
Perl version 5.18.1 documentation - Unicode::Normalize

Page 1http://perldoc.perl.org

NAME
Unicode::Normalize - Unicode Normalization Forms

SYNOPSIS
(1) using function names exported by default:

 use Unicode::Normalize;

 $NFD_string = NFD($string); # Normalization Form D
 $NFC_string = NFC($string); # Normalization Form C
 $NFKD_string = NFKD($string); # Normalization Form KD
 $NFKC_string = NFKC($string); # Normalization Form KC

(2) using function names exported on request:

 use Unicode::Normalize 'normalize';

 $NFD_string = normalize('D', $string); # Normalization Form D
 $NFC_string = normalize('C', $string); # Normalization Form C
 $NFKD_string = normalize('KD', $string); # Normalization Form KD
 $NFKC_string = normalize('KC', $string); # Normalization Form KC

DESCRIPTION
Parameters:

$string is used as a string under character semantics (see perlunicode).

$code_point should be an unsigned integer representing a Unicode code point.

Note: Between XSUB and pure Perl, there is an incompatibility
 about the interpretation of
$code_point as a decimal number.
 XSUB converts $code_point to an unsigned integer, but pure
Perl does not.
 Do not use a floating point nor a negative sign in $code_point.

Normalization Forms
$NFD_string = NFD($string)

It returns the Normalization Form D (formed by canonical decomposition).

$NFC_string = NFC($string)

It returns the Normalization Form C (formed by canonical decomposition
 followed by canonical
composition).

$NFKD_string = NFKD($string)

It returns the Normalization Form KD (formed by compatibility decomposition).

$NFKC_string = NFKC($string)

It returns the Normalization Form KC (formed by compatibility decomposition
 followed by
canonical composition).

$FCD_string = FCD($string)

If the given string is in FCD ("Fast C or D" form; cf. UTN #5),
 it returns the string without
modification; otherwise it returns an FCD string.

Note: FCD is not always unique, then plural forms may be equivalent
 each other. FCD() will
return one of these equivalent forms.

$FCC_string = FCC($string)

Perl version 5.18.1 documentation - Unicode::Normalize

Page 2http://perldoc.perl.org

It returns the FCC form ("Fast C Contiguous"; cf. UTN #5).

Note: FCC is unique, as well as four normalization forms (NF*).

$normalized_string = normalize($form_name, $string)

It returns the normalization form of $form_name.

As $form_name, one of the following names must be given.

 'C' or 'NFC' for Normalization Form C (UAX #15)
 'D' or 'NFD' for Normalization Form D (UAX #15)
 'KC' or 'NFKC' for Normalization Form KC (UAX #15)
 'KD' or 'NFKD' for Normalization Form KD (UAX #15)

 'FCD' for "Fast C or D" Form (UTN #5)
 'FCC' for "Fast C Contiguous" (UTN #5)

Decomposition and Composition
$decomposed_string = decompose($string [, $useCompatMapping])

It returns the concatenation of the decomposition of each character
 in the string.

If the second parameter (a boolean) is omitted or false,
 the decomposition is canonical
decomposition;
 if the second parameter (a boolean) is true,
 the decomposition is compatibility
decomposition.

The string returned is not always in NFD/NFKD. Reordering may be required.

 $NFD_string = reorder(decompose($string)); # eq. to NFD()
 $NFKD_string = reorder(decompose($string, TRUE)); # eq. to NFKD()

$reordered_string = reorder($string)

It returns the result of reordering the combining characters
 according to Canonical Ordering
Behavior.

For example, when you have a list of NFD/NFKD strings,
 you can get the concatenated
NFD/NFKD string from them, by saying

 $concat_NFD = reorder(join '', @NFD_strings);
 $concat_NFKD = reorder(join '', @NFKD_strings);

$composed_string = compose($string)

It returns the result of canonical composition
 without applying any decomposition.

For example, when you have a NFD/NFKD string,
 you can get its NFC/NFKC string, by saying

 $NFC_string = compose($NFD_string);
 $NFKC_string = compose($NFKD_string);

($processed, $unprocessed) = splitOnLastStarter($normalized)

It returns two strings: the first one, $processed, is a part
 before the last starter, and the
second one, $unprocessed is
 another part after the first part. A starter is a character having

a combining class of zero (see UAX #15).

Note that $processed may be empty (when $normalized contains no
 starter or starts with
the last starter), and then $unprocessed
 should be equal to the entire $normalized.

When you have a $normalized string and an $unnormalized string
 following it, a simple
concatenation is wrong:

 $concat = $normalized . normalize($form, $unnormalized); # wrong!

Instead of it, do like this:

Perl version 5.18.1 documentation - Unicode::Normalize

Page 3http://perldoc.perl.org

 ($processed, $unprocessed) = splitOnLastStarter($normalized);
 $concat = $processed . normalize($form,
$unprocessed.$unnormalized);

splitOnLastStarter() should be called with a pre-normalized parameter $normalized,
that is in the same form as $form you want.

If you have an array of @string that should be concatenated and then
 normalized, you can
do like this:

 my $result = "";
 my $unproc = "";
 foreach my $str (@string) {
 $unproc .= $str;
 my $n = normalize($form, $unproc);
 my($p, $u) = splitOnLastStarter($n);
 $result .= $p;
 $unproc = $u;
 }
 $result .= $unproc;
 # instead of normalize($form, join('', @string))

$processed = normalize_partial($form, $unprocessed)

A wrapper for the combination of normalize() and splitOnLastStarter().
 Note that
$unprocessed will be modified as a side-effect.

If you have an array of @string that should be concatenated and then
 normalized, you can
do like this:

 my $result = "";
 my $unproc = "";
 foreach my $str (@string) {
 $unproc .= $str;
 $result .= normalize_partial($form, $unproc);
 }
 $result .= $unproc;
 # instead of normalize($form, join('', @string))

$processed = NFD_partial($unprocessed)

It does like normalize_partial('NFD', $unprocessed).
 Note that $unprocessed will
be modified as a side-effect.

$processed = NFC_partial($unprocessed)

It does like normalize_partial('NFC', $unprocessed).
 Note that $unprocessed will
be modified as a side-effect.

$processed = NFKD_partial($unprocessed)

It does like normalize_partial('NFKD', $unprocessed).
 Note that $unprocessed
will be modified as a side-effect.

$processed = NFKC_partial($unprocessed)

It does like normalize_partial('NFKC', $unprocessed).
 Note that $unprocessed
will be modified as a side-effect.

Quick Check
(see Annex 8, UAX #15; and DerivedNormalizationProps.txt)

The following functions check whether the string is in that normalization form.

Perl version 5.18.1 documentation - Unicode::Normalize

Page 4http://perldoc.perl.org

The result returned will be one of the following:

 YES The string is in that normalization form.
 NO The string is not in that normalization form.
 MAYBE Dubious. Maybe yes, maybe no.

$result = checkNFD($string)

It returns true (1) if YES; false (empty string) if NO.

$result = checkNFC($string)

It returns true (1) if YES; false (empty string) if NO; undef if MAYBE.

$result = checkNFKD($string)

It returns true (1) if YES; false (empty string) if NO.

$result = checkNFKC($string)

It returns true (1) if YES; false (empty string) if NO; undef if MAYBE.

$result = checkFCD($string)

It returns true (1) if YES; false (empty string) if NO.

$result = checkFCC($string)

It returns true (1) if YES; false (empty string) if NO; undef if MAYBE.

Note: If a string is not in FCD, it must not be in FCC.
 So checkFCC($not_FCD_string)
should return NO.

$result = check($form_name, $string)

It returns true (1) if YES; false (empty string) if NO; undef if MAYBE.

As $form_name, one of the following names must be given.

 'C' or 'NFC' for Normalization Form C (UAX #15)
 'D' or 'NFD' for Normalization Form D (UAX #15)
 'KC' or 'NFKC' for Normalization Form KC (UAX #15)
 'KD' or 'NFKD' for Normalization Form KD (UAX #15)

 'FCD' for "Fast C or D" Form (UTN #5)
 'FCC' for "Fast C Contiguous" (UTN #5)

Note

In the cases of NFD, NFKD, and FCD, the answer must be
 either YES or NO. The answer MAYBE may
be returned
 in the cases of NFC, NFKC, and FCC.

A MAYBE string should contain at least one combining character
 or the like. For example, COMBINING
 ACUTE ACCENT has
 the MAYBE_NFC/MAYBE_NFKC property.

Both checkNFC("A\N{COMBINING ACUTE ACCENT}")
 and checkNFC("B\N{COMBINING
ACUTE ACCENT}") will return MAYBE. "A\N{COMBINING ACUTE ACCENT}" is not in NFC
 (its NFC
is "\N{LATIN CAPITAL LETTER A WITH ACUTE}"),
 while "B\N{COMBINING ACUTE
ACCENT}" is in NFC.

If you want to check exactly, compare the string with its NFC/NFKC/FCC.

 if ($string eq NFC($string)) {
 # $string is exactly normalized in NFC;
 } else {
 # $string is not normalized in NFC;

Perl version 5.18.1 documentation - Unicode::Normalize

Page 5http://perldoc.perl.org

 }

 if ($string eq NFKC($string)) {
 # $string is exactly normalized in NFKC;
 } else {
 # $string is not normalized in NFKC;
 }

Character Data
These functions are interface of character data used internally.
 If you want only to get Unicode
normalization forms, you don't need
 call them yourself.

$canonical_decomposition = getCanon($code_point)

If the character is canonically decomposable (including Hangul Syllables),
 it returns the (full)
canonical decomposition as a string.
 Otherwise it returns undef.

Note: According to the Unicode standard, the canonical decomposition
 of the character that is
not canonically decomposable is same as
 the character itself.

$compatibility_decomposition = getCompat($code_point)

If the character is compatibility decomposable (including Hangul Syllables),
 it returns the (full)
compatibility decomposition as a string.
 Otherwise it returns undef.

Note: According to the Unicode standard, the compatibility decomposition
 of the character
that is not compatibility decomposable is same as
 the character itself.

$code_point_composite = getComposite($code_point_here, $code_point_next)

If two characters here and next (as code points) are composable
 (including Hangul
Jamo/Syllables and Composition Exclusions),
 it returns the code point of the composite.

If they are not composable, it returns undef.

$combining_class = getCombinClass($code_point)

It returns the combining class (as an integer) of the character.

$may_be_composed_with_prev_char = isComp2nd($code_point)

It returns a boolean whether the character of the specified codepoint
 may be composed with
the previous one in a certain composition
 (including Hangul Compositions, but excluding

Composition Exclusions and Non-Starter Decompositions).

$is_exclusion = isExclusion($code_point)

It returns a boolean whether the code point is a composition exclusion.

$is_singleton = isSingleton($code_point)

It returns a boolean whether the code point is a singleton

$is_non_starter_decomposition = isNonStDecomp($code_point)

It returns a boolean whether the code point has Non-Starter Decomposition.

$is_Full_Composition_Exclusion = isComp_Ex($code_point)

It returns a boolean of the derived property Comp_Ex
 (Full_Composition_Exclusion). This
property is generated from
 Composition Exclusions + Singletons + Non-Starter
Decompositions.

$NFD_is_NO = isNFD_NO($code_point)

It returns a boolean of the derived property NFD_NO
 (NFD_Quick_Check=No).

Perl version 5.18.1 documentation - Unicode::Normalize

Page 6http://perldoc.perl.org

$NFC_is_NO = isNFC_NO($code_point)

It returns a boolean of the derived property NFC_NO
 (NFC_Quick_Check=No).

$NFC_is_MAYBE = isNFC_MAYBE($code_point)

It returns a boolean of the derived property NFC_MAYBE
 (NFC_Quick_Check=Maybe).

$NFKD_is_NO = isNFKD_NO($code_point)

It returns a boolean of the derived property NFKD_NO
 (NFKD_Quick_Check=No).

$NFKC_is_NO = isNFKC_NO($code_point)

It returns a boolean of the derived property NFKC_NO
 (NFKC_Quick_Check=No).

$NFKC_is_MAYBE = isNFKC_MAYBE($code_point)

It returns a boolean of the derived property NFKC_MAYBE
 (NFKC_Quick_Check=Maybe).

EXPORT
NFC, NFD, NFKC, NFKD: by default.

normalize and other some functions: on request.

CAVEATS
Perl's version vs. Unicode version

Since this module refers to perl core's Unicode database in the directory /lib/unicore (or
formerly /lib/unicode), the Unicode version of
 normalization implemented by this module
depends on your perl's version.

 perl's version implemented Unicode version
 5.6.1 3.0.1
 5.7.2 3.1.0
 5.7.3 3.1.1 (normalization is same as 3.1.0)
 5.8.0 3.2.0
 5.8.1-5.8.3 4.0.0
 5.8.4-5.8.6 4.0.1 (normalization is same as 4.0.0)
 5.8.7-5.8.8 4.1.0
 5.10.0 5.0.0
 5.8.9, 5.10.1 5.1.0
 5.12.0-5.12.3 5.2.0
 5.14.x 6.0.0
 5.16.x 6.1.0

Correction of decomposition mapping

In older Unicode versions, a small number of characters (all of which are
 CJK compatibility
ideographs as far as they have been found) may have
 an erroneous decomposition mapping
(see NormalizationCorrections.txt).
 Anyhow, this module will neither refer to
NormalizationCorrections.txt
 nor provide any specific version of normalization. Therefore this
module
 running on an older perl with an older Unicode database may use
 the erroneous
decomposition mapping blindly conforming to the Unicode database.

Revised definition of canonical composition

In Unicode 4.1.0, the definition D2 of canonical composition (which
 affects NFC and NFKC)
has been changed (see Public Review Issue #29
 and recent UAX #15). This module has used
the newer definition
 since the version 0.07 (Oct 31, 2001).
 This module will not support the
normalization according to the older
 definition, even if the Unicode version implemented by
perl is
 lower than 4.1.0.

Perl version 5.18.1 documentation - Unicode::Normalize

Page 7http://perldoc.perl.org

AUTHOR
SADAHIRO Tomoyuki <SADAHIRO@cpan.org>

Copyright(C) 2001-2012, SADAHIRO Tomoyuki. Japan. All rights reserved.

This module is free software; you can redistribute it
 and/or modify it under the same terms as Perl
itself.

SEE ALSO
http://www.unicode.org/reports/tr15/

Unicode Normalization Forms - UAX #15

http://www.unicode.org/Public/UNIDATA/CompositionExclusions.txt

Composition Exclusion Table

http://www.unicode.org/Public/UNIDATA/DerivedNormalizationProps.txt

Derived Normalization Properties

http://www.unicode.org/Public/UNIDATA/NormalizationCorrections.txt

Normalization Corrections

http://www.unicode.org/review/pr-29.html

Public Review Issue #29: Normalization Issue

http://www.unicode.org/notes/tn5/

Canonical Equivalence in Applications - UTN #5

