
Perl version 5.24.0 documentation - perlunicook

Page 1http://perldoc.perl.org

NAME
perlunicook - cookbookish examples of handling Unicode in Perl

DESCRIPTION
This manpage contains short recipes demonstrating how to handle common Unicode
 operations in
Perl, plus one complete program at the end. Any undeclared
 variables in individual recipes are
assumed to have a previous appropriate
 value in them.

EXAMPLES
â„ž 0: Standard preamble

Unless otherwise notes, all examples below require this standard preamble
 to work correctly, with the
#! adjusted to work on your system:

 #!/usr/bin/env perl

 use utf8; # so literals and identifiers can be in UTF-8
 use v5.12; # or later to get "unicode_strings" feature
 use strict; # quote strings, declare variables
 use warnings; # on by default
 use warnings qw(FATAL utf8); # fatalize encoding glitches
 use open qw(:std :utf8); # undeclared streams in UTF-8
 use charnames qw(:full :short); # unneeded in v5.16

This does make even Unix programmers binmode your binary streams,
 or open them with :raw, but
that's the only way to get at them
 portably anyway.

WARNING: use autodie (pre 2.26) and use open do not get along with each
 other.

â„ž 1: Generic Unicode-savvy filter
Always decompose on the way in, then recompose on the way out.

 use Unicode::Normalize;

 while (<>) {
 $_ = NFD($_); # decompose + reorder canonically
 ...
 } continue {
 print NFC($_); # recompose (where possible) + reorder canonically
 }

â„ž 2: Fine-tuning Unicode warnings
As of v5.14, Perl distinguishes three subclasses of UTFâ€‘8 warnings.

 use v5.14; # subwarnings unavailable any earlier
 no warnings "nonchar"; # the 66 forbidden non-characters
 no warnings "surrogate"; # UTF-16/CESU-8 nonsense
 no warnings "non_unicode"; # for codepoints over 0x10_FFFF

â„ž 3: Declare source in utf8 for identifiers and literals
Without the all-critical use utf8 declaration, putting UTFâ€‘8 in your
 literals and identifiers wonâ€™t
work right. If you used the standard
 preamble just given above, this already happened. If you did, you
can
 do things like this:

 use utf8;

Perl version 5.24.0 documentation - perlunicook

Page 2http://perldoc.perl.org

 my $measure = "Ã…ngstrÃ¶m";
 my @Î¼soft = qw(cp852 cp1251 cp1252);
 my @á½‘Ï€Î-Ï•Î¼ÎµÎ³Î±Ï‚ = qw(á½‘Ï€Î-Ï• Î¼ÎµÎ³Î±Ï‚);
 my @é¯‰ = qw(koi8-f koi8-u koi8-r);
 my $motto = "ðŸ‘ª ðŸ’— ðŸ•ª"; # FAMILY, GROWING HEART, DROMEDARY CAMEL

If you forget use utf8, high bytes will be misunderstood as
 separate characters, and nothing will
work right.

â„ž 4: Characters and their numbers
The ord and chr functions work transparently on all codepoints,
 not just on ASCII alone â€” nor in
fact, not even just on Unicode alone.

 # ASCII characters
 ord("A")
 chr(65)

 # characters from the Basic Multilingual Plane
 ord("Î£")
 chr(0x3A3)

 # beyond the BMP
 ord("ð•‘›") # MATHEMATICAL ITALIC SMALL N
 chr(0x1D45B)

 # beyond Unicode! (up to MAXINT)
 ord("\x{20_0000}")
 chr(0x20_0000)

â„ž 5: Unicode literals by character number
In an interpolated literal, whether a double-quoted string or a
 regex, you may specify a character by
its number using the \x{HHHHHH} escape.

 String: "\x{3a3}"
 Regex: /\x{3a3}/

 String: "\x{1d45b}"
 Regex: /\x{1d45b}/

 # even non-BMP ranges in regex work fine
 /[\x{1D434}-\x{1D467}]/

â„ž 6: Get character name by number
 use charnames ();
 my $name = charnames::viacode(0x03A3);

â„ž 7: Get character number by name
 use charnames ();
 my $number = charnames::vianame("GREEK CAPITAL LETTER SIGMA");

Perl version 5.24.0 documentation - perlunicook

Page 3http://perldoc.perl.org

â„ž 8: Unicode named characters
Use the \N{charname} notation to get the character
 by that name for use in interpolated literals
(double-quoted
 strings and regexes). In v5.16, there is an implicit

 use charnames qw(:full :short);

But prior to v5.16, you must be explicit about which set of charnames you
 want. The :full names
are the official Unicode character name, alias, or
 sequence, which all share a namespace.

 use charnames qw(:full :short latin greek);

 "\N{MATHEMATICAL ITALIC SMALL N}" # :full
 "\N{GREEK CAPITAL LETTER SIGMA}" # :full

Anything else is a Perl-specific convenience abbreviation. Specify one or
 more scripts by names if
you want short names that are script-specific.

 "\N{Greek:Sigma}" # :short
 "\N{ae}" # latin
 "\N{epsilon}" # greek

The v5.16 release also supports a :loose import for loose matching of
 character names, which
works just like loose matching of property names:
 that is, it disregards case, whitespace, and
underscores:

 "\N{euro sign}" # :loose (from v5.16)

â„ž 9: Unicode named sequences
These look just like character names but return multiple codepoints.
 Notice the %vx vector-print
functionality in printf.

 use charnames qw(:full);
 my $seq = "\N{LATIN CAPITAL LETTER A WITH MACRON AND GRAVE}";
 printf "U+%v04X\n", $seq;
 U+0100.0300

â„ž 10: Custom named characters
Use :alias to give your own lexically scoped nicknames to existing
 characters, or even to give
unnamed private-use characters useful names.

 use charnames ":full", ":alias" => {
 ecute => "LATIN SMALL LETTER E WITH ACUTE",
 "APPLE LOGO" => 0xF8FF, # private use character
 };

 "\N{ecute}"
 "\N{APPLE LOGO}"

â„ž 11: Names of CJK codepoints
Sinograms like â€œæ•±äº¬â€• come back with character names of CJK UNIFIED
IDEOGRAPH-6771 and CJK UNIFIED IDEOGRAPH-4EAC,
 because their â€œnamesâ€• vary. The
CPAN Unicode::Unihan module
 has a large database for decoding these (and a whole lot more),
provided you
 know how to understand its output.

Perl version 5.24.0 documentation - perlunicook

Page 4http://perldoc.perl.org

 # cpan -i Unicode::Unihan
 use Unicode::Unihan;
 my $str = "æ•±äº¬";
 my $unhan = Unicode::Unihan->new;
 for my $lang (qw(Mandarin Cantonese Korean JapaneseOn JapaneseKun)) {
 printf "CJK $str in %-12s is ", $lang;
 say $unhan->$lang($str);
 }

prints:

 CJK æ•±äº¬ in Mandarin is DONG1JING1
 CJK æ•±äº¬ in Cantonese is dung1ging1
 CJK æ•±äº¬ in Korean is TONGKYENG
 CJK æ•±äº¬ in JapaneseOn is TOUKYOU KEI KIN
 CJK æ•±äº¬ in JapaneseKun is HIGASHI AZUMAMIYAKO

If you have a specific romanization scheme in mind,
 use the specific module:

 # cpan -i Lingua::JA::Romanize::Japanese
 use Lingua::JA::Romanize::Japanese;
 my $k2r = Lingua::JA::Romanize::Japanese->new;
 my $str = "æ•±äº¬";
 say "Japanese for $str is ", $k2r->chars($str);

prints

 Japanese for æ•±äº¬ is toukyou

â„ž 12: Explicit encode/decode
On rare occasion, such as a database read, you may be
 given encoded text you need to decode.

 use Encode qw(encode decode);

 my $chars = decode("shiftjis", $bytes, 1);
 # OR
 my $bytes = encode("MIME-Header-ISO_2022_JP", $chars, 1);

For streams all in the same encoding, don't use encode/decode; instead
 set the file encoding when
you open the file or immediately after with binmode as described later below.

â„ž 13: Decode program arguments as utf8
 $ perl -CA ...
 or
 $ export PERL_UNICODE=A
 or
 use Encode qw(decode_utf8);
 @ARGV = map { decode_utf8($_, 1) } @ARGV;

â„ž 14: Decode program arguments as locale encoding
 # cpan -i Encode::Locale
 use Encode qw(locale);
 use Encode::Locale;

Perl version 5.24.0 documentation - perlunicook

Page 5http://perldoc.perl.org

 # use "locale" as an arg to encode/decode
 @ARGV = map { decode(locale => $_, 1) } @ARGV;

â„ž 15: Declare STD{IN,OUT,ERR} to be utf8
Use a command-line option, an environment variable, or else
 call binmode explicitly:

 $ perl -CS ...
 or
 $ export PERL_UNICODE=S
 or
 use open qw(:std :utf8);
 or
 binmode(STDIN, ":utf8");
 binmode(STDOUT, ":utf8");
 binmode(STDERR, ":utf8");

â„ž 16: Declare STD{IN,OUT,ERR} to be in locale encoding
 # cpan -i Encode::Locale
 use Encode;
 use Encode::Locale;

 # or as a stream for binmode or open
 binmode STDIN, ":encoding(console_in)" if -t STDIN;
 binmode STDOUT, ":encoding(console_out)" if -t STDOUT;
 binmode STDERR, ":encoding(console_out)" if -t STDERR;

â„ž 17: Make file I/O default to utf8
Files opened without an encoding argument will be in UTF-8:

 $ perl -CD ...
 or
 $ export PERL_UNICODE=D
 or
 use open qw(:utf8);

â„ž 18: Make all I/O and args default to utf8
 $ perl -CSDA ...
 or
 $ export PERL_UNICODE=SDA
 or
 use open qw(:std :utf8);
 use Encode qw(decode_utf8);
 @ARGV = map { decode_utf8($_, 1) } @ARGV;

â„ž 19: Open file with specific encoding
Specify stream encoding. This is the normal way
 to deal with encoded text, not by calling low-level

functions.

 # input file
 open(my $in_file, "< :encoding(UTF-16)", "wintext");
 OR
 open(my $in_file, "<", "wintext");
 binmode($in_file, ":encoding(UTF-16)");

Perl version 5.24.0 documentation - perlunicook

Page 6http://perldoc.perl.org

 THEN
 my $line = <$in_file>;

 # output file
 open($out_file, "> :encoding(cp1252)", "wintext");
 OR
 open(my $out_file, ">", "wintext");
 binmode($out_file, ":encoding(cp1252)");
 THEN
 print $out_file "some text\n";

More layers than just the encoding can be specified here. For example,
 the incantation ":raw
:encoding(UTF-16LE) :crlf" includes implicit
 CRLF handling.

â„ž 20: Unicode casing
Unicode casing is very different from ASCII casing.

 uc("henry â…·") # "HENRY â…§"
 uc("tschÃ¼ÃŸ") # "TSCHÃœSS" notice ÃŸ => SS

 # both are true:
 "tschÃ¼ÃŸ" =~ /TSCHÃœSS/i # notice ÃŸ => SS
 "Î£Î¯ÏƒÏ…Ï†Î¿Ï‚" =~ /Î£ÎŠÎ£Î¥Î¦ÎŸÎ£/i # notice Î£,Ïƒ,Ï‚ sameness

â„ž 21: Unicode case-insensitive comparisons
Also available in the CPAN Unicode::CaseFold module,
 the new fc â€œfoldcaseâ€• function from
v5.16 grants
 access to the same Unicode casefolding as the /i
 pattern modifier has always used:

 use feature "fc"; # fc() function is from v5.16

 # sort case-insensitively
 my @sorted = sort { fc($a) cmp fc($b) } @list;

 # both are true:
 fc("tschÃ¼ÃŸ") eq fc("TSCHÃœSS")
 fc("Î£Î¯ÏƒÏ…Ï†Î¿Ï‚") eq fc("Î£ÎŠÎ£Î¥Î¦ÎŸÎ£")

â„ž 22: Match Unicode linebreak sequence in regex
A Unicode linebreak matches the two-character CRLF
 grapheme or any of seven vertical whitespace
characters.
 Good for dealing with textfiles coming from different
 operating systems.

 \R

 s/\R/\n/g; # normalize all linebreaks to \n

â„ž 23: Get character category
Find the general category of a numeric codepoint.

 use Unicode::UCD qw(charinfo);
 my $cat = charinfo(0x3A3)->{category}; # "Lu"

Perl version 5.24.0 documentation - perlunicook

Page 7http://perldoc.perl.org

â„ž 24: Disabling Unicode-awareness in builtin charclasses
Disable \w, \b, \s, \d, and the POSIX
 classes from working correctly on Unicode either in this

scope, or in just one regex.

 use v5.14;
 use re "/a";

 # OR

 my($num) = $str =~ /(\d+)/a;

Or use specific un-Unicode properties, like \p{ahex}
 and \p{POSIX_Digit}. Properties still work
normally
 no matter what charset modifiers (/d /u /l /a /aa)
 should be effect.

â„ž 25: Match Unicode properties in regex with \p, \P
These all match a single codepoint with the given
 property. Use \P in place of \p to match
 one
codepoint lacking that property.

 \pL, \pN, \pS, \pP, \pM, \pZ, \pC
 \p{Sk}, \p{Ps}, \p{Lt}
 \p{alpha}, \p{upper}, \p{lower}
 \p{Latin}, \p{Greek}
 \p{script=Latin}, \p{script=Greek}
 \p{East_Asian_Width=Wide}, \p{EA=W}
 \p{Line_Break=Hyphen}, \p{LB=HY}
 \p{Numeric_Value=4}, \p{NV=4}

â„ž 26: Custom character properties
Define at compile-time your own custom character
 properties for use in regexes.

 # using private-use characters
 sub In_Tengwar { "E000\tE07F\n" }

 if (/\p{In_Tengwar}/) { ... }

 # blending existing properties
 sub Is_GraecoRoman_Title {<<'END_OF_SET'}
 +utf8::IsLatin
 +utf8::IsGreek
 &utf8::IsTitle
 END_OF_SET

 if (/\p{Is_GraecoRoman_Title}/ { ... }

â„ž 27: Unicode normalization
Typically render into NFD on input and NFC on output. Using NFKC or NFKD
 functions improves
recall on searches, assuming you've already done to the
 same text to be searched. Note that this is
about much more than just pre-
 combined compatibility glyphs; it also reorders marks according to
their
 canonical combining classes and weeds out singletons.

 use Unicode::Normalize;
 my $nfd = NFD($orig);
 my $nfc = NFC($orig);
 my $nfkd = NFKD($orig);

Perl version 5.24.0 documentation - perlunicook

Page 8http://perldoc.perl.org

 my $nfkc = NFKC($orig);

â„ž 28: Convert non-ASCII Unicode numerics
Unless youâ€™ve used /a or /aa, \d matches more than
 ASCII digits only, but Perlâ€™s implicit
string-to-number
 conversion does not current recognize these. Hereâ€™s how to
 convert such strings
manually.

 use v5.14; # needed for num() function
 use Unicode::UCD qw(num);
 my $str = "got â…« and à¥ªà¥«à¥¬à¥- and â…ž and here";
 my @nums = ();
 while ($str =~ /(\d+|\N)/g) { # not just ASCII!
 push @nums, num($1);
 }
 say "@nums"; # 12 4567 0.875

 use charnames qw(:full);
 my $nv = num("\N{RUMI DIGIT ONE}\N{RUMI DIGIT TWO}");

â„ž 29: Match Unicode grapheme cluster in regex
Programmer-visible â€œcharactersâ€• are codepoints matched by /./s,
 but user-visible
â€œcharactersâ€• are graphemes matched by /\X/.

 # Find vowel *plus* any combining diacritics,underlining,etc.
 my $nfd = NFD($orig);
 $nfd =~ / (?=[aeiou]) \X /xi

â„ž 30: Extract by grapheme instead of by codepoint (regex)
 # match and grab five first graphemes
 my($first_five) = $str =~ /^ (\X{5}) /x;

â„ž 31: Extract by grapheme instead of by codepoint (substr)
 # cpan -i Unicode::GCString
 use Unicode::GCString;
 my $gcs = Unicode::GCString->new($str);
 my $first_five = $gcs->substr(0, 5);

â„ž 32: Reverse string by grapheme
Reversing by codepoint messes up diacritics, mistakenly converting crÃ¨me brÃ»lÃ©e into
Ã©elÌ‚urb emÌ€erc instead of into eÃ©lÃ»rb emÃ¨rc;
 so reverse by grapheme instead. Both
these approaches work
 right no matter what normalization the string is in:

 $str = join("", reverse $str =~ /\X/g);

 # OR: cpan -i Unicode::GCString
 use Unicode::GCString;
 $str = reverse Unicode::GCString->new($str);

â„ž 33: String length in graphemes
The string brÃ»lÃ©e has six graphemes but up to eight codepoints.
 This counts by grapheme, not by
codepoint:

 my $str = "brÃ»lÃ©e";

Perl version 5.24.0 documentation - perlunicook

Page 9http://perldoc.perl.org

 my $count = 0;
 while ($str =~ /\X/g) { $count++ }

 # OR: cpan -i Unicode::GCString
 use Unicode::GCString;
 my $gcs = Unicode::GCString->new($str);
 my $count = $gcs->length;

â„ž 34: Unicode column-width for printing
Perlâ€™s printf, sprintf, and format think all
 codepoints take up 1 print column, but many take
0 or 2.
 Here to show that normalization makes no difference,
 we print out both forms:

 use Unicode::GCString;
 use Unicode::Normalize;

 my @words = qw/crÃ¨me brÃ»lÃ©e/;
 @words = map { NFC($_), NFD($_) } @words;

 for my $str (@words) {
 my $gcs = Unicode::GCString->new($str);
 my $cols = $gcs->columns;
 my $pad = " " x (10 - $cols);
 say str, $pad, " |";
 }

generates this to show that it pads correctly no matter
 the normalization:

 crÃ¨me |
 creÌ€me |
 brÃ»lÃ©e |
 bruÌ‚leÌ•e |

â„ž 35: Unicode collation
Text sorted by numeric codepoint follows no reasonable alphabetic order;
 use the UCA for sorting
text.

 use Unicode::Collate;
 my $col = Unicode::Collate->new();
 my @list = $col->sort(@old_list);

See the ucsort program from the Unicode::Tussle CPAN module
 for a convenient command-line
interface to this module.

â„ž 36: Case- and accent-insensitive Unicode sort
Specify a collation strength of level 1 to ignore case and
 diacritics, only looking at the basic character.

 use Unicode::Collate;
 my $col = Unicode::Collate->new(level => 1);
 my @list = $col->sort(@old_list);

â„ž 37: Unicode locale collation
Some locales have special sorting rules.

 # either use v5.12, OR: cpan -i Unicode::Collate::Locale

Perl version 5.24.0 documentation - perlunicook

Page 10http://perldoc.perl.org

 use Unicode::Collate::Locale;
 my $col = Unicode::Collate::Locale->new(locale => "de__phonebook");
 my @list = $col->sort(@old_list);

The ucsort program mentioned above accepts a --locale parameter.

â„ž 38: Making cmp work on text instead of codepoints
Instead of this:

 @srecs = sort {
 $b->{AGE} <=> $a->{AGE}
 ||
 $a->{NAME} cmp $b->{NAME}
 } @recs;

Use this:

 my $coll = Unicode::Collate->new();
 for my $rec (@recs) {
 $rec->{NAME_key} = $coll->getSortKey($rec->{NAME});
 }
 @srecs = sort {
 $b->{AGE} <=> $a->{AGE}
 ||
 $a->{NAME_key} cmp $b->{NAME_key}
 } @recs;

â„ž 39: Case- and accent-insensitive comparisons
Use a collator object to compare Unicode text by character
 instead of by codepoint.

 use Unicode::Collate;
 my $es = Unicode::Collate->new(
 level => 1,
 normalization => undef
);

 # now both are true:
 $es->eq("GarcÃ-a", "GARCIA");
 $es->eq("MÃ¡rquez", "MARQUEZ");

â„ž 40: Case- and accent-insensitive locale comparisons
Same, but in a specific locale.

 my $de = Unicode::Collate::Locale->new(
 locale => "de__phonebook",
);

 # now this is true:
 $de->eq("tschÃ¼ÃŸ", "TSCHUESS"); # notice Ã¼ => UE, ÃŸ => SS

â„ž 41: Unicode linebreaking
Break up text into lines according to Unicode rules.

 # cpan -i Unicode::LineBreak

Perl version 5.24.0 documentation - perlunicook

Page 11http://perldoc.perl.org

 use Unicode::LineBreak;
 use charnames qw(:full);

 my $para = "This is a super\N{HYPHEN}long string. " x 20;
 my $fmt = Unicode::LineBreak->new;
 print $fmt->break($para), "\n";

â„ž 42: Unicode text in DBM hashes, the tedious way
Using a regular Perl string as a key or value for a DBM
 hash will trigger a wide character exception if
any codepoints
 wonâ€™t fit into a byte. Hereâ€™s how to manually manage the translation:

 use DB_File;
 use Encode qw(encode decode);
 tie %dbhash, "DB_File", "pathname";

 # STORE

 # assume $uni_key and $uni_value are abstract Unicode strings
 my $enc_key = encode("UTF-8", $uni_key, 1);
 my $enc_value = encode("UTF-8", $uni_value, 1);
 $dbhash{$enc_key} = $enc_value;

 # FETCH

 # assume $uni_key holds a normal Perl string (abstract Unicode)
 my $enc_key = encode("UTF-8", $uni_key, 1);
 my $enc_value = $dbhash{$enc_key};
 my $uni_value = decode("UTF-8", $enc_value, 1);

â„ž 43: Unicode text in DBM hashes, the easy way
Hereâ€™s how to implicitly manage the translation; all encoding
 and decoding is done automatically,
just as with streams that
 have a particular encoding attached to them:

 use DB_File;
 use DBM_Filter;

 my $dbobj = tie %dbhash, "DB_File", "pathname";
 $dbobj->Filter_Value("utf8"); # this is the magic bit

 # STORE

 # assume $uni_key and $uni_value are abstract Unicode strings
 $dbhash{$uni_key} = $uni_value;

 # FETCH

 # $uni_key holds a normal Perl string (abstract Unicode)
 my $uni_value = $dbhash{$uni_key};

Perl version 5.24.0 documentation - perlunicook

Page 12http://perldoc.perl.org

â„ž 44: PROGRAM: Demo of Unicode collation and printing
Hereâ€™s a full program showing how to make use of locale-sensitive
 sorting, Unicode casing, and
managing print widths when some of the
 characters take up zero or two columns, not just one column
each time.
 When run, the following program produces this nicely aligned output:

 CrÃ¨me BrÃ»lÃ©e....... â‚¬2.00
 Ã‰clair............. â‚¬1.60
 FideuÃ â‚¬4.20
 Hamburger.......... â‚¬6.00
 JamÃ³n Serrano...... â‚¬4.45
 LinguiÃ§a........... â‚¬7.00
 PÃ¢tÃ©............... â‚¬4.15
 Pears.............. â‚¬2.00
 PÃªches............. â‚¬2.25
 SmÃ¸rbrÃ¸d........... â‚¬5.75
 SpÃ¤tzle............ â‚¬5.50
 XoriÃ§o............. â‚¬3.00
 Î“Ï•Ï•Î¿Ï‚.............. â‚¬6.50
 ë§‰ê±¸ë¦¬............. â‚¬4.00
 ã•Šã‚‚ã•¡............. â‚¬2.65
 ã•Šå¥½ã•¿ç„¼ã••......... â‚¬8.00
 ã‚·ãƒ¥ãƒ¼ã‚¯ãƒªãƒ¼ãƒ â‚¬1.85
 å¯¿å•¸............... â‚¬9.99
 åŒ…å-•............... â‚¬7.50

Here's that program; tested on v5.14.

 #!/usr/bin/env perl
 # umenu - demo sorting and printing of Unicode food
 #
 # (obligatory and increasingly long preamble)
 #
 use utf8;
 use v5.14; # for locale sorting
 use strict;
 use warnings;
 use warnings qw(FATAL utf8); # fatalize encoding faults
 use open qw(:std :utf8); # undeclared streams in UTF-8
 use charnames qw(:full :short); # unneeded in v5.16

 # std modules
 use Unicode::Normalize; # std perl distro as of v5.8
 use List::Util qw(max); # std perl distro as of v5.10
 use Unicode::Collate::Locale; # std perl distro as of v5.14

 # cpan modules
 use Unicode::GCString; # from CPAN

 # forward defs
 sub pad($$$);
 sub colwidth(_);
 sub entitle(_);

 my %price = (
 "Î³Ï•Ï•Î¿Ï‚" => 6.50, # gyros

Perl version 5.24.0 documentation - perlunicook

Page 13http://perldoc.perl.org

 "pears" => 2.00, # like um, pears
 "linguiÃ§a" => 7.00, # spicy sausage, Portuguese
 "xoriÃ§o" => 3.00, # chorizo sausage, Catalan
 "hamburger" => 6.00, # burgermeister meisterburger
 "Ã©clair" => 1.60, # dessert, French
 "smÃ¸rbrÃ¸d" => 5.75, # sandwiches, Norwegian
 "spÃ¤tzle" => 5.50, # Bayerisch noodles, little sparrows
 "åŒ…å-•" => 7.50, # bao1 zi5, steamed pork buns, Mandarin
 "jamÃ³n serrano" => 4.45, # country ham, Spanish
 "pÃªches" => 2.25, # peaches, French
 "ã‚·ãƒ¥ãƒ¼ã‚¯ãƒªãƒ¼ãƒ " => 1.85, # cream-filled pastry like eclair
 "ë§‰ê±¸ë¦¬" => 4.00, # makgeolli, Korean rice wine
 "å¯¿å•¸" => 9.99, # sushi, Japanese
 "ã•Šã‚‚ã•¡" => 2.65, # omochi, rice cakes, Japanese
 "crÃ¨me brÃ»lÃ©e" => 2.00, # crema catalana
 "fideuÃ " => 4.20, # more noodles, Valencian
 # (Catalan=fideuada)
 "pÃ¢tÃ©" => 4.15, # gooseliver paste, French
 "ã•Šå¥½ã•¿ç„¼ã••" => 8.00, # okonomiyaki, Japanese
);

 my $width = 5 + max map { colwidth } keys %price;

 # So the Asian stuff comes out in an order that someone
 # who reads those scripts won't freak out over; the
 # CJK stuff will be in JIS X 0208 order that way.
 my $coll = Unicode::Collate::Locale->new(locale => "ja");

 for my $item ($coll->sort(keys %price)) {
 print pad(entitle($item), $width, ".");
 printf " â‚¬%.2f\n", $price{$item};
 }

 sub pad($$$) {
 my($str, $width, $padchar) = @_;
 return $str . ($padchar x ($width - colwidth($str)));
 }

 sub colwidth(_) {
 my($str) = @_;
 return Unicode::GCString->new($str)->columns;
 }

 sub entitle(_) {
 my($str) = @_;
 $str =~ s{ (?=\pL)(\S) (\S*) }
 { ucfirst($1) . lc($2) }xge;
 return $str;
 }

SEE ALSO
See these manpages, some of which are CPAN modules: perlunicode, perluniprops, perlre,
perlrecharclass, perluniintro, perlunitut, perlunifaq, PerlIO, DB_File, DBM_Filter, DBM_Filter::utf8,

Perl version 5.24.0 documentation - perlunicook

Page 14http://perldoc.perl.org

Encode, Encode::Locale, Unicode::UCD, Unicode::Normalize, Unicode::GCString,
Unicode::LineBreak, Unicode::Collate, Unicode::Collate::Locale, Unicode::Unihan, Unicode::CaseFold
, Unicode::Tussle, Lingua::JA::Romanize::Japanese, Lingua::ZH::Romanize::Pinyin,
Lingua::KO::Romanize::Hangul.

The Unicode::Tussle CPAN module includes many programs
 to help with working with Unicode,
including
 these programs to fully or partly replace standard utilities: tcgrep instead of egrep, uniquote
instead of cat -v or hexdump, uniwc instead of wc, unilook instead of look, unifmt instead of fmt,
 and
ucsort instead of sort.
 For exploring Unicode character names and character properties,
 see its
uniprops, unichars, and uninames programs.
 It also supplies these programs, all of which are general
filters that do Unicode-y things: unititle and unicaps; uniwide and uninarrow; unisupers and unisubs;
nfd, nfc, nfkd, and nfkc;
 and uc, lc, and tc.

Finally, see the published Unicode Standard (page numbers are from version
 6.0.0), including these
specific annexes and technical reports:

Â§3.13 Default Case Algorithms, page 113;
 Â§4.2 Case, pages 120â€“122;
 Case Mappings, page
166â€“172, especially Caseless Matching starting on page 170.

UAX #44: Unicode Character Database

UTS #18: Unicode Regular Expressions

UAX #15: Unicode Normalization Forms

UTS #10: Unicode Collation Algorithm

UAX #29: Unicode Text Segmentation

UAX #14: Unicode Line Breaking Algorithm

UAX #11: East Asian Width

AUTHOR
Tom Christiansen <tchrist@perl.com> wrote this, with occasional
 kibbitzing from Larry Wall and
Jeffrey Friedl in the background.

COPYRIGHT AND LICENCE
Copyright Â© 2012 Tom Christiansen.

This program is free software; you may redistribute it and/or modify it
 under the same terms as Perl
itself.

Most of these examples taken from the current edition of the â€œCamel Bookâ€•;
 that is, from the
4áµ—Ê° Edition of Programming Perl, Copyright Â© 2012 Tom
 Christiansen <et al.>, 2012-02-13 by
Oâ€™Reilly Media. The code itself is
 freely redistributable, and you are encouraged to transplant,
fold,
 spindle, and mutilate any of the examples in this manpage however you please
 for inclusion into
your own programs without any encumbrance whatsoever.
 Acknowledgement via code comment is
polite but not required.

REVISION HISTORY
v1.0.0 â€“ first public release, 2012-02-27

