
Perl version 5.22.0 documentation - Net::SMTP

Page 1http://perldoc.perl.org

NAME
Net::SMTP - Simple Mail Transfer Protocol Client

SYNOPSIS
 use Net::SMTP;

 # Constructors
 $smtp = Net::SMTP->new('mailhost');
 $smtp = Net::SMTP->new('mailhost', Timeout => 60);

DESCRIPTION
This module implements a client interface to the SMTP and ESMTP
 protocol, enabling a perl5
application to talk to SMTP servers. This
 documentation assumes that you are familiar with the
concepts of the
 SMTP protocol described in RFC821.

A new Net::SMTP object must be created with the new method. Once
 this has been done, all SMTP
commands are accessed through this object.

The Net::SMTP class is a subclass of Net::Cmd and IO::Socket::INET.

EXAMPLES
This example prints the mail domain name of the SMTP server known as mailhost:

 #!/usr/local/bin/perl -w

 use Net::SMTP;

 $smtp = Net::SMTP->new('mailhost');
 print $smtp->domain,"\n";
 $smtp->quit;

This example sends a small message to the postmaster at the SMTP server
 known as mailhost:

 #!/usr/local/bin/perl -w

 use Net::SMTP;

 my $smtp = Net::SMTP->new('mailhost');

 $smtp->mail($ENV{USER});
 if ($smtp->to('postmaster')) {
 $smtp->data();
 $smtp->datasend("To: postmaster\n");
 $smtp->datasend("\n");
 $smtp->datasend("A simple test message\n");
 $smtp->dataend();
 } else {
 print "Error: ", $smtp->message();
 }

 $smtp->quit;

Perl version 5.22.0 documentation - Net::SMTP

Page 2http://perldoc.perl.org

CONSTRUCTOR
new ([HOST] [, OPTIONS])

This is the constructor for a new Net::SMTP object. HOST is the
 name of the remote host to
which an SMTP connection is required.

On failure undef will be returned and $@ will contain the reason
 for the failure.

HOST is optional. If HOST is not given then it may instead be
 passed as the Host option
described below. If neither is given then
 the SMTP_Hosts specified in Net::Config will be
used.

OPTIONS are passed in a hash like fashion, using key and value pairs.
 Possible options are:

Hello - SMTP requires that you identify yourself. This option
 specifies a string to pass as your
mail domain. If not given localhost.localdomain
 will be used.

Host - SMTP host to connect to. It may be a single scalar (hostname[:port]),
 as defined for the
PeerAddr option in IO::Socket::INET, or a reference to
 an array with hosts to try in turn. The
host method will return the value
 which was used to connect to the host.
 Format - PeerHost
from IO::Socket::INET new method.

Port - port to connect to.
 Default - 25 for plain SMTP and 465 for immediate SSL.

SSL - If the connection should be done from start with SSL, contrary to later
 upgrade with
starttls.
 You can use SSL arguments as documented in IO::Socket::SSL, but it will
 usually
use the right arguments already.

LocalAddr and LocalPort - These parameters are passed directly
 to IO::Socket to allow
binding the socket to a local port.

Timeout - Maximum time, in seconds, to wait for a response from the
 SMTP server (default:
120)

ExactAddresses - If true the all ADDRESS arguments must be as
 defined by addr-spec in
RFC2822. If not given, or false, then
 Net::SMTP will attempt to extract the address from the
value passed.

Debug - Enable debugging information

Example:

 $smtp = Net::SMTP->new('mailhost',
 Hello => 'my.mail.domain',
 Timeout => 30,
 Debug => 1,
);

 # the same
 $smtp = Net::SMTP->new(
 Host => 'mailhost',
 Hello => 'my.mail.domain',
 Timeout => 30,
 Debug => 1,
);

 # the same with direct SSL
 $smtp = Net::SMTP->new('mailhost',
			 Hello => 'my.mail.domain',
			 Timeout => 30,
			 Debug => 1,
			 SSL => 1,
);

 # Connect to the default server from Net::config

Perl version 5.22.0 documentation - Net::SMTP

Page 3http://perldoc.perl.org

 $smtp = Net::SMTP->new(
 Hello => 'my.mail.domain',
 Timeout => 30,
);

METHODS
Unless otherwise stated all methods return either a true or false
 value, with true meaning that the
operation was a success. When a method
 states that it returns a value, failure will be returned as
undef or an
 empty list.

Net::SMTP inherits from Net::Cmd so methods defined in Net::Cmd may
 be used to send
commands to the remote SMTP server in addition to the methods
 documented here.

banner ()

Returns the banner message which the server replied with when the
 initial connection was
made.

domain ()

Returns the domain that the remote SMTP server identified itself as during
 connection.

hello (DOMAIN)

Tell the remote server the mail domain which you are in using the EHLO
 command (or HELO
if EHLO fails). Since this method is invoked
 automatically when the Net::SMTP object is
constructed the user should
 normally not have to call it manually.

host ()

Returns the value used by the constructor, and passed to IO::Socket::INET,
 to connect to the
host.

etrn (DOMAIN)

Request a queue run for the DOMAIN given.

starttls (SSLARGS)

Upgrade existing plain connection to SSL.
 You can use SSL arguments as documented in
IO::Socket::SSL, but it will
 usually use the right arguments already.

auth (USERNAME, PASSWORD)

Attempt SASL authentication. Requires Authen::SASL module.

mail (ADDRESS [, OPTIONS])

send (ADDRESS)

send_or_mail (ADDRESS)

send_and_mail (ADDRESS)

Send the appropriate command to the server MAIL, SEND, SOML or SAML. ADDRESS
 is the
address of the sender. This initiates the sending of a message. The
 method recipient
should be called for each address that the message is to
 be sent to.

The mail method can some additional ESMTP OPTIONS which is passed
 in hash like
fashion, using key and value pairs. Possible options are:

 Size => <bytes>
 Return => "FULL" | "HDRS"
 Bits => "7" | "8" | "binary"
 Transaction => <ADDRESS>
 Envelope => <ENVID> # xtext-encodes its argument
 ENVID => <ENVID> # similar to Envelope, but expects

Perl version 5.22.0 documentation - Net::SMTP

Page 4http://perldoc.perl.org

argument encoded
 XVERP => 1
 AUTH => <submitter> # encoded address according to RFC 2554

The Return and Envelope parameters are used for DSN (Delivery
 Status Notification).

The submitter address in AUTH option is expected to be in a format as
 required by RFC 2554,
in an RFC2821-quoted form and xtext-encoded, or <> .

reset ()

Reset the status of the server. This may be called after a message has been initiated, but
before any data has been sent, to cancel the sending of the
 message.

recipient (ADDRESS [, ADDRESS, [...]] [, OPTIONS])

Notify the server that the current message should be sent to all of the
 addresses given. Each
address is sent as a separate command to the server.
 Should the sending of any address
result in a failure then the process is
 aborted and a false value is returned. It is up to the user
to call reset if they so desire.

The recipient method can also pass additional case-sensitive OPTIONS as an
 anonymous
hash using key and value pairs. Possible options are:

 Notify => ['NEVER'] or ['SUCCESS','FAILURE','DELAY'] (see below)
 ORcpt => <ORCPT>
 SkipBad => 1 (to ignore bad addresses)

If SkipBad is true the recipient will not return an error when a bad
 address is encountered
and it will return an array of addresses that did
 succeed.

 $smtp->recipient($recipient1,$recipient2); # Good
 $smtp->recipient($recipient1,$recipient2, { SkipBad => 1 }); #
Good
 $smtp->recipient($recipient1,$recipient2, { Notify =>
['FAILURE','DELAY'], SkipBad => 1 }); # Good
 @goodrecips=$smtp->recipient(@recipients, { Notify => ['FAILURE'],
SkipBad => 1 }); # Good
 $smtp->recipient("$recipient,$recipient2"); # BAD

Notify is used to request Delivery Status Notifications (DSNs), but your
 SMTP/ESMTP service
may not respect this request depending upon its version and
 your site's SMTP configuration.

Leaving out the Notify option usually defaults an SMTP service to its default
 behavior
equivalent to ['FAILURE'] notifications only, but again this may be
 dependent upon your site's
SMTP configuration.

The NEVER keyword must appear by itself if used within the Notify option and "requests
 that a
DSN not be returned to the sender under any conditions."

 {Notify => ['NEVER']}

 $smtp->recipient(@recipients, { Notify => ['NEVER'], SkipBad => 1
}); # Good

You may use any combination of these three values 'SUCCESS','FAILURE','DELAY' in
 the
anonymous array reference as defined by RFC3461 (see http://www.ietf.org/rfc/rfc3461.txt
 for
more information. Note: quotations in this topic from same.).

A Notify parameter of 'SUCCESS' or 'FAILURE' "requests that a DSN be issued on
 successful
delivery or delivery failure, respectively."

A Notify parameter of 'DELAY' "indicates the sender's willingness to receive
 delayed DSNs.
Delayed DSNs may be issued if delivery of a message has been
 delayed for an unusual

Perl version 5.22.0 documentation - Net::SMTP

Page 5http://perldoc.perl.org

amount of time (as determined by the Message Transfer
 Agent (MTA) at which the message
is delayed), but the final delivery status
 (whether successful or failure) cannot be determined.
The absence of the DELAY
 keyword in a NOTIFY parameter requests that a "delayed" DSN
NOT be issued under
 any conditions."

 {Notify => ['SUCCESS','FAILURE','DELAY']}

 $smtp->recipient(@recipients, { Notify => ['FAILURE','DELAY'],
SkipBad => 1 }); # Good

ORcpt is also part of the SMTP DSN extension according to RFC3461.
 It is used to pass
along the original recipient that the mail was first
 sent to. The machine that generates a DSN
will use this address to inform
 the sender, because he can't know if recipients get rewritten by
mail servers.
 It is expected to be in a format as required by RFC3461, xtext-encoded.

to (ADDRESS [, ADDRESS [...]])

cc (ADDRESS [, ADDRESS [...]])

bcc (ADDRESS [, ADDRESS [...]])

Synonyms for recipient.

data ([DATA])

Initiate the sending of the data from the current message.

DATA may be a reference to a list or a list. If specified the contents
 of DATA and a termination
string ".\r\n" is sent to the server. And the
 result will be true if the data was accepted.

If DATA is not specified then the result will indicate that the server
 wishes the data to be sent.
The data must then be sent using the datasend
 and dataend methods described in
Net::Cmd.

bdat (DATA)

bdatlast (DATA)

Use the alternate DATA command "BDAT" of the data chunking service extension
 defined in
RFC1830 for efficiently sending large MIME messages.

expand (ADDRESS)

Request the server to expand the given address Returns an array
 which contains the text read
from the server.

verify (ADDRESS)

Verify that ADDRESS is a legitimate mailing address.

Most sites usually disable this feature in their SMTP service configuration.
 Use "Debug => 1"
option under new() to see if disabled.

help ([$subject])

Request help text from the server. Returns the text or undef upon failure

quit ()

Send the QUIT command to the remote SMTP server and close the socket connection.

can_inet6 ()

Returns whether we can use IPv6.

can_ssl ()

Returns whether we can use SSL.

Perl version 5.22.0 documentation - Net::SMTP

Page 6http://perldoc.perl.org

ADDRESSES
Net::SMTP attempts to DWIM with addresses that are passed. For
 example an application might
extract The From: line from an email
 and pass that to mail(). While this may work, it is not
recommended.
 The application should really use a module like Mail::Address
 to extract the mail
address and pass that.

If ExactAddresses is passed to the constructor, then addresses
 should be a valid rfc2821-quoted
address, although Net::SMTP will
 accept the address surrounded by angle brackets.

 funny user@domain WRONG
 "funny user"@domain RIGHT, recommended
 <"funny user"@domain> OK

SEE ALSO
Net::Cmd, IO::Socket::SSL

AUTHOR
Graham Barr <gbarr@pobox.com>

Steve Hay <shay@cpan.org> is now maintaining libnet as of version
 1.22_02

COPYRIGHT
Versions up to 2.31_1 Copyright (c) 1995-2004 Graham Barr. All rights reserved.
 Changes in Version
2.31_2 onwards Copyright (C) 2013-2014 Steve Hay. All rights
 reserved.

This program is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

