
Perl version 5.20.1 documentation - perlqnx

Page 1http://perldoc.perl.org

NAME
perlqnx - Perl version 5 on QNX

DESCRIPTION
As of perl5.7.2 all tests pass under:

 QNX 4.24G
 Watcom 10.6 with Beta/970211.wcc.update.tar.F
 socket3r.lib Nov21 1996.

As of perl5.8.1 there is at least one test still failing.

Some tests may complain under known circumstances.

See below and hints/qnx.sh for more information.

Under QNX 6.2.0 there are still a few tests which fail.
 See below and hints/qnx.sh for more
information.

Required Software for Compiling Perl on QNX4
As with many unix ports, this one depends on a few "standard"
 unix utilities which are not necessarily
standard for QNX4.

/bin/sh

This is used heavily by Configure and then by
 perl itself. QNX4's version is fine, but Configure

will choke on the 16-bit version, so if you are
 running QNX 4.22, link /bin/sh to /bin32/ksh

ar

This is the standard unix library builder.
 We use wlib. With Watcom 10.6, when wlib is
 linked
as "ar", it behaves like ar and all is
 fine. Under 9.5, a cover is required. One is
 included in
../qnx

nm

This is used (optionally) by configure to list
 the contents of libraries. I will generate
 a cover
function on the fly in the UU directory.

cpp

Configure and perl need a way to invoke a C
 preprocessor. I have created a simple cover
 for
cc which does the right thing. Without this,
 Configure will create its own wrapper which works,

but it doesn't handle some of the command line arguments
 that perl will throw at it.

make

You really need GNU make to compile this. GNU make
 ships by default with QNX 4.23, but
you can get it
 from quics for earlier versions.

Outstanding Issues with Perl on QNX4
There is no support for dynamically linked libraries in QNX4.

If you wish to compile with the Socket extension, you need
 to have the TCP/IP toolkit, and you need
to make sure that
 -lsocket locates the correct copy of socket3r.lib. Beware
 that the Watcom compiler
ships with a stub version of
 socket3r.lib which has very little functionality. Also
 beware the order in
which wlink searches directories for
 libraries. You may have /usr/lib/socket3r.lib pointing to
 the correct
library, but wlink may pick up
 /usr/watcom/10.6/usr/lib/socket3r.lib instead. Make sure
 they both point
to the correct library, that is,
 /usr/tcptk/current/usr/lib/socket3r.lib.

The following tests may report errors under QNX4:

dist/Cwd/Cwd.t will complain if `pwd` and cwd don't give
 the same results. cwd calls `fullpath -t`, so if

Perl version 5.20.1 documentation - perlqnx

Page 2http://perldoc.perl.org

you
 cd `fullpath -t` before running the test, it will
 pass.

lib/File/Find/taint.t will complain if '.' is in your
 PATH. The PATH test is triggered because cwd calls

`fullpath -t`.

ext/IO/lib/IO/t/io_sock.t: Subtests 14 and 22 are skipped due to
 the fact that the functionality to read
back the non-blocking
 status of a socket is not implemented in QNX's TCP/IP. This has
 been reported
to QNX and it may work with later versions of
 TCP/IP.

t/io/tell.t: Subtest 27 is failing. We are still investigating.

QNX auxiliary files
The files in the "qnx" directory are:

qnx/ar

A script that emulates the standard unix archive (aka library)
 utility. Under Watcom 10.6, ar is
linked to wlib and provides the
 expected interface. With Watcom 9.5, a cover function is

required. This one is fairly crude but has proved adequate for
 compiling perl.

qnx/cpp

A script that provides C preprocessing functionality. Configure can
 generate a similar cover,
but it doesn't handle all the command-line
 options that perl throws at it. This might be
reasonably placed in
 /usr/local/bin.

Outstanding issues with perl under QNX6
The following tests are still failing for Perl 5.8.1 under QNX 6.2.0:

 op/sprintf.........................FAILED at test 91
 lib/Benchmark......................FAILED at test 26

This is due to a bug in the C library's printf routine.
 printf("'%e'", 0.) produces '0.000000e+0', but
ANSI requires
 '0.000000e+00'. QNX has acknowledged the bug.

Cross-compilation
Perl supports cross-compiling to QNX NTO through the
 Native Development Kit (NDK) for the
Blackberry 10. This means that you
 can cross-compile for both ARM and x86 versions of the platform.

Setting up a cross-compilation environment

You can download the NDK from http://developer.blackberry.com/native/downloads/.

See http://developer.blackberry.com/native/documentation/cascades/getting_started/setting_up.html

for instructions to set up your device prior to attempting anything else.

Once you've installed the NDK and set up your device, all that's
 left to do is setting up the device and
the cross-compilation
 environment. Blackberry provides a script, bbndk-env.sh (occasionally

named something like bbndk-env_10_1_0_4828.sh) which can be used
 to do this. However,
there's a bit of a snag that we have to work through:
 The script modifies PATH so that 'gcc' or 'ar'
point to their
 cross-compilation equivalents, which screws over the build process.

So instead you'll want to do something like this:

 $ orig_path=$PATH
 $ source $location_of_bbndk/bbndk-env*.sh
 $ export PATH="$orig_path:$PATH"

Besides putting the cross-compiler and the rest of the toolchain in your
 PATH, this will also provide
the QNX_TARGET variable, which
 we will pass to Configure through -Dsysroot.

Perl version 5.20.1 documentation - perlqnx

Page 3http://perldoc.perl.org

Preparing the target system

It's quite possible that the target system doesn't have a readily
 available /tmp, so it's generall safer to
do something like this:

 $ ssh $TARGETUSER@$TARGETHOST 'rm -rf perl; mkdir perl; mkdir perl/tmp'
 $ export TARGETDIR=`ssh $TARGETUSER@$TARGETHOST pwd`/perl
 $ export TARGETENV="export TMPDIR=$TARGETDIR/tmp; "

Later on, we'll pass this to Configure through -Dtargetenv

Calling Configure

If you are targetting an ARM device -- which currently includes the vast majority of phones and tablets
-- you'll want to pass
 -Dcc=arm-unknown-nto-qnx8.0.0eabi-gcc to Configure. Alternatively, if you are
targetting an x86 device, or using the simulator provided with the NDK,
 you should specify
-Dcc=ntox86-gcc instead.

A sample Configure invocation looks something like this:

 ./Configure -des -Dusecrosscompile \
 -Dsysroot=$QNX_TARGET \
 -Dtargetdir=$TARGETDIR \
 -Dtargetenv="$TARGETENV" \
 -Dcc=ntox86-gcc \
 -Dtarghost=... # Usual cross-compilation options

AUTHOR
Norton T. Allen (allen@huarp.harvard.edu)

