
Perl version 5.24.0 documentation - Carp

Page 1http://perldoc.perl.org

NAME
Carp - alternative warn and die for modules

SYNOPSIS
 use Carp;

 # warn user (from perspective of caller)
 carp "string trimmed to 80 chars";

 # die of errors (from perspective of caller)
 croak "We're outta here!";

 # die of errors with stack backtrace
 confess "not implemented";

 # cluck, longmess and shortmess not exported by default
 use Carp qw(cluck longmess shortmess);
 cluck "This is how we got here!";
 $long_message = longmess("message from cluck() or confess()");
 $short_message = shortmess("message from carp() or croak()");

DESCRIPTION
The Carp routines are useful in your own modules because
 they act like die() or warn(), but with a
message which is more
 likely to be useful to a user of your module. In the case of cluck() and
confess(), that context is a summary of every
 call in the call-stack; longmess() returns the
contents of the error
 message.

For a shorter message you can use carp() or croak() which report the
 error as being from where
your module was called. shortmess() returns the
 contents of this error message. There is no
guarantee that that is where the
 error was, but it is a good educated guess.

Carp takes care not to clobber the status variables $! and $^E
 in the course of assembling its error
messages. This means that a $SIG{__DIE__} or $SIG{__WARN__} handler can capture the error

information held in those variables, if it is required to augment the
 error message, and if the code
calling Carp left useful values there.
 Of course, Carp can't guarantee the latter.

You can also alter the way the output and logic of Carp works, by
 changing some global variables in
the Carp namespace. See the
 section on GLOBAL VARIABLES below.

Here is a more complete description of how carp and croak work.
 What they do is search the
call-stack for a function call stack where
 they have not been told that there shouldn't be an error. If
every
 call is marked safe, they give up and give a full stack backtrace
 instead. In other words they
presume that the first likely looking
 potential suspect is guilty. Their rules for telling whether
 a call
shouldn't generate errors work as follows:

1. Any call from a package to itself is safe.

2. Packages claim that there won't be errors on calls to or from
 packages explicitly marked as
safe by inclusion in @CARP_NOT, or
 (if that array is empty) @ISA. The ability to override what

@ISA says is new in 5.8.

3. The trust in item 2 is transitive. If A trusts B, and B
 trusts C, then A trusts C. So if you do not
override @ISA
 with @CARP_NOT, then this trust relationship is identical to,
 "inherits from".

4. Any call from an internal Perl module is safe. (Nothing keeps
 user modules from marking
themselves as internal to Perl, but
 this practice is discouraged.)

Perl version 5.24.0 documentation - Carp

Page 2http://perldoc.perl.org

5. Any call to Perl's warning system (eg Carp itself) is safe.
 (This rule is what keeps it from
reporting the error at the
 point where you call carp or croak.)

6. $Carp::CarpLevel can be set to skip a fixed number of additional
 call levels. Using this is
not recommended because it is very
 difficult to get it to behave correctly.

Forcing a Stack Trace
As a debugging aid, you can force Carp to treat a croak as a confess
 and a carp as a cluck across all
modules. In other words, force a
 detailed stack trace to be given. This can be very helpful when trying
to understand why, or from where, a warning or error is being generated.

This feature is enabled by 'importing' the non-existent symbol
 'verbose'. You would typically enable it
by saying

 perl -MCarp=verbose script.pl

or by including the string -MCarp=verbose in the PERL5OPT
 environment variable.

Alternately, you can set the global variable $Carp::Verbose to true.
 See the GLOBAL VARIABLES
section below.

Stack Trace formatting
At each stack level, the subroutine's name is displayed along with
 its parameters. For simple scalars,
this is sufficient. For complex
 data types, such as objects and other references, this can simply

display 'HASH(0x1ab36d8)'.

Carp gives two ways to control this.

1. For objects, a method, CARP_TRACE, will be called, if it exists. If
 this method doesn't exist, or it
recurses into Carp, or it otherwise
 throws an exception, this is skipped, and Carp moves on to
the next option,
 otherwise checking stops and the string returned is used. It is recommended

that the object's type is part of the string to make debugging easier.

2. For any type of reference, $Carp::RefArgFormatter is checked (see below).
 This variable
is expected to be a code reference, and the current parameter
 is passed in. If this function
doesn't exist (the variable is undef), or
 it recurses into Carp, or it otherwise throws an
exception, this is
 skipped, and Carp moves on to the next option, otherwise checking stops

and the string returned is used.

3. Otherwise, if neither CARP_TRACE nor $Carp::RefArgFormatter is
 available, stringify the
value ignoring any overloading.

GLOBAL VARIABLES
$Carp::MaxEvalLen

This variable determines how many characters of a string-eval are to
 be shown in the output. Use a
value of 0 to show all text.

Defaults to 0.

$Carp::MaxArgLen
This variable determines how many characters of each argument to a
 function to print. Use a value of
0 to show the full length of the
 argument.

Defaults to 64.

$Carp::MaxArgNums
This variable determines how many arguments to each function to show.
 Use a false value to show all
arguments to a function call. To suppress all
 arguments, use -1 or '0 but true'.

Perl version 5.24.0 documentation - Carp

Page 3http://perldoc.perl.org

Defaults to 8.

$Carp::Verbose
This variable makes carp() and croak() generate stack backtraces
 just like cluck() and
confess(). This is how use Carp 'verbose'
 is implemented internally.

Defaults to 0.

$Carp::RefArgFormatter
This variable sets a general argument formatter to display references.
 Plain scalars and objects that
implement CARP_TRACE will not go through
 this formatter. Calling Carp from within this function is not
supported.

local $Carp::RefArgFormatter = sub {
 require Data::Dumper;
 Data::Dumper::Dump($_[0]); # not
necessarily safe
 };

@CARP_NOT
This variable, in your package, says which packages are not to be
 considered as the location of an
error. The carp() and cluck()
 functions will skip over callers when reporting where an error
occurred.

NB: This variable must be in the package's symbol table, thus:

 # These work
 our @CARP_NOT; # file scope
 use vars qw(@CARP_NOT); # package scope
 @My::Package::CARP_NOT = ... ; # explicit package variable

 # These don't work
 sub xyz { ... @CARP_NOT = ... } # w/o declarations above
 my @CARP_NOT; # even at top-level

Example of use:

 package My::Carping::Package;
 use Carp;
 our @CARP_NOT;
 sub bar { or _error('Wrong input') }
 sub _error {
 # temporary control of where'ness, __PACKAGE__ is implicit
 local @CARP_NOT = qw(My::Friendly::Caller);
 carp(@_)
 }

This would make Carp report the error as coming from a caller not
 in My::Carping::Package, nor
from My::Friendly::Caller.

Also read the DESCRIPTION section above, about how Carp decides
 where the error is reported
from.

Use @CARP_NOT, instead of $Carp::CarpLevel.

Overrides Carp's use of @ISA.

%Carp::Internal
This says what packages are internal to Perl. Carp will never
 report an error as being from a line in a
package that is internal to
 Perl. For example:

Perl version 5.24.0 documentation - Carp

Page 4http://perldoc.perl.org

 $Carp::Internal{ (__PACKAGE__) }++;
 # time passes...
 sub foo { ... or confess("whatever") };

would give a full stack backtrace starting from the first caller
 outside of __PACKAGE__. (Unless that
package was also internal to
 Perl.)

%Carp::CarpInternal
This says which packages are internal to Perl's warning system. For
 generating a full stack backtrace
this is the same as being internal
 to Perl, the stack backtrace will not start inside packages that are

listed in %Carp::CarpInternal. But it is slightly different for
 the summary message generated by
carp or croak. There errors
 will not be reported on any lines that are calling packages in
%Carp::CarpInternal.

For example Carp itself is listed in %Carp::CarpInternal.
 Therefore the full stack backtrace from
confess will not start
 inside of Carp, and the short message from calling croak is
 not placed on the
line where croak was called.

$Carp::CarpLevel
This variable determines how many additional call frames are to be
 skipped that would not otherwise
be when reporting where an error
 occurred on a call to one of Carp's functions. It is fairly easy
 to
count these call frames on calls that generate a full stack
 backtrace. However it is much harder to do
this accounting for calls
 that generate a short message. Usually people skip too many call
 frames. If
they are lucky they skip enough that Carp goes all of
 the way through the call stack, realizes that
something is wrong, and
 then generates a full stack backtrace. If they are unlucky then the
 error is
reported from somewhere misleading very high in the call
 stack.

Therefore it is best to avoid $Carp::CarpLevel. Instead use @CARP_NOT, %Carp::Internal and
%Carp::CarpInternal.

Defaults to 0.

BUGS
The Carp routines don't handle exception objects currently.
 If called with a first argument that is a
reference, they simply
 call die() or warn(), as appropriate.

SEE ALSO
Carp::Always, Carp::Clan

CONTRIBUTING
Carp is maintained by the perl 5 porters as part of the core perl 5
 version control repository. Please
see the perlhack perldoc for how to
 submit patches and contribute to it.

AUTHOR
The Carp module first appeared in Larry Wall's perl 5.000 distribution.
 Since then it has been modified
by several of the perl 5 porters.
 Andrew Main (Zefram) <zefram@fysh.org> divested Carp into an
independent
 distribution.

COPYRIGHT
Copyright (C) 1994-2013 Larry Wall

Copyright (C) 2011, 2012, 2013 Andrew Main (Zefram) <zefram@fysh.org>

LICENSE
This module is free software; you can redistribute it and/or modify it
 under the same terms as Perl
itself.

