
Perl version 5.18.1 documentation - Unicode::UCD

Page 1http://perldoc.perl.org

NAME
Unicode::UCD - Unicode character database

SYNOPSIS
 use Unicode::UCD 'charinfo';
 my $charinfo = charinfo($codepoint);

 use Unicode::UCD 'casefold';
 my $casefold = casefold(0xFB00);

 use Unicode::UCD 'all_casefolds';
 my $all_casefolds_ref = all_casefolds();

 use Unicode::UCD 'casespec';
 my $casespec = casespec(0xFB00);

 use Unicode::UCD 'charblock';
 my $charblock = charblock($codepoint);

 use Unicode::UCD 'charscript';
 my $charscript = charscript($codepoint);

 use Unicode::UCD 'charblocks';
 my $charblocks = charblocks();

 use Unicode::UCD 'charscripts';
 my $charscripts = charscripts();

 use Unicode::UCD qw(charscript charinrange);
 my $range = charscript($script);
 print "looks like $script\n" if charinrange($range, $codepoint);

 use Unicode::UCD qw(general_categories bidi_types);
 my $categories = general_categories();
 my $types = bidi_types();

 use Unicode::UCD 'prop_aliases';
 my @space_names = prop_aliases("space");

 use Unicode::UCD 'prop_value_aliases';
 my @gc_punct_names = prop_value_aliases("Gc", "Punct");

 use Unicode::UCD 'prop_invlist';
 my @puncts = prop_invlist("gc=punctuation");

 use Unicode::UCD 'prop_invmap';
 my ($list_ref, $map_ref, $format, $missing)
 = prop_invmap("General Category");

 use Unicode::UCD 'compexcl';
 my $compexcl = compexcl($codepoint);

Perl version 5.18.1 documentation - Unicode::UCD

Page 2http://perldoc.perl.org

 use Unicode::UCD 'namedseq';
 my $namedseq = namedseq($named_sequence_name);

 my $unicode_version = Unicode::UCD::UnicodeVersion();

 my $convert_to_numeric =
 Unicode::UCD::num("\N{RUMI DIGIT ONE}\N{RUMI DIGIT TWO}");

DESCRIPTION
The Unicode::UCD module offers a series of functions that
 provide a simple interface to the Unicode

Character Database.

code point argument
Some of the functions are called with a code point argument, which is either
 a decimal or a
hexadecimal scalar designating a Unicode code point, or U+
 followed by hexadecimals designating a
Unicode code point. In other words, if
 you want a code point to be interpreted as a hexadecimal
number, you must
 prefix it with either 0x or U+, because a string like e.g. 123 will be
 interpreted as a
decimal code point.

Examples:

 223 # Decimal 223
 0223 # Hexadecimal 223 (= 547 decimal)
 0xDF # Hexadecimal DF (= 223 decimal
 U+DF # Hexadecimal DF

Note that the largest code point in Unicode is U+10FFFF.

charinfo()
 use Unicode::UCD 'charinfo';

 my $charinfo = charinfo(0x41);

This returns information about the input code point argument
 as a reference to a hash of fields as
defined by the Unicode
 standard. If the code point argument is not assigned in the standard
 (i.e., has
the general category Cn meaning Unassigned)
 or is a non-character (meaning it is guaranteed to
never be assigned in
 the standard), undef is returned.

Fields that aren't applicable to the particular code point argument exist in the
 returned hash, and are
empty.

The keys in the hash with the meanings of their values are:

code

the input code point argument expressed in hexadecimal, with leading zeros
 added if
necessary to make it contain at least four hexdigits

name

name of code, all IN UPPER CASE.
 Some control-type code points do not have names.
 This
field will be empty for Surrogate and Private Use code points,
 and for the others without
a name,
 it will contain a description enclosed in angle brackets, like <control>.

category

The short name of the general category of code.
 This will match one of the keys in the hash
returned by general_categories().

Perl version 5.18.1 documentation - Unicode::UCD

Page 3http://perldoc.perl.org

The prop_value_aliases() function can be used to get all the synonyms
 of the category name.

combining

the combining class number for code used in the Canonical Ordering Algorithm.
 For Unicode
5.1, this is described in Section 3.11 Canonical Ordering Behavior
 available at
http://www.unicode.org/versions/Unicode5.1.0/

The prop_value_aliases() function can be used to get all the synonyms
 of the combining class
number.

bidi

bidirectional type of code.
 This will match one of the keys in the hash returned by bidi_types().

The prop_value_aliases() function can be used to get all the synonyms
 of the bidi type name.

decomposition

is empty if code has no decomposition; or is one or more codes
 (separated by spaces) that,
taken in order, represent a decomposition for code. Each has at least four hexdigits.
 The
codes may be preceded by a word enclosed in angle brackets then a space,
 like <compat> ,
giving the type of decomposition

This decomposition may be an intermediate one whose components are also
 decomposable.
Use Unicode::Normalize to get the final decomposition.

decimal

if code is a decimal digit this is its integer numeric value

digit

if code represents some other digit-like number, this is its integer
 numeric value

numeric

if code represents a whole or rational number, this is its numeric value.
 Rational values are
expressed as a string like 1/4.

mirrored

Y or N designating if code is mirrored in bidirectional text

unicode10

name of code in the Unicode 1.0 standard if one
 existed for this code point and is different
from the current name

comment

As of Unicode 6.0, this is always empty.

upper

is empty if there is no single code point uppercase mapping for code
 (its uppercase mapping
is itself);
 otherwise it is that mapping expressed as at least four hexdigits.
 (casespec() should
be used in addition to charinfo()
 for case mappings when the calling program can cope with
multiple code point
 mappings.)

lower

is empty if there is no single code point lowercase mapping for code
 (its lowercase mapping is
itself);
 otherwise it is that mapping expressed as at least four hexdigits.
 (casespec() should be
used in addition to charinfo()
 for case mappings when the calling program can cope with
multiple code point
 mappings.)

title

is empty if there is no single code point titlecase mapping for code
 (its titlecase mapping is

Perl version 5.18.1 documentation - Unicode::UCD

Page 4http://perldoc.perl.org

itself);
 otherwise it is that mapping expressed as at least four hexdigits.
 (casespec() should be
used in addition to charinfo()
 for case mappings when the calling program can cope with
multiple code point
 mappings.)

block

the block code belongs to (used in \p{Blk=...}).
 See Blocks versus Scripts.

script

the script code belongs to.
 See Blocks versus Scripts.

Note that you cannot do (de)composition and casing based solely on the decomposition, combining,
lower, upper, and title fields;
 you will need also the compexcl(), and casespec() functions.

charblock()
 use Unicode::UCD 'charblock';

 my $charblock = charblock(0x41);
 my $charblock = charblock(1234);
 my $charblock = charblock(0x263a);
 my $charblock = charblock("U+263a");

 my $range = charblock('Armenian');

With a code point argument charblock() returns the block the code point
 belongs to, e.g. Basic
Latin. The old-style block name is returned (see Old-style versus new-style block names).
 If the
code point is unassigned, this returns the block it would belong to if
 it were assigned. (If the Unicode
version being used is so early as to not
 have blocks, all code points are considered to be in
No_Block.)

See also Blocks versus Scripts.

If supplied with an argument that can't be a code point, charblock() tries to
 do the opposite and
interpret the argument as an old-style block name. The
 return value
 is a range set with one range: an
anonymous list with a single element that
 consists of another anonymous list whose first element is
the first code point
 in the block, and whose second (and final) element is the final code point in
 the
block. (The extra list consisting of just one element is so that the same
 program logic can be used to
handle both this return, and the return from charscript() which can have multiple ranges.) You can test
whether a code
 point is in a range using the charinrange() function. If the argument is
 not a known
block, undef is returned.

charscript()
 use Unicode::UCD 'charscript';

 my $charscript = charscript(0x41);
 my $charscript = charscript(1234);
 my $charscript = charscript("U+263a");

 my $range = charscript('Thai');

With a code point argument charscript() returns the script the
 code point belongs to, e.g. Latin,
Greek, Han.
 If the code point is unassigned or the Unicode version being used is so early
 that it
doesn't have scripts, this function returns "Unknown".

If supplied with an argument that can't be a code point, charscript() tries
 to do the opposite and
interpret the argument as a script name. The
 return value is a range set: an anonymous list of lists

Perl version 5.18.1 documentation - Unicode::UCD

Page 5http://perldoc.perl.org

that contain start-of-range, end-of-range code point pairs. You can test whether a
 code point is in a
range set using the charinrange() function. If the
 argument is not a known script, undef is returned.

See also Blocks versus Scripts.

charblocks()
 use Unicode::UCD 'charblocks';

 my $charblocks = charblocks();

charblocks() returns a reference to a hash with the known block names
 as the keys, and the code
point ranges (see charblock()) as the values.

The names are in the old-style (see Old-style versus new-style block names).

prop_invmap("block") can be used to get this same data in a
 different type of data structure.

See also Blocks versus Scripts.

charscripts()
 use Unicode::UCD 'charscripts';

 my $charscripts = charscripts();

charscripts() returns a reference to a hash with the known script
 names as the keys, and the code
point ranges (see charscript()) as
 the values.

prop_invmap("script") can be used to get this same data in a
 different type of data structure.

See also Blocks versus Scripts.

charinrange()
In addition to using the \p{Blk=...} and \P{Blk=...} constructs, you
 can also test whether a
code point is in the range as returned by charblock() and charscript() or as the values of the hash
returned
 by charblocks() and charscripts() by using charinrange():

 use Unicode::UCD qw(charscript charinrange);

 $range = charscript('Hiragana');
 print "looks like hiragana\n" if charinrange($range, $codepoint);

general_categories()
 use Unicode::UCD 'general_categories';

 my $categories = general_categories();

This returns a reference to a hash which has short
 general category names (such as Lu, Nd, Zs, S)
as keys and long
 names (such as UppercaseLetter, DecimalNumber, SpaceSeparator,
Symbol) as values. The hash is reversible in case you need to go
 from the long names to the short
names. The general category is the
 one returned from charinfo() under the category key.

The prop_value_aliases() function can be used to get all the synonyms of
 the category name.

bidi_types()
 use Unicode::UCD 'bidi_types';

Perl version 5.18.1 documentation - Unicode::UCD

Page 6http://perldoc.perl.org

 my $categories = bidi_types();

This returns a reference to a hash which has the short
 bidi (bidirectional) type names (such as L, R)
as keys and long
 names (such as Left-to-Right, Right-to-Left) as values. The
 hash is
reversible in case you need to go from the long names to the
 short names. The bidi type is the one
returned from charinfo()
 under the bidi key. For the exact meaning of the various bidi classes
 the
Unicode TR9 is recommended reading: http://www.unicode.org/reports/tr9/
 (as of Unicode 5.0.0)

The prop_value_aliases() function can be used to get all the synonyms of
 the bidi type name.

compexcl()
 use Unicode::UCD 'compexcl';

 my $compexcl = compexcl(0x09dc);

This routine returns undef if the Unicode version being used is so early
 that it doesn't have this
property. It is included for backwards
 compatibility, but as of Perl 5.12 and more modern Unicode
versions, for
 most purposes it is probably more convenient to use one of the following
 instead:

 my $compexcl = chr(0x09dc) =~ /\p{Comp_Ex};
 my $compexcl = chr(0x09dc) =~ /\p{Full_Composition_Exclusion};

or even

 my $compexcl = chr(0x09dc) =~ /\p{CE};
 my $compexcl = chr(0x09dc) =~ /\p{Composition_Exclusion};

The first two forms return true if the code point argument should not
 be produced by composition
normalization. For the final two forms to return true, it is additionally required that this fact not
otherwise be
 determinable from the Unicode data base.

This routine behaves identically to the final two forms. That is,
 it does not return true if the code point
has a decomposition
 consisting of another single code point, nor if its decomposition starts
 with a
code point whose combining class is non-zero. Code points that meet
 either of these conditions
should also not be produced by composition
 normalization, which is probably why you should use the
Full_Composition_Exclusion property instead, as shown above.

The routine returns false otherwise.

casefold()
 use Unicode::UCD 'casefold';

 my $casefold = casefold(0xDF);
 if (defined $casefold) {
 my @full_fold_hex = split / /, $casefold->{'full'};
 my $full_fold_string =
 join "", map {chr(hex($_))} @full_fold_hex;
 my @turkic_fold_hex =
 split / /, ($casefold->{'turkic'} ne "")
 ? $casefold->{'turkic'}
 : $casefold->{'full'};
 my $turkic_fold_string =
 join "", map {chr(hex($_))} @turkic_fold_hex;
 }
 if (defined $casefold && $casefold->{'simple'} ne "") {
 my $simple_fold_hex = $casefold->{'simple'};

Perl version 5.18.1 documentation - Unicode::UCD

Page 7http://perldoc.perl.org

 my $simple_fold_string = chr(hex($simple_fold_hex));
 }

This returns the (almost) locale-independent case folding of the
 character specified by the code point
argument. (Starting in Perl v5.16,
 the core function fc() returns the full mapping (described below)
faster than this does, and for entire strings.)

If there is no case folding for the input code point, undef is returned.

If there is a case folding for that code point, a reference to a hash
 with the following fields is returned:

code

the input code point argument expressed in hexadecimal, with leading zeros
 added if
necessary to make it contain at least four hexdigits

full

one or more codes (separated by spaces) that, taken in order, give the
 code points for the
case folding for code.
 Each has at least four hexdigits.

simple

is empty, or is exactly one code with at least four hexdigits which can be used
 as an
alternative case folding when the calling program cannot cope with the
 fold being a sequence
of multiple code points. If full is just one code
 point, then simple equals full. If there is no single
code point folding
 defined for code, then simple is the empty string. Otherwise, it is an
 inferior,
but still better-than-nothing alternative folding to full.

mapping

is the same as simple if simple is not empty, and it is the same as full
 otherwise. It can be
considered to be the simplest possible folding for code. It is defined primarily for backwards
compatibility.

status

is C (for common) if the best possible fold is a single code point
 (simple equals full equals
mapping). It is S if there are distinct
 folds, simple and full (mapping equals simple). And it is F
if
 there is only a full fold (mapping equals full; simple is empty).
 Note that this
 describes the
contents of mapping. It is defined primarily for backwards
 compatibility.

For Unicode versions between 3.1 and 3.1.1 inclusive, status can also be I which is the same
as C but is a special case for dotted uppercase I and
 dotless lowercase i:

* If you use this I mapping

the result is case-insensitive,
 but dotless and dotted I's are not distinguished

* If you exclude this I mapping

the result is not fully case-insensitive, but
 dotless and dotted I's are distinguished

turkic

contains any special folding for Turkic languages. For versions of Unicode
 starting with 3.2,
this field is empty unless code has a different folding
 in Turkic languages, in which case it is
one or more codes (separated by
 spaces) that, taken in order, give the code points for the
case folding for code in those languages.
 Each code has at least four hexdigits.
 Note that this
folding does not maintain canonical equivalence without
 additional processing.

For Unicode versions between 3.1 and 3.1.1 inclusive, this field is empty unless
 there is a

special folding for Turkic languages, in which case status is I, and mapping, full, simple, and
turkic are all equal.

Programs that want complete generality and the best folding results should use
 the folding contained

Perl version 5.18.1 documentation - Unicode::UCD

Page 8http://perldoc.perl.org

in the full field. But note that the fold for some
 code points will be a sequence of multiple code points.

Programs that can't cope with the fold mapping being multiple code points can
 use the folding
contained in the simple field, with the loss of some
 generality. In Unicode 5.1, about 7% of the defined
foldings have no single
 code point folding.

The mapping and status fields are provided for backwards compatibility for
 existing programs. They
contain the same values as in previous versions of
 this function.

Locale is not completely independent. The turkic field contains results to
 use when the locale is a
Turkic language.

For more information about case mappings see http://www.unicode.org/unicode/reports/tr21

all_casefolds()
 use Unicode::UCD 'all_casefolds';

 my $all_folds_ref = all_casefolds();
 foreach my $char_with_casefold (sort { $a <=> $b }
 keys %$all_folds_ref)
 {
 printf "%04X:", $char_with_casefold;
 my $casefold = $all_folds_ref->{$char_with_casefold};

 # Get folds for $char_with_casefold

 my @full_fold_hex = split / /, $casefold->{'full'};
 my $full_fold_string =
 join "", map {chr(hex($_))} @full_fold_hex;
 print " full=", join " ", @full_fold_hex;
 my @turkic_fold_hex =
 split / /, ($casefold->{'turkic'} ne "")
 ? $casefold->{'turkic'}
 : $casefold->{'full'};
 my $turkic_fold_string =
 join "", map {chr(hex($_))} @turkic_fold_hex;
 print "; turkic=", join " ", @turkic_fold_hex;
 if (defined $casefold && $casefold->{'simple'} ne "") {
 my $simple_fold_hex = $casefold->{'simple'};
 my $simple_fold_string = chr(hex($simple_fold_hex));
 print "; simple=$simple_fold_hex";
 }
 print "\n";
 }

This returns all the case foldings in the current version of Unicode in the
 form of a reference to a
hash. Each key to the hash is the decimal
 representation of a Unicode character that has a casefold
to other than
 itself. The casefold of a semi-colon is itself, so it isn't in the hash;
 likewise for a
lowercase "a", but there is an entry for a capital "A". The
 hash value for each key is another hash,
identical to what is returned by casefold() if called with that code point as its argument. So the value
all_casefolds()->{ord("A")}' is equivalent to casefold(ord("A"));

casespec()
 use Unicode::UCD 'casespec';

 my $casespec = casespec(0xFB00);

Perl version 5.18.1 documentation - Unicode::UCD

Page 9http://perldoc.perl.org

This returns the potentially locale-dependent case mappings of the code point argument. The
mappings may be longer than a single code point (which the basic
 Unicode case mappings as
returned by charinfo() never are).

If there are no case mappings for the code point argument, or if all three
 possible mappings (lower,
title and upper) result in single code
 points and are locale independent and unconditional, undef is
returned
 (which means that the case mappings, if any, for the code point are those
 returned by
charinfo()).

Otherwise, a reference to a hash giving the mappings (or a reference to a hash
 of such hashes,
explained below) is returned with the following keys and their
 meanings:

The keys in the bottom layer hash with the meanings of their values are:

code

the input code point argument expressed in hexadecimal, with leading zeros
 added if
necessary to make it contain at least four hexdigits

lower

one or more codes (separated by spaces) that, taken in order, give the
 code points for the
lower case of code.
 Each has at least four hexdigits.

title

one or more codes (separated by spaces) that, taken in order, give the
 code points for the title
case of code.
 Each has at least four hexdigits.

upper

one or more codes (separated by spaces) that, taken in order, give the
 code points for the
upper case of code.
 Each has at least four hexdigits.

condition

the conditions for the mappings to be valid.
 If undef, the mappings are always valid.
 When
defined, this field is a list of conditions,
 all of which must be true for the mappings to be valid.

The list consists of one or more locales (see below)
 and/or contexts (explained in the next
paragraph),
 separated by spaces.
 (Other than as used to separate elements, spaces are to be
ignored.)
 Case distinctions in the condition list are not significant.
 Conditions preceded by
"NON_" represent the negation of the condition.

A context is one of those defined in the Unicode standard.
 For Unicode 5.1, they are defined
in Section 3.13 Default Case Operations
 available at
http://www.unicode.org/versions/Unicode5.1.0/.
 These are for context-sensitive casing.

The hash described above is returned for locale-independent casing, where
 at least one of the
mappings has length longer than one. If undef is
 returned, the code point may have mappings, but if
so, all are length one,
 and are returned by charinfo().
 Note that when this function does return a value,
it will be for the complete
 set of mappings for a code point, even those whose length is one.

If there are additional casing rules that apply only in certain locales,
 an additional key for each will be
defined in the returned hash. Each such key
 will be its locale name, defined as a 2-letter ISO 3166
country code, possibly
 followed by a "_" and a 2-letter ISO language code (possibly followed by a "_"

and a variant code). You can find the lists of all possible locales, see Locale::Country and
Locale::Language.
 (In Unicode 6.0, the only locales returned by this function
 are lt, tr, and az.)

Each locale key is a reference to a hash that has the form above, and gives
 the casing rules for that
particular locale, which take precedence over the
 locale-independent ones when in that locale.

If the only casing for a code point is locale-dependent, then the returned
 hash will not have any of the
base keys, like code, upper, etc., but
 will contain only locale keys.

Perl version 5.18.1 documentation - Unicode::UCD

Page 10http://perldoc.perl.org

For more information about case mappings see http://www.unicode.org/unicode/reports/tr21/

namedseq()
 use Unicode::UCD 'namedseq';

 my $namedseq = namedseq("KATAKANA LETTER AINU P");
 my @namedseq = namedseq("KATAKANA LETTER AINU P");
 my %namedseq = namedseq();

If used with a single argument in a scalar context, returns the string
 consisting of the code points of
the named sequence, or undef if no
 named sequence by that name exists. If used with a single
argument in
 a list context, it returns the list of the ordinals of the code points. If used
 with no

arguments in a list context, returns a hash with the names of the
 named sequences as the keys and
the named sequences as strings as
 the values. Otherwise, it returns undef or an empty list
depending
 on the context.

This function only operates on officially approved (not provisional) named
 sequences.

Note that as of Perl 5.14, \N{KATAKANA LETTER AINU P} will insert the named
 sequence into
double-quoted strings, and charnames::string_vianame("KATAKANA
 LETTER AINU P") will
return the same string this function does, but will also
 operate on character names that aren't named
sequences, without you having to
 know which are which. See charnames.

num()
 use Unicode::UCD 'num';

 my $val = num("123");
 my $one_quarter = num("\N{VULGAR FRACTION 1/4}");

num returns the numeric value of the input Unicode string; or undef if it
 doesn't think the entire string
has a completely valid, safe numeric value.

If the string is just one character in length, the Unicode numeric value
 is returned if it has one, or
undef otherwise. Note that this need
 not be a whole number. num("\N{TIBETAN DIGIT HALF
ZERO}"), for
 example returns -0.5.

If the string is more than one character, undef is returned unless
 all its characters are decimal digits
(that is, they would match \d+),
 from the same script. For example if you have an ASCII '0' and a
Bengali
 '3', mixed together, they aren't considered a valid number, and undef
 is returned. A further
restriction is that the digits all have to be of
 the same form. A half-width digit mixed with a full-width
one will
 return undef. The Arabic script has two sets of digits; num will
 return undef unless all the
digits in the string come from the same
 set.

num errs on the side of safety, and there may be valid strings of
 decimal digits that it doesn't
recognize. Note that Unicode defines
 a number of "digit" characters that aren't "decimal digit"
characters.
 "Decimal digits" have the property that they have a positional value, i.e.,
 there is a units
position, a 10's position, a 100's, etc, AND they are
 arranged in Unicode in blocks of 10 contiguous
code points. The Chinese
 digits, for example, are not in such a contiguous block, and so Unicode

doesn't view them as decimal digits, but merely digits, and so \d will not
 match them. A
single-character string containing one of these digits will
 have its decimal value returned by num, but
any longer string containing
 only these digits will return undef.

Strings of multiple sub- and superscripts are not recognized as numbers. You
 can use either of the
compatibility decompositions in Unicode::Normalize to
 change these into digits, and then call num on
the result.

Perl version 5.18.1 documentation - Unicode::UCD

Page 11http://perldoc.perl.org

prop_aliases()
 use Unicode::UCD 'prop_aliases';

 my ($short_name, $full_name, @other_names) = prop_aliases("space");
 my $same_full_name = prop_aliases("Space"); # Scalar context
 my ($same_short_name) = prop_aliases("Space"); # gets 0th element
 print "The full name is $full_name\n";
 print "The short name is $short_name\n";
 print "The other aliases are: ", join(", ", @other_names), "\n";

 prints:
 The full name is White_Space
 The short name is WSpace
 The other aliases are: Space

Most Unicode properties have several synonymous names. Typically, there is at
 least a short name,
convenient to type, and a long name that more fully
 describes the property, and hence is more easily
understood.

If you know one name for a Unicode property, you can use prop_aliases to find
 either the long
name (when called in scalar context), or a list of all of the
 names, somewhat ordered so that the short
name is in the 0th element, the long
 name in the next element, and any other synonyms are in the
remaining
 elements, in no particular order.

The long name is returned in a form nicely capitalized, suitable for printing.

The input parameter name is loosely matched, which means that white space,
 hyphens, and
underscores are ignored (except for the trailing underscore in
 the old_form grandfathered-in "L_",
which is better written as "LC", and
 both of which mean General_Category=Cased Letter).

If the name is unknown, undef is returned (or an empty list in list
 context). Note that Perl typically
recognizes property names in regular
 expressions with an optional "Is_" (with or without the
underscore)
 prefixed to them, such as \p{isgc=punct}. This function does not recognize
 those in
the input, returning undef. Nor are they included in the output
 as possible synonyms.

prop_aliases does know about the Perl extensions to Unicode properties,
 such as Any and
XPosixAlpha, and the single form equivalents to Unicode
 properties such as XDigit, Greek,
In_Greek, and Is_Greek. The
 final example demonstrates that the "Is_" prefix is recognized for
these
 extensions; it is needed to resolve ambiguities. For example, prop_aliases('lc') returns
the list (lc, Lowercase_Mapping), but prop_aliases('islc') returns (Is_LC,
Cased_Letter). This is
 because islc is a Perl extension which is short for
General_Category=Cased Letter. The lists returned for the Perl extensions
 will not include the
"Is_" prefix (whether or not the input had it) unless
 needed to resolve ambiguities, as shown in the
"islc" example, where the
 returned list had one element containing "Is_", and the other without.

It is also possible for the reverse to happen: prop_aliases('isc') returns
 the list (isc,
ISO_Comment); whereas prop_aliases('c') returns (C, Other) (the latter being a Perl
extension meaning General_Category=Other. "Properties accessible through Unicode::UCD" in
perluniprops lists the available
 forms, including which ones are discouraged from use.

Those discouraged forms are accepted as input to prop_aliases, but are not
 returned in the lists.
prop_aliases('isL&') and prop_aliases('isL_'),
 which are old synonyms for "Is_LC"
and should not be used in new code, are
 examples of this. These both return (Is_LC,
Cased_Letter). Thus this
 function allows you to take a discourarged form, and find its acceptable

alternatives. The same goes with single-form Block property equivalences.
 Only the forms that begin
with "In_" are not discouraged; if you pass prop_aliases a discouraged form, you will get back
the equivalent ones that
 begin with "In_". It will otherwise look like a new-style block name (see.

Perl version 5.18.1 documentation - Unicode::UCD

Page 12http://perldoc.perl.org

Old-style versus new-style block names).

prop_aliases does not know about any user-defined properties, and will
 return undef if called with
one of those. Likewise for Perl internal
 properties, with the exception of "Perl_Decimal_Digit" which it
does know
 about (and which is documented below in prop_invmap()).

prop_value_aliases()
 use Unicode::UCD 'prop_value_aliases';

 my ($short_name, $full_name, @other_names)
 = prop_value_aliases("Gc", "Punct");
 my $same_full_name = prop_value_aliases("Gc", "P"); # Scalar cntxt
 my ($same_short_name) = prop_value_aliases("Gc", "P"); # gets 0th
 # element
 print "The full name is $full_name\n";
 print "The short name is $short_name\n";
 print "The other aliases are: ", join(", ", @other_names), "\n";

 prints:
 The full name is Punctuation
 The short name is P
 The other aliases are: Punct

Some Unicode properties have a restricted set of legal values. For example,
 all binary properties are
restricted to just true or false; and there
 are only a few dozen possible General Categories.

For such properties, there are usually several synonyms for each possible
 value. For example, in
binary properties, truth can be represented by any of
 the strings "Y", "Yes", "T", or "True"; and the
General Category
 "Punctuation" by that string, or "Punct", or simply "P".

Like property names, there is typically at least a short name for each such
 property-value, and a long
name. If you know any name of the property-value,
 you can use prop_value_aliases() to get the
long name (when called in
 scalar context), or a list of all the names, with the short name in the 0th

element, the long name in the next element, and any other synonyms in the
 remaining elements, in no
particular order, except that any all-numeric
 synonyms will be last.

The long name is returned in a form nicely capitalized, suitable for printing.

Case, white space, hyphens, and underscores are ignored in the input parameters
 (except for the
trailing underscore in the old-form grandfathered-in general
 category property value "L_", which is
better written as "LC").

If either name is unknown, undef is returned. Note that Perl typically
 recognizes property names in
regular expressions with an optional "Is_"
 (with or without the underscore) prefixed to them, such as
\p{isgc=punct}.
 This function does not recognize those in the property parameter, returning
undef.

If called with a property that doesn't have synonyms for its values, it
 returns the input value, possibly
normalized with capitalization and
 underscores.

For the block property, new-style block names are returned (see Old-style versus new-style block
names).

To find the synonyms for single-forms, such as \p{Any}, use prop_aliases() instead.

prop_value_aliases does not know about any user-defined properties, and
 will return undef if
called with one of those.

Perl version 5.18.1 documentation - Unicode::UCD

Page 13http://perldoc.perl.org

prop_invlist()
prop_invlist returns an inversion list (described below) that defines all the
 code points for the
binary Unicode property (or "property=value" pair) given
 by the input parameter string:

 use feature 'say';
 use Unicode::UCD 'prop_invlist';
 say join ", ", prop_invlist("Any");

 prints:
 0, 1114112

If the input is unknown undef is returned in scalar context; an empty-list
 in list context. If the input is
known, the number of elements in
 the list is returned if called in scalar context.

perluniprops gives
 the list of properties that this function accepts, as well as all the possible
 forms for
them (including with the optional "Is_" prefixes). (Except this
 function doesn't accept any Perl-internal
properties, some of which are listed
 there.) This function uses the same loose or tighter matching
rules for
 resolving the input property's name as is done for regular expressions. These
 are also
specified in perluniprops. Examples of using the "property=value" form are:

 say join ", ", prop_invlist("Script=Shavian");

 prints:
 66640, 66688

 say join ", ", prop_invlist("ASCII_Hex_Digit=No");

 prints:
 0, 48, 58, 65, 71, 97, 103

 say join ", ", prop_invlist("ASCII_Hex_Digit=Yes");

 prints:
 48, 58, 65, 71, 97, 103

Inversion lists are a compact way of specifying Unicode property-value
 definitions. The 0th item in the
list is the lowest code point that has the
 property-value. The next item (item [1]) is the lowest code
point beyond that
 one that does NOT have the property-value. And the next item beyond that
 ([2]) is
the lowest code point beyond that one that does have the
 property-value, and so on. Put another way,
each element in the list gives
 the beginning of a range that has the property-value (for even numbered
elements), or doesn't have the property-value (for odd numbered elements).
 The name for this data
structure stems from the fact that each element in the
 list toggles (or inverts) whether the
corresponding range is or isn't on the
 list.

In the final example above, the first ASCII Hex digit is code point 48, the
 character "0", and all code
points from it through 57 (a "9") are ASCII hex
 digits. Code points 58 through 64 aren't, but 65 (an "A")
through 70 (an "F")
 are, as are 97 ("a") through 102 ("f"). 103 starts a range of code points
 that aren't
ASCII hex digits. That range extends to infinity, which on your
 computer can be found in the variable
$Unicode::UCD::MAX_CP. (This
 variable is as close to infinity as Perl can get on your platform, and
may be
 too high for some operations to work; you may wish to use a smaller number for
 your
purposes.)

Note that the inversion lists returned by this function can possibly include
 non-Unicode code points,
that is anything above 0x10FFFF. This is in
 contrast to Perl regular expression matches on those
code points, in which a
 non-Unicode code point always fails to match. For example, both of these

Perl version 5.18.1 documentation - Unicode::UCD

Page 14http://perldoc.perl.org

have
 the same result:

 chr(0x110000) =~ \p{ASCII_Hex_Digit=True} # Fails.
 chr(0x110000) =~ \p{ASCII_Hex_Digit=False} # Fails!

And both raise a warning that a Unicode property is being used on a
 non-Unicode code point. It is
arguable as to which is the correct thing to do
 here. This function has chosen the way opposite to the
Perl regular
 expression behavior. This allows you to easily flip to to the Perl regular
 expression way
(for you to go in the other direction would be far harder).
 Simply add 0x110000 at the end of the
non-empty returned list if it isn't
 already that value; and pop that value if it is; like:

 my @list = prop_invlist("foo");
 if (@list) {
 if ($list[-1] == 0x110000) {
 pop @list; # Defeat the turning on for above Unicode
 }
 else {
 push @list, 0x110000; # Turn off for above Unicode
 }
 }

It is a simple matter to expand out an inversion list to a full list of all
 code points that have the
property-value:

 my @invlist = prop_invlist($property_name);
 die "empty" unless @invlist;
 my @full_list;
 for (my $i = 0; $i < @invlist; $i += 2) {
 my $upper = ($i + 1) < @invlist
 ? $invlist[$i+1] - 1 # In range
 : $Unicode::UCD::MAX_CP; # To infinity. You may want
 # to stop much much earlier;
 # going this high may expose
 # perl deficiencies with very
 # large numbers.
 for my $j ($invlist[$i] .. $upper) {
 push @full_list, $j;
 }
 }

prop_invlist does not know about any user-defined nor Perl internal-only
 properties, and will
return undef if called with one of those.

prop_invmap()
 use Unicode::UCD 'prop_invmap';
 my ($list_ref, $map_ref, $format, $missing)
 = prop_invmap("General Category");

prop_invmap is used to get the complete mapping definition for a property,
 in the form of an
inversion map. An inversion map consists of two parallel
 arrays. One is an ordered list of code points
that mark range beginnings, and
 the other gives the value (or mapping) that all code points in the

corresponding range have.

prop_invmap is called with the name of the desired property. The name is
 loosely matched,
meaning that differences in case, white-space, hyphens, and
 underscores are not meaningful (except
for the trailing underscore in the
 old-form grandfathered-in property "L_", which is better written as

Perl version 5.18.1 documentation - Unicode::UCD

Page 15http://perldoc.perl.org

"LC",
 or even better, "Gc=LC").

Many Unicode properties have more than one name (or alias). prop_invmap
 understands all of
these, including Perl extensions to them. Ambiguities are
 resolved as described above for
prop_aliases(). The Perl internal
 property "Perl_Decimal_Digit, described below, is also accepted.
undef is
 returned if the property name is unknown.
 See "Properties accessible through
Unicode::UCD" in perluniprops for the
 properties acceptable as inputs to this function.

It is a fatal error to call this function except in list context.

In addition to the the two arrays that form the inversion map, prop_invmap
 returns two other values;
one is a scalar that gives some details as to the
 format of the entries of the map array; the other is
used for specialized
 purposes, described at the end of this section.

This means that prop_invmap returns a 4 element list. For example,

 my ($blocks_ranges_ref, $blocks_maps_ref, $format, $default)
 = prop_invmap("Block");

In this call, the two arrays will be populated as shown below (for Unicode
 6.0):

 Index @blocks_ranges @blocks_maps
 0 0x0000 Basic Latin
 1 0x0080 Latin-1 Supplement
 2 0x0100 Latin Extended-A
 3 0x0180 Latin Extended-B
 4 0x0250 IPA Extensions
 5 0x02B0 Spacing Modifier Letters
 6 0x0300 Combining Diacritical Marks
 7 0x0370 Greek and Coptic
 8 0x0400 Cyrillic
 ...
 233 0x2B820 No_Block
 234 0x2F800 CJK Compatibility Ideographs Supplement
 235 0x2FA20 No_Block
 236 0xE0000 Tags
 237 0xE0080 No_Block
 238 0xE0100 Variation Selectors Supplement
 239 0xE01F0 No_Block
 240 0xF0000 Supplementary Private Use Area-A
 241 0x100000 Supplementary Private Use Area-B
 242 0x110000 No_Block

The first line (with Index [0]) means that the value for code point 0 is "Basic
 Latin". The entry "0x0080"
in the @blocks_ranges column in the second line
 means that the value from the first line, "Basic
Latin", extends to all code
 points in the range from 0 up to but not including 0x0080, that is, through

127. In other words, the code points from 0 to 127 are all in the "Basic
 Latin" block. Similarly, all code
points in the range from 0x0080 up to (but
 not including) 0x0100 are in the block named "Latin-1
Supplement", etc.
 (Notice that the return is the old-style block names; see Old-style versus new-style
block names).

The final line (with Index [242]) means that the value for all code points above
 the legal Unicode
maximum code point have the value "No_Block", which is the
 term Unicode uses for a non-existing
block.

The arrays completely specify the mappings for all possible code points.
 The final element in an
inversion map returned by this function will always be
 for the range that consists of all the code points
that aren't legal Unicode,
 but that are expressible on the platform. (That is, it starts with code point

Perl version 5.18.1 documentation - Unicode::UCD

Page 16http://perldoc.perl.org

0x110000, the first code point above the legal Unicode maximum, and extends to
 infinity.) The value
for that range will be the same that any typical
 unassigned code point has for the specified property.
(Certain unassigned
 code points are not "typical"; for example the non-character code points, or
 those
in blocks that are to be written right-to-left. The above-Unicode
 range's value is not based on these
atypical code points.) It could be argued
 that, instead of treating these as unassigned Unicode code
points, the value
 for this range should be undef. If you wish, you can change the returned
 arrays
accordingly.

The maps are almost always simple scalars that should be interpreted as-is.
 These values are those
given in the Unicode-supplied data files, which may be
 inconsistent as to capitalization and as to
which synonym for a property-value
 is given. The results may be normalized by using the
prop_value_aliases()
 function.

There are exceptions to the simple scalar maps. Some properties have some
 elements in their map
list that are themselves lists of scalars; and some
 special strings are returned that are not to be
interpreted as-is. Element
 [2] (placed into $format in the example above) of the returned four
element
 list tells you if the map has any of these special elements or not, as follows:

s

means all the elements of the map array are simple scalars, with no special
 elements. Almost
all properties are like this, like the block example
 above.

sl

means that some of the map array elements have the form given by "s", and
 the rest are lists
of scalars. For example, here is a portion of the output
 of calling prop_invmap() with the
"Script Extensions" property:

 @scripts_ranges @scripts_maps
 ...
 0x0953 Devanagari
 0x0964 [Bengali, Devanagari, Gurumukhi, Oriya]
 0x0966 Devanagari
 0x0970 Common

Here, the code points 0x964 and 0x965 are both used in Bengali,
 Devanagari, Gurmukhi, and
Oriya, but no other scripts.

The Name_Alias property is also of this form. But each scalar consists of two
 components: 1)
the name, and 2) the type of alias this is. They are
 separated by a colon and a space. In
Unicode 6.1, there are several alias types:

correction

indicates that the name is a corrected form for the
 original name (which remains valid)
for the same code point.

control

adds a new name for a control character.

alternate

is an alternate name for a character

figment

is a name for a character that has been documented but was never in any
 actual
standard.

abbreviation

is a common abbreviation for a character

The lists are ordered (roughly) so the most preferred names come before less
 preferred ones.

Perl version 5.18.1 documentation - Unicode::UCD

Page 17http://perldoc.perl.org

For example,

 @aliases_ranges @alias_maps
 ...
 0x009E ['PRIVACY MESSAGE: control', 'PM: abbreviation']
 0x009F ['APPLICATION PROGRAM COMMAND: control',
 'APC: abbreviation'
]
 0x00A0 'NBSP: abbreviation'
 0x00A1 ""
 0x00AD 'SHY: abbreviation'
 0x00AE ""
 0x01A2 'LATIN CAPITAL LETTER GHA: correction'
 0x01A3 'LATIN SMALL LETTER GHA: correction'
 0x01A4 ""
 ...

A map to the empty string means that there is no alias defined for the code
 point.

a

is like "s" in that all the map array elements are scalars, but here they are
 restricted to all
being integers, and some have to be adjusted (hence the name "a") to get the correct result.
For example, in:

 my ($uppers_ranges_ref, $uppers_maps_ref, $format)
 = prop_invmap("Simple_Uppercase_Mapping");

the returned arrays look like this:

 @$uppers_ranges_ref @$uppers_maps_ref Note
 0 0
 97 65 'a' maps to 'A', b => B ...
 123 0
 181 924 MICRO SIGN => Greek Cap MU
 182 0
 ...

Let's start with the second line. It says that the uppercase of code point 97
 is 65; or uc("a")
== "A". But the line is for the entire range of code
 points 97 through 122. To get the mapping
for any code point in a range, you
 take the offset it has from the beginning code point of the
range, and add
 that to the mapping for that first code point. So, the mapping for 122 ("z")
 is
derived by taking the offset of 122 from 97 (=25) and adding that to 65,
 yielding 90 ("z").
Likewise for everything in between.

The first line works the same way. The first map in a range is always the
 correct value for its
code point (because the adjustment is 0). Thus the uc(chr(0)) is just itself. Also,
uc(chr(1)) is also itself, as the
 adjustment is 0+1-0 .. uc(chr(96)) is 96.

Requiring this simple adjustment allows the returned arrays to be
 significantly smaller than
otherwise, up to a factor of 10, speeding up
 searching through them.

al

means that some of the map array elements have the form given by "a", and
 the rest are
ordered lists of code points.
 For example, in:

 my ($uppers_ranges_ref, $uppers_maps_ref, $format)
 = prop_invmap("Uppercase_Mapping");

the returned arrays look like this:

 @$uppers_ranges_ref @$uppers_maps_ref

Perl version 5.18.1 documentation - Unicode::UCD

Page 18http://perldoc.perl.org

 0 0
 97 65
 123 0
 181 924
 182 0
 ...
 0x0149 [0x02BC 0x004E]
 0x014A 0
 0x014B 330
 ...

This is the full Uppercase_Mapping property (as opposed to the
 Simple_Uppercase_Mapping
given in the example for format "a"). The only
 difference between the two in the ranges
shown is that the code point at
 0x0149 (LATIN SMALL LETTER N PRECEDED BY
APOSTROPHE) maps to a string of two
 characters, 0x02BC (MODIFIER LETTER
APOSTROPHE) followed by 0x004E (LATIN
 CAPITAL LETTER N).

No adjustments are needed to entries that are references to arrays; each such
 entry will have
exactly one element in its range, so the offset is always 0.

ae

This is like "a", but some elements are the empty string, and should not be
 adjusted.
 The one
internal Perl property accessible by prop_invmap is of this type:
 "Perl_Decimal_Digit" returns
an inversion map which gives the numeric values
 that are represented by the Unicode decimal
digit characters. Characters that
 don't represent decimal digits map to the empty string, like
so:

 @digits @values
 0x0000 ""
 0x0030 0
 0x003A: ""
 0x0660: 0
 0x066A: ""
 0x06F0: 0
 0x06FA: ""
 0x07C0: 0
 0x07CA: ""
 0x0966: 0
 ...

This means that the code points from 0 to 0x2F do not represent decimal digits;
 the code point
0x30 (DIGIT ZERO) represents 0; code point 0x31, (DIGIT ONE),
 represents 0+1-0 = 1; ...
code point 0x39, (DIGIT NINE), represents 0+9-0 = 9;
 ... code points 0x3A through 0x65F do
not represent decimal digits; 0x660
 (ARABIC-INDIC DIGIT ZERO), represents 0; ... 0x07C1
(NKO DIGIT ONE),
 represents 0+1-0 = 1 ...

ale

is a combination of the "al" type and the "ae" type. Some of
 the map array elements have
the forms given by "al", and
 the rest are the empty string. The property NFKC_Casefold
has this form.
 An example slice is:

 @$ranges_ref @$maps_ref Note
 ...
 0x00AA 97 FEMININE ORDINAL INDICATOR => 'a'
 0x00AB 0
 0x00AD SOFT HYPHEN => ""
 0x00AE 0
 0x00AF [0x0020, 0x0304] MACRON => SPACE . COMBINING MACRON

Perl version 5.18.1 documentation - Unicode::UCD

Page 19http://perldoc.perl.org

 0x00B0 0
 ...

ar

means that all the elements of the map array are either rational numbers or
 the string "NaN",
meaning "Not a Number". A rational number is either an
 integer, or two integers separated by
a solidus ("/"). The second integer
 represents the denominator of the division implied by the
solidus, and is
 actually always positive, so it is guaranteed not to be 0 and to not be
 signed.
When the element is a plain integer (without the
 solidus), it may need to be adjusted to get the
correct value by adding the
 offset, just as other "a" properties. No adjustment is needed for

fractions, as the range is guaranteed to have just a single element, and so
 the offset is always
0.

If you want to convert the returned map to entirely scalar numbers, you
 can use something like
this:

 my ($invlist_ref, $invmap_ref, $format) = prop_invmap($property);
 if ($format && $format eq "ar") {
 map { $_ = eval $_ if $_ ne 'NaN' } @$map_ref;
 }

Here's some entries from the output of the property "Nv", which has format "ar".

 @numerics_ranges @numerics_maps Note
 0x00 "NaN"
 0x30 0 DIGIT 0 .. DIGIT 9
 0x3A "NaN"
 0xB2 2 SUPERSCRIPTs 2 and 3
 0xB4 "NaN"
 0xB9 1 SUPERSCRIPT 1
 0xBA "NaN"
 0xBC 1/4 VULGAR FRACTION 1/4
 0xBD 1/2 VULGAR FRACTION 1/2
 0xBE 3/4 VULGAR FRACTION 3/4
 0xBF "NaN"
 0x660 0 ARABIC-INDIC DIGIT ZERO .. NINE
 0x66A "NaN"

n

means the Name property. All the elements of the map array are simple
 scalars, but some of
them contain special strings that require more work to
 get the actual name.

Entries such as:

 CJK UNIFIED IDEOGRAPH-<code point>

mean that the name for the code point is "CJK UNIFIED IDEOGRAPH-"
 with the code point
(expressed in hexadecimal) appended to it, like "CJK
 UNIFIED IDEOGRAPH-3403" (similarly
for CJK COMPATIBILITY IDEOGRAPH-<code
 point>).

Also, entries like

 <hangul syllable>

means that the name is algorithmically calculated. This is easily done by
 the function
"charnames::viacode(code)" in charnames.

Note that for control characters (Gc=cc), Unicode's data files have the
 string "<control>",
but the real name of each of these characters is the empty
 string. This function returns that
real name, the empty string. (There are
 names for these characters, but they are considered

Perl version 5.18.1 documentation - Unicode::UCD

Page 20http://perldoc.perl.org

aliases, not the Name
 property name, and are contained in the Name_Alias property.)

ad

means the Decomposition_Mapping property. This property is like "al"
 properties, except
that one of the scalar elements is of the form:

 <hangul syllable>

This signifies that this entry should be replaced by the decompositions for
 all the code points
whose decomposition is algorithmically calculated. (All
 of them are currently in one range and
no others outisde the range are likely
 to ever be added to Unicode; the "n" format
 has this
same entry.) These can be generated via the function Unicode::Normalize::NFD().

Note that the mapping is the one that is specified in the Unicode data files,
 and to get the final
decomposition, it may need to be applied recursively.

Note that a format begins with the letter "a" if and only the property it is
 for requires adjustments by
adding the offsets in multi-element ranges. For
 all these properties, an entry should be adjusted only if
the map is a scalar
 which is an integer. That is, it must match the regular expression:

 / ^ -? \d+ $ /xa

Further, the first element in a range never needs adjustment, as the
 adjustment would be just adding
0.

A binary search can be used to quickly find a code point in the inversion
 list, and hence its
corresponding mapping.

The final element (index [3], assigned to $default in the "block" example) in
 the four element list
returned by this function may be useful for applications
 that wish to convert the returned inversion
map data structure into some
 other, such as a hash. It gives the mapping that most code points map
to
 under the property. If you establish the convention that any code point not
 explicitly listed in your
data structure maps to this value, you can
 potentially make your data structure much smaller. As you
construct your data
 structure from the one returned by this function, simply ignore those ranges
 that
map to this value, generally called the "default" value. For example, to
 convert to the data structure
searchable by charinrange(), you can follow
 this recipe for properties that don't require adjustments:

 my ($list_ref, $map_ref, $format, $missing) = prop_invmap($property);
 my @range_list;

 # Look at each element in the list, but the -2 is needed because we
 # look at $i+1 in the loop, and the final element is guaranteed to map
 # to $missing by prop_invmap(), so we would skip it anyway.
 for my $i (0 .. @$list_ref - 2) {
 next if $map_ref->[$i] eq $missing;
 push @range_list, [$list_ref->[$i],
 $list_ref->[$i+1],
 $map_ref->[$i]
];
 }

 print charinrange(\@range_list, $code_point), "\n";

With this, charinrange() will return undef if its input code point maps
 to $missing. You can
avoid this by omitting the next statement, and adding
 a line after the loop to handle the final element
of the inversion map.

Similarly, this recipe can be used for properties that do require adjustments:

Perl version 5.18.1 documentation - Unicode::UCD

Page 21http://perldoc.perl.org

 for my $i (0 .. @$list_ref - 2) {
 next if $map_ref->[$i] eq $missing;

 # prop_invmap() guarantees that if the mapping is to an array, the
 # range has just one element, so no need to worry about adjustments.
 if (ref $map_ref->[$i]) {
 push @range_list,
 [$list_ref->[$i], $list_ref->[$i], $map_ref->[$i]];
 }
 else { # Otherwise each element is actually mapped to a separate
 # value, so the range has to be split into single code point
 # ranges.

 my $adjustment = 0;

 # For each code point that gets mapped to something...
 for my $j ($list_ref->[$i] .. $list_ref->[$i+1] -1) {

 # ... add a range consisting of just it mapping to the
 # original plus the adjustment, which is incremented for the
 # next time through the loop, as the offset increases by 1
 # for each element in the range
 push @range_list,
 [$j, $j, $map_ref->[$i] + $adjustment++];
 }
 }
 }

Note that the inversion maps returned for the Case_Folding and Simple_Case_Folding
properties do not include the Turkic-locale mappings.
 Use casefold() for these.

prop_invmap does not know about any user-defined properties, and will
 return undef if called with
one of those.

Unicode::UCD::UnicodeVersion
This returns the version of the Unicode Character Database, in other words, the
 version of the
Unicode standard the database implements. The version is a
 string of numbers delimited by dots ('.'
).

Blocks versus Scripts
The difference between a block and a script is that scripts are closer
 to the linguistic notion of a set of
code points required to present
 languages, while block is more of an artifact of the Unicode code point
numbering and separation into blocks of consecutive code points (so far the
 size of a block is some
multiple of 16, like 128 or 256).

For example the Latin script is spread over several blocks, such
 as Basic Latin, Latin 1
Supplement, Latin Extended-A, and Latin Extended-B. On the other hand, the Latin script
does not
 contain all the characters of the Basic Latin block (also known as
 ASCII): it includes only
the letters, and not, for example, the digits
 or the punctuation.

For blocks see http://www.unicode.org/Public/UNIDATA/Blocks.txt

For scripts see UTR #24: http://www.unicode.org/unicode/reports/tr24/

Perl version 5.18.1 documentation - Unicode::UCD

Page 22http://perldoc.perl.org

Matching Scripts and Blocks
Scripts are matched with the regular-expression construct \p{...} (e.g. \p{Tibetan} matches
characters of the Tibetan script),
 while \p{Blk=...} is used for blocks (e.g. \p{Blk=Tibetan}
matches
 any of the 256 code points in the Tibetan block).

Old-style versus new-style block names
Unicode publishes the names of blocks in two different styles, though the two
 are equivalent under
Unicode's loose matching rules.

The original style uses blanks and hyphens in the block names (except for No_Block), like so:

 Miscellaneous Mathematical Symbols-B

The newer style replaces these with underscores, like this:

 Miscellaneous_Mathematical_Symbols_B

This newer style is consistent with the values of other Unicode properties.
 To preserve backward
compatibility, all the functions in Unicode::UCD that
 return block names (except one) return the
old-style ones. That one function, prop_value_aliases() can be used to convert from old-style to
new-style:

 my $new_style = prop_values_aliases("block", $old_style);

Perl also has single-form extensions that refer to blocks, In_Cyrillic,
 meaning Block=Cyrillic.
These have always been written in the new style.

To convert from new-style to old-style, follow this recipe:

 $old_style = charblock((prop_invlist("block=$new_style"))[0]);

(which finds the range of code points in the block using prop_invlist,
 gets the lower end of the
range (0th element) and then looks up the old name
 for its block using charblock).

Note that starting in Unicode 6.1, many of the block names have shorter
 synonyms. These are always
given in the new style.

BUGS
Does not yet support EBCDIC platforms.

AUTHOR
Jarkko Hietaniemi. Now maintained by perl5 porters.

