
Perl version 5.24.0 documentation - perlhacktips

Page 1http://perldoc.perl.org

NAME
perlhacktips - Tips for Perl core C code hacking

DESCRIPTION
This document will help you learn the best way to go about hacking on
 the Perl core C code. It covers
common problems, debugging, profiling,
 and more.

If you haven't read perlhack and perlhacktut yet, you might want
 to do that first.

COMMON PROBLEMS
Perl source plays by ANSI C89 rules: no C99 (or C++) extensions. In
 some cases we have to take
pre-ANSI requirements into consideration.
 You don't care about some particular platform having
broken Perl? I
 hear there is still a strong demand for J2EE programmers.

Perl environment problems
Not compiling with threading

Compiling with threading (-Duseithreads) completely rewrites the
 function prototypes of Perl.
You better try your changes with that.
 Related to this is the difference between "Perl_-less"
and "Perl_-ly"
 APIs, for example:

 Perl_sv_setiv(aTHX_ ...);
 sv_setiv(...);

The first one explicitly passes in the context, which is needed for
 e.g. threaded builds. The
second one does that implicitly; do not get
 them mixed. If you are not passing in a aTHX_, you
will need to do a
 dTHX (or a dVAR) as the first thing in the function.

See "How multiple interpreters and concurrency are supported" in perlguts for further
discussion about context.

Not compiling with -DDEBUGGING

The DEBUGGING define exposes more code to the compiler, therefore more
 ways for things
to go wrong. You should try it.

Introducing (non-read-only) globals

Do not introduce any modifiable globals, truly global or file static.
 They are bad form and
complicate multithreading and other forms of
 concurrency. The right way is to introduce them
as new interpreter
 variables, see intrpvar.h (at the very end for binary
 compatibility).

Introducing read-only (const) globals is okay, as long as you verify
 with e.g. nm
libperl.a|egrep -v ' [TURtr] ' (if your nm has
 BSD-style output) that the data you
added really is read-only. (If it
 is, it shouldn't show up in the output of that command.)

If you want to have static strings, make them constant:

 static const char etc[] = "...";

If you want to have arrays of constant strings, note carefully the
 right combination of consts:

 static const char * const yippee[] =
 {"hi", "ho", "silver"};

There is a way to completely hide any modifiable globals (they are all
 moved to heap), the
compilation setting -DPERL_GLOBAL_STRUCT_PRIVATE. It is not normally used, but can be

used for testing, read more about it in "Background and PERL_IMPLICIT_CONTEXT" in
perlguts.

Not exporting your new function

Some platforms (Win32, AIX, VMS, OS/2, to name a few) require any
 function that is part of
the public API (the shared Perl library) to be
 explicitly marked as exported. See the discussion

Perl version 5.24.0 documentation - perlhacktips

Page 2http://perldoc.perl.org

about embed.pl in perlguts.

Exporting your new function

The new shiny result of either genuine new functionality or your
 arduous refactoring is now
ready and correctly exported. So what could
 possibly go wrong?

Maybe simply that your function did not need to be exported in the
 first place. Perl has a long
and not so glorious history of exporting
 functions that it should not have.

If the function is used only inside one source code file, make it
 static. See the discussion
about embed.pl in perlguts.

If the function is used across several files, but intended only for
 Perl's internal use (and this
should be the common case), do not export
 it to the public API. See the discussion about
embed.pl in perlguts.

Portability problems
The following are common causes of compilation and/or execution
 failures, not common to Perl as
such. The C FAQ is good bedtime
 reading. Please test your changes with as many C compilers and

platforms as possible; we will, anyway, and it's nice to save oneself
 from public embarrassment.

If using gcc, you can add the -std=c89 option which will hopefully
 catch most of these
unportabilities. (However it might also catch
 incompatibilities in your system's header files.)

Use the Configure -Dgccansipedantic flag to enable the gcc -ansi
 -pedantic flags which
enforce stricter ANSI rules.

If using the gcc -Wall note that not all the possible warnings (like -Wunitialized) are given
unless you also compile with -O.

Note that if using gcc, starting from Perl 5.9.5 the Perl core source
 code files (the ones at the top level
of the source code distribution,
 but not e.g. the extensions under ext/) are automatically compiled with
as many as possible of the -std=c89, -ansi, -pedantic, and a
 selection of -W flags (see
cflags.SH).

Also study perlport carefully to avoid any bad assumptions about the
 operating system, filesystems,
character set, and so forth.

You may once in a while try a "make microperl" to see whether we can
 still compile Perl with just the
bare minimum of interfaces. (See
 README.micro.)

Do not assume an operating system indicates a certain compiler.

Casting pointers to integers or casting integers to pointers

 void castaway(U8* p)
 {
 IV i = p;

or

 void castaway(U8* p)
 {
 IV i = (IV)p;

Both are bad, and broken, and unportable. Use the PTR2IV() macro that
 does it right.
(Likewise, there are PTR2UV(), PTR2NV(), INT2PTR(), and
 NUM2PTR().)

Casting between function pointers and data pointers

Technically speaking casting between function pointers and data
 pointers is unportable and
undefined, but practically speaking it seems
 to work, but you should use the FPTR2DPTR()
and DPTR2FPTR() macros.
 Sometimes you can also play games with unions.

Perl version 5.24.0 documentation - perlhacktips

Page 3http://perldoc.perl.org

Assuming sizeof(int) == sizeof(long)

There are platforms where longs are 64 bits, and platforms where ints
 are 64 bits, and while
we are out to shock you, even platforms where
 shorts are 64 bits. This is all legal according to
the C standard. (In
 other words, "long long" is not a portable way to specify 64 bits, and
 "long
long" is not even guaranteed to be any wider than "long".)

Instead, use the definitions IV, UV, IVSIZE, I32SIZE, and so forth.
 Avoid things like I32
because they are not guaranteed to be exactly 32 bits, they are at least 32 bits, nor are they

guaranteed to be int or long. If you really explicitly need
 64-bit variables, use I64 and U64, but
only if guarded by HAS_QUAD.

Assuming one can dereference any type of pointer for any type of data

 char *p = ...;
 long pony = *(long *)p; /* BAD */

Many platforms, quite rightly so, will give you a core dump instead of
 a pony if the p happens
not to be correctly aligned.

Lvalue casts

 (int)*p = ...; /* BAD */

Simply not portable. Get your lvalue to be of the right type, or maybe
 use temporary variables,
or dirty tricks with unions.

Assume anything about structs (especially the ones you don't
 control, like the ones coming
from the system headers)

That a certain field exists in a struct

That no other fields exist besides the ones you know of

That a field is of certain signedness, sizeof, or type

That the fields are in a certain order

While C guarantees the ordering specified in the struct
definition,
 between different platforms the definitions might differ

That the sizeof(struct) or the alignments are the same everywhere

There might be padding bytes between the fields to align the
fields -
 the bytes can be anything

Structs are required to be aligned to the maximum alignment
required by
 the fields - which for native types is for usually
equivalent to
 sizeof() of the field

Assuming the character set is ASCIIish

Perl can compile and run under EBCDIC platforms. See perlebcdic.
 This is transparent for the
most part, but because the character sets
 differ, you shouldn't use numeric (decimal, octal, nor
hex) constants
 to refer to characters. You can safely say 'A', but not 0x41.
 You can safely
say '\n', but not \012. However, you can use
 macros defined in utf8.h to specify any code
point portably. LATIN1_TO_NATIVE(0xDF) is going to be the code point that means
 LATIN
SMALL LETTER SHARP S on whatever platform you are running on (on
 ASCII platforms it
compiles without adding any extra code, so there is
 zero performance hit on those). The
acceptable inputs to LATIN1_TO_NATIVE are from 0x00 through 0xFF. If your input
 isn't
guaranteed to be in that range, use UNICODE_TO_NATIVE instead. NATIVE_TO_LATIN1 and
NATIVE_TO_UNICODE translate the opposite
 direction.

If you need the string representation of a character that doesn't have a
 mnemonic name in C,

Perl version 5.24.0 documentation - perlhacktips

Page 4http://perldoc.perl.org

you should add it to the list in regen/unicode_constants.pl, and have Perl create #define's
for you,
 based on the current platform.

Note that the isFOO and toFOO macros in handy.h work
 properly on native code points and
strings.

Also, the range 'A' - 'Z' in ASCII is an unbroken sequence of 26 upper
 case alphabetic
characters. That is not true in EBCDIC. Nor for 'a' to
 'z'. But '0' - '9' is an unbroken range in
both systems. Don't assume
 anything about other ranges. (Note that special handling of
ranges in
 regular expression patterns and transliterations makes it appear to Perl
 code that
the aforementioned ranges are all unbroken.)

Many of the comments in the existing code ignore the possibility of
 EBCDIC, and may be
wrong therefore, even if the code works. This is
 actually a tribute to the successful transparent
insertion of being
 able to handle EBCDIC without having to change pre-existing code.

UTF-8 and UTF-EBCDIC are two different encodings used to represent
 Unicode code points
as sequences of bytes. Macros with the same names
 (but different definitions) in utf8.h and
utfebcdic.h are used to
 allow the calling code to think that there is only one such encoding.

This is almost always referred to as utf8, but it means the EBCDIC
 version as well. Again,
comments in the code may well be wrong even if
 the code itself is right. For example, the
concept of UTF-8 invariant
 characters differs between ASCII and EBCDIC. On ASCII
platforms, only
 characters that do not have the high-order bit set (i.e. whose ordinals
 are strict
ASCII, 0 - 127) are invariant, and the documentation and
 comments in the code may assume
that, often referring to something
 like, say, hibit. The situation differs and is not so simple on
EBCDIC machines, but as long as the code itself uses the NATIVE_IS_INVARIANT() macro
appropriately, it works, even if the
 comments are wrong.

As noted in "TESTING" in perlhack, when writing test scripts, the file t/charset_tools.pl
contains some helpful functions for writing tests
 valid on both ASCII and EBCDIC platforms.
Sometimes, though, a test
 can't use a function and it's inconvenient to have different test

versions depending on the platform. There are 20 code points that are
 the same in all 4
character sets currently recognized by Perl (the 3
 EBCDIC code pages plus ISO 8859-1
(ASCII/Latin1)). These can be used in
 such tests, though there is a small possibility that Perl
will become
 available in yet another character set, breaking your test. All but one
 of these
code points are C0 control characters. The most significant
 controls that are the same are \0,
\r, and \N{VT} (also
 specifiable as \cK, \x0B, \N{U+0B}, or \013). The single
 non-control
is U+00B6 PILCROW SIGN. The controls that are the same have
 the same bit pattern in all 4
character sets, regardless of the UTF8ness
 of the string containing them. The bit pattern for
U+B6 is the same in
 all 4 for non-UTF8 strings, but differs in each when its containing
 string is
UTF-8 encoded. The only other code points that have some sort
 of sameness across all 4
character sets are the pair 0xDC and 0xFC.
 Together these represent upper- and lowercase
LATIN LETTER U WITH
 DIAERESIS, but which is upper and which is lower may be reversed:
0xDC
 is the capital in Latin1 and 0xFC is the small letter, while 0xFC is the
 capital in EBCDIC
and 0xDC is the small one. This factoid may be
 exploited in writing case insensitive tests that
are the same across all
 4 character sets.

Assuming the character set is just ASCII

ASCII is a 7 bit encoding, but bytes have 8 bits in them. The 128 extra
 characters have
different meanings depending on the locale. Absent a
 locale, currently these extra characters
are generally considered to be
 unassigned, and this has presented some problems. This has
being
 changed starting in 5.12 so that these characters can be considered to
 be Latin-1
(ISO-8859-1).

Mixing #define and #ifdef

 #define BURGLE(x) ... \
 #ifdef BURGLE_OLD_STYLE /* BAD */
 ... do it the old way ... \
 #else

Perl version 5.24.0 documentation - perlhacktips

Page 5http://perldoc.perl.org

 ... do it the new way ... \
 #endif

You cannot portably "stack" cpp directives. For example in the above
 you need two separate
BURGLE() #defines, one for each #ifdef branch.

Adding non-comment stuff after #endif or #else

 #ifdef SNOSH
 ...
 #else !SNOSH /* BAD */
 ...
 #endif SNOSH /* BAD */

The #endif and #else cannot portably have anything non-comment after
 them. If you want to
document what is going (which is a good idea
 especially if the branches are long), use (C)
comments:

 #ifdef SNOSH
 ...
 #else /* !SNOSH */
 ...
 #endif /* SNOSH */

The gcc option -Wendif-labels warns about the bad variant (by
 default on starting from
Perl 5.9.4).

Having a comma after the last element of an enum list

 enum color {
 CERULEAN,
 CHARTREUSE,
 CINNABAR, /* BAD */
 };

is not portable. Leave out the last comma.

Also note that whether enums are implicitly morphable to ints varies
 between compilers, you
might need to (int).

Using //-comments

 // This function bamfoodles the zorklator. /* BAD */

That is C99 or C++. Perl is C89. Using the //-comments is silently
 allowed by many C
compilers but cranking up the ANSI C89 strictness
 (which we like to do) causes the
compilation to fail.

Mixing declarations and code

 void zorklator()
 {
 int n = 3;
 set_zorkmids(n); /* BAD */
 int q = 4;

That is C99 or C++. Some C compilers allow that, but you shouldn't.

The gcc option -Wdeclaration-after-statements scans for such
 problems (by default
on starting from Perl 5.9.4).

Introducing variables inside for()

Perl version 5.24.0 documentation - perlhacktips

Page 6http://perldoc.perl.org

 for(int i = ...; ...; ...) { /* BAD */

That is C99 or C++. While it would indeed be awfully nice to have that
 also in C89, to limit the
scope of the loop variable, alas, we cannot.

Mixing signed char pointers with unsigned char pointers

 int foo(char *s) { ... }
 ...
 unsigned char *t = ...; /* Or U8* t = ... */
 foo(t); /* BAD */

While this is legal practice, it is certainly dubious, and downright
 fatal in at least one platform:
for example VMS cc considers this a
 fatal error. One cause for people often making this
mistake is that a
 "naked char" and therefore dereferencing a "naked char pointer" have an

undefined signedness: it depends on the compiler and the flags of the
 compiler and the
underlying platform whether the result is signed or
 unsigned. For this very same reason using
a 'char' as an array index is
 bad.

Macros that have string constants and their arguments as substrings of
 the string constants

 #define FOO(n) printf("number = %d\n", n) /* BAD */
 FOO(10);

Pre-ANSI semantics for that was equivalent to

 printf("10umber = %d\10");

which is probably not what you were expecting. Unfortunately at least
 one reasonably
common and modern C compiler does "real backward
 compatibility" here, in AIX that is what
still happens even though the
 rest of the AIX compiler is very happily C89.

Using printf formats for non-basic C types

 IV i = ...;
 printf("i = %d\n", i); /* BAD */

While this might by accident work in some platform (where IV happens to
 be an int), in
general it cannot. IV might be something larger. Even
 worse the situation is with more specific
types (defined by Perl's
 configuration step in config.h):

 Uid_t who = ...;
 printf("who = %d\n", who); /* BAD */

The problem here is that Uid_t might be not only not int-wide but it
 might also be unsigned,
in which case large uids would be printed as
 negative values.

There is no simple solution to this because of printf()'s limited
 intelligence, but for many types
the right format is available as with
 either 'f' or '_f' suffix, for example:

 IVdf /* IV in decimal */
 UVxf /* UV is hexadecimal */

 printf("i = %"IVdf"\n", i); /* The IVdf is a string constant. */

 Uid_t_f /* Uid_t in decimal */

 printf("who = %"Uid_t_f"\n", who);

Or you can try casting to a "wide enough" type:

 printf("i = %"IVdf"\n", (IV)something_very_small_and_signed);

Perl version 5.24.0 documentation - perlhacktips

Page 7http://perldoc.perl.org

Also remember that the %p format really does require a void pointer:

 U8* p = ...;
 printf("p = %p\n", (void*)p);

The gcc option -Wformat scans for such problems.

Blindly using variadic macros

gcc has had them for a while with its own syntax, and C99 brought them
 with a standardized
syntax. Don't use the former, and use the latter
 only if the HAS_C99_VARIADIC_MACROS is
defined.

Blindly passing va_list

Not all platforms support passing va_list to further varargs (stdarg)
 functions. The right thing to
do is to copy the va_list using the
 Perl_va_copy() if the NEED_VA_COPY is defined.

Using gcc statement expressions

 val = ({...;...;...}); /* BAD */

While a nice extension, it's not portable. The Perl code does
 admittedly use them if available
to gain some extra speed (essentially
 as a funky form of inlining), but you shouldn't.

Binding together several statements in a macro

Use the macros STMT_START and STMT_END.

 STMT_START {
 ...
 } STMT_END

Testing for operating systems or versions when should be testing for
 features

 #ifdef __FOONIX__ /* BAD */
 foo = quux();
 #endif

Unless you know with 100% certainty that quux() is only ever available
 for the "Foonix"
operating system and that is available and
 correctly working for all past, present, and future
versions of
 "Foonix", the above is very wrong. This is more correct (though still
 not perfect,
because the below is a compile-time check):

 #ifdef HAS_QUUX
 foo = quux();
 #endif

How does the HAS_QUUX become defined where it needs to be? Well, if
 Foonix happens to
be Unixy enough to be able to run the Configure
 script, and Configure has been taught about
detecting and testing
 quux(), the HAS_QUUX will be correctly defined. In other platforms, the

corresponding configuration step will hopefully do the same.

In a pinch, if you cannot wait for Configure to be educated, or if you
 have a good hunch of
where quux() might be available, you can
 temporarily try the following:

 #if (defined(__FOONIX__) || defined(__BARNIX__))
 # define HAS_QUUX
 #endif

 ...

 #ifdef HAS_QUUX
 foo = quux();

Perl version 5.24.0 documentation - perlhacktips

Page 8http://perldoc.perl.org

 #endif

But in any case, try to keep the features and operating systems
 separate.

A good resource on the predefined macros for various operating
 systems, compilers, and so
forth is http://sourceforge.net/p/predef/wiki/Home/

Assuming the contents of static memory pointed to by the return values
 of Perl wrappers for C
library functions doesn't change. Many C library
 functions return pointers to static storage that
can be overwritten by
 subsequent calls to the same or related functions. Perl has
 light-weight
wrappers for some of these functions, and which don't make
 copies of the static memory. A
good example is the interface to the
 environment variables that are in effect for the program.
Perl has PerlEnv_getenv to get values from the environment. But the return is
 a pointer to
static memory in the C library. If you are using the value
 to immediately test for something,
that's fine, but if you save the
 value and expect it to be unchanged by later processing, you
would be
 wrong, but perhaps you wouldn't know it because different C library
 implementations
behave differently, and the one on the platform you're
 testing on might work for your situation.
But on some platforms, a
 subsequent call to PerlEnv_getenv or related function WILL
overwrite
 the memory that your first call points to. This has led to some
 hard-to-debug
problems. Do a "savepv" in perlapi to make a copy, thus
 avoiding these problems. You will
have to free the copy when you're
 done to avoid memory leaks. If you don't have control over
when it gets
 freed, you'll need to make the copy in a mortal scalar, like so:

 if ((s = PerlEnv_getenv("foo") == NULL) {
 ... /* handle NULL case */
 }
 else {
 s = SvPVX(sv_2mortal(newSVpv(s, 0)));
 }

The above example works only if "s" is NUL-terminated; otherwise
 you have to pass its length
to newSVpv.

Problematic System Interfaces
malloc(0), realloc(0), calloc(0, 0) are non-portable. To be portable
 allocate at least one byte.
(In general you should rarely need to work
 at this low level, but instead use the various malloc
wrappers.)

snprintf() - the return type is unportable. Use my_snprintf() instead.

Security problems
Last but not least, here are various tips for safer coding.
 See also perlclib for libc/stdio replacements
one should use.

Do not use gets()

Or we will publicly ridicule you. Seriously.

Do not use tmpfile()

Use mkstemp() instead.

Do not use strcpy() or strcat() or strncpy() or strncat()

Use my_strlcpy() and my_strlcat() instead: they either use the native
 implementation, or Perl's
own implementation (borrowed from the public
 domain implementation of INN).

Do not use sprintf() or vsprintf()

If you really want just plain byte strings, use my_snprintf() and
 my_vsnprintf() instead, which
will try to use snprintf() and
 vsnprintf() if those safer APIs are available. If you want something

fancier than a plain byte string, use Perl_form() or SVs and Perl_sv_catpvf().

Perl version 5.24.0 documentation - perlhacktips

Page 9http://perldoc.perl.org

Note that glibc printf(), sprintf(), etc. are buggy before glibc
 version 2.17. They won't
allow a %.s format with a precision to
 create a string that isn't valid UTF-8 if the current
underlying locale
 of the program is UTF-8. What happens is that the %s and its operand are

simply skipped without any notice. https://sourceware.org/bugzilla/show_bug.cgi?id=6530.

Do not use atoi()

Use grok_atoUV() instead. atoi() has ill-defined behavior on overflows,
 and cannot be used for
incremental parsing. It is also affected by locale,
 which is bad.

Do not use strtol() or strtoul()

Use grok_atoUV() instead. strtol() or strtoul() (or their IV/UV-friendly
 macro disguises, Strtol()
and Strtoul(), or Atol() and Atoul() are
 affected by locale, which is bad.

DEBUGGING
You can compile a special debugging version of Perl, which allows you
 to use the -D option of Perl to
tell more about what Perl is doing.
 But sometimes there is no alternative than to dive in with a
debugger,
 either to see the stack trace of a core dump (very useful in a bug
 report), or trying to figure
out what went wrong before the core dump
 happened, or how did we end up having wrong or
unexpected results.

Poking at Perl
To really poke around with Perl, you'll probably want to build Perl for
 debugging, like this:

 ./Configure -d -D optimize=-g
 make

-g is a flag to the C compiler to have it produce debugging
 information which will allow us to step
through a running program, and
 to see in which C function we are at (without the debugging
information
 we might see only the numerical addresses of the functions, which is
 not very helpful).

Configure will also turn on the DEBUGGING compilation symbol
 which enables all the internal
debugging code in Perl. There are a
 whole bunch of things you can debug with this: perlrun lists them

all, and the best way to find out about them is to play about with
 them. The most useful options are
probably

 l Context (loop) stack processing
 t Trace execution
 o Method and overloading resolution
 c String/numeric conversions

Some of the functionality of the debugging code can be achieved using
 XS modules.

 -Dr => use re 'debug'
 -Dx => use O 'Debug'

Using a source-level debugger
If the debugging output of -D doesn't help you, it's time to step
 through perl's execution with a
source-level debugger.

We'll use gdb for our examples here; the principles will apply to
 any debugger (many vendors
call their debugger dbx), but check the
 manual of the one you're using.

To fire up the debugger, type

 gdb ./perl

Or if you have a core dump:

Perl version 5.24.0 documentation - perlhacktips

Page 10http://perldoc.perl.org

 gdb ./perl core

You'll want to do that in your Perl source tree so the debugger can
 read the source code. You should
see the copyright message, followed by
 the prompt.

 (gdb)

help will get you into the documentation, but here are the most
 useful commands:

* run [args]

Run the program with the given arguments.

* break function_name

* break source.c:xxx

Tells the debugger that we'll want to pause execution when we reach
 either the named function
(but see "Internal Functions" in perlguts!) or
 the given line in the named source file.

* step

Steps through the program a line at a time.

* next

Steps through the program a line at a time, without descending into
 functions.

* continue

Run until the next breakpoint.

* finish

Run until the end of the current function, then stop again.

* 'enter'

Just pressing Enter will do the most recent operation again - it's a
 blessing when stepping
through miles of source code.

* ptype

Prints the C definition of the argument given.

 (gdb) ptype PL_op
 type = struct op {
 OP *op_next;
 OP *op_sibparent;
 OP *(*op_ppaddr)(void);
 PADOFFSET op_targ;
 unsigned int op_type : 9;
 unsigned int op_opt : 1;
 unsigned int op_slabbed : 1;
 unsigned int op_savefree : 1;
 unsigned int op_static : 1;
 unsigned int op_folded : 1;
 unsigned int op_spare : 2;
 U8 op_flags;
 U8 op_private;
 } *

* print

Execute the given C code and print its results. WARNING: Perl makes
 heavy use of macros,

Perl version 5.24.0 documentation - perlhacktips

Page 11http://perldoc.perl.org

and gdb does not necessarily support macros
 (see later gdb macro support). You'll have to
substitute them
 yourself, or to invoke cpp on the source code files (see The .i Targets) So, for
instance, you can't say

 print SvPV_nolen(sv)

but you have to say

 print Perl_sv_2pv_nolen(sv)

You may find it helpful to have a "macro dictionary", which you can
 produce by saying cpp -dM
perl.c | sort. Even then, cpp won't
 recursively apply those macros for you.

gdb macro support
Recent versions of gdb have fairly good macro support, but in order
 to use it you'll need to compile
perl with macro definitions included
 in the debugging information. Using gcc version 3.1, this means

configuring with -Doptimize=-g3. Other compilers might use a
 different switch (if they support
debugging macros at all).

Dumping Perl Data Structures
One way to get around this macro hell is to use the dumping functions
 in dump.c; these work a little
like an internal Devel::Peek, but they also cover OPs and other
 structures that you can't get at from
Perl. Let's take an example.
 We'll use the $a = $b + $c we used before, but give it a bit of
 context:
$b = "6XXXX"; $c = 2.3;. Where's a good place to stop and
 poke around?

What about pp_add, the function we examined earlier to implement the + operator:

 (gdb) break Perl_pp_add
 Breakpoint 1 at 0x46249f: file pp_hot.c, line 309.

Notice we use Perl_pp_add and not pp_add - see "Internal Functions" in perlguts. With the
breakpoint in place, we can
 run our program:

 (gdb) run -e '$b = "6XXXX"; $c = 2.3; $a = $b + $c'

Lots of junk will go past as gdb reads in the relevant source files and
 libraries, and then:

 Breakpoint 1, Perl_pp_add () at pp_hot.c:309
 309 dSP; dATARGET; tryAMAGICbin(add,opASSIGN);
 (gdb) step
 311 dPOPTOPnnrl_ul;
 (gdb)

We looked at this bit of code before, and we said that dPOPTOPnnrl_ul arranges for two NVs to be
placed into left and right - let's slightly expand it:

 #define dPOPTOPnnrl_ul NV right = POPn; \
 SV *leftsv = TOPs; \
 NV left = USE_LEFT(leftsv) ? SvNV(leftsv) : 0.0

POPn takes the SV from the top of the stack and obtains its NV
 either directly (if SvNOK is set) or by
calling the sv_2nv
 function. TOPs takes the next SV from the top of the stack - yes, POPn uses TOPs
- but doesn't remove it. We then use SvNV to
 get the NV from leftsv in the same way as before -
yes, POPn uses SvNV.

Since we don't have an NV for $b, we'll have to use sv_2nv to
 convert it. If we step again, we'll find
ourselves there:

Perl version 5.24.0 documentation - perlhacktips

Page 12http://perldoc.perl.org

 (gdb) step
 Perl_sv_2nv (sv=0xa0675d0) at sv.c:1669
 1669 if (!sv)
 (gdb)

We can now use Perl_sv_dump to investigate the SV:

 (gdb) print Perl_sv_dump(sv)
 SV = PV(0xa057cc0) at 0xa0675d0
 REFCNT = 1
 FLAGS = (POK,pPOK)
 PV = 0xa06a510 "6XXXX"\0
 CUR = 5
 LEN = 6
 $1 = void

We know we're going to get 6 from this, so let's finish the
 subroutine:

 (gdb) finish
 Run till exit from #0 Perl_sv_2nv (sv=0xa0675d0) at sv.c:1671
 0x462669 in Perl_pp_add () at pp_hot.c:311
 311 dPOPTOPnnrl_ul;

We can also dump out this op: the current op is always stored in PL_op, and we can dump it with
Perl_op_dump. This'll give us
 similar output to B::Debug.

 (gdb) print Perl_op_dump(PL_op)
 {
 13 TYPE = add ===> 14
 TARG = 1
 FLAGS = (SCALAR,KIDS)
 {
 TYPE = null ===> (12)
 (was rv2sv)
 FLAGS = (SCALAR,KIDS)
 {
 11 TYPE = gvsv ===> 12
 FLAGS = (SCALAR)
 GV = main::b
 }
 }

finish this later

Using gdb to look at specific parts of a program
With the example above, you knew to look for Perl_pp_add, but what if
 there were multiple calls to it
all over the place, or you didn't know what
 the op was you were looking for?

One way to do this is to inject a rare call somewhere near what you're looking
 for. For example, you
could add study before your method:

 study;

And in gdb do:

 (gdb) break Perl_pp_study

Perl version 5.24.0 documentation - perlhacktips

Page 13http://perldoc.perl.org

And then step until you hit what you're
 looking for. This works well in a loop
 if you want to only break
at certain iterations:

 for my $c (1..100) {
 study if $c == 50;
 }

Using gdb to look at what the parser/lexer are doing
If you want to see what perl is doing when parsing/lexing your code, you can
 use BEGIN {}:

 print "Before\n";
 BEGIN { study; }
 print "After\n";

And in gdb:

 (gdb) break Perl_pp_study

If you want to see what the parser/lexer is doing inside of if blocks and
 the like you need to be a little
trickier:

 if ($a && $b && do { BEGIN { study } 1 } && $c) { ... }

SOURCE CODE STATIC ANALYSIS
Various tools exist for analysing C source code statically, as
 opposed to dynamically, that is,
without executing the code. It is
 possible to detect resource leaks, undefined behaviour, type

mismatches, portability problems, code paths that would cause illegal
 memory accesses, and other
similar problems by just parsing the C code
 and looking at the resulting graph, what does it tell about
the
 execution and data flows. As a matter of fact, this is exactly how C
 compilers know to give
warnings about dubious code.

lint, splint
The good old C code quality inspector, lint, is available in several
 platforms, but please be aware
that there are several different
 implementations of it by different vendors, which means that the flags

are not identical across different platforms.

There is a lint variant called splint (Secure Programming Lint)
 available from http://www.splint.org/
that should compile on any
 Unix-like platform.

There are lint and <splint> targets in Makefile, but you may have to
 diddle with the flags (see
above).

Coverity
Coverity (http://www.coverity.com/) is a product similar to lint and as
 a testbed for their product they
periodically check several open source
 projects, and they give out accounts to open source
developers to the
 defect databases.

There is Coverity setup for the perl5 project: https://scan.coverity.com/projects/perl5

HP-UX cadvise (Code Advisor)
HP has a C/C++ static analyzer product for HP-UX caller Code Advisor.
 (Link not given here because
the URL is horribly long and seems horribly
 unstable; use the search engine of your choice to find it.)
The use of
 the cadvise_cc recipe with Configure ... -Dcc=./cadvise_cc
 (see cadvise
"User Guide") is recommended; as is the use of +wall.

Perl version 5.24.0 documentation - perlhacktips

Page 14http://perldoc.perl.org

cpd (cut-and-paste detector)
The cpd tool detects cut-and-paste coding. If one instance of the
 cut-and-pasted code changes, all
the other spots should probably be
 changed, too. Therefore such code should probably be turned into
a
 subroutine or a macro.

cpd (http://pmd.sourceforge.net/cpd.html) is part of the pmd project
 (http://pmd.sourceforge.net/). pmd
was originally written for static
 analysis of Java code, but later the cpd part of it was extended to
 parse
also C and C++.

Download the pmd-bin-X.Y.zip () from the SourceForge site, extract the
 pmd-X.Y.jar from it, and then
run that on source code thusly:

 java -cp pmd-X.Y.jar net.sourceforge.pmd.cpd.CPD \
 --minimum-tokens 100 --files /some/where/src --language c > cpd.txt

You may run into memory limits, in which case you should use the -Xmx
 option:

 java -Xmx512M ...

gcc warnings
Though much can be written about the inconsistency and coverage
 problems of gcc warnings (like
-Wall not meaning "all the warnings",
 or some common portability problems not being covered by
-Wall, or -ansi and -pedantic both being a poorly defined collection of
 warnings, and so forth),
gcc is still a useful tool in keeping our
 coding nose clean.

The -Wall is by default on.

The -ansi (and its sidekick, -pedantic) would be nice to be on
 always, but unfortunately they are
not safe on all platforms, they can
 for example cause fatal conflicts with the system headers (Solaris

being a prime example). If Configure -Dgccansipedantic is used, the cflags frontend selects
-ansi -pedantic for the platforms where
 they are known to be safe.

Starting from Perl 5.9.4 the following extra flags are added:

-Wendif-labels

-Wextra

-Wdeclaration-after-statement

The following flags would be nice to have but they would first need
 their own Augean stablemaster:

-Wpointer-arith

-Wshadow

-Wstrict-prototypes

The -Wtraditional is another example of the annoying tendency of gcc
 to bundle a lot of warnings
under one switch (it would be impossible to
 deploy in practice because it would complain a lot) but it
does contain
 some warnings that would be beneficial to have available on their own,
 such as the
warning about string constants inside macros containing the
 macro arguments: this behaved
differently pre-ANSI than it does in
 ANSI, and some C compilers are still in transition, AIX being an

example.

Warnings of other C compilers
Other C compilers (yes, there are other C compilers than gcc) often
 have their "strict ANSI" or "strict
ANSI with some portability
 extensions" modes on, like for example the Sun Workshop has its -Xa

mode on (though implicitly), or the DEC (these days, HP...) has its -std1 mode on.

Perl version 5.24.0 documentation - perlhacktips

Page 15http://perldoc.perl.org

MEMORY DEBUGGERS
NOTE 1: Running under older memory debuggers such as Purify,
 valgrind or Third Degree greatly
slows down the execution: seconds
 become minutes, minutes become hours. For example as of Perl
5.8.1, the
 ext/Encode/t/Unicode.t takes extraordinarily long to complete under
 e.g. Purify, Third
Degree, and valgrind. Under valgrind it takes more
 than six hours, even on a snappy computer. The
said test must be doing
 something that is quite unfriendly for memory debuggers. If you don't
 feel like
waiting, that you can simply kill away the perl process.
 Roughly valgrind slows down execution by
factor 10, AddressSanitizer by
 factor 2.

NOTE 2: To minimize the number of memory leak false alarms (see PERL_DESTRUCT_LEVEL for
more information), you have to set the
 environment variable PERL_DESTRUCT_LEVEL to 2. For
example, like this:

 env PERL_DESTRUCT_LEVEL=2 valgrind ./perl -Ilib ...

NOTE 3: There are known memory leaks when there are compile-time
 errors within eval or require,
seeing S_doeval in the call stack is
 a good sign of these. Fixing these leaks is non-trivial,
unfortunately,
 but they must be fixed eventually.

NOTE 4: DynaLoader will not clean up after itself completely
 unless Perl is built with the Configure
option -Accflags=-DDL_UNLOAD_ALL_AT_EXIT.

valgrind
The valgrind tool can be used to find out both memory leaks and illegal
 heap memory accesses. As of
version 3.3.0, Valgrind only supports Linux
 on x86, x86-64 and PowerPC and Darwin (OS X) on x86
and x86-64. The
 special "test.valgrind" target can be used to run the tests under
 valgrind. Found
errors and memory leaks are logged in files named testfile.valgrind and by default output is displayed
inline.

Example usage:

 make test.valgrind

Since valgrind adds significant overhead, tests will take much longer to
 run. The valgrind tests support
being run in parallel to help with this:

 TEST_JOBS=9 make test.valgrind

Note that the above two invocations will be very verbose as reachable
 memory and leak-checking is
enabled by default. If you want to just see
 pure errors, try:

 VG_OPTS='-q --leak-check=no --show-reachable=no' TEST_JOBS=9 \
 make test.valgrind

Valgrind also provides a cachegrind tool, invoked on perl as:

 VG_OPTS=--tool=cachegrind make test.valgrind

As system libraries (most notably glibc) are also triggering errors,
 valgrind allows to suppress such
errors using suppression files. The
 default suppression file that comes with valgrind already catches a
lot
 of them. Some additional suppressions are defined in t/perl.supp.

To get valgrind and for more information see

 http://valgrind.org/

Perl version 5.24.0 documentation - perlhacktips

Page 16http://perldoc.perl.org

AddressSanitizer
AddressSanitizer is a clang and gcc extension, included in clang since
 v3.1 and gcc since v4.8. It
checks illegal heap pointers, global
 pointers, stack pointers and use after free errors, and is fast
enough
 that you can easily compile your debugging or optimized perl with it.
 It does not check
memory leaks though. AddressSanitizer is available
 for Linux, Mac OS X and soon on Windows.

To build perl with AddressSanitizer, your Configure invocation should
 look like:

 sh Configure -des -Dcc=clang \
 -Accflags=-faddress-sanitizer -Aldflags=-faddress-sanitizer \
 -Alddlflags=-shared\ -faddress-sanitizer

where these arguments mean:

* -Dcc=clang

This should be replaced by the full path to your clang executable if it
 is not in your path.

* -Accflags=-faddress-sanitizer

Compile perl and extensions sources with AddressSanitizer.

* -Aldflags=-faddress-sanitizer

Link the perl executable with AddressSanitizer.

* -Alddlflags=-shared\ -faddress-sanitizer

Link dynamic extensions with AddressSanitizer. You must manually
 specify -shared
because using -Alddlflags=-shared will prevent
 Configure from setting a default value for
lddlflags, which usually
 contains -shared (at least on Linux).

See also http://code.google.com/p/address-sanitizer/wiki/AddressSanitizer.

PROFILING
Depending on your platform there are various ways of profiling Perl.

There are two commonly used techniques of profiling executables: statistical time-sampling and
basic-block counting.

The first method takes periodically samples of the CPU program counter,
 and since the program
counter can be correlated with the code generated
 for functions, we get a statistical view of in which
functions the
 program is spending its time. The caveats are that very small/fast
 functions have lower
probability of showing up in the profile, and that
 periodically interrupting the program (this is usually
done rather
 frequently, in the scale of milliseconds) imposes an additional
 overhead that may skew
the results. The first problem can be alleviated
 by running the code for longer (in general this is a
good idea for
 profiling), the second problem is usually kept in guard by the
 profiling tools themselves.

The second method divides up the generated code into basic blocks.
 Basic blocks are sections of
code that are entered only in the
 beginning and exited only at the end. For example, a conditional
jump
 starts a basic block. Basic block profiling usually works by instrumenting the code by adding
enter basic block #nnnn
 book-keeping code to the generated code. During the execution of the
 code
the basic block counters are then updated appropriately. The
 caveat is that the added extra code can
skew the results: again, the
 profiling tools usually try to factor their own effects out of the
 results.

Gprof Profiling
gprof is a profiling tool available in many Unix platforms which
 uses statistical time-sampling. You can
build a profiled version of perl by compiling using gcc with the flag -pg. Either edit config.sh or re-run
Configure. Running the profiled version of
 Perl will create an output file called gmon.out which
contains the
 profiling data collected during the execution.

quick hint:

Perl version 5.24.0 documentation - perlhacktips

Page 17http://perldoc.perl.org

 $ sh Configure -des -Dusedevel -Accflags='-pg' \
 -Aldflags='-pg' -Alddlflags='-pg -shared' \
 && make perl
 $./perl ... # creates gmon.out in current directory
 $ gprof ./perl > out
 $ less out

(you probably need to add -shared to the <-Alddlflags> line until RT
 #118199 is resolved)

The gprof tool can then display the collected data in various ways.
 Usually gprof understands the
following options:

* -a

Suppress statically defined functions from the profile.

* -b

Suppress the verbose descriptions in the profile.

* -e routine

Exclude the given routine and its descendants from the profile.

* -f routine

Display only the given routine and its descendants in the profile.

* -s

Generate a summary file called gmon.sum which then may be given to
 subsequent gprof runs
to accumulate data over several runs.

* -z

Display routines that have zero usage.

For more detailed explanation of the available commands and output
 formats, see your own local
documentation of gprof.

GCC gcov Profiling
basic block profiling is officially available in gcc 3.0 and later.
 You can build a profiled version of perl
by compiling using gcc with
 the flags -fprofile-arcs -ftest-coverage. Either edit config.sh
 or
re-run Configure.

quick hint:

 $ sh Configure -des -Dusedevel -Doptimize='-g' \
 -Accflags='-fprofile-arcs -ftest-coverage' \
 -Aldflags='-fprofile-arcs -ftest-coverage' \
 -Alddlflags='-fprofile-arcs -ftest-coverage -shared' \
 && make perl
 $ rm -f regexec.c.gcov regexec.gcda
 $./perl ...
 $ gcov regexec.c
 $ less regexec.c.gcov

(you probably need to add -shared to the <-Alddlflags> line until RT
 #118199 is resolved)

Running the profiled version of Perl will cause profile output to be
 generated. For each source file an
accompanying .gcda file will be
 created.

To display the results you use the gcov utility (which should be
 installed if you have gcc 3.0 or newer

Perl version 5.24.0 documentation - perlhacktips

Page 18http://perldoc.perl.org

installed). gcov is run on
 source code files, like this

 gcov sv.c

which will cause sv.c.gcov to be created. The .gcov files contain
 the source code annotated with
relative frequencies of execution
 indicated by "#" markers. If you want to generate .gcov files for
 all
profiled object files, you can run something like this:

 for file in `find . -name *.gcno`
 do sh -c "cd `dirname $file` && gcov `basename $file .gcno`"
 done

Useful options of gcov include -b which will summarise the basic
 block, branch, and function call
coverage, and -c which instead of
 relative frequencies will use the actual counts. For more
information
 on the use of gcov and basic block profiling with gcc, see the
 latest GNU CC manual. As
of gcc 4.8, this is at http://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro

MISCELLANEOUS TRICKS
PERL_DESTRUCT_LEVEL

If you want to run any of the tests yourself manually using e.g.
 valgrind, please note that by default
perl does not explicitly
 cleanup all the memory it has allocated (such as global memory arenas)
 but
instead lets the exit() of the whole program "take care" of such
 allocations, also known as "global
destruction of objects".

There is a way to tell perl to do complete cleanup: set the environment
 variable
PERL_DESTRUCT_LEVEL to a non-zero value. The t/TEST wrapper
 does set this to 2, and this is
what you need to do too, if you don't
 want to see the "global leaks": For example, for running under
valgrind

 env PERL_DESTRUCT_LEVEL=2 valgrind ./perl -Ilib t/foo/bar.t

(Note: the mod_perl apache module uses also this environment variable
 for its own purposes and
extended its semantics. Refer to the mod_perl
 documentation for more information. Also, spawned
threads do the
 equivalent of setting this variable to the value 1.)

If, at the end of a run you get the message N scalars leaked, you
 can recompile with
-DDEBUG_LEAKING_SCALARS, which will cause the
 addresses of all those leaked SVs to be dumped
along with details as to
 where each SV was originally allocated. This information is also
 displayed by
Devel::Peek. Note that the extra details recorded with
 each SV increases memory usage, so it
shouldn't be used in production
 environments. It also converts new_SV() from a macro into a real

function, so you can use your favourite debugger to discover where
 those pesky SVs were allocated.

If you see that you're leaking memory at runtime, but neither valgrind
 nor
-DDEBUG_LEAKING_SCALARS will find anything, you're probably
 leaking SVs that are still reachable
and will be properly cleaned up
 during destruction of the interpreter. In such cases, using the -Dm

switch can point you to the source of the leak. If the executable was
 built with
-DDEBUG_LEAKING_SCALARS, -Dm will output SV
 allocations in addition to memory allocations.
Each SV allocation has a
 distinct serial number that will be written on creation and destruction
 of the
SV. So if you're executing the leaking code in a loop, you need
 to look for SVs that are created, but
never destroyed between each
 cycle. If such an SV is found, set a conditional breakpoint within
new_SV() and make it break only when PL_sv_serial is equal to the
 serial number of the leaking
SV. Then you will catch the interpreter in
 exactly the state where the leaking SV is allocated, which is

sufficient in many cases to find the source of the leak.

As -Dm is using the PerlIO layer for output, it will by itself
 allocate quite a bunch of SVs, which are
hidden to avoid recursion. You
 can bypass the PerlIO layer if you use the SV logging provided by
-DPERL_MEM_LOG instead.

Perl version 5.24.0 documentation - perlhacktips

Page 19http://perldoc.perl.org

PERL_MEM_LOG
If compiled with -DPERL_MEM_LOG (-Accflags=-DPERL_MEM_LOG), both
 memory and SV
allocations go through logging functions, which is
 handy for breakpoint setting.

Unless -DPERL_MEM_LOG_NOIMPL (-Accflags=-DPERL_MEM_LOG_NOIMPL) is
 also compiled, the
logging functions read $ENV{PERL_MEM_LOG} to
 determine whether to log the event, and if so how:

 $ENV{PERL_MEM_LOG} =~ /m/ Log all memory ops
 $ENV{PERL_MEM_LOG} =~ /s/ Log all SV ops
 $ENV{PERL_MEM_LOG} =~ /t/ include timestamp in Log
 $ENV{PERL_MEM_LOG} =~ /^(\d+)/ write to FD given (default is 2)

Memory logging is somewhat similar to -Dm but is independent of -DDEBUGGING, and at a higher
level; all uses of Newx(), Renew(), and
 Safefree() are logged with the caller's source code file and line
number (and C function name, if supported by the C compiler). In
 contrast, -Dm is directly at the point
of malloc(). SV logging is
 similar.

Since the logging doesn't use PerlIO, all SV allocations are logged and
 no extra SV allocations are
introduced by enabling the logging. If
 compiled with -DDEBUG_LEAKING_SCALARS, the serial number
for each SV
 allocation is also logged.

DDD over gdb
Those debugging perl with the DDD frontend over gdb may find the
 following useful:

You can extend the data conversion shortcuts menu, so for example you
 can display an SV's IV value
with one click, without doing any typing.
 To do that simply edit ~/.ddd/init file and add after:

 ! Display shortcuts.
 Ddd*gdbDisplayShortcuts: \
 /t () // Convert to Bin\n\
 /d () // Convert to Dec\n\
 /x () // Convert to Hex\n\
 /o () // Convert to Oct(\n\

the following two lines:

 ((XPV*) (())->sv_any)->xpv_pv // 2pvx\n\
 ((XPVIV*) (())->sv_any)->xiv_iv // 2ivx

so now you can do ivx and pvx lookups or you can plug there the sv_peek
 "conversion":

 Perl_sv_peek(my_perl, (SV*)()) // sv_peek

(The my_perl is for threaded builds.) Just remember that every line,
 but the last one, should end with
\n\

Alternatively edit the init file interactively via: 3rd mouse button ->
 New Display -> Edit Menu

Note: you can define up to 20 conversion shortcuts in the gdb section.

C backtrace
On some platforms Perl supports retrieving the C level backtrace
 (similar to what symbolic debuggers
like gdb do).

The backtrace returns the stack trace of the C call frames,
 with the symbol names (function names),
the object names (like "perl"),
 and if it can, also the source code locations (file:line).

The supported platforms are Linux, and OS X (some *BSD might
 work at least partly, but they have

Perl version 5.24.0 documentation - perlhacktips

Page 20http://perldoc.perl.org

not yet been tested).

This feature hasn't been tested with multiple threads, but it will
 only show the backtrace of the thread
doing the backtracing.

The feature needs to be enabled with Configure -Dusecbacktrace.

The -Dusecbacktrace also enables keeping the debug information when
 compiling/linking (often:
-g). Many compilers/linkers do support
 having both optimization and keeping the debug information.
The debug
 information is needed for the symbol names and the source locations.

Static functions might not be visible for the backtrace.

Source code locations, even if available, can often be missing or
 misleading if the compiler has e.g.
inlined code. Optimizer can
 make matching the source code and the object code quite challenging.

Linux

You must have the BFD (-lbfd) library installed, otherwise perl will
 fail to link. The BFD is
usually distributed as part of the GNU binutils.

Summary: Configure ... -Dusecbacktrace
 and you need -lbfd.

OS X

The source code locations are supported only if you have
 the Developer Tools installed. (BFD
is not needed.)

Summary: Configure ... -Dusecbacktrace
 and installing the Developer Tools would
be good.

Optionally, for trying out the feature, you may want to enable
 automatic dumping of the backtrace just
before a warning or croak (die)
 message is emitted, by adding
-Accflags=-DUSE_C_BACKTRACE_ON_ERROR
 for Configure.

Unless the above additional feature is enabled, nothing about the
 backtrace functionality is visible,
except for the Perl/XS level.

Furthermore, even if you have enabled this feature to be compiled,
 you need to enable it in runtime
with an environment variable: PERL_C_BACKTRACE_ON_ERROR=10. It must be an integer higher
 than
zero, telling the desired frame count.

Retrieving the backtrace from Perl level (using for example an XS
 extension) would be much less
exciting than one would hope: normally
 you would see runops, entersub, and not much else. This
API is
 intended to be called from within the Perl implementation, not from
 Perl level execution.

The C API for the backtrace is as follows:

get_c_backtrace

free_c_backtrace

get_c_backtrace_dump

dump_c_backtrace

Poison
If you see in a debugger a memory area mysteriously full of 0xABABABAB
 or 0xEFEFEFEF, you may
be seeing the effect of the Poison() macros, see perlclib.

Read-only optrees
Under ithreads the optree is read only. If you want to enforce this, to
 check for write accesses from
buggy code, compile with -Accflags=-DPERL_DEBUG_READONLY_OPS
 to enable code that
allocates op memory
 via mmap, and sets it read-only when it is attached to a subroutine.
 Any write
access to an op results in a SIGBUS and abort.

Perl version 5.24.0 documentation - perlhacktips

Page 21http://perldoc.perl.org

This code is intended for development only, and may not be portable
 even to all Unix variants. Also, it
is an 80% solution, in that it
 isn't able to make all ops read only. Specifically it does not apply to
 op
slabs belonging to BEGIN blocks.

However, as an 80% solution it is still effective, as it has caught
 bugs in the past.

When is a bool not a bool?
On pre-C99 compilers, bool is defined as equivalent to char.
 Consequently assignment of any
larger type to a bool is unsafe and may
 be truncated. The cBOOL macro exists to cast it correctly.

On those platforms and compilers where bool really is a boolean (C++,
 C99), it is easy to forget the
cast. You can force bool to be a char
 by compiling with -Accflags=-DPERL_BOOL_AS_CHAR.
You may also wish to
 run Configure with something like

 -Accflags='-Wconversion -Wno-sign-conversion -Wno-shorten-64-to-32'

or your compiler's equivalent to make it easier to spot any unsafe truncations
 that show up.

The .i Targets
You can expand the macros in a foo.c file by saying

 make foo.i

which will expand the macros using cpp. Don't be scared by the
 results.

AUTHOR
This document was originally written by Nathan Torkington, and is
 maintained by the perl5-porters
mailing list.

