It also solves problems with Test.pm,

because its ok() uses 'eq' internally.

Mark Biggar said, when asked about to drop the '+' altogether, or make only cmp work:

	 I agree (with the first alternative), don't add the '+' on positive
	 numbers. It's not as important anymore with the new internal
	 form for numbers. It made doing things like abs and neg easier,
	 but those have to be done differently now anyway.

So, the following examples will now work all as expected:

	 use Test;

Perl version 5.18.0 documentation - Math::BigInt

Page 29http://perldoc.perl.org

 BEGIN { plan tests => 1 }
	 use Math::BigInt;

	 my $x = new Math::BigInt 3*3;
	 my $y = new Math::BigInt 3*3;

	 ok ($x,3*3);
	 print "$x eq 9" if $x eq $y;
	 print "$x eq 9" if $x eq '9';
	 print "$x eq 9" if $x eq 3*3;

Additionally, the following still works:

	 print "$x == 9" if $x == $y;
	 print "$x == 9" if $x == 9;
	 print "$x == 9" if $x == 3*3;

There is now a bsstr() method to get the string in scientific notation aka 1e+2 instead of 100. Be
advised that overloaded 'eq' always uses bstr()
 for comparison, but Perl will represent some
numbers as 100 and others
 as 1e+308. If in doubt, convert both arguments to Math::BigInt before
comparing them as strings:

	 use Test;
 BEGIN { plan tests => 3 }
	 use Math::BigInt;

	 $x = Math::BigInt->new('1e56'); $y = 1e56;
	 ok ($x,$y);			 # will fail
	 ok ($x->bsstr(),$y);		 # okay
	 $y = Math::BigInt->new($y);
	 ok ($x,$y);			 # okay

Alternatively, simple use <=> for comparisons, this will get it
 always right. There is not yet a way to
get a number automatically represented
 as a string that matches exactly the way Perl represents it.

See also the section about Infinity and Not a Number for problems in
 comparing NaNs.

int()

int() will return (at least for Perl v5.7.1 and up) another BigInt, not a Perl scalar:

	 $x = Math::BigInt->new(123);
	 $y = int($x);				 # BigInt 123
	 $x = Math::BigFloat->new(123.45);
	 $y = int($x);				 # BigInt 123

In all Perl versions you can use as_number() or as_int for the same
 effect:

	 $x = Math::BigFloat->new(123.45);
	 $y = $x->as_number();			 # BigInt 123
	 $y = $x->as_int();			 # ditto

This also works for other subclasses, like Math::String.

If you want a real Perl scalar, use numify():

	 $y = $x->numify();			 # 123 as scalar

This is seldom necessary, though, because this is done automatically, like
 when you access an
array:

	 $z = $array[$x];			 # does work automatically

Perl version 5.18.0 documentation - Math::BigInt

Page 30http://perldoc.perl.org

length

The following will probably not do what you expect:

	 $c = Math::BigInt->new(123);
	 print $c->length(),"\n";		 # prints 30

It prints both the number of digits in the number and in the fraction part
 since print calls length()
in list context. Use something like:

	 print scalar $c->length(),"\n";		 # prints 3

bdiv

The following will probably not do what you expect:

	 print $c->bdiv(10000),"\n";

It prints both quotient and remainder since print calls bdiv() in list
 context. Also, bdiv() will
modify $c, so be careful. You probably want
 to use

	 print $c / 10000,"\n";
	 print scalar $c->bdiv(10000),"\n"; # or if you want to modify $c

instead.

The quotient is always the greatest integer less than or equal to the
 real-valued quotient of the two
operands, and the remainder (when it is
 non-zero) always has the same sign as the second
operand; so, for
 example,

	 1 / 4 => (0, 1)
	 1 / -4 => (-1,-3)
	 -3 / 4 => (-1, 1)
	 -3 / -4 => (0,-3)
	 -11 / 2 => (-5,1)
	 11 /-2 => (-5,-1)

As a consequence, the behavior of the operator % agrees with the
 behavior of Perl's built-in %
operator (as documented in the perlop
 manpage), and the equation

	 $x == ($x / $y) * $y + ($x % $y)

holds true for any $x and $y, which justifies calling the two return
 values of bdiv() the quotient and
remainder. The only exception to this rule
 are when $y == 0 and $x is negative, then the remainder
will also be
 negative. See below under "infinity handling" for the reasoning behind this.

Perl's 'use integer;' changes the behaviour of % and / for scalars, but will
 not change BigInt's way to
do things. This is because under 'use integer' Perl
 will do what the underlying C thinks is right and
this is different for each
 system. If you need BigInt's behaving exactly like Perl's 'use integer', bug

the author to implement it ;)

infinity handling

Here are some examples that explain the reasons why certain results occur while
 handling infinity:

The following table shows the result of the division and the remainder, so that
 the equation above
holds true. Some "ordinary" cases are strewn in to show more
 clearly the reasoning:

	 A / B = C, R so that C * B + R = A
 ===
	 5 / 8 = 0, 5 	 0 * 8 + 5 = 5
	 0 / 8 = 0, 0	 0 * 8 + 0 = 0
	 0 / inf = 0, 0	 0 * inf + 0 = 0
	 0 /-inf = 0, 0	 0 * -inf + 0 = 0
	 5 / inf = 0, 5	 0 * inf + 5 = 5

Perl version 5.18.0 documentation - Math::BigInt

Page 31http://perldoc.perl.org

	 5 /-inf = 0, 5	 0 * -inf + 5 = 5
	 -5/ inf = 0, -5	 0 * inf + -5 = -5
	 -5/-inf = 0, -5	 0 * -inf + -5 = -5
 inf/ 5 = inf, 0	 inf * 5 + 0 = inf
 -inf/ 5 = -inf, 0 -inf * 5 + 0 = -inf
 inf/ -5 = -inf, 0	 -inf * -5 + 0 = inf
 -inf/ -5 = inf, 0 inf * -5 + 0 = -inf
	 5/ 5 = 1, 0 1 * 5 + 0 = 5
	 -5/ -5 = 1, 0 1 * -5 + 0 = -5
 inf/ inf = 1, 0 1 * inf + 0 = inf
 -inf/-inf = 1, 0 1 * -inf + 0 = -inf
 inf/-inf = -1, 0 -1 * -inf + 0 = inf
 -inf/ inf = -1, 0 1 * -inf + 0 = -inf
	 8/ 0 = inf, 8 inf * 0 + 8 = 8
 inf/ 0 = inf, inf inf * 0 + inf = inf
 0/ 0 = NaN

These cases below violate the "remainder has the sign of the second of the two
 arguments", since
they wouldn't match up otherwise.

	 A / B = C, R so that C * B + R = A
 ==
 -inf/ 0 = -inf, -inf -inf * 0 + inf = -inf
	 -8/ 0 = -inf, -8 -inf * 0 + 8 = -8

Modifying and =

Beware of:

 $x = Math::BigFloat->new(5);
 $y = $x;

It will not do what you think, e.g. making a copy of $x. Instead it just makes
 a second reference to
the same object and stores it in $y. Thus anything
 that modifies $x (except overloaded operators)
will modify $y, and vice versa.
 Or in other words, = is only safe if you modify your BigInts only via

overloaded math. As soon as you use a method call it breaks:

 $x->bmul(2);
 print "$x, $y\n"; # prints '10, 10'

If you want a true copy of $x, use:

 $y = $x->copy();

You can also chain the calls like this, this will make first a copy and then
 multiply it by 2:

 $y = $x->copy()->bmul(2);

See also the documentation for overload.pm regarding =.

bpow

bpow() (and the rounding functions) now modifies the first argument and
 returns it, unlike the old
code which left it alone and only returned the
 result. This is to be consistent with badd() etc. The
first three will
 modify $x, the last one won't:

	 print bpow($x,$i),"\n"; 	 # modify $x
	 print $x->bpow($i),"\n"; 	 # ditto
	 print $x **= $i,"\n";		 # the same
	 print $x ** $i,"\n";		 # leave $x alone

Perl version 5.18.0 documentation - Math::BigInt

Page 32http://perldoc.perl.org

The form $x **= $y is faster than $x = $x ** $y;, though.

Overloading -$x

The following:

	 $x = -$x;

is slower than

	 $x->bneg();

since overload calls sub($x,0,1); instead of neg($x). The first variant
 needs to preserve $x
since it does not know that it later will get overwritten.
 This makes a copy of $x and takes O(N), but
$x->bneg() is O(1).

Mixing different object types

In Perl you will get a floating point value if you do one of the following:

	 $float = 5.0 + 2;
	 $float = 2 + 5.0;
	 $float = 5 / 2;

With overloaded math, only the first two variants will result in a BigFloat:

	 use Math::BigInt;
	 use Math::BigFloat;

	 $mbf = Math::BigFloat->new(5);
	 $mbi2 = Math::BigInteger->new(5);
	 $mbi = Math::BigInteger->new(2);

					 # what actually gets called:
	 $float = $mbf + $mbi;		 # $mbf->badd()
	 $float = $mbf / $mbi;		 # $mbf->bdiv()
	 $integer = $mbi + $mbf;		 # $mbi->badd()
	 $integer = $mbi2 / $mbi;	 # $mbi2->bdiv()
	 $integer = $mbi2 / $mbf;	 # $mbi2->bdiv()

This is because math with overloaded operators follows the first (dominating)
 operand, and the
operation of that is called and returns thus the result. So,
 Math::BigInt::bdiv() will always return a
Math::BigInt, regardless whether
 the result should be a Math::BigFloat or the second operant is one.

To get a Math::BigFloat you either need to call the operation manually,
 make sure the operands are
already of the proper type or casted to that type
 via Math::BigFloat->new():

	 $float = Math::BigFloat->new($mbi2) / $mbi;	 # = 2.5

Beware of simple "casting" the entire expression, this would only convert
 the already computed
result:

	 $float = Math::BigFloat->new($mbi2 / $mbi);	 # = 2.0 thus wrong!

Beware also of the order of more complicated expressions like:

	 $integer = ($mbi2 + $mbi) / $mbf;		 # int / float => int
	 $integer = $mbi2 / Math::BigFloat->new($mbi);	 # ditto

If in doubt, break the expression into simpler terms, or cast all operands
 to the desired resulting
type.

Scalar values are a bit different, since:

	 $float = 2 + $mbf;

Perl version 5.18.0 documentation - Math::BigInt

Page 33http://perldoc.perl.org

	 $float = $mbf + 2;

will both result in the proper type due to the way the overloaded math works.

This section also applies to other overloaded math packages, like Math::String.

One solution to you problem might be autoupgrading|upgrading. See the
 pragmas bignum, bigint
and bigrat for an easy way to do this.

bsqrt()

bsqrt() works only good if the result is a big integer, e.g. the square
 root of 144 is 12, but from 12
the square root is 3, regardless of rounding
 mode. The reason is that the result is always truncated
to an integer.

If you want a better approximation of the square root, then use:

	 $x = Math::BigFloat->new(12);
	 Math::BigFloat->precision(0);
	 Math::BigFloat->round_mode('even');
	 print $x->copy->bsqrt(),"\n";		 # 4

	 Math::BigFloat->precision(2);
	 print $x->bsqrt(),"\n";			 # 3.46
	 print $x->bsqrt(3),"\n";		 # 3.464

brsft()

For negative numbers in base see also brsft.

LICENSE
This program is free software; you may redistribute it and/or modify it under
 the same terms as Perl
itself.

SEE ALSO
Math::BigFloat, Math::BigRat and Math::Big as well as Math::BigInt::Pari and Math::BigInt::GMP.

The pragmas bignum, bigint and bigrat also might be of interest
 because they solve the
autoupgrading/downgrading issue, at least partly.

The package at http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt contains

more documentation including a full version history, testcases, empty
 subclass files and benchmarks.

AUTHORS
Original code by Mark Biggar, overloaded interface by Ilya Zakharevich.
 Completely rewritten by Tels
http://bloodgate.com in late 2000, 2001 - 2006
 and still at it in 2007.

Many people contributed in one or more ways to the final beast, see the file
 CREDITS for an
(incomplete) list. If you miss your name, please drop me a
 mail. Thank you!

