
Perl version 5.22.0 documentation - perlfaq3

Page 1http://perldoc.perl.org

NAME
perlfaq3 - Programming Tools

VERSION
version 5.021009

DESCRIPTION
This section of the FAQ answers questions related to programmer tools
 and programming support.

How do I do (anything)?
Have you looked at CPAN (see perlfaq2)? The chances are that
 someone has already written a
module that can solve your problem.
 Have you read the appropriate manpages? Here's a brief index:

Basics

perldata - Perl data types

perlvar - Perl pre-defined variables

perlsyn - Perl syntax

perlop - Perl operators and precedence

perlsub - Perl subroutines

Execution

perlrun - how to execute the Perl interpreter

perldebug - Perl debugging

Functions

perlfunc - Perl builtin functions

Objects

perlref - Perl references and nested data structures

perlmod - Perl modules (packages and symbol tables)

perlobj - Perl objects

perltie - how to hide an object class in a simple variable

Data Structures

perlref - Perl references and nested data structures

perllol - Manipulating arrays of arrays in Perl

perldsc - Perl Data Structures Cookbook

Modules

perlmod - Perl modules (packages and symbol tables)

perlmodlib - constructing new Perl modules and finding existing ones

Regexes

perlre - Perl regular expressions

perlfunc - Perl builtin functions>

perlop - Perl operators and precedence

perllocale - Perl locale handling (internationalization and localization)

Moving to perl5

perltrap - Perl traps for the unwary

perl

Perl version 5.22.0 documentation - perlfaq3

Page 2http://perldoc.perl.org

Linking with C

perlxstut - Tutorial for writing XSUBs

perlxs - XS language reference manual

perlcall - Perl calling conventions from C

perlguts - Introduction to the Perl API

perlembed - how to embed perl in your C program

Various

http://www.cpan.org/misc/olddoc/FMTEYEWTK.tgz
 (not a man-page but still useful, a
collection of various essays on
 Perl techniques)

A crude table of contents for the Perl manpage set is found in perltoc.

How can I use Perl interactively?
The typical approach uses the Perl debugger, described in the perldebug(1) manpage, on an "empty"
program, like this:

 perl -de 42

Now just type in any legal Perl code, and it will be immediately
 evaluated. You can also examine the
symbol table, get stack
 backtraces, check variable values, set breakpoints, and other
 operations
typically found in symbolic debuggers.

You can also use Devel::REPL which is an interactive shell for Perl,
 commonly known as a REPL -
Read, Evaluate, Print, Loop. It provides
 various handy features.

How do I find which modules are installed on my system?
From the command line, you can use the cpan command's -l switch:

 $ cpan -l

You can also use cpan's -a switch to create an autobundle file
 that CPAN.pm understands and can
use to re-install every module:

 $ cpan -a

Inside a Perl program, you can use the ExtUtils::Installed module to
 show all installed distributions,
although it can take awhile to do
 its magic. The standard library which comes with Perl just shows up

as "Perl" (although you can get those with Module::CoreList).

 use ExtUtils::Installed;

 my $inst = ExtUtils::Installed->new();
 my @modules = $inst->modules();

If you want a list of all of the Perl module filenames, you
 can use File::Find::Rule:

 use File::Find::Rule;

 my @files = File::Find::Rule->
 extras({follow => 1})->
 file()->
 name('*.pm')->
 in(@INC)
 ;

Perl version 5.22.0 documentation - perlfaq3

Page 3http://perldoc.perl.org

If you do not have that module, you can do the same thing
 with File::Find which is part of the standard
library:

 use File::Find;
 my @files;

 find(
 {
 wanted => sub {
 push @files, $File::Find::fullname
 if -f $File::Find::fullname && /\.pm$/
 },
 follow => 1,
 follow_skip => 2,
 },
 @INC
);

 print join "\n", @files;

If you simply need to check quickly to see if a module is
 available, you can check for its
documentation. If you can
 read the documentation the module is most likely installed.
 If you cannot
read the documentation, the module might not
 have any (in rare cases):

 $ perldoc Module::Name

You can also try to include the module in a one-liner to see if
 perl finds it:

 $ perl -MModule::Name -e1

(If you don't receive a "Can't locate ... in @INC" error message, then Perl
 found the module name you
asked for.)

How do I debug my Perl programs?
(contributed by brian d foy)

Before you do anything else, you can help yourself by ensuring that
 you let Perl tell you about
problem areas in your code. By turning
 on warnings and strictures, you can head off many problems
before
 they get too big. You can find out more about these in strict
 and warnings.

 #!/usr/bin/perl
 use strict;
 use warnings;

Beyond that, the simplest debugger is the print function. Use it
 to look at values as you run your
program:

 print STDERR "The value is [$value]\n";

The Data::Dumper module can pretty-print Perl data structures:

 use Data::Dumper qw(Dumper);
 print STDERR "The hash is " . Dumper(\%hash) . "\n";

Perl comes with an interactive debugger, which you can start with the -d switch. It's fully explained in
perldebug.

Perl version 5.22.0 documentation - perlfaq3

Page 4http://perldoc.perl.org

If you'd like a graphical user interface and you have Tk, you can use ptkdb. It's on CPAN and
available for free.

If you need something much more sophisticated and controllable, Leon
 Brocard's Devel::ebug (which
you can call with the -D switch as -Debug)
 gives you the programmatic hooks into everything you
need to write your
 own (without too much pain and suffering).

You can also use a commercial debugger such as Affrus (Mac OS X), Komodo
 from Activestate
(Windows and Mac OS X), or EPIC (most platforms).

How do I profile my Perl programs?
(contributed by brian d foy, updated Fri Jul 25 12:22:26 PDT 2008)

The Devel namespace has several modules which you can use to
 profile your Perl programs.

The Devel::NYTProf (New York Times Profiler) does both statement
 and subroutine profiling. It's
available from CPAN and you also invoke
 it with the -d switch:

 perl -d:NYTProf some_perl.pl

It creates a database of the profile information that you can turn into
 reports. The nytprofhtml
command turns the data into an HTML report
 similar to the Devel::Cover report:

 nytprofhtml

You might also be interested in using the Benchmark to
 measure and compare code snippets.

You can read more about profiling in Programming Perl, chapter 20,
 or Mastering Perl, chapter 5.

perldebguts documents creating a custom debugger if you need to
 create a special sort of profiler.
brian d foy describes the process
 in The Perl Journal, "Creating a Perl Debugger",
http://www.ddj.com/184404522 , and "Profiling in Perl" http://www.ddj.com/184404580 .

Perl.com has two interesting articles on profiling: "Profiling Perl",
 by Simon Cozens,
http://www.perl.com/lpt/a/850 and "Debugging and
 Profiling mod_perl Applications", by Frank Wiles,
http://www.perl.com/pub/a/2006/02/09/debug_mod_perl.html .

Randal L. Schwartz writes about profiling in "Speeding up Your Perl
 Programs" for Unix Review,
http://www.stonehenge.com/merlyn/UnixReview/col49.html , and "Profiling
 in Template Toolkit via
Overriding" for Linux Magazine, http://www.stonehenge.com/merlyn/LinuxMag/col75.html .

How do I cross-reference my Perl programs?
The B::Xref module can be used to generate cross-reference reports
 for Perl programs.

 perl -MO=Xref[,OPTIONS] scriptname.plx

Is there a pretty-printer (formatter) for Perl?
Perl::Tidy comes with a perl script perltidy which indents and
 reformats Perl scripts to make them
easier to read by trying to follow
 the rules of the perlstyle. If you write Perl, or spend much time
reading
 Perl, you will probably find it useful.

Of course, if you simply follow the guidelines in perlstyle,
 you shouldn't need to reformat. The habit of
formatting your code
 as you write it will help prevent bugs. Your editor can and should
 help you with
this. The perl-mode or newer cperl-mode for emacs
 can provide remarkable amounts of help with
most (but not all)
 code, and even less programmable editors can provide significant
 assistance. Tom
Christiansen and many other VI users swear by
 the following settings in vi and its clones:

 set ai sw=4
 map! ^O {^M}^[O^T

Perl version 5.22.0 documentation - perlfaq3

Page 5http://perldoc.perl.org

Put that in your .exrc file (replacing the caret characters
 with control characters) and away you go. In
insert mode, ^T is
 for indenting, ^D is for undenting, and ^O is for blockdenting--as
 it were. A more
complete example, with comments, can be found at
http://www.cpan.org/authors/id/TOMC/scripts/toms.exrc.gz

Is there an IDE or Windows Perl Editor?
Perl programs are just plain text, so any editor will do.

If you're on Unix, you already have an IDE--Unix itself. The Unix
 philosophy is the philosophy of
several small tools that each do one
 thing and do it well. It's like a carpenter's toolbox.

If you want an IDE, check the following (in alphabetical order, not
 order of preference):

Eclipse

http://e-p-i-c.sf.net/

The Eclipse Perl Integration Project integrates Perl
 editing/debugging with Eclipse.

Enginsite

http://www.enginsite.com/

Perl Editor by EngInSite is a complete integrated development
 environment (IDE) for creating,
testing, and debugging Perl scripts;
 the tool runs on Windows 9x/NT/2000/XP or later.

Kephra

http://kephra.sf.net

GUI editor written in Perl using wxWidgets and Scintilla with lots of smaller features.
 Aims for
a UI based on Perl principles like TIMTOWTDI and "easy things should be easy,
 hard things
should be possible".

Komodo

http://www.ActiveState.com/Products/Komodo/

ActiveState's cross-platform (as of October 2004, that's Windows, Linux,
 and Solaris),
multi-language IDE has Perl support, including a regular expression
 debugger and remote
debugging.

Notepad++

http://notepad-plus.sourceforge.net/

Open Perl IDE

http://open-perl-ide.sourceforge.net/

Open Perl IDE is an integrated development environment for writing
 and debugging Perl
scripts with ActiveState's ActivePerl distribution
 under Windows 95/98/NT/2000.

OptiPerl

http://www.optiperl.com/

OptiPerl is a Windows IDE with simulated CGI environment, including
 debugger and
syntax-highlighting editor.

Padre

http://padre.perlide.org/

Padre is cross-platform IDE for Perl written in Perl using wxWidgets to provide
 a native look
and feel. It's open source under the Artistic License. It
 is one of the newer Perl IDEs.

PerlBuilder

http://www.solutionsoft.com/perl.htm

Perl version 5.22.0 documentation - perlfaq3

Page 6http://perldoc.perl.org

PerlBuilder is an integrated development environment for Windows that
 supports Perl
development.

visiPerl+

http://helpconsulting.net/visiperl/index.html

From Help Consulting, for Windows.

Visual Perl

http://www.activestate.com/Products/Visual_Perl/

Visual Perl is a Visual Studio.NET plug-in from ActiveState.

Zeus

http://www.zeusedit.com/lookmain.html

Zeus for Windows is another Win32 multi-language editor/IDE
 that comes with support for
Perl.

For editors: if you're on Unix you probably have vi or a vi clone
 already, and possibly an emacs too,
so you may not need to download
 anything. In any emacs the cperl-mode (M-x cperl-mode) gives you
perhaps the best available Perl editing mode in any editor.

If you are using Windows, you can use any editor that lets you work
 with plain text, such as NotePad
or WordPad. Word processors, such as
 Microsoft Word or WordPerfect, typically do not work since
they insert
 all sorts of behind-the-scenes information, although some allow you to
 save files as "Text
Only". You can also download text editors designed
 specifically for programming, such as Textpad (
http://www.textpad.com/) and UltraEdit (http://www.ultraedit.com/),
 among others.

If you are using MacOS, the same concerns apply. MacPerl (for Classic
 environments) comes with a
simple editor. Popular external editors are
 BBEdit (http://www.barebones.com/products/bbedit/) or
Alpha (http://www.his.com/~jguyer/Alpha/Alpha8.html). MacOS X users can use
 Unix editors as well.

GNU Emacs

http://www.gnu.org/software/emacs/windows/ntemacs.html

MicroEMACS

http://www.microemacs.de/

XEmacs

http://www.xemacs.org/Download/index.html

Jed

http://space.mit.edu/~davis/jed/

or a vi clone such as

Vim

http://www.vim.org/

Vile

http://dickey.his.com/vile/vile.html

The following are Win32 multilanguage editor/IDEs that support Perl:

MultiEdit

http://www.MultiEdit.com/

SlickEdit

http://www.slickedit.com/

Perl version 5.22.0 documentation - perlfaq3

Page 7http://perldoc.perl.org

ConTEXT

http://www.contexteditor.org/

There is also a toyedit Text widget based editor written in Perl
 that is distributed with the Tk module
on CPAN. The ptkdb
 (http://ptkdb.sourceforge.net/) is a Perl/Tk-based debugger that
 acts as a
development environment of sorts. Perl Composer
 (http://perlcomposer.sourceforge.net/) is an IDE
for Perl/Tk
 GUI creation.

In addition to an editor/IDE you might be interested in a more
 powerful shell environment for Win32.
Your options include

bash

from the Cygwin package (http://cygwin.com/)

zsh

http://www.zsh.org/

Cygwin is covered by the GNU General Public
 License (but that shouldn't matter for Perl use). Cygwin
contains (in addition to the shell) a comprehensive set
 of standard Unix toolkit utilities.

BBEdit and TextWrangler

are text editors for OS X that have a Perl sensitivity mode
 (http://www.barebones.com/).

Where can I get Perl macros for vi?
For a complete version of Tom Christiansen's vi configuration file,
 see
http://www.cpan.org/authors/Tom_Christiansen/scripts/toms.exrc.gz ,
 the standard benchmark file for
vi emulators. The file runs best with nvi,
 the current version of vi out of Berkeley, which incidentally
can be built
 with an embedded Perl interpreter--see http://www.cpan.org/src/misc/ .

Where can I get perl-mode or cperl-mode for emacs?
Since Emacs version 19 patchlevel 22 or so, there have been both a
 perl-mode.el and support for the
Perl debugger built in. These should
 come with the standard Emacs 19 distribution.

Note that the perl-mode of emacs will have fits with "main'foo"
 (single quote), and mess up the
indentation and highlighting. You
 are probably using "main::foo" in new Perl code anyway, so this

shouldn't be an issue.

For CPerlMode, see http://www.emacswiki.org/cgi-bin/wiki/CPerlMode

How can I use curses with Perl?
The Curses module from CPAN provides a dynamically loadable object
 module interface to a curses
library. A small demo can be found at the
 directory
http://www.cpan.org/authors/Tom_Christiansen/scripts/rep.gz ;
 this program repeats a command and
updates the screen as needed, rendering rep ps axu similar to top.

How can I write a GUI (X, Tk, Gtk, etc.) in Perl?
(contributed by Ben Morrow)

There are a number of modules which let you write GUIs in Perl. Most
 GUI toolkits have a perl
interface: an incomplete list follows.

Tk

This works under Unix and Windows, and the current version doesn't
 look half as bad under
Windows as it used to. Some of the gui elements
 still don't 'feel' quite right, though. The
interface is very natural
 and 'perlish', making it easy to use in small scripts that just need a

simple gui. It hasn't been updated in a while.

Wx

Perl version 5.22.0 documentation - perlfaq3

Page 8http://perldoc.perl.org

This is a Perl binding for the cross-platform wxWidgets toolkit
 (http://www.wxwidgets.org). It
works under Unix, Win32 and Mac OS X,
 using native widgets (Gtk under Unix). The interface
follows the C++
 interface closely, but the documentation is a little sparse for someone
 who
doesn't know the library, mostly just referring you to the C++
 documentation.

Gtk and Gtk2

These are Perl bindings for the Gtk toolkit (http://www.gtk.org). The
 interface changed
significantly between versions 1 and 2 so they have
 separate Perl modules. It runs under
Unix, Win32 and Mac OS X (currently
 it requires an X server on Mac OS, but a 'native' port is
underway), and
 the widgets look the same on every platform: i.e., they don't match the
 native
widgets. As with Wx, the Perl bindings follow the C API closely,
 and the documentation
requires you to read the C documentation to
 understand it.

Win32::GUI

This provides access to most of the Win32 GUI widgets from Perl.
 Obviously, it only runs
under Win32, and uses native widgets. The Perl
 interface doesn't really follow the C interface:
it's been made more
 Perlish, and the documentation is pretty good. More advanced stuff may

require familiarity with the C Win32 APIs, or reference to MSDN.

CamelBones

CamelBones (http://camelbones.sourceforge.net) is a Perl interface to
 Mac OS X's Cocoa
GUI toolkit, and as such can be used to produce native
 GUIs on Mac OS X. It's not on CPAN,
as it requires frameworks that
 CPAN.pm doesn't know how to install, but installation is via the

standard OSX package installer. The Perl API is, again, very close to
 the ObjC API it's
wrapping, and the documentation just tells you how to
 translate from one to the other.

Qt

There is a Perl interface to TrollTech's Qt toolkit, but it does not
 appear to be maintained.

Athena

Sx is an interface to the Athena widget set which comes with X, but
 again it appears not to be
much used nowadays.

How can I make my Perl program run faster?
The best way to do this is to come up with a better algorithm. This
 can often make a dramatic
difference. Jon Bentley's book Programming Pearls (that's not a misspelling!) has some good tips
 on
optimization, too. Advice on benchmarking boils down to: benchmark
 and profile to make sure you're
optimizing the right part, look for
 better algorithms instead of microtuning your code, and when all else
fails consider just buying faster hardware. You will probably want to
 read the answer to the earlier
question "How do I profile my Perl
 programs?" if you haven't done so already.

A different approach is to autoload seldom-used Perl code. See the
 AutoSplit and AutoLoader
modules in the standard distribution for
 that. Or you could locate the bottleneck and think about
writing just
 that part in C, the way we used to take bottlenecks in C code and
 write them in assembler.
Similar to rewriting in C, modules that have
 critical sections can be written in C (for instance, the PDL
module
 from CPAN).

If you're currently linking your perl executable to a shared libc.so, you can often gain a 10-25%
performance benefit by
 rebuilding it to link with a static libc.a instead. This will make a
 bigger perl
executable, but your Perl programs (and programmers) may
 thank you for it. See the INSTALL file in
the source distribution
 for more information.

The undump program was an ancient attempt to speed up Perl program by
 storing the
already-compiled form to disk. This is no longer a viable
 option, as it only worked on a few
architectures, and wasn't a good
 solution anyway.

Perl version 5.22.0 documentation - perlfaq3

Page 9http://perldoc.perl.org

How can I make my Perl program take less memory?
When it comes to time-space tradeoffs, Perl nearly always prefers to
 throw memory at a problem.
Scalars in Perl use more memory than
 strings in C, arrays take more than that, and hashes use even
more. While
 there's still a lot to be done, recent releases have been addressing
 these issues. For
example, as of 5.004, duplicate hash keys are
 shared amongst all hashes using them, so require no
reallocation.

In some cases, using substr() or vec() to simulate arrays can be
 highly beneficial. For example, an
array of a thousand booleans will
 take at least 20,000 bytes of space, but it can be turned into one

125-byte bit vector--a considerable memory savings. The standard
 Tie::SubstrHash module can also
help for certain types of data
 structure. If you're working with specialist data structures
 (matrices, for
instance) modules that implement these in C may use
 less memory than equivalent Perl modules.

Another thing to try is learning whether your Perl was compiled with
 the system malloc or with Perl's
builtin malloc. Whichever one it
 is, try using the other one and see whether this makes a difference.

Information about malloc is in the INSTALL file in the source
 distribution. You can find out whether
you are using perl's malloc by
 typing perl -V:usemymalloc.

Of course, the best way to save memory is to not do anything to waste
 it in the first place. Good
programming practices can go a long way
 toward this:

Don't slurp!

Don't read an entire file into memory if you can process it line
 by line. Or more concretely, use
a loop like this:

 #
 # Good Idea
 #
 while (my $line = <$file_handle>) {
 # ...
 }

instead of this:

 #
 # Bad Idea
 #
 my @data = <$file_handle>;
 foreach (@data) {
 # ...
 }

When the files you're processing are small, it doesn't much matter which
 way you do it, but it
makes a huge difference when they start getting
 larger.

Use map and grep selectively

Remember that both map and grep expect a LIST argument, so doing this:

 @wanted = grep {/pattern/} <$file_handle>;

will cause the entire file to be slurped. For large files, it's better
 to loop:

 while (<$file_handle>) {
 push(@wanted, $_) if /pattern/;
 }

Avoid unnecessary quotes and stringification

Don't quote large strings unless absolutely necessary:

Perl version 5.22.0 documentation - perlfaq3

Page 10http://perldoc.perl.org

 my $copy = "$large_string";

makes 2 copies of $large_string (one for $copy and another for the
 quotes), whereas

 my $copy = $large_string;

only makes one copy.

Ditto for stringifying large arrays:

 {
 local $, = "\n";
 print @big_array;
 }

is much more memory-efficient than either

 print join "\n", @big_array;

or

 {
 local $" = "\n";
 print "@big_array";
 }

Pass by reference

Pass arrays and hashes by reference, not by value. For one thing, it's
 the only way to pass
multiple lists or hashes (or both) in a single
 call/return. It also avoids creating a copy of all the
contents. This
 requires some judgement, however, because any changes will be propagated

back to the original data. If you really want to mangle (er, modify) a
 copy, you'll have to
sacrifice the memory needed to make one.

Tie large variables to disk

For "big" data stores (i.e. ones that exceed available memory) consider
 using one of the DB
modules to store it on disk instead of in RAM. This
 will incur a penalty in access time, but
that's probably better than
 causing your hard disk to thrash due to massive swapping.

Is it safe to return a reference to local or lexical data?
Yes. Perl's garbage collection system takes care of this so
 everything works out right.

 sub makeone {
 my @a = (1 .. 10);
 return \@a;
 }

 for (1 .. 10) {
 push @many, makeone();
 }

 print $many[4][5], "\n";

 print "@many\n";

How can I free an array or hash so my program shrinks?
(contributed by Michael Carman)

You usually can't. Memory allocated to lexicals (i.e. my() variables)
 cannot be reclaimed or reused

Perl version 5.22.0 documentation - perlfaq3

Page 11http://perldoc.perl.org

even if they go out of scope. It is
 reserved in case the variables come back into scope. Memory
allocated
 to global variables can be reused (within your program) by using
 undef() and/or delete().

On most operating systems, memory allocated to a program can never be
 returned to the system.
That's why long-running programs sometimes re-
 exec themselves. Some operating systems (notably,
systems that use
 mmap(2) for allocating large chunks of memory) can reclaim memory that
 is no
longer used, but on such systems, perl must be configured and
 compiled to use the OS's malloc, not
perl's.

In general, memory allocation and de-allocation isn't something you can
 or should be worrying about
much in Perl.

See also "How can I make my Perl program take less memory?"

How can I make my CGI script more efficient?
Beyond the normal measures described to make general Perl programs
 faster or smaller, a CGI
program has additional issues. It may be run
 several times per second. Given that each time it runs it
will need
 to be re-compiled and will often allocate a megabyte or more of system
 memory, this can be
a killer. Compiling into C isn't going to help
 you because the process start-up overhead is where the
bottleneck is.

There are three popular ways to avoid this overhead. One solution
 involves running the Apache HTTP
server (available from http://www.apache.org/) with either of the mod_perl or mod_fastcgi
 plugin
modules.

With mod_perl and the Apache::Registry module (distributed with
 mod_perl), httpd will run with an
embedded Perl interpreter which
 pre-compiles your script and then executes it within the same
address
 space without forking. The Apache extension also gives Perl access to
 the internal server
API, so modules written in Perl can do just about
 anything a module written in C can. For more on
mod_perl, see http://perl.apache.org/

With the FCGI module (from CPAN) and the mod_fastcgi
 module (available from
http://www.fastcgi.com/) each of your Perl
 programs becomes a permanent CGI daemon process.

Finally, Plack is a Perl module and toolkit that contains PSGI middleware,
 helpers and adapters to
web servers, allowing you to easily deploy scripts which
 can continue running, and provides flexibility
with regards to which web server
 you use. It can allow existing CGI scripts to enjoy this flexibility and

performance with minimal changes, or can be used along with modern Perl web
 frameworks to make
writing and deploying web services with Perl a breeze.

These solutions can have far-reaching effects on your system and on the way you
 write your CGI
programs, so investigate them with care.

See also http://www.cpan.org/modules/by-category/15_World_Wide_Web_HTML_HTTP_CGI/ .

How can I hide the source for my Perl program?
Delete it. :-) Seriously, there are a number of (mostly
 unsatisfactory) solutions with varying levels of
"security".

First of all, however, you can't take away read permission, because
 the source code has to be
readable in order to be compiled and
 interpreted. (That doesn't mean that a CGI script's source is

readable by people on the web, though--only by people with access to
 the filesystem.) So you have to
leave the permissions at the socially
 friendly 0755 level.

Some people regard this as a security problem. If your program does
 insecure things and relies on
people not knowing how to exploit those
 insecurities, it is not secure. It is often possible for someone
to
 determine the insecure things and exploit them without viewing the
 source. Security through
obscurity, the name for hiding your bugs
 instead of fixing them, is little security indeed.

You can try using encryption via source filters (Starting from Perl
 5.8 the Filter::Simple and

Perl version 5.22.0 documentation - perlfaq3

Page 12http://perldoc.perl.org

Filter::Util::Call modules are included in
 the standard distribution), but any decent programmer will be
able to
 decrypt it. You can try using the byte code compiler and interpreter
 described later in perlfaq3,
but the curious might still be able to
 de-compile it. You can try using the native-code compiler
described
 later, but crackers might be able to disassemble it. These pose
 varying degrees of difficulty
to people wanting to get at your code,
 but none can definitively conceal it (true of every language, not
just
 Perl).

It is very easy to recover the source of Perl programs. You simply
 feed the program to the perl
interpreter and use the modules in
 the B:: hierarchy. The B::Deparse module should be able to
 defeat
most attempts to hide source. Again, this is not
 unique to Perl.

If you're concerned about people profiting from your code, then the
 bottom line is that nothing but a
restrictive license will give you
 legal security. License your software and pepper it with threatening

statements like "This is unpublished proprietary software of XYZ Corp.
 Your access to it does not give
you permission to use it blah blah
 blah." We are not lawyers, of course, so you should see a lawyer if

you want to be sure your license's wording will stand up in court.

How can I compile my Perl program into byte code or C?
(contributed by brian d foy)

In general, you can't do this. There are some things that may work
 for your situation though. People
usually ask this question
 because they want to distribute their works without giving away
 the source
code, and most solutions trade disk space for convenience.
 You probably won't see much of a speed
increase either, since most
 solutions simply bundle a Perl interpreter in the final product
 (but see How
can I make my Perl program run faster?).

The Perl Archive Toolkit (http://par.perl.org/) is Perl's
 analog to Java's JAR. It's freely available and
on CPAN (http://search.cpan.org/dist/PAR/).

There are also some commercial products that may work for you, although
 you have to buy a license
for them.

The Perl Dev Kit (http://www.activestate.com/Products/Perl_Dev_Kit/)
 from ActiveState can "Turn
your Perl programs into ready-to-run
 executables for HP-UX, Linux, Solaris and Windows."

Perl2Exe (http://www.indigostar.com/perl2exe.htm) is a command line
 program for converting perl
scripts to executable files. It targets both
 Windows and Unix platforms.

How can I get #!perl to work on [MS-DOS,NT,...]?
For OS/2 just use

 extproc perl -S -your_switches

as the first line in *.cmd file (-S due to a bug in cmd.exe's
 "extproc" handling). For DOS one should
first invent a corresponding
 batch file and codify it in ALTERNATE_SHEBANG (see the dosish.h file in
the source distribution for more information).

The Win95/NT installation, when using the ActiveState port of Perl,
 will modify the Registry to
associate the .pl extension with the
 perl interpreter. If you install another port, perhaps even building
your own Win95/NT Perl from the standard sources by using a Windows port
 of gcc (e.g., with cygwin
or mingw32), then you'll have to modify
 the Registry yourself. In addition to associating .pl with the

interpreter, NT people can use: SET PATHEXT=%PATHEXT%;.PL to let them
 run the program
install-linux.pl merely by typing install-linux.

Under "Classic" MacOS, a perl program will have the appropriate Creator and
 Type, so that
double-clicking them will invoke the MacPerl application.
 Under Mac OS X, clickable apps can be
made from any #! script using Wil
 Sanchez' DropScript utility: http://www.wsanchez.net/software/ .

IMPORTANT!: Whatever you do, PLEASE don't get frustrated, and just
 throw the perl interpreter into

Perl version 5.22.0 documentation - perlfaq3

Page 13http://perldoc.perl.org

your cgi-bin directory, in order to
 get your programs working for a web server. This is an EXTREMELY
big
 security risk. Take the time to figure out how to do it correctly.

Can I write useful Perl programs on the command line?
Yes. Read perlrun for more information. Some examples follow.
 (These assume standard Unix shell
quoting rules.)

 # sum first and last fields
 perl -lane 'print $F[0] + $F[-1]' *

 # identify text files
 perl -le 'for(@ARGV) {print if -f && -T _}' *

 # remove (most) comments from C program
 perl -0777 -pe 's{/*.*?*/}{}gs' foo.c

 # make file a month younger than today, defeating reaper daemons
 perl -e '$X=24*60*60; utime(time(),time() + 30 * $X,@ARGV)' *

 # find first unused uid
 perl -le '$i++ while getpwuid($i); print $i'

 # display reasonable manpath
 echo $PATH | perl -nl -072 -e '
 s![^/+]*$!man!&&-d&&!$s{$_}++&&push@m,$_;END{print"@m"}'

OK, the last one was actually an Obfuscated Perl Contest entry. :-)

Why don't Perl one-liners work on my DOS/Mac/VMS system?
The problem is usually that the command interpreters on those systems
 have rather different ideas
about quoting than the Unix shells under
 which the one-liners were created. On some systems, you
may have to
 change single-quotes to double ones, which you must NOT do on Unix
 or Plan9
systems. You might also have to change a single % to a %%.

For example:

 # Unix (including Mac OS X)
 perl -e 'print "Hello world\n"'

 # DOS, etc.
 perl -e "print \"Hello world\n\""

 # Mac Classic
 print "Hello world\n"
 (then Run "Myscript" or Shift-Command-R)

 # MPW
 perl -e 'print "Hello world\n"'

 # VMS
 perl -e "print ""Hello world\n"""

The problem is that none of these examples are reliable: they depend on the
 command interpreter.

Perl version 5.22.0 documentation - perlfaq3

Page 14http://perldoc.perl.org

Under Unix, the first two often work. Under DOS,
 it's entirely possible that neither works. If 4DOS was
the command shell,
 you'd probably have better luck like this:

 perl -e "print <Ctrl-x>"Hello world\n<Ctrl-x>""

Under the Mac, it depends which environment you are using. The MacPerl
 shell, or MPW, is much
like Unix shells in its support for several
 quoting variants, except that it makes free use of the Mac's
non-ASCII
 characters as control characters.

Using qq(), q(), and qx(), instead of "double quotes", 'single
 quotes', and `backticks`, may make
one-liners easier to write.

There is no general solution to all of this. It is a mess.

[Some of this answer was contributed by Kenneth Albanowski.]

Where can I learn about CGI or Web programming in Perl?
For modules, get the CGI or LWP modules from CPAN. For textbooks,
 see the two especially
dedicated to web stuff in the question on
 books. For problems and questions related to the web, like
"Why
 do I get 500 Errors" or "Why doesn't it run from the browser right
 when it runs fine on the
command line", see the troubleshooting
 guides and references in perlfaq9 or in the CGI MetaFAQ:

 L<http://www.perl.org/CGI_MetaFAQ.html>

Looking in to Plack and modern Perl web frameworks is highly recommended,
 though; web
programming in Perl has evolved a long way from the old days of
 simple CGI scripts.

Where can I learn about object-oriented Perl programming?
A good place to start is perlootut, and you can use perlobj for
 reference.

A good book on OO on Perl is the "Object-Oriented Perl"
 by Damian Conway from Manning
Publications, or "Intermediate Perl"
 by Randal Schwartz, brian d foy, and Tom Phoenix from O'Reilly
Media.

Where can I learn about linking C with Perl?
If you want to call C from Perl, start with perlxstut,
 moving on to perlxs, xsubpp, and perlguts. If you
want to
 call Perl from C, then read perlembed, perlcall, and perlguts. Don't forget that you can learn a
lot from looking at
 how the authors of existing extension modules wrote their code and
 solved their
problems.

You might not need all the power of XS. The Inline::C module lets
 you put C code directly in your Perl
source. It handles all the
 magic to make it work. You still have to learn at least some of
 the perl API
but you won't have to deal with the complexity of the
 XS support files.

I've read perlembed, perlguts, etc., but I can't embed perl in my C program; what am I doing
wrong?

Download the ExtUtils::Embed kit from CPAN and run `make test'. If
 the tests pass, read the pods
again and again and again. If they
 fail, see perlbug and send a bug report with the output of make
test TEST_VERBOSE=1 along with perl -V.

When I tried to run my script, I got this message. What does it mean?
A complete list of Perl's error messages and warnings with explanatory
 text can be found in perldiag.
You can also use the splain program
 (distributed with Perl) to explain the error messages:

 perl program 2>diag.out
 splain [-v] [-p] diag.out

or change your program to explain the messages for you:

Perl version 5.22.0 documentation - perlfaq3

Page 15http://perldoc.perl.org

 use diagnostics;

or

 use diagnostics -verbose;

What's MakeMaker?
(contributed by brian d foy)

The ExtUtils::MakeMaker module, better known simply as "MakeMaker",
 turns a Perl script, typically
called Makefile.PL, into a Makefile.
 The Unix tool make uses this file to manage dependencies and
actions
 to process and install a Perl distribution.

AUTHOR AND COPYRIGHT
Copyright (c) 1997-2010 Tom Christiansen, Nathan Torkington, and
 other authors as noted. All rights
reserved.

This documentation is free; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Irrespective of its distribution, all code examples here are in the public
 domain. You are permitted and
encouraged to use this code and any
 derivatives thereof in your own programs for fun or for profit as
you
 see fit. A simple comment in the code giving credit to the FAQ would
 be courteous but is not
required.

