
Perl version 5.22.0 documentation - encoding

Page 1http://perldoc.perl.org

NAME
encoding - allows you to write your script in non-ASCII and non-UTF-8

WARNING
This module has been deprecated since perl v5.18. See DESCRIPTION and BUGS.

SYNOPSIS
 use encoding "greek"; # Perl like Greek to you?
 use encoding "euc-jp"; # Jperl!

 # or you can even do this if your shell supports your native encoding

 perl -Mencoding=latin2 -e'...' # Feeling centrally European?
 perl -Mencoding=euc-kr -e'...' # Or Korean?

 # more control

 # A simple euc-cn => utf-8 converter
 use encoding "euc-cn", STDOUT => "utf8"; while(<>){print};

 # "no encoding;" supported
 no encoding;

 # an alternate way, Filter
 use encoding "euc-jp", Filter=>1;
 # now you can use kanji identifiers -- in euc-jp!

 # encode based on the current locale - specialized purposes only;
 # fraught with danger!!
 use encoding ':locale';

DESCRIPTION
This pragma is used to enable a Perl script to be written in encodings that
 aren't strictly ASCII nor
UTF-8. It translates all or portions of the Perl
 program script from a given encoding into UTF-8, and
changes the PerlIO layers
 of STDIN and STDOUT to the encoding specified.

This pragma dates from the days when UTF-8-enabled editors were uncommon. But
 that was long
ago, and the need for it is greatly diminished. That, coupled
 with the fact that it doesn't work with
threads, along with other problems,
 (see BUGS) have led to its being deprecated. It is planned to
remove this
 pragma in a future Perl version. New code should be written in UTF-8, and the use utf8
pragma used instead (see perluniintro and utf8 for details).
 Old code should be converted to UTF-8,
via something like the recipe in the SYNOPSIS (though this simple approach may require manual
adjustments
 afterwards).

The only legitimate use of this pragma is almost certainly just one per file,
 near the top, with file
scope, as the file is likely going to only be written
 in one encoding. Further restrictions apply in Perls
before v5.22 (see Prior to Perl v5.22).

There are two basic modes of operation (plus turning if off):

use encoding ['ENCNAME'] ;

This is the normal operation. It translates various literals encountered in
 the Perl source file
from the encoding ENCNAME into UTF-8, and similarly
 converts character code points. This is
used when the script is a combination
 of ASCII (for the variable names and punctuation, etc),

Perl version 5.22.0 documentation - encoding

Page 2http://perldoc.perl.org

but the literal
 data is in the specified encoding.

ENCNAME is optional. If omitted, the encoding specified in the environment
 variable
PERL_ENCODING is used. If this isn't
 set, or the resolved-to encoding is not known to Encode,
the error Unknown encoding 'ENCNAME' will be thrown.

Starting in Perl v5.8.6 (Encode version 2.0.1), ENCNAME may be the
 name :locale. This is
for very specialized applications, and is documented
 in The :locale sub-pragma below.

The literals that are converted are q//, qq//, qr//, qw///, qx//, and
 starting in
v5.8.1, tr///. Operations that do conversions include chr, ord, utf8::upgrade (but not
utf8::downgrade), and chomp.

Also starting in v5.8.1, the DATA pseudo-filehandle is translated from the
 encoding into UTF-8.

For example, you can write code in EUC-JP as follows:

 my $Rakuda = "\xF1\xD1\xF1\xCC"; # Camel in Kanji
 #<-char-><-char-> # 4 octets
 s/\bCamel\b/$Rakuda/;

And with use encoding "euc-jp" in effect, it is the same thing as
 that code in UTF-8:

 my $Rakuda = "\x{99F1}\x{99DD}"; # two Unicode Characters
 s/\bCamel\b/$Rakuda/;

See EXAMPLE below for a more complete example.

Unless ${^UNICODE} (available starting in v5.8.2) exists and is non-zero, the
 PerlIO layers of
STDIN and STDOUT are set to ":encoding(ENCNAME)".
 Therefore,

 use encoding "euc-jp";
 my $message = "Camel is the symbol of perl.\n";
 my $Rakuda = "\xF1\xD1\xF1\xCC"; # Camel in Kanji
 $message =~ s/\bCamel\b/$Rakuda/;
 print $message;

will print

 "\xF1\xD1\xF1\xCC is the symbol of perl.\n"

not

 "\x{99F1}\x{99DD} is the symbol of perl.\n"

You can override this by giving extra arguments; see below.

Note that STDERR WILL NOT be changed, regardless.

Also note that non-STD file handles remain unaffected. Use use
 open or binmode to change
the layers of those.

use encoding ENCNAME Filter=>1;

This operates as above, but the Filter argument with a non-zero
 value causes the entire
script, and not just literals, to be translated from
 the encoding into UTF-8. This allows
identifiers in the source to be in that
 encoding as well. (Problems may occur if the encoding is
not a superset of
 ASCII; imagine all your semi-colons being translated into something

different.) One can use this form to make

 ${"\x{4eba}"}++

work. (This is equivalent to $human++, where human is a single Han
 ideograph).

This effectively means that your source code behaves as if it were written in
 UTF-8 with 'use
 utf8' in effect. So even if your editor only supports
 Shift_JIS, for example, you can still try
examples in Chapter 15 of Programming Perl, 3rd Ed..

Perl version 5.22.0 documentation - encoding

Page 3http://perldoc.perl.org

This option is significantly slower than the other one.

no encoding;

Unsets the script encoding. The layers of STDIN, STDOUT are
 reset to ":raw" (the default
unprocessed raw stream of bytes).

OPTIONS
Setting STDIN and/or STDOUT individually

The encodings of STDIN and STDOUT are individually settable by parameters to
 the pragma:

 use encoding 'euc-tw', STDIN => 'greek' ...;

In this case, you cannot omit the first ENCNAME. STDIN => undef
 turns the I/O transcoding
completely off for that filehandle.

When ${^UNICODE} (available starting in v5.8.2) exists and is non-zero,
 these options will be
completely ignored. See "${^UNICODE}" in perlvar and "-C" in perlrun for details.

The :locale sub-pragma
Starting in v5.8.6, the encoding name may be :locale. This means that the
 encoding is taken from
the current locale, and not hard-coded by the pragma.
 Since a script really can only be encoded in
exactly one encoding, this option
 is dangerous. It makes sense only if the script itself is written in
ASCII,
 and all the possible locales that will be in use when the script is executed
 are supersets of
ASCII. That means that the script itself doesn't get
 changed, but the I/O handles have the specified
encoding added, and the
 operations like chr and ord use that encoding.

The logic of finding which locale :locale uses is as follows:

1. If the platform supports the langinfo(CODESET) interface, the codeset
 returned is used as
the default encoding for the open pragma.

2. If 1. didn't work but we are under the locale pragma, the environment
 variables LC_ALL and
LANG (in that order) are matched for encodings
 (the part after ".", if any), and if any found,
that is used
 as the default encoding for the open pragma.

3. If 1. and 2. didn't work, the environment variables LC_ALL and LANG
 (in that order) are
matched for anything looking like UTF-8, and if
 any found, :utf8 is used as the default
encoding for the open
 pragma.

If your locale environment variables (LC_ALL, LC_CTYPE, LANG)
 contain the strings 'UTF-8' or 'UTF8'
(case-insensitive matching),
 the default encoding of your STDIN, STDOUT, and STDERR, and of any
subsequent file open, is UTF-8.

CAVEATS
SIDE EFFECTS

If the encoding pragma is in scope then the lengths returned are
 calculated from the length
of $/ in Unicode characters, which is not
 always the same as the length of $/ in the native
encoding.

Without this pragma, if strings operating under byte semantics and strings
 with Unicode
character data are concatenated, the new string will
 be created by decoding the byte strings
as ISO 8859-1 (Latin-1).

The encoding pragma changes this to use the specified encoding
 instead. For example:

 use encoding 'utf8';
 my $string = chr(20000); # a Unicode string
 utf8::encode($string); # now it's a UTF-8 encoded byte string
 # concatenate with another Unicode string

Perl version 5.22.0 documentation - encoding

Page 4http://perldoc.perl.org

 print length($string . chr(20000));

Will print 2, because $string is upgraded as UTF-8. Without use encoding 'utf8';, it
will print 4 instead, since $string
 is three octets when interpreted as Latin-1.

DO NOT MIX MULTIPLE ENCODINGS
Notice that only literals (string or regular expression) having only
 legacy code points are affected: if
you mix data like this

 \x{100}\xDF
 \xDF\x{100}

the data is assumed to be in (Latin 1 and) Unicode, not in your native
 encoding. In other words, this
will match in "greek":

 "\xDF" =~ /\x{3af}/

but this will not

 "\xDF\x{100}" =~ /\x{3af}\x{100}/

since the \xDF (ISO 8859-7 GREEK SMALL LETTER IOTA WITH TONOS) on
 the left will not be
upgraded to \x{3af} (Unicode GREEK SMALL
 LETTER IOTA WITH TONOS) because of the
\x{100} on the left. You
 should not be mixing your legacy data and Unicode in the same string.

This pragma also affects encoding of the 0x80..0xFF code point range:
 normally characters in that
range are left as eight-bit bytes (unless
 they are combined with characters with code points 0x100 or
larger,
 in which case all characters need to become UTF-8 encoded), but if
 the encoding pragma is
present, even the 0x80..0xFF range always
 gets UTF-8 encoded.

After all, the best thing about this pragma is that you don't have to
 resort to \x{....} just to spell your
name in a native encoding.
 So feel free to put your strings in your encoding in quotes and
 regexes.

Prior to Perl v5.22
The pragma was a per script, not a per block lexical. Only the last use encoding or no encoding
mattered, and it affected the whole script. However, the no encoding pragma was supported and
use encoding could appear as many times as you want in a given script
 (though only the last was
effective).

Since the scope wasn't lexical, other modules' use of chr, ord, etc.
 were affected. This leads to
spooky, incorrect action at a distance that is
 hard to debug.

This means you would have to be very careful of the load order:

 # called module
 package Module_IN_BAR;
 use encoding "bar";
 # stuff in "bar" encoding here
 1;

 # caller script
 use encoding "foo"
 use Module_IN_BAR;
 # surprise! use encoding "bar" is in effect.

The best way to avoid this oddity is to use this pragma RIGHT AFTER
 other modules are loaded. i.e.

Perl version 5.22.0 documentation - encoding

Page 5http://perldoc.perl.org

 use Module_IN_BAR;
 use encoding "foo";

Prior to Encode version 1.87
STDIN and STDOUT were not set under the filter option.
 And STDIN=>ENCODING and
STDOUT=>ENCODING didn't work like
 non-filter version.

use utf8 wasn't implicitly declared so you have to use utf8 to do

 ${"\x{4eba}"}++

Prior to Perl v5.8.1
"NON-EUC" doublebyte encodings

Because perl needs to parse the script before applying this pragma, such
 encodings as
Shift_JIS and Big-5 that may contain '\' (BACKSLASH; \x5c) in the second byte fail
because the second byte may
 accidentally escape the quoting character that follows.

tr///

The encoding pragma works by decoding string literals in q//,qq//,qr//,qw///, qx//
and so forth. In perl v5.8.0, this
 does not apply to tr///. Therefore,

 use encoding 'euc-jp';
 #....
 $kana =~ tr/\xA4\xA1-\xA4\xF3/\xA5\xA1-\xA5\xF3/;
 # -------- -------- -------- --------

Does not work as

 $kana =~ tr/\x{3041}-\x{3093}/\x{30a1}-\x{30f3}/;

Legend of characters above

 utf8 euc-jp charnames::viacode()

 \x{3041} \xA4\xA1 HIRAGANA LETTER SMALL A
 \x{3093} \xA4\xF3 HIRAGANA LETTER N
 \x{30a1} \xA5\xA1 KATAKANA LETTER SMALL A
 \x{30f3} \xA5\xF3 KATAKANA LETTER N

This counterintuitive behavior has been fixed in perl v5.8.1.

In perl v5.8.0, you can work around this as follows;

 use encoding 'euc-jp';
 #
 eval qq{ \$kana =~ tr/\xA4\xA1-\xA4\xF3/\xA5\xA1-\xA5\xF3/ };

Note the tr// expression is surrounded by qq{}. The idea behind
 this is the same as the
classic idiom that makes tr/// 'interpolate':

 tr/$from/$to/; # wrong!
 eval qq{ tr/$from/$to/ }; # workaround.

EXAMPLE - Greekperl
 use encoding "iso 8859-7";

 # \xDF in ISO 8859-7 (Greek) is \x{3af} in Unicode.

Perl version 5.22.0 documentation - encoding

Page 6http://perldoc.perl.org

 $a = "\xDF";
 $b = "\x{100}";

 printf "%#x\n", ord($a); # will print 0x3af, not 0xdf

 $c = $a . $b;

 # $c will be "\x{3af}\x{100}", not "\x{df}\x{100}".

 # chr() is affected, and ...

 print "mega\n" if ord(chr(0xdf)) == 0x3af;

 # ... ord() is affected by the encoding pragma ...

 print "tera\n" if ord(pack("C", 0xdf)) == 0x3af;

 # ... as are eq and cmp ...

 print "peta\n" if "\x{3af}" eq pack("C", 0xdf);
 print "exa\n" if "\x{3af}" cmp pack("C", 0xdf) == 0;

 # ... but pack/unpack C are not affected, in case you still
 # want to go back to your native encoding

 print "zetta\n" if unpack("C", (pack("C", 0xdf))) == 0xdf;

BUGS
Thread safety

use encoding ... is not thread-safe (i.e., do not use in threaded
 applications).

Can't be used by more than one module in a single program.

Only one encoding is allowed. If you combine modules in a program that have
 different
encodings, only one will be actually used.

Other modules using STDIN and STDOUT get the encoded stream

They may be expecting something completely different.

literals in regex that are longer than 127 bytes

For native multibyte encodings (either fixed or variable length),
 the current implementation of
the regular expressions may introduce
 recoding errors for regular expression literals longer
than 127 bytes.

EBCDIC

The encoding pragma is not supported on EBCDIC platforms.

format

This pragma doesn't work well with format because PerlIO does not
 get along very well with
it. When format contains non-ASCII
 characters it prints funny or gets "wide character
warnings".
 To understand it, try the code below.

 # Save this one in utf8

Perl version 5.22.0 documentation - encoding

Page 7http://perldoc.perl.org

 # replace *non-ascii* with a non-ascii string
 my $camel;
 format STDOUT =
 non-ascii@>>>>>>>
 $camel
 .
 $camel = "*non-ascii*";
 binmode(STDOUT=>':encoding(utf8)'); # bang!
 write; # funny
 print $camel, "\n"; # fine

Without binmode this happens to work but without binmode, print()
 fails instead of write().

At any rate, the very use of format is questionable when it comes to
 unicode characters
since you have to consider such things as character
 width (i.e. double-width for ideographs)
and directions (i.e. BIDI for
 Arabic and Hebrew).

See also CAVEATS

HISTORY
This pragma first appeared in Perl v5.8.0. It has been enhanced in later
 releases as specified above.

SEE ALSO
perlunicode, Encode, open, Filter::Util::Call,

Ch. 15 of Programming Perl (3rd Edition)
 by Larry Wall, Tom Christiansen, Jon Orwant;

O'Reilly & Associates; ISBN 0-596-00027-8

