
Perl version 5.22.0 documentation - perlunicode

Page 1http://perldoc.perl.org

NAME
perlunicode - Unicode support in Perl

DESCRIPTION
If you haven't already, before reading this document, you should become
 familiar with both perlunitut
and perluniintro.

Unicode aims to UNI-fy the en-CODE-ings of all the world's
 character sets into a single Standard. For
quite a few of the various
 coding standards that existed when Unicode was first created, converting

from each to Unicode essentially meant adding a constant to each code
 point in the original standard,
and converting back meant just
 subtracting that same constant. For ASCII and ISO-8859-1, the
constant
 is 0. For ISO-8859-5, (Cyrillic) the constant is 864; for Hebrew
 (ISO-8859-8), it's 1488; Thai
(ISO-8859-11), 3424; and so forth. This
 made it easy to do the conversions, and facilitated the
adoption of
 Unicode.

And it worked; nowadays, those legacy standards are rarely used. Most
 everyone uses Unicode.

Unicode is a comprehensive standard. It specifies many things outside
 the scope of Perl, such as how
to display sequences of characters. For
 a full discussion of all aspects of Unicode, see
http://www.unicode.org.

Important Caveats
Even though some of this section may not be understandable to you on
 first reading, we think it's
important enough to highlight some of the
 gotchas before delving further, so here goes:

Unicode support is an extensive requirement. While Perl does not
 implement the Unicode standard or
the accompanying technical reports
 from cover to cover, Perl does support many Unicode features.

Also, the use of Unicode may present security issues that aren't obvious.
 Read Unicode Security
Considerations.

Safest if you use feature 'unicode_strings'

In order to preserve backward compatibility, Perl does not turn
 on full internal Unicode support
unless the pragma use feature 'unicode_strings'
 is specified. (This is automatically

selected if you use 5.012 or higher.) Failure to do this can
 trigger unexpected surprises. See
The "Unicode Bug" below.

This pragma doesn't affect I/O. Nor does it change the internal
 representation of strings, only
their interpretation. There are still
 several places where Unicode isn't fully supported, such as
in
 filenames.

Input and Output Layers

Use the :encoding(...) layer to read from and write to
 filehandles using the specified
encoding. (See open.)

You should convert your non-ASCII, non-UTF-8 Perl scripts to be
 UTF-8.

See encoding.

use utf8 still needed to enable UTF-8 in scripts

If your Perl script is itself encoded in UTF-8,
 the use utf8 pragma must be explicitly included
to enable
 recognition of that (in string or regular expression literals, or in
 identifier names).
This is the only time when an explicit use
 utf8 is needed. (See utf8).

BOM-marked scripts and UTF-16 scripts autodetected

However, if a Perl script begins with the Unicode BOM (UTF-16LE,
 UTF16-BE, or UTF-8), or if
the script looks like non-BOM-marked
 UTF-16 of either endianness, Perl will correctly read in
the script as
 the appropriate Unicode encoding. (BOM-less UTF-8 cannot be
 effectively
recognized or differentiated from ISO 8859-1 or other
 eight-bit encodings.)

Perl version 5.22.0 documentation - perlunicode

Page 2http://perldoc.perl.org

Byte and Character Semantics
Before Unicode, most encodings used 8 bits (a single byte) to encode
 each character. Thus a
character was a byte, and a byte was a
 character, and there could be only 256 or fewer possible
characters.
 "Byte Semantics" in the title of this section refers to
 this behavior. There was no need to
distinguish between "Byte" and
 "Character".

Then along comes Unicode which has room for over a million characters
 (and Perl allows for even
more). This means that a character may
 require more than a single byte to represent it, and so the
two terms
 are no longer equivalent. What matter are the characters as whole
 entities, and not usually
the bytes that comprise them. That's what the
 term "Character Semantics" in the title of this section
refers to.

Perl had to change internally to decouple "bytes" from "characters".
 It is important that you too change
your ideas, if you haven't already,
 so that "byte" and "character" no longer mean the same thing in
your
 mind.

The basic building block of Perl strings has always been a "character".
 The changes basically come
down to that the implementation no longer
 thinks that a character is always just a single byte.

There are various things to note:

String handling functions, for the most part, continue to operate in
 terms of characters.
length(), for example, returns the number of
 characters in a string, just as before. But that
number no longer is
 necessarily the same as the number of bytes in the string (there may be

more bytes than characters). The other such functions include chop(), chomp(), substr(),
pos(), index(), rindex(), sort(), sprintf(), and write().

The exceptions are:

the bit-oriented vec

the byte-oriented pack/unpack "C" format

However, the W specifier does operate on whole characters, as does the U specifier.

some operators that interact with the platform's operating system

Operators dealing with filenames are examples.

when the functions are called from within the scope of the use bytes pragma

Likely, you should use this only for debugging anyway.

Strings--including hash keys--and regular expression patterns may
 contain characters that
have ordinal values larger than 255.

If you use a Unicode editor to edit your program, Unicode characters may
 occur directly within
the literal strings in UTF-8 encoding, or UTF-16.
 (The former requires a BOM or use utf8, the
latter requires a BOM.)

"Creating Unicode" in perluniintro gives other ways to place non-ASCII
 characters in your
strings.

The chr() and ord() functions work on whole characters.

Regular expressions match whole characters. For example, "." matches
 a whole character
instead of only a single byte.

The tr/// operator translates whole characters. (Note that the tr///CU functionality has
been removed. For similar functionality to
 that, see pack('U0', ...) and pack('C0',
...)).

scalar reverse() reverses by character rather than by byte.

Perl version 5.22.0 documentation - perlunicode

Page 3http://perldoc.perl.org

The bit string operators, & | ^ ~ and (starting in v5.22) &. |. ^. ~. can operate on
characters that don't fit into a byte.
 However, the current behavior is likely to change. You
should not use
 these operators on strings that are encoded in UTF-8. If you're not
 sure about
the encoding of a string, downgrade it before using any of
 these operators; you can use
utf8::utf8_downgrade().

The bottom line is that Perl has always practiced "Character Semantics",
 but with the advent of
Unicode, that is now different than "Byte
 Semantics".

ASCII Rules versus Unicode Rules
Before Unicode, when a character was a byte was a character,
 Perl knew only about the 128
characters defined by ASCII, code points 0
 through 127 (except for under use locale). That left the
code
 points 128 to 255 as unassigned, and available for whatever use a
 program might want. The
only semantics they have is their ordinal
 numbers, and that they are members of none of the
non-negative character
 classes. None are considered to match \w for example, but all match \W.

Unicode, of course, assigns each of those code points a particular
 meaning (along with ones above
255). To preserve backward
 compatibility, Perl only uses the Unicode meanings when there is some

indication that Unicode is what is intended; otherwise the non-ASCII
 code points remain treated as if
they are unassigned.

Here are the ways that Perl knows that a string should be treated as
 Unicode:

Within the scope of use utf8

If the whole program is Unicode (signified by using 8-bit Unicode Transformation Format),
then all strings within it must be
 Unicode.

Within the scope of use feature 'unicode_strings'

This pragma was created so you can explicitly tell Perl that operations
 executed within its
scope are to use Unicode rules. More operations are
 affected with newer perls. See The
"Unicode Bug".

Within the scope of use 5.012 or higher

This implicitly turns on use feature 'unicode_strings'.

Within the scope of use locale 'not_characters',
 or use locale and the current

locale is a UTF-8 locale.

The former is defined to imply Unicode handling; and the latter
 indicates a Unicode locale,
hence a Unicode interpretation of all
 strings within it.

When the string contains a Unicode-only code point

Perl has never accepted code points above 255 without them being
 Unicode, so their use
implies Unicode for the whole string.

When the string contains a Unicode named code point \N{...}

The \N{...} construct explicitly refers to a Unicode code point,
 even if it is one that is also in
ASCII. Therefore the string
 containing it must be Unicode.

When the string has come from an external source marked as
 Unicode

The -C command line option can
 specify that certain inputs to the program are Unicode, and
the values
 of this can be read by your Perl code, see "${^UNICODE}" in perlvar.

* When the string has been upgraded to UTF-8

The function utf8::utf8_upgrade()
 can be explicitly used to permanently (unless a
subsequent utf8::utf8_downgrade() is called) cause a string to be treated as
 Unicode.

* There are additional methods for regular expression patterns

Perl version 5.22.0 documentation - perlunicode

Page 4http://perldoc.perl.org

A pattern that is compiled with the /u or /a modifiers is
 treated as Unicode (though there are
some restrictions with /a).
 Under the /d and /l modifiers, there are several other
 indications
for Unicode; see "Character set modifiers" in perlre.

Note that all of the above are overridden within the scope of use bytes; but you should be using this
pragma only for
 debugging.

Note also that some interactions with the platform's operating system
 never use Unicode rules.

When Unicode rules are in effect:

Case translation operators use the Unicode case translation tables.

Note that uc(), or \U in interpolated strings, translates to
 uppercase, while ucfirst, or \u in
interpolated strings,
 translates to titlecase in languages that make the distinction (which is

equivalent to uppercase in languages without the distinction).

There is a CPAN module, Unicode::Casing, which allows you to
 define your own mappings
to be used in lc(), lcfirst(), uc(), ucfirst(), and fc (or their double-quoted string
inlined versions
 such as \U). (Prior to Perl 5.16, this functionality was partially
 provided in the
Perl core, but suffered from a number of insurmountable
 drawbacks, so the CPAN module
was written instead.)

Character classes in regular expressions match based on the character
 properties specified in
the Unicode properties database.

\w can be used to match a Japanese ideograph, for instance; and [[:digit:]] a Bengali
number.

Named Unicode properties, scripts, and block ranges may be used (like
 bracketed character
classes) by using the \p{} "matches property"
 construct and the \P{} negation, "doesn't
match property".

See Unicode Character Properties for more details.

You can define your own character properties and use them
 in the regular expression with the
\p{} or \P{} construct.
 See User-Defined Character Properties for more details.

Extended Grapheme Clusters (Logical characters)
Consider a character, say H. It could appear with various marks around it,
 such as an acute accent, or
a circumflex, or various hooks, circles, arrows, etc., above, below, to one side or the other, etc. There
are many
 possibilities among the world's languages. The number of combinations is
 astronomical,
and if there were a character for each combination, it would
 soon exhaust Unicode's more than a
million possible characters. So Unicode
 took a different approach: there is a character for the base H,
and a
 character for each of the possible marks, and these can be variously combined
 to get a final
logical character. So a logical character--what appears to be a
 single character--can be a sequence of
more than one individual characters.
 The Unicode standard calls these "extended grapheme clusters"
(which
 is an improved version of the no-longer much used "grapheme cluster");
 Perl furnishes the \X
regular expression construct to match such
 sequences in their entirety.

But Unicode's intent is to unify the existing character set standards and
 practices, and several
pre-existing standards have single characters that
 mean the same thing as some of these
combinations, like ISO-8859-1,
 which has quite a few of them. For example, "LATIN CAPITAL
LETTER E
 WITH ACUTE" was already in this standard when Unicode came along.
 Unicode
therefore added it to its repertoire as that single character.
 But this character is considered by
Unicode to be equivalent to the
 sequence consisting of the character "LATIN CAPITAL LETTER E"
followed by the character "COMBINING ACUTE ACCENT".

"LATIN CAPITAL LETTER E WITH ACUTE" is called a "pre-composed"
 character, and its
equivalence with the "E" and the "COMBINING ACCENT"
 sequence is called canonical equivalence.
All pre-composed characters
 are said to have a decomposition (into the equivalent sequence), and
the
 decomposition type is also called canonical. A string may be comprised
 as much as possible of

Perl version 5.22.0 documentation - perlunicode

Page 5http://perldoc.perl.org

precomposed characters, or it may be comprised of
 entirely decomposed characters. Unicode calls
these respectively,
 "Normalization Form Composed" (NFC) and "Normalization Form Decomposed".

The Unicode::Normalize module contains functions that convert
 between the two. A string may
also have both composed characters and
 decomposed characters; this module can be used to make
it all one or the
 other.

You may be presented with strings in any of these equivalent forms.
 There is currently nothing in Perl
5 that ignores the differences. So
 you'll have to specially hanlde it. The usual advice is to convert your
inputs to NFD before processing further.

For more detailed information, see http://unicode.org/reports/tr15/.

Unicode Character Properties
(The only time that Perl considers a sequence of individual code
 points as a single logical character is
in the \X construct, already
 mentioned above. Therefore "character" in this discussion means a single
Unicode code point.)

Very nearly all Unicode character properties are accessible through
 regular expressions by using the
\p{} "matches property" construct
 and the \P{} "doesn't match property" for its negation.

For instance, \p{Uppercase} matches any single character with the Unicode "Uppercase"
property, while \p{L} matches any character with a General_Category of "L" (letter) property
(see General_Category below). Brackets are not
 required for single letter property names, so \p{L}
is equivalent to \pL.

More formally, \p{Uppercase} matches any single character whose Unicode Uppercase property
value is True, and \P{Uppercase} matches any character
 whose Uppercase property value is
False, and they could have been written as \p{Uppercase=True} and \p{Uppercase=False},
respectively.

This formality is needed when properties are not binary; that is, if they can
 take on more values than
just True and False. For example, the Bidi_Class property (see Bidirectional Character Types
below),
 can take on several different
 values, such as Left, Right, Whitespace, and others. To
match these, one needs
 to specify both the property name (Bidi_Class), AND the value being

matched against
 (Left, Right, etc.). This is done, as in the examples above, by having the
 two
components separated by an equal sign (or interchangeably, a colon), like \p{Bidi_Class: Left}
.

All Unicode-defined character properties may be written in these compound forms
 of \p{property=
value} or \p{property:value}, but Perl provides some
 additional properties that are written only
in the single form, as well as
 single-form short-cuts for all binary properties and certain others
described
 below, in which you may omit the property name and the equals or colon
 separator.

Most Unicode character properties have at least two synonyms (or aliases if you
 prefer): a short one
that is easier to type and a longer one that is more
 descriptive and hence easier to understand. Thus
the "L" and "Letter" properties above are equivalent and can be used
 interchangeably. Likewise,
"Upper" is a synonym for "Uppercase",
 and we could have written \p{Uppercase} equivalently
as \p{Upper}.
 Also, there are typically various synonyms for the values the property
 can be. For
binary properties, "True" has 3 synonyms: "T", "Yes", and "Y"; and "False" has
correspondingly "F", "No", and "N". But be careful. A short form of a value for one
 property may not
mean the same thing as the same short form for another.
 Thus, for the General_Category
property, "L" means "Letter", but for the Bidi_Class
 property, "L" means "Left". A complete
list of properties and
 synonyms is in perluniprops.

Upper/lower case differences in property names and values are irrelevant;
 thus \p{Upper} means
the same thing as \p{upper} or even \p{UpPeR}.
 Similarly, you can add or subtract underscores
anywhere in the middle of a
 word, so that these are also equivalent to \p{U_p_p_e_r}. And white
space
 is irrelevant adjacent to non-word characters, such as the braces and the equals
 or colon
separators, so \p{ Upper } and \p{ Upper_case : Y } are
 equivalent to these as well. In

Perl version 5.22.0 documentation - perlunicode

Page 6http://perldoc.perl.org

fact, white space and even
 hyphens can usually be added or deleted anywhere. So even \p{
Up-per case = Yes} is
 equivalent. All this is called "loose-matching" by Unicode. The few places

where stricter matching is used is in the middle of numbers, and in the Perl
 extension properties that
begin or end with an underscore. Stricter matching
 cares about white space (except adjacent to
non-word characters),
 hyphens, and non-interior underscores.

You can also use negation in both \p{} and \P{} by introducing a caret
 (^) between the first brace
and the property name: \p{^Tamil} is
 equal to \P{Tamil}.

Almost all properties are immune to case-insensitive matching. That is,
 adding a /i regular
expression modifier does not change what they
 match. There are two sets that are affected.
 The first
set is Uppercase_Letter, Lowercase_Letter,
 and Titlecase_Letter,
 all of which match
Cased_Letter under /i matching.
 And the second set is Uppercase, Lowercase,
 and
Titlecase,
 all of which match Cased under /i matching.
 This set also includes its subsets
PosixUpper and PosixLower both
 of which under /i match PosixAlpha.
 (The difference
between these sets is that some things, such as Roman
 numerals, come in both upper and lower
case so they are Cased, but
 aren't considered letters, so they aren't Cased_Letter's.)

See Beyond Unicode code points for special considerations when
 matching Unicode properties
against non-Unicode code points.

General_Category

Every Unicode character is assigned a general category, which is the "most
 usual categorization of a
character" (from http://www.unicode.org/reports/tr44).

The compound way of writing these is like \p{General_Category=Number}
 (short: \p{gc:n}).
But Perl furnishes shortcuts in which everything up
 through the equal or colon separator is omitted.
So you can instead just write \pN.

Here are the short and long forms of the values the General Category property
 can have:

 Short Long

 L Letter
 LC, L& Cased_Letter (that is: [\p{Ll}\p{Lu}\p{Lt}])
 Lu Uppercase_Letter
 Ll Lowercase_Letter
 Lt Titlecase_Letter
 Lm Modifier_Letter
 Lo Other_Letter

 M Mark
 Mn Nonspacing_Mark
 Mc Spacing_Mark
 Me Enclosing_Mark

 N Number
 Nd Decimal_Number (also Digit)
 Nl Letter_Number
 No Other_Number

 P Punctuation (also Punct)
 Pc Connector_Punctuation
 Pd Dash_Punctuation
 Ps Open_Punctuation
 Pe Close_Punctuation
 Pi Initial_Punctuation

Perl version 5.22.0 documentation - perlunicode

Page 7http://perldoc.perl.org

 (may behave like Ps or Pe depending on usage)
 Pf Final_Punctuation
 (may behave like Ps or Pe depending on usage)
 Po Other_Punctuation

 S Symbol
 Sm Math_Symbol
 Sc Currency_Symbol
 Sk Modifier_Symbol
 So Other_Symbol

 Z Separator
 Zs Space_Separator
 Zl Line_Separator
 Zp Paragraph_Separator

 C Other
 Cc Control (also Cntrl)
 Cf Format
 Cs Surrogate
 Co Private_Use
 Cn Unassigned

Single-letter properties match all characters in any of the
 two-letter sub-properties starting with the
same letter. LC and L& are special: both are aliases for the set consisting of everything matched by
Ll, Lu, and Lt.

Bidirectional Character Types

Because scripts differ in their directionality (Hebrew and Arabic are
 written right to left, for example)
Unicode supplies a Bidi_Class property.
 Some of the values this property can have are:

 Value Meaning

 L Left-to-Right
 LRE Left-to-Right Embedding
 LRO Left-to-Right Override
 R Right-to-Left
 AL Arabic Letter
 RLE Right-to-Left Embedding
 RLO Right-to-Left Override
 PDF Pop Directional Format
 EN European Number
 ES European Separator
 ET European Terminator
 AN Arabic Number
 CS Common Separator
 NSM Non-Spacing Mark
 BN Boundary Neutral
 B Paragraph Separator
 S Segment Separator
 WS Whitespace
 ON Other Neutrals

This property is always written in the compound form.
 For example, \p{Bidi_Class:R} matches

Perl version 5.22.0 documentation - perlunicode

Page 8http://perldoc.perl.org

characters that are normally
 written right to left. Unlike the General_Category property, this

property can have more values added in a future Unicode release. Those
 listed above comprised the
complete set for many Unicode releases, but
 others were added in Unicode 6.3; you can always find
what the
 current ones are in in perluniprops. And http://www.unicode.org/reports/tr9/ describes how to
use them.

Scripts

The world's languages are written in many different scripts. This sentence
 (unless you're reading it in
translation) is written in Latin, while Russian is
 written in Cyrillic, and Greek is written in, well, Greek;
Japanese mainly in
 Hiragana or Katakana. There are many more.

The Unicode Script and Script_Extensions properties give what script a
 given character is in.
Either property can be specified with the
 compound form like \p{Script=Hebrew} (short:
\p{sc=hebr}), or \p{Script_Extensions=Javanese} (short: \p{scx=java}).
 In addition, Perl
furnishes shortcuts for all Script property names. You can omit everything up through the equals
 (or
colon), and simply write \p{Latin} or \P{Cyrillic}.
 (This is not true for Script_Extensions,
which is required to be
 written in the compound form.)

The difference between these two properties involves characters that are
 used in multiple scripts. For
example the digits '0' through '9' are
 used in many parts of the world. These are placed in a script
named Common. Other characters are used in just a few scripts. For
 example, the
"KATAKANA-HIRAGANA DOUBLE HYPHEN" is used in both Japanese
 scripts, Katakana and
Hiragana, but nowhere else. The Script
 property places all characters that are used in multiple
scripts in the Common script, while the Script_Extensions property places those
 that are used in
only a few scripts into each of those scripts; while
 still using Common for those used in many scripts.
Thus both these
 match:

 "0" =~ /\p{sc=Common}/ # Matches
 "0" =~ /\p{scx=Common}/ # Matches

and only the first of these match:

 "\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{sc=Common} # Matches
 "\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{scx=Common} # No match

And only the last two of these match:

 "\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{sc=Hiragana} # No match
 "\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{sc=Katakana} # No match
 "\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{scx=Hiragana} # Matches
 "\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{scx=Katakana} # Matches

Script_Extensions is thus an improved Script, in which there are
 fewer characters in the
Common script, and correspondingly more in
 other scripts. It is new in Unicode version 6.0, and its
data are likely
 to change significantly in later releases, as things get sorted out.
 New code should
probably be using Script_Extensions and not plain Script.

(Actually, besides Common, the Inherited script, contains
 characters that are used in multiple
scripts. These are modifier
 characters which inherit the script value
 of the controlling character. Some
of these are used in many scripts,
 and so go into Inherited in both Script and
Script_Extensions.
 Others are used in just a few scripts, so are in Inherited in Script, but
not in Script_Extensions.)

It is worth stressing that there are several different sets of digits in
 Unicode that are equivalent to 0-9
and are matchable by \d in a
 regular expression. If they are used in a single language only, they
 are
in that language's Script and Script_Extension. If they are
 used in more than one script, they
will be in sc=Common, but only
 if they are used in many scripts should they be in scx=Common.

Perl version 5.22.0 documentation - perlunicode

Page 9http://perldoc.perl.org

A complete list of scripts and their shortcuts is in perluniprops.

Use of the "Is" Prefix

For backward compatibility (with Perl 5.6), all properties writable
 without using the compound form
mentioned
 so far may have Is or Is_ prepended to their name, so \P{Is_Lu}, for
 example, is equal
to \P{Lu}, and \p{IsScript:Arabic} is equal to \p{Arabic}.

Blocks

In addition to scripts, Unicode also defines blocks of
 characters. The difference between scripts and
blocks is that the
 concept of scripts is closer to natural languages, while the concept
 of blocks is more
of an artificial grouping based on groups of Unicode
 characters with consecutive ordinal values. For
example, the "Basic Latin"
 block is all the characters whose ordinals are between 0 and 127,
inclusive; in
 other words, the ASCII characters. The "Latin" script contains some letters
 from this as
well as several other blocks, like "Latin-1 Supplement", "Latin Extended-A", etc., but it
does not contain all the characters from
 those blocks. It does not, for example, contain the digits 0-9,
because
 those digits are shared across many scripts, and hence are in the Common script.

For more about scripts versus blocks, see UAX#24 "Unicode Script Property":
http://www.unicode.org/reports/tr24

The Script or Script_Extensions properties are likely to be the
 ones you want to use when
processing
 natural language; the Block property may occasionally be useful in working
 with the nuts
and bolts of Unicode.

Block names are matched in the compound form, like \p{Block: Arrows} or \p{Blk=Hebrew}.
Unlike most other properties, only a few block names have a
 Unicode-defined short name. But Perl
does provide a (slight, no longer
 recommended) shortcut: You can say, for example \p{In_Arrows}
or \p{In_Hebrew}.

For backwards compatibility, the In prefix may be
 omitted if there is no naming conflict with a script or
any other
 property, and you can even use an Is prefix instead in those cases.
 But don't do this for
new code because your code could break in new
 releases, and this has already happened: There
was a time in very
 early Unicode releases when \p{Hebrew} would have matched the block
Hebrew; now it doesn't.

Using the In prefix avoids this ambiguity, so far. But new versions
 of Unicode continue to add new
properties whose names begin with In.
 There is a possibility that one of them someday will conflict
with your
 usage. Since this is just a Perl extension, Unicode's name will take
 precedence and your
code will become broken. Also, Unicode is free to
 add a script whose name begins with In; that
would cause problems.

So it's clearer and best to use the compound form when specifying
 blocks. And be sure that is what
you really really want to do. In most
 cases scripts are what you want instead.

A complete list of blocks and their shortcuts is in perluniprops.

Other Properties

There are many more properties than the very basic ones described here.
 A complete list is in
perluniprops.

Unicode defines all its properties in the compound form, so all single-form
 properties are Perl
extensions. Most of these are just synonyms for the
 Unicode ones, but some are genuine extensions,
including several that are in
 the compound form. And quite a few of these are actually recommended
by Unicode
 (in http://www.unicode.org/reports/tr18).

This section gives some details on all extensions that aren't just
 synonyms for compound-form
Unicode properties
 (for those properties, you'll have to refer to the Unicode Standard.

\p{All}

Perl version 5.22.0 documentation - perlunicode

Page 10http://perldoc.perl.org

This matches every possible code point. It is equivalent to qr/./s.
 Unlike all the other
non-user-defined \p{} property matches, no
 warning is ever generated if this is property is
matched against a
 non-Unicode code point (see Beyond Unicode code points below).

\p{Alnum}

This matches any \p{Alphabetic} or \p{Decimal_Number} character.

\p{Any}

This matches any of the 1_114_112 Unicode code points. It is a synonym
 for \p{Unicode}.

\p{ASCII}

This matches any of the 128 characters in the US-ASCII character set,
 which is a subset of
Unicode.

\p{Assigned}

This matches any assigned code point; that is, any code point whose general category is not
Unassigned (or equivalently, not Cn).

\p{Blank}

This is the same as \h and \p{HorizSpace}: A character that changes the
 spacing
horizontally.

\p{Decomposition_Type: Non_Canonical} (Short: \p{Dt=NonCanon})

Matches a character that has a non-canonical decomposition.

The Extended Grapheme Clusters (Logical characters) section above
 talked about canonical
decompositions. However, many more characters
 have a different type of decomposition, a
"compatible" or
 "non-canonical" decomposition. The sequences that form these

decompositions are not considered canonically equivalent to the
 pre-composed character. An
example is the "SUPERSCRIPT ONE". It is
 somewhat like a regular digit 1, but not exactly; its
decomposition into
 the digit 1 is called a "compatible" decomposition, specifically a
 "super"
decomposition. There are several such compatibility
 decompositions (see
http://www.unicode.org/reports/tr44), including
 one called "compat", which means some
miscellaneous type of
 decomposition that doesn't fit into the other decomposition categories

that Unicode has chosen.

Note that most Unicode characters don't have a decomposition, so their
 decomposition type is
"None".

For your convenience, Perl has added the Non_Canonical decomposition
 type to mean any
of the several compatibility decompositions.

\p{Graph}

Matches any character that is graphic. Theoretically, this means a character
 that on a printer
would cause ink to be used.

\p{HorizSpace}

This is the same as \h and \p{Blank}: a character that changes the
 spacing horizontally.

\p{In=*}

This is a synonym for \p{Present_In=*}

\p{PerlSpace}

This is the same as \s, restricted to ASCII, namely [\f\n\r\t]
 and starting in Perl v5.18,
a vertical tab.

Mnemonic: Perl's (original) space

\p{PerlWord}

Perl version 5.22.0 documentation - perlunicode

Page 11http://perldoc.perl.org

This is the same as \w, restricted to ASCII, namely [A-Za-z0-9_]

Mnemonic: Perl's (original) word.

\p{Posix...}

There are several of these, which are equivalents, using the \p{}
 notation, for Posix classes
and are described in "POSIX Character Classes" in perlrecharclass.

\p{Present_In: *} (Short: \p{In=*})

This property is used when you need to know in what Unicode version(s) a
 character is.

The "*" above stands for some two digit Unicode version number, such as 1.1 or 4.0; or the
"*" can also be Unassigned. This property will
 match the code points whose final disposition
has been settled as of the
 Unicode release given by the version number; \p{Present_In:
Unassigned}
 will match those code points whose meaning has yet to be assigned.

For example, U+0041 "LATIN CAPITAL LETTER A" was present in the very first
 Unicode
release available, which is 1.1, so this property is true for all
 valid "*" versions. On the other
hand, U+1EFF was not assigned until version
 5.1 when it became "LATIN SMALL LETTER
Y WITH LOOP", so the only "*" that
 would match it are 5.1, 5.2, and later.

Unicode furnishes the Age property from which this is derived. The problem
 with Age is that a
strict interpretation of it (which Perl takes) has it
 matching the precise release a code point's
meaning is introduced in. Thus U+0041 would match only 1.1; and U+1EFF only 5.1. This is
not usually what
 you want.

Some non-Perl implementations of the Age property may change its meaning to be
 the same
as the Perl Present_In property; just be aware of that.

Another confusion with both these properties is that the definition is not
 that the code point has
been assigned, but that the meaning of the code point
 has been determined. This is because
66 code points will always be
 unassigned, and so the Age for them is the Unicode version in
which the decision
 to make them so was made. For example, U+FDD0 is to be permanently

unassigned to a character, and the decision to do that was made in version 3.1,
 so
\p{Age=3.1} matches this character, as also does \p{Present_In: 3.1} and up.

\p{Print}

This matches any character that is graphical or blank, except controls.

\p{SpacePerl}

This is the same as \s, including beyond ASCII.

Mnemonic: Space, as modified by Perl. (It doesn't include the vertical tab
 until v5.18, which
both the Posix standard and Unicode consider white space.)

\p{Title} and \p{Titlecase}

Under case-sensitive matching, these both match the same code points as \p{General
Category=Titlecase_Letter} (\p{gc=lt}). The difference
 is that under /i caseless
matching, these match the same as \p{Cased}, whereas \p{gc=lt} matches
\p{Cased_Letter).

\p{Unicode}

This matches any of the 1_114_112 Unicode code points. \p{Any}.

\p{VertSpace}

This is the same as \v: A character that changes the spacing vertically.

\p{Word}

This is the same as \w, including over 100_000 characters beyond ASCII.

\p{XPosix...}

Perl version 5.22.0 documentation - perlunicode

Page 12http://perldoc.perl.org

There are several of these, which are the standard Posix classes
 extended to the full Unicode
range. They are described in "POSIX Character Classes" in perlrecharclass.

User-Defined Character Properties
You can define your own binary character properties by defining subroutines
 whose names begin with
"In" or "Is". (The experimental feature "(?[])" in perlre provides an alternative which allows more
complex
 definitions.) The subroutines can be defined in any
 package. The user-defined properties
can be used in the regular expression \p{} and \P{} constructs; if you are using a user-defined
property from a
 package other than the one you are in, you must specify its package in the \p{} or
\P{} construct.

 # assuming property Is_Foreign defined in Lang::
 package main; # property package name required
 if ($txt =~ /\p{Lang::IsForeign}+/) { ... }

 package Lang; # property package name not required
 if ($txt =~ /\p{IsForeign}+/) { ... }

Note that the effect is compile-time and immutable once defined.
 However, the subroutines are
passed a single parameter, which is 0 if
 case-sensitive matching is in effect and non-zero if caseless
matching
 is in effect. The subroutine may return different values depending on
 the value of the flag,
and one set of values will immutably be in effect
 for all case-sensitive matches, and the other set for
all case-insensitive
 matches.

Note that if the regular expression is tainted, then Perl will die rather
 than calling the subroutine when
the name of the subroutine is
 determined by the tainted data.

The subroutines must return a specially-formatted string, with one
 or more newline-separated lines.
Each line must be one of the following:

A single hexadecimal number denoting a code point to include.

Two hexadecimal numbers separated by horizontal whitespace (space or
 tabular characters)
denoting a range of code points to include.

Something to include, prefixed by "+": a built-in character
 property (prefixed by "utf8::") or
a fully qualified (including package
 name) user-defined character property,
 to represent all the
characters in that property; two hexadecimal code
 points for a range; or a single hexadecimal
code point.

Something to exclude, prefixed by "-": an existing character
 property (prefixed by "utf8::"
) or a fully qualified (including package
 name) user-defined character property,
 to represent all
the characters in that property; two hexadecimal code
 points for a range; or a single
hexadecimal code point.

Something to negate, prefixed "!": an existing character
 property (prefixed by "utf8::") or
a fully qualified (including package
 name) user-defined character property,
 to represent all the
characters in that property; two hexadecimal code
 points for a range; or a single hexadecimal
code point.

Something to intersect with, prefixed by "&": an existing character
 property (prefixed by
"utf8::") or a fully qualified (including package
 name) user-defined character property,
 for
all the characters except the characters in the property; two
 hexadecimal code points for a
range; or a single hexadecimal code point.

For example, to define a property that covers both the Japanese
 syllabaries (hiragana and katakana),
you can define

 sub InKana {

Perl version 5.22.0 documentation - perlunicode

Page 13http://perldoc.perl.org

 return <<END;
 3040\t309F
 30A0\t30FF
 END
 }

Imagine that the here-doc end marker is at the beginning of the line.
 Now you can use \p{InKana}
and \P{InKana}.

You could also have used the existing block property names:

 sub InKana {
 return <<'END';
 +utf8::InHiragana
 +utf8::InKatakana
 END
 }

Suppose you wanted to match only the allocated characters,
 not the raw block ranges: in other words,
you want to remove
 the unassigned characters:

 sub InKana {
 return <<'END';
 +utf8::InHiragana
 +utf8::InKatakana
 -utf8::IsCn
 END
 }

The negation is useful for defining (surprise!) negated classes.

 sub InNotKana {
 return <<'END';
 !utf8::InHiragana
 -utf8::InKatakana
 +utf8::IsCn
 END
 }

This will match all non-Unicode code points, since every one of them is
 not in Kana. You can use
intersection to exclude these, if desired, as
 this modified example shows:

 sub InNotKana {
 return <<'END';
 !utf8::InHiragana
 -utf8::InKatakana
 +utf8::IsCn
 &utf8::Any
 END
 }

&utf8::Any must be the last line in the definition.

Intersection is used generally for getting the common characters matched
 by two (or more) classes.
It's important to remember not to use "&" for
 the first set; that would be intersecting with nothing,
resulting in an
 empty set.

Perl version 5.22.0 documentation - perlunicode

Page 14http://perldoc.perl.org

Unlike non-user-defined \p{} property matches, no warning is ever
 generated if these properties are
matched against a non-Unicode code
 point (see Beyond Unicode code points below).

User-Defined Case Mappings (for serious hackers only)
This feature has been removed as of Perl 5.16.
 The CPAN module Unicode::Casing provides
better functionality without
 the drawbacks that this feature had. If you are using a Perl earlier
 than
5.16, this feature was most fully documented in the 5.14 version of
 this pod:
http://perldoc.perl.org/5.14.0/perlunicode.html#User-Defined-Case-Mappings-%28for
-serious-hackers-only%29

Character Encodings for Input and Output
See Encode.

Unicode Regular Expression Support Level
The following list of Unicode supported features for regular expressions describes
 all features
currently directly supported by core Perl. The references to "Level N"
 and the section numbers refer to
the Unicode Technical Standard #18,
 "Unicode Regular Expressions", version 13, from August 2008.

Level 1 - Basic Unicode Support

 RL1.1 Hex Notation - done [1]
 RL1.2 Properties - done [2][3]
 RL1.2a Compatibility Properties - done [4]
 RL1.3 Subtraction and Intersection - experimental [5]
 RL1.4 Simple Word Boundaries - done [6]
 RL1.5 Simple Loose Matches - done [7]
 RL1.6 Line Boundaries - MISSING [8][9]
 RL1.7 Supplementary Code Points - done [10]

[1] \N{U+...} and \x{...}

[2] \p{...} \P{...}

[3] supports not only minimal list, but all Unicode character
 properties (see Unicode Character
Properties above)

[4] \d \D \s \S \w \W \X [:prop:] [:^prop:]

[5] The experimental feature starting in v5.18 "(?[...])" accomplishes
 this.

See "(?[])" in perlre. If you don't want to use an experimental
 feature, you can use one
of the following:

Regular expression look-ahead

You can mimic class subtraction using lookahead.
 For example, what UTS#18
might write as

 [{Block=Greek}-[{UNASSIGNED}]]

in Perl can be written as:

 (?!\p{Unassigned})\p{Block=Greek}
 (?=\p{Assigned})\p{Block=Greek}

But in this particular example, you probably really want

 \p{Greek}

which will match assigned characters known to be part of the Greek script.

CPAN module Unicode::Regex::Set

It does implement the full UTS#18 grouping, intersection, union, and
 removal
(subtraction) syntax.

Perl version 5.22.0 documentation - perlunicode

Page 15http://perldoc.perl.org

User-Defined Character Properties

"+" for union, "-" for removal (set-difference), "&" for intersection

[6] \b \B

[7]
 Note that Perl does Full case-folding in matching, not Simple:

For example U+1F88 is equivalent to U+1F00 U+03B9, instead of just U+1F80. This
difference matters mainly for certain Greek capital
 letters with certain modifiers: the
Full case-folding decomposes the
 letter, while the Simple case-folding would map it to
a single
 character.

[8]
 Perl treats \n as the start- and end-line delimiter. Unicode
 specifies more characters that
should be so-interpreted.

These are:

 VT U+000B (\v in C)
 FF U+000C (\f)
 CR U+000D (\r)
 NEL U+0085
 LS U+2028
 PS U+2029

^ and $ in regular expression patterns are supposed to match all
 these, but don't.

These characters also don't, but should, affect <> $., and
 script line numbers.

Also, lines should not be split within CRLF (i.e. there is no
 empty line between \r and
\n). For CRLF, try the :crlf
 layer (see PerlIO).

[9] But Unicode::LineBreak is available.

This module supplies line breaking conformant with UAX#14 "Unicode Line Breaking
Algorithm".

[10]
 UTF-8/UTF-EBDDIC used in Perl allows not only U+10000 to U+10FFFF but also beyond
U+10FFFF

Level 2 - Extended Unicode Support

 RL2.1 Canonical Equivalents - MISSING [10][11]
 RL2.2 Default Grapheme Clusters - MISSING [12]
 RL2.3 Default Word Boundaries - DONE [14]
 RL2.4 Default Loose Matches - MISSING [15]
 RL2.5 Name Properties - DONE
 RL2.6 Wildcard Properties - MISSING

 [10] see UAX#15 "Unicode Normalization Forms"
 [11] have Unicode::Normalize but not integrated to regexes
 [12] have \X and \b{gcb} but we don't have a "Grapheme Cluster
 Mode"
 [14] see UAX#29, Word Boundaries
 [15] This is covered in Chapter 3.13 (in Unicode 6.0)

Level 3 - Tailored Support

 RL3.1 Tailored Punctuation - MISSING
 RL3.2 Tailored Grapheme Clusters - MISSING [17][18]
 RL3.3 Tailored Word Boundaries - MISSING
 RL3.4 Tailored Loose Matches - MISSING
 RL3.5 Tailored Ranges - MISSING
 RL3.6 Context Matching - MISSING [19]

Perl version 5.22.0 documentation - perlunicode

Page 16http://perldoc.perl.org

 RL3.7 Incremental Matches - MISSING
 (RL3.8 Unicode Set Sharing)
 RL3.9 Possible Match Sets - MISSING
 RL3.10 Folded Matching - MISSING [20]
 RL3.11 Submatchers - MISSING

 [17] see UAX#10 "Unicode Collation Algorithms"
 [18] have Unicode::Collate but not integrated to regexes
 [19] have (?<=x) and (?=x), but look-aheads or look-behinds
 should see outside of the target substring
 [20] need insensitive matching for linguistic features other
 than case; for example, hiragana to katakana, wide and
 narrow, simplified Han to traditional Han (see UTR#30
 "Character Foldings")

Unicode Encodings
Unicode characters are assigned to code points, which are abstract
 numbers. To use these numbers,
various encodings are needed.

UTF-8

UTF-8 is a variable-length (1 to 4 bytes), byte-order independent
 encoding. In most of Perl's
documentation, including elsewhere in this
 document, the term "UTF-8" means also
"UTF-EBCDIC". But in this section,
 "UTF-8" refers only to the encoding used on ASCII
platforms. It is a
 superset of 7-bit US-ASCII, so anything encoded in ASCII has the
 identical
representation when encoded in UTF-8.

The following table is from Unicode 3.2.

 Code Points 1st Byte 2nd Byte 3rd Byte 4th Byte

 U+0000..U+007F 00..7F
 U+0080..U+07FF * C2..DF 80..BF
 U+0800..U+0FFF E0 * A0..BF 80..BF
 U+1000..U+CFFF E1..EC 80..BF 80..BF
 U+D000..U+D7FF ED 80..9F 80..BF
 U+D800..U+DFFF +++++ utf16 surrogates, not legal utf8 +++++
 U+E000..U+FFFF EE..EF 80..BF 80..BF
 U+10000..U+3FFFF F0 * 90..BF 80..BF 80..BF
 U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
 U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

Note the gaps marked by "*" before several of the byte entries above. These are
 caused by
legal UTF-8 avoiding non-shortest encodings: it is technically
 possible to UTF-8-encode a
single code point in different ways, but that is
 explicitly forbidden, and the shortest possible
encoding should always be used
 (and that is what Perl does).

Another way to look at it is via bits:

 Code Points 1st Byte 2nd Byte 3rd Byte 4th Byte

 0aaaaaaa 0aaaaaaa
 00000bbbbbaaaaaa 110bbbbb 10aaaaaa
 ccccbbbbbbaaaaaa 1110cccc 10bbbbbb 10aaaaaa
 00000dddccccccbbbbbbaaaaaa 11110ddd 10cccccc 10bbbbbb 10aaaaaa

As you can see, the continuation bytes all begin with "10", and the
 leading bits of the start
byte tell how many bytes there are in the
 encoded character.

The original UTF-8 specification allowed up to 6 bytes, to allow
 encoding of numbers up to

Perl version 5.22.0 documentation - perlunicode

Page 17http://perldoc.perl.org

0x7FFF_FFFF. Perl continues to allow those,
 and has extended that up to 13 bytes to encode
code points up to what
 can fit in a 64-bit word. However, Perl will warn if you output any of

these as being non-portable; and under strict UTF-8 input protocols,
 they are forbidden.

UTF-EBCDIC

Like UTF-8, but EBCDIC-safe, in the way that UTF-8 is ASCII-safe.
 This means that all the
basic characters (which includes all
 those that have ASCII equivalents (like "A", "0", "%",
etc.)
 are the same in both EBCDIC and UTF-EBCDIC.)

UTF-EBCDIC is used on EBCDIC platforms. The largest Unicode code points
 take 5 bytes to
represent (instead of 4 in UTF-8), and Perl extends it
 to a maximum of 7 bytes to encode pode
points up to what can fit in a
 32-bit word (instead of 13 bytes and a 64-bit word in UTF-8).

UTF-16, UTF-16BE, UTF-16LE, Surrogates, and BOM's (Byte Order Marks)

The followings items are mostly for reference and general Unicode
 knowledge, Perl doesn't
use these constructs internally.

Like UTF-8, UTF-16 is a variable-width encoding, but where
 UTF-8 uses 8-bit code units,
UTF-16 uses 16-bit code units.
 All code points occupy either 2 or 4 bytes in UTF-16: code
points U+0000..U+FFFF are stored in a single 16-bit unit, and code
 points
U+10000..U+10FFFF in two 16-bit units. The latter case is
 using surrogates, the first 16-bit
unit being the high
 surrogate, and the second being the low surrogate.

Surrogates are code points set aside to encode the U+10000..U+10FFFF
 range of Unicode
code points in pairs of 16-bit units. The high
 surrogates are the range U+D800..U+DBFF and
the low surrogates
 are the range U+DC00..U+DFFF. The surrogate encoding is

 $hi = ($uni - 0x10000) / 0x400 + 0xD800;
 $lo = ($uni - 0x10000) % 0x400 + 0xDC00;

and the decoding is

 $uni = 0x10000 + ($hi - 0xD800) * 0x400 + ($lo - 0xDC00);

Because of the 16-bitness, UTF-16 is byte-order dependent. UTF-16
 itself can be used for
in-memory computations, but if storage or
 transfer is required either UTF-16BE (big-endian) or
UTF-16LE
 (little-endian) encodings must be chosen.

This introduces another problem: what if you just know that your data
 is UTF-16, but you don't
know which endianness? Byte Order Marks, or BOM's, are a solution to this. A special
character has been reserved
 in Unicode to function as a byte order marker: the character with
the
 code point U+FEFF is the BOM.

The trick is that if you read a BOM, you will know the byte order,
 since if it was written on a
big-endian platform, you will read the
 bytes 0xFE 0xFF, but if it was written on a little-endian
platform,
 you will read the bytes 0xFF 0xFE. (And if the originating platform
 was writing in
ASCII platform UTF-8, you will read the bytes 0xEF 0xBB 0xBF.)

The way this trick works is that the character with the code point U+FFFE is not supposed to
be in input streams, so the
 sequence of bytes 0xFF 0xFE is unambiguously "BOM,
represented in
 little-endian format" and cannot be U+FFFE, represented in big-endian
 format".

Surrogates have no meaning in Unicode outside their use in pairs to
 represent other code
points. However, Perl allows them to be
 represented individually internally, for example by
saying chr(0xD801), so that all code points, not just those valid for open
 interchange, are

representable. Unicode does define semantics for them, such as their General_Category is
"Cs". But because their use is somewhat dangerous,
 Perl will warn (using the warning
category "surrogate", which is a
 sub-category of "utf8") if an attempt is made
 to do
things like take the lower case of one, or match
 case-insensitively, or to output them. (But
don't try this on Perls
 before 5.14.)

UTF-32, UTF-32BE, UTF-32LE

Perl version 5.22.0 documentation - perlunicode

Page 18http://perldoc.perl.org

The UTF-32 family is pretty much like the UTF-16 family, except that
 the units are 32-bit, and
therefore the surrogate scheme is not
 needed. UTF-32 is a fixed-width encoding. The BOM
signatures are 0x00 0x00 0xFE 0xFF for BE and 0xFF 0xFE 0x00 0x00 for LE.

UCS-2, UCS-4

Legacy, fixed-width encodings defined by the ISO 10646 standard. UCS-2 is a 16-bit

encoding. Unlike UTF-16, UCS-2 is not extensible beyond U+FFFF,
 because it does not use
surrogates. UCS-4 is a 32-bit encoding,
 functionally identical to UTF-32 (the difference being
that
 UCS-4 forbids neither surrogates nor code points larger than 0x10_FFFF).

UTF-7

A seven-bit safe (non-eight-bit) encoding, which is useful if the
 transport or storage is not
eight-bit safe. Defined by RFC 2152.

Noncharacter code points
66 code points are set aside in Unicode as "noncharacter code points".
 These all have the
Unassigned (Cn) General_Category, and
 no character will ever be assigned to any of them. They
are the 32 code
 points between U+FDD0 and U+FDEF inclusive, and the 34 code
 points:

 U+FFFE U+FFFF
 U+1FFFE U+1FFFF
 U+2FFFE U+2FFFF
 ...
 U+EFFFE U+EFFFF
 U+FFFFE U+FFFFF
 U+10FFFE U+10FFFF

Until Unicode 7.0, the noncharacters were "forbidden for use in open
 interchange of Unicode text
data", so that code that processed those
 streams could use these code points as sentinels that could
be mixed in
 with character data, and would always be distinguishable from that data.
 (Emphasis
above and in the next paragraph are added in this document.)

Unicode 7.0 changed the wording so that they are "not recommended for
 use in open interchange of
Unicode text data". The 7.0 Standard goes on
 to say:

"If a noncharacter is received in open interchange, an application is
 not required to interpret it
in any way. It is good practice, however,
 to recognize it as a noncharacter and to take
appropriate action, such
 as replacing it with U+FFFD replacement character, to indicate the

problem in the text. It is not recommended to simply delete
 noncharacter code points from
such text, because of the potential
 security issues caused by deleting uninterpreted
characters. (See
 conformance clause C7 in Section 3.2, Conformance Requirements, and
Unicode Technical Report #36, "Unicode Security Considerations")."

This change was made because it was found that various commercial tools
 like editors, or for things
like source code control, had been written
 so that they would not handle program files that used these
code points,
 effectively precluding their use almost entirely! And that was never
 the intent. They've
always been meant to be usable within an
 application, or cooperating set of applications, at will.

If you're writing code, such as an editor, that is supposed to be able
 to handle any Unicode text data,
then you shouldn't be using these code
 points yourself, and instead allow them in the input. If you
need
 sentinels, they should instead be something that isn't legal Unicode.
 For UTF-8 data, you can
use the bytes 0xC1 and 0xC2 as sentinels, as
 they never appear in well-formed UTF-8. (There are
equivalents for
 UTF-EBCDIC). You can also store your Unicode code points in integer
 variables and
use negative values as sentinels.

If you're not writing such a tool, then whether you accept noncharacters
 as input is up to you (though
the Standard recommends that you not). If
 you do strict input stream checking with Perl, these code
points
 continue to be forbidden. This is to maintain backward compatibility
 (otherwise potential

Perl version 5.22.0 documentation - perlunicode

Page 19http://perldoc.perl.org

security holes could open up, as an unsuspecting
 application that was written assuming the
noncharacters would be
 filtered out before getting to it, could now, without warning, start
 getting
them). To do strict checking, you can use the layer :encoding('UTF-8').

Perl continues to warn (using the warning category "nonchar", which
 is a sub-category of "utf8")
if an attempt is made to output
 noncharacters.

Beyond Unicode code points
The maximum Unicode code point is U+10FFFF, and Unicode only defines
 operations on code points
up through that. But Perl works on code
 points up to the maximum permissible unsigned number
available on the
 platform. However, Perl will not accept these from input streams unless
 lax rules are
being used, and will warn (using the warning category "non_unicode", which is a sub-category of
"utf8") if any are output.

Since Unicode rules are not defined on these code points, if a
 Unicode-defined operation is done on
them, Perl uses what we believe are
 sensible rules, while generally warning, using the
"non_unicode"
 category. For example, uc("\x{11_0000}") will generate such a
 warning,
returning the input parameter as its result, since Perl defines
 the uppercase of every non-Unicode
code point to be the code point
 itself. (All the case changing operations, not just uppercasing, work

this way.)

The situation with matching Unicode properties in regular expressions,
 the \p{} and \P{}
constructs, against these code points is not as
 clear cut, and how these are handled has changed as
we've gained
 experience.

One possibility is to treat any match against these code points as
 undefined. But since Perl doesn't
have the concept of a match being
 undefined, it converts this to failing or FALSE. This is almost, but

not quite, what Perl did from v5.14 (when use of these code points
 became generally reliable) through
v5.18. The difference is that Perl
 treated all \p{} matches as failing, but all \P{} matches as

succeeding.

One problem with this is that it leads to unexpected, and confusting
 results in some cases:

 chr(0x110000) =~ \p{ASCII_Hex_Digit=True} # Failed on <= v5.18
 chr(0x110000) =~ \p{ASCII_Hex_Digit=False} # Failed! on <= v5.18

That is, it treated both matches as undefined, and converted that to
 false (raising a warning on each).
The first case is the expected
 result, but the second is likely counterintuitive: "How could both be
 false
when they are complements?" Another problem was that the
 implementation optimized many Unicode
property matches down to already
 existing simpler, faster operations, which don't raise the warning.
We
 chose to not forgo those optimizations, which help the vast majority of
 matches, just to generate a
warning for the unlikely event that an
 above-Unicode code point is being matched against.

As a result of these problems, starting in v5.20, what Perl does is
 to treat non-Unicode code points as
just typical unassigned Unicode
 characters, and matches accordingly. (Note: Unicode has atypical

unassigned code points. For example, it has noncharacter code points,
 and ones that, when they do
get assigned, are destined to be written
 Right-to-left, as Arabic and Hebrew are. Perl assumes that no
non-Unicode code point has any atypical properties.)

Perl, in most cases, will raise a warning when matching an above-Unicode
 code point against a
Unicode property when the result is TRUE for \p{}, and FALSE for \P{}. For example:

 chr(0x110000) =~ \p{ASCII_Hex_Digit=True} # Fails, no warning
 chr(0x110000) =~ \p{ASCII_Hex_Digit=False} # Succeeds, with warning

In both these examples, the character being matched is non-Unicode, so
 Unicode doesn't define how
it should match. It clearly isn't an ASCII
 hex digit, so the first example clearly should fail, and so it
does,
 with no warning. But it is arguable that the second example should have
 an undefined, hence

Perl version 5.22.0 documentation - perlunicode

Page 20http://perldoc.perl.org

FALSE, result. So a warning is raised for it.

Thus the warning is raised for many fewer cases than in earlier Perls,
 and only when what the result
is could be arguable. It turns out that
 none of the optimizations made by Perl (or are ever likely to be
made)
 cause the warning to be skipped, so it solves both problems of Perl's
 earlier approach. The
most commonly used property that is affected by
 this change is \p{Unassigned} which is a short
form for \p{General_Category=Unassigned}. Starting in v5.20, all non-Unicode
 code points are
considered Unassigned. In earlier releases the
 matches failed because the result was considered
undefined.

The only place where the warning is not raised when it might ought to
 have been is if optimizations
cause the whole pattern match to not even
 be attempted. For example, Perl may figure out that for a
string to
 match a certain regular expression pattern, the string has to contain
 the substring "foobar".
Before attempting the match, Perl may look
 for that substring, and if not found, immediately fail the
match without
 actually trying it; so no warning gets generated even if the string
 contains an
above-Unicode code point.

This behavior is more "Do what I mean" than in earlier Perls for most
 applications. But it catches
fewer issues for code that needs to be
 strictly Unicode compliant. Therefore there is an additional
mode of
 operation available to accommodate such code. This mode is enabled if a
 regular expression
pattern is compiled within the lexical scope where
 the "non_unicode" warning class has been
made fatal, say by:

 use warnings FATAL => "non_unicode"

(see warnings). In this mode of operation, Perl will raise the
 warning for all matches against a
non-Unicode code point (not just the
 arguable ones), and it skips the optimizations that might cause
the
 warning to not be output. (It currently still won't warn if the match
 isn't even attempted, like in the
"foobar" example above.)

In summary, Perl now normally treats non-Unicode code points as typical
 Unicode unassigned code
points for regular expression matches, raising a
 warning only when it is arguable what the result
should be. However, if
 this warning has been made fatal, it isn't skipped.

There is one exception to all this. \p{All} looks like a Unicode
 property, but it is a Perl extension
that is defined to be true for all
 possible code points, Unicode or not, so no warning is ever generated

when matching this against a non-Unicode code point. (Prior to v5.20,
 it was an exact synonym for
\p{Any}, matching code points 0
 through 0x10FFFF.)

Security Implications of Unicode
First, read Unicode Security Considerations.

Also, note the following:

Malformed UTF-8

Unfortunately, the original specification of UTF-8 leaves some room for
 interpretation of how
many bytes of encoded output one should generate
 from one input Unicode character. Strictly
speaking, the shortest
 possible sequence of UTF-8 bytes should be generated,
 because
otherwise there is potential for an input buffer overflow at
 the receiving end of a UTF-8
connection. Perl always generates the
 shortest length UTF-8, and with warnings on, Perl will
warn about
 non-shortest length UTF-8 along with other malformations, such as the
 surrogates,
which are not Unicode code points valid for interchange.

Regular expression pattern matching may surprise you if you're not
 accustomed to Unicode.
Starting in Perl 5.14, several pattern
 modifiers are available to control this, called the character
set
 modifiers. Details are given in "Character set modifiers" in perlre.

As discussed elsewhere, Perl has one foot (two hooves?) planted in
 each of two worlds: the old world
of ASCII and single-byte locales, and
 the new world of Unicode, upgrading when necessary.
 If your

Perl version 5.22.0 documentation - perlunicode

Page 21http://perldoc.perl.org

legacy code does not explicitly use Unicode, no automatic
 switch-over to Unicode should happen.

Unicode in Perl on EBCDIC
Unicode is supported on EBCDIC platforms. See perlebcdic.

Unless ASCII vs. EBCDIC issues are specifically being discussed,
 references to UTF-8 encoding in
this document and elsewhere should be
 read as meaning UTF-EBCDIC on EBCDIC platforms.
 See
"Unicode and UTF" in perlebcdic.

Because UTF-EBCDIC is so similar to UTF-8, the differences are mostly
 hidden from you; use utf8
(and NOT something like use utfebcdic) declares the the script is in the platform's
 "native" 8-bit
encoding of Unicode. (Similarly for the ":utf8"
 layer.)

Locales
See "Unicode and UTF-8" in perllocale

When Unicode Does Not Happen
There are still many places where Unicode (in some encoding or
 another) could be given as
arguments or received as results, or both in
 Perl, but it is not, in spite of Perl having extensive ways to
input and
 output in Unicode, and a few other "entry points" like the @ARGV
 array (which can
sometimes be interpreted as UTF-8).

The following are such interfaces. Also, see The "Unicode Bug".
 For all of these interfaces Perl

currently (as of v5.16.0) simply assumes byte strings both as arguments
 and results, or UTF-8 strings
if the (deprecated) encoding pragma has been used.

One reason that Perl does not attempt to resolve the role of Unicode in
 these situations is that the
answers are highly dependent on the operating
 system and the file system(s). For example, whether
filenames can be
 in Unicode and in exactly what kind of encoding, is not exactly a
 portable concept.
Similarly for qx and system: how well will the
 "command-line interface" (and which of them?) handle
Unicode?

chdir, chmod, chown, chroot, exec, link, lstat, mkdir, rename, rmdir, stat,
symlink, truncate, unlink, utime, -X

%ENV

glob (aka the <*>)

open, opendir, sysopen

qx (aka the backtick operator), system

readdir, readlink

The "Unicode Bug"
The term, "Unicode bug" has been applied to an inconsistency with the
 code points in the Latin-1
Supplement block, that is, between
 128 and 255. Without a locale specified, unlike all other
characters or
 code points, these characters can have very different semantics
 depending on the rules
in effect. (Characters whose code points are
 above 255 force Unicode rules; whereas the rules for
ASCII characters
 are the same under both ASCII and Unicode rules.)

Under Unicode rules, these upper-Latin1 characters are interpreted as
 Unicode code points, which
means they have the same semantics as Latin-1
 (ISO-8859-1) and C1 controls.

As explained in ASCII Rules versus Unicode Rules, under ASCII rules,
 they are considered to be
unassigned characters.

This can lead to unexpected results. For example, a string's
 semantics can suddenly change if a code
point above 255 is appended to
 it, which changes the rules from ASCII to Unicode. As an
 example,

Perl version 5.22.0 documentation - perlunicode

Page 22http://perldoc.perl.org

consider the following program and its output:

 $ perl -le'
 no feature 'unicode_strings';
 $s1 = "\xC2";
 $s2 = "\x{2660}";
 for ($s1, $s2, $s1.$s2) {
 print /\w/ || 0;
 }
 '
 0
 0
 1

If there's no \w in s1 nor in s2, why does their concatenation
 have one?

This anomaly stems from Perl's attempt to not disturb older programs that
 didn't use Unicode, along
with Perl's desire to add Unicode support
 seamlessly. But the result turned out to not be seamless.
(By the way,
 you can choose to be warned when things like this happen. See encoding::warnings
.)

use feature 'unicode_strings'
 was added, starting in Perl v5.12, to address this problem. It
affects
 these things:

Changing the case of a scalar, that is, using uc(), ucfirst(), lc(),
 and lcfirst(), or
\L, \U, \u and \l in double-quotish
 contexts, such as regular expression substitutions.

Under unicode_strings starting in Perl 5.12.0, Unicode rules are
 generally used. See "lc"
in perlfunc for details on how this works
 in combination with various other pragmas.

Using caseless (/i) regular expression matching.

Starting in Perl 5.14.0, regular expressions compiled within
 the scope of unicode_strings
use Unicode rules
 even when executed or compiled into larger
 regular expressions outside
the scope.

Matching any of several properties in regular expressions.

These properties are \b (without braces), \B (without braces), \s, \S, \w, \W, and all the
Posix character classes except [[:ascii:]].

Starting in Perl 5.14.0, regular expressions compiled within
 the scope of unicode_strings
use Unicode rules
 even when executed or compiled into larger
 regular expressions outside
the scope.

In quotemeta or its inline equivalent \Q.

Starting in Perl 5.16.0, consistent quoting rules are used within the
 scope of
unicode_strings, as described in "quotemeta" in perlfunc.
 Prior to that, or outside its
scope, no code points above 127 are quoted
 in UTF-8 encoded strings, but in byte encoded
strings, code points
 between 128-255 are always quoted.

You can see from the above that the effect of unicode_strings
 increased over several Perl
releases. (And Perl's support for Unicode
 continues to improve; it's best to use the latest available
release in
 order to get the most complete and accurate results possible.) Note that
unicode_strings is automatically chosen if you use 5.012 or
 higher.

For Perls earlier than those described above, or when a string is passed
 to a function outside the
scope of unicode_strings, see the next section.

Perl version 5.22.0 documentation - perlunicode

Page 23http://perldoc.perl.org

Forcing Unicode in Perl (Or Unforcing Unicode in Perl)
Sometimes (see When Unicode Does Not Happen or The "Unicode Bug")
 there are situations where
you simply need to force a byte
 string into UTF-8, or vice versa. The standard module Encode can be

used for this, or the low-level calls utf8::upgrade($bytestring) and
utf8::downgrade($utf8string[, FAIL_OK]).

Note that utf8::downgrade() can fail if the string contains characters
 that don't fit into a byte.

Calling either function on a string that already is in the desired state is a
 no-op.

ASCII Rules versus Unicode Rules gives all the ways that a string is
 made to use Unicode rules.

Using Unicode in XS
See "Unicode Support" in perlguts for an introduction to Unicode at
 the XS level, and "Unicode
Support" in perlapi for the API details.

Hacking Perl to work on earlier Unicode versions (for very serious hackers only)
Perl by default comes with the latest supported Unicode version built-in, but
 the goal is to allow you to
change to use any earlier one. In Perls
 v5.20 and v5.22, however, the earliest usable version is
Unicode 5.1.
 Perl v5.18 is able to handle all earlier versions.

Download the files in the desired version of Unicode from the Unicode web
 site
http://www.unicode.org). These should replace the existing files in lib/unicore in the Perl source tree.
Follow the instructions in README.perl in that directory to change some of their names, and then
build
 perl (see INSTALL).

Porting code from perl-5.6.X
Perls starting in 5.8 have a different Unicode model from 5.6. In 5.6 the
 programmer was required to
use the utf8 pragma to declare that a
 given scope expected to deal with Unicode data and had to
make sure that
 only Unicode data were reaching that scope. If you have code that is
 working with 5.6,
you will need some of the following adjustments to
 your code. The examples are written such that the
code will continue to
 work under 5.6, so you should be safe to try them out.

A filehandle that should read or write UTF-8

 if ($] > 5.008) {
 binmode $fh, ":encoding(utf8)";
 }

A scalar that is going to be passed to some extension

Be it Compress::Zlib, Apache::Request or any extension that has no
 mention of Unicode
in the manpage, you need to make sure that the
 UTF8 flag is stripped off. Note that at the time
of this writing
 (January 2012) the mentioned modules are not UTF-8-aware. Please
 check the
documentation to verify if this is still true.

 if ($] > 5.008) {
 require Encode;
 $val = Encode::encode_utf8($val); # make octets
 }

A scalar we got back from an extension

If you believe the scalar comes back as UTF-8, you will most likely
 want the UTF8 flag restored:

 if ($] > 5.008) {
 require Encode;
 $val = Encode::decode_utf8($val);
 }

Perl version 5.22.0 documentation - perlunicode

Page 24http://perldoc.perl.org

Same thing, if you are really sure it is UTF-8

 if ($] > 5.008) {
 require Encode;
 Encode::_utf8_on($val);
 }

A wrapper for DBI fetchrow_array and fetchrow_hashref

When the database contains only UTF-8, a wrapper function or method is
 a convenient way to
replace all your fetchrow_array and fetchrow_hashref calls. A wrapper function will also
make it easier to
 adapt to future enhancements in your database driver. Note that at the
 time of
this writing (January 2012), the DBI has no standardized way
 to deal with UTF-8 data. Please
check the DBI documentation to verify if
 that is still true.

 sub fetchrow {
 # $what is one of fetchrow_{array,hashref}
 my($self, $sth, $what) = @_;
 if ($] < 5.008) {
 return $sth->$what;
 } else {
 require Encode;
 if (wantarray) {
 my @arr = $sth->$what;
 for (@arr) {
 defined && /[^\000-\177]/ && Encode::_utf8_on($_);
 }
 return @arr;
 } else {
 my $ret = $sth->$what;
 if (ref $ret) {
 for my $k (keys %$ret) {
 defined
 && /[^\000-\177]/
 && Encode::_utf8_on($_) for $ret->{$k};
 }
 return $ret;
 } else {
 defined && /[^\000-\177]/ && Encode::_utf8_on($_) for $ret;
 return $ret;
 }
 }
 }
 }

A large scalar that you know can only contain ASCII

Scalars that contain only ASCII and are marked as UTF-8 are sometimes
 a drag to your
program. If you recognize such a situation, just remove
 the UTF8 flag:

 utf8::downgrade($val) if $] > 5.008;

BUGS
See also The "Unicode Bug" above.

Interaction with Extensions
When Perl exchanges data with an extension, the extension should be
 able to understand the UTF8
flag and act accordingly. If the
 extension doesn't recognize that flag, it's likely that the extension
 will

Perl version 5.22.0 documentation - perlunicode

Page 25http://perldoc.perl.org

return incorrectly-flagged data.

So if you're working with Unicode data, consult the documentation of
 every module you're using if
there are any issues with Unicode data
 exchange. If the documentation does not talk about Unicode
at all,
 suspect the worst and probably look at the source to learn how the
 module is implemented.
Modules written completely in Perl shouldn't
 cause problems. Modules that directly or indirectly
access code written
 in other programming languages are at risk.

For affected functions, the simple strategy to avoid data corruption is
 to always make the encoding of
the exchanged data explicit. Choose an
 encoding that you know the extension can handle. Convert
arguments passed
 to the extensions to that encoding and convert results back from that
 encoding.
Write wrapper functions that do the conversions for you, so
 you can later change the functions when
the extension catches up.

To provide an example, let's say the popular Foo::Bar::escape_html
 function doesn't deal with
Unicode data yet. The wrapper function
 would convert the argument to raw UTF-8 and convert the
result back to
 Perl's internal representation like so:

 sub my_escape_html ($) {
 my($what) = shift;
 return unless defined $what;
 Encode::decode_utf8(Foo::Bar::escape_html(
 Encode::encode_utf8($what)));
 }

Sometimes, when the extension does not convert data but just stores
 and retrieves it, you will be able
to use the otherwise
 dangerous Encode::_utf8_on() function. Let's say
 the popular Foo::Bar
extension, written in C, provides a param
 method that lets you store and retrieve data according to
these prototypes:

 $self->param($name, $value); # set a scalar
 $value = $self->param($name); # retrieve a scalar

If it does not yet provide support for any encoding, one could write a
 derived class with such a param
method:

 sub param {
 my($self,$name,$value) = @_;
 utf8::upgrade($name); # make sure it is UTF-8 encoded
 if (defined $value) {
 utf8::upgrade($value); # make sure it is UTF-8 encoded
 return $self->SUPER::param($name,$value);
 } else {
 my $ret = $self->SUPER::param($name);
 Encode::_utf8_on($ret); # we know, it is UTF-8 encoded
 return $ret;
 }
 }

Some extensions provide filters on data entry/exit points, such as DB_File::filter_store_key
and family. Look out for such filters in
 the documentation of your extensions; they can make the
transition to
 Unicode data much easier.

Speed
Some functions are slower when working on UTF-8 encoded strings than
 on byte encoded strings. All
functions that need to hop over
 characters such as length(), substr() or index(), or matching

regular expressions can work much faster when the underlying data are
 byte-encoded.

Perl version 5.22.0 documentation - perlunicode

Page 26http://perldoc.perl.org

In Perl 5.8.0 the slowness was often quite spectacular; in Perl 5.8.1
 a caching scheme was introduced
which improved the situation. In general,
 operations with UTF-8 encoded strings are still slower. As an
example,
 the Unicode properties (character classes) like \p{Nd} are known to
 be quite a bit slower
(5-20 times) than their simpler counterparts
 like [0-9] (then again, there are hundreds of Unicode
characters matching Nd compared with the 10 ASCII characters matching [0-9]).

SEE ALSO
perlunitut, perluniintro, perluniprops, Encode, open, utf8, bytes, perlretut, "${^UNICODE}" in perlvar,
http://www.unicode.org/reports/tr44).

