
Perl version 5.22.0 documentation - perlcall

Page 1http://perldoc.perl.org

NAME
perlcall - Perl calling conventions from C

DESCRIPTION
The purpose of this document is to show you how to call Perl subroutines
 directly from C, i.e., how to
write callbacks.

Apart from discussing the C interface provided by Perl for writing
 callbacks the document uses a
series of examples to show how the
 interface actually works in practice. In addition some techniques
for
 coding callbacks are covered.

Examples where callbacks are necessary include

* An Error Handler

You have created an XSUB interface to an application's C API.

A fairly common feature in applications is to allow you to define a C
 function that will be
called whenever something nasty occurs. What we
 would like is to be able to specify a Perl
subroutine that will be
 called instead.

* An Event-Driven Program

The classic example of where callbacks are used is when writing an
 event driven program,
such as for an X11 application. In this case
 you register functions to be called whenever
specific events occur,
 e.g., a mouse button is pressed, the cursor moves into a window or a

menu item is selected.

Although the techniques described here are applicable when embedding
 Perl in a C program, this is
not the primary goal of this document.
 There are other details that must be considered and are
specific to
 embedding Perl. For details on embedding Perl in C refer to perlembed.

Before you launch yourself head first into the rest of this document,
 it would be a good idea to have
read the following two documents--perlxs
 and perlguts.

THE CALL_ FUNCTIONS
Although this stuff is easier to explain using examples, you first need
 be aware of a few important
definitions.

Perl has a number of C functions that allow you to call Perl
 subroutines. They are

 I32 call_sv(SV* sv, I32 flags);
 I32 call_pv(char *subname, I32 flags);
 I32 call_method(char *methname, I32 flags);
 I32 call_argv(char *subname, I32 flags, char **argv);

The key function is call_sv. All the other functions are
 fairly simple wrappers which make it easier to
call Perl subroutines in
 special cases. At the end of the day they will all call call_sv
 to invoke the Perl
subroutine.

All the call_* functions have a flags parameter which is
 used to pass a bit mask of options to Perl.
This bit mask operates
 identically for each of the functions. The settings available in the
 bit mask are
discussed in FLAG VALUES.

Each of the functions will now be discussed in turn.

call_sv

call_sv takes two parameters. The first, sv, is an SV*.
 This allows you to specify the Perl
subroutine to be called either as a
 C string (which has first been converted to an SV) or a
reference to a
 subroutine. The section, Using call_sv, shows how you can make
 use of
call_sv.

Perl version 5.22.0 documentation - perlcall

Page 2http://perldoc.perl.org

call_pv

The function, call_pv, is similar to call_sv except it
 expects its first parameter to be a C char*
which identifies the Perl
 subroutine you want to call, e.g., call_pv("fred", 0). If the

subroutine you want to call is in another package, just include the
 package name in the
string, e.g., "pkg::fred".

call_method

The function call_method is used to call a method from a Perl
 class. The parameter
methname corresponds to the name of the method
 to be called. Note that the class that the
method belongs to is passed
 on the Perl stack rather than in the parameter list. This class
can be
 either the name of the class (for a static method) or a reference to an
 object (for a
virtual method). See perlobj for more information on
 static and virtual methods and Using
call_method for an example
 of using call_method.

call_argv

call_argv calls the Perl subroutine specified by the C string
 stored in the subname
parameter. It also takes the usual flags
 parameter. The final parameter, argv, consists of
a NULL-terminated
 list of C strings to be passed as parameters to the Perl subroutine.
 See
Using call_argv.

All the functions return an integer. This is a count of the number of
 items returned by the Perl
subroutine. The actual items returned by the
 subroutine are stored on the Perl stack.

As a general rule you should always check the return value from
 these functions. Even if you are
expecting only a particular number of
 values to be returned from the Perl subroutine, there is nothing
to
 stop someone from doing something unexpected--don't say you haven't
 been warned.

FLAG VALUES
The flags parameter in all the call_* functions is one of G_VOID,
 G_SCALAR, or G_ARRAY, which
indicate the call context, OR'ed together
 with a bit mask of any combination of the other G_* symbols
defined below.

G_VOID
Calls the Perl subroutine in a void context.

This flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in
 a void context (if it executes
wantarray the result will be the
 undefined value).

2. It ensures that nothing is actually returned from the subroutine.

The value returned by the call_* function indicates how many
 items have been returned by the Perl
subroutine--in this case it will
 be 0.

G_SCALAR
Calls the Perl subroutine in a scalar context. This is the default
 context flag setting for all the call_*
functions.

This flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in a
 scalar context (if it executes
wantarray the result will be false).

2. It ensures that only a scalar is actually returned from the subroutine.
 The subroutine can, of
course, ignore the wantarray and return a
 list anyway. If so, then only the last element of the
list will be
 returned.

The value returned by the call_* function indicates how many
 items have been returned by the Perl

Perl version 5.22.0 documentation - perlcall

Page 3http://perldoc.perl.org

subroutine - in this case it will
 be either 0 or 1.

If 0, then you have specified the G_DISCARD flag.

If 1, then the item actually returned by the Perl subroutine will be
 stored on the Perl stack - the section
Returning a Scalar shows how
 to access this value on the stack. Remember that regardless of how

many items the Perl subroutine returns, only the last one will be
 accessible from the stack - think of
the case where only one value is
 returned as being a list with only one element. Any other items that

were returned will not exist by the time control returns from the call_* function. The section Returning
a list in a scalar
 context shows an example of this behavior.

G_ARRAY
Calls the Perl subroutine in a list context.

As with G_SCALAR, this flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in a
 list context (if it executes
wantarray the result will be true).

2. It ensures that all items returned from the subroutine will be
 accessible when control returns
from the call_* function.

The value returned by the call_* function indicates how many
 items have been returned by the Perl
subroutine.

If 0, then you have specified the G_DISCARD flag.

If not 0, then it will be a count of the number of items returned by
 the subroutine. These items will be
stored on the Perl stack. The
 section Returning a list of values gives an example of using the

G_ARRAY flag and the mechanics of accessing the returned items from the
 Perl stack.

G_DISCARD
By default, the call_* functions place the items returned from
 by the Perl subroutine on the stack. If
you are not interested in
 these items, then setting this flag will make Perl get rid of them
 automatically
for you. Note that it is still possible to indicate a
 context to the Perl subroutine by using either
G_SCALAR or G_ARRAY.

If you do not set this flag then it is very important that you make
 sure that any temporaries (i.e.,
parameters passed to the Perl
 subroutine and values returned from the subroutine) are disposed of

yourself. The section Returning a Scalar gives details of how to
 dispose of these temporaries explicitly
and the section Using Perl to
 dispose of temporaries discusses the specific circumstances where you

can ignore the problem and let Perl deal with it for you.

G_NOARGS
Whenever a Perl subroutine is called using one of the call_*
 functions, it is assumed by default that
parameters are to be passed to
 the subroutine. If you are not passing any parameters to the Perl

subroutine, you can save a bit of time by setting this flag. It has
 the effect of not creating the @_ array
for the Perl subroutine.

Although the functionality provided by this flag may seem
 straightforward, it should be used only if
there is a good reason to do
 so. The reason for being cautious is that, even if you have specified
 the
G_NOARGS flag, it is still possible for the Perl subroutine that
 has been called to think that you have
passed it parameters.

In fact, what can happen is that the Perl subroutine you have called
 can access the @_ array from a
previous Perl subroutine. This will
 occur when the code that is executing the call_* function has
 itself
been called from another Perl subroutine. The code below
 illustrates this

 sub fred
 { print "@_\n" }

Perl version 5.22.0 documentation - perlcall

Page 4http://perldoc.perl.org

 sub joe
 { &fred }

 &joe(1,2,3);

This will print

 1 2 3

What has happened is that fred accesses the @_ array which
 belongs to joe.

G_EVAL
It is possible for the Perl subroutine you are calling to terminate
 abnormally, e.g., by calling die
explicitly or by not actually
 existing. By default, when either of these events occurs, the
 process will
terminate immediately. If you want to trap this
 type of event, specify the G_EVAL flag. It will put an
eval { }
 around the subroutine call.

Whenever control returns from the call_* function you need to
 check the $@ variable as you would in a
normal Perl script.

The value returned from the call_* function is dependent on
 what other flags have been specified and
whether an error has
 occurred. Here are all the different cases that can occur:

If the call_* function returns normally, then the value
 returned is as specified in the previous
sections.

If G_DISCARD is specified, the return value will always be 0.

If G_ARRAY is specified and an error has occurred, the return value
 will always be 0.

If G_SCALAR is specified and an error has occurred, the return value
 will be 1 and the value
on the top of the stack will be undef. This
 means that if you have already detected the error
by checking $@ and
 you want the program to continue, you must remember to pop the undef
from the stack.

See Using G_EVAL for details on using G_EVAL.

G_KEEPERR
Using the G_EVAL flag described above will always set $@: clearing
 it if there was no error, and
setting it to describe the error if there
 was an error in the called code. This is what you want if your
intention
 is to handle possible errors, but sometimes you just want to trap errors
 and stop them
interfering with the rest of the program.

This scenario will mostly be applicable to code that is meant to be called
 from within destructors,
asynchronous callbacks, and signal handlers.
 In such situations, where the code being called has little
relation to the
 surrounding dynamic context, the main program needs to be insulated from
 errors in
the called code, even if they can't be handled intelligently.
 It may also be useful to do this with code
for __DIE__ or __WARN__
 hooks, and tie functions.

The G_KEEPERR flag is meant to be used in conjunction with G_EVAL in call_* functions that are
used to implement such code, or with eval_sv. This flag has no effect on the call_* functions
when
 G_EVAL is not used.

When G_KEEPERR is used, any error in the called code will terminate the
 call as usual, and the error
will not propagate beyond the call (as usual
 for G_EVAL), but it will not go into $@. Instead the error
will be
 converted into a warning, prefixed with the string "\t(in cleanup)".
 This can be disabled using
no warnings 'misc'. If there is no error, $@ will not be cleared.

Note that the G_KEEPERR flag does not propagate into inner evals; these
 may still set $@.

Perl version 5.22.0 documentation - perlcall

Page 5http://perldoc.perl.org

The G_KEEPERR flag was introduced in Perl version 5.002.

See Using G_KEEPERR for an example of a situation that warrants the
 use of this flag.

Determining the Context
As mentioned above, you can determine the context of the currently
 executing subroutine in Perl with
wantarray. The equivalent test
 can be made in C by using the GIMME_V macro, which returns
G_ARRAY if you have been called in a list context, G_SCALAR if
 in a scalar context, or G_VOID if in a
void context (i.e., the
 return value will not be used). An older version of this macro is
 called GIMME; in
a void context it returns G_SCALAR instead of G_VOID. An example of using the GIMME_V macro is
shown in
 section Using GIMME_V.

EXAMPLES
Enough of the definition talk! Let's have a few examples.

Perl provides many macros to assist in accessing the Perl stack.
 Wherever possible, these macros
should always be used when interfacing
 to Perl internals. We hope this should make the code less
vulnerable
 to any changes made to Perl in the future.

Another point worth noting is that in the first series of examples I
 have made use of only the call_pv
function. This has been done
 to keep the code simpler and ease you into the topic. Wherever

possible, if the choice is between using call_pv and call_sv, you should always try to use call_sv. See
Using call_sv for details.

No Parameters, Nothing Returned
This first trivial example will call a Perl subroutine, PrintUID, to
 print out the UID of the process.

 sub PrintUID
 {
 print "UID is $<\n";
 }

and here is a C function to call it

 static void
 call_PrintUID()
 {
 dSP;

 PUSHMARK(SP);
 call_pv("PrintUID", G_DISCARD|G_NOARGS);
 }

Simple, eh?

A few points to note about this example:

1. Ignore dSP and PUSHMARK(SP) for now. They will be discussed in
 the next example.

2. We aren't passing any parameters to PrintUID so G_NOARGS can be
 specified.

3. We aren't interested in anything returned from PrintUID, so
 G_DISCARD is specified. Even if
PrintUID was changed to
 return some value(s), having specified G_DISCARD will mean that
they
 will be wiped by the time control returns from call_pv.

4. As call_pv is being used, the Perl subroutine is specified as a
 C string. In this case the
subroutine name has been 'hard-wired' into the
 code.

5. Because we specified G_DISCARD, it is not necessary to check the value
 returned from

Perl version 5.22.0 documentation - perlcall

Page 6http://perldoc.perl.org

call_pv. It will always be 0.

Passing Parameters
Now let's make a slightly more complex example. This time we want to
 call a Perl subroutine,
LeftString, which will take 2 parameters--a
 string ($s) and an integer ($n). The subroutine will
simply
 print the first $n characters of the string.

So the Perl subroutine would look like this:

 sub LeftString
 {
 my($s, $n) = @_;
 print substr($s, 0, $n), "\n";
 }

The C function required to call LeftString would look like this:

 static void
 call_LeftString(a, b)
 char * a;
 int b;
 {
 dSP;

	 ENTER;
 SAVETMPS;

 PUSHMARK(SP);
 XPUSHs(sv_2mortal(newSVpv(a, 0)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK;

 call_pv("LeftString", G_DISCARD);

 FREETMPS;
 LEAVE;
 }

Here are a few notes on the C function call_LeftString.

1. Parameters are passed to the Perl subroutine using the Perl stack.
 This is the purpose of
the code beginning with the line dSP and
 ending with the line PUTBACK. The dSP declares a
local copy
 of the stack pointer. This local copy should always be accessed
 as SP.

2. If you are going to put something onto the Perl stack, you need to know
 where to put it. This
is the purpose of the macro dSP--it declares
 and initializes a local copy of the Perl stack
pointer.

All the other macros which will be used in this example require you to
 have used this macro.

The exception to this rule is if you are calling a Perl subroutine
 directly from an XSUB
function. In this case it is not necessary to
 use the dSP macro explicitly--it will be declared
for you
 automatically.

3. Any parameters to be pushed onto the stack should be bracketed by the PUSHMARK and
PUTBACK macros. The purpose of these two macros, in
 this context, is to count the number
of parameters you are
 pushing automatically. Then whenever Perl is creating the @_ array

Perl version 5.22.0 documentation - perlcall

Page 7http://perldoc.perl.org

for the
 subroutine, it knows how big to make it.

The PUSHMARK macro tells Perl to make a mental note of the current
 stack pointer. Even if
you aren't passing any parameters (like the
 example shown in the section No Parameters,
Nothing Returned) you
 must still call the PUSHMARK macro before you can call any of the
call_* functions--Perl still needs to know that there are no
 parameters.

The PUTBACK macro sets the global copy of the stack pointer to be
 the same as our local
copy. If we didn't do this, call_pv
 wouldn't know where the two parameters we pushed
were--remember that
 up to now all the stack pointer manipulation we have done is with our

local copy, not the global copy.

4. Next, we come to XPUSHs. This is where the parameters actually get
 pushed onto the
stack. In this case we are pushing a string and an
 integer.

See "XSUBs and the Argument Stack" in perlguts for details
 on how the XPUSH macros
work.

5. Because we created temporary values (by means of sv_2mortal() calls)
 we will have to tidy
up the Perl stack and dispose of mortal SVs.

This is the purpose of

 ENTER;
 SAVETMPS;

at the start of the function, and

 FREETMPS;
 LEAVE;

at the end. The ENTER/SAVETMPS pair creates a boundary for any
 temporaries we create.
This means that the temporaries we get rid of
 will be limited to those which were created
after these calls.

The FREETMPS/LEAVE pair will get rid of any values returned by
 the Perl subroutine (see
next example), plus it will also dump the
 mortal SVs we have created. Having ENTER/
SAVETMPS at the
 beginning of the code makes sure that no other mortals are destroyed.

Think of these macros as working a bit like { and } in Perl
 to limit the scope of local
variables.

See the section Using Perl to Dispose of Temporaries for details of
 an alternative to using
these macros.

6. Finally, LeftString can now be called via the call_pv function.
 The only flag specified this time
is G_DISCARD. Because we are passing
 2 parameters to the Perl subroutine this time, we
have not specified
 G_NOARGS.

Returning a Scalar
Now for an example of dealing with the items returned from a Perl
 subroutine.

Here is a Perl subroutine, Adder, that takes 2 integer parameters
 and simply returns their sum.

 sub Adder
 {
 my($a, $b) = @_;
 $a + $b;
 }

Because we are now concerned with the return value from Adder, the C
 function required to call it is
now a bit more complex.

 static void

Perl version 5.22.0 documentation - perlcall

Page 8http://perldoc.perl.org

 call_Adder(a, b)
 int a;
 int b;
 {
 dSP;
 int count;

 ENTER;
 SAVETMPS;

 PUSHMARK(SP);
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK;

 count = call_pv("Adder", G_SCALAR);

 SPAGAIN;

 if (count != 1)
 croak("Big trouble\n");

 printf ("The sum of %d and %d is %d\n", a, b, POPi);

 PUTBACK;
 FREETMPS;
 LEAVE;
 }

Points to note this time are

1. The only flag specified this time was G_SCALAR. That means that the @_
 array will be
created and that the value returned by Adder will
 still exist after the call to call_pv.

2. The purpose of the macro SPAGAIN is to refresh the local copy of the
 stack pointer. This is
necessary because it is possible that the memory
 allocated to the Perl stack has been
reallocated during the call_pv call.

If you are making use of the Perl stack pointer in your code you must
 always refresh the
local copy using SPAGAIN whenever you make use
 of the call_* functions or any other Perl
internal function.

3. Although only a single value was expected to be returned from Adder,
 it is still good practice
to check the return code from call_pv
 anyway.

Expecting a single value is not quite the same as knowing that there
 will be one. If someone
modified Adder to return a list and we
 didn't check for that possibility and take appropriate
action the Perl
 stack would end up in an inconsistent state. That is something you really
don't want to happen ever.

4. The POPi macro is used here to pop the return value from the stack.
 In this case we wanted
an integer, so POPi was used.

Here is the complete list of POP macros available, along with the types
 they return.

 POPs	 SV
 POPp	 pointer

Perl version 5.22.0 documentation - perlcall

Page 9http://perldoc.perl.org

 POPn	 double
 POPi	 integer
 POPl	 long

5. The final PUTBACK is used to leave the Perl stack in a consistent
 state before exiting the
function. This is necessary because when we
 popped the return value from the stack with
POPi it updated only our
 local copy of the stack pointer. Remember, PUTBACK sets the
global
 stack pointer to be the same as our local copy.

Returning a List of Values
Now, let's extend the previous example to return both the sum of the
 parameters and the difference.

Here is the Perl subroutine

 sub AddSubtract
 {
 my($a, $b) = @_;
 ($a+$b, $a-$b);
 }

and this is the C function

 static void
 call_AddSubtract(a, b)
 int a;
 int b;
 {
 dSP;
 int count;

 ENTER;
 SAVETMPS;

 PUSHMARK(SP);
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK;

 count = call_pv("AddSubtract", G_ARRAY);

 SPAGAIN;

 if (count != 2)
 croak("Big trouble\n");

 printf ("%d - %d = %d\n", a, b, POPi);
 printf ("%d + %d = %d\n", a, b, POPi);

 PUTBACK;
 FREETMPS;
 LEAVE;
 }

If call_AddSubtract is called like this

Perl version 5.22.0 documentation - perlcall

Page 10http://perldoc.perl.org

 call_AddSubtract(7, 4);

then here is the output

 7 - 4 = 3
 7 + 4 = 11

Notes

1. We wanted list context, so G_ARRAY was used.

2. Not surprisingly POPi is used twice this time because we were
 retrieving 2 values from the
stack. The important thing to note is that
 when using the POP* macros they come off the
stack in reverse
 order.

Returning a List in a Scalar Context
Say the Perl subroutine in the previous section was called in a scalar
 context, like this

 static void
 call_AddSubScalar(a, b)
 int a;
 int b;
 {
 dSP;
 int count;
 int i;

 ENTER;
 SAVETMPS;

 PUSHMARK(SP);
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK;

 count = call_pv("AddSubtract", G_SCALAR);

 SPAGAIN;

 printf ("Items Returned = %d\n", count);

 for (i = 1; i <= count; ++i)
 printf ("Value %d = %d\n", i, POPi);

 PUTBACK;
 FREETMPS;
 LEAVE;
 }

The other modification made is that call_AddSubScalar will print the
 number of items returned from
the Perl subroutine and their value (for
 simplicity it assumes that they are integer). So if
call_AddSubScalar is called

 call_AddSubScalar(7, 4);

Perl version 5.22.0 documentation - perlcall

Page 11http://perldoc.perl.org

then the output will be

 Items Returned = 1
 Value 1 = 3

In this case the main point to note is that only the last item in the
 list is returned from the subroutine.
AddSubtract actually made it back to call_AddSubScalar.

Returning Data from Perl via the Parameter List
It is also possible to return values directly via the parameter
 list--whether it is actually desirable to do it
is another matter entirely.

The Perl subroutine, Inc, below takes 2 parameters and increments
 each directly.

 sub Inc
 {
 ++ $_[0];
 ++ $_[1];
 }

and here is a C function to call it.

 static void
 call_Inc(a, b)
 int a;
 int b;
 {
 dSP;
 int count;
 SV * sva;
 SV * svb;

 ENTER;
 SAVETMPS;

 sva = sv_2mortal(newSViv(a));
 svb = sv_2mortal(newSViv(b));

 PUSHMARK(SP);
 XPUSHs(sva);
 XPUSHs(svb);
 PUTBACK;

 count = call_pv("Inc", G_DISCARD);

 if (count != 0)
 croak ("call_Inc: expected 0 values from 'Inc', got %d\n",
 count);

 printf ("%d + 1 = %d\n", a, SvIV(sva));
 printf ("%d + 1 = %d\n", b, SvIV(svb));

	 FREETMPS;
	 LEAVE;

Perl version 5.22.0 documentation - perlcall

Page 12http://perldoc.perl.org

 }

To be able to access the two parameters that were pushed onto the stack
 after they return from
call_pv it is necessary to make a note
 of their addresses--thus the two variables sva and svb.

The reason this is necessary is that the area of the Perl stack which
 held them will very likely have
been overwritten by something else by
 the time control returns from call_pv.

Using G_EVAL
Now an example using G_EVAL. Below is a Perl subroutine which computes
 the difference of its 2
parameters. If this would result in a negative
 result, the subroutine calls die.

 sub Subtract
 {
 my ($a, $b) = @_;

 die "death can be fatal\n" if $a < $b;

 $a - $b;
 }

and some C to call it

 static void
 call_Subtract(a, b)
 int a;
 int b;
 {
 dSP;
 int count;

 ENTER;
 SAVETMPS;

 PUSHMARK(SP);
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK;

 count = call_pv("Subtract", G_EVAL|G_SCALAR);

 SPAGAIN;

 /* Check the eval first */
 if (SvTRUE(ERRSV))
 {
 printf ("Uh oh - %s\n", SvPV_nolen(ERRSV));
 POPs;
 }
 else
 {
 if (count != 1)
 croak("call_Subtract: wanted 1 value from 'Subtract', got
%d\n",

Perl version 5.22.0 documentation - perlcall

Page 13http://perldoc.perl.org

 count);

 printf ("%d - %d = %d\n", a, b, POPi);
 }

 PUTBACK;
 FREETMPS;
 LEAVE;
 }

If call_Subtract is called thus

 call_Subtract(4, 5)

the following will be printed

 Uh oh - death can be fatal

Notes

1. We want to be able to catch the die so we have used the G_EVAL
 flag. Not specifying this
flag would mean that the program would
 terminate immediately at the die statement in the
subroutine Subtract.

2. The code

 if (SvTRUE(ERRSV))
 {
 printf ("Uh oh - %s\n", SvPV_nolen(ERRSV));
 POPs;
 }

is the direct equivalent of this bit of Perl

 print "Uh oh - $@\n" if $@;

PL_errgv is a perl global of type GV * that points to the
 symbol table entry containing the
error. ERRSV therefore
 refers to the C equivalent of $@.

3. Note that the stack is popped using POPs in the block where SvTRUE(ERRSV) is true. This
is necessary because whenever a call_* function invoked with G_EVAL|G_SCALAR returns
an error,
 the top of the stack holds the value undef. Because we want the
 program to
continue after detecting this error, it is essential that
 the stack be tidied up by removing the
undef.

Using G_KEEPERR
Consider this rather facetious example, where we have used an XS
 version of the call_Subtract
example above inside a destructor:

 package Foo;
 sub new { bless {}, $_[0] }
 sub Subtract {
 my($a,$b) = @_;
 die "death can be fatal" if $a < $b;
 $a - $b;
 }
 sub DESTROY { call_Subtract(5, 4); }
 sub foo { die "foo dies"; }

Perl version 5.22.0 documentation - perlcall

Page 14http://perldoc.perl.org

 package main;
 {
	 my $foo = Foo->new;
	 eval { $foo->foo };
 }
 print "Saw: $@" if $@; # should be, but isn't

This example will fail to recognize that an error occurred inside the eval {}. Here's why: the
call_Subtract code got executed while perl
 was cleaning up temporaries when exiting the outer
braced block, and because
 call_Subtract is implemented with call_pv using the G_EVAL
 flag, it
promptly reset $@. This results in the failure of the
 outermost test for $@, and thereby the failure of the
error trap.

Appending the G_KEEPERR flag, so that the call_pv call in
 call_Subtract reads:

 count = call_pv("Subtract", G_EVAL|G_SCALAR|G_KEEPERR);

will preserve the error and restore reliable error handling.

Using call_sv
In all the previous examples I have 'hard-wired' the name of the Perl
 subroutine to be called from C.
Most of the time though, it is more
 convenient to be able to specify the name of the Perl subroutine
from
 within the Perl script.

Consider the Perl code below

 sub fred
 {
 print "Hello there\n";
 }

 CallSubPV("fred");

Here is a snippet of XSUB which defines CallSubPV.

 void
 CallSubPV(name)
 	 char *	 name
 	 CODE:
	 PUSHMARK(SP);
	 call_pv(name, G_DISCARD|G_NOARGS);

That is fine as far as it goes. The thing is, the Perl subroutine
 can be specified as only a string,
however, Perl allows references
 to subroutines and anonymous subroutines.
 This is where call_sv is
useful.

The code below for CallSubSV is identical to CallSubPV except
 that the name parameter is now
defined as an SV* and we use call_sv instead of call_pv.

 void
 CallSubSV(name)
 	 SV *	 name
 	 CODE:
	 PUSHMARK(SP);
	 call_sv(name, G_DISCARD|G_NOARGS);

Perl version 5.22.0 documentation - perlcall

Page 15http://perldoc.perl.org

Because we are using an SV to call fred the following can all be used:

 CallSubSV("fred");
 CallSubSV(\&fred);
 $ref = \&fred;
 CallSubSV($ref);
 CallSubSV(sub { print "Hello there\n" });

As you can see, call_sv gives you much greater flexibility in
 how you can specify the Perl subroutine.

You should note that, if it is necessary to store the SV (name in the
 example above) which
corresponds to the Perl subroutine so that it can
 be used later in the program, it not enough just to
store a copy of the
 pointer to the SV. Say the code above had been like this:

 static SV * rememberSub;

 void
 SaveSub1(name)
 	 SV *	 name
 	 CODE:
	 rememberSub = name;

 void
 CallSavedSub1()
 	 CODE:
	 PUSHMARK(SP);
	 call_sv(rememberSub, G_DISCARD|G_NOARGS);

The reason this is wrong is that, by the time you come to use the
 pointer rememberSub in
CallSavedSub1, it may or may not still refer
 to the Perl subroutine that was recorded in SaveSub1.
This is
 particularly true for these cases:

 SaveSub1(\&fred);
 CallSavedSub1();

 SaveSub1(sub { print "Hello there\n" });
 CallSavedSub1();

By the time each of the SaveSub1 statements above has been executed,
 the SV*s which
corresponded to the parameters will no longer exist.
 Expect an error message from Perl of the form

 Can't use an undefined value as a subroutine reference at ...

for each of the CallSavedSub1 lines.

Similarly, with this code

 $ref = \&fred;
 SaveSub1($ref);
 $ref = 47;
 CallSavedSub1();

you can expect one of these messages (which you actually get is dependent on
 the version of Perl
you are using)

 Not a CODE reference at ...

Perl version 5.22.0 documentation - perlcall

Page 16http://perldoc.perl.org

 Undefined subroutine &main::47 called ...

The variable $ref may have referred to the subroutine fred
 whenever the call to SaveSub1 was
made but by the time CallSavedSub1 gets called it now holds the number 47. Because we
 saved
only a pointer to the original SV in SaveSub1, any changes to
 $ref will be tracked by the pointer
rememberSub. This means that
 whenever CallSavedSub1 gets called, it will attempt to execute the
code which is referenced by the SV* rememberSub. In this case
 though, it now refers to the integer
47, so expect Perl to complain
 loudly.

A similar but more subtle problem is illustrated with this code:

 $ref = \&fred;
 SaveSub1($ref);
 $ref = \&joe;
 CallSavedSub1();

This time whenever CallSavedSub1 gets called it will execute the Perl
 subroutine joe (assuming it
exists) rather than fred as was
 originally requested in the call to SaveSub1.

To get around these problems it is necessary to take a full copy of the
 SV. The code below shows
SaveSub2 modified to do that.

 static SV * keepSub = (SV*)NULL;

 void
 SaveSub2(name)
 SV *	 name
 	 CODE:
 	 /* Take a copy of the callback */
 	 if (keepSub == (SV*)NULL)
 	 /* First time, so create a new SV */
	 keepSub = newSVsv(name);
 	 else
 	 /* Been here before, so overwrite */
	 SvSetSV(keepSub, name);

 void
 CallSavedSub2()
 	 CODE:
	 PUSHMARK(SP);
	 call_sv(keepSub, G_DISCARD|G_NOARGS);

To avoid creating a new SV every time SaveSub2 is called,
 the function first checks to see if it has
been called before. If not,
 then space for a new SV is allocated and the reference to the Perl

subroutine name is copied to the variable keepSub in one
 operation using newSVsv. Thereafter,
whenever SaveSub2 is called,
 the existing SV, keepSub, is overwritten with the new value using
SvSetSV.

Using call_argv
Here is a Perl subroutine which prints whatever parameters are passed
 to it.

 sub PrintList
 {
 my(@list) = @_;

 foreach (@list) { print "$_\n" }

Perl version 5.22.0 documentation - perlcall

Page 17http://perldoc.perl.org

 }

And here is an example of call_argv which will call PrintList.

 static char * words[] = {"alpha", "beta", "gamma", "delta", NULL};

 static void
 call_PrintList()
 {
 dSP;

 call_argv("PrintList", G_DISCARD, words);
 }

Note that it is not necessary to call PUSHMARK in this instance.
 This is because call_argv will do it for
you.

Using call_method
Consider the following Perl code:

 {
 package Mine;

 sub new
 {
 my($type) = shift;
 bless [@_]
 }

 sub Display
 {
 my ($self, $index) = @_;
 print "$index: $$self[$index]\n";
 }

 sub PrintID
 {
 my($class) = @_;
 print "This is Class $class version 1.0\n";
 }
 }

It implements just a very simple class to manage an array. Apart from
 the constructor, new, it declares
methods, one static and one
 virtual. The static method, PrintID, prints out simply the class
 name
and a version number. The virtual method, Display, prints out a
 single element of the array. Here is
an all-Perl example of using it.

 $a = Mine->new('red', 'green', 'blue');
 $a->Display(1);
 Mine->PrintID;

will print

 1: green

Perl version 5.22.0 documentation - perlcall

Page 18http://perldoc.perl.org

 This is Class Mine version 1.0

Calling a Perl method from C is fairly straightforward. The following
 things are required:

A reference to the object for a virtual method or the name of the class
 for a static method

The name of the method

Any other parameters specific to the method

Here is a simple XSUB which illustrates the mechanics of calling both
 the PrintID and Display
methods from C.

 void
 call_Method(ref, method, index)
 SV *	 ref
 char *	 method
 int		 index
 CODE:
 PUSHMARK(SP);
 XPUSHs(ref);
 XPUSHs(sv_2mortal(newSViv(index)));
 PUTBACK;

 call_method(method, G_DISCARD);

 void
 call_PrintID(class, method)
 char *	 class
 char *	 method
 CODE:
 PUSHMARK(SP);
 XPUSHs(sv_2mortal(newSVpv(class, 0)));
 PUTBACK;

 call_method(method, G_DISCARD);

So the methods PrintID and Display can be invoked like this:

 $a = Mine->new('red', 'green', 'blue');
 call_Method($a, 'Display', 1);
 call_PrintID('Mine', 'PrintID');

The only thing to note is that, in both the static and virtual methods,
 the method name is not passed
via the stack--it is used as the first
 parameter to call_method.

Using GIMME_V
Here is a trivial XSUB which prints the context in which it is
 currently executing.

 void
 PrintContext()
 CODE:
 I32 gimme = GIMME_V;
 if (gimme == G_VOID)
 printf ("Context is Void\n");
 else if (gimme == G_SCALAR)

Perl version 5.22.0 documentation - perlcall

Page 19http://perldoc.perl.org

 printf ("Context is Scalar\n");
 else
 printf ("Context is Array\n");

And here is some Perl to test it.

 PrintContext;
 $a = PrintContext;
 @a = PrintContext;

The output from that will be

 Context is Void
 Context is Scalar
 Context is Array

Using Perl to Dispose of Temporaries
In the examples given to date, any temporaries created in the callback
 (i.e., parameters passed on
the stack to the call_* function or
 values returned via the stack) have been freed by one of these
methods:

Specifying the G_DISCARD flag with call_*

Explicitly using the ENTER/SAVETMPS--FREETMPS/LEAVE pairing

There is another method which can be used, namely letting Perl do it
 for you automatically whenever
it regains control after the callback
 has terminated. This is done by simply not using the

 ENTER;
 SAVETMPS;
 ...
 FREETMPS;
 LEAVE;

sequence in the callback (and not, of course, specifying the G_DISCARD
 flag).

If you are going to use this method you have to be aware of a possible
 memory leak which can arise
under very specific circumstances. To
 explain these circumstances you need to know a bit about the
flow of
 control between Perl and the callback routine.

The examples given at the start of the document (an error handler and
 an event driven program) are
typical of the two main sorts of flow
 control that you are likely to encounter with callbacks. There is a

very important distinction between them, so pay attention.

In the first example, an error handler, the flow of control could be as
 follows. You have created an
interface to an external library.
 Control can reach the external library like this

 perl --> XSUB --> external library

Whilst control is in the library, an error condition occurs. You have
 previously set up a Perl callback to
handle this situation, so it will
 get executed. Once the callback has finished, control will drop back to

Perl again. Here is what the flow of control will be like in that
 situation

 perl --> XSUB --> external library
 ...
 error occurs
 ...
 external library --> call_* --> perl

Perl version 5.22.0 documentation - perlcall

Page 20http://perldoc.perl.org

 |
 perl <-- XSUB <-- external library <-- call_* <----+

After processing of the error using call_* is completed,
 control reverts back to Perl more or less
immediately.

In the diagram, the further right you go the more deeply nested the
 scope is. It is only when control is
back with perl on the extreme
 left of the diagram that you will have dropped back to the enclosing

scope and any temporaries you have left hanging around will be freed.

In the second example, an event driven program, the flow of control
 will be more like this

 perl --> XSUB --> event handler
 ...
 event handler --> call_* --> perl
 |
 event handler <-- call_* <----+
 ...
 event handler --> call_* --> perl
 |
 event handler <-- call_* <----+
 ...
 event handler --> call_* --> perl
 |
 event handler <-- call_* <----+

In this case the flow of control can consist of only the repeated
 sequence

 event handler --> call_* --> perl

for practically the complete duration of the program. This means that
 control may never drop back to
the surrounding scope in Perl at the
 extreme left.

So what is the big problem? Well, if you are expecting Perl to tidy up
 those temporaries for you, you
might be in for a long wait. For Perl
 to dispose of your temporaries, control must drop back to the

enclosing scope at some stage. In the event driven scenario that may
 never happen. This means that,
as time goes on, your program will
 create more and more temporaries, none of which will ever be
freed. As
 each of these temporaries consumes some memory your program will
 eventually consume
all the available memory in your system--kapow!

So here is the bottom line--if you are sure that control will revert
 back to the enclosing Perl scope
fairly quickly after the end of your
 callback, then it isn't absolutely necessary to dispose explicitly of

any temporaries you may have created. Mind you, if you are at all
 uncertain about what to do, it
doesn't do any harm to tidy up anyway.

Strategies for Storing Callback Context Information
Potentially one of the trickiest problems to overcome when designing a
 callback interface can be
figuring out how to store the mapping between
 the C callback function and the Perl equivalent.

To help understand why this can be a real problem first consider how a
 callback is set up in an all C
environment. Typically a C API will
 provide a function to register a callback. This will expect a pointer

to a function as one of its parameters. Below is a call to a
 hypothetical function register_fatal
which registers the C function
 to get called when a fatal error occurs.

 register_fatal(cb1);

The single parameter cb1 is a pointer to a function, so you must
 have defined cb1 in your code, say

Perl version 5.22.0 documentation - perlcall

Page 21http://perldoc.perl.org

something like this

 static void
 cb1()
 {
 printf ("Fatal Error\n");
 exit(1);
 }

Now change that to call a Perl subroutine instead

 static SV * callback = (SV*)NULL;

 static void
 cb1()
 {
 dSP;

 PUSHMARK(SP);

 /* Call the Perl sub to process the callback */
 call_sv(callback, G_DISCARD);
 }

 void
 register_fatal(fn)
 SV *	 fn
 CODE:
 /* Remember the Perl sub */
 if (callback == (SV*)NULL)
 callback = newSVsv(fn);
 else
 SvSetSV(callback, fn);

 /* register the callback with the external library */
 register_fatal(cb1);

where the Perl equivalent of register_fatal and the callback it
 registers, pcb1, might look like
this

 # Register the sub pcb1
 register_fatal(\&pcb1);

 sub pcb1
 {
 die "I'm dying...\n";
 }

The mapping between the C callback and the Perl equivalent is stored in
 the global variable
callback.

This will be adequate if you ever need to have only one callback
 registered at any time. An example
could be an error handler like the
 code sketched out above. Remember though, repeated calls to
register_fatal will replace the previously registered callback
 function with the new one.

Perl version 5.22.0 documentation - perlcall

Page 22http://perldoc.perl.org

Say for example you want to interface to a library which allows asynchronous
 file i/o. In this case you
may be able to register a callback whenever
 a read operation has completed. To be of any use we
want to be able to
 call separate Perl subroutines for each file that is opened. As it
 stands, the error
handler example above would not be adequate as it
 allows only a single callback to be defined at any
time. What we
 require is a means of storing the mapping between the opened file and
 the Perl
subroutine we want to be called for that file.

Say the i/o library has a function asynch_read which associates a C
 function ProcessRead with a
file handle fh--this assumes that it
 has also provided some routine to open the file and so obtain the
file
 handle.

 asynch_read(fh, ProcessRead)

This may expect the C ProcessRead function of this form

 void
 ProcessRead(fh, buffer)
 int	 fh;
 char *	 buffer;
 {
 ...
 }

To provide a Perl interface to this library we need to be able to map
 between the fh parameter and
the Perl subroutine we want called. A
 hash is a convenient mechanism for storing this mapping. The
code
 below shows a possible implementation

 static HV * Mapping = (HV*)NULL;

 void
 asynch_read(fh, callback)
 int	 fh
 SV *	 callback
 CODE:
 /* If the hash doesn't already exist, create it */
 if (Mapping == (HV*)NULL)
 Mapping = newHV();

 /* Save the fh -> callback mapping */
 hv_store(Mapping, (char*)&fh, sizeof(fh), newSVsv(callback), 0);

 /* Register with the C Library */
 asynch_read(fh, asynch_read_if);

and asynch_read_if could look like this

 static void
 asynch_read_if(fh, buffer)
 int	 fh;
 char *	 buffer;
 {
 dSP;
 SV ** sv;

 /* Get the callback associated with fh */

Perl version 5.22.0 documentation - perlcall

Page 23http://perldoc.perl.org

 sv = hv_fetch(Mapping, (char*)&fh , sizeof(fh), FALSE);
 if (sv == (SV**)NULL)
 croak("Internal error...\n");

 PUSHMARK(SP);
 XPUSHs(sv_2mortal(newSViv(fh)));
 XPUSHs(sv_2mortal(newSVpv(buffer, 0)));
 PUTBACK;

 /* Call the Perl sub */
 call_sv(*sv, G_DISCARD);
 }

For completeness, here is asynch_close. This shows how to remove
 the entry from the hash
Mapping.

 void
 asynch_close(fh)
 int	 fh
 CODE:
 /* Remove the entry from the hash */
 (void) hv_delete(Mapping, (char*)&fh, sizeof(fh), G_DISCARD);

 /* Now call the real asynch_close */
 asynch_close(fh);

So the Perl interface would look like this

 sub callback1
 {
 my($handle, $buffer) = @_;
 }

 # Register the Perl callback
 asynch_read($fh, \&callback1);

 asynch_close($fh);

The mapping between the C callback and Perl is stored in the global
 hash Mapping this time. Using a
hash has the distinct advantage that
 it allows an unlimited number of callbacks to be registered.

What if the interface provided by the C callback doesn't contain a
 parameter which allows the file
handle to Perl subroutine mapping? Say
 in the asynchronous i/o package, the callback function gets
passed only
 the buffer parameter like this

 void
 ProcessRead(buffer)
 char *	 buffer;
 {
 ...
 }

Without the file handle there is no straightforward way to map from the
 C callback to the Perl
subroutine.

Perl version 5.22.0 documentation - perlcall

Page 24http://perldoc.perl.org

In this case a possible way around this problem is to predefine a
 series of C functions to act as the
interface to Perl, thus

 #define MAX_CB		 3
 #define NULL_HANDLE	 -1
 typedef void (*FnMap)();

 struct MapStruct {
 FnMap Function;
 SV * PerlSub;
 int Handle;
 };

 static void fn1();
 static void fn2();
 static void fn3();

 static struct MapStruct Map [MAX_CB] =
 {
 { fn1, NULL, NULL_HANDLE },
 { fn2, NULL, NULL_HANDLE },
 { fn3, NULL, NULL_HANDLE }
 };

 static void
 Pcb(index, buffer)
 int index;
 char * buffer;
 {
 dSP;

 PUSHMARK(SP);
 XPUSHs(sv_2mortal(newSVpv(buffer, 0)));
 PUTBACK;

 /* Call the Perl sub */
 call_sv(Map[index].PerlSub, G_DISCARD);
 }

 static void
 fn1(buffer)
 char * buffer;
 {
 Pcb(0, buffer);
 }

 static void
 fn2(buffer)
 char * buffer;
 {
 Pcb(1, buffer);
 }

Perl version 5.22.0 documentation - perlcall

Page 25http://perldoc.perl.org

 static void
 fn3(buffer)
 char * buffer;
 {
 Pcb(2, buffer);
 }

 void
 array_asynch_read(fh, callback)
 int		 fh
 SV *	 callback
 CODE:
 int index;
 int null_index = MAX_CB;

 /* Find the same handle or an empty entry */
 for (index = 0; index < MAX_CB; ++index)
 {
 if (Map[index].Handle == fh)
 break;

 if (Map[index].Handle == NULL_HANDLE)
 null_index = index;
 }

 if (index == MAX_CB && null_index == MAX_CB)
 croak ("Too many callback functions registered\n");

 if (index == MAX_CB)
 index = null_index;

 /* Save the file handle */
 Map[index].Handle = fh;

 /* Remember the Perl sub */
 if (Map[index].PerlSub == (SV*)NULL)
 Map[index].PerlSub = newSVsv(callback);
 else
 SvSetSV(Map[index].PerlSub, callback);

 asynch_read(fh, Map[index].Function);

 void
 array_asynch_close(fh)
 int	 fh
 CODE:
 int index;

 /* Find the file handle */
 for (index = 0; index < MAX_CB; ++ index)
 if (Map[index].Handle == fh)
 break;

Perl version 5.22.0 documentation - perlcall

Page 26http://perldoc.perl.org

 if (index == MAX_CB)
 croak ("could not close fh %d\n", fh);

 Map[index].Handle = NULL_HANDLE;
 SvREFCNT_dec(Map[index].PerlSub);
 Map[index].PerlSub = (SV*)NULL;

 asynch_close(fh);

In this case the functions fn1, fn2, and fn3 are used to
 remember the Perl subroutine to be called.
Each of the functions holds
 a separate hard-wired index which is used in the function Pcb to
 access
the Map array and actually call the Perl subroutine.

There are some obvious disadvantages with this technique.

Firstly, the code is considerably more complex than with the previous
 example.

Secondly, there is a hard-wired limit (in this case 3) to the number of
 callbacks that can exist
simultaneously. The only way to increase the
 limit is by modifying the code to add more functions and
then
 recompiling. None the less, as long as the number of functions is
 chosen with some care, it is
still a workable solution and in some
 cases is the only one available.

To summarize, here are a number of possible methods for you to consider
 for storing the mapping
between C and the Perl callback

1. Ignore the problem - Allow only 1 callback

For a lot of situations, like interfacing to an error handler, this may
 be a perfectly adequate
solution.

2. Create a sequence of callbacks - hard wired limit

If it is impossible to tell from the parameters passed back from the C
 callback what the
context is, then you may need to create a sequence of C
 callback interface functions, and
store pointers to each in an array.

3. Use a parameter to map to the Perl callback

A hash is an ideal mechanism to store the mapping between C and Perl.

Alternate Stack Manipulation
Although I have made use of only the POP* macros to access values
 returned from Perl subroutines,
it is also possible to bypass these
 macros and read the stack using the ST macro (See perlxs for a
 full
description of the ST macro).

Most of the time the POP* macros should be adequate; the main
 problem with them is that they force
you to process the returned values
 in sequence. This may not be the most suitable way to process
the
 values in some cases. What we want is to be able to access the stack in
 a random order. The ST
macro as used when coding an XSUB is ideal
 for this purpose.

The code below is the example given in the section Returning a List
 of Values recoded to use ST
instead of POP*.

 static void
 call_AddSubtract2(a, b)
 int a;
 int b;
 {
 dSP;
 I32 ax;

Perl version 5.22.0 documentation - perlcall

Page 27http://perldoc.perl.org

 int count;

 ENTER;
 SAVETMPS;

 PUSHMARK(SP);
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK;

 count = call_pv("AddSubtract", G_ARRAY);

 SPAGAIN;
 SP -= count;
 ax = (SP - PL_stack_base) + 1;

 if (count != 2)
 croak("Big trouble\n");

 printf ("%d + %d = %d\n", a, b, SvIV(ST(0)));
 printf ("%d - %d = %d\n", a, b, SvIV(ST(1)));

 PUTBACK;
 FREETMPS;
 LEAVE;
 }

Notes

1. Notice that it was necessary to define the variable ax. This is
 because the ST macro expects
it to exist. If we were in an XSUB it
 would not be necessary to define ax as it is already
defined for
 us.

2. The code

 SPAGAIN;
 SP -= count;
 ax = (SP - PL_stack_base) + 1;

sets the stack up so that we can use the ST macro.

3. Unlike the original coding of this example, the returned
 values are not accessed in reverse
order. So ST(0) refers to the
 first value returned by the Perl subroutine and ST(count-1)

refers to the last.

Creating and Calling an Anonymous Subroutine in C
As we've already shown, call_sv can be used to invoke an
 anonymous subroutine. However, our
example showed a Perl script
 invoking an XSUB to perform this operation. Let's see how it can be

done inside our C code:

 ...

 SV *cvrv = eval_pv("sub { print 'You will not find me cluttering any
namespace!' }", TRUE);

Perl version 5.22.0 documentation - perlcall

Page 28http://perldoc.perl.org

 ...

 call_sv(cvrv, G_VOID|G_NOARGS);

eval_pv is used to compile the anonymous subroutine, which
 will be the return value as well (read
more about eval_pv in "eval_pv" in perlapi). Once this code reference is in hand, it
 can be mixed in
with all the previous examples we've shown.

LIGHTWEIGHT CALLBACKS
Sometimes you need to invoke the same subroutine repeatedly.
 This usually happens with a function
that acts on a list of
 values, such as Perl's built-in sort(). You can pass a
 comparison function to sort(),
which will then be invoked
 for every pair of values that needs to be compared. The first()
 and reduce()
functions from List::Util follow a similar
 pattern.

In this case it is possible to speed up the routine (often
 quite substantially) by using the lightweight
callback API.
 The idea is that the calling context only needs to be
 created and destroyed once, and
the sub can be called
 arbitrarily many times in between.

It is usual to pass parameters using global variables (typically
 $_ for one parameter, or $a and $b for
two parameters) rather
 than via @_. (It is possible to use the @_ mechanism if you know
 what you're
doing, though there is as yet no supported API for
 it. It's also inherently slower.)

The pattern of macro calls is like this:

 dMULTICALL;			 /* Declare local variables */
 I32 gimme = G_SCALAR;	 /* context of the call: G_SCALAR,
				 * G_ARRAY, or G_VOID */

 PUSH_MULTICALL(cv);		 /* Set up the context for calling cv,
				 and set local vars appropriately */

 /* loop */ {
 /* set the value(s) af your parameter variables */
 MULTICALL;		 /* Make the actual call */
 } /* end of loop */

 POP_MULTICALL;		 /* Tear down the calling context */

For some concrete examples, see the implementation of the
 first() and reduce() functions of List::Util
1.18. There you
 will also find a header file that emulates the multicall API
 on older versions of perl.

SEE ALSO
perlxs, perlguts, perlembed

AUTHOR
Paul Marquess

Special thanks to the following people who assisted in the creation of
 the document.

Jeff Okamoto, Tim Bunce, Nick Gianniotis, Steve Kelem, Gurusamy Sarathy
 and Larry Wall.

DATE
Version 1.3, 14th Apr 1997

