
Perl version 5.18.0 documentation - UNIVERSAL

Page 1http://perldoc.perl.org

NAME
UNIVERSAL - base class for ALL classes (blessed references)

SYNOPSIS
 $is_io = $fd->isa("IO::Handle");
 $is_io = Class->isa("IO::Handle");

 $does_log = $obj->DOES("Logger");
 $does_log = Class->DOES("Logger");

 $sub = $obj->can("print");
 $sub = Class->can("print");

 $sub = eval { $ref->can("fandango") };
 $ver = $obj->VERSION;

 # but never do this!
 $is_io = UNIVERSAL::isa($fd, "IO::Handle");
 $sub = UNIVERSAL::can($obj, "print");

DESCRIPTION
UNIVERSAL is the base class from which all blessed references inherit.
 See perlobj.

UNIVERSAL provides the following methods:

$obj->isa(TYPE)

CLASS->isa(TYPE)

eval { VAL->isa(TYPE) }

Where

TYPE

is a package name

$obj

is a blessed reference or a package name

CLASS

is a package name

VAL

is any of the above or an unblessed reference

When used as an instance or class method ($obj->isa(TYPE)), isa returns true if $obj
is blessed into package TYPE or
 inherits from package TYPE.

When used as a class method (CLASS->isa(TYPE), sometimes
 referred to as a static
method), isa returns true if CLASS
 inherits from (or is itself) the name of the package TYPE or
inherits from package TYPE.

If you're not sure what you have (the VAL case), wrap the method call in an eval block to
catch the exception if VAL is undefined.

If you want to be sure that you're calling isa as a method, not a class,
 check the invocand
with blessed from Scalar::Util first:

 use Scalar::Util 'blessed';

Perl version 5.18.0 documentation - UNIVERSAL

Page 2http://perldoc.perl.org

 if (blessed($obj) && $obj->isa("Some::Class")) {
 ...
 }

$obj->DOES(ROLE)

CLASS->DOES(ROLE)

DOES checks if the object or class performs the role ROLE. A role is a
 named group of specific
behavior (often methods of particular names and
 signatures), similar to a class, but not
necessarily a complete class by
 itself. For example, logging or serialization may be roles.

DOES and isa are similar, in that if either is true, you know that the
 object or class on which
you call the method can perform specific behavior.
 However, DOES is different from isa in that
it does not care how the
 invocand performs the operations, merely that it does. (isa of course
mandates an inheritance relationship. Other relationships include aggregation,
 delegation, and
mocking.)

By default, classes in Perl only perform the UNIVERSAL role, as well as the
 role of all classes
in their inheritance. In other words, by default DOES
 responds identically to isa.

There is a relationship between roles and classes, as each class implies the
 existence of a
role of the same name. There is also a relationship between
 inheritance and roles, in that a
subclass that inherits from an ancestor class
 implicitly performs any roles its parent performs.
Thus you can use DOES in
 place of isa safely, as it will return true in all places where isa will
return true (provided that any overridden DOES and isa methods behave
 appropriately).

$obj->can(METHOD)

CLASS->can(METHOD)

eval { VAL->can(METHOD) }

can checks if the object or class has a method called METHOD. If it does,
 then it returns a
reference to the sub. If it does not, then it returns undef. This includes methods inherited or
imported by $obj, CLASS, or VAL.

can cannot know whether an object will be able to provide a method through
 AUTOLOAD
(unless the object's class has overridden can appropriately), so a
 return value of undef does
not necessarily mean the object will not be able
 to handle the method call. To get around this
some module authors use a forward
 declaration (see perlsub) for methods they will handle via
AUTOLOAD. For
 such 'dummy' subs, can will still return a code reference, which, when

called, will fall through to the AUTOLOAD. If no suitable AUTOLOAD is provided,
 calling the
coderef will cause an error.

You may call can as a class (static) method or an object method.

Again, the same rule about having a valid invocand applies -- use an eval
 block or blessed
if you need to be extra paranoid.

VERSION ([REQUIRE])

VERSION will return the value of the variable $VERSION in the
 package the object is blessed
into. If REQUIRE is given then
 it will do a comparison and die if the package version is not

greater than or equal to REQUIRE, or if either $VERSION or REQUIRE
 is not a "lax" version
number (as defined by the version module).

The return from VERSION will actually be the stringified version object
 using the package
$VERSION scalar, which is guaranteed to be equivalent
 but may not be precisely the contents
of the $VERSION scalar. If you want
 the actual contents of $VERSION, use
$CLASS::VERSION instead.

VERSION can be called as either a class (static) method or an object
 method.

Perl version 5.18.0 documentation - UNIVERSAL

Page 3http://perldoc.perl.org

WARNINGS
NOTE: can directly uses Perl's internal code for method lookup, and isa uses a very similar method
and cache-ing strategy. This may cause
 strange effects if the Perl code dynamically changes @ISA in
any package.

You may add other methods to the UNIVERSAL class via Perl or XS code.
 You do not need to use
UNIVERSAL to make these methods
 available to your program (and you should not do so).

EXPORTS
None by default.

You may request the import of three functions (isa, can, and VERSION), but this feature is
deprecated and will be removed. Please don't do this in
 new code.

For example, previous versions of this documentation suggested using isa as
 a function to determine
the type of a reference:

 use UNIVERSAL 'isa';

 $yes = isa $h, "HASH";
 $yes = isa "Foo", "Bar";

The problem is that this code will never call an overridden isa method in
 any class. Instead, use
reftype from Scalar::Util for the first case:

 use Scalar::Util 'reftype';

 $yes = reftype($h) eq "HASH";

and the method form of isa for the second:

 $yes = Foo->isa("Bar");

