
Perl version 5.10.1 documentation - Archive::Extract

Page 1http://perldoc.perl.org

NAME
Archive::Extract - A generic archive extracting mechanism

SYNOPSIS
    use Archive::Extract;

    ### build an Archive::Extract object ###
    my $ae = Archive::Extract->new( archive => 'foo.tgz' );

    ### extract to cwd() ###
    my $ok = $ae->extract;

    ### extract to /tmp ###
    my $ok = $ae->extract( to => '/tmp' );

    ### what if something went wrong?
    my $ok = $ae->extract or die $ae->error;

    ### files from the archive ###
    my $files   = $ae->files;

    ### dir that was extracted to ###
    my $outdir  = $ae->extract_path;

    ### quick check methods ###
    $ae->is_tar     # is it a .tar file?
    $ae->is_tgz     # is it a .tar.gz or .tgz file?
    $ae->is_gz;     # is it a .gz file?
    $ae->is_zip;    # is it a .zip file?
    $ae->is_bz2;    # is it a .bz2 file?
    $ae->is_tbz;    # is it a .tar.bz2 or .tbz file?
    $ae->is_lzma;   # is it a .lzma file?

    ### absolute path to the archive you provided ###
    $ae->archive;

    ### commandline tools, if found ###
    $ae->bin_tar     # path to /bin/tar, if found
    $ae->bin_gzip    # path to /bin/gzip, if found
    $ae->bin_unzip   # path to /bin/unzip, if found
    $ae->bin_bunzip2 # path to /bin/bunzip2 if found
    $ae->bin_unlzma  # path to /bin/unlzma if found

DESCRIPTION
Archive::Extract is a generic archive extraction mechanism.

It allows you to extract any archive file of the type .tar, .tar.gz,
 .gz, .Z, tar.bz2, .tbz, .bz2, .zip or .lzma 
without having to worry how it does so, or use different interfaces for each type by using either perl 
modules, or commandline tools on your system.

See the HOW IT WORKS section further down for details.



Perl version 5.10.1 documentation - Archive::Extract

Page 2http://perldoc.perl.org

METHODS
$ae = Archive::Extract->new(archive => '/path/to/archive',[type => TYPE])

Creates a new Archive::Extract object based on the archive file you
 passed it. Automatically 
determines the type of archive based on the
 extension, but you can override that by explicitly 
providing the type argument.

Valid values for type are:

tar

Standard tar files, as produced by, for example, /bin/tar.
 Corresponds to a .tar suffix.

tgz

Gzip compressed tar files, as produced by, for example /bin/tar -z.
 Corresponds to a 
.tgz or .tar.gz suffix.

gz

Gzip compressed file, as produced by, for example /bin/gzip.
 Corresponds to a .gz suffix.

Z

Lempel-Ziv compressed file, as produced by, for example /bin/compress.
 Corresponds to a
.Z suffix.

zip

Zip compressed file, as produced by, for example /bin/zip.
 Corresponds to a .zip, .jar 
or .par suffix.

bz2

Bzip2 compressed file, as produced by, for example, /bin/bzip2.
 Corresponds to a .bz2 
suffix.

tbz

Bzip2 compressed tar file, as produced by, for exmample /bin/tar -j.
 Corresponds to a 
.tbz or .tar.bz2 suffix.

lzma

Lzma compressed file, as produced by /bin/lzma.
 Corresponds to a .lzma suffix.

Returns a Archive::Extract object on success, or false on failure.

$ae->extract( [to => '/output/path'] )
Extracts the archive represented by the Archive::Extract object to
 the path of your choice as 
specified by the to argument. Defaults to cwd().

Since .gz files never hold a directory, but only a single file; if the to argument is an existing directory,
the file is extracted there, with its .gz suffix stripped. If the to argument is not an existing directory, 
the to argument is understood to be a filename, if the archive type is gz. In the case that you did not 
specify a to argument, the output
 file will be the name of the archive file, stripped from its .gz
 suffix, 
in the current working directory.

extract will try a pure perl solution first, and then fall back to
 commandline tools if they are 
available. See the GLOBAL VARIABLES
 section below on how to alter this behaviour.

It will return true on success, and false on failure.

On success, it will also set the follow attributes in the object:

$ae->extract_path



Perl version 5.10.1 documentation - Archive::Extract

Page 3http://perldoc.perl.org

This is the directory that the files where extracted to.

$ae->files

This is an array ref with the paths of all the files in the archive,
 relative to the to argument you
specified.
 To get the full path to an extracted file, you would use:

    File::Spec->catfile( $to, $ae->files->[0] );

Note that all files from a tar archive will be in unix format, as per
 the tar specification.

ACCESSORS
$ae->error([BOOL])

Returns the last encountered error as string.
 Pass it a true value to get the Carp::longmess() 
output instead.

$ae->extract_path
This is the directory the archive got extracted to.
 See extract() for details.

$ae->files
This is an array ref holding all the paths from the archive.
 See extract() for details.

$ae->archive
This is the full path to the archive file represented by this Archive::Extract object.

$ae->type
This is the type of archive represented by this Archive::Extract
 object. See accessors below for 
an easier way to use this.
 See the new() method for details.

$ae->types
Returns a list of all known types for Archive::Extract's new method.

$ae->is_tgz
Returns true if the file is of type .tar.gz.
 See the new() method for details.

$ae->is_tar
Returns true if the file is of type .tar.
 See the new() method for details.

$ae->is_gz
Returns true if the file is of type .gz.
 See the new() method for details.

$ae->is_Z
Returns true if the file is of type .Z.
 See the new() method for details.

$ae->is_zip
Returns true if the file is of type .zip.
 See the new() method for details.

$ae->is_lzma
Returns true if the file is of type .lzma.
 See the new() method for details.

$ae->bin_tar
Returns the full path to your tar binary, if found.

$ae->bin_gzip
Returns the full path to your gzip binary, if found



Perl version 5.10.1 documentation - Archive::Extract

Page 4http://perldoc.perl.org

$ae->bin_unzip
Returns the full path to your unzip binary, if found

$ae->bin_unlzma
Returns the full path to your unlzma binary, if found

$bool = $ae->have_old_bunzip2
Older versions of /bin/bunzip2, from before the bunzip2 1.0 release,
 require all archive names 
to end in .bz2 or it will not extract
 them. This method checks if you have a recent version of 
bunzip2
 that allows any extension, or an older one that doesn't.

HOW IT WORKS
Archive::Extract tries first to determine what type of archive you
 are passing it, by inspecting its 
suffix. It does not do this by using
 Mime magic, or something related. See CAVEATS below.

Once it has determined the file type, it knows which extraction methods
 it can use on the archive. It 
will try a perl solution first, then fall
 back to a commandline tool if that fails. If that also fails, it will

return false, indicating it was unable to extract the archive.
 See the section on GLOBAL VARIABLES 
to see how to alter this order.

CAVEATS
File Extensions

Archive::Extract trusts on the extension of the archive to determine
 what type it is, and what 
extractor methods therefore can be used. If
 your archives do not have any of the extensions as 
described in the new() method, you will have to specify the type explicitly, or Archive::Extract 
will not be able to extract the archive for you.

Supporting Very Large Files
Archive::Extract can use either pure perl modules or command line
 programs under the hood. 
Some of the pure perl modules (like Archive::Tar and Compress::unLZMA) take the entire 
contents of the archive into memory,
 which may not be feasible on your system. Consider setting the 
global
 variable $Archive::Extract::PREFER_BIN to 1, which will prefer
 the use of command line
programs and won't consume so much memory.

See the GLOBAL VARIABLES section below for details.

Bunzip2 support of arbitrary extensions.
Older versions of /bin/bunzip2 do not support arbitrary file extensions and insist on a .bz2 suffix. 
Although we do our best
 to guard against this, if you experience a bunzip2 error, it may
 be related to 
this. For details, please see the have_old_bunzip2
 method.

GLOBAL VARIABLES
$Archive::Extract::DEBUG

Set this variable to true to have all calls to command line tools
 be printed out, including all their 
output.
 This also enables Carp::longmess errors, instead of the regular carp errors.

Good for tracking down why things don't work with your particular
 setup.

Defaults to false.

$Archive::Extract::WARN
This variable controls whether errors encountered internally by Archive::Extract should be carp
'd or not.

Set to false to silence warnings. Inspect the output of the error()
 method manually to see what 
went wrong.



Perl version 5.10.1 documentation - Archive::Extract

Page 5http://perldoc.perl.org

Defaults to true.

$Archive::Extract::PREFER_BIN
This variables controls whether Archive::Extract should prefer the
 use of perl modules, or 
commandline tools to extract archives.

Set to true to have Archive::Extract prefer commandline tools.

Defaults to false.

TODO / CAVEATS
Mime magic support

Maybe this module should use something like File::Type to determine
 the type, rather than
blindly trust the suffix.

Thread safety

Currently, Archive::Extract does a chdir to the extraction dir before
 extraction, and a 
chdir back again after. This is not necessarily thread safe. See rt.cpan.org bug #45671 
for details.

BUG REPORTS
Please report bugs or other issues to <bug-archive-extract@rt.cpan.org<gt>.

AUTHOR
This module by Jos Boumans <kane@cpan.org>.

COPYRIGHT
This library is free software; you may redistribute and/or modify it under the same terms as Perl itself.


