
Perl version 5.24.0 documentation - perlootut

Page 1http://perldoc.perl.org

NAME
perlootut - Object-Oriented Programming in Perl Tutorial

DATE
This document was created in February, 2011, and the last major
 revision was in February, 2013.

If you are reading this in the future then it's possible that the state
 of the art has changed. We
recommend you start by reading the perlootut
 document in the latest stable release of Perl, rather
than this
 version.

DESCRIPTION
This document provides an introduction to object-oriented programming
 in Perl. It begins with a brief
overview of the concepts behind object
 oriented design. Then it introduces several different OO
systems from CPAN which build on top of what Perl
 provides.

By default, Perl's built-in OO system is very minimal, leaving you to
 do most of the work. This
minimalism made a lot of sense in 1994, but
 in the years since Perl 5.0 we've seen a number of
common patterns
 emerge in Perl OO. Fortunately, Perl's flexibility has allowed a rich
 ecosystem of
Perl OO systems to flourish.

If you want to know how Perl OO works under the hood, the perlobj
 document explains the nitty gritty
details.

This document assumes that you already understand the basics of Perl
 syntax, variable types,
operators, and subroutine calls. If you don't
 understand these concepts yet, please read perlintro first.
You
 should also read the perlsyn, perlop, and perlsub documents.

OBJECT-ORIENTED FUNDAMENTALS
Most object systems share a number of common concepts. You've probably
 heard terms like "class",
"object, "method", and "attribute" before.
 Understanding the concepts will make it much easier to read
and write
 object-oriented code. If you're already familiar with these terms, you
 should still skim this
section, since it explains each concept in terms
 of Perl's OO implementation.

Perl's OO system is class-based. Class-based OO is fairly common. It's
 used by Java, C++, C#,
Python, Ruby, and many other languages. There
 are other object orientation paradigms as well.
JavaScript is the most
 popular language to use another paradigm. JavaScript's OO system is

prototype-based.

Object
An object is a data structure that bundles together data and
 subroutines which operate on that data.
An object's data is called attributes, and its subroutines are called methods. An object can
 be
thought of as a noun (a person, a web service, a computer).

An object represents a single discrete thing. For example, an object
 might represent a file. The
attributes for a file object might include
 its path, content, and last modification time. If we created an
object
 to represent /etc/hostname on a machine named "foo.example.com",
 that object's path would
be "/etc/hostname", its content would be
 "foo\n", and it's last modification time would be 1304974868
seconds
 since the beginning of the epoch.

The methods associated with a file might include rename() and write().

In Perl most objects are hashes, but the OO systems we recommend keep
 you from having to worry
about this. In practice, it's best to consider
 an object's internal data structure opaque.

Class
A class defines the behavior of a category of objects. A class is a
 name for a category (like "File"),
and a class also defines the
 behavior of objects in that category.

All objects belong to a specific class. For example, our /etc/hostname object belongs to the File

Perl version 5.24.0 documentation - perlootut

Page 2http://perldoc.perl.org

class. When we want to
 create a specific object, we start with its class, and construct or instantiate
an object. A specific object is often referred to as an instance of a class.

In Perl, any package can be a class. The difference between a package
 which is a class and one
which isn't is based on how the package is
 used. Here's our "class declaration" for the File class:

 package File;

In Perl, there is no special keyword for constructing an object.
 However, most OO modules on CPAN
use a method named new() to
 construct a new object:

 my $hostname = File->new(
 path => '/etc/hostname',
 content => "foo\n",
 last_mod_time => 1304974868,
);

(Don't worry about that -> operator, it will be explained
 later.)

Blessing

As we said earlier, most Perl objects are hashes, but an object can be
 an instance of any Perl data
type (scalar, array, etc.). Turning a
 plain data structure into an object is done by blessing that data

structure using Perl's bless function.

While we strongly suggest you don't build your objects from scratch,
 you should know the term bless.
A blessed data structure (aka "a
 referent") is an object. We sometimes say that an object has been

"blessed into a class".

Once a referent has been blessed, the blessed function from the Scalar::Util core module can tell us
its class name. This subroutine
 returns an object's class when passed an object, and false otherwise.

 use Scalar::Util 'blessed';

 print blessed($hash); # undef
 print blessed($hostname); # File

Constructor

A constructor creates a new object. In Perl, a class's constructor
 is just another method, unlike some
other languages, which provide
 syntax for constructors. Most Perl classes use new as the name for

their constructor:

 my $file = File->new(...);

Methods
You already learned that a method is a subroutine that operates on
 an object. You can think of a
method as the things that an object can do. If an object is a noun, then methods are its verbs (save,
print,
 open).

In Perl, methods are simply subroutines that live in a class's package.
 Methods are always written to
receive the object as their first
 argument:

 sub print_info {
 my $self = shift;

 print "This file is at ", $self->path, "\n";
 }

Perl version 5.24.0 documentation - perlootut

Page 3http://perldoc.perl.org

 $file->print_info;
 # The file is at /etc/hostname

What makes a method special is how it's called. The arrow operator
 (->) tells Perl that we are calling
a method.

When we make a method call, Perl arranges for the method's invocant
 to be passed as the first
argument. Invocant is a fancy name for the
 thing on the left side of the arrow. The invocant can either
be a class
 name or an object. We can also pass additional arguments to the method:

 sub print_info {
 my $self = shift;
 my $prefix = shift // "This file is at ";

 print $prefix, ", ", $self->path, "\n";
 }

 $file->print_info("The file is located at ");
 # The file is located at /etc/hostname

Attributes
Each class can define its attributes. When we instantiate an object,
 we assign values to those
attributes. For example, every File object
 has a path. Attributes are sometimes called properties.

Perl has no special syntax for attributes. Under the hood, attributes
 are often stored as keys in the
object's underlying hash, but don't
 worry about this.

We recommend that you only access attributes via accessor methods.
 These are methods that can
get or set the value of each attribute. We
 saw this earlier in the print_info() example, which calls
$self->path.

You might also see the terms getter and setter. These are two
 types of accessors. A getter gets the
attribute's value, while a setter
 sets it. Another term for a setter is mutator

Attributes are typically defined as read-only or read-write. Read-only
 attributes can only be set when
the object is first created, while
 read-write attributes can be altered at any time.

The value of an attribute may itself be another object. For example,
 instead of returning its last mod
time as a number, the File class
 could return a DateTime object representing that value.

It's possible to have a class that does not expose any publicly
 settable attributes. Not every class has
attributes and methods.

Polymorphism
Polymorphism is a fancy way of saying that objects from two
 different classes share an API. For
example, we could have File and WebPage classes which both have a print_content() method.
This
 method might produce different output for each class, but they share a
 common interface.

While the two classes may differ in many ways, when it comes to the print_content() method,
they are the same. This means that we can
 try to call the print_content() method on an object of
either class,
 and we don't have to know what class the object belongs to!

Polymorphism is one of the key concepts of object-oriented design.

Inheritance
Inheritance lets you create a specialized version of an existing
 class. Inheritance lets the new class
reuse the methods and attributes
 of another class.

Perl version 5.24.0 documentation - perlootut

Page 4http://perldoc.perl.org

For example, we could create an File::MP3 class which inherits
 from File. An File::MP3 is-a
more specific type of File.
 All mp3 files are files, but not all files are mp3 files.

We often refer to inheritance relationships as parent-child or superclass/subclass relationships.
Sometimes we say that the child
 has an is-a relationship with its parent class.

File is a superclass of File::MP3, and File::MP3 is a subclass of File.

 package File::MP3;

 use parent 'File';

The parent module is one of several ways that Perl lets you define
 inheritance relationships.

Perl allows multiple inheritance, which means that a class can inherit
 from multiple parents. While this
is possible, we strongly recommend
 against it. Generally, you can use roles to do everything you can
do
 with multiple inheritance, but in a cleaner way.

Note that there's nothing wrong with defining multiple subclasses of a
 given class. This is both
common and safe. For example, we might define File::MP3::FixedBitrate and
File::MP3::VariableBitrate classes to
 distinguish between different types of mp3 file.

Overriding methods and method resolution

Inheritance allows two classes to share code. By default, every method
 in the parent class is also
available in the child. The child can
 explicitly override a parent's method to provide its own

implementation. For example, if we have an File::MP3 object, it has
 the print_info() method
from File:

 my $cage = File::MP3->new(
 path => 'mp3s/My-Body-Is-a-Cage.mp3',
 content => $mp3_data,
 last_mod_time => 1304974868,
 title => 'My Body Is a Cage',
);

 $cage->print_info;
 # The file is at mp3s/My-Body-Is-a-Cage.mp3

If we wanted to include the mp3's title in the greeting, we could
 override the method:

 package File::MP3;

 use parent 'File';

 sub print_info {
 my $self = shift;

 print "This file is at ", $self->path, "\n";
 print "Its title is ", $self->title, "\n";
 }

 $cage->print_info;
 # The file is at mp3s/My-Body-Is-a-Cage.mp3
 # Its title is My Body Is a Cage

Perl version 5.24.0 documentation - perlootut

Page 5http://perldoc.perl.org

The process of determining what method should be used is called method resolution. What Perl
does is look at the object's class
 first (File::MP3 in this case). If that class defines the method,
 then
that class's version of the method is called. If not, Perl looks
 at each parent class in turn. For
File::MP3, its only parent is File. If File::MP3 does not define the method, but File does,
 then
Perl calls the method in File.

If File inherited from DataSource, which inherited from Thing,
 then Perl would keep looking "up
the chain" if necessary.

It is possible to explicitly call a parent method from a child:

 package File::MP3;

 use parent 'File';

 sub print_info {
 my $self = shift;

 $self->SUPER::print_info();
 print "Its title is ", $self->title, "\n";
 }

The SUPER:: bit tells Perl to look for the print_info() in the File::MP3 class's inheritance
chain. When it finds the parent class
 that implements this method, the method is called.

We mentioned multiple inheritance earlier. The main problem with
 multiple inheritance is that it greatly
complicates method resolution.
 See perlobj for more details.

Encapsulation
Encapsulation is the idea that an object is opaque. When another
 developer uses your class, they
don't need to know how it is
 implemented, they just need to know what it does.

Encapsulation is important for several reasons. First, it allows you to
 separate the public API from the
private implementation. This means you
 can change that implementation without breaking the API.

Second, when classes are well encapsulated, they become easier to
 subclass. Ideally, a subclass
uses the same APIs to access object data
 that its parent class uses. In reality, subclassing sometimes
involves
 violating encapsulation, but a good API can minimize the need to do
 this.

We mentioned earlier that most Perl objects are implemented as hashes
 under the hood. The
principle of encapsulation tells us that we should
 not rely on this. Instead, we should use accessor
methods to access the
 data in that hash. The object systems that we recommend below all
 automate
the generation of accessor methods. If you use one of them,
 you should never have to access the
object as a hash directly.

Composition
In object-oriented code, we often find that one object references
 another object. This is called
composition, or a has-a
 relationship.

Earlier, we mentioned that the File class's last_mod_time
 accessor could return a DateTime
object. This is a perfect example
 of composition. We could go even further, and make the path and
content accessors return objects as well. The File class would
 then be composed of several
other objects.

Roles
Roles are something that a class does, rather than something that
 it is. Roles are relatively new to
Perl, but have become rather
 popular. Roles are applied to classes. Sometimes we say that classes

Perl version 5.24.0 documentation - perlootut

Page 6http://perldoc.perl.org

consume roles.

Roles are an alternative to inheritance for providing polymorphism.
 Let's assume we have two
classes, Radio and Computer. Both of
 these things have on/off switches. We want to model that in
our class
 definitions.

We could have both classes inherit from a common parent, like Machine, but not all machines have
on/off switches. We could create
 a parent class called HasOnOffSwitch, but that is very artificial.

Radios and computers are not specializations of this parent. This
 parent is really a rather ridiculous
creation.

This is where roles come in. It makes a lot of sense to create a HasOnOffSwitch role and apply it to
both classes. This role would
 define a known API like providing turn_on() and turn_off()

methods.

Perl does not have any built-in way to express roles. In the past,
 people just bit the bullet and used
multiple inheritance. Nowadays,
 there are several good choices on CPAN for using roles.

When to Use OO
Object Orientation is not the best solution to every problem. In Perl
 Best Practices (copyright 2004,
Published by O'Reilly Media, Inc.),
 Damian Conway provides a list of criteria to use when deciding if
OO is
 the right fit for your problem:

The system being designed is large, or is likely to become large.

The data can be aggregated into obvious structures, especially if
 there's a large amount of
data in each aggregate.

The various types of data aggregate form a natural hierarchy that
 facilitates the use of
inheritance and polymorphism.

You have a piece of data on which many different operations are
 applied.

You need to perform the same general operations on related types of
 data, but with slight
variations depending on the specific type of data
 the operations are applied to.

It's likely you'll have to add new data types later.

The typical interactions between pieces of data are best represented by
 operators.

The implementation of individual components of the system is likely to
 change over time.

The system design is already object-oriented.

Large numbers of other programmers will be using your code modules.

PERL OO SYSTEMS
As we mentioned before, Perl's built-in OO system is very minimal, but
 also quite flexible. Over the
years, many people have developed systems
 which build on top of Perl's built-in system to provide
more features
 and convenience.

We strongly recommend that you use one of these systems. Even the most
 minimal of them
eliminates a lot of repetitive boilerplate. There's
 really no good reason to write your classes from
scratch in Perl.

If you are interested in the guts underlying these systems, check out perlobj.

Moose
Moose bills itself as a "postmodern object system for Perl 5". Don't
 be scared, the "postmodern" label
is a callback to Larry's description
 of Perl as "the first postmodern computer language".

Moose provides a complete, modern OO system. Its biggest influence
 is the Common Lisp Object

Perl version 5.24.0 documentation - perlootut

Page 7http://perldoc.perl.org

System, but it also borrows ideas from
 Smalltalk and several other languages. Moose was created by
Stevan
 Little, and draws heavily from his work on the Perl 6 OO design.

Here is our File class using Moose:

 package File;
 use Moose;

 has path => (is => 'ro');
 has content => (is => 'ro');
 has last_mod_time => (is => 'ro');

 sub print_info {
 my $self = shift;

 print "This file is at ", $self->path, "\n";
 }

Moose provides a number of features:

* Declarative sugar

Moose provides a layer of declarative "sugar" for defining classes.
 That sugar is just a set of
exported functions that make declaring how
 your class works simpler and more palatable. This
lets you describe what your class is, rather than having to tell Perl how to
 implement your
class.

The has() subroutine declares an attribute, and Moose
 automatically creates accessors for
these attributes. It also takes
 care of creating a new() method for you. This constructor knows
about the attributes you declared, so you can set them when creating a
 new File.

* Roles built-in

Moose lets you define roles the same way you define classes:

 package HasOnOfSwitch;
 use Moose::Role;

 has is_on => (
 is => 'rw',
 isa => 'Bool',
);

 sub turn_on {
 my $self = shift;
 $self->is_on(1);
 }

 sub turn_off {
 my $self = shift;
 $self->is_on(0);
 }

* A miniature type system

In the example above, you can see that we passed isa => 'Bool'
 to has() when creating
our is_on attribute. This tells Moose
 that this attribute must be a boolean value. If we try to
set it to an
 invalid value, our code will throw an error.

Perl version 5.24.0 documentation - perlootut

Page 8http://perldoc.perl.org

* Full introspection and manipulation

Perl's built-in introspection features are fairly minimal. Moose
 builds on top of them and
creates a full introspection layer for your
 classes. This lets you ask questions like "what
methods does the File
 class implement?" It also lets you modify your classes

programmatically.

* Self-hosted and extensible

Moose describes itself using its own introspection API. Besides
 being a cool trick, this means
that you can extend Moose using Moose itself.

* Rich ecosystem

There is a rich ecosystem of Moose extensions on CPAN under the MooseX
 namespace. In
addition, many modules on CPAN already use Moose,
 providing you with lots of examples to
learn from.

* Many more features

Moose is a very powerful tool, and we can't cover all of its
 features here. We encourage you to
learn more by reading the Moose
 documentation, starting with Moose::Manual.

Of course, Moose isn't perfect.

Moose can make your code slower to load. Moose itself is not
 small, and it does a lot of code
generation when you define your
 class. This code generation means that your runtime code is as fast
as
 it can be, but you pay for this when your modules are first loaded.

This load time hit can be a problem when startup speed is important,
 such as with a command-line
script or a "plain vanilla" CGI script that
 must be loaded each time it is executed.

Before you panic, know that many people do use Moose for
 command-line tools and other
startup-sensitive code. We encourage you
 to try Moose out first before worrying about startup speed.

Moose also has several dependencies on other modules. Most of these
 are small stand-alone
modules, a number of which have been spun off
 from Moose. Moose itself, and some of its
dependencies, require a
 compiler. If you need to install your software on a system without a
 compiler,
or if having any dependencies is a problem, then Moose
 may not be right for you.

Moo

If you try Moose and find that one of these issues is preventing you
 from using Moose, we encourage
you to consider Moo next. Moo
 implements a subset of Moose's functionality in a simpler package.

For most features that it does implement, the end-user API is identical to Moose, meaning you can
switch from Moo to Moose quite easily.

Moo does not implement most of Moose's introspection API, so it's
 often faster when loading your
modules. Additionally, none of its
 dependencies require XS, so it can be installed on machines
without a
 compiler.

One of Moo's most compelling features is its interoperability with Moose. When someone tries to use
Moose's introspection API on a Moo class or role, it is transparently inflated into a Moose
 class or role.
This makes it easier to incorporate Moo-using code
 into a Moose code base and vice versa.

For example, a Moose class can subclass a Moo class using extends or consume a Moo role using
with.

The Moose authors hope that one day Moo can be made obsolete by
 improving Moose enough, but
for now it provides a worthwhile
 alternative to Moose.

Class::Accessor
Class::Accessor is the polar opposite of Moose. It provides very
 few features, nor is it self-hosting.

Perl version 5.24.0 documentation - perlootut

Page 9http://perldoc.perl.org

It is, however, very simple, pure Perl, and it has no non-core
 dependencies. It also provides a
"Moose-like" API on demand for the
 features it supports.

Even though it doesn't do much, it is still preferable to writing your
 own classes from scratch.

Here's our File class with Class::Accessor:

 package File;
 use Class::Accessor 'antlers';

 has path => (is => 'ro');
 has content => (is => 'ro');
 has last_mod_time => (is => 'ro');

 sub print_info {
 my $self = shift;

 print "This file is at ", $self->path, "\n";
 }

The antlers import flag tells Class::Accessor that you want to
 define your attributes using
Moose-like syntax. The only parameter
 that you can pass to has is is. We recommend that you use
this
 Moose-like syntax if you choose Class::Accessor since it means you
 will have a smoother
upgrade path if you later decide to move to Moose.

Like Moose, Class::Accessor generates accessor methods and a
 constructor for your class.

Class::Tiny
Finally, we have Class::Tiny. This module truly lives up to its
 name. It has an incredibly minimal API
and absolutely no dependencies
 on any recent Perl. Still, we think it's a lot easier to use than writing

your own OO code from scratch.

Here's our File class once more:

 package File;
 use Class::Tiny qw(path content last_mod_time);

 sub print_info {
 my $self = shift;

 print "This file is at ", $self->path, "\n";
 }

That's it!

With Class::Tiny, all accessors are read-write. It generates a
 constructor for you, as well as the
accessors you define.

You can also use Class::Tiny::Antlers for Moose-like syntax.

Role::Tiny
As we mentioned before, roles provide an alternative to inheritance,
 but Perl does not have any
built-in role support. If you choose to use
 Moose, it comes with a full-fledged role implementation.
However, if
 you use one of our other recommended OO modules, you can still use
 roles with
Role::Tiny

Role::Tiny provides some of the same features as Moose's role
 system, but in a much smaller

Perl version 5.24.0 documentation - perlootut

Page 10http://perldoc.perl.org

package. Most notably, it doesn't support
 any sort of attribute declaration, so you have to do that by
hand.
 Still, it's useful, and works well with Class::Accessor and Class::Tiny

OO System Summary
Here's a brief recap of the options we covered:

* Moose

Moose is the maximal option. It has a lot of features, a big
 ecosystem, and a thriving user
base. We also covered Moo briefly. Moo is Moose lite, and a reasonable alternative when
Moose
 doesn't work for your application.

* Class::Accessor

Class::Accessor does a lot less than Moose, and is a nice
 alternative if you find Moose
overwhelming. It's been around a long
 time and is well battle-tested. It also has a minimal
Moose
 compatibility mode which makes moving from Class::Accessor to Moose easy.

* Class::Tiny

Class::Tiny is the absolute minimal option. It has no dependencies,
 and almost no syntax
to learn. It's a good option for a super minimal
 environment and for throwing something
together quickly without having
 to worry about details.

* Role::Tiny

Use Role::Tiny with Class::Accessor or Class::Tiny if you
 find yourself considering
multiple inheritance. If you go with Moose, it comes with its own role implementation.

Other OO Systems
There are literally dozens of other OO-related modules on CPAN besides
 those covered here, and
you're likely to run across one or more of them
 if you work with other people's code.

In addition, plenty of code in the wild does all of its OO "by hand",
 using just the Perl built-in OO
features. If you need to maintain such
 code, you should read perlobj to understand exactly how Perl's

built-in OO works.

CONCLUSION
As we said before, Perl's minimal OO system has led to a profusion of
 OO systems on CPAN. While
you can still drop down to the bare metal and
 write your classes by hand, there's really no reason to
do that with
 modern Perl.

For small systems, Class::Tiny and Class::Accessor both provide
 minimal object systems that take
care of basic boilerplate for you.

For bigger projects, Moose provides a rich set of features that will
 let you focus on implementing your
business logic.

We encourage you to play with and evaluate Moose, Class::Accessor, and Class::Tiny to see which
OO system is right
 for you.

