
Perl version 5.24.0 documentation - perldebguts

Page 1http://perldoc.perl.org

NAME
perldebguts - Guts of Perl debugging

DESCRIPTION
This is not perldebug, which tells you how to use
 the debugger. This manpage describes low-level
details concerning
 the debugger's internals, which range from difficult to impossible
 to understand for
anyone who isn't incredibly intimate with Perl's guts.
 Caveat lector.

Debugger Internals
Perl has special debugging hooks at compile-time and run-time used
 to create debugging
environments. These hooks are not to be confused
 with the perl -Dxxx command described in perlrun,
which is
 usable only if a special Perl is built per the instructions in the INSTALL podpage in the Perl
source tree.

For example, whenever you call Perl's built-in caller function
 from the package DB, the arguments
that the corresponding stack
 frame was called with are copied to the @DB::args array. These

mechanisms are enabled by calling Perl with the -d switch.
 Specifically, the following additional
features are enabled
 (cf. "$^P" in perlvar):

Perl inserts the contents of $ENV{PERL5DB} (or BEGIN {require
 'perl5db.pl'} if not
present) before the first line of your program.

Each array @{"_<$filename"} holds the lines of $filename for a
 file compiled by Perl. The
same is also true for evaled strings
 that contain subroutines, or which are currently being
executed.
 The $filename for evaled strings looks like (eval 34).

Values in this array are magical in numeric context: they compare
 equal to zero only if the line
is not breakable.

Each hash %{"_<$filename"} contains breakpoints and actions keyed
 by line number.
Individual entries (as opposed to the whole hash)
 are settable. Perl only cares about Boolean
true here, although
 the values used by perl5db.pl have the form
"$break_condition\0$action".

The same holds for evaluated strings that contain subroutines, or
 which are currently being
executed. The $filename for evaled strings
 looks like (eval 34).

Each scalar ${"_<$filename"} contains "_<$filename". This is
 also the case for
evaluated strings that contain subroutines, or
 which are currently being executed. The
$filename for evaled
 strings looks like (eval 34).

After each required file is compiled, but before it is executed,
DB::postponed(*{"_<$filename"}) is called if the subroutine DB::postponed exists.
Here, the $filename is the expanded name of
 the required file, as found in the values of
%INC.

After each subroutine subname is compiled, the existence of $DB::postponed{subname}
is checked. If this key exists, DB::postponed(subname) is called if the DB::postponed
subroutine
 also exists.

A hash %DB::sub is maintained, whose keys are subroutine names
 and whose values have
the form filename:startline-endline. filename has the form (eval 34) for
subroutines defined inside evals.

When the execution of your program reaches a point that can hold a
 breakpoint, the
DB::DB() subroutine is called if any of the variables $DB::trace, $DB::single, or
$DB::signal is true. These variables
 are not localizable. This feature is disabled when
executing
 inside DB::DB(), including functions called from it unless $^D & (1<<30) is true.

When execution of the program reaches a subroutine call, a call to &DB::sub(args) is made

Perl version 5.24.0 documentation - perldebguts

Page 2http://perldoc.perl.org

instead, with $DB::sub holding the
 name of the called subroutine. (This doesn't happen if the
subroutine
 was compiled in the DB package.)

If the call is to an lvalue subroutine, and &DB::lsub
 is defined &DB::lsub(args) is called
instead, otherwise falling
 back to &DB::sub(args).

When execution of the program uses goto to enter a non-XS
 subroutine and the 0x80 bit is
set in $^P, a call to &DB::goto
 is made, with $DB::sub holding the name of the subroutine
being
 entered.

Note that if &DB::sub needs external data for it to work, no
 subroutine call is possible without it. As
an example, the standard
 debugger's &DB::sub depends on the $DB::deep variable
 (it defines how
many levels of recursion deep into the debugger you can go
 before a mandatory break). If
$DB::deep is not defined, subroutine
 calls are not possible, even though &DB::sub exists.

Writing Your Own Debugger
Environment Variables

The PERL5DB environment variable can be used to define a debugger.
 For example, the minimal
"working" debugger (it actually doesn't do anything)
 consists of one line:

 sub DB::DB {}

It can easily be defined like this:

 $ PERL5DB="sub DB::DB {}" perl -d your-script

Another brief debugger, slightly more useful, can be created
 with only the line:

 sub DB::DB {print ++$i; scalar <STDIN>}

This debugger prints a number which increments for each statement
 encountered and waits for you to
hit a newline before continuing
 to the next statement.

The following debugger is actually useful:

 {
 package DB;
 sub DB {}
 sub sub {print ++$i, " $sub\n"; &$sub}
 }

It prints the sequence number of each subroutine call and the name of the
 called subroutine. Note
that &DB::sub is being compiled into the
 package DB through the use of the package directive.

When it starts, the debugger reads your rc file (./.perldb or ~/.perldb under Unix), which can set
important options.
 (A subroutine (&afterinit) can be defined here as well; it is executed
 after the
debugger completes its own initialization.)

After the rc file is read, the debugger reads the PERLDB_OPTS
 environment variable and uses it to
set debugger options. The
 contents of this variable are treated as if they were the argument
 of an o
... debugger command (q.v. in "Configurable Options" in perldebug).

Debugger Internal Variables

In addition to the file and subroutine-related variables mentioned above,
 the debugger also maintains
various magical internal variables.

@DB::dbline is an alias for @{"::_<current_file"}, which
 holds the lines of the
currently-selected file (compiled by Perl), either
 explicitly chosen with the debugger's f

Perl version 5.24.0 documentation - perldebguts

Page 3http://perldoc.perl.org

command, or implicitly by flow
 of execution.

Values in this array are magical in numeric context: they compare
 equal to zero only if the line
is not breakable.

%DB::dbline is an alias for %{"::_<current_file"}, which
 contains breakpoints and
actions keyed by line number in
 the currently-selected file, either explicitly chosen with the

debugger's f command, or implicitly by flow of execution.

As previously noted, individual entries (as opposed to the whole hash)
 are settable. Perl only
cares about Boolean true here, although
 the values used by perl5db.pl have the form
"$break_condition\0$action".

Debugger Customization Functions

Some functions are provided to simplify customization.

See "Configurable Options" in perldebug for a description of options parsed by
DB::parse_options(string).

DB::dump_trace(skip[,count]) skips the specified number of frames
 and returns a list
containing information about the calling frames (all
 of them, if count is missing). Each entry is
reference to a hash
 with keys context (either ., $, or @), sub (subroutine
 name, or info
about eval), args (undef or a reference to
 an array), file, and line.

DB::print_trace(FH, skip[, count[, short]]) prints
 formatted info about caller
frames. The last two functions may be
 convenient as arguments to <, << commands.

Note that any variables and functions that are not documented in
 this manpages (or in perldebug) are
considered for internal use only, and as such are subject to change without notice.

Frame Listing Output Examples
The frame option can be used to control the output of frame information. For example, contrast this
expression trace:

 $ perl -de 42
 Stack dump during die enabled outside of evals.

 Loading DB routines from perl5db.pl patch level 0.94
 Emacs support available.

 Enter h or 'h h' for help.

 main::(-e:1): 0
 DB<1> sub foo { 14 }

 DB<2> sub bar { 3 }

 DB<3> t print foo() * bar()
 main::((eval 172):3): print foo() + bar();
 main::foo((eval 168):2):
 main::bar((eval 170):2):
 42

with this one, once the option frame=2 has been set:

 DB<4> o f=2
 frame = '2'
 DB<5> t print foo() * bar()

Perl version 5.24.0 documentation - perldebguts

Page 4http://perldoc.perl.org

 3: foo() * bar()
 entering main::foo
 2: sub foo { 14 };
 exited main::foo
 entering main::bar
 2: sub bar { 3 };
 exited main::bar
 42

By way of demonstration, we present below a laborious listing
 resulting from setting your
PERLDB_OPTS environment variable to
 the value f=n N, and running perl -d -V from the command
line.
 Examples using various values of n are shown to give you a feel
 for the difference between
settings. Long though it may be, this
 is not a complete listing, but only excerpts.

1 entering main::BEGIN
 entering Config::BEGIN
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 Package lib/Config.pm.
 entering Config::TIEHASH
 entering Exporter::import
 entering Exporter::export
 entering Config::myconfig
 entering Config::FETCH
 entering Config::FETCH
 entering Config::FETCH
 entering Config::FETCH

2 entering main::BEGIN
 entering Config::BEGIN
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 exited Config::BEGIN
 Package lib/Config.pm.
 entering Config::TIEHASH
 exited Config::TIEHASH
 entering Exporter::import
 entering Exporter::export
 exited Exporter::export
 exited Exporter::import
 exited main::BEGIN
 entering Config::myconfig
 entering Config::FETCH
 exited Config::FETCH
 entering Config::FETCH
 exited Config::FETCH
 entering Config::FETCH

3 in $=main::BEGIN() from /dev/null:0
 in $=Config::BEGIN() from lib/Config.pm:2
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 Package lib/Config.pm.
 in $=Config::TIEHASH('Config') from lib/Config.pm:644
 in $=Exporter::import('Config', 'myconfig', 'config_vars') from

Perl version 5.24.0 documentation - perldebguts

Page 5http://perldoc.perl.org

/dev/null:0 in $=Exporter::export('Config', 'main', 'myconfig',
'config_vars') from li
 in @=Config::myconfig() from /dev/null:0
 in $=Config::FETCH(ref(Config), 'package') from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'baserev') from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'PERL_VERSION') from
lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'PERL_SUBVERSION') from
lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'osname') from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'osvers') from lib/Config.pm:574

4 in $=main::BEGIN() from /dev/null:0
 in $=Config::BEGIN() from lib/Config.pm:2
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 out $=Config::BEGIN() from lib/Config.pm:0
 Package lib/Config.pm.
 in $=Config::TIEHASH('Config') from lib/Config.pm:644
 out $=Config::TIEHASH('Config') from lib/Config.pm:644
 in $=Exporter::import('Config', 'myconfig', 'config_vars') from
/dev/null:0
 in $=Exporter::export('Config', 'main', 'myconfig',
'config_vars') from lib/
 out $=Exporter::export('Config', 'main', 'myconfig',
'config_vars') from lib/
 out $=Exporter::import('Config', 'myconfig', 'config_vars') from
/dev/null:0
 out $=main::BEGIN() from /dev/null:0
 in @=Config::myconfig() from /dev/null:0
 in $=Config::FETCH(ref(Config), 'package') from lib/Config.pm:574
 out $=Config::FETCH(ref(Config), 'package') from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'baserev') from lib/Config.pm:574
 out $=Config::FETCH(ref(Config), 'baserev') from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'PERL_VERSION') from
lib/Config.pm:574
 out $=Config::FETCH(ref(Config), 'PERL_VERSION') from
lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'PERL_SUBVERSION') from
lib/Config.pm:574

5 in $=main::BEGIN() from /dev/null:0
 in $=Config::BEGIN() from lib/Config.pm:2
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 out $=Config::BEGIN() from lib/Config.pm:0
 Package lib/Config.pm.
 in $=Config::TIEHASH('Config') from lib/Config.pm:644
 out $=Config::TIEHASH('Config') from lib/Config.pm:644
 in $=Exporter::import('Config', 'myconfig', 'config_vars') from
/dev/null:0
 in $=Exporter::export('Config', 'main', 'myconfig',
'config_vars') from lib/E
 out $=Exporter::export('Config', 'main', 'myconfig',
'config_vars') from lib/E

Perl version 5.24.0 documentation - perldebguts

Page 6http://perldoc.perl.org

 out $=Exporter::import('Config', 'myconfig', 'config_vars') from
/dev/null:0
 out $=main::BEGIN() from /dev/null:0
 in @=Config::myconfig() from /dev/null:0
 in $=Config::FETCH('Config=HASH(0x1aa444)', 'package') from
lib/Config.pm:574
 out $=Config::FETCH('Config=HASH(0x1aa444)', 'package') from
lib/Config.pm:574
 in $=Config::FETCH('Config=HASH(0x1aa444)', 'baserev') from
lib/Config.pm:574
 out $=Config::FETCH('Config=HASH(0x1aa444)', 'baserev') from
lib/Config.pm:574

6 in $=CODE(0x15eca4)() from /dev/null:0
 in $=CODE(0x182528)() from lib/Config.pm:2
 Package lib/Exporter.pm.
 out $=CODE(0x182528)() from lib/Config.pm:0
 scalar context return from CODE(0x182528): undef
 Package lib/Config.pm.
 in $=Config::TIEHASH('Config') from lib/Config.pm:628
 out $=Config::TIEHASH('Config') from lib/Config.pm:628
 scalar context return from Config::TIEHASH: empty hash
 in $=Exporter::import('Config', 'myconfig', 'config_vars') from
/dev/null:0
 in $=Exporter::export('Config', 'main', 'myconfig',
'config_vars') from lib/Exporter.pm:171
 out $=Exporter::export('Config', 'main', 'myconfig',
'config_vars') from lib/Exporter.pm:171
 scalar context return from Exporter::export: ''
 out $=Exporter::import('Config', 'myconfig', 'config_vars') from
/dev/null:0
 scalar context return from Exporter::import: ''

In all cases shown above, the line indentation shows the call tree.
 If bit 2 of frame is set, a line is
printed on exit from a
 subroutine as well. If bit 4 is set, the arguments are printed
 along with the caller
info. If bit 8 is set, the arguments are
 printed even if they are tied or references. If bit 16 is set, the

return value is printed, too.

When a package is compiled, a line like this

 Package lib/Carp.pm.

is printed with proper indentation.

Debugging Regular Expressions
There are two ways to enable debugging output for regular expressions.

If your perl is compiled with -DDEBUGGING, you may use the -Dr flag on the command line.

Otherwise, one can use re 'debug', which has effects at
 compile time and run time. Since Perl
5.9.5, this pragma is lexically
 scoped.

Compile-time Output
The debugging output at compile time looks like this:

 Compiling REx '[bc]d(ef*g)+h[ij]k$'
 size 45 Got 364 bytes for offset annotations.

Perl version 5.24.0 documentation - perldebguts

Page 7http://perldoc.perl.org

 first at 1
 rarest char g at 0
 rarest char d at 0
 1: ANYOF[bc](12)
 12: EXACT <d>(14)
 14: CURLYX[0] {1,32767}(28)
 16: OPEN1(18)
 18: EXACT <e>(20)
 20: STAR(23)
 21: EXACT <f>(0)
 23: EXACT <g>(25)
 25: CLOSE1(27)
 27: WHILEM[1/1](0)
 28: NOTHING(29)
 29: EXACT <h>(31)
 31: ANYOF[ij](42)
 42: EXACT <k>(44)
 44: EOL(45)
 45: END(0)
 anchored 'de' at 1 floating 'gh' at 3..2147483647 (checking floating)
 stclass 'ANYOF[bc]' minlen 7
 Offsets: [45]
 	 1[4] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 5[1]
 	 0[0] 12[1] 0[0] 6[1] 0[0] 7[1] 0[0] 9[1] 8[1] 0[0] 10[1] 0[0]
 	 11[1] 0[0] 12[0] 12[0] 13[1] 0[0] 14[4] 0[0] 0[0] 0[0] 0[0]
 	 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 18[1] 0[0] 19[1] 20[0]
 Omitting $` $& $' support.

The first line shows the pre-compiled form of the regex. The second
 shows the size of the compiled
form (in arbitrary units, usually
 4-byte words) and the total number of bytes allocated for the

offset/length table, usually 4+size*8. The next line shows the
 label id of the first node that does a
match.

The

 anchored 'de' at 1 floating 'gh' at 3..2147483647 (checking floating)
 stclass 'ANYOF[bc]' minlen 7

line (split into two lines above) contains optimizer
 information. In the example shown, the optimizer
found that the match should contain a substring de at offset 1, plus substring gh
 at some offset
between 3 and infinity. Moreover, when checking for
 these substrings (to abandon impossible
matches quickly), Perl will check
 for the substring gh before checking for the substring de. The

optimizer may also use the knowledge that the match starts (at the first id) with a character class,
and no string shorter than 7 characters can possibly match.

The fields of interest which may appear in this line are

anchored STRING at POS

floating STRING at POS1..POS2

See above.

matching floating/anchored

Which substring to check first.

minlen

The minimal length of the match.

Perl version 5.24.0 documentation - perldebguts

Page 8http://perldoc.perl.org

stclass TYPE

Type of first matching node.

noscan

Don't scan for the found substrings.

isall

Means that the optimizer information is all that the regular
 expression contains, and thus one
does not need to enter the regex engine at
 all.

GPOS

Set if the pattern contains \G.

plus

Set if the pattern starts with a repeated char (as in x+y).

implicit

Set if the pattern starts with .*.

with eval

Set if the pattern contain eval-groups, such as (?{ code }) and (??{ code }).

anchored(TYPE)

If the pattern may match only at a handful of places, with TYPE
 being SBOL, MBOL, or GPOS.
See the table below.

If a substring is known to match at end-of-line only, it may be
 followed by $, as in floating 'k'$.

The optimizer-specific information is used to avoid entering (a slow) regex
 engine on strings that will
not definitely match. If the isall flag
 is set, a call to the regex engine may be avoided even when the
optimizer
 found an appropriate place for the match.

Above the optimizer section is the list of nodes of the compiled
 form of the regex. Each line has
format

 id: TYPE OPTIONAL-INFO (next-id)

Types of Nodes
Here are the current possible types, with short descriptions:

 # TYPE arg-description [num-args] [longjump-len] DESCRIPTION

 # Exit points

 END no End of program.
 SUCCEED no Return from a subroutine, basically.

 # Line Start Anchors:
 SBOL no Match "" at beginning of line: /^/, /\A/
 MBOL no Same, assuming multiline: /^/m

 # Line End Anchors:
 SEOL no Match "" at end of line: /$/
 MEOL no Same, assuming multiline: /$/m
 EOS no Match "" at end of string: /\z/

Perl version 5.24.0 documentation - perldebguts

Page 9http://perldoc.perl.org

 # Match Start Anchors:
 GPOS no Matches where last m//g left off.

 # Word Boundary Opcodes:
 BOUND no Like BOUNDA for non-utf8, otherwise match ""
 between any Unicode \w\W or \W\w
 BOUNDL no Like BOUND/BOUNDU, but \w and \W are defined
 by current locale
 BOUNDU no Match "" at any boundary of a given type
 using Unicode rules
 BOUNDA no Match "" at any boundary between \w\W or
 \W\w, where \w is [_a-zA-Z0-9]
 NBOUND no Like NBOUNDA for non-utf8, otherwise match
 "" between any Unicode \w\w or \W\W
 NBOUNDL no Like NBOUND/NBOUNDU, but \w and \W are
 defined by current locale
 NBOUNDU no Match "" at any non-boundary of a given type
 using using Unicode rules
 NBOUNDA no Match "" betweeen any \w\w or \W\W, where \w
 is [_a-zA-Z0-9]

 # [Special] alternatives:
 REG_ANY no Match any one character (except newline).
 SANY no Match any one character.
 ANYOF sv 1 Match character in (or not in) this class,
 single char match only
 ANYOFD sv 1 Like ANYOF, but /d is in effect
 ANYOFL sv 1 Like ANYOF, but /l is in effect

 # POSIX Character Classes:
 POSIXD none Some [[:class:]] under /d; the FLAGS field
 gives which one
 POSIXL none Some [[:class:]] under /l; the FLAGS field
 gives which one
 POSIXU none Some [[:class:]] under /u; the FLAGS field
 gives which one
 POSIXA none Some [[:class:]] under /a; the FLAGS field
 gives which one
 NPOSIXD none complement of POSIXD, [[:^class:]]
 NPOSIXL none complement of POSIXL, [[:^class:]]
 NPOSIXU none complement of POSIXU, [[:^class:]]
 NPOSIXA none complement of POSIXA, [[:^class:]]

 CLUMP no Match any extended grapheme cluster sequence

 # Alternation

 # BRANCH The set of branches constituting a single choice are
 # hooked together with their "next" pointers, since
 # precedence prevents anything being concatenated to
 # any individual branch. The "next" pointer of the last
 # BRANCH in a choice points to the thing following the
 # whole choice. This is also where the final "next"
 # pointer of each individual branch points; each branch

Perl version 5.24.0 documentation - perldebguts

Page 10http://perldoc.perl.org

 # starts with the operand node of a BRANCH node.
 #
 BRANCH node Match this alternative, or the next...

 # Literals

 EXACT str Match this string (preceded by length).
 EXACTL str Like EXACT, but /l is in effect (used so
 locale-related warnings can be checked for).
 EXACTF str Match this non-UTF-8 string (not guaranteed
 to be folded) using /id rules (w/len).
 EXACTFL str Match this string (not guaranteed to be
 folded) using /il rules (w/len).
 EXACTFU str Match this string (folded iff in UTF-8,
 length in folding doesn't change if not in
 UTF-8) using /iu rules (w/len).
 EXACTFA str Match this string (not guaranteed to be
 folded) using /iaa rules (w/len).

 EXACTFU_SS str Match this string (folded iff in UTF-8,
 length in folding may change even if not in
 UTF-8) using /iu rules (w/len).
 EXACTFLU8 str Rare cirucmstances: like EXACTFU, but is
 under /l, UTF-8, folded, and everything in
 it is above 255.
 EXACTFA_NO_TRIE str Match this string (which is not trie-able;
 not guaranteed to be folded) using /iaa
 rules (w/len).

 # Do nothing types

 NOTHING no Match empty string.
 # A variant of above which delimits a group, thus stops optimizations
 TAIL no Match empty string. Can jump here from
 outside.

 # Loops

 # STAR,PLUS '?', and complex '*' and '+', are implemented as
 # circular BRANCH structures. Simple cases
 # (one character per match) are implemented with STAR
 # and PLUS for speed and to minimize recursive plunges.
 #
 STAR node Match this (simple) thing 0 or more times.
 PLUS node Match this (simple) thing 1 or more times.

 CURLY sv 2 Match this simple thing {n,m} times.
 CURLYN no 2 Capture next-after-this simple thing
 CURLYM no 2 Capture this medium-complex thing {n,m}
 times.
 CURLYX sv 2 Match this complex thing {n,m} times.

 # This terminator creates a loop structure for CURLYX

Perl version 5.24.0 documentation - perldebguts

Page 11http://perldoc.perl.org

 WHILEM no Do curly processing and see if rest matches.

 # Buffer related

 # OPEN,CLOSE,GROUPP ...are numbered at compile time.
 OPEN num 1 Mark this point in input as start of #n.
 CLOSE num 1 Analogous to OPEN.

 REF num 1 Match some already matched string
 REFF num 1 Match already matched string, folded using
 native charset rules for non-utf8
 REFFL num 1 Match already matched string, folded in loc.
 REFFU num 1 Match already matched string, folded using
 unicode rules for non-utf8
 REFFA num 1 Match already matched string, folded using
 unicode rules for non-utf8, no mixing ASCII,
 non-ASCII

 # Named references. Code in regcomp.c assumes that these all are after
 # the numbered references
 NREF no-sv 1 Match some already matched string
 NREFF no-sv 1 Match already matched string, folded using
 native charset rules for non-utf8
 NREFFL no-sv 1 Match already matched string, folded in loc.
 NREFFU num 1 Match already matched string, folded using
 unicode rules for non-utf8
 NREFFA num 1 Match already matched string, folded using
 unicode rules for non-utf8, no mixing ASCII,
 non-ASCII

 # Support for long RE
 LONGJMP off 1 1 Jump far away.
 BRANCHJ off 1 1 BRANCH with long offset.

 # Special Case Regops
 IFMATCH off 1 2 Succeeds if the following matches.
 UNLESSM off 1 2 Fails if the following matches.
 SUSPEND off 1 1 "Independent" sub-RE.
 IFTHEN off 1 1 Switch, should be preceded by switcher.
 GROUPP num 1 Whether the group matched.

 # The heavy worker

 EVAL evl/flags Execute some Perl code.
 2L

 # Modifiers

 MINMOD no Next operator is not greedy.
 LOGICAL no Next opcode should set the flag only.

 # This is not used yet

Perl version 5.24.0 documentation - perldebguts

Page 12http://perldoc.perl.org

 RENUM off 1 1 Group with independently numbered parens.

 # Trie Related

 # Behave the same as A|LIST|OF|WORDS would. The '..C' variants
 # have inline charclass data (ascii only), the 'C' store it in the
 # structure.

 TRIE trie 1 Match many EXACT(F[ALU]?)? at once.
 flags==type
 TRIEC trie Same as TRIE, but with embedded charclass
 charclass data

 AHOCORASICK trie 1 Aho Corasick stclass. flags==type
 AHOCORASICKC trie Same as AHOCORASICK, but with embedded
 charclass charclass data

 # Regex Subroutines
 GOSUB num/ofs 2L recurse to paren arg1 at (signed) ofs arg2

 # Special conditionals
 NGROUPP no-sv 1 Whether the group matched.
 INSUBP num 1 Whether we are in a specific recurse.
 DEFINEP none 1 Never execute directly.

 # Backtracking Verbs
 ENDLIKE none Used only for the type field of verbs
 OPFAIL no-sv 1 Same as (?!), but with verb arg
 ACCEPT no-sv/num Accepts the current matched string, with
 2L verbar

 # Verbs With Arguments
 VERB no-sv 1 Used only for the type field of verbs
 PRUNE no-sv 1 Pattern fails at this startpoint if no-
 backtracking through this
 MARKPOINT no-sv 1 Push the current location for rollback by
 cut.
 SKIP no-sv 1 On failure skip forward (to the mark) before
 retrying
 COMMIT no-sv 1 Pattern fails outright if backtracking
 through this
 CUTGROUP no-sv 1 On failure go to the next alternation in the
 group

 # Control what to keep in $&.
 KEEPS no $& begins here.

 # New charclass like patterns
 LNBREAK none generic newline pattern

 # SPECIAL REGOPS

Perl version 5.24.0 documentation - perldebguts

Page 13http://perldoc.perl.org

 # This is not really a node, but an optimized away piece of a "long"
 # node. To simplify debugging output, we mark it as if it were a node
 OPTIMIZED off Placeholder for dump.

 # Special opcode with the property that no opcode in a compiled program
 # will ever be of this type. Thus it can be used as a flag value that
 # no other opcode has been seen. END is used similarly, in that an END
 # node cant be optimized. So END implies "unoptimizable" and PSEUDO
 # mean "not seen anything to optimize yet".
 PSEUDO off Pseudo opcode for internal use.

Following the optimizer information is a dump of the offset/length
 table, here split across several lines:

 Offsets: [45]
 	 1[4] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 5[1]
 	 0[0] 12[1] 0[0] 6[1] 0[0] 7[1] 0[0] 9[1] 8[1] 0[0] 10[1] 0[0]
 	 11[1] 0[0] 12[0] 12[0] 13[1] 0[0] 14[4] 0[0] 0[0] 0[0] 0[0]
 	 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 18[1] 0[0] 19[1] 20[0]

The first line here indicates that the offset/length table contains 45
 entries. Each entry is a pair of
integers, denoted by offset[length].
 Entries are numbered starting with 1, so entry #1 here is
1[4] and
 entry #12 is 5[1]. 1[4] indicates that the node labeled 1:
 (the 1: ANYOF[bc]) begins at
character position 1 in the
 pre-compiled form of the regex, and has a length of 4 characters. 5[1] in
position 12 indicates that the node labeled 12:
 (the 12: EXACT <d>) begins at character position 5
in the
 pre-compiled form of the regex, and has a length of 1 character. 12[1] in position 14 indicates
that the node labeled 14:
 (the 14: CURLYX[0] {1,32767}) begins at character position 12 in the

pre-compiled form of the regex, and has a length of 1 character---that
 is, it corresponds to the +
symbol in the precompiled regex.

0[0] items indicate that there is no corresponding node.

Run-time Output
First of all, when doing a match, one may get no run-time output even
 if debugging is enabled. This
means that the regex engine was never
 entered and that all of the job was therefore done by the
optimizer.

If the regex engine was entered, the output may look like this:

 Matching '[bc]d(ef*g)+h[ij]k$' against 'abcdefg__gh__'
 Setting an EVAL scope, savestack=3
 2 <ab> <cdefg__gh_> | 1: ANYOF
 3 <abc> <defg__gh_> | 11: EXACT <d>
 4 <abcd> <efg__gh_> | 13: CURLYX {1,32767}
 4 <abcd> <efg__gh_> | 26: WHILEM
				 0 out of 1..32767 cc=effff31c
 4 <abcd> <efg__gh_> | 15: OPEN1
 4 <abcd> <efg__gh_> | 17: EXACT <e>
 5 <abcde> <fg__gh_> | 19: STAR
			 EXACT <f> can match 1 times out of 32767...
 Setting an EVAL scope, savestack=3
 6 <bcdef> <g__gh__> | 22: EXACT <g>
 7 <bcdefg> <__gh__> | 24: CLOSE1
 7 <bcdefg> <__gh__> | 26: WHILEM
				 1 out of 1..32767 cc=effff31c
 Setting an EVAL scope, savestack=12
 7 <bcdefg> <__gh__> | 15: OPEN1

Perl version 5.24.0 documentation - perldebguts

Page 14http://perldoc.perl.org

 7 <bcdefg> <__gh__> | 17: EXACT <e>
 restoring \1 to 4(4)..7
				 failed, try continuation...
 7 <bcdefg> <__gh__> | 27: NOTHING
 7 <bcdefg> <__gh__> | 28: EXACT <h>
				 failed...
				 failed...

The most significant information in the output is about the particular node
 of the compiled regex that is
currently being tested against the target string.
 The format of these lines is

 STRING-OFFSET <PRE-STRING> <POST-STRING> |ID: TYPE

The TYPE info is indented with respect to the backtracking level.
 Other incidental information appears
interspersed within.

Debugging Perl Memory Usage
Perl is a profligate wastrel when it comes to memory use. There
 is a saying that to estimate memory
usage of Perl, assume a reasonable
 algorithm for memory allocation, multiply that estimate by 10,
and
 while you still may miss the mark, at least you won't be quite so
 astonished. This is not absolutely
true, but may provide a good
 grasp of what happens.

Assume that an integer cannot take less than 20 bytes of memory, a
 float cannot take less than 24
bytes, a string cannot take less
 than 32 bytes (all these examples assume 32-bit architectures, the

result are quite a bit worse on 64-bit architectures). If a variable
 is accessed in two of three different
ways (which require an integer,
 a float, or a string), the memory footprint may increase yet another
 20
bytes. A sloppy malloc(3) implementation can inflate these
 numbers dramatically.

On the opposite end of the scale, a declaration like

 sub foo;

may take up to 500 bytes of memory, depending on which release of Perl
 you're running.

Anecdotal estimates of source-to-compiled code bloat suggest an
 eightfold increase. This means that
the compiled form of reasonable
 (normally commented, properly indented etc.) code will take
 about
eight times more space in memory than the code took
 on disk.

The -DL command-line switch is obsolete since circa Perl 5.6.0
 (it was available only if Perl was built
with -DDEBUGGING).
 The switch was used to track Perl's memory allocations and possible
 memory
leaks. These days the use of malloc debugging tools like Purify or valgrind is suggested instead. See
also "PERL_MEM_LOG" in perlhacktips.

One way to find out how much memory is being used by Perl data
 structures is to install the
Devel::Size module from CPAN: it gives
 you the minimum number of bytes required to store a
particular data
 structure. Please be mindful of the difference between the size()
 and total_size().

If Perl has been compiled using Perl's malloc you can analyze Perl
 memory usage by setting
$ENV{PERL_DEBUG_MSTATS}.

Using $ENV{PERL_DEBUG_MSTATS}
If your perl is using Perl's malloc() and was compiled with the
 necessary switches (this is the default),
then it will print memory
 usage statistics after compiling your code when
$ENV{PERL_DEBUG_MSTATS}
 > 1, and before termination of the program when
$ENV{PERL_DEBUG_MSTATS} >= 1. The report format is similar to
 the following example:

 $ PERL_DEBUG_MSTATS=2 perl -e "require Carp"
 Memory allocation statistics after compilation: (buckets 4(4)..8188(8192)
 14216 free: 130 117 28 7 9 0 2 2 1 0 0

Perl version 5.24.0 documentation - perldebguts

Page 15http://perldoc.perl.org

		 437 61 36 0 5
 60924 used: 125 137 161 55 7 8 6 16 2 0 1
		 74 109 304 84 20
 Total sbrk(): 77824/21:119. Odd ends: pad+heads+chain+tail: 0+636+0+2048.
 Memory allocation statistics after execution: (buckets 4(4)..8188(8192)
 30888 free: 245 78 85 13 6 2 1 3 2 0 1
		 315 162 39 42 11
 175816 used: 265 176 1112 111 26 22 11 27 2 1 1
		 196 178 1066 798 39
 Total sbrk(): 215040/47:145. Odd ends: pad+heads+chain+tail:
0+2192+0+6144.

It is possible to ask for such a statistic at arbitrary points in
 your execution using the mstat() function
out of the standard
 Devel::Peek module.

Here is some explanation of that format:

buckets SMALLEST(APPROX)..GREATEST(APPROX)

Perl's malloc() uses bucketed allocations. Every request is rounded
 up to the closest bucket
size available, and a bucket is taken from
 the pool of buckets of that size.

The line above describes the limits of buckets currently in use.
 Each bucket has two sizes:
memory footprint and the maximal size
 of user data that can fit into this bucket. Suppose in
the above
 example that the smallest bucket were size 4. The biggest bucket
 would have
usable size 8188, and the memory footprint would be 8192.

In a Perl built for debugging, some buckets may have negative usable
 size. This means that
these buckets cannot (and will not) be used.
 For larger buckets, the memory footprint may be
one page greater
 than a power of 2. If so, the corresponding power of two is
 printed in the
APPROX field above.

Free/Used

The 1 or 2 rows of numbers following that correspond to the number
 of buckets of each size
between SMALLEST and GREATEST. In
 the first row, the sizes (memory footprints) of buckets
are powers
 of two--or possibly one page greater. In the second row, if present,
 the memory
footprints of the buckets are between the memory footprints
 of two buckets "above".

For example, suppose under the previous example, the memory footprints
 were

 free: 8 16 32 64 128 256 512 1024 2048 4096 8192
	 4 12 24 48 80

With a non-DEBUGGING perl, the buckets starting from 128 have
 a 4-byte overhead, and thus
an 8192-long bucket may take up to
 8188-byte allocations.

Total sbrk(): SBRKed/SBRKs:CONTINUOUS

The first two fields give the total amount of memory perl sbrk(2)ed
 (ess-broken? :-) and
number of sbrk(2)s used. The third number is
 what perl thinks about continuity of returned
chunks. So long as
 this number is positive, malloc() will assume that it is probable
 that sbrk(2)
will provide continuous memory.

Memory allocated by external libraries is not counted.

pad: 0

The amount of sbrk(2)ed memory needed to keep buckets aligned.

heads: 2192

Although memory overhead of bigger buckets is kept inside the bucket, for
 smaller buckets, it
is kept in separate areas. This field gives the
 total size of these areas.

Perl version 5.24.0 documentation - perldebguts

Page 16http://perldoc.perl.org

chain: 0

malloc() may want to subdivide a bigger bucket into smaller buckets.
 If only a part of the
deceased bucket is left unsubdivided, the rest
 is kept as an element of a linked list. This field
gives the total
 size of these chunks.

tail: 6144

To minimize the number of sbrk(2)s, malloc() asks for more memory. This
 field gives the size
of the yet unused part, which is sbrk(2)ed, but
 never touched.

SEE ALSO
perldebug, perlguts, perlrun re,
 and Devel::DProf.

