
Perl version 5.18.0 documentation - perllol

Page 1http://perldoc.perl.org

NAME
perllol - Manipulating Arrays of Arrays in Perl

DESCRIPTION
Declaration and Access of Arrays of Arrays

The simplest two-level data structure to build in Perl is an array of
 arrays, sometimes casually called a
list of lists. It's reasonably easy to
 understand, and almost everything that applies here will also be
applicable
 later on with the fancier data structures.

An array of an array is just a regular old array @AoA that you can
 get at with two subscripts, like
$AoA[3][2]. Here's a declaration
 of the array:

 use 5.010; # so we can use say()

 # assign to our array, an array of array references
 @AoA = (
	 ["fred", "barney", "pebbles", "bambam", "dino",],
	 ["george", "jane", "elroy", "judy",],
	 ["homer", "bart", "marge", "maggie",],
);
 say $AoA[2][1];
 bart

Now you should be very careful that the outer bracket type
 is a round one, that is, a parenthesis.
That's because you're assigning to
 an @array, so you need parentheses. If you wanted there not to
be an @AoA,
 but rather just a reference to it, you could do something more like this:

 # assign a reference to array of array references
 $ref_to_AoA = [
	 ["fred", "barney", "pebbles", "bambam", "dino",],
	 ["george", "jane", "elroy", "judy",],
	 ["homer", "bart", "marge", "maggie",],
];
 say $ref_to_AoA->[2][1];
 bart

Notice that the outer bracket type has changed, and so our access syntax
 has also changed. That's
because unlike C, in perl you can't freely
 interchange arrays and references thereto. $ref_to_AoA is a
reference to an
 array, whereas @AoA is an array proper. Likewise, $AoA[2] is not an
 array, but an
array ref. So how come you can write these:

 $AoA[2][2]
 $ref_to_AoA->[2][2]

instead of having to write these:

 $AoA[2]->[2]
 $ref_to_AoA->[2]->[2]

Well, that's because the rule is that on adjacent brackets only (whether
 square or curly), you are free
to omit the pointer dereferencing arrow.
 But you cannot do so for the very first one if it's a scalar
containing
 a reference, which means that $ref_to_AoA always needs it.

Perl version 5.18.0 documentation - perllol

Page 2http://perldoc.perl.org

Growing Your Own
That's all well and good for declaration of a fixed data structure,
 but what if you wanted to add new
elements on the fly, or build
 it up entirely from scratch?

First, let's look at reading it in from a file. This is something like
 adding a row at a time. We'll assume
that there's a flat file in which
 each line is a row and each word an element. If you're trying to develop
an
 @AoA array containing all these, here's the right way to do that:

 while (<>) {
	 @tmp = split;
	 push @AoA, [@tmp];
 }

You might also have loaded that from a function:

 for $i (1 .. 10) {
	 $AoA[$i] = [somefunc($i)];
 }

Or you might have had a temporary variable sitting around with the
 array in it.

 for $i (1 .. 10) {
	 @tmp = somefunc($i);
	 $AoA[$i] = [@tmp];
 }

It's important you make sure to use the [] array reference
 constructor. That's because this wouldn't
work:

 $AoA[$i] = @tmp; # WRONG!

The reason that doesn't do what you want is because assigning a
 named array like that to a scalar is
taking an array in scalar
 context, which means just counts the number of elements in @tmp.

If you are running under use strict (and if you aren't, why in
 the world aren't you?), you'll have to
add some declarations to
 make it happy:

 use strict;
 my(@AoA, @tmp);
 while (<>) {
	 @tmp = split;
	 push @AoA, [@tmp];
 }

Of course, you don't need the temporary array to have a name at all:

 while (<>) {
	 push @AoA, [split];
 }

You also don't have to use push(). You could just make a direct assignment
 if you knew where you
wanted to put it:

 my (@AoA, $i, $line);
 for $i (0 .. 10) {
	 $line = <>;
	 $AoA[$i] = [split " ", $line];

Perl version 5.18.0 documentation - perllol

Page 3http://perldoc.perl.org

 }

or even just

 my (@AoA, $i);
 for $i (0 .. 10) {
	 $AoA[$i] = [split " ", <>];
 }

You should in general be leery of using functions that could
 potentially return lists in scalar context
without explicitly stating
 such. This would be clearer to the casual reader:

 my (@AoA, $i);
 for $i (0 .. 10) {
	 $AoA[$i] = [split " ", scalar(<>)];
 }

If you wanted to have a $ref_to_AoA variable as a reference to an array,
 you'd have to do something
like this:

 while (<>) {
	 push @$ref_to_AoA, [split];
 }

Now you can add new rows. What about adding new columns? If you're
 dealing with just matrices, it's
often easiest to use simple assignment:

 for $x (1 .. 10) {
	 for $y (1 .. 10) {
	 $AoA[$x][$y] = func($x, $y);
	 }
 }

 for $x (3, 7, 9) {
	 $AoA[$x][20] += func2($x);
 }

It doesn't matter whether those elements are already
 there or not: it'll gladly create them for you,
setting
 intervening elements to undef as need be.

If you wanted just to append to a row, you'd have
 to do something a bit funnier looking:

 # add new columns to an existing row
 push @{ $AoA[0] }, "wilma", "betty"; # explicit deref

Prior to Perl 5.14, this wouldn't even compile:

 push $AoA[0], "wilma", "betty"; # implicit deref

How come? Because once upon a time, the argument to push() had to be a
 real array, not just a
reference to one. That's no longer true. In fact,
 the line marked "implicit deref" above works just
fine--in this
 instance--to do what the one that says explicit deref did.

The reason I said "in this instance" is because that only works
 because $AoA[0] already held an
array reference. If you try that on an
 undefined variable, you'll take an exception. That's because the
implicit
 derefererence will never autovivify an undefined variable the way @{ }
 always will:

Perl version 5.18.0 documentation - perllol

Page 4http://perldoc.perl.org

 my $aref = undef;
 push $aref, qw(some more values); # WRONG!
 push @$aref, qw(a few more); # ok

If you want to take advantage of this new implicit dereferencing behavior,
 go right ahead: it makes
code easier on the eye and wrist. Just understand
 that older releases will choke on it during
compilation. Whenever you make
 use of something that works only in some given release of Perl and
later,
 but not earlier, you should place a prominent

 use v5.14; # needed for implicit deref of array refs by array ops

directive at the top of the file that needs it. That way when somebody
 tries to run the new code under
an old perl, rather than getting an error like

 Type of arg 1 to push must be array (not array element) at /tmp/a line
8, near ""betty";"
 Execution of /tmp/a aborted due to compilation errors.

they'll be politely informed that

 Perl v5.14.0 required--this is only v5.12.3, stopped at /tmp/a line 1.
 BEGIN failed--compilation aborted at /tmp/a line 1.

Access and Printing
Now it's time to print your data structure out. How
 are you going to do that? Well, if you want only one

of the elements, it's trivial:

 print $AoA[0][0];

If you want to print the whole thing, though, you can't
 say

 print @AoA;		 # WRONG

because you'll get just references listed, and perl will never
 automatically dereference things for you.
Instead, you have to
 roll yourself a loop or two. This prints the whole structure,
 using the shell-style
for() construct to loop across the outer
 set of subscripts.

 for $aref (@AoA) {
	 say "\t [@$aref],";
 }

If you wanted to keep track of subscripts, you might do this:

 for $i (0 .. $#AoA) {
	 say "\t elt $i is [@{$AoA[$i]}],";
 }

or maybe even this. Notice the inner loop.

 for $i (0 .. $#AoA) {
	 for $j (0 .. $#{$AoA[$i]}) {
	 say "elt $i $j is $AoA[$i][$j]";
	 }
 }

Perl version 5.18.0 documentation - perllol

Page 5http://perldoc.perl.org

As you can see, it's getting a bit complicated. That's why
 sometimes is easier to take a temporary on
your way through:

 for $i (0 .. $#AoA) {
	 $aref = $AoA[$i];
	 for $j (0 .. $#{$aref}) {
	 say "elt $i $j is $AoA[$i][$j]";
	 }
 }

Hmm... that's still a bit ugly. How about this:

 for $i (0 .. $#AoA) {
	 $aref = $AoA[$i];
	 $n = @$aref - 1;
	 for $j (0 .. $n) {
	 say "elt $i $j is $AoA[$i][$j]";
	 }
 }

When you get tired of writing a custom print for your data structures,
 you might look at the standard
Dumpvalue or Data::Dumper modules.
 The former is what the Perl debugger uses, while the latter
generates
 parsable Perl code. For example:

 use v5.14; # using the + prototype, new to v5.14

 sub show(+) {
	 require Dumpvalue;
	 state $prettily = new Dumpvalue::
			 tick => q("),
			 compactDump => 1, # comment these two lines out
			 veryCompact => 1, # if you want a bigger dump
			 ;
	 dumpValue $prettily @_;
 }

 # Assign a list of array references to an array.
 my @AoA = (
	 ["fred", "barney"],
	 ["george", "jane", "elroy"],
	 ["homer", "marge", "bart"],
);
 push $AoA[0], "wilma", "betty";
 show @AoA;

will print out:

 0 0..3 "fred" "barney" "wilma" "betty"
 1 0..2 "george" "jane" "elroy"
 2 0..2 "homer" "marge" "bart"

Whereas if you comment out the two lines I said you might wish to,
 then it shows it to you this way
instead:

 0 ARRAY(0x8031d0)
 0 "fred"

Perl version 5.18.0 documentation - perllol

Page 6http://perldoc.perl.org

 1 "barney"
 2 "wilma"
 3 "betty"
 1 ARRAY(0x803d40)
 0 "george"
 1 "jane"
 2 "elroy"
 2 ARRAY(0x803e10)
 0 "homer"
 1 "marge"
 2 "bart"

Slices
If you want to get at a slice (part of a row) in a multidimensional
 array, you're going to have to do
some fancy subscripting. That's
 because while we have a nice synonym for single elements via the

pointer arrow for dereferencing, no such convenience exists for slices.

Here's how to do one operation using a loop. We'll assume an @AoA
 variable as before.

 @part = ();
 $x = 4;
 for ($y = 7; $y < 13; $y++) {
	 push @part, $AoA[$x][$y];
 }

That same loop could be replaced with a slice operation:

 @part = @{$AoA[4]}[7..12];

or spaced out a bit:

 @part = @{ $AoA[4] } [7..12];

But as you might well imagine, this can get pretty rough on the reader.

Ah, but what if you wanted a two-dimensional slice, such as having
 $x run from 4..8 and $y run from 7
to 12? Hmm... here's the simple way:

 @newAoA = ();
 for ($startx = $x = 4; $x <= 8; $x++) {
	 for ($starty = $y = 7; $y <= 12; $y++) {
	 $newAoA[$x - $startx][$y - $starty] = $AoA[$x][$y];
	 }
 }

We can reduce some of the looping through slices

 for ($x = 4; $x <= 8; $x++) {
	 push @newAoA, [@{ $AoA[$x] } [7..12]];
 }

If you were into Schwartzian Transforms, you would probably
 have selected map for that

 @newAoA = map { [@{ $AoA[$_] } [7..12]] } 4 .. 8;

Although if your manager accused you of seeking job security (or rapid
 insecurity) through inscrutable

Perl version 5.18.0 documentation - perllol

Page 7http://perldoc.perl.org

code, it would be hard to argue. :-)
 If I were you, I'd put that in a function:

 @newAoA = splice_2D(\@AoA, 4 => 8, 7 => 12);
 sub splice_2D {
	 my $lrr = shift; 	 # ref to array of array refs!
	 my ($x_lo, $x_hi,
	 $y_lo, $y_hi) = @_;

	 return map {
	 [@{ $lrr->[$_] } [$y_lo .. $y_hi]]
	 } $x_lo .. $x_hi;
 }

SEE ALSO
perldata, perlref, perldsc

AUTHOR
Tom Christiansen <tchrist@perl.com>

Last update: Tue Apr 26 18:30:55 MDT 2011

