
Perl version 5.24.0 documentation - Hash::Util

Page 1http://perldoc.perl.org

NAME
Hash::Util - A selection of general-utility hash subroutines

SYNOPSIS
 # Restricted hashes

 use Hash::Util qw(
 fieldhash fieldhashes

 all_keys
 lock_keys unlock_keys
 lock_value unlock_value
 lock_hash unlock_hash
 lock_keys_plus
 hash_locked hash_unlocked
 hashref_locked hashref_unlocked
 hidden_keys legal_keys

 lock_ref_keys unlock_ref_keys
 lock_ref_value unlock_ref_value
 lock_hashref unlock_hashref
 lock_ref_keys_plus
 hidden_ref_keys legal_ref_keys

 hash_seed hash_value hv_store
 bucket_stats bucket_info bucket_array
 lock_hash_recurse unlock_hash_recurse
 lock_hashref_recurse unlock_hashref_recurse

 hash_traversal_mask
);

 %hash = (foo => 42, bar => 23);
 # Ways to restrict a hash
 lock_keys(%hash);
 lock_keys(%hash, @keyset);
 lock_keys_plus(%hash, @additional_keys);

 # Ways to inspect the properties of a restricted hash
 my @legal = legal_keys(%hash);
 my @hidden = hidden_keys(%hash);
 my $ref = all_keys(%hash,@keys,@hidden);
 my $is_locked = hash_locked(%hash);

 # Remove restrictions on the hash
 unlock_keys(%hash);

 # Lock individual values in a hash
 lock_value (%hash, 'foo');
 unlock_value(%hash, 'foo');

 # Ways to change the restrictions on both keys and values

Perl version 5.24.0 documentation - Hash::Util

Page 2http://perldoc.perl.org

 lock_hash (%hash);
 unlock_hash(%hash);

 my $hashes_are_randomised = hash_seed() != 0;

 my $int_hash_value = hash_value('string');

 my $mask= hash_traversal_mask(%hash);

 hash_traversal_mask(%hash,1234);

DESCRIPTION
Hash::Util and Hash::Util::FieldHash contain special functions
 for manipulating hashes that
don't really warrant a keyword.

Hash::Util contains a set of functions that support restricted hashes. These are described in
 this
document. Hash::Util::FieldHash contains an (unrelated)
 set of functions that support the use
of hashes in inside-out classes, described in Hash::Util::FieldHash.

By default Hash::Util does not export anything.

Restricted hashes
5.8.0 introduces the ability to restrict a hash to a certain set of
 keys. No keys outside of this set can be
added. It also introduces
 the ability to lock an individual key so it cannot be deleted and the
 ability to
ensure that an individual value cannot be changed.

This is intended to largely replace the deprecated pseudo-hashes.

lock_keys

unlock_keys

 lock_keys(%hash);
 lock_keys(%hash, @keys);

Restricts the given %hash's set of keys to @keys. If @keys is not
 given it restricts it to its
current keyset. No more keys can be
 added. delete() and exists() will still work, but will not
alter
 the set of allowed keys. Note: the current implementation prevents
 the hash from being
bless()ed while it is in a locked state. Any attempt
 to do so will raise an exception. Of course
you can still bless()
 the hash before you call lock_keys() so this shouldn't be a problem.

 unlock_keys(%hash);

Removes the restriction on the %hash's keyset.

Note that if any of the values of the hash have been locked they will not
 be unlocked after this
sub executes.

Both routines return a reference to the hash operated on.

lock_keys_plus

 lock_keys_plus(%hash,@additional_keys)

Similar to lock_keys(), with the difference being that the optional key list
 specifies keys that
may or may not be already in the hash. Essentially this is
 an easier way to say

 lock_keys(%hash,@additional_keys,keys %hash);

Returns a reference to %hash

Perl version 5.24.0 documentation - Hash::Util

Page 3http://perldoc.perl.org

lock_value

unlock_value

 lock_value (%hash, $key);
 unlock_value(%hash, $key);

Locks and unlocks the value for an individual key of a hash. The value of a
 locked key cannot
be changed.

Unless %hash has already been locked the key/value could be deleted
 regardless of this
setting.

Returns a reference to the %hash.

lock_hash

unlock_hash

 lock_hash(%hash);

lock_hash() locks an entire hash, making all keys and values read-only.
 No value can be
changed, no keys can be added or deleted.

 unlock_hash(%hash);

unlock_hash() does the opposite of lock_hash(). All keys and values
 are made writable. All
values can be changed and keys can be added
 and deleted.

Returns a reference to the %hash.

lock_hash_recurse

unlock_hash_recurse

 lock_hash_recurse(%hash);

lock_hash() locks an entire hash and any hashes it references recursively,
 making all keys
and values read-only. No value can be changed, no keys can
 be added or deleted.

This method only recurses into hashes that are referenced by another hash.
 Thus a Hash of
Hashes (HoH) will all be restricted, but a Hash of Arrays of
 Hashes (HoAoH) will only have the
top hash restricted.

 unlock_hash_recurse(%hash);

unlock_hash_recurse() does the opposite of lock_hash_recurse(). All keys and
 values are
made writable. All values can be changed and keys can be added
 and deleted. Identical
recursion restrictions apply as to lock_hash_recurse().

Returns a reference to the %hash.

hashref_locked

hash_locked

 hashref_locked(\%hash) and print "Hash is locked!\n";
 hash_locked(%hash) and print "Hash is locked!\n";

Returns true if the hash and its keys are locked.

hashref_unlocked

hash_unlocked

 hashref_unlocked(\%hash) and print "Hash is unlocked!\n";
 hash_unlocked(%hash) and print "Hash is unlocked!\n";

Returns true if the hash and its keys are unlocked.

Perl version 5.24.0 documentation - Hash::Util

Page 4http://perldoc.perl.org

legal_keys

 my @keys = legal_keys(%hash);

Returns the list of the keys that are legal in a restricted hash.
 In the case of an unrestricted
hash this is identical to calling
 keys(%hash).

hidden_keys

 my @keys = hidden_keys(%hash);

Returns the list of the keys that are legal in a restricted hash but
 do not have a value
associated to them. Thus if 'foo' is a
 "hidden" key of the %hash it will return false for both
defined
 and exists tests.

In the case of an unrestricted hash this will return an empty list.

NOTE this is an experimental feature that is heavily dependent
 on the current implementation
of restricted hashes. Should the
 implementation change, this routine may become
meaningless, in which
 case it will return an empty list.

all_keys

 all_keys(%hash,@keys,@hidden);

Populates the arrays @keys with the all the keys that would pass
 an exists tests, and
populates @hidden with the remaining legal
 keys that have not been utilized.

Returns a reference to the hash.

In the case of an unrestricted hash this will be equivalent to

 $ref = do {
 @keys = keys %hash;
 @hidden = ();
 \%hash
 };

NOTE this is an experimental feature that is heavily dependent
 on the current implementation
of restricted hashes. Should the
 implementation change this routine may become meaningless
in which
 case it will behave identically to how it would behave on an
 unrestricted hash.

hash_seed

 my $hash_seed = hash_seed();

hash_seed() returns the seed bytes used to randomise hash ordering.

Note that the hash seed is sensitive information: by knowing it one
 can craft a
denial-of-service attack against Perl code, even remotely,
 see "Algorithmic Complexity
Attacks" in perlsec for more information. Do not disclose the hash seed to people who don't
need to know it.
 See also "PERL_HASH_SEED_DEBUG" in perlrun.

Prior to Perl 5.17.6 this function returned a UV, it now returns a string,
 which may be of nearly
any size as determined by the hash function your
 Perl has been built with. Possible sizes may
be but are not limited to
 4 bytes (for most hash algorithms) and 16 bytes (for siphash).

hash_value

 my $hash_value = hash_value($string);

hash_value() returns the current perl's internal hash value for a given
 string.

Returns a 32 bit integer representing the hash value of the string passed
 in. This value is only
reliable for the lifetime of the process. It may
 be different depending on invocation,
environment variables, perl version,
 architectures, and build options.

Perl version 5.24.0 documentation - Hash::Util

Page 5http://perldoc.perl.org

Note that the hash value of a given string is sensitive information:
 by knowing it one can
deduce the hash seed which in turn can allow one to
 craft a denial-of-service attack against
Perl code, even remotely,
 see "Algorithmic Complexity Attacks" in perlsec for more
information. Do not disclose the hash value of a string to people who don't need to
 know it.
See also "PERL_HASH_SEED_DEBUG" in perlrun.

bucket_info

Return a set of basic information about a hash.

 my ($keys, $buckets, $used, @length_counts)= bucket_info($hash);

Fields are as follows:

 0: Number of keys in the hash
 1: Number of buckets in the hash
 2: Number of used buckets in the hash
 rest : list of counts, Kth element is the number of buckets
 with K keys in it.

See also bucket_stats() and bucket_array().

bucket_stats

Returns a list of statistics about a hash.

 my ($keys, $buckets, $used, $quality, $utilization_ratio,
 $collision_pct, $mean, $stddev, @length_counts)
 = bucket_stats($hashref);

Fields are as follows:

 0: Number of keys in the hash
 1: Number of buckets in the hash
 2: Number of used buckets in the hash
 3: Hash Quality Score
 4: Percent of buckets used
 5: Percent of keys which are in collision
 6: Mean bucket length of occupied buckets
 7: Standard Deviation of bucket lengths of occupied buckets
 rest : list of counts, Kth element is the number of buckets
 with K keys in it.

See also bucket_info() and bucket_array().

Note that Hash Quality Score would be 1 for an ideal hash, numbers
 close to and below 1
indicate good hashing, and number significantly
 above indicate a poor score. In practice it
should be around 0.95 to 1.05.
 It is defined as:

 $score= sum($count[$length] * ($length * ($length + 1) / 2))
 /
 (($keys / 2 * $buckets) *
 ($keys + (2 * $buckets) - 1))

The formula is from the Red Dragon book (reformulated to use the data available)
 and is
documented at http://www.strchr.com/hash_functions

bucket_array

 my $array= bucket_array(\%hash);

Returns a packed representation of the bucket array associated with a hash. Each element
 of
the array is either an integer K, in which case it represents K empty buckets, or
 a reference to

Perl version 5.24.0 documentation - Hash::Util

Page 6http://perldoc.perl.org

another array which contains the keys that are in that bucket.

Note that the information returned by bucket_array is sensitive information:
 by knowing
it one can directly attack perl's hash function which in turn may allow
 one to craft a
denial-of-service attack against Perl code, even remotely,
 see "Algorithmic Complexity
Attacks" in perlsec for more information. Do not disclose the output of this function to
people who don't need to
 know it. See also "PERL_HASH_SEED_DEBUG" in perlrun. This
function is provided strictly
 for debugging and diagnostics purposes only, it is hard to imagine
a reason why it
 would be used in production code.

bucket_stats_formatted

 print bucket_stats_formatted($hashref);

Return a formatted report of the information returned by bucket_stats().
 An example report
looks like this:

 Keys: 50 Buckets: 33/64 Quality-Score: 1.01 (Good)
 Utilized Buckets: 51.56% Optimal: 78.12% Keys In Collision: 34.00%
 Chain Length - mean: 1.52 stddev: 0.66
 Buckets 64
[0000000000000000000000000000000111111111111111111122222222222333]
 Len 0 Pct: 48.44 [###############################]
 Len 1 Pct: 29.69 [###################]
 Len 2 Pct: 17.19 [###########]
 Len 3 Pct: 4.69 [###]
 Keys 50
[11111111111111111111111111111111122222222222222333]
 Pos 1 Pct: 66.00 [#################################]
 Pos 2 Pct: 28.00 [##############]
 Pos 3 Pct: 6.00 [###]

The first set of stats gives some summary statistical information,
 including the quality score
translated into "Good", "Poor" and "Bad",
 (score<=1.05, score<=1.2, score>1.2). See the
documentation in
 bucket_stats() for more details.

The two sets of barcharts give stats and a visual indication of performance
 of the hash.

The first gives data on bucket chain lengths and provides insight on how
 much work a fetch
miss will take. In this case we have to inspect every item
 in a bucket before we can be sure
the item is not in the list. The performance
 for an insert is equivalent to this case, as is a
delete where the item
 is not in the hash.

The second gives data on how many keys are at each depth in the chain, and
 gives an idea of
how much work a fetch *hit* will take. The performance for
 an update or delete of an item in
the hash is equivalent to this case.

Note that these statistics are summary only. Actual performance will depend
 on real hit/miss
ratios accessing the hash. If you are concerned by hit ratios
 you are recommended to
"oversize" your hash by using something like:

 keys(%hash)= keys(%hash) << $k;

With $k chosen carefully, and likely to be a small number like 1 or 2. In
 theory the larger the
bucket array the less chance of collision.

hv_store

 my $sv = 0;
 hv_store(%hash,$key,$sv) or die "Failed to alias!";
 $hash{$key} = 1;
 print $sv; # prints 1

Perl version 5.24.0 documentation - Hash::Util

Page 7http://perldoc.perl.org

Stores an alias to a variable in a hash instead of copying the value.

hash_traversal_mask

As of Perl 5.18 every hash has its own hash traversal order, and this order
 changes every
time a new element is inserted into the hash. This functionality
 is provided by maintaining an
unsigned integer mask (U32) which is xor'ed
 with the actual bucket id during a traversal of the
hash buckets using keys(),
 values() or each().

You can use this subroutine to get and set the traversal mask for a specific
 hash. Setting the
mask ensures that a given hash will produce the same key
 order. Note that this does not
guarantee that two hashes will produce
 the same key order for the same hash seed and
traversal mask, items that
 collide into one bucket may have different orders regardless of this
setting.

Operating on references to hashes.
Most subroutines documented in this module have equivalent versions
 that operate on references to
hashes instead of native hashes.
 The following is a list of these subs. They are identical except
 in
name and in that instead of taking a %hash they take a $hashref,
 and additionally are not prototyped.

lock_ref_keys

unlock_ref_keys

lock_ref_keys_plus

lock_ref_value

unlock_ref_value

lock_hashref

unlock_hashref

lock_hashref_recurse

unlock_hashref_recurse

hash_ref_unlocked

legal_ref_keys

hidden_ref_keys

CAVEATS
Note that the trapping of the restricted operations is not atomic:
 for example

 eval { %hash = (illegal_key => 1) }

leaves the %hash empty rather than with its original contents.

BUGS
The interface exposed by this module is very close to the current
 implementation of restricted hashes.
Over time it is expected that
 this behavior will be extended and the interface abstracted further.

AUTHOR
Michael G Schwern <schwern@pobox.com> on top of code by Nick
 Ing-Simmons and Jeffrey Friedl.

hv_store() is from Array::RefElem, Copyright 2000 Gisle Aas.

Additional code by Yves Orton.

SEE ALSO
Scalar::Util, List::Util and "Algorithmic Complexity Attacks" in perlsec.

Hash::Util::FieldHash.

