
Perl version 5.24.0 documentation - bytes

Page 1http://perldoc.perl.org

NAME
bytes - Perl pragma to expose the individual bytes of characters

NOTICE
Because the bytes pragma breaks encapsulation (i.e. it exposes the innards of
 how the perl
executable currently happens to store a string), the byte values
 that result are in an unspecified
encoding.

Use of this module for anything other than debugging purposes is
 strongly discouraged. If you
feel that the functions here within
 might be useful for your application, this possibly indicates a

mismatch between your mental model of Perl Unicode and the current
 reality. In that case, you may
wish to read some of the perl Unicode
 documentation: perluniintro, perlunitut, perlunifaq and
perlunicode.

SYNOPSIS
 use bytes;
 ... chr(...); # or bytes::chr
 ... index(...); # or bytes::index
 ... length(...); # or bytes::length
 ... ord(...); # or bytes::ord
 ... rindex(...); # or bytes::rindex
 ... substr(...); # or bytes::substr
 no bytes;

DESCRIPTION
Perl's characters are stored internally as sequences of one or more bytes.
 This pragma allows for the
examination of the individual bytes that together
 comprise a character.

Originally the pragma was designed for the loftier goal of helping incorporate
 Unicode into Perl, but
the approach that used it was found to be defective,
 and the one remaining legitimate use is for
debugging when you need to
 non-destructively examine characters' individual bytes. Just insert this

pragma temporarily, and remove it after the debugging is finished.

The original usage can be accomplished by explicit (rather than this pragma's
 implict) encoding using
the Encode module:

 use Encode qw/encode/;

 my $utf8_byte_string = encode "UTF8", $string;
 my $latin1_byte_string = encode "Latin1", $string;

Or, if performance is needed and you are only interested in the UTF-8
 representation:

 use utf8;

 utf8::encode(my $utf8_byte_string = $string);

no bytes can be used to reverse the effect of use bytes within the
 current lexical scope.

As an example, when Perl sees $x = chr(400), it encodes the character
 in UTF-8 and stores it in
$x. Then it is marked as character data, so,
 for instance, length $x returns 1. However, in the
scope of the bytes pragma, $x is treated as a series of bytes - the bytes that make
 up the UTF8
encoding - and length $x returns 2:

 $x = chr(400);
 print "Length is ", length $x, "\n"; # "Length is 1"

Perl version 5.24.0 documentation - bytes

Page 2http://perldoc.perl.org

 printf "Contents are %vd\n", $x; # "Contents are 400"
 {
 use bytes; # or "require bytes; bytes::length()"
 print "Length is ", length $x, "\n"; # "Length is 2"
 printf "Contents are %vd\n", $x; # "Contents are 198.144 (on
 # ASCII platforms)"
 }

chr(), ord(), substr(), index() and rindex() behave similarly.

For more on the implications, see perluniintro and perlunicode.

bytes::length() is admittedly handy if you need to know the byte length of a Perl scalar. But a
more modern way is:

 use Encode 'encode';
 length(encode('UTF-8', $scalar))

LIMITATIONS
bytes::substr() does not work as an lvalue().

SEE ALSO
perluniintro, perlunicode, utf8, Encode

