
Perl version 5.20.1 documentation - perlnumber

Page 1http://perldoc.perl.org

NAME
perlnumber - semantics of numbers and numeric operations in Perl

SYNOPSIS
 $n = 1234;		 # decimal integer
 $n = 0b1110011;	 # binary integer
 $n = 01234;		 # octal integer
 $n = 0x1234;	 # hexadecimal integer
 $n = 12.34e-56;	 # exponential notation
 $n = "-12.34e56";	 # number specified as a string
 $n = "1234";	 # number specified as a string

DESCRIPTION
This document describes how Perl internally handles numeric values.

Perl's operator overloading facility is completely ignored here. Operator
 overloading allows
user-defined behaviors for numbers, such as operations
 over arbitrarily large integers, floating points
numbers with arbitrary
 precision, operations over "exotic" numbers such as modular arithmetic or

p-adic arithmetic, and so on. See overload for details.

Storing numbers
Perl can internally represent numbers in 3 different ways: as native
 integers, as native floating point
numbers, and as decimal strings.
 Decimal strings may have an exponential notation part, as in
"12.34e-56". Native here means "a format supported by the C compiler which was used
 to build
perl".

The term "native" does not mean quite as much when we talk about native
 integers, as it does when
native floating point numbers are involved.
 The only implication of the term "native" on integers is that
the limits for
 the maximal and the minimal supported true integral quantities are close to
 powers of 2.
However, "native" floats have a most fundamental
 restriction: they may represent only those numbers
which have a relatively
 "short" representation when converted to a binary fraction. For example,
 0.9
cannot be represented by a native float, since the binary fraction
 for 0.9 is infinite:

 binary0.1110011001100...

with the sequence 1100 repeating again and again. In addition to this
 limitation, the exponent of the
binary number is also restricted when it
 is represented as a floating point number. On typical
hardware, floating
 point values can store numbers with up to 53 binary digits, and with binary

exponents between -1024 and 1024. In decimal representation this is close
 to 16 decimal digits and
decimal exponents in the range of -304..304.
 The upshot of all this is that Perl cannot store a number
like
 12345678901234567 as a floating point number on such architectures without
 loss of information.

Similarly, decimal strings can represent only those numbers which have a
 finite decimal expansion.
Being strings, and thus of arbitrary length, there
 is no practical limit for the exponent or number of
decimal digits for these
 numbers. (But realize that what we are discussing the rules for just the
storage of these numbers. The fact that you can store such "large" numbers
 does not mean that the
operations over these numbers will use all
 of the significant digits.
 See Numeric operators and
numeric conversions for details.)

In fact numbers stored in the native integer format may be stored either
 in the signed native form, or
in the unsigned native form. Thus the limits
 for Perl numbers stored as native integers would typically
be -2**31..2**32-1,
 with appropriate modifications in the case of 64-bit integers. Again, this
 does not
mean that Perl can do operations only over integers in this range:
 it is possible to store many more
integers in floating point format.

Summing up, Perl numeric values can store only those numbers which have
 a finite decimal
expansion or a "short" binary expansion.

Perl version 5.20.1 documentation - perlnumber

Page 2http://perldoc.perl.org

Numeric operators and numeric conversions
As mentioned earlier, Perl can store a number in any one of three formats,
 but most operators
typically understand only one of those formats. When
 a numeric value is passed as an argument to
such an operator, it will be
 converted to the format understood by the operator.

Six such conversions are possible:

 native integer --> native floating point	 (*)
 native integer --> decimal string
 native floating_point --> native integer		 (*)
 native floating_point --> decimal string		 (*)
 decimal string --> native integer
 decimal string --> native floating point	 (*)

These conversions are governed by the following general rules:

If the source number can be represented in the target form, that
 representation is used.

If the source number is outside of the limits representable in the target form,
 a representation
of the closest limit is used. (Loss of information)

If the source number is between two numbers representable in the target form,
 a
representation of one of these numbers is used. (Loss of information)

In native floating point --> native integer conversions the magnitude
 of the
result is less than or equal to the magnitude of the source.
 ("Rounding to zero".)

If the decimal string --> native integer conversion cannot be done
 without loss of
information, the result is compatible with the conversion
 sequence decimal_string -->
native_floating_point --> native_integer.
 In particular, rounding is strongly
biased to 0, though a number like "0.99999999999999999999" has a chance of being
rounded to 1.

RESTRICTION: The conversions marked with (*) above involve steps
 performed by the C compiler.
In particular, bugs/features of the compiler
 used may lead to breakage of some of the above rules.

Flavors of Perl numeric operations
Perl operations which take a numeric argument treat that argument in one
 of four different ways: they
may force it to one of the integer/floating/
 string formats, or they may behave differently depending on
the format of
 the operand. Forcing a numeric value to a particular format does not
 change the number
stored in the value.

All the operators which need an argument in the integer format treat the
 argument as in modular
arithmetic, e.g., mod 2**32 on a 32-bit
 architecture. sprintf "%u", -1 therefore provides the
same result as sprintf "%u", ~0.

Arithmetic operators

The binary operators + - * / % == != > < >= <= and the unary operators - abs and -- will

attempt to convert arguments to integers. If both conversions are possible
 without loss of
precision, and the operation can be performed without
 loss of precision then the integer result
is used. Otherwise arguments are
 converted to floating point format and the floating point
result is used.
 The caching of conversions (as described above) means that the integer

conversion does not throw away fractional parts on floating point numbers.

++

++ behaves as the other operators above, except that if it is a string
 matching the format
/^[a-zA-Z]*[0-9]*\z/ the string increment described
 in perlop is used.

Arithmetic operators during use integer

Perl version 5.20.1 documentation - perlnumber

Page 3http://perldoc.perl.org

In scopes where use integer; is in force, nearly all the operators listed
 above will force
their argument(s) into integer format, and return an integer
 result. The exceptions, abs, ++
and --, do not change their
 behavior with use integer;

Other mathematical operators

Operators such as **, sin and exp force arguments to floating point
 format.

Bitwise operators

Arguments are forced into the integer format if not strings.

Bitwise operators during use integer

forces arguments to integer format. Also shift operations internally use
 signed integers rather
than the default unsigned.

Operators which expect an integer

force the argument into the integer format. This is applicable
 to the third and fourth arguments
of sysread, for example.

Operators which expect a string

force the argument into the string format. For example, this is
 applicable to printf "%s",
$value.

Though forcing an argument into a particular form does not change the
 stored number, Perl
remembers the result of such conversions. In
 particular, though the first such conversion may be
time-consuming,
 repeated operations will not need to redo the conversion.

AUTHOR
Ilya Zakharevich ilya@math.ohio-state.edu

Editorial adjustments by Gurusamy Sarathy <gsar@ActiveState.com>

Updates for 5.8.0 by Nicholas Clark <nick@ccl4.org>

SEE ALSO
overload, perlop

