
Perl version 5.18.1 documentation - perlreref

Page 1http://perldoc.perl.org

NAME
perlreref - Perl Regular Expressions Reference

DESCRIPTION
This is a quick reference to Perl's regular expressions.
 For full information see perlre and perlop, as
well
 as the SEE ALSO section in this document.

OPERATORS
=~ determines to which variable the regex is applied.
 In its absence, $_ is used.

 $var =~ /foo/;

!~ determines to which variable the regex is applied,
 and negates the result of the match; it returns

false if the match succeeds, and true if it fails.

 $var !~ /foo/;

m/pattern/msixpogcdual searches a string for a pattern match,
 applying the given options.

 m Multiline mode - ^ and $ match internal lines
 s match as a Single line - . matches \n
 i case-Insensitive
 x eXtended legibility - free whitespace and comments
 p Preserve a copy of the matched string -
 ${^PREMATCH}, ${^MATCH}, ${^POSTMATCH} will be defined.
 o compile pattern Once
 g Global - all occurrences
 c don't reset pos on failed matches when using /g
 a restrict \d, \s, \w and [:posix:] to match ASCII only
 aa (two a's) also /i matches exclude ASCII/non-ASCII
 l match according to current locale
 u match according to Unicode rules
 d match according to native rules unless something indicates
 Unicode

If 'pattern' is an empty string, the last successfully matched
 regex is used. Delimiters other than '/'
may be used for both this
 operator and the following ones. The leading m can be omitted
 if the
delimiter is '/'.

qr/pattern/msixpodual lets you store a regex in a variable,
 or pass one around. Modifiers as for
m//, and are stored
 within the regex.

s/pattern/replacement/msixpogcedual substitutes matches of
 'pattern' with 'replacement'.
Modifiers as for m//,
 with two additions:

 e Evaluate 'replacement' as an expression
 r Return substitution and leave the original string untouched.

'e' may be specified multiple times. 'replacement' is interpreted
 as a double quoted string unless a
single-quote (') is the delimiter.

?pattern? is like m/pattern/ but matches only once. No alternate
 delimiters can be used. Must
be reset with reset().

SYNTAX
 \ Escapes the character immediately following it
 . Matches any single character except a newline (unless /s is

Perl version 5.18.1 documentation - perlreref

Page 2http://perldoc.perl.org

 used)
 ^ Matches at the beginning of the string (or line, if /m is used)
 $ Matches at the end of the string (or line, if /m is used)
 * Matches the preceding element 0 or more times
 + Matches the preceding element 1 or more times
 ? Matches the preceding element 0 or 1 times
 {...} Specifies a range of occurrences for the element preceding it
 [...] Matches any one of the characters contained within the brackets
 (...) Groups subexpressions for capturing to $1, $2...
 (?:...) Groups subexpressions without capturing (cluster)
 | Matches either the subexpression preceding or following it
 \g1 or \g{1}, \g2 ... Matches the text from the Nth group
 \1, \2, \3 ... Matches the text from the Nth group
 \g-1 or \g{-1}, \g-2 ... Matches the text from the Nth previous group
 \g{name} Named backreference
 \k<name> Named backreference
 \k'name' Named backreference
 (?P=name) Named backreference (python syntax)

ESCAPE SEQUENCES
These work as in normal strings.

 \a Alarm (beep)
 \e Escape
 \f Formfeed
 \n Newline
 \r Carriage return
 \t Tab
 \037 Char whose ordinal is the 3 octal digits, max \777
 \o{2307} Char whose ordinal is the octal number, unrestricted
 \x7f Char whose ordinal is the 2 hex digits, max \xFF
 \x{263a} Char whose ordinal is the hex number, unrestricted
 \cx Control-x
 \N{name} A named Unicode character or character sequence
 \N{U+263D} A Unicode character by hex ordinal

 \l Lowercase next character
 \u Titlecase next character
 \L Lowercase until \E
 \U Uppercase until \E
 \F Foldcase until \E
 \Q Disable pattern metacharacters until \E
 \E End modification

For Titlecase, see Titlecase.

This one works differently from normal strings:

 \b An assertion, not backspace, except in a character class

CHARACTER CLASSES
 [amy] Match 'a', 'm' or 'y'
 [f-j] Dash specifies "range"
 [f-j-] Dash escaped or at start or end means 'dash'
 [^f-j] Caret indicates "match any character _except_ these"

Perl version 5.18.1 documentation - perlreref

Page 3http://perldoc.perl.org

The following sequences (except \N) work within or without a character class.
 The first six are locale
aware, all are Unicode aware. See perllocale
 and perlunicode for details.

 \d A digit
 \D A nondigit
 \w A word character
 \W A non-word character
 \s A whitespace character
 \S A non-whitespace character
 \h An horizontal whitespace
 \H A non horizontal whitespace
 \N A non newline (when not followed by '{NAME}';;
 not valid in a character class; equivalent to [^\n]; it's
 like '.' without /s modifier)
 \v A vertical whitespace
 \V A non vertical whitespace
 \R A generic newline (?>\v|\x0D\x0A)

 \C Match a byte (with Unicode, '.' matches a character)
 \pP Match P-named (Unicode) property
 \p{...} Match Unicode property with name longer than 1 character
 \PP Match non-P
 \P{...} Match lack of Unicode property with name longer than 1 char
 \X Match Unicode extended grapheme cluster

POSIX character classes and their Unicode and Perl equivalents:

 ASCII- Full-
 POSIX range range backslash
 [[:...:]] \p{...} \p{...} sequence Description

 alnum PosixAlnum XPosixAlnum Alpha plus Digit
 alpha PosixAlpha XPosixAlpha Alphabetic characters
 ascii ASCII Any ASCII character
 blank PosixBlank XPosixBlank \h Horizontal whitespace;
 full-range also
 written as
 \p{HorizSpace} (GNU
 extension)
 cntrl PosixCntrl XPosixCntrl Control characters
 digit PosixDigit XPosixDigit \d Decimal digits
 graph PosixGraph XPosixGraph Alnum plus Punct
 lower PosixLower XPosixLower Lowercase characters
 print PosixPrint XPosixPrint Graph plus Print, but
 not any Cntrls
 punct PosixPunct XPosixPunct Punctuation and Symbols
 in ASCII-range; just
 punct outside it
 space PosixSpace XPosixSpace [\s\cK]
 PerlSpace XPerlSpace \s Perl's whitespace def'n
 upper PosixUpper XPosixUpper Uppercase characters
 word PosixWord XPosixWord \w Alnum + Unicode marks +
 connectors, like '_'
 (Perl extension)
 xdigit ASCII_Hex_Digit XPosixDigit Hexadecimal digit,

Perl version 5.18.1 documentation - perlreref

Page 4http://perldoc.perl.org

 ASCII-range is
 [0-9A-Fa-f]

Also, various synonyms like \p{Alpha} for \p{XPosixAlpha}; all listed
 in "Properties accessible
through \p{} and \P{}" in perluniprops

Within a character class:

 POSIX traditional Unicode
 [:digit:] \d \p{Digit}
 [:^digit:] \D \P{Digit}

ANCHORS
All are zero-width assertions.

 ^ Match string start (or line, if /m is used)
 $ Match string end (or line, if /m is used) or before newline
 \b Match word boundary (between \w and \W)
 \B Match except at word boundary (between \w and \w or \W and \W)
 \A Match string start (regardless of /m)
 \Z Match string end (before optional newline)
 \z Match absolute string end
 \G Match where previous m//g left off
 \K Keep the stuff left of the \K, don't include it in $&

QUANTIFIERS
Quantifiers are greedy by default and match the longest leftmost.

 Maximal Minimal Possessive Allowed range
 ------- ------- ---------- -------------
 {n,m} {n,m}? {n,m}+ Must occur at least n times
 but no more than m times
 {n,} {n,}? {n,}+ Must occur at least n times
 {n} {n}? {n}+ Must occur exactly n times
 * *? *+ 0 or more times (same as {0,})
 + +? ++ 1 or more times (same as {1,})
 ? ?? ?+ 0 or 1 time (same as {0,1})

The possessive forms (new in Perl 5.10) prevent backtracking: what gets
 matched by a pattern with a
possessive quantifier will not be backtracked
 into, even if that causes the whole match to fail.

There is no quantifier {,n}. That's interpreted as a literal string.

EXTENDED CONSTRUCTS
 (?#text) A comment
 (?:...) Groups subexpressions without capturing (cluster)
 (?pimsx-imsx:...) Enable/disable option (as per m// modifiers)
 (?=...) Zero-width positive lookahead assertion
 (?!...) Zero-width negative lookahead assertion
 (?<=...) Zero-width positive lookbehind assertion
 (?<!...) Zero-width negative lookbehind assertion
 (?>...) Grab what we can, prohibit backtracking
 (?|...) Branch reset
 (?<name>...) Named capture
 (?'name'...) Named capture
 (?P<name>...) Named capture (python syntax)

Perl version 5.18.1 documentation - perlreref

Page 5http://perldoc.perl.org

 (?{ code }) Embedded code, return value becomes $^R
 (??{ code }) Dynamic regex, return value used as regex
 (?N) Recurse into subpattern number N
 (?-N), (?+N) Recurse into Nth previous/next subpattern
 (?R), (?0) Recurse at the beginning of the whole pattern
 (?&name) Recurse into a named subpattern
 (?P>name) Recurse into a named subpattern (python syntax)
 (?(cond)yes|no)
 (?(cond)yes) Conditional expression, where "cond" can be:
 (?=pat) look-ahead
 (?!pat) negative look-ahead
 (?<=pat) look-behind
 (?<!pat) negative look-behind
 (N) subpattern N has matched something
 (<name>) named subpattern has matched something
 ('name') named subpattern has matched something
 (?{code}) code condition
 (R) true if recursing
 (RN) true if recursing into Nth subpattern
 (R&name) true if recursing into named subpattern
 (DEFINE) always false, no no-pattern allowed

VARIABLES
 $_ Default variable for operators to use

 $` Everything prior to matched string
 $& Entire matched string
 $' Everything after to matched string

 ${^PREMATCH} Everything prior to matched string
 ${^MATCH} Entire matched string
 ${^POSTMATCH} Everything after to matched string

The use of $`, $& or $' will slow down all regex use
 within your program. Consult perlvar for @-
 to
see equivalent expressions that won't cause slow down.
 See also Devel::SawAmpersand. Starting
with Perl 5.10, you
 can also use the equivalent variables ${^PREMATCH}, ${^MATCH}
 and
${^POSTMATCH}, but for them to be defined, you have to
 specify the /p (preserve) modifier on your
regular expression.

 $1, $2 ... hold the Xth captured expr
 $+ Last parenthesized pattern match
 $^N Holds the most recently closed capture
 $^R Holds the result of the last (?{...}) expr
 @- Offsets of starts of groups. $-[0] holds start of whole match
 @+ Offsets of ends of groups. $+[0] holds end of whole match
 %+ Named capture groups
 %- Named capture groups, as array refs

Captured groups are numbered according to their opening paren.

FUNCTIONS
 lc Lowercase a string
 lcfirst Lowercase first char of a string
 uc Uppercase a string

Perl version 5.18.1 documentation - perlreref

Page 6http://perldoc.perl.org

 ucfirst Titlecase first char of a string
 fc Foldcase a string

 pos Return or set current match position
 quotemeta Quote metacharacters
 reset Reset ?pattern? status
 study Analyze string for optimizing matching

 split Use a regex to split a string into parts

The first five of these are like the escape sequences \L, \l, \U, \u, and \F. For Titlecase, see
Titlecase; For
 Foldcase, see Foldcase.

TERMINOLOGY
Titlecase

Unicode concept which most often is equal to uppercase, but for
 certain characters like the German
"sharp s" there is a difference.

Foldcase

Unicode form that is useful when comparing strings regardless of case,
 as certain characters have
compex one-to-many case mappings. Primarily a
 variant of lowercase.

AUTHOR
Iain Truskett. Updated by the Perl 5 Porters.

This document may be distributed under the same terms as Perl itself.

SEE ALSO
perlretut for a tutorial on regular expressions.

perlrequick for a rapid tutorial.

perlre for more details.

perlvar for details on the variables.

perlop for details on the operators.

perlfunc for details on the functions.

perlfaq6 for FAQs on regular expressions.

perlrebackslash for a reference on backslash sequences.

perlrecharclass for a reference on character classes.

The re module to alter behaviour and aid
 debugging.

"Debugging Regular Expressions" in perldebug

perluniintro, perlunicode, charnames and perllocale
 for details on regexes and
internationalisation.

Mastering Regular Expressions by Jeffrey Friedl
 (http://oreilly.com/catalog/9780596528126/)
for a thorough grounding and
 reference on the topic.

THANKS
David P.C. Wollmann,
 Richard Soderberg,
 Sean M. Burke,
 Tom Christiansen,
 Jim Cromie,
 and

Jeffrey Goff
 for useful advice.

Perl version 5.18.1 documentation - perlreref

Page 7http://perldoc.perl.org

