
Perl version 5.24.0 documentation - perlvms

Page 1http://perldoc.perl.org

NAME
perlvms - VMS-specific documentation for Perl

DESCRIPTION
Gathered below are notes describing details of Perl 5's behavior on VMS. They are a supplement to
the regular Perl 5 documentation, so we have focussed on the ways in which Perl 5 functions
differently under VMS than it does under Unix, and on the interactions between Perl and the rest of
the operating system. We haven't tried to duplicate complete descriptions of Perl features from the
main Perl documentation, which can be found in the [.pod] subdirectory of the Perl distribution.

We hope these notes will save you from confusion and lost sleep when writing Perl scripts on VMS. If
you find we've missed something you think should appear here, please don't hesitate to drop a line to
vmsperl@perl.org.

Installation
Directions for building and installing Perl 5 can be found in the file README.vms in the main source
directory of the Perl distribution.

Organization of Perl Images
Core Images

During the build process, three Perl images are produced. Miniperl.Exe is an executable image which
contains all of
 the basic functionality of Perl, but cannot take advantage of
 Perl XS extensions and
has a hard-wired list of library locations
 for loading pure-Perl modules. It is used extensively to build
and
 test Perl and various extensions, but is not installed.

Most of the complete Perl resides in the shareable image PerlShr.Exe,
 which provides a core to which
the Perl executable image and all Perl
 extensions are linked. It is generally located via the logical
name PERLSHR. While it's possible to put the image in SYS$SHARE to
 make it loadable, that's not
recommended. And while you may wish to
 INSTALL the image for performance reasons, you should
not install it
 with privileges; if you do, the result will not be what you expect as
 image privileges are
disabled during Perl start-up.

Finally, Perl.Exe is an executable image containing the main
 entry point for Perl, as well as some
initialization code. It
 should be placed in a public directory, and made world executable.
 In order to run
Perl with command line arguments, you should
 define a foreign command to invoke this image.

Perl Extensions
Perl extensions are packages which provide both XS and Perl code
 to add new functionality to perl.
(XS is a meta-language which
 simplifies writing C code which interacts with Perl, see perlxs for more
details.) The Perl code for an
 extension is treated like any other library module - it's
 made available in
your script through the appropriate use or require statement, and usually defines a Perl
 package
containing the extension.

The portion of the extension provided by the XS code may be
 connected to the rest of Perl in either of
two ways. In the static configuration, the object code for the extension is
 linked directly into
PerlShr.Exe, and is initialized whenever
 Perl is invoked. In the dynamic configuration, the extension's
machine code is placed into a separate shareable image, which is
 mapped by Perl's DynaLoader
when the extension is used or required in your script. This allows you to maintain the
 extension as
a separate entity, at the cost of keeping track of the
 additional shareable image. Most extensions can
be set up as either
 static or dynamic.

The source code for an extension usually resides in its own
 directory. At least three files are generally
provided: Extshortname.xs (where Extshortname is the portion of
 the extension's name following the
last ::), containing
 the XS code, Extshortname.pm, the Perl library module
 for the extension, and
Makefile.PL, a Perl script which uses
 the MakeMaker library modules supplied with Perl to generate
 a
Descrip.MMS file for the extension.

Perl version 5.24.0 documentation - perlvms

Page 2http://perldoc.perl.org

Installing static extensions
Since static extensions are incorporated directly into PerlShr.Exe, you'll have to rebuild Perl to
incorporate a
 new extension. You should edit the main Descrip.MMS or Makefile
 you use to build
Perl, adding the extension's name to the ext
 macro, and the extension's object file to the extobj
macro.
 You'll also need to build the extension's object file, either
 by adding dependencies to the main
Descrip.MMS, or using a
 separate Descrip.MMS for the extension. Then, rebuild PerlShr.Exe to
incorporate the new code.

Finally, you'll need to copy the extension's Perl library
 module to the [.Extname] subdirectory under
one
 of the directories in @INC, where Extname is the name
 of the extension, with all :: replaced by .
(e.g.
 the library module for extension Foo::Bar would be copied
 to a [.Foo.Bar] subdirectory).

Installing dynamic extensions
In general, the distributed kit for a Perl extension includes
 a file named Makefile.PL, which is a Perl
program which is used
 to create a Descrip.MMS file which can be used to build and
 install the files
required by the extension. The kit should be
 unpacked into a directory tree not under the main Perl
source
 directory, and the procedure for building the extension is simply

 $ perl Makefile.PL ! Create Descrip.MMS
 $ mmk ! Build necessary files
 $ mmk test ! Run test code, if supplied
 $ mmk install ! Install into public Perl tree

VMS support for this process in the current release of Perl
 is sufficient to handle most extensions.
(See the MakeMaker
 documentation for more details on installation options for
 extensions.)

the [.Lib.Auto.Arch$PVersExtname] subdirectory
 of one of the directories in @INC (where
PVers
 is the version of Perl you're using, as supplied in $],
 with '.' converted to '_'), or

one of the directories in @INC, or

a directory which the extensions Perl library module
 passes to the DynaLoader when asking it
to map
 the shareable image, or

Sys$Share or Sys$Library.

If the shareable image isn't in any of these places, you'll need
 to define a logical name Extshortname,
where Extshortname
 is the portion of the extension's name after the last ::, which
 translates to the
full file specification of the shareable image.

File specifications
Syntax

We have tried to make Perl aware of both VMS-style and Unix-style file
 specifications wherever
possible. You may use either style, or both,
 on the command line and in scripts, but you may not
combine the two
 styles within a single file specification. VMS Perl interprets Unix
 pathnames in much
the same way as the CRTL (e.g. the first component
 of an absolute path is read as the device name
for the VMS file
 specification). There are a set of functions provided in the VMS::Filespec package
for explicit interconversion between VMS and
 Unix syntax; its documentation provides more details.

We've tried to minimize the dependence of Perl library
 modules on Unix syntax, but you may find that
some of these,
 as well as some scripts written for Unix systems, will
 require that you use Unix syntax,
since they will assume that
 '/' is the directory separator, etc. If you find instances
 of this in the Perl
distribution itself, please let us know,
 so we can try to work around them.

Also when working on Perl programs on VMS, if you need a syntax
 in a specific operating system
format, then you need either to
 check the appropriate DECC$ feature logical, or call a conversion

routine to force it to that format.

Perl version 5.24.0 documentation - perlvms

Page 3http://perldoc.perl.org

The feature logical name DECC$FILENAME_UNIX_REPORT modifies traditional
 Perl behavior in the
conversion of file specifications from Unix to VMS
 format in order to follow the extended character
handling rules now
 expected by the CRTL. Specifically, when this feature is in effect, the ./.../ in a
Unix path is now translated to [.^.^.^.] instead of
 the traditional VMS [...]. To be compatible
with what MakeMaker
 expects, if a VMS path cannot be translated to a Unix path, it is
 passed through
unchanged, so unixify("[...]") will return [...].

There are several ambiguous cases where a conversion routine cannot
 determine whether an input
filename is in Unix format or in VMS format,
 since now both VMS and Unix file specifications may
have characters in
 them that could be mistaken for syntax delimiters of the other type. So
 some
pathnames simply cannot be used in a mode that allows either type
 of pathname to be present. Perl
will tend to assume that an ambiguous
 filename is in Unix format.

Allowing "." as a version delimiter is simply incompatible with
 determining whether a pathname is in
VMS format or in Unix format with
 extended file syntax. There is no way to know whether "perl-5.8.6"
is a
 Unix "perl-5.8.6" or a VMS "perl-5.8;6" when passing it to unixify() or
 vmsify().

The DECC$FILENAME_UNIX_REPORT logical name controls how Perl interprets
 filenames to the
extent that Perl uses the CRTL internally for many
 purposes, and attempts to follow CRTL
conventions for reporting
 filenames. The DECC$FILENAME_UNIX_ONLY feature differs in that it

expects all filenames passed to the C run-time to be already in Unix
 format. This feature is not yet
supported in Perl since Perl uses
 traditional OpenVMS file specifications internally and in the test

harness, and it is not yet clear whether this mode will be useful or
 useable. The feature logical name
DECC$POSIX_COMPLIANT_PATHNAMES is new
 with the RMS Symbolic Link SDK and included
with OpenVMS v8.3, but is
 not yet supported in Perl.

Filename Case
Perl enables DECC$EFS_CASE_PRESERVE and DECC$ARGV_PARSE_STYLE by
 default. Note
that the latter only takes effect when extended parse
 is set in the process in which Perl is running.
When these features
 are explicitly disabled in the environment or the CRTL does not support
 them,
Perl follows the traditional CRTL behavior of downcasing command-line
 arguments and returning file
specifications in lower case only.

N. B. It is very easy to get tripped up using a mixture of other
 programs, external utilities, and Perl
scripts that are in varying
 states of being able to handle case preservation. For example, a file
 created
by an older version of an archive utility or a build utility
 such as MMK or MMS may generate a
filename in all upper case even on an
 ODS-5 volume. If this filename is later retrieved by a Perl script
or
 module in a case preserving environment, that upper case name may not
 match the mixed-case or
lower-case expectations of the Perl code. Your
 best bet is to follow an all-or-nothing approach to case
preservation:
 either don't use it at all, or make sure your entire toolchain and
 application environment
support and use it.

OpenVMS Alpha v7.3-1 and later and all version of OpenVMS I64 support
 case sensitivity as a
process setting (see SET PROCESS
 /CASE_LOOKUP=SENSITIVE). Perl does not currently support
case
 sensitivity on VMS, but it may in the future, so Perl programs should
 use the
File::Spec->case_tolerant method to determine the state, and
 not the $^O variable.

Symbolic Links
When built on an ODS-5 volume with symbolic links enabled, Perl by
 default supports symbolic links
when the requisite support is available
 in the filesystem and CRTL (generally 64-bit OpenVMS v8.3
and later). There are a number of limitations and caveats to be aware of when
 working with symbolic
links on VMS. Most notably, the target of a valid
 symbolic link must be expressed as a Unix-style path
and it must exist
 on a volume visible from your POSIX root (see the SHOW ROOT command
 in DCL
help). For further details on symbolic link capabilities and
 requirements, see chapter 12 of the CRTL
manual that ships with OpenVMS
 v8.3 or later.

Perl version 5.24.0 documentation - perlvms

Page 4http://perldoc.perl.org

Wildcard expansion
File specifications containing wildcards are allowed both on the command line and within Perl globs
(e.g. <*.c>). If
 the wildcard filespec uses VMS syntax, the resultant filespecs will follow VMS syntax;
if a Unix-style filespec is passed in, Unix-style filespecs will be returned.
 Similar to the behavior of
wildcard globbing for a Unix shell,
 one can escape command line wildcards with double quotation

marks " around a perl program command line argument. However,
 owing to the stripping of "
characters carried out by the C
 handling of argv you will need to escape a construct such as
 this one
(in a directory containing the files PERL.C, PERL.EXE, PERL.H, and PERL.OBJ):

 $ perl -e "print join(' ',@ARGV)" perl.*
 perl.c perl.exe perl.h perl.obj

in the following triple quoted manner:

 $ perl -e "print join(' ',@ARGV)" """perl.*"""
 perl.*

In both the case of unquoted command line arguments or in calls
 to glob() VMS wildcard expansion
is performed. (csh-style
 wildcard expansion is available if you use File::Glob::glob.)
 If the
wildcard filespec contains a device or directory specification, then the resultant filespecs will also
contain a device and directory; otherwise, device and directory information are removed. VMS-style
resultant filespecs will contain a full device and directory, while Unix-style resultant filespecs will
contain only as much of a directory path as was present in the input filespec. For example, if your
default directory is Perl_Root:[000000], the expansion of [.t]*.* will yield filespecs like
"perl_root:[t]base.dir", while the expansion of t/*/* will yield filespecs like "t/base.dir". (This is done
to match the behavior of glob expansion performed by Unix shells.)

Similarly, the resultant filespec will contain the file version
 only if one was present in the input filespec.

Pipes
Input and output pipes to Perl filehandles are supported; the "file name" is passed to lib$spawn() for
asynchronous execution. You should be careful to close any pipes you have opened in a Perl script,
lest you leave any "orphaned" subprocesses around when Perl exits.

You may also use backticks to invoke a DCL subprocess, whose output is used as the return value of
the expression. The string between the backticks is handled as if it were the
 argument to the system
operator (see below). In this case,
 Perl will wait for the subprocess to complete before continuing.

The mailbox (MBX) that perl can create to communicate with a pipe
 defaults to a buffer size of 8192
on 64-bit systems, 512 on VAX. The
 default buffer size is adjustable via the logical name
PERL_MBX_SIZE
 provided that the value falls between 128 and the SYSGEN parameter
 MAXBUF
inclusive. For example, to set the mailbox size to 32767 use $ENV{'PERL_MBX_SIZE'} = 32767;
and then open and use pipe constructs. An alternative would be to issue the command:

 $ Define PERL_MBX_SIZE 32767

before running your wide record pipe program. A larger value may
 improve performance at the
expense of the BYTLM UAF quota.

PERL5LIB and PERLLIB
The PERL5LIB and PERLLIB logical names work as documented in perl,
 except that the element
separator is '|' instead of ':'. The
 directory specifications may use either VMS or Unix syntax.

The Perl Forked Debugger
The Perl forked debugger places the debugger commands and output in a
 separate X-11 terminal
window so that commands and output from multiple
 processes are not mixed together.

Perl version 5.24.0 documentation - perlvms

Page 5http://perldoc.perl.org

Perl on VMS supports an emulation of the forked debugger when Perl is
 run on a VMS system that
has X11 support installed.

To use the forked debugger, you need to have the default display set to an
 X-11 Server and some
environment variables set that Unix expects.

The forked debugger requires the environment variable TERM to be xterm,
 and the environment
variable DISPLAY to exist. xterm must be in
 lower case.

 $define TERM "xterm"

 $define DISPLAY "hostname:0.0"

Currently the value of DISPLAY is ignored. It is recommended that it be set
 to be the hostname of the
display, the server and screen in Unix notation. In
 the future the value of DISPLAY may be honored
by Perl instead of using the
 default display.

It may be helpful to always use the forked debugger so that script I/O is
 separated from debugger I/O.
You can force the debugger to be forked by
 assigning a value to the logical name <PERLDB_PIDS>
that is not a process
 identification number.

 $define PERLDB_PIDS XXXX

PERL_VMS_EXCEPTION_DEBUG
The PERL_VMS_EXCEPTION_DEBUG being defined as "ENABLE" will cause the VMS
 debugger to
be invoked if a fatal exception that is not otherwise
 handled is raised. The purpose of this is to allow
debugging of
 internal Perl problems that would cause such a condition.

This allows the programmer to look at the execution stack and variables to
 find out the cause of the
exception. As the debugger is being invoked as
 the Perl interpreter is about to do a fatal exit,
continuing the execution
 in debug mode is usually not practical.

Starting Perl in the VMS debugger may change the program execution
 profile in a way that such
problems are not reproduced.

The kill function can be used to test this functionality from within
 a program.

In typical VMS style, only the first letter of the value of this logical
 name is actually checked in a case
insensitive mode, and it is considered
 enabled if it is the value "T","1" or "E".

This logical name must be defined before Perl is started.

Command line
I/O redirection and backgrounding

Perl for VMS supports redirection of input and output on the command line, using a subset of Bourne
shell syntax:

<file reads stdin from file,

>file writes stdout to file,

>>file appends stdout to file,

2>file writes stderr to file,

2>>file appends stderr to file, and

2>&1 redirects stderr to stdout.

In addition, output may be piped to a subprocess, using the character '|'. Anything after this character

Perl version 5.24.0 documentation - perlvms

Page 6http://perldoc.perl.org

on the command line is passed to a subprocess for execution; the subprocess takes the output of Perl
as its input.

Finally, if the command line ends with '&', the entire command is run in the background as an
asynchronous subprocess.

Command line switches
The following command line switches behave differently under
 VMS than described in perlrun. Note
also that in order
 to pass uppercase switches to Perl, you need to enclose
 them in double-quotes on
the command line, since the CRTL
 downcases all unquoted strings.

On newer 64 bit versions of OpenVMS, a process setting now
 controls if the quoting is needed to
preserve the case of
 command line arguments.

-i

If the -i switch is present but no extension for a backup
 copy is given, then inplace editing
creates a new version of
 a file; the existing copy is not deleted. (Note that if
 an extension is
given, an existing file is renamed to the backup
 file, as is the case under other operating
systems, so it does
 not remain as a previous version under the original filename.)

-S

If the "-S" or -"S" switch is present and the script
 name does not contain a directory, then
Perl translates the
 logical name DCL$PATH as a searchlist, using each translation
 as a
directory in which to look for the script. In addition,
 if no file type is specified, Perl looks in each
directory
 for a file matching the name specified, with a blank type,
 a type of .pl, and a type of
.com, in that order.

-u

The -u switch causes the VMS debugger to be invoked
 after the Perl program is compiled,
but before it has
 run. It does not create a core dump file.

Perl functions
As of the time this document was last revised, the following Perl functions were implemented in the
VMS port of Perl (functions marked with * are discussed in more detail below):

 file tests*, abs, alarm, atan, backticks*, binmode*, bless,
 caller, chdir, chmod, chown, chomp, chop, chr,
 close, closedir, cos, crypt*, defined, delete, die, do, dump*,
 each, endgrent, endpwent, eof, eval, exec*, exists, exit, exp,
 fileno, flock getc, getgrent*, getgrgid*, getgrnam, getlogin,
 getppid, getpwent*, getpwnam*, getpwuid*, glob, gmtime*, goto,
 grep, hex, ioctl, import, index, int, join, keys, kill*,
 last, lc, lcfirst, lchown*, length, link*, local, localtime, log,
 lstat, m//, map, mkdir, my, next, no, oct, open, opendir, ord,
 pack, pipe, pop, pos, print, printf, push, q//, qq//, qw//,
 qx//*, quotemeta, rand, read, readdir, readlink*, redo, ref,
 rename, require, reset, return, reverse, rewinddir, rindex,
 rmdir, s///, scalar, seek, seekdir, select(internal),
 select (system call)*, setgrent, setpwent, shift, sin, sleep,
 socketpair, sort, splice, split, sprintf, sqrt, srand, stat,
 study, substr, symlink*, sysread, system*, syswrite, tell,
 telldir, tie, time, times*, tr///, uc, ucfirst, umask,
 undef, unlink*, unpack, untie, unshift, use, utime*,
 values, vec, wait, waitpid*, wantarray, warn, write, y///

The following functions were not implemented in the VMS port, and calling them produces a fatal error
(usually) or undefined behavior (rarely, we hope):

Perl version 5.24.0 documentation - perlvms

Page 7http://perldoc.perl.org

 chroot, dbmclose, dbmopen, fork*, getpgrp, getpriority,
 msgctl, msgget, msgsend, msgrcv, semctl,
 semget, semop, setpgrp, setpriority, shmctl, shmget,
 shmread, shmwrite, syscall

The following functions are available on Perls compiled with Dec C
 5.2 or greater and running VMS
7.0 or greater:

 truncate

The following functions are available on Perls built on VMS 7.2 or
 greater:

 fcntl (without locking)

The following functions may or may not be implemented, depending on what type of socket support
you've built into your copy of Perl:

 accept, bind, connect, getpeername,
 gethostbyname, getnetbyname, getprotobyname,
 getservbyname, gethostbyaddr, getnetbyaddr,
 getprotobynumber, getservbyport, gethostent,
 getnetent, getprotoent, getservent, sethostent,
 setnetent, setprotoent, setservent, endhostent,
 endnetent, endprotoent, endservent, getsockname,
 getsockopt, listen, recv, select(system call)*,
 send, setsockopt, shutdown, socket

The following function is available on Perls built on 64 bit OpenVMS v8.2
 with hard links enabled on
an ODS-5 formatted build disk. CRTL support
 is in principle available as of OpenVMS v7.3-1, and
better configuration
 support could detect this.

 link

The following functions are available on Perls built on 64 bit OpenVMS
 v8.2 and later. CRTL support
is in principle available as of OpenVMS
 v7.3-2, and better configuration support could detect this.

 getgrgid, getgrnam, getpwnam, getpwuid,
 setgrent, ttyname

The following functions are available on Perls built on 64 bit OpenVMS v8.2
 and later.

 statvfs, socketpair

File tests

The tests -b, -B, -c, -C, -d, -e, -f, -o, -M, -s, -S, -t, -T, and -z work as
 advertised. The
return values for -r, -w, and -x
 tell you whether you can actually access the file; this may
 not
reflect the UIC-based file protections. Since real and
 effective UIC don't differ under VMS, -O,
-R, -W,
 and -X are equivalent to -o, -r, -w, and -x.
 Similarly, several other tests, including
-A, -g, -k, -l, -p, and -u, aren't particularly meaningful under
 VMS, and the values returned
by these tests reflect whatever
 your CRTL stat() routine does to the equivalent bits in the

st_mode field. Finally, -d returns true if passed a device
 specification without an explicit
directory (e.g. DUA1:), as
 well as if passed a directory.

There are DECC feature logical names AND ODS-5 volume attributes that
 also control what
values are returned for the date fields.

Note: Some sites have reported problems when using the file-access
 tests (-r, -w, and -x)

Perl version 5.24.0 documentation - perlvms

Page 8http://perldoc.perl.org

on files accessed via DEC's DFS.
 Specifically, since DFS does not currently provide access to
the
 extended file header of files on remote volumes, attempts to
 examine the ACL fail, and the
file tests will return false,
 with $! indicating that the file does not exist. You can
 use stat on
these files, since that checks UIC-based protection
 only, and then manually check the
appropriate bits, as defined by
 your C compiler's stat.h, in the mode value it returns, if you

need an approximation of the file's protections.

backticks

Backticks create a subprocess, and pass the enclosed string
 to it for execution as a DCL
command. Since the subprocess is
 created directly via lib$spawn(), any valid DCL
command string
 may be specified.

binmode FILEHANDLE

The binmode operator will attempt to insure that no translation
 of carriage control occurs on
input from or output to this filehandle.
 Since this involves reopening the file and then restoring
its
 file position indicator, if this function returns FALSE, the
 underlying filehandle may no
longer point to an open file, or may
 point to a different position in the file than before binmode
was called.

Note that binmode is generally not necessary when using normal
 filehandles; it is provided so
that you can control I/O to existing
 record-structured files when necessary. You can also use
the vmsfopen function in the VMS::Stdio extension to gain finer
 control of I/O to files and
devices with different record structures.

crypt PLAINTEXT, USER

The crypt operator uses the sys$hash_password system
 service to generate the hashed
representation of PLAINTEXT.
 If USER is a valid username, the algorithm and salt values
 are
taken from that user's UAF record. If it is not, then
 the preferred algorithm and a salt of 0 are
used. The
 quadword encrypted value is returned as an 8-character string.

The value returned by crypt may be compared against
 the encrypted password from the
UAF returned by the getpw*
 functions, in order to authenticate users. If you're
 going to do
this, remember that the encrypted password in
 the UAF was generated using uppercase
username and
 password strings; you'll have to upcase the arguments to crypt to insure that
you'll get the proper value:

 sub validate_passwd {
 my($user,$passwd) = @_;
 my($pwdhash);
 if (!($pwdhash = (getpwnam($user))[1]) ||
 $pwdhash ne crypt("\U$passwd","\U$name")) {
 intruder_alert($name);
 }
 return 1;
 }

die

die will force the native VMS exit status to be an SS$_ABORT code
 if neither of the $! or $?
status values are ones that would cause
 the native status to be interpreted as being what
VMS classifies as
 SEVERE_ERROR severity for DCL error handling.

When PERL_VMS_POSIX_EXIT is active (see $? below), the native VMS exit
 status value will
have either one of the $! or $? or $^E or
 the Unix value 255 encoded into it in a way that the
effective original
 value can be decoded by other programs written in C, including Perl
 and the
GNV package. As per the normal non-VMS behavior of die if
 either $! or $? are non-zero,
one of those values will be
 encoded into a native VMS status value. If both of the Unix status

values are 0, and the $^E value is set one of ERROR or SEVERE_ERROR
 severity, then the
$^E value will be used as the exit code as is.
 If none of the above apply, the Unix value of 255

Perl version 5.24.0 documentation - perlvms

Page 9http://perldoc.perl.org

will be encoded into
 a native VMS exit status value.

Please note a significant difference in the behavior of die in
 the PERL_VMS_POSIX_EXIT
mode is that it does not force a VMS
 SEVERE_ERROR status on exit. The Unix exit values of
2 through
 255 will be encoded in VMS status values with severity levels of
 SUCCESS. The
Unix exit value of 1 will be encoded in a VMS status
 value with a severity level of ERROR.
This is to be compatible with
 how the VMS C library encodes these values.

The minimum severity level set by die in PERL_VMS_POSIX_EXIT mode
 may be changed to
be ERROR or higher in the future depending on the results of testing and further review.

See $? for a description of the encoding of the Unix value to
 produce a native VMS status
containing it.

dump

Rather than causing Perl to abort and dump core, the dump
 operator invokes the VMS
debugger. If you continue to
 execute the Perl program under the debugger, control will
 be
transferred to the label specified as the argument to dump, or, if no label was specified, back
to the
 beginning of the program. All other state of the program
 (e.g. values of variables, open
file handles) are not
 affected by calling dump.

exec LIST

A call to exec will cause Perl to exit, and to invoke the command
 given as an argument to
exec via lib$do_command. If the
 argument begins with '@' or '$' (other than as part of a
filespec),
 then it is executed as a DCL command. Otherwise, the first token on
 the command
line is treated as the filespec of an image to run, and
 an attempt is made to invoke it (using
.Exe and the process
 defaults to expand the filespec) and pass the rest of exec's
 argument to
it as parameters. If the token has no file type, and
 matches a file with null type, then an
attempt is made to determine
 whether the file is an executable image which should be invoked
using MCR or a text file which should be passed to DCL as a
 command procedure.

fork

While in principle the fork operator could be implemented via
 (and with the same rather
severe limitations as) the CRTL vfork()
 routine, and while some internal support to do just
that is in
 place, the implementation has never been completed, making fork
 currently
unavailable. A true kernel fork() is expected in a
 future version of VMS, and the pseudo-fork
based on interpreter
 threads may be available in a future version of Perl on VMS (see perlfork
). In the meantime, use system, backticks, or piped
 filehandles to create subprocesses.

getpwent

getpwnam

getpwuid

These operators obtain the information described in perlfunc,
 if you have the privileges
necessary to retrieve the named user's
 UAF information via sys$getuai. If not, then only the
$name, $uid, and $gid items are returned. The $dir item contains
 the login directory in
VMS syntax, while the $comment item
 contains the login directory in Unix syntax. The $gcos
item
 contains the owner field from the UAF record. The $quota
 item is not used.

gmtime

The gmtime operator will function properly if you have a
 working CRTL gmtime() routine, or
if the logical name
 SYS$TIMEZONE_DIFFERENTIAL is defined as the number of seconds

which must be added to UTC to yield local time. (This logical
 name is defined automatically if
you are running a version of
 VMS with built-in UTC support.) If neither of these cases is
 true, a
warning message is printed, and undef is returned.

kill

In most cases, kill is implemented via the undocumented system
 service $SIGPRC, which

Perl version 5.24.0 documentation - perlvms

Page 10http://perldoc.perl.org

has the same calling sequence as $FORCEX, but
 throws an exception in the target process
rather than forcing it to call $EXIT. Generally speaking, kill follows the behavior of the

CRTL's kill() function, but unlike that function can be called from
 within a signal handler.
Also, unlike the kill in some versions of
 the CRTL, Perl's kill checks the validity of the
signal passed in and
 returns an error rather than attempting to send an unrecognized signal.

Also, negative signal values don't do anything special under
 VMS; they're just converted to the
corresponding positive value.

qx//

See the entry on backticks above.

select (system call)

If Perl was not built with socket support, the system call
 version of select is not available at
all. If socket
 support is present, then the system call version of select functions only for file
descriptors attached
 to sockets. It will not provide information about regular
 files or pipes,
since the CRTL select() routine does not
 provide this functionality.

stat EXPR

Since VMS keeps track of files according to a different scheme
 than Unix, it's not really
possible to represent the file's ID
 in the st_dev and st_ino fields of a struct stat. Perl

tries its best, though, and the values it uses are pretty unlikely
 to be the same for two different
files. We can't guarantee this,
 though, so caveat scriptor.

system LIST

The system operator creates a subprocess, and passes its arguments to the subprocess for
execution as a DCL command. Since the subprocess is created directly via lib$spawn(),
any valid DCL command string may be specified. If the string begins with
 '@', it is treated as a
DCL command unconditionally. Otherwise, if
 the first token contains a character used as a
delimiter in file
 specification (e.g. : or]), an attempt is made to expand it
 using a default type
of .Exe and the process defaults, and if
 successful, the resulting file is invoked via MCR. This
allows you
 to invoke an image directly simply by passing the file specification
 to system, a
common Unixish idiom. If the token has no file type,
 and matches a file with null type, then an
attempt is made to
 determine whether the file is an executable image which should be
 invoked
using MCR or a text file which should be passed to DCL
 as a command procedure.

If LIST consists of the empty string, system spawns an
 interactive DCL subprocess, in the
same fashion as typing SPAWN at the DCL prompt.

Perl waits for the subprocess to complete before continuing
 execution in the current process.
As described in perlfunc,
 the return value of system is a fake "status" which follows
 POSIX
semantics unless the pragma use vmsish 'status' is in
 effect; see the description of $?
in this document for more detail.

time

The value returned by time is the offset in seconds from
 01-JAN-1970 00:00:00 (just like the
CRTL's times() routine), in order
 to make life easier for code coming in from the POSIX/Unix
world.

times

The array returned by the times operator is divided up according to the same rules the CRTL
times() routine. Therefore, the "system time" elements will always be 0, since there is no
difference between "user time" and "system" time under VMS, and the time accumulated by a
subprocess may or may not appear separately in the "child time" field, depending on whether
times() keeps track of subprocesses separately. Note
 especially that the VAXCRTL (at
least) keeps track only of
 subprocesses spawned using fork() and exec(); it will not

accumulate the times of subprocesses spawned via pipes, system(),
 or backticks.

Perl version 5.24.0 documentation - perlvms

Page 11http://perldoc.perl.org

unlink LIST

unlink will delete the highest version of a file only; in
 order to delete all versions, you need to
say

 1 while unlink LIST;

You may need to make this change to scripts written for a
 Unix system which expect that after
a call to unlink,
 no files with the names passed to unlink will exist.
 (Note: This can be
changed at compile time; if you use Config and $Config{'d_unlink_all_versions'}
is define, then unlink will delete all versions of a
 file on the first call.)

unlink will delete a file if at all possible, even if it
 requires changing file protection (though it
won't try to
 change the protection of the parent directory). You can tell
 whether you've got
explicit delete access to a file by using the VMS::Filespec::candelete operator. For
instance, in order
 to delete only files to which you have delete access, you could
 say
something like

 sub safe_unlink {
 my($file,$num);
 foreach $file (@_) {
 next unless VMS::Filespec::candelete($file);
 $num += unlink $file;
 }
 $num;
 }

(or you could just use VMS::Stdio::remove, if you've installed
 the VMS::Stdio extension
distributed with Perl). If unlink has to
 change the file protection to delete the file, and you
interrupt it
 in midstream, the file may be left intact, but with a changed ACL
 allowing you delete
access.

This behavior of unlink is to be compatible with POSIX behavior
 and not traditional VMS
behavior.

utime LIST

This operator changes only the modification time of the file (VMS revision date) on ODS-2
volumes and ODS-5 volumes without access dates enabled. On ODS-5 volumes with access
dates enabled, the true access time is modified.

waitpid PID,FLAGS

If PID is a subprocess started by a piped open() (see open), waitpid will wait for that
subprocess, and return its final status
 value in $?. If PID is a subprocess created in some
other way (e.g.
 SPAWNed before Perl was invoked), waitpid will simply check once per

second whether the process has completed, and return when it has. (If
 PID specifies a
process that isn't a subprocess of the current process,
 and you invoked Perl with the -w
switch, a warning will be issued.)

Returns PID on success, -1 on error. The FLAGS argument is ignored
 in all cases.

Perl variables
The following VMS-specific information applies to the indicated
 "special" Perl variables, in addition to
the general information
 in perlvar. Where there is a conflict, this information
 takes precedence.

%ENV

The operation of the %ENV array depends on the translation
 of the logical name
PERL_ENV_TABLES. If defined, it should
 be a search list, each element of which specifies a
location
 for %ENV elements. If you tell Perl to read or set the
 element $ENV{name}, then Perl
uses the translations of PERL_ENV_TABLES as follows:

CRTL_ENV

Perl version 5.24.0 documentation - perlvms

Page 12http://perldoc.perl.org

This string tells Perl to consult the CRTL's internal environ array
 of key-value pairs,
using name as the key. In most cases, this
 contains only a few keys, but if Perl was
invoked via the C exec[lv]e() function, as is the case for some embedded Perl

applications or when running under a shell such as GNV bash, the environ array
may have been populated by the calling program.

CLISYM_[LOCAL]

A string beginning with CLISYM_tells Perl to consult the CLI's
 symbol tables, using
name as the name of the symbol. When reading
 an element of %ENV, the local symbol
table is scanned first, followed
 by the global symbol table.. The characters following
CLISYM_ are
 significant when an element of %ENV is set or deleted: if the
 complete
string is CLISYM_LOCAL, the change is made in the local
 symbol table; otherwise the
global symbol table is changed.

Any other string

If an element of PERL_ENV_TABLES translates to any other string,
 that string is used
as the name of a logical name table, which is
 consulted using name as the logical
name. The normal search
 order of access modes is used.

PERL_ENV_TABLES is translated once when Perl starts up; any changes
 you make while
Perl is running do not affect the behavior of %ENV.
 If PERL_ENV_TABLES is not defined, then
Perl defaults to consulting
 first the logical name tables specified by LNM$FILE_DEV, and then
the CRTL environ array. This default order is reversed when the
 logical name
GNV$UNIX_SHELL is defined, such as when running under
 GNV bash.

For operations on %ENV entries based on logical names or DCL symbols, the
 key string is
treated as if it were entirely uppercase, regardless of the
 case actually specified in the Perl
expression. Entries in %ENV based on the
 CRTL's environ array preserve the case of the key
string when stored, and
 lookups are case sensitive.

When an element of %ENV is read, the locations to which PERL_ENV_TABLES points are
checked in order, and the value
 obtained from the first successful lookup is returned. If the

name of the %ENV element contains a semi-colon, it and
 any characters after it are removed.
These are ignored when
 the CRTL environ array or a CLI symbol table is consulted.

However, the name is looked up in a logical name table, the
 suffix after the semi-colon is
treated as the translation index
 to be used for the lookup. This lets you look up successive
values
 for search list logical names. For instance, if you say

 $ Define STORY once,upon,a,time,there,was
 $ perl -e "for ($i = 0; $i <= 6; $i++) " -
 _$ -e "{ print $ENV{'story;'.$i},' '}"

Perl will print ONCE UPON A TIME THERE WAS, assuming, of course,
 that
PERL_ENV_TABLES is set up so that the logical name story
 is found, rather than a CLI
symbol or CRTL environ element with
 the same name.

When an element of %ENV is set to a defined string, the
 corresponding definition is made in
the location to which the
 first translation of PERL_ENV_TABLES points. If this causes a

logical name to be created, it is defined in supervisor mode.
 (The same is done if an existing
logical name was defined in
 executive or kernel mode; an existing user or supervisor mode

logical name is reset to the new value.) If the value is an empty
 string, the logical name's
translation is defined as a single NUL
 (ASCII \0) character, since a logical name cannot
translate to a
 zero-length string. (This restriction does not apply to CLI symbols
 or CRTL
environ values; they are set to the empty string.)

When an element of %ENV is set to undef, the element is looked
 up as if it were being read,
and if it is found, it is deleted. (An
 item "deleted" from the CRTL environ array is set to the
empty
 string.) Using delete to remove an element from %ENV has a
 similar effect, but after
the element is deleted, another attempt is
 made to look up the element, so an inner-mode
logical name or a name
 in another location will replace the logical name just deleted. In
 either

Perl version 5.24.0 documentation - perlvms

Page 13http://perldoc.perl.org

case, only the first value found searching PERL_ENV_TABLES is
 altered. It is not possible at
present to define a search list
 logical name via %ENV.

The element $ENV{DEFAULT} is special: when read, it returns
 Perl's current default device
and directory, and when set, it
 resets them, regardless of the definition of
PERL_ENV_TABLES.
 It cannot be cleared or deleted; attempts to do so are silently
 ignored.

Note that if you want to pass on any elements of the
 C-local environ array to a subprocess
which isn't
 started by fork/exec, or isn't running a C program, you
 can "promote" them to
logical names in the current
 process, which will then be inherited by all subprocesses,
 by
saying

 foreach my $key (qw[C-local keys you want promoted]) {
 my $temp = $ENV{$key}; # read from C-local array
 $ENV{$key} = $temp; # and define as logical name
 }

(You can't just say $ENV{$key} = $ENV{$key}, since the
 Perl optimizer is smart enough to
elide the expression.)

Don't try to clear %ENV by saying %ENV = ();, it will throw
 a fatal error. This is equivalent to
doing the following from DCL:

 DELETE/LOGICAL *

You can imagine how bad things would be if, for example, the SYS$MANAGER
 or
SYS$SYSTEM logical names were deleted.

At present, the first time you iterate over %ENV using keys, or values, you will incur a time
penalty as all
 logical names are read, in order to fully populate %ENV.
 Subsequent iterations
will not reread logical names, so they
 won't be as slow, but they also won't reflect any changes
to logical name tables caused by other programs.

You do need to be careful with the logical names representing
 process-permanent files, such
as SYS$INPUT and SYS$OUTPUT.
 The translations for these logical names are prepended
with a
 two-byte binary value (0x1B 0x00) that needs to be stripped off
 if you want to use it. (In
previous versions of Perl it wasn't
 possible to get the values of these logical names, as the null
byte acted as an end-of-string marker)

$!

The string value of $! is that returned by the CRTL's
 strerror() function, so it will include the
VMS message for
 VMS-specific errors. The numeric value of $! is the
 value of errno, except
if errno is EVMSERR, in which
 case $! contains the value of vaxc$errno. Setting $!
 always
sets errno to the value specified. If this value is
 EVMSERR, it also sets vaxc$errno to 4
(NONAME-F-NOMSG), so
 that the string value of $! won't reflect the VMS error
 message
from before $! was set.

$^E

This variable provides direct access to VMS status values
 in vaxc$errno, which are often more
specific than the
 generic Unix-style error messages in $!. Its numeric value
 is the value of
vaxc$errno, and its string value is the
 corresponding VMS message string, as retrieved by
sys$getmsg().
 Setting $^E sets vaxc$errno to the value specified.

While Perl attempts to keep the vaxc$errno value to be current, if
 errno is not EVMSERR, it
may not be from the current operation.

$?

The "status value" returned in $? is synthesized from the
 actual exit status of the subprocess
in a way that approximates
 POSIX wait(5) semantics, in order to allow Perl programs to

portably test for successful completion of subprocesses. The
 low order 8 bits of $? are always
0 under VMS, since the
 termination status of a process may or may not have been
 generated

Perl version 5.24.0 documentation - perlvms

Page 14http://perldoc.perl.org

by an exception.

The next 8 bits contain the termination status of the program.

If the child process follows the convention of C programs
 compiled with the _POSIX_EXIT
macro set, the status value will
 contain the actual value of 0 to 255 returned by that program

on a normal exit.

With the _POSIX_EXIT macro set, the Unix exit value of zero is
 represented as a VMS native
status of 1, and the Unix values
 from 2 to 255 are encoded by the equation:

 VMS_status = 0x35a000 + (unix_value * 8) + 1.

And in the special case of Unix value 1 the encoding is:

 VMS_status = 0x35a000 + 8 + 2 + 0x10000000.

For other termination statuses, the severity portion of the
 subprocess's exit status is used: if
the severity was success or
 informational, these bits are all 0; if the severity was
 warning, they
contain a value of 1; if the severity was
 error or fatal error, they contain the actual severity bits,
which turns out to be a value of 2 for error and 4 for severe_error.
 Fatal is another term for the
severe_error status.

As a result, $? will always be zero if the subprocess's exit
 status indicated successful
completion, and non-zero if a
 warning or error occurred or a program compliant with encoding

_POSIX_EXIT values was run and set a status.

How can you tell the difference between a non-zero status that is
 the result of a VMS native
error status or an encoded Unix status?
 You can not unless you look at the
${^CHILD_ERROR_NATIVE} value.
 The ${^CHILD_ERROR_NATIVE} value returns the
actual VMS status value
 and check the severity bits. If the severity bits are equal to 1,
 then if
the numeric value for $? is between 2 and 255 or 0, then $? accurately reflects a value
passed back from a Unix application.
 If $? is 1, and the severity bits indicate a VMS error (2),
then $? is from a Unix application exit value.

In practice, Perl scripts that call programs that return _POSIX_EXIT
 type status values will be
expecting those values, and programs that
 call traditional VMS programs will either be
expecting the previous
 behavior or just checking for a non-zero status.

And success is always the value 0 in all behaviors.

When the actual VMS termination status of the child is an error,
 internally the $! value will be
set to the closest Unix errno
 value to that error so that Perl scripts that test for error
 messages
will see the expected Unix style error message instead
 of a VMS message.

Conversely, when setting $? in an END block, an attempt is made
 to convert the POSIX value
into a native status intelligible to
 the operating system upon exiting Perl. What this boils down
to
 is that setting $? to zero results in the generic success value
 SS$_NORMAL, and setting
$? to a non-zero value results in the
 generic failure status SS$_ABORT. See also "exit" in
perlport.

With the PERL_VMS_POSIX_EXIT logical name defined as "ENABLE",
 setting $? will cause
the new value to be encoded into $^E
 so that either the original parent or child exit status
values 0 to 255 can be automatically recovered by C programs expecting
 _POSIX_EXIT
behavior. If both a parent and a child exit value are
 non-zero, then it will be assumed that this
is actually a VMS native
 status value to be passed through. The special value of 0xFFFF is

almost a NOOP as it will cause the current native VMS status in the
 C library to become the
current native Perl VMS status, and is handled
 this way as it is known to not be a valid native
VMS status value.
 It is recommend that only values in the range of normal Unix parent or
 child
status numbers, 0 to 255 are used.

The pragma use vmsish 'status' makes $? reflect the actual VMS exit status instead of
the default emulation of POSIX status described above. This pragma also disables the
conversion of
 non-zero values to SS$_ABORT when setting $? in an END
 block (but zero will
still be converted to SS$_NORMAL).

Perl version 5.24.0 documentation - perlvms

Page 15http://perldoc.perl.org

Do not use the pragma use vmsish 'status' with PERL_VMS_POSIX_EXIT
 enabled, as
they are at times requesting conflicting actions and the
 consequence of ignoring this advice
will be undefined to allow future
 improvements in the POSIX exit handling.

In general, with PERL_VMS_POSIX_EXIT enabled, more detailed information
 will be available
in the exit status for DCL scripts or other native VMS tools,
 and will give the expected
information for Posix programs. It has not been
 made the default in order to preserve
backward compatibility.

N.B. Setting DECC$FILENAME_UNIX_REPORT implicitly enables PERL_VMS_POSIX_EXIT.

$|

Setting $| for an I/O stream causes data to be flushed
 all the way to disk on each write (i.e.
not just to
 the underlying RMS buffers for a file). In other words,
 it's equivalent to calling
fflush() and fsync() from C.

Standard modules with VMS-specific differences
SDBM_File

SDBM_File works properly on VMS. It has, however, one minor
 difference. The database directory file
created has a .sdbm_dir
 extension rather than a .dir extension. .dir files are VMS filesystem
 directory
files, and using them for other purposes could cause unacceptable
 problems.

Revision date
Please see the git repository for revision history.

AUTHOR
Charles Bailey bailey@cor.newman.upenn.edu
 Craig Berry craigberry@mac.com
 Dan Sugalski
dan@sidhe.org
 John Malmberg wb8tyw@qsl.net

