
Perl version 5.18.1 documentation - Module::Load::Conditional

Page 1http://perldoc.perl.org

NAME
Module::Load::Conditional - Looking up module information / loading at runtime

SYNOPSIS
 use Module::Load::Conditional qw[can_load check_install requires];

 my $use_list = {
 CPANPLUS => 0.05,
 LWP => 5.60,
 'Test::More' => undef,
 };

 print can_load(modules => $use_list)
 ? 'all modules loaded successfully'
 : 'failed to load required modules';

 my $rv = check_install(module => 'LWP', version => 5.60)
 or print 'LWP is not installed!';

 print 'LWP up to date' if $rv->{uptodate};
 print "LWP version is $rv->{version}\n";
 print "LWP is installed as file $rv->{file}\n";

 print "LWP requires the following modules to be installed:\n";
 print join "\n", requires('LWP');

 ### allow M::L::C to peek in your %INC rather than just
 ### scanning @INC
 $Module::Load::Conditional::CHECK_INC_HASH = 1;

 ### reset the 'can_load' cache
 undef $Module::Load::Conditional::CACHE;

 ### don't have Module::Load::Conditional issue warnings --
 ### default is '1'
 $Module::Load::Conditional::VERBOSE = 0;

 ### The last error that happened during a call to 'can_load'
 my $err = $Module::Load::Conditional::ERROR;

DESCRIPTION
Module::Load::Conditional provides simple ways to query and possibly load any of
 the modules you
have installed on your system during runtime.

It is able to load multiple modules at once or none at all if one of
 them was not able to load. It also
takes care of any error checking
 and so forth.

Methods
$href = check_install(module => NAME [, version => VERSION, verbose => BOOL]);

check_install allows you to verify if a certain module is installed
 or not. You may call it with the
following arguments:

Perl version 5.18.1 documentation - Module::Load::Conditional

Page 2http://perldoc.perl.org

module

The name of the module you wish to verify -- this is a required key

version

The version this module needs to be -- this is optional

verbose

Whether or not to be verbose about what it is doing -- it will default
 to
$Module::Load::Conditional::VERBOSE

It will return undef if it was not able to find where the module was
 installed, or a hash reference with
the following keys if it was able
 to find the file:

file

Full path to the file that contains the module

dir

Directory, or more exact the @INC entry, where the module was
 loaded from.

version

The version number of the installed module - this will be undef if
 the module had no (or
unparsable) version number, or if the variable
$Module::Load::Conditional::FIND_VERSION was set to true.
 (See the GLOBAL
VARIABLES section below for details)

uptodate

A boolean value indicating whether or not the module was found to be
 at least the version you
specified. If you did not specify a version,
 uptodate will always be true if the module was
found.
 If no parsable version was found in the module, uptodate will also be
 true, since
check_install had no way to verify clearly.

See also $Module::Load::Conditional::DEPRECATED, which affects
 the outcome of
this value.

$bool = can_load(modules => { NAME => VERSION [,NAME => VERSION] }, [verbose => BOOL,
nocache => BOOL])

can_load will take a list of modules, optionally with version
 numbers and determine if it is able to
load them. If it can load *ALL*
 of them, it will. If one or more are unloadable, none will be loaded.

This is particularly useful if you have More Than One Way (tm) to
 solve a problem in a program, and
only wish to continue down a path
 if all modules could be loaded, and not load them if they couldn't.

This function uses the load function from Module::Load under the
 hood.

can_load takes the following arguments:

modules

This is a hashref of module/version pairs. The version indicates the
 minimum version to load.
If no version is provided, any version is
 assumed to be good enough.

verbose

This controls whether warnings should be printed if a module failed
 to load.
 The default is to
use the value of $Module::Load::Conditional::VERBOSE.

nocache

can_load keeps its results in a cache, so it will not load the
 same module twice, nor will it
attempt to load a module that has
 already failed to load before. By default, can_load will
check its
 cache, but you can override that by setting nocache to true.

Perl version 5.18.1 documentation - Module::Load::Conditional

Page 3http://perldoc.perl.org

@list = requires(MODULE);
requires can tell you what other modules a particular module
 requires. This is particularly useful
when you're intending to write
 a module for public release and are listing its prerequisites.

requires takes but one argument: the name of a module.
 It will then first check if it can actually load
this module, and
 return undef if it can't.
 Otherwise, it will return a list of modules and pragmas that
would
 have been loaded on the module's behalf.

Note: The list require returns has originated from your current
 perl and your current install.

Global Variables
The behaviour of Module::Load::Conditional can be altered by changing the
 following global variables:

$Module::Load::Conditional::VERBOSE
This controls whether Module::Load::Conditional will issue warnings and
 explanations as to why
certain things may have failed. If you set it
 to 0, Module::Load::Conditional will not output any
warnings.
 The default is 0;

$Module::Load::Conditional::FIND_VERSION
This controls whether Module::Load::Conditional will try to parse
 (and eval) the version from the
module you're trying to load.

If you don't wish to do this, set this variable to false. Understand
 then that version comparisons are
not possible, and Module::Load::Conditional
 can not tell you what module version you have installed.

This may be desirable from a security or performance point of view.
 Note that $FIND_VERSION code
runs safely under taint mode.

The default is 1;

$Module::Load::Conditional::CHECK_INC_HASH
This controls whether Module::Load::Conditional checks your %INC hash to see if a module is
available. By default, only @INC is scanned to see if a module is physically on your
 filesystem, or
available via an @INC-hook. Setting this variable
 to true will trust any entries in %INC and return
them for
 you.

The default is 0;

$Module::Load::Conditional::CACHE
This holds the cache of the can_load function. If you explicitly
 want to remove the current cache,
you can set this variable to undef

$Module::Load::Conditional::ERROR
This holds a string of the last error that happened during a call to can_load. It is useful to inspect this
when can_load returns undef.

$Module::Load::Conditional::DEPRECATED
This controls whether Module::Load::Conditional checks if
 a dual-life core module has been
deprecated. If this is set to
 true check_install will return false to uptodate, if
 a dual-life module
is found to be loaded from $Config{privlibexp}

The default is 0;

See Also
Module::Load

BUG REPORTS
Please report bugs or other issues to <bug-module-load-conditional@rt.cpan.org>.

Perl version 5.18.1 documentation - Module::Load::Conditional

Page 4http://perldoc.perl.org

AUTHOR
This module by Jos Boumans <kane@cpan.org>.

COPYRIGHT
This library is free software; you may redistribute and/or modify it
 under the same terms as Perl itself.

