
Perl version 5.18.0 documentation - File::GlobMapper

Page 1http://perldoc.perl.org

NAME
File::GlobMapper - Extend File Glob to Allow Input and Output Files

SYNOPSIS
 use File::GlobMapper qw(globmap);

 my $aref = globmap $input => $output
 or die $File::GlobMapper::Error ;

 my $gm = new File::GlobMapper $input => $output
 or die $File::GlobMapper::Error ;

DESCRIPTION
This module needs Perl5.005 or better.

This module takes the existing File::Glob module as a starting point and
 extends it to allow new
filenames to be derived from the files matched by File::Glob.

This can be useful when carrying out batch operations on multiple files that
 have both an input
filename and output filename and the output file can be
 derived from the input filename. Examples of
operations where this can be
 useful include, file renaming, file copying and file compression.

Behind The Scenes
To help explain what File::GlobMapper does, consider what code you
 would write if you wanted
to rename all files in the current directory
 that ended in .tar.gz to .tgz. So say these files are in
the
 current directory

 alpha.tar.gz
 beta.tar.gz
 gamma.tar.gz

and they need renamed to this

 alpha.tgz
 beta.tgz
 gamma.tgz

Below is a possible implementation of a script to carry out the rename
 (error cases have been
omitted)

 foreach my $old (glob "*.tar.gz")
 {
 my $new = $old;
 $new =~ s#(.*)\.tar\.gz$#$1.tgz# ;

 rename $old => $new
 or die "Cannot rename '$old' to '$new': $!\n;
 }

Notice that a file glob pattern *.tar.gz was used to match the .tar.gz files, then a fairly similar
regular expression was used in
 the substitute to allow the new filename to be created.

Given that the file glob is just a cut-down regular expression and that it
 has already done a lot of the
hard work in pattern matching the filenames,
 wouldn't it be handy to be able to use the patterns in the
fileglob to
 drive the new filename?

Perl version 5.18.0 documentation - File::GlobMapper

Page 2http://perldoc.perl.org

Well, that's exactly what File::GlobMapper does.

Here is same snippet of code rewritten using globmap

 for my $pair (globmap '<*.tar.gz>' => '<#1.tgz>')
 {
 my ($from, $to) = @$pair;
 rename $from => $to
 or die "Cannot rename '$old' to '$new': $!\n;
 }

So how does it work?

Behind the scenes the globmap function does a combination of a
 file glob to match existing
filenames followed by a substitute
 to create the new filenames.

Notice how both parameters to globmap are strings that are delimited by <>.
 This is done to make
them look more like file globs - it is just syntactic
 sugar, but it can be handy when you want the strings
to be visually
 distinctive. The enclosing <> are optional, so you don't have to use them - in
 fact the
first thing globmap will do is remove these delimiters if they are
 present.

The first parameter to globmap, *.tar.gz, is an Input File Glob. Once the enclosing "< ... >" is
removed, this is passed (more or
 less) unchanged to File::Glob to carry out a file match.

Next the fileglob *.tar.gz is transformed behind the scenes into a
 full Perl regular expression, with
the additional step of wrapping each
 transformed wildcard metacharacter sequence in parenthesis.

In this case the input fileglob *.tar.gz will be transformed into
 this Perl regular expression

 ([^/]*)\.tar\.gz

Wrapping with parenthesis allows the wildcard parts of the Input File
 Glob to be referenced by the
second parameter to globmap, #1.tgz,
 the Output File Glob. This parameter operates just like the
replacement
 part of a substitute command. The difference is that the #1 syntax
 is used to reference
sub-patterns matched in the input fileglob, rather
 than the $1 syntax that is used with perl regular
expressions. In
 this case #1 is used to refer to the text matched by the * in the
 Input File Glob. This
makes it easier to use this module where the
 parameters to globmap are typed at the command line.

The final step involves passing each filename matched by the *.tar.gz
 file glob through the derived
Perl regular expression in turn and
 expanding the output fileglob using it.

The end result of all this is a list of pairs of filenames. By default
 that is what is returned by globmap.
In this example the data structure
 returned will look like this

 (['alpha.tar.gz' => 'alpha.tgz'],
 ['beta.tar.gz' => 'beta.tgz'],
 ['gamma.tar.gz' => 'gamma.tgz']
)

Each pair is an array reference with two elements - namely the from
 filename, that File::Glob has
matched, and a to filename that is
 derived from the from filename.

Limitations
File::GlobMapper has been kept simple deliberately, so it isn't intended to
 solve all filename
mapping operations. Under the hood File::Glob (or for
 older versions of Perl, File::BSDGlob) is
used to match the files, so you
 will never have the flexibility of full Perl regular expression.

Perl version 5.18.0 documentation - File::GlobMapper

Page 3http://perldoc.perl.org

Input File Glob
The syntax for an Input FileGlob is identical to File::Glob, except
 for the following

1. No nested {}

2. Whitespace does not delimit fileglobs.

3. The use of parenthesis can be used to capture parts of the input filename.

4. If an Input glob matches the same file more than once, only the first
 will be used.

The syntax

~

~user

.

Matches a literal '.'.
 Equivalent to the Perl regular expression

 \.

Matches zero or more characters, except '/'. Equivalent to the Perl
 regular expression

 [^/]*

?

Matches zero or one character, except '/'. Equivalent to the Perl
 regular expression

 [^/]?

\

Backslash is used, as usual, to escape the next character.

[]

Character class.

{,}

Alternation

()

Capturing parenthesis that work just like perl

Any other character it taken literally.

Output File Glob
The Output File Glob is a normal string, with 2 glob-like features.

The first is the '*' metacharacter. This will be replaced by the complete
 filename matched by the input
file glob. So

 *.c *.Z

The second is

Output FileGlobs take the

"*"

The "*" character will be replaced with the complete input filename.

Perl version 5.18.0 documentation - File::GlobMapper

Page 4http://perldoc.perl.org

#1

Patterns of the form /#\d/ will be replaced with the

Returned Data
EXAMPLES
A Rename script

Below is a simple "rename" script that uses globmap to determine the
 source and destination
filenames.

 use File::GlobMapper qw(globmap) ;
 use File::Copy;

 die "rename: Usage rename 'from' 'to'\n"
 unless @ARGV == 2 ;

 my $fromGlob = shift @ARGV;
 my $toGlob = shift @ARGV;

 my $pairs = globmap($fromGlob, $toGlob)
 or die $File::GlobMapper::Error;

 for my $pair (@$pairs)
 {
 my ($from, $to) = @$pair;
 move $from => $to ;
 }

Here is an example that renames all c files to cpp.

 $ rename '*.c' '#1.cpp'

A few example globmaps
Below are a few examples of globmaps

To copy all your .c file to a backup directory

 '</my/home/*.c>' '</my/backup/#1.c>'

If you want to compress all

 '</my/home/*.[ch]>' '<*.gz>'

To uncompress

 '</my/home/*.[ch].gz>' '</my/home/#1.#2>'

SEE ALSO
File::Glob

AUTHOR
The File::GlobMapper module was written by Paul Marquess, pmqs@cpan.org.

Perl version 5.18.0 documentation - File::GlobMapper

Page 5http://perldoc.perl.org

COPYRIGHT AND LICENSE
Copyright (c) 2005 Paul Marquess. All rights reserved.
 This program is free software; you can
redistribute it and/or
 modify it under the same terms as Perl itself.

