
Perl version 5.18.1 documentation - perlreguts

Page 1http://perldoc.perl.org

NAME
perlreguts - Description of the Perl regular expression engine.

DESCRIPTION
This document is an attempt to shine some light on the guts of the regex
 engine and how it works.
The regex engine represents a significant chunk
 of the perl codebase, but is relatively poorly
understood. This document
 is a meagre attempt at addressing this situation. It is derived from the

author's experience, comments in the source code, other papers on the
 regex engine, feedback on
the perl5-porters mail list, and no doubt other
 places as well.

NOTICE! It should be clearly understood that the behavior and
 structures discussed in this represents
the state of the engine as the
 author understood it at the time of writing. It is NOT an API
 definition, it
is purely an internals guide for those who want to hack
 the regex engine, or understand how the regex
engine works. Readers of
 this document are expected to understand perl's regex syntax and its

usage in detail. If you want to learn about the basics of Perl's
 regular expressions, see perlre. And if
you want to replace the
 regex engine with your own, see perlreapi.

OVERVIEW
A quick note on terms

There is some debate as to whether to say "regexp" or "regex". In this
 document we will use the term
"regex" unless there is a special reason
 not to, in which case we will explain why.

When speaking about regexes we need to distinguish between their source
 code form and their
internal form. In this document we will use the term
 "pattern" when we speak of their textual, source
code form, and the term
 "program" when we speak of their internal representation. These
 correspond
to the terms S-regex and B-regex that Mark Jason
 Dominus employs in his paper on "Rx" ([1] in
REFERENCES).

What is a regular expression engine?
A regular expression engine is a program that takes a set of constraints
 specified in a mini-language,
and then applies those constraints to a
 target string, and determines whether or not the string satisfies
the
 constraints. See perlre for a full definition of the language.

In less grandiose terms, the first part of the job is to turn a pattern into
 something the computer can
efficiently use to find the matching point in
 the string, and the second part is performing the search
itself.

To do this we need to produce a program by parsing the text. We then
 need to execute the program
to find the point in the string that
 matches. And we need to do the whole thing efficiently.

Structure of a Regexp Program
High Level

Although it is a bit confusing and some people object to the terminology, it
 is worth taking a look at a
comment that has
 been in regexp.h for years:

This is essentially a linear encoding of a nondeterministic
 finite-state machine (aka syntax charts or
"railroad normal form" in
 parsing technology).

The term "railroad normal form" is a bit esoteric, with "syntax
 diagram/charts", or "railroad
diagram/charts" being more common terms.
 Nevertheless it provides a useful mental image of a
regex program: each
 node can be thought of as a unit of track, with a single entry and in
 most cases a
single exit point (there are pieces of track that fork, but
 statistically not many), and the whole forms a
layout with a
 single entry and single exit point. The matching process can be thought
 of as a car that
moves along the track, with the particular route through
 the system being determined by the character
read at each possible
 connector point. A car can fall off the track at any point but it may
 only proceed
as long as it matches the track.

Perl version 5.18.1 documentation - perlreguts

Page 2http://perldoc.perl.org

Thus the pattern /foo(?:\w+|\d+|\s+)bar/ can be thought of as the
 following chart:

 [start]
 |
 <foo>
 |
 +-----+-----+
 | | |
 <\w+> <\d+> <\s+>
 | | |
 +-----+-----+
 |
 <bar>
 |
 [end]

The truth of the matter is that perl's regular expressions these days are
 much more complex than this
kind of structure, but visualising it this way
 can help when trying to get your bearings, and it matches
the
 current implementation pretty closely.

To be more precise, we will say that a regex program is an encoding
 of a graph. Each node in the
graph corresponds to part of
 the original regex pattern, such as a literal string or a branch,
 and has a
pointer to the nodes representing the next component
 to be matched. Since "node" and "opcode"
already have other meanings in the
 perl source, we will call the nodes in a regex program "regops".

The program is represented by an array of regnode structures, one or
 more of which represent a
single regop of the program. Struct regnode is the smallest struct needed, and has a field structure
which is
 shared with all the other larger structures.

The "next" pointers of all regops except BRANCH implement concatenation;
 a "next" pointer with a
BRANCH on both ends of it is connecting two
 alternatives. [Here we have one of the subtle syntax
dependencies: an
 individual BRANCH (as opposed to a collection of them) is never
 concatenated with
anything because of operator precedence.]

The operand of some types of regop is a literal string; for others,
 it is a regop leading into a
sub-program. In particular, the operand
 of a BRANCH node is the first regop of the branch.

NOTE: As the railroad metaphor suggests, this is not a tree
 structure: the tail of the branch connects
to the thing following the
 set of BRANCHes. It is a like a single line of railway track that
 splits as it goes
into a station or railway yard and rejoins as it comes
 out the other side.

Regops

The base structure of a regop is defined in regexp.h as follows:

 struct regnode {
 U8 flags; /* Various purposes, sometimes overridden */
 U8 type; /* Opcode value as specified by regnodes.h */
 U16 next_off; /* Offset in size regnode */
 };

Other larger regnode-like structures are defined in regcomp.h. They
 are almost like subclasses in
that they have the same fields as regnode, with possibly additional fields following in
 the structure,
and in some cases the specific meaning (and name)
 of some of base fields are overridden. The
following is a more
 complete description.

regnode_1

regnode_2

Perl version 5.18.1 documentation - perlreguts

Page 3http://perldoc.perl.org

regnode_1 structures have the same header, followed by a single
 four-byte argument;
regnode_2 structures contain two two-byte
 arguments instead:

 regnode_1 U32 arg1;
 regnode_2 U16 arg1; U16 arg2;

regnode_string

regnode_string structures, used for literal strings, follow the header
 with a one-byte length
and then the string data. Strings are padded on
 the end with zero bytes so that the total length
of the node is a
 multiple of four bytes:

 regnode_string char string[1];
 U8 str_len; /* overrides flags */

regnode_charclass

Character classes are represented by regnode_charclass structures,
 which have a
four-byte argument and then a 32-byte (256-bit) bitmap
 indicating which characters are
included in the class.

 regnode_charclass U32 arg1;
 char bitmap[ANYOF_BITMAP_SIZE];

regnode_charclass_class

There is also a larger form of a char class structure used to represent
 POSIX char classes
called regnode_charclass_class which has an
 additional 4-byte (32-bit) bitmap indicating
which POSIX char classes
 have been included.

 regnode_charclass_class U32 arg1;
 char bitmap[ANYOF_BITMAP_SIZE];
 char classflags[ANYOF_CLASSBITMAP_SIZE];

regnodes.h defines an array called regarglen[] which gives the size
 of each opcode in units of
size regnode (4-byte). A macro is used
 to calculate the size of an EXACT node based on its
str_len field.

The regops are defined in regnodes.h which is generated from regcomp.sym by regcomp.pl. Currently
the maximum possible number
 of distinct regops is restricted to 256, with about a quarter already

used.

A set of macros makes accessing the fields
 easier and more consistent. These include OP(), which is
used to determine
 the type of a regnode-like structure; NEXT_OFF(), which is the offset to
 the next
node (more on this later); ARG(), ARG1(), ARG2(), ARG_SET(),
 and equivalents for reading and
setting the arguments; and STR_LEN(), STRING() and OPERAND() for manipulating strings and
regop bearing
 types.

What regop is next?

There are three distinct concepts of "next" in the regex engine, and
 it is important to keep them clear.

There is the "next regnode" from a given regnode, a value which is
 rarely useful except that
sometimes it matches up in terms of value
 with one of the others, and that sometimes the
code assumes this to
 always be so.

There is the "next regop" from a given regop/regnode. This is the
 regop physically located
after the current one, as determined by
 the size of the current regop. This is often useful, such
as when
 dumping the structure we use this order to traverse. Sometimes the code
 assumes
that the "next regnode" is the same as the "next regop", or in
 other words assumes that the
sizeof a given regop type is always going
 to be one regnode large.

Perl version 5.18.1 documentation - perlreguts

Page 4http://perldoc.perl.org

There is the "regnext" from a given regop. This is the regop which
 is reached by jumping
forward by the value of NEXT_OFF(),
 or in a few cases for longer jumps by the arg1 field of
the regnode_1
 structure. The subroutine regnext() handles this transparently.
 This is the
logical successor of the node, which in some cases, like
 that of the BRANCH regop, has special
meaning.

Process Overview
Broadly speaking, performing a match of a string against a pattern
 involves the following steps:

A. Compilation

1. Parsing for size

2. Parsing for construction

3. Peep-hole optimisation and analysis

B. Execution

4. Start position and no-match optimisations

5. Program execution

Where these steps occur in the actual execution of a perl program is
 determined by whether the
pattern involves interpolating any string
 variables. If interpolation occurs, then compilation happens at
run time. If it
 does not, then compilation is performed at compile time. (The /o modifier changes this,

as does qr// to a certain extent.) The engine doesn't really care that
 much.

Compilation
This code resides primarily in regcomp.c, along with the header files regcomp.h, regexp.h and
regnodes.h.

Compilation starts with pregcomp(), which is mostly an initialisation
 wrapper which farms work out
to two other routines for the heavy lifting: the
 first is reg(), which is the start point for parsing; the
second, study_chunk(), is responsible for optimisation.

Initialisation in pregcomp() mostly involves the creation and data-filling
 of a special structure,
RExC_state_t (defined in regcomp.c).
 Almost all internally-used routines in regcomp.h take a
pointer to one
 of these structures as their first argument, with the name pRExC_state.
 This structure
is used to store the compilation state and contains many
 fields. Likewise there are many macros
which operate on this
 variable: anything that looks like RExC_xxxx is a macro that operates on
 this
pointer/structure.

Parsing for size

In this pass the input pattern is parsed in order to calculate how much
 space is needed for each regop
we would need to emit. The size is also
 used to determine whether long jumps will be required in the
program.

This stage is controlled by the macro SIZE_ONLY being set.

The parse proceeds pretty much exactly as it does during the
 construction phase, except that most
routines are short-circuited to
 change the size field RExC_size and not do anything else.

Parsing for construction

Once the size of the program has been determined, the pattern is parsed
 again, but this time for real.
Now SIZE_ONLY will be false, and the
 actual construction can occur.

reg() is the start of the parse process. It is responsible for
 parsing an arbitrary chunk of pattern up to
either the end of the
 string, or the first closing parenthesis it encounters in the pattern.
 This means it
can be used to parse the top-level regex, or any section
 inside of a grouping parenthesis. It also
handles the "special parens"
 that perl's regexes have. For instance when parsing /x(?:foo)y/
reg()
 will at one point be called to parse from the "?" symbol up to and
 including the ")".

Perl version 5.18.1 documentation - perlreguts

Page 5http://perldoc.perl.org

Additionally, reg() is responsible for parsing the one or more
 branches from the pattern, and for
"finishing them off" by correctly
 setting their next pointers. In order to do the parsing, it repeatedly

calls out to regbranch(), which is responsible for handling up to the
 first | symbol it sees.

regbranch() in turn calls regpiece() which
 handles "things" followed by a quantifier. In order to
parse the
 "things", regatom() is called. This is the lowest level routine, which
 parses out constant
strings, character classes, and the
 various special symbols like $. If regatom() encounters a "("

character it in turn calls reg().

The routine regtail() is called by both reg() and regbranch()
 in order to "set the tail pointer"
correctly. When executing and
 we get to the end of a branch, we need to go to the node following the

grouping parens. When parsing, however, we don't know where the end will
 be until we get there, so
when we do we must go back and update the
 offsets as appropriate. regtail is used to make this
easier.

A subtlety of the parsing process means that a regex like /foo/ is
 originally parsed into an
alternation with a single branch. It is only
 afterwards that the optimiser converts single branch
alternations into the
 simpler form.

Parse Call Graph and a Grammar

The call graph looks like this:

 reg() # parse a top level regex, or inside of
 # parens
 regbranch() # parse a single branch of an alternation
 regpiece() # parse a pattern followed by a quantifier
 regatom() # parse a simple pattern
 regclass() # used to handle a class
 reg() # used to handle a parenthesised
 # subpattern

 ...
 regtail() # finish off the branch
 ...
 regtail() # finish off the branch sequence. Tie each
 # branch's tail to the tail of the
 # sequence
 # (NEW) In Debug mode this is
 # regtail_study().

A grammar form might be something like this:

 atom : constant | class
 quant : '*' | '+' | '?' | '{min,max}'
 _branch: piece
 | piece _branch
 | nothing
 branch: _branch
 | _branch '|' branch
 group : '(' branch ')'
 _piece: atom | group
 piece : _piece
 | _piece quant

Parsing complications

The implication of the above description is that a pattern containing nested
 parentheses will result in a
call graph which cycles through reg(), regbranch(), regpiece(), regatom(), reg(),

Perl version 5.18.1 documentation - perlreguts

Page 6http://perldoc.perl.org

regbranch() etc
 multiple times, until the deepest level of nesting is reached. All the above
 routines
return a pointer to a regnode, which is usually the last regnode
 added to the program. However, one
complication is that reg() returns NULL
 for parsing (?:) syntax for embedded modifiers, setting the
flag TRYAGAIN. The TRYAGAIN propagates upwards until it is captured, in
 some cases by by
regatom(), but otherwise unconditionally by regbranch(). Hence it will never be returned by
regbranch() to reg(). This flag permits patterns such as (?i)+ to be detected as
 errors (
Quantifier follows nothing in regex; marked by <-- HERE in m/(?i)+
 <-- HERE /).

Another complication is that the representation used for the program differs
 if it needs to store
Unicode, but it's not always possible to know for sure
 whether it does until midway through parsing.
The Unicode representation for
 the program is larger, and cannot be matched as efficiently. (See
Unicode and Localisation Support below for more details as to why.) If the pattern
 contains literal
Unicode, it's obvious that the program needs to store
 Unicode. Otherwise, the parser optimistically
assumes that the more
 efficient representation can be used, and starts sizing on this basis.
 However,
if it then encounters something in the pattern which must be stored
 as Unicode, such as an \x{...}
escape sequence representing a character
 literal, then this means that all previously calculated sizes
need to be
 redone, using values appropriate for the Unicode representation. Currently,
 all regular
expression constructions which can trigger this are parsed by code
 in regatom().

To avoid wasted work when a restart is needed, the sizing pass is abandoned
 - regatom()
immediately returns NULL, setting the flag RESTART_UTF8.
 (This action is encapsulated using the
macro REQUIRE_UTF8.) This restart
 request is propagated up the call chain in a similar fashion, until
it is
 "caught" in Perl_re_op_compile(), which marks the pattern as containing
 Unicode, and
restarts the sizing pass. It is also possible for constructions
 within run-time code blocks to turn out to
need Unicode representation.,
 which is signalled by S_compile_runtime_code() returning false
to Perl_re_op_compile().

The restart was previously implemented using a longjmp in regatom()
 back to a setjmp in
Perl_re_op_compile(), but this proved to be
 problematic as the latter is a large function
containing many automatic
 variables, which interact badly with the emergent control flow of setjmp.

Debug Output

In the 5.9.x development version of perl you can use re Debug => 'PARSE'
 to see some trace
information about the parse process. We will start with some
 simple patterns and build up to more
complex patterns.

So when we parse /foo/ we see something like the following table. The
 left shows what is being
parsed, and the number indicates where the next regop
 would go. The stuff on the right is the trace
output of the graph. The
 names are chosen to be short to make it less dense on the screen. 'tsdy'
 is a
special form of regtail() which does some extra analysis.

 >foo< 1 reg
 brnc
 piec
 atom
 >< 4 tsdy~ EXACT <foo> (EXACT) (1)
 ~ attach to END (3) offset to 2

The resulting program then looks like:

 1: EXACT <foo>(3)
 3: END(0)

As you can see, even though we parsed out a branch and a piece, it was ultimately
 only an atom. The
final program shows us how things work. We have an EXACT regop,
 followed by an END regop. The
number in parens indicates where the regnext of
 the node goes. The regnext of an END regop is
unused, as END regops mean
 we have successfully matched. The number on the left indicates the

Perl version 5.18.1 documentation - perlreguts

Page 7http://perldoc.perl.org

position of
 the regop in the regnode array.

Now let's try a harder pattern. We will add a quantifier, so now we have the pattern /foo+/. We will
see that regbranch() calls regpiece() twice.

 >foo+< 1 reg
 brnc
 piec
 atom
 >o+< 3 piec
 atom
 >< 6 tail~ EXACT <fo> (1)
 7 tsdy~ EXACT <fo> (EXACT) (1)
 ~ PLUS (END) (3)
 ~ attach to END (6) offset to 3

And we end up with the program:

 1: EXACT <fo>(3)
 3: PLUS(6)
 4: EXACT <o>(0)
 6: END(0)

Now we have a special case. The EXACT regop has a regnext of 0. This is
 because if it matches it
should try to match itself again. The PLUS regop
 handles the actual failure of the EXACT regop and
acts appropriately (going
 to regnode 6 if the EXACT matched at least once, or failing if it didn't).

Now for something much more complex: /x(?:foo*|b[a][rR])(foo|bar)$/

 >x(?:foo*|b... 1 reg
 brnc
 piec
 atom
 >(?:foo*|b[... 3 piec
 atom
 >?:foo*|b[a... reg
 >foo*|b[a][... brnc
 piec
 atom
 >o*|b[a][rR... 5 piec
 atom
 >|b[a][rR])... 8 tail~ EXACT <fo> (3)
 >b[a][rR])(... 9 brnc
 10 piec
 atom
 >[a][rR])(f... 12 piec
 atom
 >a][rR])(fo... clas
 >[rR])(foo|... 14 tail~ EXACT (10)
 piec
 atom
 >rR])(foo|b... clas
 >)(foo|bar)... 25 tail~ EXACT <a> (12)
 tail~ BRANCH (3)
 26 tsdy~ BRANCH (END) (9)
 ~ attach to TAIL (25) offset to 16
 tsdy~ EXACT <fo> (EXACT) (4)

Perl version 5.18.1 documentation - perlreguts

Page 8http://perldoc.perl.org

 ~ STAR (END) (6)
 ~ attach to TAIL (25) offset to 19
 tsdy~ EXACT (EXACT) (10)
 ~ EXACT <a> (EXACT) (12)
 ~ ANYOF[Rr] (END) (14)
 ~ attach to TAIL (25) offset to 11
 >(foo|bar)$< tail~ EXACT <x> (1)
 piec
 atom
 >foo|bar)$< reg
 28 brnc
 piec
 atom
 >|bar)$< 31 tail~ OPEN1 (26)
 >bar)$< brnc
 32 piec
 atom
 >)$< 34 tail~ BRANCH (28)
 36 tsdy~ BRANCH (END) (31)
 ~ attach to CLOSE1 (34) offset to 3
 tsdy~ EXACT <foo> (EXACT) (29)
 ~ attach to CLOSE1 (34) offset to 5
 tsdy~ EXACT <bar> (EXACT) (32)
 ~ attach to CLOSE1 (34) offset to 2
 >$< tail~ BRANCH (3)
 ~ BRANCH (9)
 ~ TAIL (25)
 piec
 atom
 >< 37 tail~ OPEN1 (26)
 ~ BRANCH (28)
 ~ BRANCH (31)
 ~ CLOSE1 (34)
 38 tsdy~ EXACT <x> (EXACT) (1)
 ~ BRANCH (END) (3)
 ~ BRANCH (END) (9)
 ~ TAIL (END) (25)
 ~ OPEN1 (END) (26)
 ~ BRANCH (END) (28)
 ~ BRANCH (END) (31)
 ~ CLOSE1 (END) (34)
 ~ EOL (END) (36)
 ~ attach to END (37) offset to 1

Resulting in the program

 1: EXACT <x>(3)
 3: BRANCH(9)
 4: EXACT <fo>(6)
 6: STAR(26)
 7: EXACT <o>(0)
 9: BRANCH(25)
 10: EXACT <ba>(14)
 12: OPTIMIZED (2 nodes)
 14: ANYOF[Rr](26)
 25: TAIL(26)

Perl version 5.18.1 documentation - perlreguts

Page 9http://perldoc.perl.org

 26: OPEN1(28)
 28: TRIE-EXACT(34)
 [StS:1 Wds:2 Cs:6 Uq:5 #Sts:7 Mn:3 Mx:3 Stcls:bf]
 <foo>
 <bar>
 30: OPTIMIZED (4 nodes)
 34: CLOSE1(36)
 36: EOL(37)
 37: END(0)

Here we can see a much more complex program, with various optimisations in
 play. At regnode 10
we see an example where a character class with only
 one character in it was turned into an EXACT
node. We can also see where
 an entire alternation was turned into a TRIE-EXACT node. As a
consequence,
 some of the regnodes have been marked as optimised away. We can see that
 the $
symbol has been converted into an EOL regop, a special piece of
 code that looks for \n or the end of
the string.

The next pointer for BRANCHes is interesting in that it points at where
 execution should go if the
branch fails. When executing, if the engine
 tries to traverse from a branch to a regnext that isn't a
branch then
 the engine will know that the entire set of branches has failed.

Peep-hole Optimisation and Analysis

The regular expression engine can be a weighty tool to wield. On long
 strings and complex patterns it
can end up having to do a lot of work
 to find a match, and even more to decide that no match is
possible.
 Consider a situation like the following pattern.

 'ababababababababababab' =~ /(a|b)*z/

The (a|b)* part can match at every char in the string, and then fail
 every time because there is no z
in the string. So obviously we can
 avoid using the regex engine unless there is a z in the string.

Likewise in a pattern like:

 /foo(\w+)bar/

In this case we know that the string must contain a foo which must be
 followed by bar. We can use
Fast Boyer-Moore matching as implemented
 in fbm_instr() to find the location of these strings. If
they don't exist
 then we don't need to resort to the much more expensive regex engine.
 Even better, if
they do exist then we can use their positions to
 reduce the search space that the regex engine needs
to cover to determine
 if the entire pattern matches.

There are various aspects of the pattern that can be used to facilitate
 optimisations along these lines:

* anchored fixed strings

* floating fixed strings

* minimum and maximum length requirements

* start class

* Beginning/End of line positions

Another form of optimisation that can occur is the post-parse "peep-hole"
 optimisation, where
inefficient constructs are replaced by more efficient
 constructs. The TAIL regops which are used
during parsing to mark the end
 of branches and the end of groups are examples of this. These regops
are used
 as place-holders during construction and "always match" so they can be
 "optimised away"
by making the things that point to the TAIL point to the
 thing that TAIL points to, thus "skipping" the
node.

Another optimisation that can occur is that of "EXACT merging" which is
 where two consecutive

Perl version 5.18.1 documentation - perlreguts

Page 10http://perldoc.perl.org

EXACT nodes are merged into a single
 regop. An even more aggressive form of this is that a branch

sequence of the form EXACT BRANCH ... EXACT can be converted into a TRIE-EXACT regop.

All of this occurs in the routine study_chunk() which uses a special
 structure scan_data_t to
store the analysis that it has performed, and
 does the "peep-hole" optimisations as it goes.

The code involved in study_chunk() is extremely cryptic. Be careful. :-)

Execution
Execution of a regex generally involves two phases, the first being
 finding the start point in the string
where we should match from,
 and the second being running the regop interpreter.

If we can tell that there is no valid start point then we don't bother running
 interpreter at all. Likewise, if
we know from the analysis phase that we
 cannot detect a short-cut to the start position, we go straight
to the
 interpreter.

The two entry points are re_intuit_start() and pregexec(). These routines
 have a somewhat
incestuous relationship with overlap between their functions,
 and pregexec() may even call
re_intuit_start() on its own. Nevertheless
 other parts of the perl source code may call into
either, or both.

Execution of the interpreter itself used to be recursive, but thanks to the
 efforts of Dave Mitchell in the
5.9.x development track, that has changed: now an
 internal stack is maintained on the heap and the
routine is fully
 iterative. This can make it tricky as the code is quite conservative
 about what state it
stores, with the result that two consecutive lines in the
 code can actually be running in totally different
contexts due to the
 simulated recursion.

Start position and no-match optimisations

re_intuit_start() is responsible for handling start points and no-match
 optimisations as
determined by the results of the analysis done by study_chunk() (and described in Peep-hole
Optimisation and Analysis).

The basic structure of this routine is to try to find the start- and/or
 end-points of where the pattern
could match, and to ensure that the string
 is long enough to match the pattern. It tries to use more
efficient
 methods over less efficient methods and may involve considerable
 cross-checking of
constraints to find the place in the string that matches.
 For instance it may try to determine that a
given fixed string must be
 not only present but a certain number of chars before the end of the
 string,
or whatever.

It calls several other routines, such as fbm_instr() which does
 Fast Boyer Moore matching and
find_byclass() which is responsible for
 finding the start using the first mandatory regop in the
program.

When the optimisation criteria have been satisfied, reg_try() is called
 to perform the match.

Program execution

pregexec() is the main entry point for running a regex. It contains
 support for initialising the regex
interpreter's state, running re_intuit_start() if needed, and running the interpreter on the string

from various start positions as needed. When it is necessary to use
 the regex interpreter
pregexec() calls regtry().

regtry() is the entry point into the regex interpreter. It expects
 as arguments a pointer to a
regmatch_info structure and a pointer to
 a string. It returns an integer 1 for success and a 0 for
failure.
 It is basically a set-up wrapper around regmatch().

regmatch is the main "recursive loop" of the interpreter. It is
 basically a giant switch statement that
implements a state machine, where
 the possible states are the regops themselves, plus a number of
additional
 intermediate and failure states. A few of the states are implemented as
 subroutines but the
bulk are inline code.

Perl version 5.18.1 documentation - perlreguts

Page 11http://perldoc.perl.org

MISCELLANEOUS
Unicode and Localisation Support

When dealing with strings containing characters that cannot be represented
 using an eight-bit
character set, perl uses an internal representation
 that is a permissive version of Unicode's UTF-8
encoding[2]. This uses single
 bytes to represent characters from the ASCII character set, and
sequences
 of two or more bytes for all other characters. (See perlunitut
 for more information about
the relationship between UTF-8 and perl's
 encoding, utf8. The difference isn't important for this
discussion.)

No matter how you look at it, Unicode support is going to be a pain in a
 regex engine. Tricks that
might be fine when you have 256 possible
 characters often won't scale to handle the size of the
UTF-8 character
 set. Things you can take for granted with ASCII may not be true with
 Unicode. For
instance, in ASCII, it is safe to assume that sizeof(char1) == sizeof(char2), but in UTF-8 it
isn't. Unicode case folding is
 vastly more complex than the simple rules of ASCII, and even when not

using Unicode but only localised single byte encodings, things can get
 tricky (for example, LATIN
SMALL LETTER SHARP S (U+00DF, ß)
 should match 'SS' in localised case-insensitive matching).

Making things worse is that UTF-8 support was a later addition to the
 regex engine (as it was to perl)
and this necessarily made things a lot
 more complicated. Obviously it is easier to design a regex
engine with
 Unicode support in mind from the beginning than it is to retrofit it to
 one that wasn't.

Nearly all regops that involve looking at the input string have
 two cases, one for UTF-8, and one not.
In fact, it's often more complex
 than that, as the pattern may be UTF-8 as well.

Care must be taken when making changes to make sure that you handle
 UTF-8 properly, both at
compile time and at execution time, including
 when the string and pattern are mismatched.

The following comment in regcomp.h gives an example of exactly how
 tricky this can be:

 Two problematic code points in Unicode casefolding of EXACT nodes:

 U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
 U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS

 which casefold to

 Unicode UTF-8

 U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
 U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81

 This means that in case-insensitive matching (or "loose matching",
 as Unicode calls it), an EXACTF of length six (the UTF-8 encoded
 byte length of the above casefolded versions) can match a target
 string of length two (the byte length of UTF-8 encoded U+0390 or
 U+03B0). This would rather mess up the minimum length computation.

 What we'll do is to look for the tail four bytes, and then peek
 at the preceding two bytes to see whether we need to decrease
 the minimum length by four (six minus two).

 Thanks to the design of UTF-8, there cannot be false matches:
 A sequence of valid UTF-8 bytes cannot be a subsequence of
 another valid sequence of UTF-8 bytes.

Perl version 5.18.1 documentation - perlreguts

Page 12http://perldoc.perl.org

Base Structures
The regexp structure described in perlreapi is common to all
 regex engines. Two of its fields that are
intended for the private use
 of the regex engine that compiled the pattern. These are the intflags
and pprivate members. The pprivate is a void pointer to
 an arbitrary structure whose use and
management is the responsibility
 of the compiling engine. perl will never modify either of these
 values.
In the case of the stock engine the structure pointed to by pprivate is called regexp_internal.

Its pprivate and intflags fields contain data
 specific to each engine.

There are two structures used to store a compiled regular expression.
 One, the regexp structure
described in perlreapi is populated by
 the engine currently being. used and some of its fields read by
perl to
 implement things such as the stringification of qr//.

The other structure is pointed to be the regexp struct's pprivate and is in addition to intflags in
the same struct
 considered to be the property of the regex engine which compiled the
 regular
expression;

The regexp structure contains all the data that perl needs to be aware of
 to properly work with the
regular expression. It includes data about
 optimisations that perl can use to determine if the regex
engine should
 really be used, and various other control info that is needed to properly
 execute
patterns in various contexts such as is the pattern anchored in
 some way, or what flags were used
during the compile, or whether the
 program contains special constructs that perl needs to be aware
of.

In addition it contains two fields that are intended for the private use
 of the regex engine that compiled
the pattern. These are the intflags
 and pprivate members. The pprivate is a void pointer to an
arbitrary
 structure whose use and management is the responsibility of the compiling
 engine. perl will
never modify either of these values.

As mentioned earlier, in the case of the default engines, the pprivate
 will be a pointer to a
regexp_internal structure which holds the compiled
 program and any additional data that is private to
the regex engine
 implementation.

Perl's pprivate structure

The following structure is used as the pprivate struct by perl's
 regex engine. Since it is specific to
perl it is only of curiosity
 value to other engine implementations.

 typedef struct regexp_internal {
 U32 *offsets; /* offset annotations 20001228 MJD
 * data about mapping the program to
 * the string*/
 regnode *regstclass; /* Optional startclass as identified or
 * constructed by the optimiser */
 struct reg_data *data; /* Additional miscellaneous data used
 * by the program. Used to make it
 * easier to clone and free arbitrary
 * data that the regops need. Often the
 * ARG field of a regop is an index
 * into this structure */
 regnode program[1]; /* Unwarranted chumminess with
 * compiler. */
 } regexp_internal;

offsets

Offsets holds a mapping of offset in the program
 to offset in the precomp string. This is
only used by ActiveState's
 visual regex debugger.

regstclass

Perl version 5.18.1 documentation - perlreguts

Page 13http://perldoc.perl.org

Special regop that is used by re_intuit_start() to check if a pattern
 can match at a
certain position. For instance if the regex engine knows
 that the pattern must start with a 'Z'
then it can scan the string until
 it finds one and then launch the regex engine from there. The
routine
 that handles this is called find_by_class(). Sometimes this field
 points at a
regop embedded in the program, and sometimes it points at
 an independent synthetic regop
that has been constructed by the optimiser.

data

This field points at a reg_data structure, which is defined as follows

 struct reg_data {
 U32 count;
 U8 *what;
 void* data[1];
 };

This structure is used for handling data structures that the regex engine
 needs to handle
specially during a clone or free operation on the compiled
 product. Each element in the data
array has a corresponding element in the
 what array. During compilation regops that need
special structures stored
 will add an element to each array using the add_data() routine and
then store
 the index in the regop.

program

Compiled program. Inlined into the structure so the entire struct can be
 treated as a single
blob.

SEE ALSO
perlreapi

perlre

perlunitut

AUTHOR
by Yves Orton, 2006.

With excerpts from Perl, and contributions and suggestions from
 Ronald J. Kimball, Dave Mitchell,
Dominic Dunlop, Mark Jason Dominus,
 Stephen McCamant, and David Landgren.

LICENCE
Same terms as Perl.

REFERENCES
[1] http://perl.plover.com/Rx/paper/

[2] http://www.unicode.org

