
Perl version 5.20.1 documentation - perlopentut

Page 1http://perldoc.perl.org

NAME
perlopentut - simple recipes for opening files and pipes in Perl

DESCRIPTION
Whenever you do I/O on a file in Perl, you do so through what in Perl is
 called a filehandle. A 
filehandle is an internal name for an external
 file. It is the job of the open function to make the 
association
 between the internal name and the external name, and it is the job
 of the close function 
to break that association.

For your convenience, Perl sets up a few special filehandles that are
 already open when you run. 
These include STDIN, STDOUT, STDERR,
 and ARGV. Since those are pre-opened, you can use them 
right away
 without having to go to the trouble of opening them yourself:

    print STDERR "This is a debugging message.\n";

    print STDOUT "Please enter something: ";
    $response = <STDIN> // die "how come no input?";
    print STDOUT "Thank you!\n";

    while (<ARGV>) { ... }

As you see from those examples, STDOUT and STDERR are output
 handles, and STDIN and ARGV are
input handles. They are
 in all capital letters because they are reserved to Perl, much
 like the @ARGV 
array and the %ENV hash are. Their external
 associations were set up by your shell.

You will need to open every other filehandle on your own. Although there
 are many variants, the most 
common way to call Perl's open() function
 is with three arguments and one return value:

 OK = open(HANDLE, MODE, PATHNAME)

Where:

OK

will be some defined value if the open succeeds, but undef if it fails;

HANDLE

should be an undefined scalar variable to be filled in by the open function if it succeeds;

MODE

is the access mode and the encoding format to open the file with;

PATHNAME

is the external name of the file you want opened.

Most of the complexity of the open function lies in the many
 possible values that the MODE 
parameter can take on.

One last thing before we show you how to open files: opening
 files does not (usually) automatically 
lock them in Perl. See perlfaq5 for how to lock.

Opening Text Files
Opening Text Files for Reading

If you want to read from a text file, first open it in
 read-only mode like this:

    my $filename = "/some/path/to/a/textfile/goes/here";
    my $encoding = ":encoding(UTF-8)";
    my $handle   = undef;     # this will be filled in on success



Perl version 5.20.1 documentation - perlopentut

Page 2http://perldoc.perl.org

    open($handle, "< $encoding", $filename)
        || die "$0: can't open $filename for reading: $!";

As with the shell, in Perl the "<" is used to open the file in
 read-only mode. If it succeeds, Perl 
allocates a brand new filehandle for
 you and fills in your previously undefined $handle argument with
a
 reference to that handle.

Now you may use functions like readline, read, getc, and sysread on that handle. Probably the 
most common input function
 is the one that looks like an operator:

    $line = readline($handle);
    $line = <$handle>;          # same thing

Because the readline function returns undef at end of file or
 upon error, you will sometimes see it 
used this way:

    $line = <$handle>;
    if (defined $line) {
        # do something with $line
    }
    else {
        # $line is not valid, so skip it
    }

You can also just quickly die on an undefined value this way:

    $line = <$handle> // die "no input found";

However, if hitting EOF is an expected and normal event, you do not want to
 exit simply because you 
have run out of input. Instead, you probably just want
 to exit an input loop. You can then test to see if 
an actual error has caused
 the loop to terminate, and act accordingly:

    while (<$handle>) {
        # do something with data in $_
    }
    if ($!) {
        die "unexpected error while reading from $filename: $!";
    }

A Note on Encodings: Having to specify the text encoding every time
 might seem a bit of a bother. 
To set up a default encoding for open so
 that you don't have to supply it each time, you can use the 
open pragma:

    use open qw< :encoding(UTF-8) >;

Once you've done that, you can safely omit the encoding part of the
 open mode:

    open($handle, "<", $filename)
        || die "$0: can't open $filename for reading: $!";

But never use the bare "<" without having set up a default encoding
 first. Otherwise, Perl cannot 
know which of the many, many, many possible
 flavors of text file you have, and Perl will have no idea 
how to correctly
 map the data in your file into actual characters it can work with. Other
 common 
encoding formats including "ASCII", "ISO-8859-1", "ISO-8859-15", "Windows-1252", 
"MacRoman", and even "UTF-16LE".
 See perlunitut for more about encodings.



Perl version 5.20.1 documentation - perlopentut

Page 3http://perldoc.perl.org

Opening Text Files for Writing
When you want to write to a file, you first have to decide what to do about
 any existing contents of that
file. You have two basic choices here: to
 preserve or to clobber.

If you want to preserve any existing contents, then you want to open the file
 in append mode. As in 
the shell, in Perl you use ">>" to open an
 existing file in append mode. ">>" creates the file if it does
not
 already exist.

    my $handle   = undef;
    my $filename = "/some/path/to/a/textfile/goes/here";
    my $encoding = ":encoding(UTF-8)";

    open($handle, ">> $encoding", $filename)
        || die "$0: can't open $filename for appending: $!";

Now you can write to that filehandle using any of print, printf, say, write, or syswrite.

As noted above, if the file does not already exist, then the append-mode open
 will create it for you. 
But if the file does already exist, its contents are
 safe from harm because you will be adding your new 
text past the end of the
 old text.

On the other hand, sometimes you want to clobber whatever might already be
 there. To empty out a 
file before you start writing to it, you can open it
 in write-only mode:

    my $handle   = undef;
    my $filename = "/some/path/to/a/textfile/goes/here";
    my $encoding = ":encoding(UTF-8)";

    open($handle, "> $encoding", $filename)
        || die "$0: can't open $filename in write-open mode: $!";

Here again Perl works just like the shell in that the ">" clobbers
 an existing file.

As with the append mode, when you open a file in write-only mode,
 you can now write to that 
filehandle using any of print, printf, say, write, or syswrite.

What about read-write mode? You should probably pretend it doesn't exist,
 because opening text files
in read-write mode is unlikely to do what you
 would like. See perlfaq5 for details.

Opening Binary Files
If the file to be opened contains binary data instead of text characters,
 then the MODE argument to 
open is a little different. Instead of
 specifying the encoding, you tell Perl that your data are in raw 
bytes.

    my $filename = "/some/path/to/a/binary/file/goes/here";
    my $encoding = ":raw :bytes"
    my $handle   = undef;     # this will be filled in on success

And then open as before, choosing "<", ">>", or ">" as needed:

    open($handle, "< $encoding", $filename)
        || die "$0: can't open $filename for reading: $!";

    open($handle, ">> $encoding", $filename)
        || die "$0: can't open $filename for appending: $!";



Perl version 5.20.1 documentation - perlopentut

Page 4http://perldoc.perl.org

    open($handle, "> $encoding", $filename)
        || die "$0: can't open $filename in write-open mode: $!";

Alternately, you can change to binary mode on an existing handle this way:

    binmode($handle)    || die "cannot binmode handle";

This is especially handy for the handles that Perl has already opened for you.

    binmode(STDIN)      || die "cannot binmode STDIN";
    binmode(STDOUT)     || die "cannot binmode STDOUT";

You can also pass binmode an explicit encoding to change it on the fly.
 This isn't exactly "binary" 
mode, but we still use binmode to do it:

  binmode(STDIN,  ":encoding(MacRoman)") || die "cannot binmode STDIN";
  binmode(STDOUT, ":encoding(UTF-8)")    || die "cannot binmode STDOUT";

Once you have your binary file properly opened in the right mode, you can
 use all the same Perl I/O 
functions as you used on text files. However,
 you may wish to use the fixed-size read instead of the 
variable-sized readline for your input.

Here's an example of how to copy a binary file:

    my $BUFSIZ   = 64 * (2 ** 10);
    my $name_in  = "/some/input/file";
    my $name_out = "/some/output/flie";

    my($in_fh, $out_fh, $buffer);

    open($in_fh,  "<", $name_in)
        || die "$0: cannot open $name_in for reading: $!";
    open($out_fh, ">", $name_out)
        || die "$0: cannot open $name_out for writing: $!";

    for my $fh ($in_fh, $out_fh)  {
        binmode($fh)               || die "binmode failed";
    }

    while (read($in_fh, $buffer, $BUFSIZ)) {
        unless (print $out_fh $buffer) {
            die "couldn't write to $name_out: $!";
        }
    }

    close($in_fh)       || die "couldn't close $name_in: $!";
    close($out_fh)      || die "couldn't close $name_out: $!";

Opening Pipes
To be announced.

Low-level File Opens via sysopen
To be announced. Or deleted.



Perl version 5.20.1 documentation - perlopentut

Page 5http://perldoc.perl.org

SEE ALSO
To be announced.

AUTHOR and COPYRIGHT
Copyright 2013 Tom Christiansen.

This documentation is free; you can redistribute it and/or modify it under
 the same terms as Perl itself.


