
Perl version 5.18.0 documentation - Module::Build::Compat

Page 1http://perldoc.perl.org

NAME
Module::Build::Compat - Compatibility with ExtUtils::MakeMaker

SYNOPSIS
 # In a Build.PL :
 use Module::Build;
 my $build = Module::Build->new
 (module_name => 'Foo::Bar',
 license => 'perl',
 create_makefile_pl => 'traditional');
 ...

DESCRIPTION
Because ExtUtils::MakeMaker has been the standard way to distribute
 modules for a long time,
many tools (CPAN.pm, or your system
 administrator) may expect to find a working Makefile.PL in
every
 distribution they download from CPAN. If you want to throw them a
 bone, you can use
Module::Build::Compat to automatically generate a Makefile.PL for you, in one of several
different styles.

Module::Build::Compat also provides some code that helps out the Makefile.PL at runtime.

METHODS
create_makefile_pl($style, $build)

Creates a Makefile.PL in the current directory in one of several
 styles, based on the supplied
Module::Build object $build. This is
 typically controlled by passing the desired style as
the create_makefile_pl parameter to Module::Build's new() method;
 the Makefile.PL
will then be automatically created during the distdir action.

The currently supported styles are:

traditional

A Makefile.PL will be created in the "traditional" style, i.e. it will
 use
ExtUtils::MakeMaker and won't rely on Module::Build at all.
 In order to create
the Makefile.PL, we'll include the requires and build_requires dependencies as
the PREREQ_PM parameter.

You don't want to use this style if during the perl Build.PL stage
 you ask the user
questions, or do some auto-sensing about the user's
 environment, or if you subclass
Module::Build to do some
 customization, because the vanilla Makefile.PL won't do
any of that.

small

A small Makefile.PL will be created that passes all functionality
 through to the Build.PL
script in the same directory. The user must
 already have Module::Build installed in
order to use this, or else
 they'll get a module-not-found error.

passthrough (DEPRECATED)

This is just like the small option above, but if Module::Build is
 not already installed
on the user's system, the script will offer to
 use CPAN.pm to download it and install it
before continuing with
 the build.

This option has been deprecated and may be removed in a future version
 of
Module::Build. Modern CPAN.pm and CPANPLUS will recognize the
configure_requires metadata property and install Module::Build before
 running
Build.PL if Module::Build is listed and Module::Build now
 adds itself to
configure_requires by default.

Perl 5.10.1 includes configure_requires support. In the future, when

Perl version 5.18.0 documentation - Module::Build::Compat

Page 2http://perldoc.perl.org

configure_requires support is deemed sufficiently widespread, the
passthrough style will be removed.

run_build_pl(args => \@ARGV)

This method runs the Build.PL script, passing it any arguments the
 user may have supplied to
the perl Makefile.PL command. Because ExtUtils::MakeMaker and
Module::Build accept different arguments, this
 method also performs some translation
between the two.

run_build_pl() accepts the following named parameters:

args

The args parameter specifies the parameters that would usually
 appear on the
command line of the perl Makefile.PL command -
 typically you'll just pass a
reference to @ARGV.

script

This is the filename of the script to run - it defaults to Build.PL.

write_makefile()

This method writes a 'dummy' Makefile that will pass all commands
 through to the
corresponding Module::Build actions.

write_makefile() accepts the following named parameters:

makefile

The name of the file to write - defaults to the string Makefile.

SCENARIOS
So, some common scenarios are:

1. Just include a Build.PL script (without a Makefile.PL
 script), and give installation directions in a
README or INSTALL
 document explaining how to install the module. In particular, explain

that the user must install Module::Build before installing your
 module.

Note that if you do this, you may make things easier for yourself, but
 harder for people with
older versions of CPAN or CPANPLUS on their
 system, because those tools generally only
understand the Makefile.PL/ExtUtils::MakeMaker way of doing things.

2. Include a Build.PL script and a "traditional" Makefile.PL,
 created either manually or with
create_makefile_pl(). Users won't
 ever have to install Module::Build if they use the
Makefile.PL, but
 they won't get to take advantage of Module::Build's extra features
 either.

For good measure, of course, test both the Makefile.PL and the Build.PL before shipping.

3. Include a Build.PL script and a "pass-through" Makefile.PL
 built using
Module::Build::Compat. This will mean that people can
 continue to use the "old"
installation commands, and they may never
 notice that it's actually doing something else
behind the scenes. It
 will also mean that your installation process is compatible with older

versions of tools like CPAN and CPANPLUS.

AUTHOR
Ken Williams <kwilliams@cpan.org>

COPYRIGHT
Copyright (c) 2001-2006 Ken Williams. All rights reserved.

This library is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

Perl version 5.18.0 documentation - Module::Build::Compat

Page 3http://perldoc.perl.org

SEE ALSO
Module::Build(3), ExtUtils::MakeMaker(3)

