
Perl version 5.24.0 documentation - Test::Builder::Module

Page 1http://perldoc.perl.org

NAME
Test::Builder::Module - Base class for test modules

SYNOPSIS
 # Emulates Test::Simple
 package Your::Module;

 my $CLASS = __PACKAGE__;

 use base 'Test::Builder::Module';
 @EXPORT = qw(ok);

 sub ok ($;$) {
 my $tb = $CLASS->builder;
 return $tb->ok(@_);
 }

 1;

DESCRIPTION
This is a superclass for Test::Builder-based modules. It provides a
 handful of common functionality
and a method of getting at the underlying Test::Builder object.

Importing
Test::Builder::Module is a subclass of Exporter which means your
 module is also a subclass of
Exporter. @EXPORT, @EXPORT_OK, etc...
 all act normally.

A few methods are provided to do the use Your::Module tests => 23 part
 for you.

import

Test::Builder::Module provides an import() method which acts in the
 same basic way as Test::More
's, setting the plan and controlling
 exporting of functions and variables. This allows your module to set
the plan independent of Test::More.

All arguments passed to import() are passed onto Your::Module->builder->plan() with the
exception of import =>[qw(things to import)].

 use Your::Module import => [qw(this that)], tests => 23;

says to import the functions this() and that() as well as set the plan
 to be 23 tests.

import() also sets the exported_to() attribute of your builder to be
 the caller of the import()
function.

Additional behaviors can be added to your import() method by overriding import_extra().

import_extra

 Your::Module->import_extra(\@import_args);

import_extra() is called by import(). It provides an opportunity for you
 to add behaviors to your
module based on its import list.

Any extra arguments which shouldn't be passed on to plan() should be
 stripped off by this method.

See Test::More for an example of its use.

Perl version 5.24.0 documentation - Test::Builder::Module

Page 2http://perldoc.perl.org

NOTE This mechanism is VERY ALPHA AND LIKELY TO CHANGE as it
 feels like a bit of an ugly
hack in its current form.

Builder
Test::Builder::Module provides some methods of getting at the underlying
 Test::Builder object.

builder

 my $builder = Your::Class->builder;

This method returns the Test::Builder object associated with Your::Class.
 It is not a constructor so you
can call it as often as you like.

This is the preferred way to get the Test::Builder object. You should not get it via
Test::Builder->new as was previously
 recommended.

The object returned by builder() may change at runtime so you should
 call builder() inside
each function rather than store it in a global.

 sub ok {
 my $builder = Your::Class->builder;

 return $builder->ok(@_);
 }

