
Perl version 5.24.0 documentation - utf8

Page 1http://perldoc.perl.org

NAME
utf8 - Perl pragma to enable/disable UTF-8 (or UTF-EBCDIC) in source code

SYNOPSIS
 use utf8;
 no utf8;

 # Convert the internal representation of a Perl scalar to/from UTF-8.

 $num_octets = utf8::upgrade($string);
 $success = utf8::downgrade($string[, $fail_ok]);

 # Change each character of a Perl scalar to/from a series of
 # characters that represent the UTF-8 bytes of each original character.

 utf8::encode($string); # "\x{100}" becomes "\xc4\x80"
 utf8::decode($string); # "\xc4\x80" becomes "\x{100}"

 # Convert a code point from the platform native character set to
 # Unicode, and vice-versa.
 $unicode = utf8::native_to_unicode(ord('A')); # returns 65 on both
 # ASCII and EBCDIC
 # platforms
 $native = utf8::unicode_to_native(65); # returns 65 on ASCII
 # platforms; 193 on
 # EBCDIC

 $flag = utf8::is_utf8($string); # since Perl 5.8.1
 $flag = utf8::valid($string);

DESCRIPTION
The use utf8 pragma tells the Perl parser to allow UTF-8 in the
 program text in the current lexical
scope. The no utf8 pragma tells Perl
 to switch back to treating the source text as literal bytes in the
current
 lexical scope. (On EBCDIC platforms, technically it is allowing UTF-EBCDIC,
 and not UTF-8,
but this distinction is academic, so in this document the term
 UTF-8 is used to mean both).

Do not use this pragma for anything else than telling Perl that your
 script is written in UTF-8.
The utility functions described below are
 directly usable without use utf8;.

Because it is not possible to reliably tell UTF-8 from native 8 bit
 encodings, you need either a Byte
Order Mark at the beginning of your
 source code, or use utf8;, to instruct perl.

When UTF-8 becomes the standard source format, this pragma will
 effectively become a no-op.

See also the effects of the -C switch and its cousin, the PERL_UNICODE environment variable, in
perlrun.

Enabling the utf8 pragma has the following effect:

Bytes in the source text that are not in the ASCII character set will be
 treated as being part of
a literal UTF-8 sequence. This includes most
 literals such as identifier names, string
constants, and constant
 regular expression patterns.

Note that if you have non-ASCII, non-UTF-8 bytes in your script (for example
 embedded Latin-1 in
your string literals), use utf8 will be unhappy. If
 you want to have such bytes under use utf8, you

Perl version 5.24.0 documentation - utf8

Page 2http://perldoc.perl.org

can disable this pragma
 until the end the block (or file, if at top level) by no utf8;.

Utility functions
The following functions are defined in the utf8:: package by the
 Perl core. You do not need to say
use utf8 to use these and in fact
 you should not say that unless you really want to have UTF-8
source code.

* $num_octets = utf8::upgrade($string)

(Since Perl v5.8.0)
 Converts in-place the internal representation of the string from an octet

sequence in the native encoding (Latin-1 or EBCDIC) to UTF-8. The
 logical character
sequence itself is unchanged. If $string is already
 stored as UTF-8, then this is a no-op.
Returns the
 number of octets necessary to represent the string as UTF-8. Can be
 used to
make sure that the UTF-8 flag is on, so that \w or lc()
 work as Unicode on strings containing
non-ASCII characters whose code points
 are below 256.

Note that this function does not handle arbitrary encodings;
 use Encode instead.

* $success = utf8::downgrade($string[, $fail_ok])

(Since Perl v5.8.0)
 Converts in-place the internal representation of the string from
 UTF-8 to
the equivalent octet sequence in the native encoding (Latin-1
 or EBCDIC). The logical
character sequence itself is unchanged. If $string is already stored as native 8 bit, then this is
a no-op. Can
 be used to
 make sure that the UTF-8 flag is off, e.g. when you want to make
sure
 that the substr() or length() function works with the usually faster
 byte algorithm.

Fails if the original UTF-8 sequence cannot be represented in the
 native 8 bit encoding. On
failure dies or, if the value of $fail_ok is
 true, returns false.

Returns true on success.

Note that this function does not handle arbitrary encodings;
 use Encode instead.

* utf8::encode($string)

(Since Perl v5.8.0)
 Converts in-place the character sequence to the corresponding octet

sequence in UTF-8. That is, every (possibly wide) character gets
 replaced with a sequence of
one or more characters that represent the
 individual UTF-8 bytes of the character. The UTF8
flag is turned off.
 Returns nothing.

 my $a = "\x{100}"; # $a contains one character, with ord 0x100
 utf8::encode($a); # $a contains two characters, with ords (on
 # ASCII platforms) 0xc4 and 0x80. On EBCDIC
 # 1047, this would instead be 0x8C and 0x41.

Note that this function does not handle arbitrary encodings;
 use Encode instead.

* $success = utf8::decode($string)

(Since Perl v5.8.0)
 Attempts to convert in-place the octet sequence encoded as UTF-8 to the

corresponding character sequence. That is, it replaces each sequence of
 characters in the
string whose ords represent a valid UTF-8 byte
 sequence, with the corresponding single
character. The UTF-8 flag is
 turned on only if the source string contains multiple-byte UTF-8

characters. If $string is invalid as UTF-8, returns false;
 otherwise returns true.

 my $a = "\xc4\x80"; # $a contains two characters, with ords
 # 0xc4 and 0x80
 utf8::decode($a); # On ASCII platforms, $a contains one char,
 # with ord 0x100. Since these bytes aren't
 # legal UTF-EBCDIC, on EBCDIC platforms, $a is
 # unchanged and the function returns FALSE.

Note that this function does not handle arbitrary encodings;
 use Encode instead.

Perl version 5.24.0 documentation - utf8

Page 3http://perldoc.perl.org

* $unicode = utf8::native_to_unicode($code_point)

(Since Perl v5.8.0)
 This takes an unsigned integer (which represents the ordinal number of a

character (or a code point) on the platform the program is being run on) and
 returns its
Unicode equivalent value. Since ASCII platforms natively use the
 Unicode code points, this
function returns its input on them. On EBCDIC
 platforms it converts from EBCDIC to Unicode.

A meaningless value will currently be returned if the input is not an unsigned
 integer.

Since Perl v5.22.0, calls to this function are optimized out on ASCII
 platforms, so there is no
performance hit in using it there.

* $native = utf8::unicode_to_native($code_point)

(Since Perl v5.8.0)
 This is the inverse of utf8::native_to_unicode(), converting the
other
 direction. Again, on ASCII platforms, this returns its input, but on EBCDIC
 platforms it
will find the native platform code point, given any Unicode one.

A meaningless value will currently be returned if the input is not an unsigned
 integer.

Since Perl v5.22.0, calls to this function are optimized out on ASCII
 platforms, so there is no
performance hit in using it there.

* $flag = utf8::is_utf8($string)

(Since Perl 5.8.1) Test whether $string is marked internally as encoded in
 UTF-8. Functionally
the same as Encode::is_utf8().

* $flag = utf8::valid($string)

[INTERNAL] Test whether $string is in a consistent state regarding
 UTF-8. Will return true if it
is well-formed UTF-8 and has the UTF-8 flag
 on or if $string is held as bytes (both these
states are 'consistent').
 Main reason for this routine is to allow Perl's test suite to check
 that
operations have left strings in a consistent state. You most
 probably want to use
utf8::is_utf8() instead.

utf8::encode is like utf8::upgrade, but the UTF8 flag is
 cleared. See perlunicode, and the C
API
 functions sv_utf8_upgrade, "sv_utf8_downgrade" in perlapi, "sv_utf8_encode"
in perlapi,
 and "sv_utf8_decode" in perlapi, which are wrapped by the Perl functions
utf8::upgrade, utf8::downgrade, utf8::encode and utf8::decode. Also, the functions
utf8::is_utf8, utf8::valid, utf8::encode, utf8::decode, utf8::upgrade, and
utf8::downgrade are
 actually internal, and thus always available, without a require utf8

statement.

BUGS
Some filesystems may not support UTF-8 file names, or they may be supported
 incompatibly with
Perl. Therefore UTF-8 names that are visible to the
 filesystem, such as module names may not work.

SEE ALSO
perlunitut, perluniintro, perlrun, bytes, perlunicode

