
Perl version 5.24.0 documentation - Thread::Queue

Page 1http://perldoc.perl.org

NAME
Thread::Queue - Thread-safe queues

VERSION
This document describes Thread::Queue version 3.09

SYNOPSIS
 use strict;
 use warnings;

 use threads;
 use Thread::Queue;

 my $q = Thread::Queue->new(); # A new empty queue

 # Worker thread
 my $thr = threads->create(
 sub {
 # Thread will loop until no more work
 while (defined(my $item = $q->dequeue())) {
 # Do work on $item
 ...
 }
 }
);

 # Send work to the thread
 $q->enqueue($item1, ...);
 # Signal that there is no more work to be sent
 $q->end();
 # Join up with the thread when it finishes
 $thr->join();

 ...

 # Count of items in the queue
 my $left = $q->pending();

 # Non-blocking dequeue
 if (defined(my $item = $q->dequeue_nb())) {
 # Work on $item
 }

 # Blocking dequeue with 5-second timeout
 if (defined(my $item = $q->dequeue_timed(5))) {
 # Work on $item
 }

 # Set a size for a queue
 $q->limit = 5;

 # Get the second item in the queue without dequeuing anything

Perl version 5.24.0 documentation - Thread::Queue

Page 2http://perldoc.perl.org

 my $item = $q->peek(1);

 # Insert two items into the queue just behind the head
 $q->insert(1, $item1, $item2);

 # Extract the last two items on the queue
 my ($item1, $item2) = $q->extract(-2, 2);

DESCRIPTION
This module provides thread-safe FIFO queues that can be accessed safely by
 any number of
threads.

Any data types supported by threads::shared can be passed via queues:

Ordinary scalars

Array refs

Hash refs

Scalar refs

Objects based on the above

Ordinary scalars are added to queues as they are.

If not already thread-shared, the other complex data types will be cloned
 (recursively, if needed, and
including any blessings and read-only
 settings) into thread-shared structures before being placed
onto a queue.

For example, the following would cause Thread::Queue to create a empty,
 shared array reference via
&shared([]), copy the elements 'foo', 'bar'
 and 'baz' from @ary into it, and then place that shared
reference onto
 the queue:

 my @ary = qw/foo bar baz/;
 $q->enqueue(\@ary);

However, for the following, the items are already shared, so their references
 are added directly to the
queue, and no cloning takes place:

 my @ary :shared = qw/foo bar baz/;
 $q->enqueue(\@ary);

 my $obj = &shared({});
 $$obj{'foo'} = 'bar';
 $$obj{'qux'} = 99;
 bless($obj, 'My::Class');
 $q->enqueue($obj);

See LIMITATIONS for caveats related to passing objects via queues.

QUEUE CREATION
->new()

Creates a new empty queue.

->new(LIST)

Creates a new queue pre-populated with the provided list of items.

Perl version 5.24.0 documentation - Thread::Queue

Page 3http://perldoc.perl.org

BASIC METHODS
The following methods deal with queues on a FIFO basis.

->enqueue(LIST)

Adds a list of items onto the end of the queue.

->dequeue()

->dequeue(COUNT)

Removes the requested number of items (default is 1) from the head of the
 queue, and returns
them. If the queue contains fewer than the requested
 number of items, then the thread will be
blocked until the requisite number
 of items are available (i.e., until other threads enqueue
more items).

->dequeue_nb()

->dequeue_nb(COUNT)

Removes the requested number of items (default is 1) from the head of the
 queue, and returns
them. If the queue contains fewer than the requested
 number of items, then it immediately
(i.e., non-blocking) returns whatever
 items there are on the queue. If the queue is empty, then
undef is
 returned.

->dequeue_timed(TIMEOUT)

->dequeue_timed(TIMEOUT, COUNT)

Removes the requested number of items (default is 1) from the head of the
 queue, and returns
them. If the queue contains fewer than the requested
 number of items, then the thread will be
blocked until the requisite number of
 items are available, or until the timeout is reached. If the
timeout is
 reached, it returns whatever items there are on the queue, or undef if the
 queue is
empty.

The timeout may be a number of seconds relative to the current time (e.g., 5
 seconds from
when the call is made), or may be an absolute timeout in epoch
 seconds the same as would
be used with cond_timedwait().
 Fractional seconds (e.g., 2.5 seconds) are also supported (to
the extent of
 the underlying implementation).

If TIMEOUT is missing, undef, or less than or equal to 0, then this call
 behaves the same as
dequeue_nb.

->pending()

Returns the number of items still in the queue. Returns undef if the queue
 has been ended
(see below), and there are no more items in the queue.

->limit

Sets the size of the queue. If set, calls to enqueue() will block until
 the number of pending
items in the queue drops below the limit. The limit does not prevent enqueuing items
beyond that count:

 my $q = Thread::Queue->new(1, 2);
 $q->limit = 4;
 $q->enqueue(3, 4, 5); # Does not block
 $q->enqueue(6); # Blocks until at least 2 items are
 # dequeued
 my $size = $q->limit; # Returns the current limit (may return
 # 'undef')
 $q->limit = 0; # Queue size is now unlimited

->end()

Declares that no more items will be added to the queue.

Perl version 5.24.0 documentation - Thread::Queue

Page 4http://perldoc.perl.org

All threads blocking on dequeue() calls will be unblocked with any
 remaining items in the
queue and/or undef being returned. Any subsequent
 calls to dequeue() will behave like
dequeue_nb().

Once ended, no more items may be placed in the queue.

ADVANCED METHODS
The following methods can be used to manipulate items anywhere in a queue.

To prevent the contents of a queue from being modified by another thread
 while it is being examined
and/or changed, lock the queue inside a local block:

 {
 lock($q); # Keep other threads from changing the queue's contents
 my $item = $q->peek();
 if ($item ...) {
 ...
 }
 }
 # Queue is now unlocked

->peek()

->peek(INDEX)

Returns an item from the queue without dequeuing anything. Defaults to the
 the head of
queue (at index position 0) if no index is specified. Negative
 index values are supported as
with arrays (i.e., -1
 is the end of the queue, -2 is next to last, and so on).

If no items exists at the specified index (i.e., the queue is empty, or the
 index is beyond the
number of items on the queue), then undef is returned.

Remember, the returned item is not removed from the queue, so manipulating a peeked at
reference affects the item on the queue.

->insert(INDEX, LIST)

Adds the list of items to the queue at the specified index position (0
 is the head of the list). Any
existing items at and beyond that position are
 pushed back past the newly added items:

 $q->enqueue(1, 2, 3, 4);
 $q->insert(1, qw/foo bar/);
 # Queue now contains: 1, foo, bar, 2, 3, 4

Specifying an index position greater than the number of items in the queue
 just adds the list to
the end.

Negative index positions are supported:

 $q->enqueue(1, 2, 3, 4);
 $q->insert(-2, qw/foo bar/);
 # Queue now contains: 1, 2, foo, bar, 3, 4

Specifying a negative index position greater than the number of items in the
 queue adds the
list to the head of the queue.

->extract()

->extract(INDEX)

->extract(INDEX, COUNT)

Removes and returns the specified number of items (defaults to 1) from the
 specified index
position in the queue (0 is the head of the queue). When
 called with no arguments, extract
operates the same as dequeue_nb.

Perl version 5.24.0 documentation - Thread::Queue

Page 5http://perldoc.perl.org

This method is non-blocking, and will return only as many items as are
 available to fulfill the
request:

 $q->enqueue(1, 2, 3, 4);
 my $item = $q->extract(2) # Returns 3
 # Queue now contains: 1, 2, 4
 my @items = $q->extract(1, 3) # Returns (2, 4)
 # Queue now contains: 1

Specifying an index position greater than the number of items in the
 queue results in undef or
an empty list being returned.

 $q->enqueue('foo');
 my $nada = $q->extract(3) # Returns undef
 my @nada = $q->extract(1, 3) # Returns ()

Negative index positions are supported. Specifying a negative index position
 greater than the
number of items in the queue may return items from the head
 of the queue (similar to
dequeue_nb) if the count overlaps the head of the
 queue from the specified position (i.e. if
queue size + index + count is
 greater than zero):

 $q->enqueue(qw/foo bar baz/);
 my @nada = $q->extract(-6, 2); # Returns () - (3+(-6)+2) <= 0
 my @some = $q->extract(-6, 4); # Returns (foo) - (3+(-6)+4) > 0
 # Queue now contains: bar, baz
 my @rest = $q->extract(-3, 4); # Returns (bar, baz) -
 # (2+(-3)+4) > 0

NOTES
Queues created by Thread::Queue can be used in both threaded and
 non-threaded applications.

LIMITATIONS
Passing objects on queues may not work if the objects' classes do not support
 sharing. See "BUGS
AND LIMITATIONS" in threads::shared for more.

Passing array/hash refs that contain objects may not work for Perl prior to
 5.10.0.

SEE ALSO
Thread::Queue Discussion Forum on CPAN: http://www.cpanforum.com/dist/Thread-Queue

threads, threads::shared

Sample code in the examples directory of this distribution on CPAN.

MAINTAINER
Jerry D. Hedden, <jdhedden AT cpan DOT org>

LICENSE
This program is free software; you can redistribute it and/or modify it under
 the same terms as Perl
itself.

