
Perl version 5.24.0 documentation - perlfunc

Page 1http://perldoc.perl.org

NAME
perlfunc - Perl builtin functions

DESCRIPTION
The functions in this section can serve as terms in an expression.
 They fall into two major categories:
list operators and named unary
 operators. These differ in their precedence relationship with a

following comma. (See the precedence table in perlop.) List
 operators take more than one argument,
while unary operators can never
 take more than one argument. Thus, a comma terminates the
argument of
 a unary operator, but merely separates the arguments of a list
 operator. A unary operator
generally provides scalar context to its
 argument, while a list operator may provide either scalar or list

contexts for its arguments. If it does both, scalar arguments
 come first and list argument follow, and
there can only ever
 be one such list argument. For instance, splice has three scalar arguments

followed by a list, whereas gethostbyname has
 four scalar arguments.

In the syntax descriptions that follow, list operators that expect a
 list (and provide list context for
elements of the list) are shown
 with LIST as an argument. Such a list may consist of any combination

of scalar arguments or list values; the list values will be included
 in the list as if each individual
element were interpolated at that
 point in the list, forming a longer single-dimensional list value.

Commas should separate literal elements of the LIST.

Any function in the list below may be used either with or without
 parentheses around its arguments.
(The syntax descriptions omit the
 parentheses.) If you use parentheses, the simple but occasionally

surprising rule is this: It looks like a function, therefore it is a
 function, and precedence doesn't matter.
Otherwise it's a list
 operator or unary operator, and precedence does matter. Whitespace
 between the
function and left parenthesis doesn't count, so sometimes
 you need to be careful:

 print 1+2+4; # Prints 7.
 print(1+2) + 4; # Prints 3.
 print (1+2)+4; # Also prints 3!
 print +(1+2)+4; # Prints 7.
 print ((1+2)+4); # Prints 7.

If you run Perl with the use warnings pragma, it can warn
 you about this. For example, the third
line above produces:

 print (...) interpreted as function at - line 1.
 Useless use of integer addition in void context at - line 1.

A few functions take no arguments at all, and therefore work as neither
 unary nor list operators.
These include such functions as time and endpwent. For example, time+86_400 always means
time() + 86_400.

For functions that can be used in either a scalar or list context,
 nonabortive failure is generally
indicated in scalar context by
 returning the undefined value, and in list context by returning the
 empty
list.

Remember the following important rule: There is no rule that relates
 the behavior of an expression in
list context to its behavior in scalar
 context, or vice versa. It might do two totally different things.
 Each
operator and function decides which sort of value would be most
 appropriate to return in scalar
context. Some operators return the
 length of the list that would have been returned in list context.
Some
 operators return the first value in the list. Some operators return the
 last value in the list. Some
operators return a count of successful
 operations. In general, they do what you want, unless you want
consistency.

A named array in scalar context is quite different from what would at
 first glance appear to be a list in
scalar context. You can't get a list
 like (1,2,3) into being in scalar context, because the compiler
knows
 the context at compile time. It would generate the scalar comma operator
 there, not the list

Perl version 5.24.0 documentation - perlfunc

Page 2http://perldoc.perl.org

concatenation version of the comma. That means it
 was never a list to start with.

In general, functions in Perl that serve as wrappers for system calls
 ("syscalls") of the same name
(like chown(2), fork(2), closedir(2), etc.) return true when they succeed and undef otherwise, as is
usually mentioned in the
 descriptions below. This is different from the C interfaces, which
 return -1 on
failure. Exceptions to this rule include wait, waitpid, and syscall. System calls also set the
special $! variable on failure. Other functions do not, except
 accidentally.

Extension modules can also hook into the Perl parser to define new
 kinds of keyword-headed
expression. These may look like functions, but
 may also look completely different. The syntax
following the keyword
 is defined entirely by the extension. If you are an implementor, see
"PL_keyword_plugin" in perlapi for the mechanism. If you are using such
 a module, see the module's
documentation for details of the syntax that
 it defines.

Perl Functions by Category
Here are Perl's functions (including things that look like
 functions, like some keywords and named
operators)
 arranged by category. Some functions appear in more
 than one place.

Functions for SCALARs or strings

chomp, chop, chr, crypt, fc, hex, index, lc, lcfirst, length, oct, ord, pack, q//,
qq//, reverse, rindex, sprintf, substr, tr///, uc, ucfirst, y///

fc is available only if the "fc" feature is enabled or if it is
 prefixed with CORE::. The "fc"
feature is enabled automatically
 with a use v5.16 (or higher) declaration in the current
scope.

Regular expressions and pattern matching

m//, pos, qr//, quotemeta, s///, split, study

Numeric functions

abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

Functions for real @ARRAYs

each, keys, pop, push, shift, splice, unshift, values

Functions for list data

grep, join, map, qw//, reverse, sort, unpack

Functions for real %HASHes

delete, each, exists, keys, values

Input and output functions

binmode, close, closedir, dbmclose, dbmopen, die, eof, fileno, flock, format,
getc, print, printf, read, readdir, readline rewinddir, say, seek, seekdir,
select, syscall, sysread, sysseek, syswrite, tell, telldir, truncate, warn,
write

say is available only if the "say" feature is enabled or if it is
 prefixed with CORE::. The
"say" feature is enabled automatically
 with a use v5.10 (or higher) declaration in the
current scope.

Functions for fixed-length data or records

pack, read, syscall, sysread, sysseek, syswrite, unpack, vec

Functions for filehandles, files, or directories

-X, chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, lstat, mkdir, open,
opendir, readlink, rename, rmdir, select, stat, symlink, sysopen, umask, unlink
, utime

Perl version 5.24.0 documentation - perlfunc

Page 3http://perldoc.perl.org

Keywords related to the control flow of your Perl program

break, caller, continue, die, do, dump, eval, evalbytes exit, __FILE__, goto,
last, __LINE__, next, __PACKAGE__, redo, return, sub, __SUB__, wantarray

break is available only if you enable the experimental "switch" feature or use the CORE::

prefix. The "switch" feature also
 enables the default, given and when statements, which
are
 documented in "Switch Statements" in perlsyn.
 The "switch" feature is enabled

automatically with a use v5.10 (or higher) declaration in the current
 scope. In Perl v5.14 and
earlier, continue
 required the "switch" feature, like
 the other keywords.

evalbytes is only available with the "evalbytes" feature
 (see feature) or if prefixed with
CORE::. __SUB__
 is only available with the "current_sub" feature or if
 prefixed with
CORE::. Both the "evalbytes"
 and "current_sub" features are
 enabled automatically
with a use v5.16 (or higher) declaration in the
 current scope.

Keywords related to scoping

caller, import, local, my, our, package, state, use

state is available only if the "state" feature is enabled or if it is
 prefixed with CORE::. The
"state" feature is enabled
 automatically with a use v5.10 (or higher) declaration in the
current
 scope.

Miscellaneous functions

defined, formline, lock, prototype, reset, scalar, undef

Functions for processes and process groups

alarm, exec, fork, getpgrp, getppid, getpriority, kill, pipe, qx//, readpipe,
setpgrp, setpriority, sleep, system, times, wait, waitpid

Keywords related to Perl modules

do, import, no, package, require, use

Keywords related to classes and object-orientation

bless, dbmclose, dbmopen, package, ref, tie, tied, untie, use

Low-level socket functions

accept, bind, connect, getpeername, getsockname, getsockopt, listen, recv,
send, setsockopt, shutdown, socket, socketpair

System V interprocess communication functions

msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget, shmread,
shmwrite

Fetching user and group info

endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam,
getlogin, getpwent, getpwnam, getpwuid, setgrent, setpwent

Fetching network info

endprotoent, endservent, gethostbyaddr, gethostbyname, gethostent,
getnetbyaddr, getnetbyname, getnetent, getprotobyname, getprotobynumber,
getprotoent, getservbyname, getservbyport, getservent, sethostent,
setnetent, setprotoent, setservent

Time-related functions

gmtime, localtime, time, times

Non-function keywords

and, AUTOLOAD, BEGIN, CHECK, cmp, CORE, __DATA__, default, DESTROY, else, elseif

Perl version 5.24.0 documentation - perlfunc

Page 4http://perldoc.perl.org

, elsif, END, __END__, eq, for, foreach, ge, given, gt, if, INIT, le, lt, ne, not, or,
UNITCHECK, unless, until, when, while, x, xor

Portability
Perl was born in Unix and can therefore access all common Unix
 system calls. In non-Unix
environments, the functionality of some
 Unix system calls may not be available or details of the
available
 functionality may differ slightly. The Perl functions affected
 by this are:

-X, binmode, chmod, chown, chroot, crypt, dbmclose, dbmopen, dump, endgrent,
endhostent, endnetent, endprotoent, endpwent, endservent, exec, fcntl, flock, fork,
getgrent, getgrgid, gethostbyname, gethostent, getlogin, getnetbyaddr,
getnetbyname, getnetent, getppid, getpgrp, getpriority, getprotobynumber,
getprotoent, getpwent, getpwnam, getpwuid, getservbyport, getservent, getsockopt,
glob, ioctl, kill, link, lstat, msgctl, msgget, msgrcv, msgsnd, open, pipe, readlink,
rename, select, semctl, semget, semop, setgrent, sethostent, setnetent, setpgrp,
setpriority, setprotoent, setpwent, setservent, setsockopt, shmctl, shmget,
shmread, shmwrite, socket, socketpair, stat, symlink, syscall, sysopen, system,
times, truncate, umask, unlink, utime, wait, waitpid

For more information about the portability of these functions, see perlport and other available
platform-specific documentation.

Alphabetical Listing of Perl Functions
-X FILEHANDLE

-X EXPR

-X DIRHANDLE

-X

A file test, where X is one of the letters listed below. This unary
 operator takes one argument,
either a filename, a filehandle, or a dirhandle,
 and tests the associated file to see if something
is true about it. If the
 argument is omitted, tests $_, except for -t, which
 tests STDIN. Unless
otherwise documented, it returns 1 for true and '' for false. If the file doesn't exist or can't be
examined, it
 returns undef and sets $! (errno).
 Despite the funny names, precedence is the
same as any other named unary
 operator. The operator may be any of:

 -r File is readable by effective uid/gid.
 -w File is writable by effective uid/gid.
 -x File is executable by effective uid/gid.
 -o File is owned by effective uid.

 -R File is readable by real uid/gid.
 -W File is writable by real uid/gid.
 -X File is executable by real uid/gid.
 -O File is owned by real uid.

 -e File exists.
 -z File has zero size (is empty).
 -s File has nonzero size (returns size in bytes).

 -f File is a plain file.
 -d File is a directory.
 -l File is a symbolic link (false if symlinks aren't
 supported by the file system).
 -p File is a named pipe (FIFO), or Filehandle is a pipe.
 -S File is a socket.
 -b File is a block special file.
 -c File is a character special file.

Perl version 5.24.0 documentation - perlfunc

Page 5http://perldoc.perl.org

 -t Filehandle is opened to a tty.

 -u File has setuid bit set.
 -g File has setgid bit set.
 -k File has sticky bit set.

 -T File is an ASCII or UTF-8 text file (heuristic guess).
 -B File is a "binary" file (opposite of -T).

 -M Script start time minus file modification time, in days.
 -A Same for access time.
 -C Same for inode change time (Unix, may differ for other
	 platforms)

Example:

 while (<>) {
 chomp;
 next unless -f $_; # ignore specials
 #...
 }

Note that -s/a/b/ does not do a negated substitution. Saying -exp($foo) still works as
expected, however: only single letters
 following a minus are interpreted as file tests.

These operators are exempt from the "looks like a function rule" described
 above. That is, an
opening parenthesis after the operator does not affect
 how much of the following code
constitutes the argument. Put the opening
 parentheses before the operator to separate it from
code that follows (this
 applies only to operators with higher precedence than unary operators,
of
 course):

 -s($file) + 1024 # probably wrong; same as -s($file + 1024)
 (-s $file) + 1024 # correct

The interpretation of the file permission operators -r, -R, -w, -W, -x, and -X is by default
based solely on the mode
 of the file and the uids and gids of the user. There may be other

reasons you can't actually read, write, or execute the file: for
 example network filesystem
access controls, ACLs (access control lists),
 read-only filesystems, and unrecognized
executable formats. Note
 that the use of these six specific operators to verify if some
operation
 is possible is usually a mistake, because it may be open to race
 conditions.

Also note that, for the superuser on the local filesystems, the -r, -R, -w, and -W tests always
return 1, and -x and -X return 1
 if any execute bit is set in the mode. Scripts run by the
superuser
 may thus need to do a stat to determine the
 actual mode of the file, or temporarily
set their effective uid to
 something else.

If you are using ACLs, there is a pragma called filetest
 that may produce more accurate
results than the bare stat mode bits.
 When under use filetest 'access', the
above-mentioned filetests
 test whether the permission can(not) be granted using the
access(2)
 family of system calls. Also note that the -x and -X tests may
 under this pragma
return true even if there are no execute permission
 bits set (nor any extra execute permission
ACLs). This strangeness is
 due to the underlying system calls' definitions. Note also that, due
to
 the implementation of use filetest 'access', the _ special
 filehandle won't cache the
results of the file tests when this pragma is
 in effect. Read the documentation for the
filetest
 pragma for more information.

The -T and -B tests work as follows. The first block or so of
 the file is examined to see if it is
valid UTF-8 that includes non-ASCII
 characters. If so, it's a -T file. Otherwise, that same
portion of
 the file is examined for odd characters such as strange control codes or
 characters
with the high bit set. If more than a third of the
 characters are strange, it's a -B file; otherwise

Perl version 5.24.0 documentation - perlfunc

Page 6http://perldoc.perl.org

it's a -T file.
 Also, any file containing a zero byte in the examined portion is
 considered a
binary file. (If executed within the scope of a use locale which includes LC_CTYPE, odd
characters are
 anything that isn't a printable nor space in the current locale.) If -T or -B is
used on a filehandle, the current IO buffer is
 examined
 rather than the first block. Both -T and
-B return true on an empty
 file, or a file at EOF when testing a filehandle. Because you have
to
 read a file to do the -T test, on most occasions you want to use a -f
 against the file first, as
in next unless -f $file && -T $file.

If any of the file tests (or either the stat or lstat operator) is given the special filehandle

consisting of a solitary underline, then the stat structure of the
 previous file test (or stat
operator) is used,
 saving a system call. (This doesn't work with -t, and you need to
 remember
that lstat and -l leave values in
 the stat structure for the symbolic link, not the real file.)
(Also, if
 the stat buffer was filled by an lstat call, -T and -B will reset it with the results of
stat _).
 Example:

 print "Can do.\n" if -r $a || -w _ || -x _;

 stat($filename);
 print "Readable\n" if -r _;
 print "Writable\n" if -w _;
 print "Executable\n" if -x _;
 print "Setuid\n" if -u _;
 print "Setgid\n" if -g _;
 print "Sticky\n" if -k _;
 print "Text\n" if -T _;
 print "Binary\n" if -B _;

As of Perl 5.10.0, as a form of purely syntactic sugar, you can stack file
 test operators, in a
way that -f -w -x $file is equivalent to -x $file && -w _ && -f _. (This is only
fancy syntax: if you use
 the return value of -f $file as an argument to another filetest

operator, no special magic will happen.)

Portability issues: "-X" in perlport.

To avoid confusing would-be users of your code with mysterious
 syntax errors, put something
like this at the top of your script:

 use 5.010; # so filetest ops can stack

abs VALUE

abs

Returns the absolute value of its argument.
 If VALUE is omitted, uses $_.

accept NEWSOCKET,GENERICSOCKET

Accepts an incoming socket connect, just as accept(2)
 does. Returns the packed address if it
succeeded, false otherwise.
 See the example in "Sockets: Client/Server Communication" in
perlipc.

On systems that support a close-on-exec flag on files, the flag will
 be set for the newly opened
file descriptor, as determined by the
 value of $^F. See "$^F" in perlvar.

alarm SECONDS

alarm

Arranges to have a SIGALRM delivered to this process after the
 specified number of wallclock
seconds has elapsed. If SECONDS is not
 specified, the value stored in $_ is used. (On some

machines, unfortunately, the elapsed time may be up to one second less
 or more than you
specified because of how seconds are counted, and
 process scheduling may delay the
delivery of the signal even further.)

Perl version 5.24.0 documentation - perlfunc

Page 7http://perldoc.perl.org

Only one timer may be counting at once. Each call disables the
 previous timer, and an
argument of 0 may be supplied to cancel the
 previous timer without starting a new one. The
returned value is the
 amount of time remaining on the previous timer.

For delays of finer granularity than one second, the Time::HiRes module
 (from CPAN, and
starting from Perl 5.8 part of the standard
 distribution) provides ualarm.
 You may also use
Perl's four-argument version of select leaving the first three
 arguments undefined, or you
might be able to use the syscall interface to access setitimer(2)
 if your system supports it.
See perlfaq8 for details.

It is usually a mistake to intermix alarm and sleep calls, because sleep may be
 internally
implemented on your system with alarm.

If you want to use alarm to time out a system call
 you need to use an eval/die pair. You

can't rely on the alarm causing the system call to fail with $! set to EINTR because Perl sets
up signal handlers
 to restart system calls on some systems. Using eval/die always works,
modulo the
 caveats given in "Signals" in perlipc.

 eval {
 local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
 alarm $timeout;
 my $nread = sysread $socket, $buffer, $size;
 alarm 0;
 };
 if ($@) {
 die unless $@ eq "alarm\n"; # propagate unexpected errors
 # timed out
 }
 else {
 # didn't
 }

For more information see perlipc.

Portability issues: "alarm" in perlport.

atan2 Y,X

Returns the arctangent of Y/X in the range -PI to PI.

For the tangent operation, you may use the Math::Trig::tan function, or use the familiar

relation:

 sub tan { sin($_[0]) / cos($_[0]) }

The return value for atan2(0,0) is implementation-defined; consult
 your atan2(3) manpage
for more information.

Portability issues: "atan2" in perlport.

bind SOCKET,NAME

Binds a network address to a socket, just as bind(2)
 does. Returns true if it succeeded, false
otherwise. NAME should be a
 packed address of the appropriate type for the socket. See the
examples in "Sockets: Client/Server Communication" in perlipc.

binmode FILEHANDLE, LAYER

binmode FILEHANDLE

Arranges for FILEHANDLE to be read or written in "binary" or "text"
 mode on systems where
the run-time libraries distinguish between
 binary and text files. If FILEHANDLE is an
expression, the value is
 taken as the name of the filehandle. Returns true on success,

otherwise it returns undef and sets $! (errno).

On some systems (in general, DOS- and Windows-based systems) binmode is necessary

Perl version 5.24.0 documentation - perlfunc

Page 8http://perldoc.perl.org

when you're not
 working with a text file. For the sake of portability it is a good idea
 always to
use it when appropriate, and never to use it when it isn't
 appropriate. Also, people can set their
I/O to be by default
 UTF8-encoded Unicode, not bytes.

In other words: regardless of platform, use binmode on binary data, like images,
 for example.

If LAYER is present it is a single string, but may contain multiple
 directives. The directives
alter the behaviour of the filehandle.
 When LAYER is present, using binmode on a text file
makes sense.

If LAYER is omitted or specified as :raw the filehandle is made
 suitable for passing binary
data. This includes turning off possible CRLF
 translation and marking it as bytes (as opposed
to Unicode characters).
 Note that, despite what may be implied in "Programming Perl" (the

Camel, 3rd edition) or elsewhere, :raw is not simply the inverse of :crlf.
 Other layers that
would affect the binary nature of the stream are also disabled. See PerlIO, perlrun, and the
discussion about the
 PERLIO environment variable.

The :bytes, :crlf, :utf8, and any other directives of the
 form :..., are called I/O layers.
The open pragma can be used to
 establish default I/O layers.

The LAYER parameter of the binmode
 function is described as "DISCIPLINE" in
"Programming Perl, 3rd
 Edition". However, since the publishing of this book, by many known
as
 "Camel III", the consensus of the naming of this functionality has moved
 from "discipline" to
"layer". All documentation of this version of Perl
 therefore refers to "layers" rather than to
"disciplines". Now back to
 the regularly scheduled documentation...

To mark FILEHANDLE as UTF-8, use :utf8 or :encoding(UTF-8). :utf8 just marks the
data as UTF-8 without further checking,
 while :encoding(UTF-8) checks the data for
actually being valid
 UTF-8. More details can be found in PerlIO::encoding.

In general, binmode should be called
 after open but before any I/O is done on the
 filehandle.
Calling binmode normally
 flushes any pending buffered output data (and perhaps pending
input
 data) on the handle. An exception to this is the :encoding layer
 that changes the
default character encoding of the handle.
 The :encoding layer sometimes needs to be called
in
 mid-stream, and it doesn't flush the stream. :encoding
 also implicitly pushes on top of
itself the :utf8 layer because
 internally Perl operates on UTF8-encoded Unicode characters.

The operating system, device drivers, C libraries, and Perl run-time
 system all conspire to let
the programmer treat a single
 character (\n) as the line terminator, irrespective of external

representation. On many operating systems, the native text file
 representation matches the
internal representation, but on some
 platforms the external representation of \n is made up of
more than
 one character.

All variants of Unix, Mac OS (old and new), and Stream_LF files on VMS use
 a single
character to end each line in the external representation of text
 (even though that single
character is CARRIAGE RETURN on old, pre-Darwin
 flavors of Mac OS, and is LINE FEED
on Unix and most VMS files). In other
 systems like OS/2, DOS, and the various flavors of
MS-Windows, your program
 sees a \n as a simple \cJ, but what's stored in text files are the

two characters \cM\cJ. That means that if you don't use binmode on these systems,
\cM\cJ
 sequences on disk will be converted to \n on input, and any \n in
 your program will
be converted back to \cM\cJ on output. This is
 what you want for text files, but it can be
disastrous for binary files.

Another consequence of using binmode
 (on some systems) is that special end-of-file markers
will be seen as
 part of the data stream. For systems from the Microsoft family this
 means that,
if your binary data contain \cZ, the I/O subsystem will
 regard it as the end of the file, unless
you use binmode.

binmode is important not only for readline and print
 operations, but also when using
read, seek, sysread, syswrite and tell (see perlport for more details). See the $/ and
$\ variables in perlvar for how to manually set your input and output
 line-termination
sequences.

Portability issues: "binmode" in perlport.

Perl version 5.24.0 documentation - perlfunc

Page 9http://perldoc.perl.org

bless REF,CLASSNAME

bless REF

This function tells the thingy referenced by REF that it is now an object
 in the CLASSNAME
package. If CLASSNAME is omitted, the current package
 is used. Because a bless is often
the last
 thing in a constructor, it returns the reference for convenience.
 Always use the
two-argument version if a derived class might inherit the
 method doing the blessing. See
perlobj for more about the blessing
 (and blessings) of objects.

Consider always blessing objects in CLASSNAMEs that are mixed case.
 Namespaces with all
lowercase names are considered reserved for
 Perl pragmas. Builtin types have all uppercase
names. To prevent
 confusion, you may wish to avoid such package names as well. Make sure
that CLASSNAME is a true value.

See "Perl Modules" in perlmod.

break

Break out of a given block.

break is available only if the "switch" feature is enabled or if it
 is prefixed with CORE::.
The "switch" feature is enabled
 automatically with a use v5.10 (or higher) declaration in
the current
 scope.

caller EXPR

caller

Returns the context of the current pure perl subroutine call. In scalar
 context, returns the
caller's package name if there is a caller (that is, if
 we're in a subroutine or eval or require)
and the undefined value otherwise.
 caller never returns XS subs and they are skipped. The
next pure perl
 sub will appear instead of the XS sub in caller's return values. In
 list context,
caller returns

 # 0 1 2
 my ($package, $filename, $line) = caller;

With EXPR, it returns some extra information that the debugger uses to
 print a stack trace.
The value of EXPR indicates how many call frames
 to go back before the current one.

 # 0 1 2 3 4
 my ($package, $filename, $line, $subroutine, $hasargs,

 # 5 6 7 8 9 10
 $wantarray, $evaltext, $is_require, $hints, $bitmask, $hinthash)
 = caller($i);

Here, $subroutine is the function that the caller called (rather than the
 function containing the
caller). Note that $subroutine may be (eval) if
 the frame is not a subroutine call, but an
eval. In
 such a case additional elements $evaltext and $is_require are set:
$is_require is true if the frame is created by a require or use
 statement, $evaltext
contains the text of the eval EXPR statement.
 In particular, for an eval BLOCK statement,
$subroutine is (eval),
 but $evaltext is undefined. (Note also that each use statement
creates a require frame inside an eval EXPR frame.)
 $subroutine may also be (unknown)
if this particular subroutine
 happens to have been deleted from the symbol table. $hasargs is
true
 if a new instance of @_ was set up for the frame. $hints and $bitmask contain
pragmatic hints that the caller was
 compiled with. $hints corresponds to $^H, and
$bitmask corresponds to ${^WARNING_BITS}. The $hints and $bitmask values are
subject to change between versions of Perl, and
 are not meant for external use.

$hinthash is a reference to a hash containing the value of %^H when the caller was
compiled, or undef if %^H was empty. Do not
 modify the values of this hash, as they are the
actual values stored in
 the optree.

Perl version 5.24.0 documentation - perlfunc

Page 10http://perldoc.perl.org

Furthermore, when called from within the DB package in
 list context, and with an argument,
caller returns more
 detailed information: it sets the list variable @DB::args to be the

arguments with which the subroutine was invoked.

Be aware that the optimizer might have optimized call frames away before caller had a
chance to get the information. That
 means that caller(N) might not return information about
the call
 frame you expect it to, for N > 1. In particular, @DB::args
 might have information
from the previous time caller
 was called.

Be aware that setting @DB::args is best effort, intended for
 debugging or generating
backtraces, and should not be relied upon. In
 particular, as @_ contains aliases to the caller's

arguments, Perl does not take a copy of @_, so @DB::args will contain modifications the
subroutine makes to @_ or its contents, not the original values at call
 time. @DB::args, like
@_, does not hold explicit
 references to its elements, so under certain cases its elements may
have
 become freed and reallocated for other variables or temporary values.
 Finally, a side
effect of the current implementation is that the effects
 of shift @_ can normally be undone
(but not pop @_ or other
 splicing, and not if a reference to @_ has been
 taken, and subject to
the caveat about reallocated elements), so @DB::args is actually a hybrid of the current state
and initial state
 of @_. Buyer beware.

chdir EXPR

chdir FILEHANDLE

chdir DIRHANDLE

chdir

Changes the working directory to EXPR, if possible. If EXPR is omitted,
 changes to the
directory specified by $ENV{HOME}, if set; if not,
 changes to the directory specified by
$ENV{LOGDIR}. (Under VMS, the
 variable $ENV{'SYS$LOGIN'} is also checked, and used
if it is set.) If
 neither is set, chdir does nothing and fails. It
 returns true on success, false
otherwise. See the example under die.

On systems that support fchdir(2), you may pass a filehandle or
 directory handle as the
argument. On systems that don't support fchdir(2),
 passing handles raises an exception.

chmod LIST

Changes the permissions of a list of files. The first element of the
 list must be the numeric
mode, which should probably be an octal
 number, and which definitely should not be a string
of octal digits: 0644 is okay, but "0644" is not. Returns the number of files
 successfully
changed. See also oct if all you have is a
 string.

 my $cnt = chmod 0755, "foo", "bar";
 chmod 0755, @executables;
 my $mode = "0644"; chmod $mode, "foo"; # !!! sets mode to
 # --w----r-T
 my $mode = "0644"; chmod oct($mode), "foo"; # this is better
 my $mode = 0644; chmod $mode, "foo"; # this is best

On systems that support fchmod(2), you may pass filehandles among the
 files. On systems
that don't support fchmod(2), passing filehandles raises
 an exception. Filehandles must be
passed as globs or glob references to be
 recognized; barewords are considered filenames.

 open(my $fh, "<", "foo");
 my $perm = (stat $fh)[2] & 07777;
 chmod($perm | 0600, $fh);

You can also import the symbolic S_I* constants from the Fcntl module:

 use Fcntl qw(:mode);
 chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;
 # Identical to the chmod 0755 of the example above.

Perl version 5.24.0 documentation - perlfunc

Page 11http://perldoc.perl.org

Portability issues: "chmod" in perlport.

chomp VARIABLE

chomp(LIST)

chomp

This safer version of chop removes any trailing
 string that corresponds to the current value of
$/ (also known as $INPUT_RECORD_SEPARATOR
 in the English module). It returns the total
number of characters removed from all its arguments. It's often used to
 remove the newline
from the end of an input record when you're worried
 that the final record may be missing its
newline. When in paragraph
 mode ($/ = ''), it removes all trailing newlines from the string.

When in slurp mode ($/ = undef) or fixed-length record mode
 ($/ is a reference to an
integer or the like;
 see perlvar), chomp won't remove anything.
 If VARIABLE is omitted, it
chomps $_. Example:

 while (<>) {
 chomp; # avoid \n on last field
 my @array = split(/:/);
 # ...
 }

If VARIABLE is a hash, it chomps the hash's values, but not its keys,
 resetting the each
iterator in the process.

You can actually chomp anything that's an lvalue, including an assignment:

 chomp(my $cwd = `pwd`);
 chomp(my $answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of
 characters removed is
returned.

Note that parentheses are necessary when you're chomping anything
 that is not a simple
variable. This is because chomp $cwd = `pwd`;
 is interpreted as (chomp $cwd) =
`pwd`;, rather than as chomp($cwd = `pwd`) which you might expect. Similarly, chomp
 $a, $b is interpreted as chomp($a), $b rather than
 as chomp($a, $b).

chop VARIABLE

chop(LIST)

chop

Chops off the last character of a string and returns the character
 chopped. It is much more
efficient than s/.$//s because it neither
 scans nor copies the string. If VARIABLE is omitted,
chops $_.
 If VARIABLE is a hash, it chops the hash's values, but not its keys,
 resetting the
each iterator in the process.

You can actually chop anything that's an lvalue, including an assignment.

If you chop a list, each element is chopped. Only the value of the
 last chop is returned.

Note that chop returns the last character. To
 return all but the last character, use
substr($string, 0, -1).

See also chomp.

chown LIST

Changes the owner (and group) of a list of files. The first two
 elements of the list must be the
numeric uid and gid, in that
 order. A value of -1 in either position is interpreted by most

systems to leave that value unchanged. Returns the number of files
 successfully changed.

 my $cnt = chown $uid, $gid, 'foo', 'bar';
 chown $uid, $gid, @filenames;

Perl version 5.24.0 documentation - perlfunc

Page 12http://perldoc.perl.org

On systems that support fchown(2), you may pass filehandles among the
 files. On systems
that don't support fchown(2), passing filehandles raises
 an exception. Filehandles must be
passed as globs or glob references to be
 recognized; barewords are considered filenames.

Here's an example that looks up nonnumeric uids in the passwd file:

 print "User: ";
 chomp(my $user = <STDIN>);
 print "Files: ";
 chomp(my $pattern = <STDIN>);

 my ($login,$pass,$uid,$gid) = getpwnam($user)
 or die "$user not in passwd file";

 my @ary = glob($pattern); # expand filenames
 chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the
 file unless you're the
superuser, although you should be able to change
 the group to any of your secondary groups.
On insecure systems, these
 restrictions may be relaxed, but this is not a portable assumption.

On POSIX systems, you can detect this condition this way:

 use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
 my $can_chown_giveaway = ! sysconf(_PC_CHOWN_RESTRICTED);

Portability issues: "chown" in perlport.

chr NUMBER

chr

Returns the character represented by that NUMBER in the character set.
 For example,
chr(65) is "A" in either ASCII or Unicode, and
 chr(0x263a) is a Unicode smiley face.

Negative values give the Unicode replacement character (chr(0xfffd)),
 except under the bytes
pragma, where the low eight bits of the value
 (truncated to an integer) are used.

If NUMBER is omitted, uses $_.

For the reverse, use ord.

Note that characters from 128 to 255 (inclusive) are by default
 internally not encoded as
UTF-8 for backward compatibility reasons.

See perlunicode for more about Unicode.

chroot FILENAME

chroot

This function works like the system call by the same name: it makes the
 named directory the
new root directory for all further pathnames that
 begin with a / by your process and all its
children. (It doesn't
 change your current working directory, which is unaffected.) For security

reasons, this call is restricted to the superuser. If FILENAME is
 omitted, does a chroot to $_.

NOTE: It is good security practice to do chdir("/")
 (chdir to the root directory)
immediately after a chroot.

Portability issues: "chroot" in perlport.

close FILEHANDLE

close

Closes the file or pipe associated with the filehandle, flushes the IO
 buffers, and closes the
system file descriptor. Returns true if those
 operations succeed and if no error was reported
by any PerlIO
 layer. Closes the currently selected filehandle if the argument is
 omitted.

Perl version 5.24.0 documentation - perlfunc

Page 13http://perldoc.perl.org

You don't have to close FILEHANDLE if you are immediately going to do
 another open on it,
because open closes it for you. (See open.) However, an explicit close on an input file
resets the line counter
 ($.), while the implicit close done by open does not.

If the filehandle came from a piped open, close
 returns false if one of the other syscalls
involved fails or if its
 program exits with non-zero status. If the only problem was that the

program exited non-zero, $! will be set to 0.
 Closing a pipe also waits for the process
executing on the pipe to
 exit--in case you wish to look at the output of the pipe afterwards--and
implicitly puts the exit status value of that command into $? and ${^CHILD_ERROR_NATIVE}
.

If there are multiple threads running, close on
 a filehandle from a piped open returns true
without waiting for the
 child process to terminate, if the filehandle is still open in another

thread.

Closing the read end of a pipe before the process writing to it at the
 other end is done writing
results in the writer receiving a SIGPIPE. If
 the other end can't handle that, be sure to read all
the data before
 closing the pipe.

Example:

 open(OUTPUT, '|sort >foo') # pipe to sort
 or die "Can't start sort: $!";
 #... # print stuff to output
 close OUTPUT # wait for sort to finish
 or warn $! ? "Error closing sort pipe: $!"
 : "Exit status $? from sort";
 open(INPUT, 'foo') # get sort's results
 or die "Can't open 'foo' for input: $!";

FILEHANDLE may be an expression whose value can be used as an indirect
 filehandle,
usually the real filehandle name or an autovivified handle.

closedir DIRHANDLE

Closes a directory opened by opendir and
 returns the success of that system call.

connect SOCKET,NAME

Attempts to connect to a remote socket, just like connect(2).
 Returns true if it succeeded, false
otherwise. NAME should be a
 packed address of the appropriate type for the socket. See the
examples in "Sockets: Client/Server Communication" in perlipc.

continue BLOCK

continue

When followed by a BLOCK, continue is actually a
 flow control statement rather than a
function. If there is a continue BLOCK attached to a BLOCK (typically in a while or
foreach), it is always executed just before the
 conditional is about to be evaluated again, just
like the third part of
 a for loop in C. Thus it can be used to increment a loop variable,
 even
when the loop has been continued via the next
 statement (which is similar to the C
continue
 statement).

last, next, or redo may appear within a continue block; last and redo behave as if
they had been executed within the
 main block. So will next, but since it will execute a
continue block, it may be more entertaining.

 while (EXPR) {
 ### redo always comes here
 do_something;
 } continue {
 ### next always comes here
 do_something_else;

Perl version 5.24.0 documentation - perlfunc

Page 14http://perldoc.perl.org

 # then back the top to re-check EXPR
 }
 ### last always comes here

Omitting the continue section is equivalent to
 using an empty one, logically enough, so
next goes
 directly back to check the condition at the top of the loop.

When there is no BLOCK, continue is a function
 that falls through the current when or
default block instead of
 iterating a dynamically enclosing foreach or exiting a lexically

enclosing given. In Perl 5.14 and earlier, this form of continue was only available when the
"switch" feature was enabled. See feature and "Switch Statements" in perlsyn for more
information.

cos EXPR

cos

Returns the cosine of EXPR (expressed in radians). If EXPR is omitted,
 takes the cosine of $_
.

For the inverse cosine operation, you may use the Math::Trig::acos function, or use this
relation:

 sub acos { atan2(sqrt(1 - $_[0] * $_[0]), $_[0]) }

crypt PLAINTEXT,SALT

Creates a digest string exactly like the crypt(3) function in the C
 library (assuming that you
actually have a version there that has not
 been extirpated as a potential munition).

crypt is a one-way hash function. The
 PLAINTEXT and SALT are turned
 into a short string,
called a digest, which is returned. The same
 PLAINTEXT and SALT will always return the
same string, but there is no
 (known) way to get the original PLAINTEXT from the hash. Small

changes in the PLAINTEXT or SALT will result in large changes in the
 digest.

There is no decrypt function. This function isn't all that useful for
 cryptography (for that, look
for Crypt modules on your nearby CPAN
 mirror) and the name "crypt" is a bit of a misnomer.
Instead it is
 primarily used to check if two pieces of text are the same without
 having to
transmit or store the text itself. An example is checking
 if a correct password is given. The
digest of the password is stored,
 not the password itself. The user types in a password that is
crypt'd with the same salt as the stored
 digest. If the two digests match, the password is
correct.

When verifying an existing digest string you should use the digest as
 the salt (like
crypt($plain, $digest) eq $digest). The SALT used
 to create the digest is visible
as part of the digest. This ensures crypt will hash the new string with the same
 salt as the
digest. This allows your code to work with the standard crypt and with more exotic
implementations.
 In other words, assume nothing about the returned string itself nor
 about
how many bytes of SALT may matter.

Traditionally the result is a string of 13 bytes: two first bytes of
 the salt, followed by 11 bytes
from the set [./0-9A-Za-z], and only
 the first eight bytes of PLAINTEXT mattered. But
alternative
 hashing schemes (like MD5), higher level security schemes (like C2),
 and
implementations on non-Unix platforms may produce different
 strings.

When choosing a new salt create a random two character string whose
 characters come from
the set [./0-9A-Za-z] (like join '', ('.',
 '/', 0..9, 'A'..'Z',
'a'..'z')[rand 64, rand 64]). This set of
 characters is just a recommendation; the
characters allowed in
 the salt depend solely on your system's crypt library, and Perl can't

restrict what salts crypt accepts.

Here's an example that makes sure that whoever runs this program knows
 their password:

 my $pwd = (getpwuid($<))[1];

Perl version 5.24.0 documentation - perlfunc

Page 15http://perldoc.perl.org

 system "stty -echo";
 print "Password: ";
 chomp(my $word = <STDIN>);
 print "\n";
 system "stty echo";

 if (crypt($word, $pwd) ne $pwd) {
 die "Sorry...\n";
 } else {
 print "ok\n";
 }

Of course, typing in your own password to whoever asks you
 for it is unwise.

The crypt function is unsuitable for hashing
 large quantities of data, not least of all because
you can't get the
 information back. Look at the Digest module for more robust
 algorithms.

If using crypt on a Unicode string (which potentially has characters with codepoints above
255), Perl tries to
 make sense of the situation by trying to downgrade (a copy of) the
 string
back to an eight-bit byte string before calling crypt (on that copy). If that works, good.
 If not,
crypt dies with Wide character in crypt.

Portability issues: "crypt" in perlport.

dbmclose HASH

[This function has been largely superseded by the untie function.]

Breaks the binding between a DBM file and a hash.

Portability issues: "dbmclose" in perlport.

dbmopen HASH,DBNAME,MASK

[This function has been largely superseded by the tie function.]

This binds a dbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley
 DB file to a hash. HASH is the
name of the hash. (Unlike normal open, the first argument is not a
 filehandle, even though it
looks like one). DBNAME is the name of the
 database (without the .dir or .pag extension if
any). If the
 database does not exist, it is created with protection specified by MASK
 (as
modified by the umask). To prevent creation of
 the database if it doesn't exist, you may
specify a MODE of 0, and the
 function will return a false value if it can't find an existing

database. If your system supports only the older DBM functions, you may
 make only one
dbmopen call in your
 program. In older versions of Perl, if your system had neither DBM nor

ndbm, calling dbmopen produced a fatal
 error; it now falls back to sdbm(3).

If you don't have write access to the DBM file, you can only read hash
 variables, not set them.
If you want to test whether you can write,
 either use file tests or try setting a dummy hash
entry inside an eval to trap the error.

Note that functions such as keys and values may return huge lists when used on large DBM
files. You may prefer to use the each function to
 iterate over large DBM files. Example:

 # print out history file offsets
 dbmopen(%HIST,'/usr/lib/news/history',0666);
 while (($key,$val) = each %HIST) {
 print $key, ' = ', unpack('L',$val), "\n";
 }
 dbmclose(%HIST);

See also AnyDBM_File for a more general description of the pros and
 cons of the various dbm
approaches, as well as DB_File for a particularly
 rich implementation.

You can control which DBM library you use by loading that library
 before you call dbmopen:

Perl version 5.24.0 documentation - perlfunc

Page 16http://perldoc.perl.org

 use DB_File;
 dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")
 or die "Can't open netscape history file: $!";

Portability issues: "dbmopen" in perlport.

defined EXPR

defined

Returns a Boolean value telling whether EXPR has a value other than the
 undefined value
undef. If EXPR is not present, $_ is checked.

Many operations return undef to indicate failure, end
 of file, system error, uninitialized
variable, and other exceptional
 conditions. This function allows you to distinguish undef from
other values. (A simple Boolean test will
 not distinguish among undef, zero, the empty string,

and "0", which are all equally false.) Note that since undef is a valid scalar, its presence
doesn't necessarily indicate an exceptional condition: pop
 returns undef when its argument is
an empty array, or when the element to return happens to be undef.

You may also use defined(&func) to check whether subroutine func
 has ever been
defined. The return value is unaffected by any forward
 declarations of func. A subroutine that
is not defined
 may still be callable: its package may have an AUTOLOAD method that
 makes it
spring into existence the first time that it is called; see perlsub.

Use of defined on aggregates (hashes and arrays) is
 deprecated. It
 used to report whether
memory for that aggregate had ever been
 allocated. This behavior may disappear in future
versions of Perl.
 You should instead use a simple test for size:

 if (@an_array) { print "has array elements\n" }
 if (%a_hash) { print "has hash members\n" }

When used on a hash element, it tells you whether the value is defined,
 not whether the key
exists in the hash. Use exists
 for the latter purpose.

Examples:

 print if defined $switch{D};
 print "$val\n" while defined($val = pop(@ary));
 die "Can't readlink $sym: $!"
 unless defined($value = readlink $sym);
 sub foo { defined &$bar ? $bar->(@_) : die "No bar"; }
 $debugging = 0 unless defined $debugging;

Note: Many folks tend to overuse defined and are
 then surprised to discover that the
number 0 and "" (the
 zero-length string) are, in fact, defined values. For example, if you
 say

 "ab" =~ /a(.*)b/;

The pattern match succeeds and $1 is defined, although it
 matched "nothing". It didn't really
fail to match anything. Rather, it
 matched something that happened to be zero characters
long. This is all
 very above-board and honest. When a function returns an undefined value,
 it's
an admission that it couldn't give you an honest answer. So you
 should use defined only
when questioning the
 integrity of what you're trying to do. At other times, a simple
 comparison
to 0 or "" is what you want.

See also undef, exists, ref.

delete EXPR

Given an expression that specifies an element or slice of a hash, delete deletes the
specified elements from that hash
 so that exists on that element no longer returns
 true.
Setting a hash element to the undefined value does not remove its
 key, but deleting it does;
see exists.

Perl version 5.24.0 documentation - perlfunc

Page 17http://perldoc.perl.org

In list context, returns the value or values deleted, or the last such
 element in scalar context.
The return list's length always matches that of
 the argument list: deleting non-existent
elements returns the undefined value
 in their corresponding positions.

delete may also be used on arrays and array slices,
 but its behavior is less straightforward.
Although exists will return false for deleted entries,
 deleting array elements never changes
indices of existing values; use shift or splice for that. However, if any deleted elements

fall at the end of an array, the array's size shrinks to the position of
 the highest element that
still tests true for exists,
 or to 0 if none do. In other words, an array won't have trailing

nonexistent elements after a delete.

WARNING: Calling delete on array values is
 strongly discouraged. The
 notion of deleting or
checking the existence of Perl array elements is not
 conceptually coherent, and can lead to
surprising behavior.

Deleting from %ENV modifies the environment.
 Deleting from a hash tied to a DBM file deletes
the entry from the DBM
 file. Deleting from a tied hash or array may not
 necessarily return
anything; it depends on the implementation of the tied package's DELETE method, which
may do whatever
 it pleases.

The delete local EXPR construct localizes the deletion to the current
 block at run time.
Until the block exits, elements locally deleted
 temporarily no longer exist. See "Localized
deletion of elements of composite types" in perlsub.

 my %hash = (foo => 11, bar => 22, baz => 33);
 my $scalar = delete $hash{foo}; # $scalar is 11
 $scalar = delete @hash{qw(foo bar)}; # $scalar is 22
 my @array = delete @hash{qw(foo baz)}; # @array is (undef,33)

The following (inefficiently) deletes all the values of %HASH and @ARRAY:

 foreach my $key (keys %HASH) {
 delete $HASH{$key};
 }

 foreach my $index (0 .. $#ARRAY) {
 delete $ARRAY[$index];
 }

And so do these:

 delete @HASH{keys %HASH};

 delete @ARRAY[0 .. $#ARRAY];

But both are slower than assigning the empty list
 or undefining %HASH or @ARRAY, which is
the customary
 way to empty out an aggregate:

 %HASH = (); # completely empty %HASH
 undef %HASH; # forget %HASH ever existed

 @ARRAY = (); # completely empty @ARRAY
 undef @ARRAY; # forget @ARRAY ever existed

The EXPR can be arbitrarily complicated provided its
 final operation is an element or slice of
an aggregate:

 delete $ref->[$x][$y]{$key};
 delete @{$ref->[$x][$y]}{$key1, $key2, @morekeys};

 delete $ref->[$x][$y][$index];
 delete @{$ref->[$x][$y]}[$index1, $index2, @moreindices];

Perl version 5.24.0 documentation - perlfunc

Page 18http://perldoc.perl.org

die LIST

die raises an exception. Inside an eval the error message is stuffed into $@ and the eval is
terminated with the
 undefined value. If the exception is outside of all enclosing evals, then
the uncaught exception prints LIST to STDERR and exits with a non-zero value. If you need to
exit the
 process with a specific exit code, see exit.

Equivalent examples:

 die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
 chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"

If the last element of LIST does not end in a newline, the current
 script line number and input
line number (if any) are also printed,
 and a newline is supplied. Note that the "input line
number" (also
 known as "chunk") is subject to whatever notion of "line" happens to
 be
currently in effect, and is also available as the special variable $.. See "$/" in perlvar and "$."
in perlvar.

Hint: sometimes appending ", stopped" to your message will cause it
 to make better sense
when the string "at foo line 123" is appended.
 Suppose you are running script
"canasta".

 die "/etc/games is no good";
 die "/etc/games is no good, stopped";

produce, respectively

 /etc/games is no good at canasta line 123.
 /etc/games is no good, stopped at canasta line 123.

If the output is empty and $@ already contains a value
 (typically from a previous eval) that
value is reused after appending "\t...propagated". This is useful for propagating
exceptions:

 eval { ... };
 die unless $@ =~ /Expected exception/;

If the output is empty and $@ contains an object
 reference that has a PROPAGATE method, that
method will be called
 with additional file and line number parameters. The return value

replaces the value in $@; i.e., as if $@ = eval { $@->PROPAGATE(__FILE__,
__LINE__) }; were called.

If $@ is empty, then the string "Died" is used.

If an uncaught exception results in interpreter exit, the exit code is
 determined from the values
of $! and $? with this pseudocode:

 exit $! if $!; # errno
 exit $? >> 8 if $? >> 8; # child exit status
 exit 255; # last resort

As with exit, $? is set prior to
 unwinding the call stack; any DESTROY or END handlers can
then
 alter this value, and thus Perl's exit code.

The intent is to squeeze as much possible information about the likely cause
 into the limited
space of the system exit code. However, as $! is the value of C's errno, which can be set by
any system call, this means that the value of the exit code used by die can be
non-predictable, so should not be relied
 upon, other than to be non-zero.

You can also call die with a reference argument, and if
 this is trapped within an eval, $@

contains that reference. This permits more elaborate exception handling
 using objects that
maintain arbitrary state about the exception. Such a
 scheme is sometimes preferable to
matching particular string values of $@ with regular expressions. Because $@ is a global
variable and eval may
 be used within object implementations, be careful that analyzing the

Perl version 5.24.0 documentation - perlfunc

Page 19http://perldoc.perl.org

error object doesn't replace the reference in the global variable. It's
 easiest to make a local
copy of the reference before any manipulations.
 Here's an example:

 use Scalar::Util "blessed";

 eval { ... ; die Some::Module::Exception->new(FOO => "bar") };
 if (my $ev_err = $@) {
 if (blessed($ev_err)
 && $ev_err->isa("Some::Module::Exception")) {
 # handle Some::Module::Exception
 }
 else {
 # handle all other possible exceptions
 }
 }

Because Perl stringifies uncaught exception messages before display,
 you'll probably want to
overload stringification operations on
 exception objects. See overload for details about that.

You can arrange for a callback to be run just before the die does its deed, by setting the
$SIG{__DIE__} hook. The associated handler is called
 with the error text and can change
the error message, if it sees fit, by
 calling die again. See "%SIG" in perlvar for details on

setting %SIG entries, and eval for some
 examples. Although this feature was to be run only
right before your
 program was to exit, this is not currently so: the $SIG{__DIE__} hook is
currently called even inside evaled blocks/strings! If one wants the hook to do
 nothing in such
situations, put

 die @_ if $^S;

as the first line of the handler (see "$^S" in perlvar). Because
 this promotes strange action at a
distance, this counterintuitive
 behavior may be fixed in a future release.

See also exit, warn, and the Carp
 module.

do BLOCK

Not really a function. Returns the value of the last command in the
 sequence of commands
indicated by BLOCK. When modified by the while or until loop modifier, executes the
BLOCK once before testing the loop
 condition. (On other statements the loop modifiers test
the conditional
 first.)

do BLOCK does not count as a loop, so the loop control statements next, last, or redo
cannot be used to leave or restart the block.
 See perlsyn for alternative strategies.

do EXPR

Uses the value of EXPR as a filename and executes the contents of the
 file as a Perl script.

 do 'stat.pl';

is largely like

 eval `cat stat.pl`;

except that it's more concise, runs no external processes, keeps track of
 the current filename
for error messages, searches the @INC directories, and updates %INC
 if the file is found. See
"@INC" in perlvar and "%INC" in perlvar for these
 variables. It also differs in that code
evaluated with do FILE
 cannot see lexicals in the enclosing scope; eval STRING does. It's

the same, however, in that it does reparse the file every time you call
 it, so you probably don't
want to do this inside a loop.

If do can read the file but cannot compile it, it
 returns undef and sets an error message in $@.
If do cannot read the file, it
 returns undef and sets $! to the error. Always check $@ first, as

Perl version 5.24.0 documentation - perlfunc

Page 20http://perldoc.perl.org

compilation could fail in a way that also
 sets $!. If the file is successfully compiled, do returns
the value of the last expression evaluated.

Inclusion of library modules is better done with the use and require
 operators, which also
do automatic error checking and raise an exception
 if there's a problem.

You might like to use do to read in a program
 configuration file. Manual error checking can be
done this way:

 # read in config files: system first, then user
 for $file ("/share/prog/defaults.rc",
 "$ENV{HOME}/.someprogrc")
 {
 unless ($return = do $file) {
 warn "couldn't parse $file: $@" if $@;
 warn "couldn't do $file: $!" unless defined $return;
 warn "couldn't run $file" unless $return;
 }
 }

dump LABEL

dump EXPR

dump

This function causes an immediate core dump. See also the -u
 command-line switch in
perlrun, which does the same thing.
 Primarily this is so that you can use the undump program
(not
 supplied) to turn your core dump into an executable binary after
 having initialized all your
variables at the beginning of the
 program. When the new binary is executed it will begin by
executing
 a goto LABEL (with all the restrictions that goto
 suffers).
 Think of it as a goto with
an intervening core dump and reincarnation.
 If LABEL is omitted, restarts the program from the
top. The dump EXPR form, available starting in Perl 5.18.0, allows a name to be
 computed at
run time, being otherwise identical to dump LABEL.

WARNING: Any files opened at the time of the dump will not
 be open any more when the
program is reincarnated, with possible
 resulting confusion by Perl.

This function is now largely obsolete, mostly because it's very hard to
 convert a core file into
an executable. That's why you should now invoke
 it as CORE::dump() if you don't want to be
warned against a possible
 typo.

Unlike most named operators, this has the same precedence as assignment.
 It is also exempt
from the looks-like-a-function rule, so dump ("foo")."bar" will cause "bar" to be part of
the argument to dump.

Portability issues: "dump" in perlport.

each HASH

each ARRAY

When called on a hash in list context, returns a 2-element list
 consisting of the key and value
for the next element of a hash. In Perl
 5.12 and later only, it will also return the index and
value for the next
 element of an array so that you can iterate over it; older Perls consider
 this a
syntax error. When called in scalar context, returns only the key
 (not the value) in a hash, or
the index in an array.

Hash entries are returned in an apparently random order. The actual random
 order is specific
to a given hash; the exact same series of operations
 on two hashes may result in a different
order for each hash. Any insertion
 into the hash may change the order, as will any deletion,
with the exception
 that the most recent key returned by each or keys may be deleted without
changing the order. So
 long as a given hash is unmodified you may rely on keys, values
and each to repeatedly return the same order
 as each other. See "Algorithmic Complexity
Attacks" in perlsec for
 details on why hash order is randomized. Aside from the guarantees

Perl version 5.24.0 documentation - perlfunc

Page 21http://perldoc.perl.org

provided here the exact details of Perl's hash algorithm and the hash
 traversal order are
subject to change in any release of Perl.

After each has returned all entries from the hash or
 array, the next call to each returns the
empty list in
 list context and undef in scalar context; the next
 call following that one restarts
iteration. Each hash or array has
 its own internal iterator, accessed by each, keys, and
values. The iterator is
 implicitly reset when each has reached the end as just
 described; it
can be explicitly reset by calling keys
 or values on the hash or array. If you add or delete
 a
hash's elements while iterating over it, the effect on the iterator is
 unspecified; for example,
entries may be skipped or duplicated--so don't
 do that. Exception: It is always safe to delete
the item most recently
 returned by each, so the following code works properly:

 while (my ($key, $value) = each %hash) {
 print $key, "\n";
 delete $hash{$key}; # This is safe
 }

Tied hashes may have a different ordering behaviour to perl's hash
 implementation.

This prints out your environment like the printenv(1) program,
 but in a different order:

 while (my ($key,$value) = each %ENV) {
 print "$key=$value\n";
 }

Starting with Perl 5.14, an experimental feature allowed each to take a scalar expression.
This experiment has
 been deemed unsuccessful, and was removed as of Perl 5.24.

As of Perl 5.18 you can use a bare each in a while
 loop, which will set $_ on every iteration.

 while (each %ENV) {
	 print "$_=$ENV{$_}\n";
 }

To avoid confusing would-be users of your code who are running earlier
 versions of Perl with
mysterious syntax errors, put this sort of thing at
 the top of your file to signal that your code
will work only on Perls of
 a recent vintage:

 use 5.012;	 # so keys/values/each work on arrays
 use 5.018;	 # so each assigns to $_ in a lone while test

See also keys, values, and sort.

eof FILEHANDLE

eof ()

eof

Returns 1 if the next read on FILEHANDLE will return end of file or if
 FILEHANDLE is not
open. FILEHANDLE may be an expression whose value
 gives the real filehandle. (Note that
this function actually
 reads a character and then ungetcs it, so isn't useful in an
 interactive
context.) Do not read from a terminal file (or call eof(FILEHANDLE) on it) after end-of-file is
reached. File types such
 as terminals may lose the end-of-file condition if you do.

An eof without an argument uses the last file
 read. Using eof() with empty parentheses is

different. It refers to the pseudo file formed from the files listed on
 the command line and
accessed via the <> operator. Since <> isn't explicitly opened, as a normal filehandle is, an
eof() before <> has been used will cause @ARGV to be examined to determine if input is

available. Similarly, an eof() after <>
 has returned end-of-file will assume you are
processing another @ARGV list, and if you haven't set @ARGV, will read input from STDIN; see
"I/O Operators" in perlop.

In a while (<>) loop, eof or eof(ARGV)
 can be used to detect the end of each file,

Perl version 5.24.0 documentation - perlfunc

Page 22http://perldoc.perl.org

whereas eof() will detect the end of the very last file
 only. Examples:

 # reset line numbering on each input file
 while (<>) {
 next if /^\s*#/; # skip comments
 print "$.\t$_";
 } continue {
 close ARGV if eof; # Not eof()!
 }

 # insert dashes just before last line of last file
 while (<>) {
 if (eof()) { # check for end of last file
 print "--------------\n";
 }
 print;
 last if eof(); # needed if we're reading from a terminal
 }

Practical hint: you almost never need to use eof
 in Perl, because the input operators typically
return undef when they run out of data or encounter an error.

eval EXPR

eval BLOCK

eval

In the first form, often referred to as a "string eval", the return
 value of EXPR is parsed and
executed as if it
 were a little Perl program. The value of the expression (which is itself

determined within scalar context) is first parsed, and if there were no
 errors, executed as a
block within the lexical context of the current Perl
 program. This means, that in particular, any
outer lexical variables are
 visible to it, and any package variable settings or subroutine and
format
 definitions remain afterwards.

Note that the value is parsed every time the eval
 executes. If EXPR is omitted, evaluates $_.
This form
 is typically used to delay parsing and subsequent execution of the text
 of EXPR until
run time.

If the "unicode_eval" feature
 is enabled (which is the default under a use 5.16 or higher
declaration), EXPR or $_ is
 treated as a string of characters, so use utf8 declarations
 have
no effect, and source filters are forbidden. In the absence of the "unicode_eval" feature,

will sometimes be treated as characters and sometimes as bytes,
 depending on the internal
encoding, and source filters activated within
 the eval exhibit the erratic, but historical,
behaviour
 of affecting some outer file scope that is still compiling. See also
 the evalbytes
operator, which always treats its
 input as a byte stream and works properly with source filters,
and the feature pragma.

Problems can arise if the string expands a scalar containing a floating
 point number. That
scalar can expand to letters, such as "NaN" or "Infinity"; or, within the scope of a use
locale, the
 decimal point character may be something other than a dot (such as a
 comma).
None of these are likely to parse as you are likely expecting.

In the second form, the code within the BLOCK is parsed only once--at the
 same time the
code surrounding the eval itself was
 parsed--and executed
 within the context of the current
Perl program. This form is typically
 used to trap exceptions more efficiently than the first (see
below), while
 also providing the benefit of checking the code within BLOCK at compile
 time.

The final semicolon, if any, may be omitted from the value of EXPR or within
 the BLOCK.

In both forms, the value returned is the value of the last expression
 evaluated inside the
mini-program; a return statement may be also used, just
 as with subroutines. The expression
providing the return value is evaluated
 in void, scalar, or list context, depending on the context

Perl version 5.24.0 documentation - perlfunc

Page 23http://perldoc.perl.org

of the eval itself. See wantarray for more
 on how the evaluation context can be
determined.

If there is a syntax error or runtime error, or a die
 statement is executed, eval returns undef
in scalar context or an empty list in list
 context, and $@ is set to the error message. (Prior to

5.16, a bug caused undef to be returned in list
 context for syntax errors, but not for runtime
errors.) If there was no
 error, $@ is set to the empty string. A control flow
 operator like last or
goto can
 bypass the setting of $@. Beware that using eval neither silences Perl from printing
warnings to
 STDERR, nor does it stuff the text of warning messages into $@. To do either of
those, you have to use the $SIG{__WARN__} facility, or turn off warnings inside
 the BLOCK
or EXPR using no warnings 'all'. See warn, perlvar, and warnings.

Note that, because eval traps otherwise-fatal errors,
 it is useful for determining whether a
particular feature (such as socket or symlink) is implemented. It is also
 Perl's
exception-trapping mechanism, where the die
 operator is used to raise exceptions.

If you want to trap errors when loading an XS module, some problems with
 the binary
interface (such as Perl version skew) may be fatal even with eval unless
$ENV{PERL_DL_NONLAZY} is set. See perlrun.

If the code to be executed doesn't vary, you may use the eval-BLOCK
 form to trap run-time
errors without incurring the penalty of
 recompiling each time. The error, if any, is still returned
in $@.
 Examples:

 # make divide-by-zero nonfatal
 eval { $answer = $a / $b; }; warn $@ if $@;

 # same thing, but less efficient
 eval '$answer = $a / $b'; warn $@ if $@;

 # a compile-time error
 eval { $answer = }; # WRONG

 # a run-time error
 eval '$answer ='; # sets $@

Using the eval {} form as an exception trap in libraries does have some
 issues. Due to the
current arguably broken state of __DIE__ hooks, you
 may wish not to trigger any __DIE__
hooks that user code may have installed.
 You can use the local $SIG{__DIE__} construct
for this purpose,
 as this example shows:

 # a private exception trap for divide-by-zero
 eval { local $SIG{'__DIE__'}; $answer = $a / $b; };
 warn $@ if $@;

This is especially significant, given that __DIE__ hooks can call die again, which has the
effect of changing their error
 messages:

 # __DIE__ hooks may modify error messages
 {
 local $SIG{'__DIE__'} =
 sub { (my $x = $_[0]) =~ s/foo/bar/g; die $x };
 eval { die "foo lives here" };
 print $@ if $@; # prints "bar lives here"
 }

Because this promotes action at a distance, this counterintuitive behavior
 may be fixed in a
future release.

With an eval, you should be especially careful to
 remember what's being looked at when:

 eval $x; # CASE 1

Perl version 5.24.0 documentation - perlfunc

Page 24http://perldoc.perl.org

 eval "$x"; # CASE 2

 eval '$x'; # CASE 3
 eval { $x }; # CASE 4

 eval "\$$x++"; # CASE 5
 $$x++; # CASE 6

Cases 1 and 2 above behave identically: they run the code contained in
 the variable $x.
(Although case 2 has misleading double quotes making
 the reader wonder what else might be
happening (nothing is).) Cases 3
 and 4 likewise behave in the same way: they run the code
'$x', which
 does nothing but return the value of $x. (Case 4 is preferred for
 purely visual
reasons, but it also has the advantage of compiling at
 compile-time instead of at run-time.)
Case 5 is a place where
 normally you would like to use double quotes, except that in this

particular situation, you can just use symbolic references instead, as
 in case 6.

Before Perl 5.14, the assignment to $@ occurred before
 restoration
 of localized variables,
which means that for your code to run on older
 versions, a temporary is required if you want to
mask some but not all
 errors:

 # alter $@ on nefarious repugnancy only
 {
 my $e;
 {
 local $@; # protect existing $@
 eval { test_repugnancy() };
 # $@ =~ /nefarious/ and die $@; # Perl 5.14 and higher only
 $@ =~ /nefarious/ and $e = $@;
 }
 die $e if defined $e
 }

eval BLOCK does not count as a loop, so the loop control statements next, last, or redo
cannot be used to leave or restart the block.

An eval '' executed within a subroutine defined
 in the DB package doesn't see the usual

surrounding lexical scope, but rather the scope of the first non-DB piece
 of code that called it.
You don't normally need to worry about this unless
 you are writing a Perl debugger.

evalbytes EXPR

evalbytes

This function is like eval with a string argument,
 except it always parses its argument, or $_ if
EXPR is
 omitted, as a string of bytes. A string containing characters whose
 ordinal value
exceeds 255 results in an error. Source filters activated
 within the evaluated code apply to the
code itself.

evalbytes is available only if the "evalbytes" feature
 is enabled or if it is prefixed with
CORE::. The "evalbytes" feature
 is enabled automatically with a use v5.16 (or higher)
declaration in
 the current scope.

exec LIST

exec PROGRAM LIST

The exec function executes a system command and never
 returns; use system instead of
exec
 if you want it to return. It fails and
 returns false only if the command does not exist and it
is executed
 directly instead of via your system's command shell (see below).

Since it's a common mistake to use exec instead of system, Perl warns you if exec is
 called
in void context and if there is a following statement that isn't die, warn, or exit (if warnings
are enabled--but you always do that, right?). If you really want to follow an exec with some

Perl version 5.24.0 documentation - perlfunc

Page 25http://perldoc.perl.org

other
 statement, you can use one of these styles to avoid the warning:

 exec ('foo') or print STDERR "couldn't exec foo: $!";
 { exec ('foo') }; print STDERR "couldn't exec foo: $!";

If there is more than one argument in LIST, this calls execvp(3) with the
 arguments in LIST. If
there is only one element in LIST, the argument is
 checked for shell metacharacters, and if
there are any, the entire
 argument is passed to the system's command shell for parsing (this is
/bin/sh -c on Unix platforms, but varies on other platforms). If
 there are no shell
metacharacters in the argument, it is split into words
 and passed directly to execvp, which is
more efficient. Examples:

 exec '/bin/echo', 'Your arguments are: ', @ARGV;
 exec "sort $outfile | uniq";

If you don't really want to execute the first argument, but want to lie
 to the program you are
executing about its own name, you can specify
 the program you actually want to run as an
"indirect object" (without a
 comma) in front of the LIST, as in exec PROGRAM LIST. (This
always
 forces interpretation of the LIST as a multivalued list, even if there
 is only a single
scalar in the list.) Example:

 my $shell = '/bin/csh';
 exec $shell '-sh'; # pretend it's a login shell

or, more directly,

 exec {'/bin/csh'} '-sh'; # pretend it's a login shell

When the arguments get executed via the system shell, results are
 subject to its quirks and
capabilities. See "`STRING`" in perlop
 for details.

Using an indirect object with exec or system is also more secure. This usage (which also

works fine with system) forces
 interpretation of the arguments as a multivalued list, even if
the
 list had just one argument. That way you're safe from the shell
 expanding wildcards or
splitting up words with whitespace in them.

 my @args = ("echo surprise");

 exec @args; # subject to shell escapes
 # if @args == 1
 exec { $args[0] } @args; # safe even with one-arg list

The first version, the one without the indirect object, ran the echo
 program, passing it
"surprise" an argument. The second version didn't;
 it tried to run a program named "echo
surprise", didn't find it, and set $? to a non-zero value indicating failure.

On Windows, only the exec PROGRAM LIST indirect object syntax will
 reliably avoid using
the shell; exec LIST, even with more than one
 element, will fall back to the shell if the first
spawn fails.

Perl attempts to flush all files opened for output before the exec,
 but this may not be supported
on some platforms (see perlport).
 To be safe, you may need to set $|
 ($AUTOFLUSH in
English) or call the autoflush method of IO::Handle on any open handles to avoid lost

output.

Note that exec will not call your END blocks, nor
 will it invoke DESTROY methods on your
objects.

Portability issues: "exec" in perlport.

exists EXPR

Given an expression that specifies an element of a hash, returns true if the
 specified element
in the hash has ever been initialized, even if the
 corresponding value is undefined.

Perl version 5.24.0 documentation - perlfunc

Page 26http://perldoc.perl.org

 print "Exists\n" if exists $hash{$key};
 print "Defined\n" if defined $hash{$key};
 print "True\n" if $hash{$key};

exists may also be called on array elements, but its behavior is much less
 obvious and is
strongly tied to the use of delete on
 arrays.

WARNING: Calling exists on array values is
 strongly discouraged. The
 notion of deleting or
checking the existence of Perl array elements is not
 conceptually coherent, and can lead to
surprising behavior.

 print "Exists\n" if exists $array[$index];
 print "Defined\n" if defined $array[$index];
 print "True\n" if $array[$index];

A hash or array element can be true only if it's defined and defined only if
 it exists, but the
reverse doesn't necessarily hold true.

Given an expression that specifies the name of a subroutine,
 returns true if the specified
subroutine has ever been declared, even
 if it is undefined. Mentioning a subroutine name for
exists or defined
 does not count as declaring it. Note that a subroutine that does not
 exist may
still be callable: its package may have an AUTOLOAD
 method that makes it spring into
existence the first time that it is
 called; see perlsub.

 print "Exists\n" if exists &subroutine;
 print "Defined\n" if defined &subroutine;

Note that the EXPR can be arbitrarily complicated as long as the final
 operation is a hash or
array key lookup or subroutine name:

 if (exists $ref->{A}->{B}->{$key}) { }
 if (exists $hash{A}{B}{$key}) { }

 if (exists $ref->{A}->{B}->[$ix]) { }
 if (exists $hash{A}{B}[$ix]) { }

 if (exists &{$ref->{A}{B}{$key}}) { }

Although the most deeply nested array or hash element will not spring into
 existence just
because its existence was tested, any intervening ones will.
 Thus $ref->{"A"} and
$ref->{"A"}->{"B"} will spring
 into existence due to the existence test for the $key
element above.
 This happens anywhere the arrow operator is used, including even here:

 undef $ref;
 if (exists $ref->{"Some key"}) { }
 print $ref; # prints HASH(0x80d3d5c)

This surprising autovivification in what does not at first--or even
 second--glance appear to be
an lvalue context may be fixed in a future
 release.

Use of a subroutine call, rather than a subroutine name, as an argument
 to exists is an
error.

 exists ⊂ # OK
 exists &sub(); # Error

exit EXPR

exit

Evaluates EXPR and exits immediately with that value. Example:

 my $ans = <STDIN>;

Perl version 5.24.0 documentation - perlfunc

Page 27http://perldoc.perl.org

 exit 0 if $ans =~ /^[Xx]/;

See also die. If EXPR is omitted, exits with 0
 status. The only
 universally recognized values
for EXPR are 0 for success and 1
 for error; other values are subject to interpretation
depending on the
 environment in which the Perl program is running. For example, exiting
 69
(EX_UNAVAILABLE) from a sendmail incoming-mail filter will cause
 the mailer to return the
item undelivered, but that's not true everywhere.

Don't use exit to abort a subroutine if there's any
 chance that someone might want to trap
whatever error happened. Use die instead, which can be trapped by an eval.

The exit function does not always exit immediately. It
 calls any defined END routines first, but
these END routines may
 not themselves abort the exit. Likewise any object destructors that

need to be called are called before the real exit. END routines and
 destructors can change the
exit status by modifying $?.
 If this is a problem, you can call POSIX::_exit($status) to
avoid END and destructor
 processing. See perlmod for details.

Portability issues: "exit" in perlport.

exp EXPR

exp

Returns e (the natural logarithm base) to the power of EXPR.
 If EXPR is omitted, gives
exp($_).

fc EXPR

fc

Returns the casefolded version of EXPR. This is the internal function
 implementing the \F
escape in double-quoted strings.

Casefolding is the process of mapping strings to a form where case
 differences are erased;
comparing two strings in their casefolded
 form is effectively a way of asking if two strings are
equal,
 regardless of case.

Roughly, if you ever found yourself writing this

 lc($this) eq lc($that) # Wrong!
 # or
 uc($this) eq uc($that) # Also wrong!
 # or
 $this =~ /^\Q$that\E\z/i # Right!

Now you can write

 fc($this) eq fc($that)

And get the correct results.

Perl only implements the full form of casefolding, but you can access
 the simple folds using "
casefold()" in Unicode::UCD and "prop_invmap()" in Unicode::UCD.
 For further information
on casefolding, refer to
 the Unicode Standard, specifically sections 3.13 Default Case
Operations,
 4.2 Case-Normative, and 5.18 Case Mappings,
 available at
http://www.unicode.org/versions/latest/, as well as the
 Case Charts available at
http://www.unicode.org/charts/case/.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragmas, such as within "use feature
'unicode_strings",
 as lc does, with the single exception of fc of LATIN CAPITAL
LETTER SHARP S (U+1E9E) within the
 scope of use locale. The foldcase of this character
would normally be "ss", but as explained in the lc
 section, case
 changes that cross the
255/256 boundary are problematic under locales,
 and are hence prohibited. Therefore, this
function under locale returns
 instead the string "\x{17F}\x{17F}", which is the LATIN

Perl version 5.24.0 documentation - perlfunc

Page 28http://perldoc.perl.org

SMALL LETTER
 LONG S. Since that character itself folds to "s", the string of two
 of them
together should be equivalent to a single U+1E9E when foldcased.

While the Unicode Standard defines two additional forms of casefolding,
 one for Turkic
languages and one that never maps one character into multiple
 characters, these are not
provided by the Perl core. However, the CPAN module Unicode::Casing may be used to
provide an implementation.

fc is available only if the "fc" feature is enabled or if it is
 prefixed with CORE::. The "fc"
feature is enabled automatically
 with a use v5.16 (or higher) declaration in the current
scope.

fcntl FILEHANDLE,FUNCTION,SCALAR

Implements the fcntl(2) function. You'll probably have to say

 use Fcntl;

first to get the correct constant definitions. Argument processing and
 value returned work just
like ioctl below. For example:

 use Fcntl;
 my $flags = fcntl($filehandle, F_GETFL, 0)
 or die "Can't fcntl F_GETFL: $!";

You don't have to check for defined on the return
 from fcntl. Like ioctl, it maps a 0
return
 from the system call into "0 but true" in Perl. This string is true
 in boolean context
and 0 in numeric context. It is also exempt from
 the normal Argument "..." isn't
numeric warnings on improper numeric conversions.

Note that fcntl raises an
 exception if used on a machine that doesn't implement fcntl(2). See
the Fcntl module or your fcntl(2) manpage to learn what functions
 are available on your
system.

Here's an example of setting a filehandle named $REMOTE to be
 non-blocking at the system
level. You'll have to negotiate $| on your own, though.

 use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);

 my $flags = fcntl($REMOTE, F_GETFL, 0)
 or die "Can't get flags for the socket: $!\n";

 fcntl($REMOTE, F_SETFL, $flags | O_NONBLOCK)
 or die "Can't set flags for the socket: $!\n";

Portability issues: "fcntl" in perlport.

__FILE__

A special token that returns the name of the file in which it occurs.

fileno FILEHANDLE

Returns the file descriptor for a filehandle, or undefined if the
 filehandle is not open. If there is
no real file descriptor at the OS
 level, as can happen with filehandles connected to memory
objects via open with a reference for the third
 argument, -1 is returned.

This is mainly useful for constructing bitmaps for select and low-level POSIX
 tty-handling
operations.
 If FILEHANDLE is an expression, the value is taken as an indirect
 filehandle,
generally its name.

You can use this to find out whether two handles refer to the
 same underlying descriptor:

 if (fileno($this) != -1 && fileno($this) == fileno($that)) {
 print "\$this and \$that are dups\n";
 } elsif (fileno($this) != -1 && fileno($that) != -1) {

Perl version 5.24.0 documentation - perlfunc

Page 29http://perldoc.perl.org

 print "\$this and \$that have different " .
 "underlying file descriptors\n";
 } else {
 print "At least one of \$this and \$that does " .
 "not have a real file descriptor\n";
 }

The behavior of fileno on a directory handle
 depends on the operating system. On a system
with dirfd(3) or
 similar, fileno on a directory
 handle returns the underlying file descriptor
associated with the
 handle; on systems with no such support, it returns the undefined value,

and sets $! (errno).

flock FILEHANDLE,OPERATION

Calls flock(2), or an emulation of it, on FILEHANDLE. Returns true
 for success, false on
failure. Produces a fatal error if used on a
 machine that doesn't implement flock(2), fcntl(2)
locking, or lockf(3). flock is Perl's portable
 file-locking interface, although it locks entire files
only, not
 records.

Two potentially non-obvious but traditional flock semantics are
 that it waits indefinitely until
the lock is granted, and that its locks
 are merely advisory. Such discretionary locks are more
flexible, but
 offer fewer guarantees. This means that programs that do not also use flock
may modify files locked with flock. See perlport,
 your port's specific documentation, and your
system-specific local manpages
 for details. It's best to assume traditional behavior if you're
writing
 portable programs. (But if you're not, you should as always feel perfectly
 free to write
for your own system's idiosyncrasies (sometimes called
 "features"). Slavish adherence to
portability concerns shouldn't get
 in the way of your getting your job done.)

OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with

LOCK_NB. These constants are traditionally valued 1, 2, 8 and 4, but
 you can use the
symbolic names if you import them from the Fcntl module,
 either individually, or as a group
using the :flock tag. LOCK_SH
 requests a shared lock, LOCK_EX requests an exclusive
lock, and LOCK_UN
 releases a previously requested lock. If LOCK_NB is bitwise-or'ed with

LOCK_SH or LOCK_EX, then flock returns
 immediately rather than blocking waiting for the
lock; check the return
 status to see if you got it.

To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE
 before locking or
unlocking it.

Note that the emulation built with lockf(3) doesn't provide shared
 locks, and it requires that
FILEHANDLE be open with write intent. These
 are the semantics that lockf(3) implements.
Most if not all systems
 implement lockf(3) in terms of fcntl(2) locking, though, so the
 differing
semantics shouldn't bite too many people.

Note that the fcntl(2) emulation of flock(3) requires that FILEHANDLE
 be open with read intent
to use LOCK_SH and requires that it be open
 with write intent to use LOCK_EX.

Note also that some versions of flock
 cannot lock things over the network; you would need
to use the more
 system-specific fcntl for
 that. If you like you can force Perl to ignore your
system's flock(2)
 function, and so provide its own fcntl(2)-based emulation, by passing
 the
switch -Ud_flock to the Configure program when you configure
 and build a new Perl.

Here's a mailbox appender for BSD systems.

 # import LOCK_* and SEEK_END constants
 use Fcntl qw(:flock SEEK_END);

 sub lock {
 my ($fh) = @_;
 flock($fh, LOCK_EX) or die "Cannot lock mailbox - $!\n";

 # and, in case someone appended while we were waiting...

Perl version 5.24.0 documentation - perlfunc

Page 30http://perldoc.perl.org

 seek($fh, 0, SEEK_END) or die "Cannot seek - $!\n";
 }

 sub unlock {
 my ($fh) = @_;
 flock($fh, LOCK_UN) or die "Cannot unlock mailbox - $!\n";
 }

 open(my $mbox, ">>", "/usr/spool/mail/$ENV{'USER'}")
 or die "Can't open mailbox: $!";

 lock($mbox);
 print $mbox $msg,"\n\n";
 unlock($mbox);

On systems that support a real flock(2), locks are inherited across fork calls, whereas those
that must resort to the more
 capricious fcntl(2) function lose their locks, making it seriously

harder to write servers.

See also DB_File for other flock
 examples.

Portability issues: "flock" in perlport.

fork

Does a fork(2) system call to create a new process running the
 same program at the same
point. It returns the child pid to the
 parent process, 0 to the child process, or undef if
 the fork
is
 unsuccessful. File descriptors (and sometimes locks on those descriptors)
 are shared, while
everything else is copied. On most systems supporting fork(2), great care has gone into
making it extremely efficient (for
 example, using copy-on-write technology on data pages),
making it the
 dominant paradigm for multitasking over the last few decades.

Perl attempts to flush all files opened for output before forking the
 child process, but this may
not be supported on some platforms (see perlport). To be safe, you may need to set $| (
$AUTOFLUSH in English) or
 call the autoflush method of IO::Handle on
 any open
handles to avoid duplicate output.

If you fork without ever waiting on your children, you will
 accumulate zombies. On some
systems, you can avoid this by setting $SIG{CHLD} to "IGNORE". See also perlipc for
 more
examples of forking and reaping moribund children.

Note that if your forked child inherits system file descriptors like
 STDIN and STDOUT that are
actually connected by a pipe or socket, even
 if you exit, then the remote server (such as, say,
a CGI script or a
 backgrounded job launched from a remote shell) won't think you're done.

You should reopen those to /dev/null if it's any issue.

On some platforms such as Windows, where the fork(2) system call is
 not available, Perl can
be built to emulate fork in the Perl
 interpreter. The emulation is designed, at the level of the
Perl
 program, to be as compatible as possible with the "Unix" fork(2).
 However it has
limitations that have to be considered in code intended
 to be portable. See perlfork for more
details.

Portability issues: "fork" in perlport.

format

Declare a picture format for use by the write
 function. For example:

 format Something =
 Test: @<<<<<<<< @||||| @>>>>>
 $str, $%, '$' . int($num)
 .

Perl version 5.24.0 documentation - perlfunc

Page 31http://perldoc.perl.org

 $str = "widget";
 $num = $cost/$quantity;
 $~ = 'Something';
 write;

See perlform for many details and examples.

formline PICTURE,LIST

This is an internal function used by formats, though you
 may call it, too. It formats (see
perlform) a list of values
 according to the contents of PICTURE, placing the output into the
format
 output accumulator, $^A (or $ACCUMULATOR in English). Eventually, when a write is
done,
 the contents of $^A are written to some filehandle.
 You could also read $^A and then
set $^A back to "". Note that a format typically does
 one formline per line of form, but the
formline function itself doesn't care how
 many newlines are embedded in the PICTURE.
This means that the ~ and ~~ tokens treat the entire PICTURE as a single line. You may

therefore need to use multiple formlines to implement a single record
 format, just like the
format compiler.

Be careful if you put double quotes around the picture, because an @
 character may be taken
to mean the beginning of an array name. formline always returns true. See perlform for
other examples.

If you are trying to use this instead of write
 to capture the output, you may find it easier to
open a filehandle to a
 scalar (open my $fh, ">", \$output) and write to that instead.

getc FILEHANDLE

getc

Returns the next character from the input file attached to FILEHANDLE,
 or the undefined
value at end of file or if there was an error (in
 the latter case $! is set). If FILEHANDLE is
omitted,
 reads from
 STDIN. This is not particularly efficient. However, it cannot be
 used by
itself to fetch single characters without waiting for the user
 to hit enter. For that, try something
more like:

 if ($BSD_STYLE) {
 system "stty cbreak </dev/tty >/dev/tty 2>&1";
 }
 else {
 system "stty", '-icanon', 'eol', "\001";
 }

 my $key = getc(STDIN);

 if ($BSD_STYLE) {
 system "stty -cbreak </dev/tty >/dev/tty 2>&1";
 }
 else {
 system 'stty', 'icanon', 'eol', '^@'; # ASCII NUL
 }
 print "\n";

Determination of whether $BSD_STYLE should be set is left as an
 exercise to the reader.

The POSIX::getattr function can do this more
 portably on systems purporting POSIX
compliance. See also the Term::ReadKey module on CPAN.

getlogin

This implements the C library function of the same name, which on most
 systems returns the
current login from /etc/utmp, if any. If it
 returns the empty string, use getpwuid.

Perl version 5.24.0 documentation - perlfunc

Page 32http://perldoc.perl.org

 my $login = getlogin || getpwuid($<) || "Kilroy";

Do not consider getlogin for authentication: it is not
 as secure as getpwuid.

Portability issues: "getlogin" in perlport.

getpeername SOCKET

Returns the packed sockaddr address of the other end of the SOCKET
 connection.

 use Socket;
 my $hersockaddr = getpeername($sock);
 my ($port, $iaddr) = sockaddr_in($hersockaddr);
 my $herhostname = gethostbyaddr($iaddr, AF_INET);
 my $herstraddr = inet_ntoa($iaddr);

getpgrp PID

Returns the current process group for the specified PID. Use
 a PID of 0 to get the current
process group for the
 current process. Will raise an exception if used on a machine that

doesn't implement getpgrp(2). If PID is omitted, returns the process
 group of the current
process. Note that the POSIX version of getpgrp does not accept a PID argument, so only
PID==0 is truly portable.

Portability issues: "getpgrp" in perlport.

getppid

Returns the process id of the parent process.

Note for Linux users: Between v5.8.1 and v5.16.0 Perl would work
 around non-POSIX thread
semantics the minority of Linux systems (and
 Debian GNU/kFreeBSD systems) that used
LinuxThreads, this emulation
 has since been removed. See the documentation for $$ for

details.

Portability issues: "getppid" in perlport.

getpriority WHICH,WHO

Returns the current priority for a process, a process group, or a user.
 (See getpriority(2).) Will
raise a fatal exception if used on a
 machine that doesn't implement getpriority(2).

Portability issues: "getpriority" in perlport.

getpwnam NAME

getgrnam NAME

gethostbyname NAME

getnetbyname NAME

getprotobyname NAME

getpwuid UID

getgrgid GID

getservbyname NAME,PROTO

gethostbyaddr ADDR,ADDRTYPE

getnetbyaddr ADDR,ADDRTYPE

getprotobynumber NUMBER

getservbyport PORT,PROTO

getpwent

getgrent

gethostent

Perl version 5.24.0 documentation - perlfunc

Page 33http://perldoc.perl.org

getnetent

getprotoent

getservent

setpwent

setgrent

sethostent STAYOPEN

setnetent STAYOPEN

setprotoent STAYOPEN

setservent STAYOPEN

endpwent

endgrent

endhostent

endnetent

endprotoent

endservent

These routines are the same as their counterparts in the
 system C library. In list context, the
return values from the
 various get routines are as follows:

 # 0 1 2 3 4
 my ($name, $passwd, $gid, $members) = getgr*
 my ($name, $aliases, $addrtype, $net) = getnet*
 my ($name, $aliases, $port, $proto) = getserv*
 my ($name, $aliases, $proto) = getproto*
 my ($name, $aliases, $addrtype, $length, @addrs) = gethost*
 my ($name, $passwd, $uid, $gid, $quota,
 $comment, $gcos, $dir, $shell, $expire) = getpw*
 # 5 6 7 8 9

(If the entry doesn't exist, the return value is a single meaningless true
 value.)

The exact meaning of the $gcos field varies but it usually contains
 the real name of the user
(as opposed to the login name) and other
 information pertaining to the user. Beware, however,
that in many
 system users are able to change this information and therefore it
 cannot be
trusted and therefore the $gcos is tainted (see perlsec). The $passwd and $shell, user's
encrypted password and
 login shell, are also tainted, for the same reason.

In scalar context, you get the name, unless the function was a
 lookup by name, in which case
you get the other thing, whatever it is.
 (If the entry doesn't exist you get the undefined value.)
For example:

 my $uid = getpwnam($name);
 my $name = getpwuid($num);
 my $name = getpwent();
 my $gid = getgrnam($name);
 my $name = getgrgid($num);
 my $name = getgrent();
 # etc.

In getpw*() the fields $quota, $comment, and $expire are special
 in that they are unsupported
on many systems. If the
 $quota is unsupported, it is an empty scalar. If it is supported, it

usually encodes the disk quota. If the $comment field is unsupported,
 it is an empty scalar. If it
is supported it usually encodes some
 administrative comment about the user. In some
systems the $quota
 field may be $change or $age, fields that have to do with password
 aging.
In some systems the $comment field may be $class. The $expire
 field, if present, encodes the

Perl version 5.24.0 documentation - perlfunc

Page 34http://perldoc.perl.org

expiration period of the account or the
 password. For the availability and the exact meaning of
these fields
 in your system, please consult getpwnam(3) and your system's pwd.h file. You
can also find out from within Perl what your
 $quota and $comment fields mean and whether
you have the $expire field
 by using the Config module and the values d_pwquota, d_pwage
, d_pwchange, d_pwcomment, and d_pwexpire. Shadow password
 files are supported only
if your vendor has implemented them in the
 intuitive fashion that calling the regular C library
routines gets the
 shadow versions if you're running under privilege or if there exists
 the
shadow(3) functions as found in System V (this includes Solaris
 and Linux). Those systems
that implement a proprietary shadow password
 facility are unlikely to be supported.

The $members value returned by getgr*() is a space-separated list of
 the login names of the
members of the group.

For the gethost*() functions, if the h_errno variable is supported in
 C, it will be returned to
you via $? if the function
 call fails. The @addrs value returned by a successful call is a list of
raw
 addresses returned by the corresponding library call. In the
 Internet domain, each address
is four bytes long; you can unpack it
 by saying something like:

 my ($w,$x,$y,$z) = unpack('W4',$addr[0]);

The Socket library makes this slightly easier:

 use Socket;
 my $iaddr = inet_aton("127.1"); # or whatever address
 my $name = gethostbyaddr($iaddr, AF_INET);

 # or going the other way
 my $straddr = inet_ntoa($iaddr);

In the opposite way, to resolve a hostname to the IP address
 you can write this:

 use Socket;
 my $packed_ip = gethostbyname("www.perl.org");
 my $ip_address;
 if (defined $packed_ip) {
 $ip_address = inet_ntoa($packed_ip);
 }

Make sure gethostbyname is called in SCALAR
 context and that its return value is checked
for definedness.

The getprotobynumber function, even
 though it only takes one argument, has the
precedence of a list
 operator, so beware:

 getprotobynumber $number eq 'icmp' # WRONG
 getprotobynumber($number eq 'icmp') # actually means this
 getprotobynumber($number) eq 'icmp' # better this way

If you get tired of remembering which element of the return list
 contains which return value,
by-name interfaces are provided in standard
 modules: File::stat, Net::hostent,
Net::netent, Net::protoent, Net::servent, Time::gmtime, Time::localtime,
and User::grent. These override the normal built-ins,
 supplying versions that return objects
with the appropriate names for
 each field. For example:

 use File::stat;
 use User::pwent;
 my $is_his = (stat($filename)->uid == pwent($whoever)->uid);

Even though it looks as though they're the same method calls (uid),
 they aren't, because a
File::stat object is different from
 a User::pwent object.

Portability issues: "getpwnam" in perlport to "endservent" in perlport.

Perl version 5.24.0 documentation - perlfunc

Page 35http://perldoc.perl.org

getsockname SOCKET

Returns the packed sockaddr address of this end of the SOCKET connection,
 in case you
don't know the address because you have several different
 IPs that the connection might have
come in on.

 use Socket;
 my $mysockaddr = getsockname($sock);
 my ($port, $myaddr) = sockaddr_in($mysockaddr);
 printf "Connect to %s [%s]\n",
 scalar gethostbyaddr($myaddr, AF_INET),
 inet_ntoa($myaddr);

getsockopt SOCKET,LEVEL,OPTNAME

Queries the option named OPTNAME associated with SOCKET at a given LEVEL.
 Options
may exist at multiple protocol levels depending on the socket
 type, but at least the uppermost
socket level SOL_SOCKET (defined in the Socket module) will exist. To query options at
another
 level the protocol number of the appropriate protocol controlling the
 option should be
supplied. For example, to indicate that an option is
 to be interpreted by the TCP protocol,
LEVEL should be set to the
 protocol number of TCP, which you can get using
getprotobyname.

The function returns a packed string representing the requested socket
 option, or undef on
error, with the reason for the
 error placed in $!. Just what is in the packed string
 depends on
LEVEL and OPTNAME; consult getsockopt(2) for details. A
 common case is that the option is
an integer, in which case the result
 is a packed integer, which you can decode using unpack
with the i (or I) format.

Here's an example to test whether Nagle's algorithm is enabled on a socket:

 use Socket qw(:all);

 defined(my $tcp = getprotobyname("tcp"))
 or die "Could not determine the protocol number for tcp";
 # my $tcp = IPPROTO_TCP; # Alternative
 my $packed = getsockopt($socket, $tcp, TCP_NODELAY)
 or die "getsockopt TCP_NODELAY: $!";
 my $nodelay = unpack("I", $packed);
 print "Nagle's algorithm is turned ",
 $nodelay ? "off\n" : "on\n";

Portability issues: "getsockopt" in perlport.

glob EXPR

glob

In list context, returns a (possibly empty) list of filename expansions on
 the value of EXPR
such as the standard Unix shell /bin/csh would do. In
 scalar context, glob iterates through
such filename expansions, returning
 undef when the list is exhausted. This is the internal
function
 implementing the <*.c> operator, but you can use it directly. If
 EXPR is omitted, $_
is used. The <*.c> operator
 is discussed in more detail in "I/O Operators" in perlop.

Note that glob splits its arguments on whitespace and
 treats
 each segment as separate
pattern. As such, glob("*.c *.h")
 matches all files with a .c or .h extension. The
expression glob(".* *") matches all files in the current working directory.
 If you want to
glob filenames that might contain whitespace, you'll
 have to use extra quotes around the
spacey filename to protect it.
 For example, to glob filenames that have an e followed by a
space
 followed by an f, use one of:

 my @spacies = <"*e f*">;
 my @spacies = glob '"*e f*"';

Perl version 5.24.0 documentation - perlfunc

Page 36http://perldoc.perl.org

 my @spacies = glob q("*e f*");

If you had to get a variable through, you could do this:

 my @spacies = glob "'*${var}e f*'";
 my @spacies = glob qq("*${var}e f*");

If non-empty braces are the only wildcard characters used in the glob, no filenames are
matched, but potentially many
 strings are returned. For example, this produces nine strings,
one for
 each pairing of fruits and colors:

 my @many = glob "{apple,tomato,cherry}={green,yellow,red}";

This operator is implemented using the standard File::Glob extension.
 See File::Glob for
details, including bsd_glob, which does not treat whitespace
 as a pattern separator.

Portability issues: "glob" in perlport.

gmtime EXPR

gmtime

Works just like localtime but the returned values
 are localized for the standard Greenwich
time zone.

Note: When called in list context, $isdst, the last value
 returned by gmtime, is always 0. There
is no
 Daylight Saving Time in GMT.

Portability issues: "gmtime" in perlport.

goto LABEL

goto EXPR

goto &NAME

The goto LABEL form finds the statement labeled with LABEL and
 resumes execution there.
It can't be used to get out of a block or
 subroutine given to sort. It can be used to go
 almost
anywhere else within the dynamic scope, including out of
 subroutines, but it's usually better to
use some other construct such as last or die. The author of Perl has
 never felt the need to
use this form of goto (in Perl,
 that is; C is another matter). (The difference is that C does not
offer
 named loops combined with loop control. Perl does, and this replaces
 most structured
uses of goto in other languages.)

The goto EXPR form expects to evaluate EXPR to a code reference or
 a label name. If it
evaluates to a code reference, it will be handled
 like goto &NAME, below. This is especially
useful for implementing
 tail recursion via goto __SUB__.

If the expression evaluates to a label name, its scope will be resolved
 dynamically. This allows
for computed gotos per
 FORTRAN, but isn't necessarily recommended if you're optimizing for
maintainability:

 goto ("FOO", "BAR", "GLARCH")[$i];

As shown in this example, goto EXPR is exempt from the "looks like a
 function" rule. A pair of
parentheses following it does not (necessarily)
 delimit its argument. goto("NE")."XT" is
equivalent to goto NEXT.
 Also, unlike most named operators, this has the same precedence
as
 assignment.

Use of goto LABEL or goto EXPR to jump into a construct is
 deprecated and will issue a
warning. Even then, it may not be used to
 go into any construct that requires initialization,
such as a
 subroutine or a foreach loop. It also can't be used to go into a
 construct that is
optimized away.

The goto &NAME form is quite different from the other forms of goto. In fact, it isn't a goto in
the normal sense at
 all, and doesn't have the stigma associated with other gotos. Instead,
 it
exits the current subroutine (losing any changes set by local) and immediately calls in its

Perl version 5.24.0 documentation - perlfunc

Page 37http://perldoc.perl.org

place the named
 subroutine using the current value of @_. This is used
 by AUTOLOAD
subroutines that wish to load another subroutine and then
 pretend that the other subroutine
had been called in the first place
 (except that any modifications to @_ in the current
 subroutine
are propagated to the other subroutine.) After the goto, not even caller will be able
 to tell
that this routine was called first.

NAME needn't be the name of a subroutine; it can be a scalar variable
 containing a code
reference or a block that evaluates to a code
 reference.

grep BLOCK LIST

grep EXPR,LIST

This is similar in spirit to, but not the same as, grep(1) and its
 relatives. In particular, it is not
limited to using regular expressions.

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each element)
and returns the list value
 consisting of those
 elements for which the expression evaluated to
true. In scalar
 context, returns the number of times the expression was true.

 my @foo = grep(!/^#/, @bar); # weed out comments

or equivalently,

 my @foo = grep {!/^#/} @bar; # weed out comments

Note that $_ is an alias to the list value, so it can
 be used to
 modify the elements of the LIST.
While this is useful and supported,
 it can cause bizarre results if the elements of LIST are not
variables.
 Similarly, grep returns aliases into the original list, much as a for
 loop's index
variable aliases the list elements. That is, modifying an
 element of a list returned by grep (for
example, in a foreach, map or another grep)
 actually modifies the element in the original
list.
 This is usually something to be avoided when writing clear code.

See also map for a list composed of the results of
 the BLOCK or EXPR.

hex EXPR

hex

Interprets EXPR as a hex string and returns the corresponding numeric value.
 If EXPR is
omitted, uses $_.

 print hex '0xAf'; # prints '175'
 print hex 'aF'; # same
 $valid_input =~ /\A(?:0?[xX])?(?:_?[0-9a-fA-F])*\z/

A hex string consists of hex digits and an optional 0x or x prefix.
 Each hex digit may be
preceded by a single underscore, which will be ignored.
 Any other character triggers a
warning and causes the rest of the string
 to be ignored (even leading whitespace, unlike oct).
Only integers can be represented, and integer overflow triggers a warning.

To convert strings that might start with any of 0, 0x, or 0b,
 see oct. To present something as
hex, look into printf, sprintf, and unpack.

import LIST

There is no builtin import function. It is just an
 ordinary method (subroutine) defined (or
inherited) by modules that wish
 to export names to another module. The use function calls the
import method for the package used. See also use, perlmod, and Exporter.

index STR,SUBSTR,POSITION

index STR,SUBSTR

The index function searches for one string within another, but without
 the wildcard-like
behavior of a full regular-expression pattern match.
 It returns the position of the first
occurrence of SUBSTR in STR at
 or after POSITION. If POSITION is omitted, starts searching

Perl version 5.24.0 documentation - perlfunc

Page 38http://perldoc.perl.org

from the
 beginning of the string. POSITION before the beginning of the string
 or after its end is
treated as if it were the beginning or the end,
 respectively. POSITION and the return value are
based at zero.
 If the substring is not found, index
 returns -1.

int EXPR

int

Returns the integer portion of EXPR. If EXPR is omitted, uses $_.
 You should not use this
function for rounding: one because it truncates
 towards 0, and two because machine
representations of floating-point
 numbers can sometimes produce counterintuitive results. For
example, int(-6.725/0.025) produces -268 rather than the correct -269; that's
 because
it's really more like -268.99999999999994315658 instead. Usually,
 the sprintf, printf, or
the POSIX::floor and POSIX::ceil
 functions will serve you better than will int.

ioctl FILEHANDLE,FUNCTION,SCALAR

Implements the ioctl(2) function. You'll probably first have to say

 require "sys/ioctl.ph"; # probably in
 # $Config{archlib}/sys/ioctl.ph

to get the correct function definitions. If sys/ioctl.ph doesn't
 exist or doesn't have the correct
definitions you'll have to roll your
 own, based on your C header files such as <sys/ioctl.h>.

(There is a Perl script called h2ph that comes with the Perl kit that
 may help you in this, but it's
nontrivial.) SCALAR will be read and/or
 written depending on the FUNCTION; a C pointer to
the string value of SCALAR
 will be passed as the third argument of the actual ioctl call. (If
SCALAR
 has no string value but does have a numeric value, that value will be
 passed rather
than a pointer to the string value. To guarantee this to be
 true, add a 0 to the scalar before
using it.) The pack and unpack
 functions may be needed to manipulate the values of
structures used by ioctl.

The return value of ioctl (and fcntl) is as follows:

 if OS returns: then Perl returns:
 -1 undefined value
 0 string "0 but true"
 anything else that number

Thus Perl returns true on success and false on failure, yet you can
 still easily determine the
actual value returned by the operating
 system:

 my $retval = ioctl(...) || -1;
 printf "System returned %d\n", $retval;

The special string "0 but true" is exempt from Argument "..." isn't numeric
warnings on improper numeric conversions.

Portability issues: "ioctl" in perlport.

join EXPR,LIST

Joins the separate strings of LIST into a single string with fields
 separated by the value of
EXPR, and returns that new string. Example:

 my $rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);

Beware that unlike split, join doesn't take a pattern as its first argument.
 Compare split.

keys HASH

keys ARRAY

Called in list context, returns a list consisting of all the keys of the
 named hash, or in Perl 5.12
or later only, the indices of an array. Perl
 releases prior to 5.12 will produce a syntax error if

Perl version 5.24.0 documentation - perlfunc

Page 39http://perldoc.perl.org

you try to use an
 array argument. In scalar context, returns the number of keys or indices.

Hash entries are returned in an apparently random order. The actual random
 order is specific
to a given hash; the exact same series of operations
 on two hashes may result in a different
order for each hash. Any insertion
 into the hash may change the order, as will any deletion,
with the exception
 that the most recent key returned by each or keys may be deleted without
changing the order. So
 long as a given hash is unmodified you may rely on keys, values
and each to repeatedly return the same order
 as each other. See "Algorithmic Complexity
Attacks" in perlsec for
 details on why hash order is randomized. Aside from the guarantees

provided here the exact details of Perl's hash algorithm and the hash
 traversal order are
subject to change in any release of Perl. Tied hashes
 may behave differently to Perl's hashes
with respect to changes in order on
 insertion and deletion of items.

As a side effect, calling keys resets the internal
 iterator of the HASH or ARRAY (see each).
In
 particular, calling keys in void context resets the
 iterator with no other overhead.

Here is yet another way to print your environment:

 my @keys = keys %ENV;
 my @values = values %ENV;
 while (@keys) {
 print pop(@keys), '=', pop(@values), "\n";
 }

or how about sorted by key:

 foreach my $key (sort(keys %ENV)) {
 print $key, '=', $ENV{$key}, "\n";
 }

The returned values are copies of the original keys in the hash, so
 modifying them will not
affect the original hash. Compare values.

To sort a hash by value, you'll need to use a sort function. Here's a descending numeric
 sort
of a hash by its values:

 foreach my $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
 printf "%4d %s\n", $hash{$key}, $key;
 }

Used as an lvalue, keys allows you to increase the
 number of hash buckets
 allocated for the
given hash. This can gain you a measure of efficiency if
 you know the hash is going to get big.
(This is similar to pre-extending
 an array by assigning a larger number to $#array.) If you say

 keys %hash = 200;

then %hash will have at least 200 buckets allocated for it--256 of them,
 in fact, since it rounds
up to the next power of two. These
 buckets will be retained even if you do %hash = (), use
undef
 %hash if you want to free the storage while %hash is still in scope.
 You can't shrink
the number of buckets allocated for the hash using keys in this way (but you needn't worry
about doing
 this by accident, as trying has no effect). keys @array in an lvalue
 context is a
syntax error.

Starting with Perl 5.14, an experimental feature allowed keys to take a scalar expression.
This experiment has
 been deemed unsuccessful, and was removed as of Perl 5.24.

To avoid confusing would-be users of your code who are running earlier
 versions of Perl with
mysterious syntax errors, put this sort of thing at
 the top of your file to signal that your code
will work only on Perls of
 a recent vintage:

 use 5.012;	 # so keys/values/each work on arrays

See also each, values, and sort.

Perl version 5.24.0 documentation - perlfunc

Page 40http://perldoc.perl.org

kill SIGNAL, LIST

kill SIGNAL

Sends a signal to a list of processes. Returns the number of arguments
 that were successfully
used to signal (which is not necessarily the same
 as the number of processes actually killed,
e.g. where a process group is
 killed).

 my $cnt = kill 'HUP', $child1, $child2;
 kill 'KILL', @goners;

SIGNAL may be either a signal name (a string) or a signal number. A signal
 name may start
with a SIG prefix, thus FOO and SIGFOO refer to the
 same signal. The string form of SIGNAL
is recommended for portability because
 the same signal may have different numbers in
different operating systems.

A list of signal names supported by the current platform can be found in
$Config{sig_name}, which is provided by the Config
 module. See Config for more
details.

A negative signal name is the same as a negative signal number, killing process
 groups
instead of processes. For example, kill '-KILL', $pgrp and kill -9, $pgrp will
send SIGKILL to
 the entire process group specified. That
 means you usually want to use
positive not negative signals.

If SIGNAL is either the number 0 or the string ZERO (or SIGZERO),
 no signal is sent to the
process, but kill
 checks whether it's possible to send a signal to it
 (that means, to be brief,
that the process is owned by the same user, or we are
 the super-user). This is useful to check
that a child process is still
 alive (even if only as a zombie) and hasn't changed its UID. See
perlport for notes on the portability of this construct.

The behavior of kill when a PROCESS number is zero or negative depends on
 the operating
system. For example, on POSIX-conforming systems, zero will
 signal the current process
group, -1 will signal all processes, and any
 other negative PROCESS number will act as a
negative signal number and
 kill the entire process group specified.

If both the SIGNAL and the PROCESS are negative, the results are undefined.
 A warning may
be produced in a future version.

See "Signals" in perlipc for more details.

On some platforms such as Windows where the fork(2) system call is not
 available, Perl can
be built to emulate fork at the
 interpreter level.
 This emulation has limitations related to kill
that have to be considered,
 for code running on Windows and in code intended to be portable.

See perlfork for more details.

If there is no LIST of processes, no signal is sent, and the return
 value is 0. This form is
sometimes used, however, because it causes
 tainting checks to be run. But see "Laundering
and Detecting Tainted Data" in perlsec.

Portability issues: "kill" in perlport.

last LABEL

last EXPR

last

The last command is like the break statement in C
 (as used in
 loops); it immediately exits
the loop in question. If the LABEL is
 omitted, the command refers to the innermost enclosing

loop. The last EXPR form, available starting in Perl
 5.18.0, allows a label name to be
computed at run time,
 and is otherwise identical to last LABEL. The continue block, if any,
is not executed:

 LINE: while (<STDIN>) {
 last LINE if /^$/; # exit when done with header
 #...

Perl version 5.24.0 documentation - perlfunc

Page 41http://perldoc.perl.org

 }

last cannot be used to exit a block that returns a
 value such as eval {}, sub {}, or do
{}, and should not be used
 to exit a grep or map
 operation.

Note that a block by itself is semantically identical to a loop
 that executes once. Thus last
can be used to effect
 an early exit out of such a block.

See also continue for an illustration of how last, next, and redo work.

Unlike most named operators, this has the same precedence as assignment.
 It is also exempt
from the looks-like-a-function rule, so last ("foo")."bar" will cause "bar" to be part of
the argument to last.

lc EXPR

lc

Returns a lowercased version of EXPR. This is the internal function
 implementing the \L
escape in double-quoted strings.

If EXPR is omitted, uses $_.

What gets returned depends on several factors:

If use bytes is in effect:

The results follow ASCII rules. Only the characters A-Z change,
 to a-z respectively.

Otherwise, if use locale for LC_CTYPE is in effect:

Respects current LC_CTYPE locale for code points < 256; and uses Unicode
 rules for
the remaining code points (this last can only happen if
 the UTF8 flag is also set). See
perllocale.

Starting in v5.20, Perl uses full Unicode rules if the locale is
 UTF-8. Otherwise, there is
a deficiency in this scheme, which is that
 case changes that cross the 255/256

boundary are not well-defined. For example, the lower case of LATIN CAPITAL

LETTER SHARP S (U+1E9E) in Unicode rules is U+00DF (on ASCII
 platforms). But
under use locale (prior to v5.20 or not a UTF-8
 locale), the lower case of U+1E9E is
itself, because 0xDF may not be LATIN SMALL LETTER SHARP S in the
 current
locale, and Perl has no way of knowing if that character even
 exists in the locale, much
less what code point it is. Perl returns
 a result that is above 255 (almost always the
input character unchanged),
 for all instances (and there aren't many) where the
255/256 boundary
 would otherwise be crossed; and starting in v5.22, it raises a locale
warning.

Otherwise, If EXPR has the UTF8 flag set:

Unicode rules are used for the case change.

Otherwise, if use feature 'unicode_strings' or use locale ':not_characters'
is in effect:

Unicode rules are used for the case change.

Otherwise:

ASCII rules are used for the case change. The lowercase of any character
 outside the
ASCII range is the character itself.

lcfirst EXPR

lcfirst

Returns the value of EXPR with the first character lowercased. This
 is the internal function
implementing the \l escape in
 double-quoted strings.

If EXPR is omitted, uses $_.

Perl version 5.24.0 documentation - perlfunc

Page 42http://perldoc.perl.org

This function behaves the same way under various pragmas, such as in a locale,
 as lc does.

length EXPR

length

Returns the length in characters of the value of EXPR. If EXPR is
 omitted, returns the length
of $_. If EXPR is
 undefined, returns undef.

This function cannot be used on an entire array or hash to find out how
 many elements these
have. For that, use scalar @array and scalar keys
 %hash, respectively.

Like all Perl character operations, length normally
 deals in logical
 characters, not physical
bytes. For how many bytes a string encoded as
 UTF-8 would take up, use
length(Encode::encode_utf8(EXPR)) (you'll have
 to use Encode first). See Encode
and perlunicode.

__LINE__

A special token that compiles to the current line number.

link OLDFILE,NEWFILE

Creates a new filename linked to the old filename. Returns true for
 success, false otherwise.

Portability issues: "link" in perlport.

listen SOCKET,QUEUESIZE

Does the same thing that the listen(2) system call does. Returns true if
 it succeeded, false
otherwise. See the example in "Sockets: Client/Server Communication" in perlipc.

local EXPR

You really probably want to be using my instead,
 because local isn't what most people think
of as
 "local". See "Private Variables via my()" in perlsub for details.

A local modifies the listed variables to be local to the enclosing
 block, file, or eval. If more than
one value is listed, the list must
 be placed in parentheses. See "Temporary Values via local()"
in perlsub
 for details, including issues with tied arrays and hashes.

The delete local EXPR construct can also be used to localize the deletion
 of array/hash
elements to the current block.
 See "Localized deletion of elements of composite types" in
perlsub.

localtime EXPR

localtime

Converts a time as returned by the time function to a 9-element list
 with the time analyzed for
the local time zone. Typically used as
 follows:

 # 0 1 2 3 4 5 6 7 8
 my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
 localtime(time);

All list elements are numeric and come straight out of the C `struct
 tm'. $sec, $min, and
$hour are the seconds, minutes, and hours
 of the specified time.

$mday is the day of the month and $mon the month in
 the range 0..11, with 0 indicating
January and 11 indicating December.
 This makes it easy to get a month name from a list:

 my @abbr = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
 print "$abbr[$mon] $mday";
 # $mon=9, $mday=18 gives "Oct 18"

$year contains the number of years since 1900. To get a 4-digit
 year write:

 $year += 1900;

Perl version 5.24.0 documentation - perlfunc

Page 43http://perldoc.perl.org

To get the last two digits of the year (e.g., "01" in 2001) do:

 $year = sprintf("%02d", $year % 100);

$wday is the day of the week, with 0 indicating Sunday and 3 indicating
 Wednesday. $yday is
the day of the year, in the range 0..364
 (or 0..365 in leap years.)

$isdst is true if the specified time occurs during Daylight Saving
 Time, false otherwise.

If EXPR is omitted, localtime uses the current
 time (as returned by time).

In scalar context, localtime returns the ctime(3) value:

 my $now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

The format of this scalar value is not locale-dependent but built
 into Perl. For GMT instead of
local time use the gmtime builtin. See also the Time::Local module (for converting
seconds, minutes,
 hours, and such back to the integer value returned by time),
 and the
POSIX module's strftime and mktime functions.

To get somewhat similar but locale-dependent date strings, set up your
 locale environment
variables appropriately (please see perllocale) and
 try for example:

 use POSIX qw(strftime);
 my $now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
 # or for GMT formatted appropriately for your locale:
 my $now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

Note that %a and %b, the short forms of the day of the week
 and the month of the year, may
not necessarily be three characters wide.

The Time::gmtime and Time::localtime modules provide a convenient,
 by-name access
mechanism to the gmtime and localtime functions, respectively.

For a comprehensive date and time representation look at the DateTime module on CPAN.

Portability issues: "localtime" in perlport.

lock THING

This function places an advisory lock on a shared variable or referenced
 object contained in
THING until the lock goes out of scope.

The value returned is the scalar itself, if the argument is a scalar, or a
 reference, if the
argument is a hash, array or subroutine.

lock is a "weak keyword"; this means that if you've
 defined a function
 by this name (before
any calls to it), that function will be called
 instead. If you are not under use
threads::shared this does nothing.
 See threads::shared.

log EXPR

log

Returns the natural logarithm (base e) of EXPR. If EXPR is omitted,
 returns the log of $_. To
get the
 log of another base, use basic algebra:
 The base-N log of a number is equal to the
natural log of that number
 divided by the natural log of N. For example:

 sub log10 {
 my $n = shift;
 return log($n)/log(10);
 }

See also exp for the inverse operation.

lstat FILEHANDLE

lstat EXPR

Perl version 5.24.0 documentation - perlfunc

Page 44http://perldoc.perl.org

lstat DIRHANDLE

lstat

Does the same thing as the stat function
 (including setting the special _ filehandle) but stats
a symbolic
 link instead of the file the symbolic link points to. If symbolic links
 are
unimplemented on your system, a normal stat
 is done. For much more detailed information,
please see the
 documentation for stat.

If EXPR is omitted, stats $_.

Portability issues: "lstat" in perlport.

m//

The match operator. See "Regexp Quote-Like Operators" in perlop.

map BLOCK LIST

map EXPR,LIST

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each element)
and returns the list value composed
 of the
 results of each such evaluation. In scalar context,
returns the
 total number of elements so generated. Evaluates BLOCK or EXPR in
 list context,
so each element of LIST may produce zero, one, or
 more elements in the returned value.

 my @chars = map(chr, @numbers);

translates a list of numbers to the corresponding characters.

 my @squares = map { $_ * $_ } @numbers;

translates a list of numbers to their squared values.

 my @squares = map { $_ > 5 ? ($_ * $_) : () } @numbers;

shows that number of returned elements can differ from the number of
 input elements. To omit
an element, return an empty list ().
 This could also be achieved by writing

 my @squares = map { $_ * $_ } grep { $_ > 5 } @numbers;

which makes the intention more clear.

Map always returns a list, which can be
 assigned to a hash such that the elements
 become
key/value pairs. See perldata for more details.

 my %hash = map { get_a_key_for($_) => $_ } @array;

is just a funny way to write

 my %hash;
 foreach (@array) {
 $hash{get_a_key_for($_)} = $_;
 }

Note that $_ is an alias to the list value, so it can
 be used to modify the elements of the LIST.
While this is useful and
 supported, it can cause bizarre results if the elements of LIST are not

variables. Using a regular foreach loop for this purpose would be
 clearer in most cases. See
also grep for an
 array composed of those items of the original list for which the BLOCK
 or
EXPR evaluates to true.

{ starts both hash references and blocks, so map { ... could be either
 the start of map
BLOCK LIST or map EXPR, LIST. Because Perl doesn't look
 ahead for the closing } it has to
take a guess at which it's dealing with
 based on what it finds just after the {. Usually it gets it
right, but if it
 doesn't it won't realize something is wrong until it gets to the } and
 encounters
the missing (or unexpected) comma. The syntax error will be
 reported close to the }, but you'll
need to change something near the {
 such as using a unary + or semicolon to give Perl some

Perl version 5.24.0 documentation - perlfunc

Page 45http://perldoc.perl.org

help: my %hash = map { "\L$_" => 1 } @array # perl guesses EXPR.
wrong
 my %hash = map { +"\L$_" => 1 } @array # perl guesses BLOCK. right
 my %hash = map {; "\L$_" => 1 } @array # this also works
 my %hash = map { ("\L$_" => 1) } @array # as does this
 my %hash = map { lc($_) => 1 } @array # and this.
 my %hash = map +(lc($_) => 1), @array # this is EXPR and works!

 my %hash = map (lc($_), 1), @array # evaluates to (1, @array)

or to force an anon hash constructor use +{:

 my @hashes = map +{ lc($_) => 1 }, @array # EXPR, so needs
 # comma at end

to get a list of anonymous hashes each with only one entry apiece.

mkdir FILENAME,MASK

mkdir FILENAME

mkdir

Creates the directory specified by FILENAME, with permissions
 specified by MASK (as
modified by umask). If it
 succeeds it returns true; otherwise it returns false and sets $!
(errno).
 MASK defaults to 0777 if omitted, and FILENAME defaults
 to $_ if omitted.

In general, it is better to create directories with a permissive MASK
 and let the user modify
that with their umask than it
 is to supply
 a restrictive MASK and give the user no way to be
more permissive.
 The exceptions to this rule are when the file or directory should be
 kept
private (mail files, for instance). The documentation for umask discusses the choice of MASK
in more detail.

Note that according to the POSIX 1003.1-1996 the FILENAME may have any
 number of
trailing slashes. Some operating and filesystems do not get
 this right, so Perl automatically
removes all trailing slashes to keep
 everyone happy.

To recursively create a directory structure, look at
 the make_path function
 of the File::Path
module.

msgctl ID,CMD,ARG

Calls the System V IPC function msgctl(2). You'll probably have to say

 use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT,
 then ARG must be a variable
that will hold the returned msqid_ds
 structure. Returns like ioctl:
 the undefined value for
error, "0 but true" for zero, or the actual
 return value otherwise. See also "SysV IPC" in
perlipc and the
 documentation for IPC::SysV and IPC::Semaphore.

Portability issues: "msgctl" in perlport.

msgget KEY,FLAGS

Calls the System V IPC function msgget(2). Returns the message queue
 id, or undef on
error. See also "SysV IPC" in perlipc
 and the documentation for IPC::SysV and IPC::Msg.

Portability issues: "msgget" in perlport.

msgrcv ID,VAR,SIZE,TYPE,FLAGS

Calls the System V IPC function msgrcv to receive a message from
 message queue ID into
variable VAR with a maximum message size of
 SIZE. Note that when a message is received,
the message type as a
 native long integer will be the first thing in VAR, followed by the
 actual
message. This packing may be opened with unpack("l! a*").
 Taints the variable. Returns

Perl version 5.24.0 documentation - perlfunc

Page 46http://perldoc.perl.org

true if successful, false
 on error. See also "SysV IPC" in perlipc and the documentation for
IPC::SysV and IPC::Msg.

Portability issues: "msgrcv" in perlport.

msgsnd ID,MSG,FLAGS

Calls the System V IPC function msgsnd to send the message MSG to the
 message queue
ID. MSG must begin with the native long integer message
 type, be followed by the length of
the actual message, and then finally
 the message itself. This kind of packing can be achieved
with pack("l! a*", $type, $message). Returns true if successful,
 false on error. See
also "SysV IPC" in perlipc and the documentation
 for IPC::SysV and IPC::Msg.

Portability issues: "msgsnd" in perlport.

my VARLIST

my TYPE VARLIST

my VARLIST : ATTRS

my TYPE VARLIST : ATTRS

A my declares the listed variables to be local
 (lexically) to the enclosing block, file, or eval. If

more than one variable is listed, the list must be placed in
 parentheses.

The exact semantics and interface of TYPE and ATTRS are still
 evolving. TYPE may be a
bareword, a constant declared
 with use constant, or __PACKAGE__. It
 is
 currently bound to
the use of the fields pragma,
 and attributes are handled using the attributes pragma, or
starting
 from Perl 5.8.0 also via the Attribute::Handlers module. See "Private Variables via
my()" in perlsub for details.

Note that with a parenthesised list, undef can be used
 as a dummy placeholder, for example
to skip assignment of initial
 values:

 my (undef, $min, $hour) = localtime;

next LABEL

next EXPR

next

The next command is like the continue statement in
 C; it starts the next iteration of the
loop:

 LINE: while (<STDIN>) {
 next LINE if /^#/; # discard comments
 #...
 }

Note that if there were a continue block on the
 above, it would get
 executed even on
discarded lines. If LABEL is omitted, the command
 refers to the innermost enclosing loop. The
next EXPR form, available
 as of Perl 5.18.0, allows a label name to be computed at run time,
being
 otherwise identical to next LABEL.

next cannot be used to exit a block which returns a
 value such as eval {}, sub {}, or do
{}, and should not be used
 to exit a grep or map
 operation.

Note that a block by itself is semantically identical to a loop
 that executes once. Thus next
will exit such a block
 early.

See also continue for an illustration of how last, next, and redo work.

Unlike most named operators, this has the same precedence as assignment.
 It is also exempt
from the looks-like-a-function rule, so next ("foo")."bar" will cause "bar" to be part of
the argument to next.

no MODULE VERSION LIST

Perl version 5.24.0 documentation - perlfunc

Page 47http://perldoc.perl.org

no MODULE VERSION

no MODULE LIST

no MODULE

no VERSION

See the use function, of which no is the opposite.

oct EXPR

oct

Interprets EXPR as an octal string and returns the corresponding
 value. (If EXPR happens to
start off with 0x, interprets it as a
 hex string. If EXPR starts off with 0b, it is interpreted as a

binary string. Leading whitespace is ignored in all three cases.)
 The following will handle
decimal, binary, octal, and hex in standard
 Perl notation:

 $val = oct($val) if $val =~ /^0/;

If EXPR is omitted, uses $_. To go the other way
 (produce a number in octal), use sprintf
or printf:

 my $dec_perms = (stat("filename"))[2] & 07777;
 my $oct_perm_str = sprintf "%o", $perms;

The oct function is commonly used when a string such as 644 needs
 to be converted into a
file mode, for example. Although Perl
 automatically converts strings into numbers as needed,
this automatic
 conversion assumes base 10.

Leading white space is ignored without warning, as too are any trailing
 non-digits, such as a
decimal point (oct only handles
 non-negative integers, not negative integers or floating point).

open FILEHANDLE,EXPR

open FILEHANDLE,MODE,EXPR

open FILEHANDLE,MODE,EXPR,LIST

open FILEHANDLE,MODE,REFERENCE

open FILEHANDLE

Opens the file whose filename is given by EXPR, and associates it with
 FILEHANDLE.

Simple examples to open a file for reading:

 open(my $fh, "<", "input.txt")
	 or die "Can't open < input.txt: $!";

and for writing:

 open(my $fh, ">", "output.txt")
	 or die "Can't open > output.txt: $!";

(The following is a comprehensive reference to open: for a gentler introduction you may

consider perlopentut.)

If FILEHANDLE is an undefined scalar variable (or array or hash element), a
 new filehandle is
autovivified, meaning that the variable is assigned a
 reference to a newly allocated
anonymous filehandle. Otherwise if
 FILEHANDLE is an expression, its value is the real
filehandle. (This is
 considered a symbolic reference, so use strict "refs" should not be

in effect.)

If three (or more) arguments are specified, the open mode (including
 optional encoding) in the
second argument are distinct from the filename in
 the third. If MODE is < or nothing, the file is
opened for input.
 If MODE is >, the file is opened for output, with existing files
 first being
truncated ("clobbered") and nonexisting files newly created.
 If MODE is >>, the file is opened

Perl version 5.24.0 documentation - perlfunc

Page 48http://perldoc.perl.org

for appending, again being
 created if necessary.

You can put a + in front of the > or < to
 indicate that you want both read and write access to
the file; thus +< is almost always preferred for read/write updates--the +> mode would clobber
the file first. You can't usually use
 either read-write mode for updating textfiles, since they
have
 variable-length records. See the -i switch in perlrun for a
 better approach. The file is
created with permissions of 0666
 modified by the process's umask value.

These various prefixes correspond to the fopen(3) modes of r, r+, w, w+, a, and a+.

In the one- and two-argument forms of the call, the mode and filename
 should be
concatenated (in that order), preferably separated by white
 space. You can--but
shouldn't--omit the mode in these forms when that mode
 is <. It is safe to use the
two-argument form of open if the filename argument is a known literal.

For three or more arguments if MODE is |-, the filename is
 interpreted as a command to
which output is to be piped, and if MODE
 is -|, the filename is interpreted as a command that
pipes
 output to us. In the two-argument (and one-argument) form, one should
 replace dash (-)
with the command.
 See "Using open() for IPC" in perlipc for more examples of this.
 (You are
not allowed to open to a command
 that pipes both in and out, but see IPC::Open2,
IPC::Open3, and "Bidirectional Communication with Another Process" in perlipc for

alternatives.)

In the form of pipe opens taking three or more arguments, if LIST is specified
 (extra
arguments after the command name) then LIST becomes arguments
 to the command invoked
if the platform supports it. The meaning of open with more than three arguments for
 non-pipe
modes is not yet defined, but experimental "layers" may give
 extra LIST arguments meaning.

In the two-argument (and one-argument) form, opening <-
 or - opens STDIN and opening >-
opens STDOUT.

You may (and usually should) use the three-argument form of open to specify
 I/O layers
(sometimes referred to as "disciplines") to apply to the handle
 that affect how the input and
output are processed (see open and PerlIO for more details). For example:

 open(my $fh, "<:encoding(UTF-8)", $filename)
 || die "Can't open UTF-8 encoded $filename: $!";

opens the UTF8-encoded file containing Unicode characters;
 see perluniintro. Note that if
layers are specified in the
 three-argument form, then default layers stored in ${^OPEN} (see
perlvar;
 usually set by the open pragma or the switch -CioD) are ignored.
 Those layers will
also be ignored if you specifying a colon with no name
 following it. In that case the default
layer for the operating system
 (:raw on Unix, :crlf on Windows) is used.

Open returns nonzero on success, the undefined value otherwise. If
 the open involved a pipe,
the return value
 happens to be the pid of the subprocess.

On some systems (in general, DOS- and Windows-based systems) binmode is necessary
when you're not
 working with a text file. For the sake of portability it is a good idea
 always to
use it when appropriate, and never to use it when it isn't
 appropriate. Also, people can set their
I/O to be by default
 UTF8-encoded Unicode, not bytes.

When opening a file, it's seldom a good idea to continue
 if the request failed, so open is
frequently
 used with die. Even if die won't do
 what you want (say, in a CGI script,
 where you
want to format a suitable error message (but there are
 modules that can help with that
problem)) always check
 the return value from opening a file.

The filehandle will be closed when its reference count reaches zero.
 If it is a lexically scoped
variable declared with my,
 that usually
 means the end of the enclosing scope. However, this
automatic close
 does not check for errors, so it is better to explicitly close
 filehandles,
especially those used for writing:

 close($handle)
 || warn "close failed: $!";

Perl version 5.24.0 documentation - perlfunc

Page 49http://perldoc.perl.org

An older style is to use a bareword as the filehandle, as

 open(FH, "<", "input.txt")
 or die "Can't open < input.txt: $!";

Then you can use FH as the filehandle, in close FH and <FH> and so on. Note that it's a
global variable, so this form is
 not recommended in new code.

As a shortcut a one-argument call takes the filename from the global
 scalar variable of the
same name as the filehandle:

 $ARTICLE = 100;
 open(ARTICLE) or die "Can't find article $ARTICLE: $!\n";

Here $ARTICLE must be a global (package) scalar variable - not one
 declared with my or
state.

As a special case the three-argument form with a read/write mode and the third
 argument
being undef:

 open(my $tmp, "+>", undef) or die ...

opens a filehandle to an anonymous temporary file. Also using +<
 works for symmetry, but
you really should consider writing something
 to the temporary file first. You will need to seek
to do the reading.

Perl is built using PerlIO by default. Unless you've
 changed this (such as building Perl with
Configure -Uuseperlio), you can
 open filehandles directly to Perl scalars via:

 open(my $fh, ">", \$variable) || ..

To (re)open STDOUT or STDERR as an in-memory file, close it first:

 close STDOUT;
 open(STDOUT, ">", \$variable)
	 or die "Can't open STDOUT: $!";

See perliol for detailed info on PerlIO.

General examples:

 open(my $log, ">>", "/usr/spool/news/twitlog");
 # if the open fails, output is discarded

 open(my $dbase, "+<", "dbase.mine") # open for update
 or die "Can't open 'dbase.mine' for update: $!";

 open(my $dbase, "+<dbase.mine") # ditto
 or die "Can't open 'dbase.mine' for update: $!";

 open(my $article_fh, "-|", "caesar <$article") # decrypt
 # article
 or die "Can't start caesar: $!";

 open(my $article_fh, "caesar <$article |") # ditto
 or die "Can't start caesar: $!";

 open(my $out_fh, "|-", "sort >Tmp$$") # $$ is our process id
 or die "Can't start sort: $!";

 # in-memory files
 open(my $memory, ">", \$var)
 or die "Can't open memory file: $!";

Perl version 5.24.0 documentation - perlfunc

Page 50http://perldoc.perl.org

 print $memory "foo!\n"; # output will appear in $var

You may also, in the Bourne shell tradition, specify an EXPR beginning
 with >&, in which case
the rest of the string is interpreted
 as the name of a filehandle (or file descriptor, if numeric) to
be
 duped (as in dup(2)) and opened. You may use & after >, >>, <, +>, +>>, and +<.
 The
mode you specify should match the mode of the original filehandle.
 (Duping a filehandle does
not take into account any existing contents
 of IO buffers.) If you use the three-argument
 form,
then you can pass either a
 number, the name of a filehandle, or the normal "reference to a
glob".

Here is a script that saves, redirects, and restores STDOUT and STDERR using various
methods:

 #!/usr/bin/perl
 open(my $oldout, ">&STDOUT") or die "Can't dup STDOUT: $!";
 open(OLDERR, ">&", *STDERR) or die "Can't dup STDERR: $!";

 open(STDOUT, '>', "foo.out") or die "Can't redirect STDOUT: $!";
 open(STDERR, ">&STDOUT") or die "Can't dup STDOUT: $!";

 select STDERR; $| = 1; # make unbuffered
 select STDOUT; $| = 1; # make unbuffered

 print STDOUT "stdout 1\n"; # this works for
 print STDERR "stderr 1\n"; # subprocesses too

 open(STDOUT, ">&", $oldout) or die "Can't dup \$oldout: $!";
 open(STDERR, ">&OLDERR") or die "Can't dup OLDERR: $!";

 print STDOUT "stdout 2\n";
 print STDERR "stderr 2\n";

If you specify '<&=X', where X is a file descriptor number
 or a filehandle, then Perl will do an
equivalent of C's fdopen(3) of
 that file descriptor (and not call dup(2)); this is more

parsimonious of file descriptors. For example:

 # open for input, reusing the fileno of $fd
 open(my $fh, "<&=", $fd)

or

 open(my $fh, "<&=$fd")

or

 # open for append, using the fileno of $oldfh
 open(my $fh, ">>&=", $oldfh)

Being parsimonious on filehandles is also useful (besides being
 parsimonious) for example
when something is dependent on file
 descriptors, like for example locking using flock. If you
do just open(my $A, ">>&", $B), the filehandle $A will not have the
 same file descriptor
as $B, and therefore flock($A) will not flock($B) nor vice versa. But with open(my $A,
 ">>&=", $B),
 the filehandles will share the same underlying system file descriptor.

Note that under Perls older than 5.8.0, Perl uses the standard C library's' fdopen(3) to
implement the = functionality. On many Unix systems, fdopen(3) fails when file descriptors
exceed a certain value, typically 255.
 For Perls 5.8.0 and later, PerlIO is (most often) the
default.

You can see whether your Perl was built with PerlIO by running perl -V:useperlio. If it
says 'define', you have PerlIO;
 otherwise you don't.

Perl version 5.24.0 documentation - perlfunc

Page 51http://perldoc.perl.org

If you open a pipe on the command - (that is, specify either |- or -|
 with the one- or
two-argument forms of open), an implicit fork is done,
 so open returns twice: in the parent
process
 it returns the pid
 of the child process, and in the child process it returns (a defined) 0.

Use defined($pid) or // to determine whether the open was successful.

For example, use either

 my $child_pid = open(my $from_kid, "-|") // die "Can't fork: $!";

or

 my $child_pid = open(my $to_kid, "|-") // die "Can't fork: $!";

followed by

 if ($child_pid) {
	 # am the parent:
	 # either write $to_kid or else read $from_kid
	 ...
 waitpid $child_pid, 0;
 } else {
	 # am the child; use STDIN/STDOUT normally
	 ...
	 exit;
 }

The filehandle behaves normally for the parent, but I/O to that
 filehandle is piped from/to the
STDOUT/STDIN of the child process.
 In the child process, the filehandle isn't opened--I/O
happens from/to
 the new STDOUT/STDIN. Typically this is used like the normal
 piped open
when you want to exercise more control over just how the
 pipe command gets executed, such
as when running setuid and
 you don't want to have to scan shell commands for
metacharacters.

The following blocks are more or less equivalent:

 open(my $fh, "|tr '[a-z]' '[A-Z]'");
 open(my $fh, "|-", "tr '[a-z]' '[A-Z]'");
 open(my $fh, "|-") || exec 'tr', '[a-z]', '[A-Z]';
 open(my $fh, "|-", "tr", '[a-z]', '[A-Z]');

 open(my $fh, "cat -n '$file'|");
 open(my $fh, "-|", "cat -n '$file'");
 open(my $fh, "-|") || exec "cat", "-n", $file;
 open(my $fh, "-|", "cat", "-n", $file);

The last two examples in each block show the pipe as "list form", which is
 not yet supported
on all platforms. A good rule of thumb is that if
 your platform has a real fork (in other words, if
your platform is
 Unix, including Linux and MacOS X), you can use the list form. You would

want to use the list form of the pipe so you can pass literal arguments
 to the command without
risk of the shell interpreting any shell metacharacters
 in them. However, this also bars you
from opening pipes to commands
 that intentionally contain shell metacharacters, such as:

 open(my $fh, "|cat -n | expand -4 | lpr")
	 || die "Can't open pipeline to lpr: $!";

See "Safe Pipe Opens" in perlipc for more examples of this.

Perl will attempt to flush all files opened for
 output before any operation that may do a fork, but
this may not be
 supported on some platforms (see perlport). To be safe, you may need
 to set
$| ($AUTOFLUSH in English)
 or call the autoflush method of IO::Handle
 on any open
handles.

Perl version 5.24.0 documentation - perlfunc

Page 52http://perldoc.perl.org

On systems that support a close-on-exec flag on files, the flag will
 be set for the newly opened
file descriptor as determined by the value
 of $^F. See "$^F" in perlvar.

Closing any piped filehandle causes the parent process to wait for the
 child to finish, then
returns the status value in $? and ${^CHILD_ERROR_NATIVE}.

The filename passed to the one- and two-argument forms of open will
 have leading and
trailing whitespace deleted and normal
 redirection characters honored. This property, known
as "magic open",
 can often be used to good effect. A user could specify a filename of "rsh cat
file |", or you could change certain filenames as needed:

 $filename =~ s/(.*\.gz)\s*$/gzip -dc < $1|/;
 open(my $fh, $filename) or die "Can't open $filename: $!";

Use the three-argument form to open a file with arbitrary weird characters in it,

 open(my $fh, "<", $file)
	 || die "Can't open $file: $!";

otherwise it's necessary to protect any leading and trailing whitespace:

 $file =~ s#^(\s)#./$1#;
 open(my $fh, "< $file\0")
	 || die "Can't open $file: $!";

(this may not work on some bizarre filesystems). One should
 conscientiously choose between
the magic and three-argument form
 of open:

 open(my $in, $ARGV[0]) || die "Can't open $ARGV[0]: $!";

will allow the user to specify an argument of the form "rsh cat file |",
 but will not work
on a filename that happens to have a trailing space, while

 open(my $in, "<", $ARGV[0])
	 || die "Can't open $ARGV[0]: $!";

will have exactly the opposite restrictions. (However, some shells
 support the syntax perl
your_program.pl <(rsh cat file), which
 produces a filename that can be opened
normally.)

If you want a "real" C open(2), then you should use the sysopen function, which involves
 no
such magic (but uses different filemodes than Perl open, which corresponds to C fopen(3)).

This is another way to protect your filenames from interpretation. For
 example:

 use IO::Handle;
 sysopen(my $fh, $path, O_RDWR|O_CREAT|O_EXCL)
 or die "Can't open $path: $!";
 $fh->autoflush(1);
 print $fh "stuff $$\n";
 seek($fh, 0, 0);
 print "File contains: ", readline($fh);

See seek for some details about
 mixing reading and writing.

Portability issues: "open" in perlport.

opendir DIRHANDLE,EXPR

Opens a directory named EXPR for processing by readdir, telldir, seekdir,
rewinddir, and closedir. Returns true if successful.
 DIRHANDLE may be an expression
whose value can be used as an indirect
 dirhandle, usually the real dirhandle name. If
DIRHANDLE is an undefined
 scalar variable (or array or hash element), the variable is
assigned a
 reference to a new anonymous dirhandle; that is, it's autovivified.
 DIRHANDLEs
have their own namespace separate from FILEHANDLEs.

Perl version 5.24.0 documentation - perlfunc

Page 53http://perldoc.perl.org

See the example at readdir.

ord EXPR

ord

Returns the numeric value of the first character of EXPR.
 If EXPR is an empty string, returns
0. If EXPR is omitted, uses $_.
 (Note character, not byte.)

For the reverse, see chr.
 See perlunicode for more about Unicode.

our VARLIST

our TYPE VARLIST

our VARLIST : ATTRS

our TYPE VARLIST : ATTRS

our makes a lexical alias to a package (i.e. global)
 variable of the same name in the current
package for use within the
 current lexical scope.

our has the same scoping rules as my or state, meaning that it is
 only valid within a lexical
scope. Unlike my and state, which both declare new (lexical) variables, our only creates an
alias to an existing variable: a
 package variable of the same name.

This means that when use strict 'vars' is in effect, our lets you use a package variable
without qualifying it with the
 package name, but only within the lexical scope of the our
declaration. This applies immediately--even
 within the same statement.

 package Foo;
 use strict;

 $Foo::foo = 23;

 {
 our $foo; # alias to $Foo::foo
 print $foo; # prints 23
 }

 print $Foo::foo; # prints 23

 print $foo; # ERROR: requires explicit package name

This works even if the package variable has not been used before, as
 package variables
spring into existence when first used.

 package Foo;
 use strict;

 our $foo = 23; # just like $Foo::foo = 23

 print $Foo::foo; # prints 23

Because the variable becomes legal immediately under use strict 'vars', so
 long as
there is no variable with that name is already in scope, you can then
 reference the package
variable again even within the same statement.

 package Foo;
 use strict;

 my $foo = $foo; # error, undeclared $foo on right-hand side
 our $foo = $foo; # no errors

If more than one variable is listed, the list must be placed
 in parentheses.

Perl version 5.24.0 documentation - perlfunc

Page 54http://perldoc.perl.org

 our($bar, $baz);

An our declaration declares an alias for a package
 variable that will be visible
 across its entire
lexical scope, even across package boundaries. The
 package in which the variable is entered
is determined at the point
 of the declaration, not at the point of use. This means the following

behavior holds:

 package Foo;
 our $bar; # declares $Foo::bar for rest of lexical scope
 $bar = 20;

 package Bar;
 print $bar; # prints 20, as it refers to $Foo::bar

Multiple our declarations with the same name in the
 same lexical
 scope are allowed if they
are in different packages. If they happen
 to be in the same package, Perl will emit warnings if
you have asked
 for them, just like multiple my declarations. Unlike
 a second my declaration,
which will bind the name to a
 fresh variable, a second our declaration in the same
 package, in
the same scope, is merely redundant.

 use warnings;
 package Foo;
 our $bar; # declares $Foo::bar for rest of lexical scope
 $bar = 20;

 package Bar;
 our $bar = 30; # declares $Bar::bar for rest of lexical scope
 print $bar; # prints 30

 our $bar; # emits warning but has no other effect
 print $bar; # still prints 30

An our declaration may also have a list of attributes
 associated with it.

The exact semantics and interface of TYPE and ATTRS are still
 evolving. TYPE is currently
bound to the use of the fields pragma,
 and attributes are handled using the attributes pragma,
or, starting
 from Perl 5.8.0, also via the Attribute::Handlers module. See "Private Variables via
my()" in perlsub for details.

Note that with a parenthesised list, undef can be used
 as a dummy placeholder, for example
to skip assignment of initial
 values:

 our (undef, $min, $hour) = localtime;

our differs from use vars, which allows
 use of an unqualified name only within the affected
package, but
 across scopes.

pack TEMPLATE,LIST

Takes a LIST of values and converts it into a string using the rules
 given by the TEMPLATE.
The resulting string is the concatenation of
 the converted values. Typically, each converted
value looks
 like its machine-level representation. For example, on 32-bit machines
 an integer
may be represented by a sequence of 4 bytes, which will in
 Perl be presented as a string
that's 4 characters long.

See perlpacktut for an introduction to this function.

The TEMPLATE is a sequence of characters that give the order and type
 of values, as follows:

 a A string with arbitrary binary data, will be null padded.
 A A text (ASCII) string, will be space padded.
 Z A null-terminated (ASCIZ) string, will be null padded.

Perl version 5.24.0 documentation - perlfunc

Page 55http://perldoc.perl.org

 b A bit string (ascending bit order inside each byte,
 like vec()).
 B A bit string (descending bit order inside each byte).
 h A hex string (low nybble first).
 H A hex string (high nybble first).

 c A signed char (8-bit) value.
 C An unsigned char (octet) value.
 W An unsigned char value (can be greater than 255).

 s A signed short (16-bit) value.
 S An unsigned short value.

 l A signed long (32-bit) value.
 L An unsigned long value.

 q A signed quad (64-bit) value.
 Q An unsigned quad value.
 (Quads are available only if your system supports 64-bit
 integer values _and_ if Perl has been compiled to support
 those. Raises an exception otherwise.)

 i A signed integer value.
 I A unsigned integer value.
 (This 'integer' is _at_least_ 32 bits wide. Its exact
 size depends on what a local C compiler calls 'int'.)

 n An unsigned short (16-bit) in "network" (big-endian) order.
 N An unsigned long (32-bit) in "network" (big-endian) order.
 v An unsigned short (16-bit) in "VAX" (little-endian) order.
 V An unsigned long (32-bit) in "VAX" (little-endian) order.

 j A Perl internal signed integer value (IV).
 J A Perl internal unsigned integer value (UV).

 f A single-precision float in native format.
 d A double-precision float in native format.

 F A Perl internal floating-point value (NV) in native format
 D A float of long-double precision in native format.
 (Long doubles are available only if your system supports
 long double values _and_ if Perl has been compiled to
 support those. Raises an exception otherwise.
 Note that there are different long double formats.)

 p A pointer to a null-terminated string.
 P A pointer to a structure (fixed-length string).

 u A uuencoded string.
 U A Unicode character number. Encodes to a character in char-
 acter mode and UTF-8 (or UTF-EBCDIC in EBCDIC platforms) in
 byte mode.

 w A BER compressed integer (not an ASN.1 BER, see perlpacktut
 for details). Its bytes represent an unsigned integer in
 base 128, most significant digit first, with as few digits

Perl version 5.24.0 documentation - perlfunc

Page 56http://perldoc.perl.org

 as possible. Bit eight (the high bit) is set on each byte
 except the last.

 x A null byte (a.k.a ASCII NUL, "\000", chr(0))
 X Back up a byte.
 @ Null-fill or truncate to absolute position, counted from the
 start of the innermost ()-group.
 . Null-fill or truncate to absolute position specified by
 the value.
 (Start of a ()-group.

One or more modifiers below may optionally follow certain letters in the
 TEMPLATE (the
second column lists letters for which the modifier is valid):

 ! sSlLiI Forces native (short, long, int) sizes instead
 of fixed (16-/32-bit) sizes.

 ! xX Make x and X act as alignment commands.

 ! nNvV Treat integers as signed instead of unsigned.

 ! @. Specify position as byte offset in the internal
 representation of the packed string. Efficient
 but dangerous.

 > sSiIlLqQ Force big-endian byte-order on the type.
 jJfFdDpP (The "big end" touches the construct.)

 < sSiIlLqQ Force little-endian byte-order on the type.
 jJfFdDpP (The "little end" touches the construct.)

The > and < modifiers can also be used on () groups
 to force a particular byte-order on all
components in that group,
 including all its subgroups.

Larry recalls that the hex and bit string formats (H, h, B, b) were added to
 pack for processing
data from NASA's Magellan probe. Magellan was in an
 elliptical orbit, using the antenna for
the radar mapping when close to
 Venus and for communicating data back to Earth for the rest
of the orbit.
 There were two transmission units, but one of these failed, and then the
 other
developed a fault whereby it would randomly flip the sense of all the
 bits. It was easy to
automatically detect complete records with the correct
 sense, and complete records with all
the bits flipped. However, this didn't
 recover the records where the sense flipped midway. A
colleague of Larry's
 was able to pretty much eyeball where the records flipped, so they wrote
an
 editor named kybble (a pun on the dog food Kibbles 'n Bits) to enable him to
 manually
correct the records and recover the data. For this purpose pack
 gained the hex and bit string
format specifiers.

git shows that they were added to perl 3.0 in patch #44 (Jan 1991, commit

27e2fb84680b9cc1), but the patch description makes no mention of their
 addition, let alone
the story behind them.

The following rules apply:

Each letter may optionally be followed by a number indicating the repeat
 count. A
numeric repeat count may optionally be enclosed in brackets, as
 in pack("C[80]",
@arr). The repeat count gobbles that many values from
 the LIST when used with all
format types other than a, A, Z, b, B, h, H, @, ., x, X, and P, where it means
 something
else, described below. Supplying a * for the repeat count
 instead of a number means
to use however many items are left, except for:

@, x, and X, where it is equivalent to 0.

Perl version 5.24.0 documentation - perlfunc

Page 57http://perldoc.perl.org

<.>, where it means relative to the start of the string.

u, where it is equivalent to 1 (or 45, which here is equivalent).

One can replace a numeric repeat count with a template letter enclosed in
 brackets to
use the packed byte length of the bracketed template for the
 repeat count.

For example, the template x[L] skips as many bytes as in a packed long,
 and the
template "$t X[$t] $t" unpacks twice whatever $t (when
 variable-expanded)
unpacks. If the template in brackets contains alignment
 commands (such as x![d]),
its packed length is calculated as if the
 start of the template had the maximal possible
alignment.

When used with Z, a * as the repeat count is guaranteed to add a
 trailing null byte, so
the resulting string is always one byte longer than
 the byte length of the item itself.

When used with @, the repeat count represents an offset from the start
 of the
innermost () group.

When used with ., the repeat count determines the starting position to
 calculate the
value offset as follows:

If the repeat count is 0, it's relative to the current position.

If the repeat count is *, the offset is relative to the start of the
 packed string.

And if it's an integer n, the offset is relative to the start of the nth innermost ()
group, or to the start of the string if n is
 bigger then the group level.

The repeat count for u is interpreted as the maximal number of bytes
 to encode per
line of output, with 0, 1 and 2 replaced by 45. The repeat
 count should not be more
than 65.

The a, A, and Z types gobble just one value, but pack it as a
 string of length count,
padding with nulls or spaces as needed. When
 unpacking, A strips trailing whitespace
and nulls, Z strips everything
 after the first null, and a returns data with no stripping at
all.

If the value to pack is too long, the result is truncated. If it's too
 long and an explicit
count is provided, Z packs only $count-1 bytes,
 followed by a null byte. Thus Z
always packs a trailing null, except
 when the count is 0.

Likewise, the b and B formats pack a string that's that many bits long.
 Each such
format generates 1 bit of the result. These are typically followed
 by a repeat count like
B8 or B64.

Each result bit is based on the least-significant bit of the corresponding
 input
character, i.e., on ord($char)%2. In particular, characters "0"
 and "1" generate bits
0 and 1, as do characters "\000" and "\001".

Starting from the beginning of the input string, each 8-tuple
 of characters is converted
to 1 character of output. With format b,
 the first character of the 8-tuple determines the
least-significant bit of a
 character; with format B, it determines the most-significant bit
of
 a character.

If the length of the input string is not evenly divisible by 8, the
 remainder is packed as if
the input string were padded by null characters
 at the end. Similarly during unpacking,
"extra" bits are ignored.

If the input string is longer than needed, remaining characters are ignored.

A * for the repeat count uses all characters of the input field.
 On unpacking, bits are
converted to a string of 0s and 1s.

The h and H formats pack a string that many nybbles (4-bit groups,
 representable as
hexadecimal digits, "0".."9" "a".."f") long.

Perl version 5.24.0 documentation - perlfunc

Page 58http://perldoc.perl.org

For each such format, pack generates 4 bits of result.
 With non-alphabetical
characters, the result is based on the 4 least-significant
 bits of the input character, i.e.,
on ord($char)%16. In particular,
 characters "0" and "1" generate nybbles 0 and 1,
as do bytes "\000" and "\001". For characters "a".."f" and "A".."F", the
result
 is compatible with the usual hexadecimal digits, so that "a" and "A" both
generate the nybble 0xA==10. Use only these specific hex
 characters with this format.

Starting from the beginning of the template to pack, each pair
 of characters is
converted to 1 character of output. With format h, the
 first character of the pair
determines the least-significant nybble of the
 output character; with format H, it
determines the most-significant
 nybble.

If the length of the input string is not even, it behaves as if padded by
 a null character
at the end. Similarly, "extra" nybbles are ignored during
 unpacking.

If the input string is longer than needed, extra characters are ignored.

A * for the repeat count uses all characters of the input field. For unpack, nybbles are
converted to a string of
 hexadecimal digits.

The p format packs a pointer to a null-terminated string. You are
 responsible for
ensuring that the string is not a temporary value, as that
 could potentially get
deallocated before you got around to using the packed
 result. The P format packs a
pointer to a structure of the size indicated
 by the length. A null pointer is created if the
corresponding value for p or P is undef; similarly with unpack, where a null pointer
unpacks into undef.

If your system has a strange pointer size--meaning a pointer is neither as
 big as an int
nor as big as a long--it may not be possible to pack or
 unpack pointers in big- or
little-endian byte order. Attempting to do
 so raises an exception.

The / template character allows packing and unpacking of a sequence of
 items where
the packed structure contains a packed item count followed by
 the packed items
themselves. This is useful when the structure you're
 unpacking has encoded the sizes
or repeat counts for some of its fields
 within the structure itself as separate fields.

For pack, you write length-item/sequence-item, and the length-item describes how
the length value is packed. Formats likely
 to be of most use are integer-packing ones
like n for Java strings, w for ASN.1 or SNMP, and N for Sun XDR.

For pack, sequence-item may have a repeat
 count, in which case
 the minimum of that
and the number of available items is used as the argument
 for length-item. If it has no
repeat count or uses a '*', the number
 of available items is used.

For unpack, an internal stack of integer
 arguments unpacked so far is
 used. You write
/sequence-item and the repeat count is obtained by
 popping off the last element from
the stack. The sequence-item must not
 have a repeat count.

If sequence-item refers to a string type ("A", "a", or "Z"),
 the length-item is the string
length, not the number of strings. With
 an explicit repeat count for pack, the packed
string is adjusted to that
 length. For example:

 This code: gives this result:

 unpack("W/a", "\004Gurusamy") ("Guru")
 unpack("a3/A A*", "007 Bond J ") (" Bond", "J")
 unpack("a3 x2 /A A*", "007: Bond, J.") ("Bond, J", ".")

 pack("n/a* w/a","hello,","world") "\000\006hello,\005world"
 pack("a/W2", ord("a") .. ord("z")) "2ab"

The length-item is not returned explicitly from unpack.

Supplying a count to the length-item format letter is only useful with A, a, or Z. Packing

Perl version 5.24.0 documentation - perlfunc

Page 59http://perldoc.perl.org

with a length-item of a or Z may
 introduce "\000" characters, which Perl does not
regard as legal in
 numeric strings.

The integer types s, S, l, and L may be
 followed by a ! modifier to specify native
shorts or
 longs. As shown in the example above, a bare l means
 exactly 32 bits,
although the native long as seen by the local C compiler
 may be larger. This is mainly
an issue on 64-bit platforms. You can
 see whether using ! makes any difference this
way:

 printf "format s is %d, s! is %d\n",
	 length pack("s"), length pack("s!");

 printf "format l is %d, l! is %d\n",
	 length pack("l"), length pack("l!");

i! and I! are also allowed, but only for completeness' sake:
 they are identical to i
and I.

The actual sizes (in bytes) of native shorts, ints, longs, and long
 longs on the platform
where Perl was built are also available from
 the command line:

 $ perl -V:{short,int,long{,long}}size
 shortsize='2';
 intsize='4';
 longsize='4';
 longlongsize='8';

or programmatically via the Config module:

 use Config;
 print $Config{shortsize}, "\n";
 print $Config{intsize}, "\n";
 print $Config{longsize}, "\n";
 print $Config{longlongsize}, "\n";

$Config{longlongsize} is undefined on systems without
 long long support.

The integer formats s, S, i, I, l, L, j, and J are
 inherently non-portable between
processors and operating systems because
 they obey native byteorder and
endianness. For example, a 4-byte integer
 0x12345678 (305419896 decimal) would
be ordered natively (arranged in and
 handled by the CPU registers) into bytes as

 0x12 0x34 0x56 0x78 # big-endian
 0x78 0x56 0x34 0x12 # little-endian

Basically, Intel and VAX CPUs are little-endian, while everybody else,
 including
Motorola m68k/88k, PPC, Sparc, HP PA, Power, and Cray, are
 big-endian. Alpha and
MIPS can be either: Digital/Compaq uses (well, used)
 them in little-endian mode, but
SGI/Cray uses them in big-endian mode.

The names big-endian and little-endian are comic references to the
 egg-eating habits
of the little-endian Lilliputians and the big-endian
 Blefuscudians from the classic
Jonathan Swift satire, Gulliver's Travels.
 This entered computer lingo via the paper
"On Holy Wars and a Plea for
 Peace" by Danny Cohen, USC/ISI IEN 137, April 1,
1980.

Some systems may have even weirder byte orders such as

 0x56 0x78 0x12 0x34
 0x34 0x12 0x78 0x56

These are called mid-endian, middle-endian, mixed-endian, or just weird.

Perl version 5.24.0 documentation - perlfunc

Page 60http://perldoc.perl.org

You can determine your system endianness with this incantation:

 printf("%#02x ", $_) for unpack("W*", pack L=>0x12345678);

The byteorder on the platform where Perl was built is also available
 via Config:

 use Config;
 print "$Config{byteorder}\n";

or from the command line:

 $ perl -V:byteorder

Byteorders "1234" and "12345678" are little-endian; "4321"
 and "87654321" are
big-endian. Systems with multiarchitecture binaries
 will have "ffff", signifying that
static information doesn't work,
 one must use runtime probing.

For portably packed integers, either use the formats n, N, v,
 and V or else use the >
and < modifiers described
 immediately below. See also perlport.

Also floating point numbers have endianness. Usually (but not always)
 this agrees with
the integer endianness. Even though most platforms
 these days use the IEEE 754
binary format, there are differences,
 especially if the long doubles are involved. You
can see the Config variables doublekind and longdblkind (also doublesize,
longdblsize): the "kind" values are enums, unlike byteorder.

Portability-wise the best option is probably to keep to the IEEE 754
 64-bit doubles, and
of agreed-upon endianness. Another possibility
 is the "%a") format of printf.

Starting with Perl 5.10.0, integer and floating-point formats, along with
 the p and P
formats and () groups, may all be followed by the > or < endianness modifiers to
respectively enforce big-
 or little-endian byte-order. These modifiers are especially
useful
 given how n, N, v, and V don't cover signed integers,
 64-bit integers, or
floating-point values.

Here are some concerns to keep in mind when using an endianness modifier:

Exchanging signed integers between different platforms works only
 when all
platforms store them in the same format. Most platforms store
 signed integers
in two's-complement notation, so usually this is not an issue.

The > or < modifiers can only be used on floating-point
 formats on big- or
little-endian machines. Otherwise, attempting to
 use them raises an exception.

Forcing big- or little-endian byte-order on floating-point values for
 data
exchange can work only if all platforms use the same
 binary representation
such as IEEE floating-point. Even if all
 platforms are using IEEE, there may still
be subtle differences. Being able
 to use > or < on floating-point values can be
useful,
 but also dangerous if you don't know exactly what you're doing.
 It is not
a general way to portably store floating-point values.

When using > or < on a () group, this affects
 all types inside the group that
accept byte-order modifiers,
 including all subgroups. It is silently ignored for all
other
 types. You are not allowed to override the byte-order within a group
 that
already has a byte-order modifier suffix.

Real numbers (floats and doubles) are in native machine format only.
 Due to the
multiplicity of floating-point formats and the lack of a
 standard "network" representation
for them, no facility for interchange has been
 made. This means that packed
floating-point data written on one machine
 may not be readable on another, even if
both use IEEE floating-point
 arithmetic (because the endianness of the memory
representation is not part
 of the IEEE spec). See also perlport.

Perl version 5.24.0 documentation - perlfunc

Page 61http://perldoc.perl.org

If you know exactly what you're doing, you can use the > or <
 modifiers to force big- or
little-endian byte-order on floating-point values.

Because Perl uses doubles (or long doubles, if configured) internally for
 all numeric
calculation, converting from double into float and thence
 to double again loses
precision, so unpack("f", pack("f", $foo))
 will not in general equal $foo.

Pack and unpack can operate in two modes: character mode (C0 mode) where
 the
packed string is processed per character, and UTF-8 byte mode (U0 mode)
 where the
packed string is processed in its UTF-8-encoded Unicode form on
 a byte-by-byte
basis. Character mode is the default
 unless the format string starts with U. You
 can
always switch mode mid-format with an explicit C0 or U0 in the format. This mode
remains in effect until the next
 mode change, or until the end of the () group it
(directly) applies to.

Using C0 to get Unicode characters while using U0 to get non-Unicode
 bytes is not
necessarily obvious. Probably only the first of these
 is what you want:

 $ perl -CS -E 'say "\x{3B1}\x{3C9}"' |
 perl -CS -ne 'printf "%v04X\n", $_ for unpack("C0A*", $_)'
 03B1.03C9
 $ perl -CS -E 'say "\x{3B1}\x{3C9}"' |
 perl -CS -ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'
 CE.B1.CF.89
 $ perl -CS -E 'say "\x{3B1}\x{3C9}"' |
 perl -C0 -ne 'printf "%v02X\n", $_ for unpack("C0A*", $_)'
 CE.B1.CF.89
 $ perl -CS -E 'say "\x{3B1}\x{3C9}"' |
 perl -C0 -ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'
 C3.8E.C2.B1.C3.8F.C2.89

Those examples also illustrate that you should not try to use pack/unpack as a

substitute for the Encode module.

You must yourself do any alignment or padding by inserting, for example,
 enough "x"
es while packing. There is no way for pack and unpack
 to know where characters are
going to or coming from, so they
 handle their output and input as flat sequences of
characters.

A () group is a sub-TEMPLATE enclosed in parentheses. A group may
 take a repeat
count either as postfix, or for unpack, also via the /
 template character. Within each
repetition of a group, positioning with @ starts over at 0. Therefore, the result of

 pack("@1A((@2A)@3A)", qw[X Y Z])

is the string "\0X\0\0YZ".

x and X accept the ! modifier to act as alignment commands: they
 jump forward or
back to the closest position aligned at a multiple of count
 characters. For example, to
pack or unpack a C structure like

 struct {
	 char c; /* one signed, 8-bit character */
	 double d;
	 char cc[2];
 }

one may need to use the template c x![d] d c[2]. This assumes that
 doubles
must be aligned to the size of double.

For alignment commands, a count of 0 is equivalent to a count of 1;
 both are

Perl version 5.24.0 documentation - perlfunc

Page 62http://perldoc.perl.org

no-ops.n, N, v and V accept the ! modifier to
 represent signed 16-/32-bit integers in
big-/little-endian order.
 This is portable only when all platforms sharing packed data
use the
 same binary representation for signed integers; for example, when all

platforms use two's-complement representation.

Comments can be embedded in a TEMPLATE using # through the end of line.
 White
space can separate pack codes from each other, but modifiers and
 repeat counts must
follow immediately. Breaking complex templates into
 individual line-by-line
components, suitably annotated, can do as much to
 improve legibility and
maintainability of pack/unpack formats as /x can
 for complicated pattern matches.

If TEMPLATE requires more arguments than pack
 is given, pack
 assumes additional
"" arguments. If TEMPLATE requires fewer arguments
 than given, extra arguments
are ignored.

Attempting to pack the special floating point values Inf and NaN
 (infinity, also in
negative, and not-a-number) into packed integer values
 (like "L") is a fatal error. The
reason for this is that there simply
 isn't any sensible mapping for these special values
into integers.

Examples:

 $foo = pack("WWWW",65,66,67,68);
 # foo eq "ABCD"
 $foo = pack("W4",65,66,67,68);
 # same thing
 $foo = pack("W4",0x24b6,0x24b7,0x24b8,0x24b9);
 # same thing with Unicode circled letters.
 $foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
 # same thing with Unicode circled letters. You don't get the
 # UTF-8 bytes because the U at the start of the format caused
 # a switch to U0-mode, so the UTF-8 bytes get joined into
 # characters
 $foo = pack("C0U4",0x24b6,0x24b7,0x24b8,0x24b9);
 # foo eq "\xe2\x92\xb6\xe2\x92\xb7\xe2\x92\xb8\xe2\x92\xb9"
 # This is the UTF-8 encoding of the string in the
 # previous example

 $foo = pack("ccxxcc",65,66,67,68);
 # foo eq "AB\0\0CD"

 # NOTE: The examples above featuring "W" and "c" are true
 # only on ASCII and ASCII-derived systems such as ISO Latin 1
 # and UTF-8. On EBCDIC systems, the first example would be
 # $foo = pack("WWWW",193,194,195,196);

 $foo = pack("s2",1,2);
 # "\001\000\002\000" on little-endian
 # "\000\001\000\002" on big-endian

 $foo = pack("a4","abcd","x","y","z");
 # "abcd"

 $foo = pack("aaaa","abcd","x","y","z");
 # "axyz"

 $foo = pack("a14","abcdefg");
 # "abcdefg\0\0\0\0\0\0\0"

Perl version 5.24.0 documentation - perlfunc

Page 63http://perldoc.perl.org

 $foo = pack("i9pl", gmtime);
 # a real struct tm (on my system anyway)

 $utmp_template = "Z8 Z8 Z16 L";
 $utmp = pack($utmp_template, @utmp1);
 # a struct utmp (BSDish)

 @utmp2 = unpack($utmp_template, $utmp);
 # "@utmp1" eq "@utmp2"

 sub bintodec {
 unpack("N", pack("B32", substr("0" x 32 . shift, -32)));
 }

 $foo = pack('sx2l', 12, 34);
 # short 12, two zero bytes padding, long 34
 $bar = pack('s@4l', 12, 34);
 # short 12, zero fill to position 4, long 34
 # $foo eq $bar
 $baz = pack('s.l', 12, 4, 34);
 # short 12, zero fill to position 4, long 34

 $foo = pack('nN', 42, 4711);
 # pack big-endian 16- and 32-bit unsigned integers
 $foo = pack('S>L>', 42, 4711);
 # exactly the same
 $foo = pack('s<l<', -42, 4711);
 # pack little-endian 16- and 32-bit signed integers
 $foo = pack('(sl)<', -42, 4711);
 # exactly the same

The same template may generally also be used in unpack.

package NAMESPACE

package NAMESPACE VERSION

package NAMESPACE BLOCK

package NAMESPACE VERSION BLOCK

Declares the BLOCK or the rest of the compilation unit as being in the
 given namespace. The
scope of the package declaration is either the
 supplied code BLOCK or, in the absence of a
BLOCK, from the declaration
 itself through the end of current scope (the enclosing block, file,
or eval). That is, the forms without a BLOCK are
 operative through the end of the current
scope, just like the my, state, and our operators. All unqualified dynamic identifiers
 in this
scope will be in the given namespace, except where overridden by
 another package
declaration or
 when they're one of the special identifiers that qualify into main::,
 like STDOUT,
ARGV, ENV, and the punctuation variables.

A package statement affects dynamic variables only, including those
 you've used local on,
but not lexically-scoped
 variables, which are created with my, state, or our. Typically it

would be the first declaration in a file included by require or use.
 You can switch into a

package in more than one place, since this only determines which default
 symbol table the
compiler uses for the rest of that block. You can refer to
 identifiers in other packages than the
current one by prefixing the identifier
 with the package name and a double colon, as in
$SomePack::var
 or ThatPack::INPUT_HANDLE. If package name is omitted, the main

package as assumed. That is, $::sail is equivalent to $main::sail (as well as to
$main'sail, still seen in ancient
 code, mostly from Perl 4).

Perl version 5.24.0 documentation - perlfunc

Page 64http://perldoc.perl.org

If VERSION is provided, package sets the $VERSION variable in the given
 namespace to a
version object with the VERSION provided. VERSION must be a
 "strict" style version number
as defined by the version module: a positive
 decimal number (integer or decimal-fraction)
without exponentiation or else a
 dotted-decimal v-string with a leading 'v' character and at
least three
 components. You should set $VERSION only once per package.

See "Packages" in perlmod for more information about packages, modules,
 and classes. See
perlsub for other scoping issues.

__PACKAGE__

A special token that returns the name of the package in which it occurs.

pipe READHANDLE,WRITEHANDLE

Opens a pair of connected pipes like the corresponding system call.
 Note that if you set up a
loop of piped processes, deadlock can occur
 unless you are very careful. In addition, note that
Perl's pipes use
 IO buffering, so you may need to set $|
 to flush your WRITEHANDLE after
each command, depending on the
 application.

Returns true on success.

See IPC::Open2, IPC::Open3, and "Bidirectional Communication with Another Process" in
perlipc
 for examples of such things.

On systems that support a close-on-exec flag on files, that flag is set
 on all newly opened file
descriptors whose filenos are higher than the current value of $^F (by default 2 for STDERR
). See "$^F" in perlvar.

pop ARRAY

pop

Pops and returns the last value of the array, shortening the array by
 one element.

Returns the undefined value if the array is empty, although this may
 also happen at other
times. If ARRAY is omitted, pops the @ARGV array in the main program, but the @_ array in
subroutines, just like shift.

Starting with Perl 5.14, an experimental feature allowed pop to take a
 scalar expression. This
experiment has been deemed unsuccessful, and was
 removed as of Perl 5.24.

pos SCALAR

pos

Returns the offset of where the last m//g search left off for the
 variable in question ($_ is used
when the variable is not
 specified). Note that 0 is a valid match offset. undef indicates
 that
the search position is reset (usually due to match failure, but
 can also be because no match
has yet been run on the scalar).

pos directly accesses the location used by the regexp
 engine to store the offset, so assigning
to pos will
 change that offset, and so will also influence the \G zero-width
 assertion in regular
expressions. Both of these effects take place for
 the next match, so you can't affect the
position with pos during the current match, such as in (?{pos() = 5}) or s//pos() =
5/e.

Setting pos also resets the matched with
 zero-length flag, described
 under "Repeated
Patterns Matching a Zero-length Substring" in perlre.

Because a failed m//gc match doesn't reset the offset, the return
 from pos won't change
either in this case. See perlre and perlop.

print FILEHANDLE LIST

print FILEHANDLE

print LIST

print

Perl version 5.24.0 documentation - perlfunc

Page 65http://perldoc.perl.org

Prints a string or a list of strings. Returns true if successful.
 FILEHANDLE may be a scalar
variable containing the name of or a reference
 to the filehandle, thus introducing one level of
indirection. (NOTE: If
 FILEHANDLE is a variable and the next token is a term, it may be

misinterpreted as an operator unless you interpose a + or put
 parentheses around the
arguments.) If FILEHANDLE is omitted, prints to the
 last selected (see select) output
handle. If
 LIST is omitted, prints $_ to the currently selected
 output handle. To use
FILEHANDLE alone to print the content of $_ to it, you must use a bareword filehandle like FH
, not an indirect one like $fh. To set the default output handle
 to something other than
STDOUT, use the select operation.

The current value of $, (if any) is printed between
 each LIST item. The current value of $\ (if
any) is
 printed after the entire LIST has been printed. Because print takes a
 LIST, anything in
the LIST is evaluated in list context, including any
 subroutines whose return lists you pass to
print. Be careful not to follow the print
 keyword with a left
 parenthesis unless you want the
corresponding right parenthesis to
 terminate the arguments to the print; put parentheses
around all arguments
 (or interpose a +, but that doesn't look as good).

If you're storing handles in an array or hash, or in general whenever
 you're using any
expression more complex than a bareword handle or a plain,
 unsubscripted scalar variable to
retrieve it, you will have to use a block
 returning the filehandle value instead, in which case the
LIST may not be
 omitted:

 print { $files[$i] } "stuff\n";
 print { $OK ? STDOUT : STDERR } "stuff\n";

Printing to a closed pipe or socket will generate a SIGPIPE signal. See perlipc for more on
signal handling.

printf FILEHANDLE FORMAT, LIST

printf FILEHANDLE

printf FORMAT, LIST

printf

Equivalent to print FILEHANDLE sprintf(FORMAT, LIST), except that $\ (the output
record separator) is not appended. The
 FORMAT and the LIST are actually parsed as a single
list. The first
 argument of the list will be interpreted as the printf format. This means that
printf(@_) will use $_[0] as the format. See sprintf for an explanation of the format

argument. If use locale (including use locale ':not_characters')
 is in effect and
POSIX::setlocale has been
 called, the character used for the decimal separator in
formatted
 floating-point numbers is affected by the LC_NUMERIC locale setting.
 See perllocale
and POSIX.

For historical reasons, if you omit the list, $_ is
 used as the format;
 to use FILEHANDLE
without a list, you must use a bareword filehandle like FH, not an indirect one like $fh.
However, this will rarely do what
 you want; if $_ contains formatting codes, they will be

replaced with the empty string and a warning will be emitted if warnings are enabled. Just use
print if
 you want to print the contents of $_.

Don't fall into the trap of using a printf when a simple print would do. The print is more
efficient and less error
 prone.

prototype FUNCTION

prototype

Returns the prototype of a function as a string (or undef if the
 function has no prototype).
FUNCTION is a reference to, or the name of,
 the function whose prototype you want to
retrieve. If FUNCTION is omitted, $_ is used.

If FUNCTION is a string starting with CORE::, the rest is taken as a
 name for a Perl builtin. If
the builtin's arguments
 cannot be adequately expressed by a prototype
 (such as system),
prototype
 returns undef, because the builtin
 does not really behave like a Perl function.

Perl version 5.24.0 documentation - perlfunc

Page 66http://perldoc.perl.org

Otherwise, the string
 describing the equivalent prototype is returned.

push ARRAY,LIST

Treats ARRAY as a stack by appending the values of LIST to the end of
 ARRAY. The length
of ARRAY increases by the length of LIST. Has the same
 effect as

 for my $value (LIST) {
 $ARRAY[++$#ARRAY] = $value;
 }

but is more efficient. Returns the number of elements in the array following
 the completed
push.

Starting with Perl 5.14, an experimental feature allowed push to take a
 scalar expression.
This experiment has been deemed unsuccessful, and was
 removed as of Perl 5.24.

q/STRING/

qq/STRING/

qw/STRING/

qx/STRING/

Generalized quotes. See "Quote-Like Operators" in perlop.

qr/STRING/

Regexp-like quote. See "Regexp Quote-Like Operators" in perlop.

quotemeta EXPR

quotemeta

Returns the value of EXPR with all the ASCII non-"word"
 characters backslashed. (That is, all
ASCII characters not matching /[A-Za-z_0-9]/ will be preceded by a backslash in the

returned string, regardless of any locale settings.)
 This is the internal function implementing

the \Q escape in double-quoted strings.
 (See below for the behavior on non-ASCII code
points.)

If EXPR is omitted, uses $_.

quotemeta (and \Q ... \E) are useful when interpolating strings into
 regular expressions,
because by default an interpolated variable will be
 considered a mini-regular expression. For
example:

 my $sentence = 'The quick brown fox jumped over the lazy dog';
 my $substring = 'quick.*?fox';
 $sentence =~ s{$substring}{big bad wolf};

Will cause $sentence to become 'The big bad wolf jumped over...'.

On the other hand:

 my $sentence = 'The quick brown fox jumped over the lazy dog';
 my $substring = 'quick.*?fox';
 $sentence =~ s{\Q$substring\E}{big bad wolf};

Or:

 my $sentence = 'The quick brown fox jumped over the lazy dog';
 my $substring = 'quick.*?fox';
 my $quoted_substring = quotemeta($substring);
 $sentence =~ s{$quoted_substring}{big bad wolf};

Will both leave the sentence as is.
 Normally, when accepting literal string input from the user,
quotemeta or \Q must be used.

Perl version 5.24.0 documentation - perlfunc

Page 67http://perldoc.perl.org

In Perl v5.14, all non-ASCII characters are quoted in non-UTF-8-encoded
 strings, but not
quoted in UTF-8 strings.

Starting in Perl v5.16, Perl adopted a Unicode-defined strategy for
 quoting non-ASCII
characters; the quoting of ASCII characters is
 unchanged.

Also unchanged is the quoting of non-UTF-8 strings when outside the
 scope of a use
feature 'unicode_strings',
 which is to quote all
 characters in the upper Latin1 range.
This provides complete backwards
 compatibility for old programs which do not use Unicode.
(Note that unicode_strings is automatically enabled within the scope of a use v5.12 or
greater.)

Within the scope of use locale, all non-ASCII Latin1 code
 points
 are quoted whether the
string is encoded as UTF-8 or not. As mentioned
 above, locale does not affect the quoting of
ASCII-range characters.
 This protects against those locales where characters such as "|"
are
 considered to be word characters.

Otherwise, Perl quotes non-ASCII characters using an adaptation from
 Unicode (see
http://www.unicode.org/reports/tr31/).
 The only code points that are quoted are those that
have any of the
 Unicode properties: Pattern_Syntax, Pattern_White_Space, White_Space,

Default_Ignorable_Code_Point, or General_Category=Control.

Of these properties, the two important ones are Pattern_Syntax and
 Pattern_White_Space.
They have been set up by Unicode for exactly this
 purpose of deciding which characters in a
regular expression pattern
 should be quoted. No character that can be in an identifier has
these
 properties.

Perl promises, that if we ever add regular expression pattern
 metacharacters to the dozen
already defined
 (\ | () [{ ^ $ * + ? .), that we will only use ones that have the

Pattern_Syntax property. Perl also promises, that if we ever add
 characters that are
considered to be white space in regular expressions
 (currently mostly affected by /x), they will
all have the
 Pattern_White_Space property.

Unicode promises that the set of code points that have these two
 properties will never change,
so something that is not quoted in v5.16
 will never need to be quoted in any future Perl
release. (Not all the
 code points that match Pattern_Syntax have actually had characters

assigned to them; so there is room to grow, but they are quoted
 whether assigned or not. Perl,
of course, would never use an
 unassigned code point as an actual metacharacter.)

Quoting characters that have the other 3 properties is done to enhance
 the readability of the
regular expression and not because they actually
 need to be quoted for regular expression
purposes (characters with the
 White_Space property are likely to be indistinguishable on the
page or
 screen from those with the Pattern_White_Space property; and the other
 two
properties contain non-printing characters).

rand EXPR

rand

Returns a random fractional number greater than or equal to 0 and less
 than the value of
EXPR. (EXPR should be positive.) If EXPR is
 omitted, the value 1 is used. Currently EXPR
with the value 0 is
 also special-cased as 1 (this was undocumented before Perl 5.8.0
 and is
subject to change in future versions of Perl). Automatically calls srand unless srand has
already been
 called. See also srand.

Apply int to the value returned by rand
 if you want random integers instead of random
fractional numbers. For
 example,

 int(rand(10))

returns a random integer between 0 and 9, inclusive.

(Note: If your rand function consistently returns numbers that are too
 large or too small, then
your version of Perl was probably compiled
 with the wrong number of RANDBITS.)

rand is not cryptographically secure. You should not rely
 on it in security-sensitive

Perl version 5.24.0 documentation - perlfunc

Page 68http://perldoc.perl.org

situations. As of this writing, a
 number of third-party CPAN modules offer random number
generators
 intended by their authors to be cryptographically secure,
 including: Data::Entropy,
Crypt::Random, Math::Random::Secure,
 and Math::TrulyRandom.

read FILEHANDLE,SCALAR,LENGTH,OFFSET

read FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH characters of data into variable SCALAR
 from the specified
FILEHANDLE. Returns the number of characters
 actually read, 0 at end of file, or undef if
there was an error (in
 the latter case $! is also set). SCALAR will be grown
 or shrunk
 so that
the last character actually read is the last character of the
 scalar after the read.

An OFFSET may be specified to place the read data at some place in the
 string other than the
beginning. A negative OFFSET specifies
 placement at that many characters counting
backwards from the end of
 the string. A positive OFFSET greater than the length of SCALAR

results in the string being padded to the required size with "\0"
 bytes before the result of the
read is appended.

The call is implemented in terms of either Perl's or your system's native fread(3) library
function. To get a true read(2) system call, see sysread.

Note the characters: depending on the status of the filehandle,
 either (8-bit) bytes or
characters are read. By default, all
 filehandles operate on bytes, but for example if the
filehandle has
 been opened with the :utf8 I/O layer (see open, and the open
 pragma), the
I/O will operate on UTF8-encoded Unicode
 characters, not bytes. Similarly for the :encoding
layer:
 in that case pretty much any characters can be read.

readdir DIRHANDLE

Returns the next directory entry for a directory opened by opendir.
 If used in list context,
returns all the rest of the entries in the
 directory. If there are no more entries, returns the
undefined value in
 scalar context and the empty list in list context.

If you're planning to filetest the return values out of a readdir, you'd better prepend the
directory in
 question. Otherwise, because we didn't chdir there,
 it would have been testing
the wrong file.

 opendir(my $dh, $some_dir) || die "Can't opendir $some_dir: $!";
 my @dots = grep { /^\./ && -f "$some_dir/$_" } readdir($dh);
 closedir $dh;

As of Perl 5.12 you can use a bare readdir in a while loop, which will set $_ on every
iteration.

 opendir(my $dh, $some_dir) || die "Can't open $some_dir: $!";
 while (readdir $dh) {
 print "$some_dir/$_\n";
 }
 closedir $dh;

To avoid confusing would-be users of your code who are running earlier
 versions of Perl with
mysterious failures, put this sort of thing at the
 top of your file to signal that your code will work
only on Perls of a
 recent vintage:

 use 5.012; # so readdir assigns to $_ in a lone while test

readline EXPR

readline

Reads from the filehandle whose typeglob is contained in EXPR (or from *ARGV if EXPR is
not provided). In scalar context, each call reads and
 returns the next line until end-of-file is
reached, whereupon the
 subsequent call returns undef. In list context, reads
 until end-of-file

Perl version 5.24.0 documentation - perlfunc

Page 69http://perldoc.perl.org

is reached and returns a list of lines. Note that the
 notion of "line" used here is whatever you
may have defined with $/ (or $INPUT_RECORD_SEPARATOR in English). See "$/" in perlvar.

When $/ is set to undef,
 when readline is in scalar context (i.e., file
 slurp mode), and
when an empty file is read, it returns '' the first
 time, followed by undef subsequently.

This is the internal function implementing the <EXPR>
 operator, but you can use it directly.
The <EXPR>
 operator is discussed in more detail in "I/O Operators" in perlop.

 my $line = <STDIN>;
 my $line = readline(STDIN); # same thing

If readline encounters an operating system error, $! will be set with the corresponding error
message.
 It can be helpful to check $! when you are reading from
 filehandles you don't trust,
such as a tty or a socket. The following
 example uses the operator form of readline and
dies
 if the result is not defined.

 while (! eof($fh)) {
 defined($_ = readline $fh) or die "readline failed: $!";
 ...
 }

Note that you have can't handle readline errors
 that way with the ARGV filehandle. In that
case, you have to open
 each element of @ARGV yourself since eof handles ARGV differently.

 foreach my $arg (@ARGV) {
 open(my $fh, $arg) or warn "Can't open $arg: $!";

 while (! eof($fh)) {
 defined($_ = readline $fh)
 or die "readline failed for $arg: $!";
 ...
 }
 }

readlink EXPR

readlink

Returns the value of a symbolic link, if symbolic links are
 implemented. If not, raises an
exception. If there is a system
 error, returns the undefined value and sets $! (errno).
 If EXPR
is omitted, uses $_.

Portability issues: "readlink" in perlport.

readpipe EXPR

readpipe

EXPR is executed as a system command.
 The collected standard output of the command is
returned.
 In scalar context, it comes back as a single (potentially
 multi-line) string. In list
context, returns a list of lines
 (however you've defined lines with $/ (or
$INPUT_RECORD_SEPARATOR in English)).
 This is the internal function implementing the
qx/EXPR/
 operator, but you can use it directly. The qx/EXPR/
 operator is discussed in more
detail in "I/O Operators" in perlop.
 If EXPR is omitted, uses $_.

recv SOCKET,SCALAR,LENGTH,FLAGS

Receives a message on a socket. Attempts to receive LENGTH characters
 of data into
variable SCALAR from the specified SOCKET filehandle.
 SCALAR will be grown or shrunk to
the length actually read. Takes the
 same flags as the system call of the same name. Returns
the address
 of the sender if SOCKET's protocol supports this; returns an empty
 string
otherwise. If there's an error, returns the undefined value.
 This call is actually implemented in
terms of the recvfrom(2) system call.
 See "UDP: Message Passing" in perlipc for examples.

Perl version 5.24.0 documentation - perlfunc

Page 70http://perldoc.perl.org

Note the characters: depending on the status of the socket, either
 (8-bit) bytes or characters
are received. By default all sockets
 operate on bytes, but for example if the socket has been
changed using binmode to operate with the :encoding(utf8) I/O layer (see the open
pragma), the I/O will
 operate on UTF8-encoded Unicode
 characters, not bytes. Similarly for
the :encoding layer: in that
 case pretty much any characters can be read.

redo LABEL

redo EXPR

redo

The redo command restarts the loop block without
 evaluating the conditional again. The
continue
 block, if any, is not executed. If
 the LABEL is omitted, the command refers to the
innermost enclosing
 loop. The redo EXPR form, available starting in Perl 5.18.0, allows a

label name to be computed at run time, and is otherwise identical to redo
 LABEL. Programs
that want to lie to themselves about what was just input
 normally use this command:

 # a simpleminded Pascal comment stripper
 # (warning: assumes no { or } in strings)
 LINE: while (<STDIN>) {
 while (s|({.*}.*){.*}|$1 |) {}
 s|{.*}| |;
 if (s|{.*| |) {
 my $front = $_;
 while (<STDIN>) {
 if (/}/) { # end of comment?
 s|^|$front\{|;
 redo LINE;
 }
 }
 }
 print;
 }

redo cannot be used to retry a block that returns a
 value such as eval {}, sub {}, or do
{}, and should not be used
 to exit a grep or map
 operation.

Note that a block by itself is semantically identical to a loop
 that executes once. Thus redo
inside such a block
 will effectively turn it into a looping construct.

See also continue for an illustration of how last, next, and redo work.

Unlike most named operators, this has the same precedence as assignment.
 It is also exempt
from the looks-like-a-function rule, so redo ("foo")."bar" will cause "bar" to be part of
the argument to redo.

ref EXPR

ref

Returns a non-empty string if EXPR is a reference, the empty
 string otherwise. If EXPR is not
specified, $_ will be
 used. The value returned depends on the type of thing the reference is
 a
reference to.

Builtin types include:

 SCALAR
 ARRAY
 HASH
 CODE
 REF
 GLOB
 LVALUE

Perl version 5.24.0 documentation - perlfunc

Page 71http://perldoc.perl.org

 FORMAT
 IO
 VSTRING
 Regexp

You can think of ref as a typeof operator.

 if (ref($r) eq "HASH") {
 print "r is a reference to a hash.\n";
 }
 unless (ref($r)) {
 print "r is not a reference at all.\n";
 }

The return value LVALUE indicates a reference to an lvalue that is not
 a variable. You get this
from taking the reference of function calls like pos or substr. VSTRING is
 returned if the
reference points to a version string.

The result Regexp indicates that the argument is a regular expression
 resulting from qr//.

If the referenced object has been blessed into a package, then that package
 name is returned
instead. But don't use that, as it's now considered
 "bad practice". For one reason, an object
could be using a class called Regexp or IO, or even HASH. Also, ref doesn't
 take into
account subclasses, like isa does.

Instead, use blessed (in the Scalar::Util
 module) for boolean checks, isa
 for specific class
checks and reftype (also
 from Scalar::Util) for type checks. (See perlobj for details and
 a
blessed/isa
 example.)

See also perlref.

rename OLDNAME,NEWNAME

Changes the name of a file; an existing file NEWNAME will be
 clobbered. Returns true for
success, false otherwise.

Behavior of this function varies wildly depending on your system
 implementation. For
example, it will usually not work across file system
 boundaries, even though the system mv
command sometimes compensates
 for this. Other restrictions include whether it works on
directories,
 open files, or pre-existing files. Check perlport and either the rename(2) manpage
or equivalent system documentation for details.

For a platform independent move function look at
 the File::Copy module.

Portability issues: "rename" in perlport.

require VERSION

require EXPR

require

Demands a version of Perl specified by VERSION, or demands some semantics
 specified by
EXPR or by $_ if EXPR is not supplied.

VERSION may be either a numeric argument such as 5.006, which will be
 compared to $], or
a literal of the form v5.6.1, which
 will be compared to $^V (or $PERL_VERSION in English). An
exception is raised if VERSION is greater than the
 version of the current Perl interpreter.
Compare with use, which can do a similar check at
 compile time.

Specifying VERSION as a literal of the form v5.6.1 should generally be
 avoided, because it
leads to misleading error messages under earlier
 versions of Perl that do not support this
syntax. The equivalent numeric
 version should be used instead.

 require v5.6.1; # run time version check
 require 5.6.1; # ditto
 require 5.006_001; # ditto; preferred for backwards

Perl version 5.24.0 documentation - perlfunc

Page 72http://perldoc.perl.org

 compatibility

Otherwise, require demands that a library file be
 included if it hasn't already been included.
The file is included via
 the do-FILE mechanism, which is essentially just a variety of eval with
the
 caveat that lexical variables in the invoking script will be invisible
 to the included code. If it
were implemented in pure Perl, it
 would have semantics similar to the following:

 use Carp 'croak';
 use version;

 sub require {
 my ($filename) = @_;
 if (my $version = eval { version->parse($filename) }) {
 if ($version > $^V) {
 my $vn = $version->normal;
 croak "Perl $vn required--this is only $^V, stopped";
 }
 return 1;
 }

 if (exists $INC{$filename}) {
 return 1 if $INC{$filename};
 croak "Compilation failed in require";
 }

 foreach $prefix (@INC) {
 if (ref($prefix)) {
 #... do other stuff - see text below
 }
 # (see text below about possible appending of .pmc
 # suffix to $filename)
 my $realfilename = "$prefix/$filename";
 next if ! -e $realfilename || -d _ || -b _;
 $INC{$filename} = $realfilename;
 my $result = do($realfilename);
 # but run in caller's namespace

 if (!defined $result) {
 $INC{$filename} = undef;
 croak $@ ? "$@Compilation failed in require"
 : "Can't locate $filename: $!\n";
 }
 if (!$result) {
 delete $INC{$filename};
 croak "$filename did not return true value";
 }
 $! = 0;
 return $result;
 }
 croak "Can't locate $filename in \@INC ...";
 }

Note that the file will not be included twice under the same specified
 name.

The file must return true as the last statement to indicate
 successful execution of any
initialization code, so it's customary to
 end such a file with 1; unless you're sure it'll return true
otherwise. But it's better just to put the 1;, in case you add more
 statements.

Perl version 5.24.0 documentation - perlfunc

Page 73http://perldoc.perl.org

If EXPR is a bareword, require assumes a .pm
 extension and replaces :: with / in the
filename for you,
 to make it easy to load standard modules. This form of loading of
 modules
does not risk altering your namespace.

In other words, if you try this:

 require Foo::Bar; # a splendid bareword

The require function will actually look for the Foo/Bar.pm file in the
 directories specified in the
@INC array.

But if you try this:

 my $class = 'Foo::Bar';
 require $class; # $class is not a bareword
 #or
 require "Foo::Bar"; # not a bareword because of the ""

The require function will look for the Foo::Bar file in the @INC array and
 will complain about not
finding Foo::Bar there. In this case you can do:

 eval "require $class";

Now that you understand how require looks for
 files with a bareword argument, there is a
little extra functionality
 going on behind the scenes. Before require looks
 for a .pm
extension, it will first look for a similar filename with a .pmc extension. If this file is found, it will
be loaded in place of
 any file ending in a .pm extension.

You can also insert hooks into the import facility by putting Perl code
 directly into the @INC
array. There are three forms
 of hooks: subroutine references, array references, and blessed
objects.

Subroutine references are the simplest case. When the inclusion system
 walks through @INC
and encounters a subroutine, this
 subroutine gets called with two parameters, the first a
reference to
 itself, and the second the name of the file to be included (e.g., Foo/Bar.pm). The
subroutine should return either nothing or else a
 list of up to four values in the following order:

1 A reference to a scalar, containing any initial source code to prepend to
 the file or
generator output.

2 A filehandle, from which the file will be read.

3 A reference to a subroutine. If there is no filehandle (previous item),
 then this
subroutine is expected to generate one line of source code per
 call, writing the line into
$_ and returning 1, then
 finally at end of file returning 0. If there is a filehandle, then
the
 subroutine will be called to act as a simple source filter, with the
 line as read in $_.

Again, return 1 for each valid line, and 0 after all lines have been
 returned.

4 Optional state for the subroutine. The state is passed in as $_[1]. A
 reference to the
subroutine itself is passed in as $_[0].

If an empty list, undef, or nothing that matches the
 first 3 values above is returned, then
require
 looks at the remaining elements of @INC.
 Note that this filehandle must be a real
filehandle (strictly a typeglob
 or reference to a typeglob, whether blessed or unblessed); tied
filehandles
 will be ignored and processing will stop there.

If the hook is an array reference, its first element must be a subroutine
 reference. This
subroutine is called as above, but the first parameter is
 the array reference. This lets you
indirectly pass arguments to
 the subroutine.

In other words, you can write:

 push @INC, \&my_sub;
 sub my_sub {
 my ($coderef, $filename) = @_; # $coderef is \&my_sub

Perl version 5.24.0 documentation - perlfunc

Page 74http://perldoc.perl.org

 ...
 }

or:

 push @INC, [\&my_sub, $x, $y, ...];
 sub my_sub {
 my ($arrayref, $filename) = @_;
 # Retrieve $x, $y, ...
 my (undef, @parameters) = @$arrayref;
 ...
 }

If the hook is an object, it must provide an INC method that will be
 called as above, the first
parameter being the object itself. (Note that
 you must fully qualify the sub's name, as
unqualified INC is always forced
 into package main.) Here is a typical code layout:

 # In Foo.pm
 package Foo;
 sub new { ... }
 sub Foo::INC {
 my ($self, $filename) = @_;
 ...
 }

 # In the main program
 push @INC, Foo->new(...);

These hooks are also permitted to set the %INC entry
 corresponding to the files they have
loaded. See "%INC" in perlvar.

For a yet-more-powerful import facility, see use and perlmod.

reset EXPR

reset

Generally used in a continue block at the end of a
 loop to clear variables and reset
m?pattern? searches so that they
 work again. The
 expression is interpreted as a list of
single characters (hyphens
 allowed for ranges). All variables and arrays beginning with one of

those letters are reset to their pristine state. If the expression is
 omitted, one-match searches (
m?pattern?) are reset to match again.
 Only resets variables or searches in the current
package. Always returns
 1. Examples:

 reset 'X'; # reset all X variables
 reset 'a-z'; # reset lower case variables
 reset; # just reset m?one-time? searches

Resetting "A-Z" is not recommended because you'll wipe out your @ARGV and @INC arrays
and your %ENV hash.
 Resets only package variables; lexical variables are unaffected, but
 they
clean themselves up on scope exit anyway, so you'll probably want
 to use them instead. See
my.

return EXPR

return

Returns from a subroutine, eval, do FILE, sort block or regex
 eval block (but not a grep
or map block) with the value
 given in EXPR. Evaluation of EXPR may be in list, scalar, or void

context, depending on how the return value will be used, and the context
 may vary from one
execution to the next (see wantarray). If no EXPR
 is given, returns an empty list in list
context, the undefined value in
 scalar context, and (of course) nothing at all in void context.

Perl version 5.24.0 documentation - perlfunc

Page 75http://perldoc.perl.org

(In the absence of an explicit return, a subroutine, eval,
 or do FILE automatically returns
the value of the last expression
 evaluated.)

Unlike most named operators, this is also exempt from the
 looks-like-a-function rule, so
return ("foo")."bar" will
 cause "bar" to be part of the argument to return.

reverse LIST

In list context, returns a list value consisting of the elements
 of LIST in the opposite order. In
scalar context, concatenates the
 elements of LIST and returns a string value with all
characters
 in the opposite order.

 print join(", ", reverse "world", "Hello"); # Hello, world

 print scalar reverse "dlrow ,", "olleH"; # Hello, world

Used without arguments in scalar context, reverse
 reverses $_.

 $_ = "dlrow ,olleH";
 print reverse; # No output, list context
 print scalar reverse; # Hello, world

Note that reversing an array to itself (as in @a = reverse @a) will
 preserve non-existent
elements whenever possible; i.e., for non-magical
 arrays or for tied arrays with EXISTS and
DELETE methods.

This operator is also handy for inverting a hash, although there are some
 caveats. If a value is
duplicated in the original hash, only one of those
 can be represented as a key in the inverted
hash. Also, this has to
 unwind one hash and build a whole new one, which may take some
time
 on a large hash, such as from a DBM file.

 my %by_name = reverse %by_address; # Invert the hash

rewinddir DIRHANDLE

Sets the current position to the beginning of the directory for the readdir routine on
DIRHANDLE.

Portability issues: "rewinddir" in perlport.

rindex STR,SUBSTR,POSITION

rindex STR,SUBSTR

Works just like index except that it
 returns the position of the last
 occurrence of SUBSTR in
STR. If POSITION is specified, returns the
 last occurrence beginning at or before that position.

rmdir FILENAME

rmdir

Deletes the directory specified by FILENAME if that directory is
 empty. If it succeeds it returns
true; otherwise it returns false and
 sets $! (errno). If FILENAME is omitted, uses $_.

To remove a directory tree recursively (rm -rf on Unix) look at
 the rmtree function of the
File::Path
 module.

s///

The substitution operator. See "Regexp Quote-Like Operators" in perlop.

say FILEHANDLE LIST

say FILEHANDLE

say LIST

say

Perl version 5.24.0 documentation - perlfunc

Page 76http://perldoc.perl.org

Just like print, but implicitly appends a
 newline. say LIST is simply an abbreviation for {
local $\ = "\n"; print LIST }. To use FILEHANDLE without a LIST to
 print the
contents of $_ to it, you must use a bareword
 filehandle like FH, not an indirect one like $fh.

say is available only if the "say" feature is enabled or if it is
 prefixed with CORE::. The
"say" feature is enabled automatically
 with a use v5.10 (or higher) declaration in the
current scope.

scalar EXPR

Forces EXPR to be interpreted in scalar context and returns the value
 of EXPR.

 my @counts = (scalar @a, scalar @b, scalar @c);

There is no equivalent operator to force an expression to
 be interpolated in list context
because in practice, this is never
 needed. If you really wanted to do so, however, you could
use
 the construction @{[(some expression)]}, but usually a simple (some
expression) suffices.

Because scalar is a unary operator, if you
 accidentally use a
 parenthesized list for the
EXPR, this behaves as a scalar comma expression,
 evaluating all but the last element in void
context and returning the final
 element evaluated in scalar context. This is seldom what you
want.

The following single statement:

 print uc(scalar(foo(), $bar)), $baz;

is the moral equivalent of these two:

 foo();
 print(uc($bar), $baz);

See perlop for more details on unary operators and the comma operator,
 and perldata for
details on evaluating a hash in scalar contex.

seek FILEHANDLE,POSITION,WHENCE

Sets FILEHANDLE's position, just like the fseek(3) call of C stdio.
 FILEHANDLE may be an
expression whose value gives the name of the
 filehandle. The values for WHENCE are 0 to
set the new position in bytes to POSITION; 1 to set it to the current position plus
 POSITION;
and 2 to set it to EOF plus POSITION, typically
 negative. For WHENCE you may use the
constants SEEK_SET, SEEK_CUR, and SEEK_END (start of the file, current position, end
 of the
file) from the Fcntl module. Returns 1 on success, false
 otherwise.

Note the in bytes: even if the filehandle has been set to
 operate on characters (for example by
using the :encoding(utf8) open
 layer), tell will return byte offsets, not
 character offsets
(because implementing that would render seek and tell rather slow).

If you want to position the file for sysread or syswrite, don't use seek, because buffering
makes its
 effect on the file's read-write position unpredictable and non-portable.
 Use sysseek
instead.

Due to the rules and rigors of ANSI C, on some systems you have to do a
 seek whenever you
switch between reading and writing. Amongst other
 things, this may have the effect of calling
stdio's clearerr(3).
 A WHENCE of 1 (SEEK_CUR) is useful for not moving the file position:

 seek($fh, 0, 1);

This is also useful for applications emulating tail -f. Once you hit
 EOF on your read and
then sleep for a while, you (probably) have to stick in a
 dummy seek to reset things. The
seek doesn't change the position,
 but it does clear the end-of-file condition on the handle, so
that the
 next readline FILE makes Perl try again to read something. (We hope.)

If that doesn't work (some I/O implementations are particularly
 cantankerous), you might need

Perl version 5.24.0 documentation - perlfunc

Page 77http://perldoc.perl.org

something like this:

 for (;;) {
 for ($curpos = tell($fh); $_ = readline($fh);
 $curpos = tell($fh)) {
 # search for some stuff and put it into files
 }
 sleep($for_a_while);
 seek($fh, $curpos, 0);
 }

seekdir DIRHANDLE,POS

Sets the current position for the readdir
 routine on DIRHANDLE. POS must be a value
returned by telldir. seekdir
 also has the same caveats about possible directory
compaction as the
 corresponding system library routine.

select FILEHANDLE

select

Returns the currently selected filehandle. If FILEHANDLE is supplied,
 sets the new current
default filehandle for output. This has two
 effects: first, a write or a print without a
filehandle
 default to this FILEHANDLE. Second, references to variables related to
 output will
refer to this output channel.

For example, to set the top-of-form format for more than one
 output channel, you might do the
following:

 select(REPORT1);
 $^ = 'report1_top';
 select(REPORT2);
 $^ = 'report2_top';

FILEHANDLE may be an expression whose value gives the name of the
 actual filehandle.
Thus:

 my $oldfh = select(STDERR); $| = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with
 methods, preferring to
write the last example as:

 STDERR->autoflush(1);

(Prior to Perl version 5.14, you have to use IO::Handle; explicitly
 first.)

Portability issues: "select" in perlport.

select RBITS,WBITS,EBITS,TIMEOUT

This calls the select(2) syscall with the bit masks specified, which
 can be constructed using
fileno and vec, along these lines:

 my $rin = my $win = my $ein = '';
 vec($rin, fileno(STDIN), 1) = 1;
 vec($win, fileno(STDOUT), 1) = 1;
 $ein = $rin | $win;

If you want to select on many filehandles, you may wish to write a
 subroutine like this:

 sub fhbits {
 my @fhlist = @_;
 my $bits = "";
 for my $fh (@fhlist) {

Perl version 5.24.0 documentation - perlfunc

Page 78http://perldoc.perl.org

 vec($bits, fileno($fh), 1) = 1;
 }
 return $bits;
 }
 my $rin = fhbits(*STDIN, $tty, $mysock);

The usual idiom is:

 my ($nfound, $timeleft) =
 select(my $rout = $rin, my $wout = $win, my $eout = $ein,
 $timeout);

or to block until something becomes ready just do this

 my $nfound =
 select(my $rout = $rin, my $wout = $win, my $eout = $ein, undef);

Most systems do not bother to return anything useful in $timeleft, so
 calling select in
scalar context
 just returns $nfound.

Any of the bit masks can also be undef. The timeout,
 if specified, is
 in seconds, which may
be fractional. Note: not all implementations are
 capable of returning the $timeleft. If not,
they always return $timeleft equal to the supplied $timeout.

You can effect a sleep of 250 milliseconds this way:

 select(undef, undef, undef, 0.25);

Note that whether select gets
 restarted after signals (say, SIGALRM) is
implementation-dependent. See
 also perlport for notes on the portability of select.

On error, select behaves just
 like select(2): it returns -1 and sets $!.

On some Unixes, select(2) may report a socket file descriptor as
 "ready for reading" even
when no data is available, and thus any
 subsequent read would block.
 This can be avoided if
you always use O_NONBLOCK on the socket. See select(2) and fcntl(2) for further details.

The standard IO::Select module provides a
 user-friendlier interface to select, mostly
because it does
 all the bit-mask work for you.

WARNING: One should not attempt to mix buffered I/O (like read or readline) with select
, except as permitted by
 POSIX, and even then only on POSIX systems. You have to use
sysread instead.

Portability issues: "select" in perlport.

semctl ID,SEMNUM,CMD,ARG

Calls the System V IPC function semctl(2). You'll probably have to say

 use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT or
 GETALL, then ARG must
be a variable that will hold the returned
 semid_ds structure or semaphore value array. Returns
like ioctl:
 the undefined value for error, "0 but true" for zero, or the actual
 return value
otherwise. The ARG must consist of a vector of native
 short integers, which may be created
with pack("s!",(0)x$nsem).
 See also "SysV IPC" in perlipc and the documentation for
IPC::SysV and IPC::Semaphore.

Portability issues: "semctl" in perlport.

semget KEY,NSEMS,FLAGS

Calls the System V IPC function semget(2). Returns the semaphore id, or
 the undefined value
on error. See also "SysV IPC" in perlipc and the documentation for IPC::SysV and
IPC::Semaphore.

Perl version 5.24.0 documentation - perlfunc

Page 79http://perldoc.perl.org

Portability issues: "semget" in perlport.

semop KEY,OPSTRING

Calls the System V IPC function semop(2) for semaphore operations
 such as signalling and
waiting. OPSTRING must be a packed array of
 semop structures. Each semop structure can
be generated with pack("s!3", $semnum, $semop, $semflag). The length of
OPSTRING
 implies the number of semaphore operations. Returns true if
 successful, false on
error. As an example, the
 following code waits on semaphore $semnum of semaphore id
$semid:

 my $semop = pack("s!3", $semnum, -1, 0);
 die "Semaphore trouble: $!\n" unless semop($semid, $semop);

To signal the semaphore, replace -1 with 1. See also "SysV IPC" in perlipc and the
documentation for IPC::SysV and IPC::Semaphore.

Portability issues: "semop" in perlport.

send SOCKET,MSG,FLAGS,TO

send SOCKET,MSG,FLAGS

Sends a message on a socket. Attempts to send the scalar MSG to the SOCKET
 filehandle.
Takes the same flags as the system call of the same name. On
 unconnected sockets, you
must specify a destination to send to, in which
 case it does a sendto(2) syscall. Returns the
number of characters sent,
 or the undefined value on error. The sendmsg(2) syscall is
currently
 unimplemented. See "UDP: Message Passing" in perlipc for examples.

Note the characters: depending on the status of the socket, either
 (8-bit) bytes or characters
are sent. By default all sockets operate
 on bytes, but for example if the socket has been
changed using binmode to operate with the :encoding(utf8) I/O layer (see open, or
 the
open pragma), the I/O will operate on UTF-8
 encoded Unicode characters, not bytes. Similarly
for the :encoding
 layer: in that case pretty much any characters can be sent.

setpgrp PID,PGRP

Sets the current process group for the specified PID, 0 for the current
 process. Raises an
exception when used on a machine that doesn't
 implement POSIX setpgid(2) or BSD
setpgrp(2). If the arguments
 are omitted, it defaults to 0,0. Note that the BSD 4.2 version of
setpgrp does not accept any arguments, so only setpgrp(0,0) is portable. See also
POSIX::setsid().

Portability issues: "setpgrp" in perlport.

setpriority WHICH,WHO,PRIORITY

Sets the current priority for a process, a process group, or a user.
 (See setpriority(2).) Raises
an exception when used on a machine
 that doesn't implement setpriority(2).

Portability issues: "setpriority" in perlport.

setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL

Sets the socket option requested. Returns undef on
 error. Use integer constants provided by
the Socket module
 for
 LEVEL and OPNAME. Values for LEVEL can also be obtained from

getprotobyname. OPTVAL might either be a packed string or an integer.
 An integer OPTVAL
is shorthand for pack("i", OPTVAL).

An example disabling Nagle's algorithm on a socket:

 use Socket qw(IPPROTO_TCP TCP_NODELAY);
 setsockopt($socket, IPPROTO_TCP, TCP_NODELAY, 1);

Portability issues: "setsockopt" in perlport.

shift ARRAY

Perl version 5.24.0 documentation - perlfunc

Page 80http://perldoc.perl.org

shift

Shifts the first value of the array off and returns it, shortening the
 array by 1 and moving
everything down. If there are no elements in the
 array, returns the undefined value. If ARRAY
is omitted, shifts the @_ array within the lexical scope of subroutines and
 formats, and the
@ARGV array outside a subroutine
 and also within the lexical scopes
 established by the eval
STRING, BEGIN {}, INIT {}, CHECK {}, UNITCHECK {}, and END {} constructs.

Starting with Perl 5.14, an experimental feature allowed shift to take a
 scalar expression.
This experiment has been deemed unsuccessful, and was
 removed as of Perl 5.24.

See also unshift, push,
 and pop. shift and unshift do the same thing to the left end of

an array that pop and push do to
 the right end.

shmctl ID,CMD,ARG

Calls the System V IPC function shmctl. You'll probably have to say

 use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT,
 then ARG must be a variable
that will hold the returned shmid_ds
 structure. Returns like ioctl: undef for error; "0
 but true"
for zero; and the actual return value otherwise.
 See also "SysV IPC" in perlipc and the
documentation for IPC::SysV.

Portability issues: "shmctl" in perlport.

shmget KEY,SIZE,FLAGS

Calls the System V IPC function shmget. Returns the shared memory
 segment id, or undef
on error.
 See also "SysV IPC" in perlipc and the documentation for IPC::SysV.

Portability issues: "shmget" in perlport.

shmread ID,VAR,POS,SIZE

shmwrite ID,STRING,POS,SIZE

Reads or writes the System V shared memory segment ID starting at
 position POS for size
SIZE by attaching to it, copying in/out, and
 detaching from it. When reading, VAR must be a
variable that will
 hold the data read. When writing, if STRING is too long, only SIZE
 bytes are
used; if STRING is too short, nulls are written to fill out
 SIZE bytes. Return true if successful,
false on error. shmread taints the variable. See also "SysV IPC" in perlipc and the
documentation for IPC::SysV and the IPC::Shareable
 module from CPAN.

Portability issues: "shmread" in perlport and "shmwrite" in perlport.

shutdown SOCKET,HOW

Shuts down a socket connection in the manner indicated by HOW, which
 has the same
interpretation as in the syscall of the same name.

 shutdown($socket, 0); # I/we have stopped reading data
 shutdown($socket, 1); # I/we have stopped writing data
 shutdown($socket, 2); # I/we have stopped using this socket

This is useful with sockets when you want to tell the other
 side you're done writing but not
done reading, or vice versa.
 It's also a more insistent form of close because it also
 disables
the file descriptor in any forked copies in other
 processes.

Returns 1 for success; on error, returns undef if
 the first argument is not a valid filehandle, or
returns 0 and sets $! for any other failure.

sin EXPR

sin

Returns the sine of EXPR (expressed in radians). If EXPR is omitted,
 returns sine of $_.

Perl version 5.24.0 documentation - perlfunc

Page 81http://perldoc.perl.org

For the inverse sine operation, you may use the Math::Trig::asin
 function, or use this
relation:

 sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }

sleep EXPR

sleep

Causes the script to sleep for (integer) EXPR seconds, or forever if no
 argument is given.
Returns the integer number of seconds actually slept.

May be interrupted if the process receives a signal such as SIGALRM.

 eval {
 local $SIG{ALRM} = sub { die "Alarm!\n" };
 sleep;
 };
 die $@ unless $@ eq "Alarm!\n";

You probably cannot mix alarm and sleep calls, because sleep is often
 implemented using
alarm.

On some older systems, it may sleep up to a full second less than what
 you requested,
depending on how it counts seconds. Most modern systems
 always sleep the full amount.
They may appear to sleep longer than that,
 however, because your process might not be
scheduled right away in a
 busy multitasking system.

For delays of finer granularity than one second, the Time::HiRes
 module (from CPAN, and
starting from Perl 5.8 part of the standard
 distribution) provides usleep.
 You may also use
Perl's four-argument
 version of select leaving the
 first three arguments undefined, or you
might be able to use the syscall interface to access setitimer(2)
 if your system supports it.
See perlfaq8 for details.

See also the POSIX module's pause function.

socket SOCKET,DOMAIN,TYPE,PROTOCOL

Opens a socket of the specified kind and attaches it to filehandle
 SOCKET. DOMAIN, TYPE,
and PROTOCOL are specified the same as for
 the syscall of the same name. You should use
 Socket first
 to get the proper definitions imported. See the examples in "Sockets:
Client/Server Communication" in perlipc.

On systems that support a close-on-exec flag on files, the flag will
 be set for the newly opened
file descriptor, as determined by the
 value of $^F. See "$^F" in perlvar.

socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL

Creates an unnamed pair of sockets in the specified domain, of the
 specified type. DOMAIN,
TYPE, and PROTOCOL are specified the same as
 for the syscall of the same name. If
unimplemented, raises an exception.
 Returns true if successful.

On systems that support a close-on-exec flag on files, the flag will
 be set for the newly opened
file descriptors, as determined by the value
 of $^F. See "$^F" in perlvar.

Some systems define pipe in terms of socketpair, in
 which a call to pipe($rdr, $wtr)
is essentially:

 use Socket;
 socketpair(my $rdr, my $wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
 shutdown($rdr, 1); # no more writing for reader
 shutdown($wtr, 0); # no more reading for writer

See perlipc for an example of socketpair use. Perl 5.8 and later will
 emulate socketpair using
IP sockets to localhost if your system implements
 sockets but not socketpair.

Perl version 5.24.0 documentation - perlfunc

Page 82http://perldoc.perl.org

Portability issues: "socketpair" in perlport.

sort SUBNAME LIST

sort BLOCK LIST

sort LIST

In list context, this sorts the LIST and returns the sorted list value.
 In scalar context, the
behaviour of sort is
 undefined.

If SUBNAME or BLOCK is omitted, sorts in
 standard string comparison
 order. If SUBNAME
is specified, it gives the name of a subroutine
 that returns an integer less than, equal to, or
greater than 0,
 depending on how the elements of the list are to be ordered. (The <=> and
cmp operators are extremely useful in such routines.)
 SUBNAME may be a scalar variable
name (unsubscripted), in which case
 the value provides the name of (or a reference to) the
actual
 subroutine to use. In place of a SUBNAME, you can provide a BLOCK as
 an
anonymous, in-line sort subroutine.

If the subroutine's prototype is ($$), the elements to be compared are
 passed by reference in
@_, as for a normal subroutine.
 This is slower than unprototyped subroutines, where the
elements to be
 compared are passed into the subroutine as the package global variables $a
and $b (see example below). Note that in the latter case, it
 is usually highly
counter-productive to declare $a and $b as
 lexicals.

If the subroutine is an XSUB, the elements to be compared are pushed on
 to the stack, the
way arguments are usually passed to XSUBs. $a and $b are not set.

The values to be compared are always passed by reference and should not
 be modified.

You also cannot exit out of the sort block or subroutine using any of the
 loop control operators
described in perlsyn or with goto.

When use locale (but not use locale ':not_characters')
 is in effect, sort LIST
sorts LIST according to the
 current collation locale. See perllocale.

sort returns aliases into the original list,
 much as a for loop's index variable aliases the list
elements. That is,
 modifying an element of a list returned by sort
 (for example, in a foreach
, map or grep)
 actually modifies the element in the original list. This is usually
 something to be
avoided when writing clear code.

Perl 5.6 and earlier used a quicksort algorithm to implement sort.
 That algorithm was not
stable and could go quadratic. (A stable sort
 preserves the input order of elements that
compare equal. Although
 quicksort's run time is O(NlogN) when averaged over all arrays of

length N, the time can be O(N**2), quadratic behavior, for some
 inputs.) In 5.7, the quicksort
implementation was replaced with
 a stable mergesort algorithm whose worst-case behavior is
O(NlogN).
 But benchmarks indicated that for some inputs, on some platforms,
 the original
quicksort was faster. 5.8 has a sort pragma for
 limited control of the sort. Its rather blunt
control of the
 underlying algorithm may not persist into future Perls, but the
 ability to
characterize the input or output in implementation
 independent ways quite probably will.

Examples:

 # sort lexically
 my @articles = sort @files;

 # same thing, but with explicit sort routine
 my @articles = sort {$a cmp $b} @files;

 # now case-insensitively
 my @articles = sort {fc($a) cmp fc($b)} @files;

 # same thing in reversed order
 my @articles = sort {$b cmp $a} @files;

Perl version 5.24.0 documentation - perlfunc

Page 83http://perldoc.perl.org

 # sort numerically ascending
 my @articles = sort {$a <=> $b} @files;

 # sort numerically descending
 my @articles = sort {$b <=> $a} @files;

 # this sorts the %age hash by value instead of key
 # using an in-line function
 my @eldest = sort { $age{$b} <=> $age{$a} } keys %age;

 # sort using explicit subroutine name
 sub byage {
 $age{$a} <=> $age{$b}; # presuming numeric
 }
 my @sortedclass = sort byage @class;

 sub backwards { $b cmp $a }
 my @harry = qw(dog cat x Cain Abel);
 my @george = qw(gone chased yz Punished Axed);
 print sort @harry;
 # prints AbelCaincatdogx
 print sort backwards @harry;
 # prints xdogcatCainAbel
 print sort @george, 'to', @harry;
 # prints AbelAxedCainPunishedcatchaseddoggonetoxyz

 # inefficiently sort by descending numeric compare using
 # the first integer after the first = sign, or the
 # whole record case-insensitively otherwise

 my @new = sort {
 ($b =~ /=(\d+)/)[0] <=> ($a =~ /=(\d+)/)[0]
 ||
 fc($a) cmp fc($b)
 } @old;

 # same thing, but much more efficiently;
 # we'll build auxiliary indices instead
 # for speed
 my (@nums, @caps);
 for (@old) {
 push @nums, (/=(\d+)/ ? $1 : undef);
 push @caps, fc($_);
 }

 my @new = @old[sort {
 $nums[$b] <=> $nums[$a]
 ||
 $caps[$a] cmp $caps[$b]
 } 0..$#old
];

 # same thing, but without any temps
 my @new = map { $_->[0] }
 sort { $b->[1] <=> $a->[1]
 ||

Perl version 5.24.0 documentation - perlfunc

Page 84http://perldoc.perl.org

 $a->[2] cmp $b->[2]
 } map { [$_, /=(\d+)/, fc($_)] } @old;

 # using a prototype allows you to use any comparison subroutine
 # as a sort subroutine (including other package's subroutines)
 package Other;
 sub backwards ($$) { $_[1] cmp $_[0]; } # $a and $b are
 # not set here
 package main;
 my @new = sort Other::backwards @old;

 # guarantee stability, regardless of algorithm
 use sort 'stable';
 my @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

 # force use of mergesort (not portable outside Perl 5.8)
 use sort '_mergesort'; # note discouraging _
 my @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

Warning: syntactical care is required when sorting the list returned from
 a function. If you want
to sort the list returned by the function call find_records(@key), you can use:

 my @contact = sort { $a cmp $b } find_records @key;
 my @contact = sort +find_records(@key);
 my @contact = sort &find_records(@key);
 my @contact = sort(find_records(@key));

If instead you want to sort the array @key with the comparison routine find_records() then
you can use:

 my @contact = sort { find_records() } @key;
 my @contact = sort find_records(@key);
 my @contact = sort(find_records @key);
 my @contact = sort(find_records (@key));

You must not declare $a
 and $b as lexicals. They are package globals. That means
 that if
you're in the main package and type

 my @articles = sort {$b <=> $a} @files;

then $a and $b are $main::a and $main::b (or $::a and $::b),
 but if you're in the
FooPack package, it's the same as typing

 my @articles = sort {$FooPack::b <=> $FooPack::a} @files;

The comparison function is required to behave. If it returns
 inconsistent results (sometimes
saying $x[1] is less than $x[2] and
 sometimes saying the opposite, for example) the results
are not
 well-defined.

Because <=> returns undef when either operand
 is NaN (not-a-number), be careful when
sorting with a
 comparison function like $a <=> $b any lists that might contain a NaN. The
following example takes advantage that NaN != NaN to
 eliminate any NaNs from the input
list.

 my @result = sort { $a <=> $b } grep { $_ == $_ } @input;

splice ARRAY,OFFSET,LENGTH,LIST

splice ARRAY,OFFSET,LENGTH

splice ARRAY,OFFSET

Perl version 5.24.0 documentation - perlfunc

Page 85http://perldoc.perl.org

splice ARRAY

Removes the elements designated by OFFSET and LENGTH from an array, and
 replaces
them with the elements of LIST, if any. In list context,
 returns the elements removed from the
array. In scalar context,
 returns the last element removed, or undef if no
 elements are

removed. The array grows or shrinks as necessary.
 If OFFSET is negative then it starts that
far from the end of the array.
 If LENGTH is omitted, removes everything from OFFSET
onward.
 If LENGTH is negative, removes the elements from OFFSET onward
 except for
-LENGTH elements at the end of the array.
 If both OFFSET and LENGTH are omitted,
removes everything. If OFFSET is
 past the end of the array and a LENGTH was provided,
Perl issues a warning,
 and splices at the end of the array.

The following equivalences hold (assuming $#a >= $i)

 push(@a,$x,$y) splice(@a,@a,0,$x,$y)
 pop(@a) splice(@a,-1)
 shift(@a) splice(@a,0,1)
 unshift(@a,$x,$y) splice(@a,0,0,$x,$y)
 $a[$i] = $y splice(@a,$i,1,$y)

splice can be used, for example,
 to implement n-ary queue processing:

 sub nary_print {
 my $n = shift;
 while (my @next_n = splice @_, 0, $n) {
 say join q{ -- }, @next_n;
 }
 }

 nary_print(3, qw(a b c d e f g h));
 # prints:
 # a -- b -- c
 # d -- e -- f
 # g -- h

Starting with Perl 5.14, an experimental feature allowed splice to take a
 scalar expression.
This experiment has been deemed unsuccessful, and was
 removed as of Perl 5.24.

split /PATTERN/,EXPR,LIMIT

split /PATTERN/,EXPR

split /PATTERN/

split

Splits the string EXPR into a list of strings and returns the
 list in list context, or the size of the
list in scalar context.

If only PATTERN is given, EXPR defaults to $_.

Anything in EXPR that matches PATTERN is taken to be a separator
 that separates the EXPR
into substrings (called "fields") that
 do not include the separator. Note that a separator may be
longer than one character or even have no characters at all (the
 empty string, which is a
zero-width match).

The PATTERN need not be constant; an expression may be used
 to specify a pattern that
varies at runtime.

If PATTERN matches the empty string, the EXPR is split at the match
 position (between
characters). As an example, the following:

 print join(':', split(/b/, 'abc')), "\n";

uses the b in 'abc' as a separator to produce the output a:c.
 However, this:

Perl version 5.24.0 documentation - perlfunc

Page 86http://perldoc.perl.org

 print join(':', split(//, 'abc')), "\n";

uses empty string matches as separators to produce the output a:b:c; thus, the empty string
may be used to split EXPR into a
 list of its component characters.

As a special case for split,
 the empty pattern given in match operator syntax (//)

specifically matches the empty string, which is contrary to its usual
 interpretation as the last
successful match.

If PATTERN is /^/, then it is treated as if it used the multiline modifier (/^/m), since it
 isn't
much use otherwise.

As another special case, split emulates the default
 behavior of the
 command line tool awk
when the PATTERN is either omitted or a
 string composed of a single space character (such
as ' ' or "\x20", but not e.g. / /). In this case, any leading
 whitespace in EXPR is
removed before splitting occurs, and the PATTERN is
 instead treated as if it were /\s+/; in
particular, this means that any contiguous whitespace (not just a single space character) is
used as
 a separator. However, this special treatment can be avoided by specifying
 the pattern
/ / instead of the string " ", thereby allowing
 only a single space character to be a
separator. In earlier Perls this
 special case was restricted to the use of a plain " " as the

pattern argument to split; in Perl 5.18.0 and later this special case is
 triggered by any
expression which evaluates to the simple string " ".

If omitted, PATTERN defaults to a single space, " ", triggering
 the previously described awk
emulation.

If LIMIT is specified and positive, it represents the maximum number
 of fields into which the
EXPR may be split; in other words, LIMIT is
 one greater than the maximum number of times
EXPR may be split. Thus,
 the LIMIT value 1 means that EXPR may be split a maximum of
zero
 times, producing a maximum of one field (namely, the entire value of
 EXPR). For
instance:

 print join(':', split(//, 'abc', 1)), "\n";

produces the output abc, and this:

 print join(':', split(//, 'abc', 2)), "\n";

produces the output a:bc, and each of these:

 print join(':', split(//, 'abc', 3)), "\n";
 print join(':', split(//, 'abc', 4)), "\n";

produces the output a:b:c.

If LIMIT is negative, it is treated as if it were instead arbitrarily
 large; as many fields as
possible are produced.

If LIMIT is omitted (or, equivalently, zero), then it is usually
 treated as if it were instead
negative but with the exception that
 trailing empty fields are stripped (empty leading fields are
always
 preserved); if all fields are empty, then all fields are considered to
 be trailing (and are
thus stripped in this case). Thus, the following:

 print join(':', split(/,/, 'a,b,c,,,')), "\n";

produces the output a:b:c, but the following:

 print join(':', split(/,/, 'a,b,c,,,', -1)), "\n";

produces the output a:b:c:::.

In time-critical applications, it is worthwhile to avoid splitting
 into more fields than necessary.
Thus, when assigning to a list,
 if LIMIT is omitted (or zero), then LIMIT is treated as though it

were one larger than the number of variables in the list; for the
 following, LIMIT is implicitly 3:

Perl version 5.24.0 documentation - perlfunc

Page 87http://perldoc.perl.org

 my ($login, $passwd) = split(/:/);

Note that splitting an EXPR that evaluates to the empty string always
 produces zero fields,
regardless of the LIMIT specified.

An empty leading field is produced when there is a positive-width
 match at the beginning of
EXPR. For instance:

 print join(':', split(/ /, ' abc')), "\n";

produces the output :abc. However, a zero-width match at the
 beginning of EXPR never
produces an empty field, so that:

 print join(':', split(//, ' abc'));

produces the output :a:b:c (rather than : :a:b:c).

An empty trailing field, on the other hand, is produced when there is a
 match at the end of
EXPR, regardless of the length of the match
 (of course, unless a non-zero LIMIT is given
explicitly, such fields are
 removed, as in the last example). Thus:

 print join(':', split(//, ' abc', -1)), "\n";

produces the output :a:b:c:.

If the PATTERN contains capturing groups,
 then for each separator, an additional field is
produced for each substring
 captured by a group (in the order in which the groups are
specified,
 as per backreferences); if any group does not
 match, then it captures the undef
value instead of a
 substring. Also,
 note that any such additional field is produced whenever
there is a
 separator (that is, whenever a split occurs), and such an additional field
 does not
count towards the LIMIT. Consider the following expressions
 evaluated in list context (each
returned list is provided in the associated
 comment):

 split(/-|,/, "1-10,20", 3)
 # ('1', '10', '20')

 split(/(-|,)/, "1-10,20", 3)
 # ('1', '-', '10', ',', '20')

 split(/-|(,)/, "1-10,20", 3)
 # ('1', undef, '10', ',', '20')

 split(/(-)|,/, "1-10,20", 3)
 # ('1', '-', '10', undef, '20')

 split(/(-)|(,)/, "1-10,20", 3)
 # ('1', '-', undef, '10', undef, ',', '20')

sprintf FORMAT, LIST

Returns a string formatted by the usual printf conventions of the C
 library function sprintf
. See below for
 more details and see sprintf(3) or printf(3) on your system for an
 explanation of
the general principles.

For example:

 # Format number with up to 8 leading zeroes
 my $result = sprintf("%08d", $number);

 # Round number to 3 digits after decimal point
 my $rounded = sprintf("%.3f", $number);

Perl version 5.24.0 documentation - perlfunc

Page 88http://perldoc.perl.org

Perl does its own sprintf formatting: it
 emulates the C
 function sprintf(3), but doesn't use it
except for floating-point
 numbers, and even then only standard modifiers are allowed.

Non-standard extensions in your local sprintf(3) are
 therefore unavailable from Perl.

Unlike printf, sprintf does not do what you probably mean
 when you pass it an array as
your first argument.
 The array is given scalar context,
 and instead of using the 0th element of
the array as the format, Perl will
 use the count of elements in the array as the format, which is
almost never
 useful.

Perl's sprintf permits the following
 universally-known conversions:

 %% a percent sign
 %c a character with the given number
 %s a string
 %d a signed integer, in decimal
 %u an unsigned integer, in decimal
 %o an unsigned integer, in octal
 %x an unsigned integer, in hexadecimal
 %e a floating-point number, in scientific notation
 %f a floating-point number, in fixed decimal notation
 %g a floating-point number, in %e or %f notation

In addition, Perl permits the following widely-supported conversions:

 %X like %x, but using upper-case letters
 %E like %e, but using an upper-case "E"
 %G like %g, but with an upper-case "E" (if applicable)
 %b an unsigned integer, in binary
 %B like %b, but using an upper-case "B" with the # flag
 %p a pointer (outputs the Perl value's address in hexadecimal)
 %n special: *stores* the number of characters output so far
 into the next argument in the parameter list
 %a hexadecimal floating point
 %A like %a, but using upper-case letters

Finally, for backward (and we do mean "backward") compatibility, Perl
 permits these
unnecessary but widely-supported conversions:

 %i a synonym for %d
 %D a synonym for %ld
 %U a synonym for %lu
 %O a synonym for %lo
 %F a synonym for %f

Note that the number of exponent digits in the scientific notation produced
 by %e, %E, %g and
%G for numbers with the modulus of the
 exponent less than 100 is system-dependent: it may
be three or less
 (zero-padded as necessary). In other words, 1.23 times ten to the
 99th may
be either "1.23e99" or "1.23e099". Similarly for %a and %A:
 the exponent or the hexadecimal
digits may float: especially the
 "long doubles" Perl configuration option may cause surprises.

Between the % and the format letter, you may specify several
 additional attributes controlling
the interpretation of the format.
 In order, these are:

format parameter index

An explicit format parameter index, such as 2$. By default sprintf
 will format the next
unused argument in the list, but this allows you
 to take the arguments out of order:

 printf '%2$d %1$d', 12, 34; # prints "34 12"
 printf '%3$d %d %1$d', 1, 2, 3; # prints "3 1 1"

flags

Perl version 5.24.0 documentation - perlfunc

Page 89http://perldoc.perl.org

one or more of:

 space prefix non-negative number with a space
 + prefix non-negative number with a plus sign
 - left-justify within the field
 0 use zeros, not spaces, to right-justify
 # ensure the leading "0" for any octal,
 prefix non-zero hexadecimal with "0x" or "0X",
 prefix non-zero binary with "0b" or "0B"

For example:

 printf '<% d>', 12; # prints "< 12>"
 printf '<% d>', 0; # prints "< 0>"
 printf '<% d>', -12; # prints "<-12>"
 printf '<%+d>', 12; # prints "<+12>"
 printf '<%+d>', 0; # prints "<+0>"
 printf '<%+d>', -12; # prints "<-12>"
 printf '<%6s>', 12; # prints "< 12>"
 printf '<%-6s>', 12; # prints "<12 >"
 printf '<%06s>', 12; # prints "<000012>"
 printf '<%#o>', 12; # prints "<014>"
 printf '<%#x>', 12; # prints "<0xc>"
 printf '<%#X>', 12; # prints "<0XC>"
 printf '<%#b>', 12; # prints "<0b1100>"
 printf '<%#B>', 12; # prints "<0B1100>"

When a space and a plus sign are given as the flags at once,
 the space is ignored.

 printf '<%+ d>', 12; # prints "<+12>"
 printf '<% +d>', 12; # prints "<+12>"

When the # flag and a precision are given in the %o conversion,
 the precision is
incremented if it's necessary for the leading "0".

 printf '<%#.5o>', 012; # prints "<00012>"
 printf '<%#.5o>', 012345; # prints "<012345>"
 printf '<%#.0o>', 0; # prints "<0>"

vector flag

This flag tells Perl to interpret the supplied string as a vector of
 integers, one for each
character in the string. Perl applies the format to
 each integer in turn, then joins the
resulting strings with a separator (a
 dot . by default). This can be useful for displaying
ordinal values of
 characters in arbitrary strings:

 printf "%vd", "AB\x{100}"; # prints "65.66.256"
 printf "version is v%vd\n", $^V; # Perl's version

Put an asterisk * before the v to override the string to
 use to separate the numbers:

 printf "address is %*vX\n", ":", $addr; # IPv6 address
 printf "bits are %0*v8b\n", " ", $bits; # random bitstring

You can also explicitly specify the argument number to use for
 the join string using
something like *2$v; for example:

 printf '%*4$vX %*4$vX %*4$vX', # 3 IPv6 addresses
 @addr[1..3], ":";

(minimum) width

Perl version 5.24.0 documentation - perlfunc

Page 90http://perldoc.perl.org

Arguments are usually formatted to be only as wide as required to
 display the given
value. You can override the width by putting
 a number here, or get the width from the
next argument (with *)
 or from a specified argument (e.g., with *2$):

 printf "<%s>", "a"; # prints "<a>"
 printf "<%6s>", "a"; # prints "< a>"
 printf "<%*s>", 6, "a"; # prints "< a>"
 printf '<%*2$s>', "a", 6; # prints "< a>"
 printf "<%2s>", "long"; # prints "<long>" (does not truncate)

If a field width obtained through * is negative, it has the same
 effect as the - flag:
left-justification.

precision, or maximum width

You can specify a precision (for numeric conversions) or a maximum
 width (for string
conversions) by specifying a . followed by a number.
 For floating-point formats except
g and G, this specifies
 how many places right of the decimal point to show (the default
being 6).
 For example:

 # these examples are subject to system-specific variation
 printf '<%f>', 1; # prints "<1.000000>"
 printf '<%.1f>', 1; # prints "<1.0>"
 printf '<%.0f>', 1; # prints "<1>"
 printf '<%e>', 10; # prints "<1.000000e+01>"
 printf '<%.1e>', 10; # prints "<1.0e+01>"

For "g" and "G", this specifies the maximum number of digits to show,
 including those
prior to the decimal point and those after it; for
 example:

 # These examples are subject to system-specific variation.
 printf '<%g>', 1; # prints "<1>"
 printf '<%.10g>', 1; # prints "<1>"
 printf '<%g>', 100; # prints "<100>"
 printf '<%.1g>', 100; # prints "<1e+02>"
 printf '<%.2g>', 100.01; # prints "<1e+02>"
 printf '<%.5g>', 100.01; # prints "<100.01>"
 printf '<%.4g>', 100.01; # prints "<100>"

For integer conversions, specifying a precision implies that the
 output of the number
itself should be zero-padded to this width,
 where the 0 flag is ignored:

 printf '<%.6d>', 1; # prints "<000001>"
 printf '<%+.6d>', 1; # prints "<+000001>"
 printf '<%-10.6d>', 1; # prints "<000001 >"
 printf '<%10.6d>', 1; # prints "< 000001>"
 printf '<%010.6d>', 1; # prints "< 000001>"
 printf '<%+10.6d>', 1; # prints "< +000001>"

 printf '<%.6x>', 1; # prints "<000001>"
 printf '<%#.6x>', 1; # prints "<0x000001>"
 printf '<%-10.6x>', 1; # prints "<000001 >"
 printf '<%10.6x>', 1; # prints "< 000001>"
 printf '<%010.6x>', 1; # prints "< 000001>"
 printf '<%#10.6x>', 1; # prints "< 0x000001>"

For string conversions, specifying a precision truncates the string
 to fit the specified
width:

 printf '<%.5s>', "truncated"; # prints "<trunc>"

Perl version 5.24.0 documentation - perlfunc

Page 91http://perldoc.perl.org

 printf '<%10.5s>', "truncated"; # prints "< trunc>"

You can also get the precision from the next argument using .*, or from a
 specified
argument (e.g., with .*2$):

 printf '<%.6x>', 1; # prints "<000001>"
 printf '<%.*x>', 6, 1; # prints "<000001>"

 printf '<%.*2$x>', 1, 6; # prints "<000001>"

 printf '<%6.*2$x>', 1, 4; # prints "< 0001>"

If a precision obtained through * is negative, it counts
 as having no precision at all.

 printf '<%.*s>', 7, "string"; # prints "<string>"
 printf '<%.*s>', 3, "string"; # prints "<str>"
 printf '<%.*s>', 0, "string"; # prints "<>"
 printf '<%.*s>', -1, "string"; # prints "<string>"

 printf '<%.*d>', 1, 0; # prints "<0>"
 printf '<%.*d>', 0, 0; # prints "<>"
 printf '<%.*d>', -1, 0; # prints "<0>"

size

For numeric conversions, you can specify the size to interpret the
 number as using l,
h, V, q, L, or ll. For integer
 conversions (d u o x X b i D U O), numbers are
usually assumed to be
 whatever the default integer size is on your platform (usually 32
or 64
 bits), but you can override this to use instead one of the standard C types,
 as
supported by the compiler used to build Perl:

 hh interpret integer as C type "char" or "unsigned
 char" on Perl 5.14 or later
 h interpret integer as C type "short" or
 "unsigned short"
 j interpret integer as C type "intmax_t" on Perl
 5.14 or later, and only with a C99 compiler
 (unportable)
 l interpret integer as C type "long" or
 "unsigned long"
 q, L, or ll interpret integer as C type "long long",
 "unsigned long long", or "quad" (typically
 64-bit integers)
 t interpret integer as C type "ptrdiff_t" on Perl
 5.14 or later
 z interpret integer as C type "size_t" on Perl 5.14
 or later

As of 5.14, none of these raises an exception if they are not supported on
 your
platform. However, if warnings are enabled, a warning of the printf warning class is
issued on an unsupported
 conversion flag. Should you instead prefer an exception, do
this:

 use warnings FATAL => "printf";

If you would like to know about a version dependency before you
 start running the
program, put something like this at its top:

 use 5.014; # for hh/j/t/z/ printf modifiers

Perl version 5.24.0 documentation - perlfunc

Page 92http://perldoc.perl.org

You can find out whether your Perl supports quads via Config:

 use Config;
 if ($Config{use64bitint} eq "define"
 || $Config{longsize} >= 8) {
 print "Nice quads!\n";
 }

For floating-point conversions (e f g E F G), numbers are usually assumed
 to be
the default floating-point size on your platform (double or long double),
 but you can
force "long double" with q, L, or ll if your
 platform supports them. You can find out
whether your Perl supports long
 doubles via Config:

 use Config;
 print "long doubles\n" if $Config{d_longdbl} eq "define";

You can find out whether Perl considers "long double" to be the default
 floating-point
size to use on your platform via Config:

 use Config;
 if ($Config{uselongdouble} eq "define") {
 print "long doubles by default\n";
 }

It can also be that long doubles and doubles are the same thing:

 use Config;
 ($Config{doublesize} == $Config{longdblsize}) &&
 print "doubles are long doubles\n";

The size specifier V has no effect for Perl code, but is supported for
 compatibility with
XS code. It means "use the standard size for a Perl
 integer or floating-point number",
which is the default.

order of arguments

Normally, sprintf takes the next unused
 argument as the value to
 format for each
format specification. If the format specification
 uses * to require additional arguments,
these are consumed from
 the argument list in the order they appear in the format

specification before the value to format. Where an argument is
 specified by an explicit
index, this does not affect the normal
 order for the arguments, even when the explicitly
specified index
 would have been the next argument.

So:

 printf "<%*.*s>", $a, $b, $c;

uses $a for the width, $b for the precision, and $c
 as the value to format; while:

 printf '<%*1$.*s>', $a, $b;

would use $a for the width and precision, and $b as the
 value to format.

Here are some more examples; be aware that when using an explicit
 index, the $ may
need escaping:

 printf "%2\$d %d\n", 12, 34; # will print "34 12\n"
 printf "%2\$d %d %d\n", 12, 34; # will print "34 12 34\n"
 printf "%3\$d %d %d\n", 12, 34, 56; # will print "56 12 34\n"
 printf "%2\$*3\$d %d\n", 12, 34, 3; # will print " 34 12\n"
 printf "%*1\$.*f\n", 4, 5, 10; # will print "5.0000\n"

If use locale (including use locale ':not_characters')
 is in effect and

Perl version 5.24.0 documentation - perlfunc

Page 93http://perldoc.perl.org

POSIX::setlocale has been
 called,
 the character used for the decimal separator in
formatted floating-point
 numbers is affected by the LC_NUMERIC locale. See perllocale
 and
POSIX.

sqrt EXPR

sqrt

Return the positive square root of EXPR. If EXPR is omitted, uses $_. Works only for
non-negative operands unless you've
 loaded the Math::Complex module.

 use Math::Complex;
 print sqrt(-4); # prints 2i

srand EXPR

srand

Sets and returns the random number seed for the rand
 operator.

The point of the function is to "seed" the rand
 function so that rand can produce a different
sequence
 each time you run your program. When called with a parameter, srand uses that
for the seed; otherwise it
 (semi-)randomly chooses a seed. In either case, starting with Perl
5.14,
 it returns the seed. To signal that your code will work only on Perls
 of a recent vintage:

 use 5.014;	 # so srand returns the seed

If srand is not called explicitly, it is called
 implicitly without a parameter at the first use of the
rand operator. However, there are a few situations
 where programs are likely to want to call
srand. One
 is for generating predictable results, generally for testing or
 debugging. There,
you use srand($seed), with the same $seed each
 time. Another case is that you may want
to call srand
 after a fork to avoid child processes sharing the same seed
 value as the
parent (and consequently each other).

Do not call srand() (i.e., without an argument) more than once per
 process. The internal
state of the random number generator should
 contain more entropy than can be provided by
any seed, so calling srand again actually loses randomness.

Most implementations of srand take an integer and will
 silently
 truncate decimal numbers.
This means srand(42) will usually
 produce the same results as srand(42.1). To be safe,
always pass srand an integer.

A typical use of the returned seed is for a test program which has too many
 combinations to
test comprehensively in the time available to it each run. It
 can test a random subset each
time, and should there be a failure, log the seed
 used for that run so that it can later be used
to reproduce the same results.

rand is not cryptographically secure. You should not rely
 on it in security-sensitive
situations. As of this writing, a
 number of third-party CPAN modules offer random number
generators
 intended by their authors to be cryptographically secure,
 including: Data::Entropy,
Crypt::Random, Math::Random::Secure,
 and Math::TrulyRandom.

stat FILEHANDLE

stat EXPR

stat DIRHANDLE

stat

Returns a 13-element list giving the status info for a file, either
 the file opened via
FILEHANDLE or DIRHANDLE, or named by EXPR. If EXPR is
 omitted, it stats $_ (not _!).
Returns the empty
 list if stat fails. Typically
 used as follows:

 my ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
 $atime,$mtime,$ctime,$blksize,$blocks)
 = stat($filename);

Perl version 5.24.0 documentation - perlfunc

Page 94http://perldoc.perl.org

Not all fields are supported on all filesystem types. Here are the
 meanings of the fields:

 0 dev device number of filesystem
 1 ino inode number
 2 mode file mode (type and permissions)
 3 nlink number of (hard) links to the file
 4 uid numeric user ID of file's owner
 5 gid numeric group ID of file's owner
 6 rdev the device identifier (special files only)
 7 size total size of file, in bytes
 8 atime last access time in seconds since the epoch
 9 mtime last modify time in seconds since the epoch
 10 ctime inode change time in seconds since the epoch (*)
 11 blksize preferred I/O size in bytes for interacting with the
 file (may vary from file to file)
 12 blocks actual number of system-specific blocks allocated
 on disk (often, but not always, 512 bytes each)

(The epoch was at 00:00 January 1, 1970 GMT.)

(*) Not all fields are supported on all filesystem types. Notably, the
 ctime field is non-portable.
In particular, you cannot expect it to be a
 "creation time"; see "Files and Filesystems" in
perlport for details.

If stat is passed the special filehandle
 consisting of an underline, no stat is done, but the
current contents of
 the stat structure from the last stat, lstat, or filetest are returned.
Example:

 if (-x $file && (($d) = stat(_)) && $d < 0) {
 print "$file is executable NFS file\n";
 }

(This works on machines only for which the device number is negative
 under NFS.)

Because the mode contains both the file type and its permissions, you
 should mask off the file
type portion and (s)printf using a "%o"
 if you want to see the real permissions.

 my $mode = (stat($filename))[2];
 printf "Permissions are %04o\n", $mode & 07777;

In scalar context, stat returns a boolean value
 indicating success
 or failure, and, if
successful, sets the information associated with
 the special filehandle _.

The File::stat module provides a convenient, by-name access mechanism:

 use File::stat;
 my $sb = stat($filename);
 printf "File is %s, size is %s, perm %04o, mtime %s\n",
 $filename, $sb->size, $sb->mode & 07777,
 scalar localtime $sb->mtime;

You can import symbolic mode constants (S_IF*) and functions
 (S_IS*) from the Fcntl
module:

 use Fcntl ':mode';

 my $mode = (stat($filename))[2];

 my $user_rwx = ($mode & S_IRWXU) >> 6;
 my $group_read = ($mode & S_IRGRP) >> 3;
 my $other_execute = $mode & S_IXOTH;

Perl version 5.24.0 documentation - perlfunc

Page 95http://perldoc.perl.org

 printf "Permissions are %04o\n", S_IMODE($mode), "\n";

 my $is_setuid = $mode & S_ISUID;
 my $is_directory = S_ISDIR($mode);

You could write the last two using the -u and -d operators.
 Commonly available S_IF*
constants are:

 # Permissions: read, write, execute, for user, group, others.

 S_IRWXU S_IRUSR S_IWUSR S_IXUSR
 S_IRWXG S_IRGRP S_IWGRP S_IXGRP
 S_IRWXO S_IROTH S_IWOTH S_IXOTH

 # Setuid/Setgid/Stickiness/SaveText.
 # Note that the exact meaning of these is system-dependent.

 S_ISUID S_ISGID S_ISVTX S_ISTXT

 # File types. Not all are necessarily available on
 # your system.

 S_IFREG S_IFDIR S_IFLNK S_IFBLK S_IFCHR
 S_IFIFO S_IFSOCK S_IFWHT S_ENFMT

 # The following are compatibility aliases for S_IRUSR,
 # S_IWUSR, and S_IXUSR.

 S_IREAD S_IWRITE S_IEXEC

and the S_IF* functions are

 S_IMODE($mode) the part of $mode containing the permission
 bits and the setuid/setgid/sticky bits

 S_IFMT($mode) the part of $mode containing the file type
 which can be bit-anded with (for example)
 S_IFREG or with the following functions

 # The operators -f, -d, -l, -b, -c, -p, and -S.

 S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
 S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)

 # No direct -X operator counterpart, but for the first one
 # the -g operator is often equivalent. The ENFMT stands for
 # record flocking enforcement, a platform-dependent feature.

 S_ISENFMT($mode) S_ISWHT($mode)

See your native chmod(2) and stat(2) documentation for more details
 about the S_*
constants. To get status info for a symbolic link
 instead of the target file behind the link, use
the lstat function.

Portability issues: "stat" in perlport.

state VARLIST

state TYPE VARLIST

Perl version 5.24.0 documentation - perlfunc

Page 96http://perldoc.perl.org

state VARLIST : ATTRS

state TYPE VARLIST : ATTRS

state declares a lexically scoped variable, just
 like my.
 However, those variables will never
be reinitialized, contrary to
 lexical variables that are reinitialized each time their enclosing
block
 is entered.
 See "Persistent Private Variables" in perlsub for details.

If more than one variable is listed, the list must be placed in
 parentheses. With a
parenthesised list, undef can be
 used as a
 dummy placeholder. However, since initialization
of state variables in
 list context is currently not possible this would serve no purpose.

state is available only if the "state" feature is enabled or if it is
 prefixed with CORE::. The
"state" feature is enabled
 automatically with a use v5.10 (or higher) declaration in the
current
 scope.

study SCALAR

study

Note that since Perl version 5.16 this function has been a no-op, but
 this might change
in a future release.

May take extra time to study SCALAR ($_ if unspecified)
 in anticipation
 of doing many pattern
matches on the string before it is next modified.
 This may or may not save time, depending on
the nature and number of
 patterns you are searching and the distribution of character

frequencies in the string to be searched; you probably want to compare
 run times with and
without it to see which is faster. Those loops
 that scan for many short constant strings
(including the constant
 parts of more complex patterns) will benefit most.

(The way study used to work is this: a linked list
 of every
 character in the string to be
searched is made, so we know, for
 example, where all the 'k' characters are. From each
search string,
 the rarest character is selected, based on some static frequency tables

constructed from some C programs and English text. Only those places
 that contain this
"rarest" character are examined.)

For example, here is a loop that inserts index producing entries
 before any line containing a
certain pattern:

 while (<>) {
 study;
 print ".IX foo\n" if /\bfoo\b/;
 print ".IX bar\n" if /\bbar\b/;
 print ".IX blurfl\n" if /\bblurfl\b/;
 # ...
 print;
 }

In searching for /\bfoo\b/, only locations in $_
 that contain f
 will be looked at, because f is
rarer than o. In general, this is
 a big win except in pathological cases. The only question is
whether
 it saves you more time than it took to build the linked list in the
 first place.

Note that if you have to look for strings that you don't know till
 runtime, you can build an entire
loop as a string and eval that to avoid recompiling all your patterns all the time.
 Together with
undefining $/ to input entire
 files as one record, this can be quite
 fast, often faster than
specialized programs like fgrep(1). The following
 scans a list of files (@files) for a list of
words (@words), and prints
 out the names of those files that contain a match:

 my $search = 'local $/; while (<>) { study;';
 foreach my $word (@words) {
 $search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";
 }
 $search .= "}";
 @ARGV = @files;

Perl version 5.24.0 documentation - perlfunc

Page 97http://perldoc.perl.org

 my %seen;
 eval $search; # this screams
 foreach my $file (sort keys(%seen)) {
 print $file, "\n";
 }

sub NAME BLOCK

sub NAME (PROTO) BLOCK

sub NAME : ATTRS BLOCK

sub NAME (PROTO) : ATTRS BLOCK

This is subroutine definition, not a real function per se. Without a
 BLOCK it's just a forward
declaration. Without a NAME, it's an anonymous
 function declaration, so does return a value:
the CODE ref of the closure
 just created.

See perlsub and perlref for details about subroutines and
 references; see attributes and
Attribute::Handlers for more
 information about attributes.

__SUB__

A special token that returns a reference to the current subroutine, or undef outside of a
subroutine.

The behaviour of __SUB__ within a regex code block (such
 as /(?{...})/) is subject to
change.

This token is only available under use v5.16 or the "current_sub" feature.
 See feature.

substr EXPR,OFFSET,LENGTH,REPLACEMENT

substr EXPR,OFFSET,LENGTH

substr EXPR,OFFSET

Extracts a substring out of EXPR and returns it. First character is at
 offset zero. If OFFSET is
negative, starts
 that far back from the end of the string. If LENGTH is omitted, returns

everything through the end of the string. If LENGTH is negative, leaves that
 many characters
off the end of the string.

 my $s = "The black cat climbed the green tree";
 my $color = substr $s, 4, 5; # black
 my $middle = substr $s, 4, -11; # black cat climbed the
 my $end = substr $s, 14; # climbed the green tree
 my $tail = substr $s, -4; # tree
 my $z = substr $s, -4, 2; # tr

You can use the substr
 function as an lvalue, in which case EXPR
 must itself be an lvalue. If
you assign something shorter than LENGTH,
 the string will shrink, and if you assign
something longer than LENGTH,
 the string will grow to accommodate it. To keep the string the
same
 length, you may need to pad or chop your value using sprintf.

If OFFSET and LENGTH specify a substring that is partly outside the
 string, only the part
within the string is returned. If the substring
 is beyond either end of the string, substr returns
the undefined
 value and produces a warning. When used as an lvalue, specifying a
 substring
that is entirely outside the string raises an exception.
 Here's an example showing the behavior
for boundary cases:

 my $name = 'fred';
 substr($name, 4) = 'dy'; # $name is now 'freddy'
 my $null = substr $name, 6, 2; # returns "" (no warning)
 my $oops = substr $name, 7; # returns undef, with warning
 substr($name, 7) = 'gap'; # raises an exception

Perl version 5.24.0 documentation - perlfunc

Page 98http://perldoc.perl.org

An alternative to using substr as an lvalue is to
 specify the
 replacement string as the 4th
argument. This allows you to replace
 parts of the EXPR and return what was there before in
one operation,
 just as you can with splice.

 my $s = "The black cat climbed the green tree";
 my $z = substr $s, 14, 7, "jumped from"; # climbed
 # $s is now "The black cat jumped from the green tree"

Note that the lvalue returned by the three-argument version of substr acts as
 a 'magic
bullet'; each time it is assigned to, it remembers which part
 of the original string is being
modified; for example:

 my $x = '1234';
 for (substr($x,1,2)) {
 $_ = 'a'; print $x,"\n"; # prints 1a4
 $_ = 'xyz'; print $x,"\n"; # prints 1xyz4
 $x = '56789';
 $_ = 'pq'; print $x,"\n"; # prints 5pq9
 }

With negative offsets, it remembers its position from the end of the string
 when the target
string is modified:

 my $x = '1234';
 for (substr($x, -3, 2)) {
 $_ = 'a'; print $x,"\n"; # prints 1a4, as above
 $x = 'abcdefg';
 print $_,"\n"; # prints f
 }

Prior to Perl version 5.10, the result of using an lvalue multiple times was
 unspecified. Prior to
5.16, the result with negative offsets was
 unspecified.

symlink OLDFILE,NEWFILE

Creates a new filename symbolically linked to the old filename.
 Returns 1 for success, 0
otherwise. On systems that don't support
 symbolic links, raises an exception. To check for
that,
 use eval:

 my $symlink_exists = eval { symlink("",""); 1 };

Portability issues: "symlink" in perlport.

syscall NUMBER, LIST

Calls the system call specified as the first element of the list,
 passing the remaining elements
as arguments to the system call. If
 unimplemented, raises an exception. The arguments are
interpreted
 as follows: if a given argument is numeric, the argument is passed as
 an int. If not,
the pointer to the string value is passed. You are
 responsible to make sure a string is
pre-extended long enough to
 receive any result that might be written into a string. You can't
use a
 string literal (or other read-only string) as an argument to syscall because Perl has to
assume that any
 string pointer might be written through. If your
 integer arguments are not
literals and have never been interpreted in a
 numeric context, you may need to add 0 to them
to force them to look
 like numbers. This emulates the syswrite function (or
 vice versa):

 require 'syscall.ph'; # may need to run h2ph
 my $s = "hi there\n";
 syscall(SYS_write(), fileno(STDOUT), $s, length $s);

Note that Perl supports passing of up to only 14 arguments to your syscall,
 which in practice
should (usually) suffice.

Perl version 5.24.0 documentation - perlfunc

Page 99http://perldoc.perl.org

Syscall returns whatever value returned by the system call it calls.
 If the system call fails,
syscall returns -1 and sets $! (errno).
 Note that some system calls can legitimately return
-1. The proper
 way to handle such calls is to assign $! = 0 before the call, then
 check the
value of $! if syscall returns -1.

There's a problem with syscall(SYS_pipe()): it returns the file
 number of the read end of
the pipe it creates, but there is no way
 to retrieve the file number of the other end. You can
avoid this
 problem by using pipe instead.

Portability issues: "syscall" in perlport.

sysopen FILEHANDLE,FILENAME,MODE

sysopen FILEHANDLE,FILENAME,MODE,PERMS

Opens the file whose filename is given by FILENAME, and associates it with
 FILEHANDLE. If
FILEHANDLE is an expression, its value is used as the real
 filehandle wanted; an undefined
scalar will be suitably autovivified. This
 function calls the underlying operating system's
open(2) function with the
 parameters FILENAME, MODE, and PERMS.

Returns true on success and undef otherwise.

The possible values and flag bits of the MODE parameter are
 system-dependent; they are
available via the standard module Fcntl. See the documentation of your operating system's
open(2) syscall to see
 which values and flag bits are available. You may combine several
flags
 using the |-operator.

Some of the most common values are O_RDONLY for opening the file in
 read-only mode,
O_WRONLY for opening the file in write-only mode,
 and O_RDWR for opening the file in
read-write mode.

For historical reasons, some values work on almost every system
 supported by Perl: 0 means
read-only, 1 means write-only, and 2
 means read/write. We know that these values do not
work under
 OS/390 and on the Macintosh; you probably don't want to
 use them in new code.

If the file named by FILENAME does not exist and the open call creates
 it (typically because
MODE includes the O_CREAT flag), then the value of
 PERMS specifies the permissions of the
newly created file. If you omit
 the PERMS argument to sysopen,
 Perl uses the octal value
0666.
 These permission values need to be in octal, and are modified by your
 process's
current umask.

In many systems the O_EXCL flag is available for opening files in
 exclusive mode. This is not
locking: exclusiveness means here that
 if the file already exists, sysopen fails. O_EXCL may

not work
 on network filesystems, and has no effect unless the O_CREAT flag
 is set as well.
Setting O_CREAT|O_EXCL prevents the file from
 being opened if it is a symbolic link. It does
not protect against
 symbolic links in the file's path.

Sometimes you may want to truncate an already-existing file. This
 can be done using the
O_TRUNC flag. The behavior of O_TRUNC with O_RDONLY is undefined.

You should seldom if ever use 0644 as argument to sysopen, because
 that takes away the
user's option to have a more permissive umask.
 Better to omit it. See umask for more on this.

Note that under Perls older than 5.8.0, sysopen depends on the fdopen(3) C library function.
On many Unix systems, fdopen(3) is known
 to fail when file descriptors exceed a certain
value, typically 255. If
 you need more file descriptors than that, consider using the
POSIX::open function. For Perls 5.8.0 and later,
 PerlIO is (most often) the default.

See perlopentut for a kinder, gentler explanation of opening files.

Portability issues: "sysopen" in perlport.

sysread FILEHANDLE,SCALAR,LENGTH,OFFSET

sysread FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH bytes of data into variable SCALAR from the
 specified
FILEHANDLE, using read(2). It bypasses
 buffered IO, so mixing this with other kinds of reads,

Perl version 5.24.0 documentation - perlfunc

Page 100http://perldoc.perl.org

print, write, seek, tell, or eof can cause
 confusion because the
 perlio or stdio layers
usually buffer data. Returns the number of
 bytes actually read, 0 at end of file, or undef if there
was an
 error (in the latter case $! is also set). SCALAR will
 be grown or
 shrunk so that the
last byte actually read is the last byte of the
 scalar after the read.

An OFFSET may be specified to place the read data at some place in the
 string other than the
beginning. A negative OFFSET specifies
 placement at that many characters counting
backwards from the end of
 the string. A positive OFFSET greater than the length of SCALAR

results in the string being padded to the required size with "\0"
 bytes before the result of the
read is appended.

There is no syseof() function, which is ok, since eof doesn't work well on device files (like
ttys)
 anyway. Use sysread and
 check for a return value for 0 to decide whether you're done.

Note that if the filehandle has been marked as :utf8, Unicode
 characters are read instead of
bytes (the LENGTH, OFFSET, and the
 return value of sysread
 are in Unicode characters).
The :encoding(...) layer implicitly
 introduces the :utf8 layer. See binmode, open, and
the open pragma.

sysseek FILEHANDLE,POSITION,WHENCE

Sets FILEHANDLE's system position in bytes using lseek(2). FILEHANDLE may
 be an
expression whose value gives the name of the filehandle. The values
 for WHENCE are 0 to
set the new position to POSITION; 1 to set the it
 to the current position plus POSITION; and 2
to set it to EOF plus
 POSITION, typically negative.

Note the in bytes: even if the filehandle has been set to operate
 on characters (for example by
using the :encoding(utf8) I/O layer), tell will return byte offsets, not character
 offsets
(because implementing that would render sysseek unacceptably slow).

sysseek bypasses normal
 buffered IO, so mixing it with reads other than sysread (for
example readline or read), print, write, seek, tell, or eof may cause
 confusion.

For WHENCE, you may also use the constants SEEK_SET, SEEK_CUR,
 and SEEK_END (start
of the file, current position, end of the file)
 from the Fcntl module. Use of the constants is also
more portable
 than relying on 0, 1, and 2. For example to define a "systell" function:

 use Fcntl 'SEEK_CUR';
 sub systell { sysseek($_[0], 0, SEEK_CUR) }

Returns the new position, or the undefined value on failure. A position
 of zero is returned as
the string "0 but true"; thus sysseek returns
 true on success and false on failure, yet you
can still easily determine
 the new position.

system LIST

system PROGRAM LIST

Does exactly the same thing as exec, except that a fork is
 done first and the parent process
waits for the child process to
 exit. Note that argument processing varies depending on the

number of arguments. If there is more than one argument in LIST,
 or if LIST is an array with
more than one value, starts the program
 given by the first element of the list with arguments
given by the
 rest of the list. If there is only one scalar argument, the argument
 is checked for
shell metacharacters, and if there are any, the
 entire argument is passed to the system's
command shell for parsing
 (this is /bin/sh -c on Unix platforms, but varies on other

platforms). If there are no shell metacharacters in the argument,
 it is split into words and
passed directly to execvp, which is
 more efficient. On Windows, only the system PROGRAM
LIST syntax will
 reliably avoid using the shell; system LIST, even with more than one

element, will fall back to the shell if the first spawn fails.

Perl will attempt to flush all files opened for
 output before any operation that may do a fork, but
this may not be
 supported on some platforms (see perlport). To be safe, you may need
 to set
$| ($AUTOFLUSH in English)
 or call the autoflush method of IO::Handle
 on any open
handles.

Perl version 5.24.0 documentation - perlfunc

Page 101http://perldoc.perl.org

The return value is the exit status of the program as returned by the wait call. To get the
actual exit value, shift right by
 eight (see below). See also exec. This is not what
 you want to
use to capture the output from a command; for that you
 should use merely backticks or qx//,
as described in "`STRING`" in perlop. Return value of -1 indicates a failure to start
 the
program or an error of the wait(2) system call (inspect $! for the reason).

If you'd like to make system (and many other bits of
 Perl) die on error, have a look at the
autodie pragma.

Like exec, system allows you to lie
 to a program about its name if you use the system
PROGRAM LIST
 syntax. Again, see exec.

Since SIGINT and SIGQUIT are ignored during the execution of system, if you expect your
program to terminate on
 receipt of these signals you will need to arrange to do so yourself

based on the return value.

 my @args = ("command", "arg1", "arg2");
 system(@args) == 0
 or die "system @args failed: $?";

If you'd like to manually inspect system's failure,
 you can check all possible failure modes by
inspecting $? like this:

 if ($? == -1) {
 print "failed to execute: $!\n";
 }
 elsif ($? & 127) {
 printf "child died with signal %d, %s coredump\n",
 ($? & 127), ($? & 128) ? 'with' : 'without';
 }
 else {
 printf "child exited with value %d\n", $? >> 8;
 }

Alternatively, you may inspect the value of ${^CHILD_ERROR_NATIVE} with the W*() calls
from the POSIX module.

When system's arguments are executed indirectly by
 the shell, results and return codes are
subject to its quirks.
 See "`STRING`" in perlop and exec for details.

Since system does a fork and wait it may affect a SIGCHLD handler. See perlipc for

details.

Portability issues: "system" in perlport.

syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET

syswrite FILEHANDLE,SCALAR,LENGTH

syswrite FILEHANDLE,SCALAR

Attempts to write LENGTH bytes of data from variable SCALAR to the
 specified
FILEHANDLE, using write(2). If LENGTH is
 not specified, writes whole SCALAR. It bypasses
buffered IO, so
 mixing this with reads (other than sysread)), print, write, seek, tell, or
eof may cause
 confusion because the perlio and stdio layers usually buffer data.
 Returns the
number of bytes actually written, or undef
 if there was an error (in this case the errno variable
$! is also set). If the LENGTH is greater than the
 data available in the SCALAR after the
OFFSET, only as much data as is
 available will be written.

An OFFSET may be specified to write the data from some part of the
 string other than the
beginning. A negative OFFSET specifies writing
 that many characters counting backwards
from the end of the string.
 If SCALAR is of length zero, you can only use an OFFSET of 0.

WARNING: If the filehandle is marked :utf8, Unicode characters
 encoded in UTF-8 are
written instead of bytes, and the LENGTH, OFFSET, and
 return value of syswrite
 are in

Perl version 5.24.0 documentation - perlfunc

Page 102http://perldoc.perl.org

(UTF8-encoded Unicode) characters.
 The :encoding(...) layer implicitly introduces the
:utf8 layer.
 Alternately, if the handle is not marked with an encoding but you
 attempt to write
characters with code points over 255, raises an exception.
 See binmode, open, and the open
pragma.

tell FILEHANDLE

tell

Returns the current position in bytes for FILEHANDLE, or -1 on
 error. FILEHANDLE may be
an expression whose value gives the name of
 the actual filehandle. If FILEHANDLE is
omitted, assumes the file
 last read.

Note the in bytes: even if the filehandle has been set to
 operate on characters (for example by
using the :encoding(utf8) open
 layer), tell will return byte offsets, not
 character offsets
(because that would render seek and tell rather slow).

The return value of tell for the standard streams
 like the STDIN depends on the operating
system: it may return -1 or
 something else. tell on pipes, fifos, and
 sockets usually returns
-1.

There is no systell function. Use sysseek($fh, 0, 1) for that.

Do not use tell (or other buffered I/O
 operations) on a filehandle that has been manipulated
by sysread, syswrite, or sysseek. Those functions
 ignore the buffering, while tell does
not.

telldir DIRHANDLE

Returns the current position of the readdir
 routines on DIRHANDLE. Value may be given to
seekdir to access a particular location in
 a directory. telldir has the same caveats
 about
possible directory compaction as the corresponding system library
 routine.

tie VARIABLE,CLASSNAME,LIST

This function binds a variable to a package class that will provide the
 implementation for the
variable. VARIABLE is the name of the variable
 to be enchanted. CLASSNAME is the name of
a class implementing objects
 of correct type. Any additional arguments are passed to the

appropriate constructor
 method of the class (meaning TIESCALAR, TIEHANDLE, TIEARRAY,

or TIEHASH). Typically these are arguments such as might be passed
 to the dbm_open(3)
function of C. The object returned by the
 constructor is also returned by the tie function,
which would be useful
 if you want to access other methods in CLASSNAME.

Note that functions such as keys and values may return huge lists when used on large

objects, like DBM files. You may prefer to use the each function to iterate over such.
Example:

 # print out history file offsets
 use NDBM_File;
 tie(my %HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
 while (my ($key,$val) = each %HIST) {
 print $key, ' = ', unpack('L', $val), "\n";
 }

A class implementing a hash should have the following methods:

 TIEHASH classname, LIST
 FETCH this, key
 STORE this, key, value
 DELETE this, key
 CLEAR this
 EXISTS this, key
 FIRSTKEY this
 NEXTKEY this, lastkey

Perl version 5.24.0 documentation - perlfunc

Page 103http://perldoc.perl.org

 SCALAR this
 DESTROY this
 UNTIE this

A class implementing an ordinary array should have the following methods:

 TIEARRAY classname, LIST
 FETCH this, key
 STORE this, key, value
 FETCHSIZE this
 STORESIZE this, count
 CLEAR this
 PUSH this, LIST
 POP this
 SHIFT this
 UNSHIFT this, LIST
 SPLICE this, offset, length, LIST
 EXTEND this, count
 DELETE this, key
 EXISTS this, key
 DESTROY this
 UNTIE this

A class implementing a filehandle should have the following methods:

 TIEHANDLE classname, LIST
 READ this, scalar, length, offset
 READLINE this
 GETC this
 WRITE this, scalar, length, offset
 PRINT this, LIST
 PRINTF this, format, LIST
 BINMODE this
 EOF this
 FILENO this
 SEEK this, position, whence
 TELL this
 OPEN this, mode, LIST
 CLOSE this
 DESTROY this
 UNTIE this

A class implementing a scalar should have the following methods:

 TIESCALAR classname, LIST
 FETCH this,
 STORE this, value
 DESTROY this
 UNTIE this

Not all methods indicated above need be implemented. See perltie, Tie::Hash, Tie::Array,
Tie::Scalar, and Tie::Handle.

Unlike dbmopen, the tie function will not use or require a
 module for you; you need to do
that explicitly yourself. See DB_File
 or the Config module for interesting tie implementations.

For further details see perltie, tied.

tied VARIABLE

Perl version 5.24.0 documentation - perlfunc

Page 104http://perldoc.perl.org

Returns a reference to the object underlying VARIABLE (the same value
 that was originally
returned by the tie call that bound the variable
 to a package.) Returns the undefined value if
VARIABLE isn't tied to a
 package.

time

Returns the number of non-leap seconds since whatever time the system
 considers to be the
epoch, suitable for feeding to gmtime and localtime. On most
 systems the epoch is
00:00:00 UTC, January 1, 1970;
 a prominent exception being Mac OS Classic which uses
00:00:00, January 1,
 1904 in the current local time zone for its epoch.

For measuring time in better granularity than one second, use the Time::HiRes module from
Perl 5.8 onwards (or from CPAN before then), or,
 if you have gettimeofday(2), you may be
able to use the syscall interface of Perl. See perlfaq8
 for details.

For date and time processing look at the many related modules on CPAN.
 For a
comprehensive date and time representation look at the DateTime module.

times

Returns a four-element list giving the user and system times in
 seconds for this process and
any exited children of this process.

 my ($user,$system,$cuser,$csystem) = times;

In scalar context, times returns $user.

Children's times are only included for terminated children.

Portability issues: "times" in perlport.

tr///

The transliteration operator. Same as y///. See "Quote-Like Operators" in perlop.

truncate FILEHANDLE,LENGTH

truncate EXPR,LENGTH

Truncates the file opened on FILEHANDLE, or named by EXPR, to the
 specified length.
Raises an exception if truncate isn't implemented
 on your system. Returns true if successful,
undef on
 error.

The behavior is undefined if LENGTH is greater than the length of the
 file.

The position in the file of FILEHANDLE is left unchanged. You may want to
 call seek before
writing to the
 file.

Portability issues: "truncate" in perlport.

uc EXPR

uc

Returns an uppercased version of EXPR. This is the internal function
 implementing the \U
escape in double-quoted strings.
 It does not attempt to do titlecase mapping on initial letters.
See ucfirst for that.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragmas, such as in a locale,
 as lc does.

ucfirst EXPR

ucfirst

Returns the value of EXPR with the first character in uppercase
 (titlecase in Unicode). This is
the internal function implementing
 the \u escape in double-quoted strings.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragmas, such as in a locale,
 as lc does.

Perl version 5.24.0 documentation - perlfunc

Page 105http://perldoc.perl.org

umask EXPR

umask

Sets the umask for the process to EXPR and returns the previous value.
 If EXPR is omitted,
merely returns the current umask.

The Unix permission rwxr-x--- is represented as three sets of three
 bits, or three octal
digits: 0750 (the leading 0 indicates octal
 and isn't one of the digits). The umask value is such
a number representing disabled permissions bits. The permission (or
 "mode") values you pass
mkdir or sysopen are modified by your
 umask, so even if you tell sysopen to create a file
with
 permissions 0777, if your umask is 0022, then the file will
 actually be created with
permissions 0755. If your umask were 0027 (group can't write; others can't
 read, write, or
execute), then passing sysopen 0666 would create a
 file with mode 0640 (because 0666
&~ 027 is 0640).

Here's some advice: supply a creation mode of 0666 for regular
 files (in sysopen) and one of
0777 for directories (in mkdir) and
 executable files. This gives users the freedom of
 choice: if
they want protected files, they might choose process umasks
 of 022, 027, or even the
particularly antisocial mask of 077.
 Programs should rarely if ever make policy decisions
better left to
 the user. The exception to this is when writing files that should be
 kept private:
mail files, web browser cookies, .rhosts files, and
 so on.

If umask(2) is not implemented on your system and you are trying to
 restrict access for
yourself (i.e., (EXPR & 0700) > 0),
 raises an exception. If umask(2) is not implemented
and you are
 not trying to restrict access for yourself, returns undef.

Remember that a umask is a number, usually given in octal; it is not a
 string of octal digits.
See also oct, if all you have
 is a string.

Portability issues: "umask" in perlport.

undef EXPR

undef

Undefines the value of EXPR, which must be an lvalue. Use only on a
 scalar value, an array
(using @), a hash (using %), a subroutine
 (using &), or a typeglob (using *). Saying undef
$hash{$key}
 will probably not do what you expect on most predefined variables or
 DBM list
values, so don't do that; see delete.
 Always returns the undefined value.
 You can omit the
EXPR, in which case nothing is
 undefined, but you still get an undefined value that you could,
for
 instance, return from a subroutine, assign to a variable, or pass as a
 parameter. Examples:

 undef $foo;
 undef $bar{'blurfl'}; # Compare to: delete $bar{'blurfl'};
 undef @ary;
 undef %hash;
 undef &mysub;
 undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.
 return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
 select undef, undef, undef, 0.25;
 my ($x, $y, undef, $z) = foo(); # Ignore third value returned

Note that this is a unary operator, not a list operator.

unlink LIST

unlink

Deletes a list of files. On success, it returns the number of files
 it successfully deleted. On
failure, it returns false and sets $! (errno):

 my $unlinked = unlink 'a', 'b', 'c';
 unlink @goners;
 unlink glob "*.bak";

Perl version 5.24.0 documentation - perlfunc

Page 106http://perldoc.perl.org

On error, unlink will not tell you which files it
 could not remove.
 If you want to know which
files you could not remove, try them one
 at a time:

 foreach my $file (@goners) {
 unlink $file or warn "Could not unlink $file: $!";
 }

Note: unlink will not attempt to delete directories
 unless you are
 superuser and the -U flag is
supplied to Perl. Even if these
 conditions are met, be warned that unlinking a directory can
inflict
 damage on your filesystem. Finally, using unlink on
 directories is not supported on
many operating systems. Use rmdir instead.

If LIST is omitted, unlink uses $_.

unpack TEMPLATE,EXPR

unpack TEMPLATE

unpack does the reverse of pack: it takes a string
 and expands it out into a list of values.
 (In
scalar context, it returns merely the first value produced.)

If EXPR is omitted, unpacks the $_ string.
 See perlpacktut for an introduction to this function.

The string is broken into chunks described by the TEMPLATE. Each chunk
 is converted
separately to a value. Typically, either the string is a result
 of pack, or the characters of the
string
 represent a C structure of some kind.

The TEMPLATE has the same format as in the pack function.
 Here's a subroutine that does
substring:

 sub substr {
 my ($what, $where, $howmuch) = @_;
 unpack("x$where a$howmuch", $what);
 }

and then there's

 sub ordinal { unpack("W",$_[0]); } # same as ord()

In addition to fields allowed in pack, you may
 prefix a field with a %<number> to indicate that

you want a <number>-bit checksum of the items instead of the items
 themselves. Default is a
16-bit checksum. The checksum is calculated by
 summing numeric values of expanded values
(for string fields the sum of ord($char) is taken; for bit fields the sum of zeroes and ones).

For example, the following
 computes the same number as the System V sum program:

 my $checksum = do {
 local $/; # slurp!
 unpack("%32W*", readline) % 65535;
 };

The following efficiently counts the number of set bits in a bit vector:

 my $setbits = unpack("%32b*", $selectmask);

The p and P formats should be used with care. Since Perl
 has no way of checking whether the
value passed to unpack
 corresponds to a valid memory location, passing a pointer value
that's
 not known to be valid is likely to have disastrous consequences.

If there are more pack codes or if the repeat count of a field or a group
 is larger than what the
remainder of the input string allows, the result
 is not well defined: the repeat count may be
decreased, or unpack may produce empty strings or zeros,
 or it may raise an exception.
 If the
input string is longer than one described by the TEMPLATE,
 the remainder of that input string
is ignored.

See pack for more examples and notes.

Perl version 5.24.0 documentation - perlfunc

Page 107http://perldoc.perl.org

unshift ARRAY,LIST

Does the opposite of a shift. Or the opposite of a push,
 depending on how you look at it.
Prepends list to the front of the
 array and returns the new number of elements in the array.

 unshift(@ARGV, '-e') unless $ARGV[0] =~ /^-/;

Note the LIST is prepended whole, not one element at a time, so the
 prepended elements stay
in the same order. Use reverse to do the reverse.

Starting with Perl 5.14, an experimental feature allowed unshift to take
 a scalar expression.
This experiment has been deemed unsuccessful, and was
 removed as of Perl 5.24.

untie VARIABLE

Breaks the binding between a variable and a package.
 (See tie.)
 Has no effect if the variable
is not tied.

use Module VERSION LIST

use Module VERSION

use Module LIST

use Module

use VERSION

Imports some semantics into the current package from the named module,
 generally by
aliasing certain subroutine or variable names into your
 package. It is exactly equivalent to

 BEGIN { require Module; Module->import(LIST); }

except that Module must be a bareword.
 The importation can be made conditional by using
the if module.

In the peculiar use VERSION form, VERSION may be either a positive
 decimal fraction such
as 5.006, which will be compared to $], or a v-string of the form v5.6.1, which will be

compared to $^V (aka $PERL_VERSION). An
 exception is raised if VERSION is greater than
the version of the
 current Perl interpreter; Perl will not attempt to parse the rest of the
 file.
Compare with require, which can do a
 similar check at run time.
 Symmetrically, no
VERSION allows you to specify that you want a version
 of Perl older than the specified one.

Specifying VERSION as a literal of the form v5.6.1 should generally be
 avoided, because it
leads to misleading error messages under earlier
 versions of Perl (that is, prior to 5.6.0) that
do not support this
 syntax. The equivalent numeric version should be used instead.

 use v5.6.1; # compile time version check
 use 5.6.1; # ditto
 use 5.006_001; # ditto; preferred for backwards compatibility

This is often useful if you need to check the current Perl version before useing library modules
that won't work
 with older versions of Perl.
 (We try not to do this more than we have to.)

use VERSION also lexically enables all features available in the requested
 version as defined
by the feature pragma, disabling any features
 not in the requested version's feature bundle.
See feature.
 Similarly, if the specified Perl version is greater than or equal to
 5.12.0, strictures
are enabled lexically as
 with use strict. Any explicit use of use strict or no strict
overrides use VERSION, even if it comes
 before it. Later use of use VERSION
 will override
all behavior of a previous use VERSION, possibly removing the strict and feature added
by use VERSION. use VERSION does not
 load the feature.pm or strict.pm
 files.

The BEGIN forces the require and import to happen at compile time. The require makes
sure the module is loaded into
 memory if it hasn't been yet. The import is not a
 builtin; it's
just an ordinary static method
 call into the Module package to tell the module to import the list
of
 features back into the current package. The module can implement its import method any
way it likes, though most modules
 just choose to derive their import method via
 inheritance

Perl version 5.24.0 documentation - perlfunc

Page 108http://perldoc.perl.org

from the Exporter class that is defined in the Exporter module. See Exporter. If no
import method can be found, then the call is skipped,
 even if there is an AUTOLOAD
method.

If you do not want to call the package's import
 method (for instance,
 to stop your namespace
from being altered), explicitly supply the empty list:

 use Module ();

That is exactly equivalent to

 BEGIN { require Module }

If the VERSION argument is present between Module and LIST, then the use will call the
VERSION method in
 class Module with the given version as an argument:

 use Module 12.34;

is equivalent to:

 BEGIN { require Module; Module->VERSION(12.34) }

The default VERSION method,
 inherited from the UNIVERSAL class, croaks if the given

version is larger than the value of the variable $Module::VERSION.

Again, there is a distinction between omitting LIST (import called with no arguments) and an
explicit empty LIST ()
 (import not called). Note that there is no comma
 after VERSION!

Because this is a wide-open interface, pragmas (compiler directives)
 are also implemented
this way. Some of the currently implemented
 pragmas are:

 use constant;
 use diagnostics;
 use integer;
 use sigtrap qw(SEGV BUS);
 use strict qw(subs vars refs);
 use subs qw(afunc blurfl);
 use warnings qw(all);
 use sort qw(stable _quicksort _mergesort);

Some of these pseudo-modules import semantics into the current
 block scope (like strict or
integer, unlike
 ordinary modules, which import symbols into the current package (which
 are
effective through the end of the file).

Because use takes effect at compile time,
 it doesn't respect the ordinary flow control of the
code being compiled.
 In particular, putting a use inside the
 false branch of a conditional
doesn't prevent it
 from being processed. If a module or pragma only needs to be loaded

conditionally, this can be done using the if pragma:

 use if $] < 5.008, "utf8";
 use if WANT_WARNINGS, warnings => qw(all);

There's a corresponding no declaration
 that unimports meanings imported by use,
 i.e., it calls
Module->unimport(LIST) instead of import. It behaves just as import
 does with
VERSION, an omitted or empty LIST,
 or no unimport method being found.

 no integer;
 no strict 'refs';
 no warnings;

Care should be taken when using the no VERSION form of no. It is only meant to be used to
assert that the running Perl is of a earlier
 version than its argument and not to undo the
feature-enabling side effects
 of use VERSION.

Perl version 5.24.0 documentation - perlfunc

Page 109http://perldoc.perl.org

See perlmodlib for a list of standard modules and pragmas. See perlrun
 for the -M and -m
command-line options to Perl that give use functionality from the command-line.

utime LIST

Changes the access and modification times on each file of a list of
 files. The first two elements
of the list must be the NUMERIC access
 and modification times, in that order. Returns the
number of files
 successfully changed. The inode change time of each file is set
 to the current
time. For example, this code has the same effect as the
 Unix touch(1) command when the
files already exist and belong to
 the user running the program:

 #!/usr/bin/perl
 my $atime = my $mtime = time;
 utime $atime, $mtime, @ARGV;

Since Perl 5.8.0, if the first two elements of the list are undef,
 the utime(2) syscall from your
C library is called with a null second
 argument. On most systems, this will set the file's access
and
 modification times to the current time (i.e., equivalent to the example
 above) and will work
even on files you don't own provided you have write
 permission:

 for my $file (@ARGV) {
	 utime(undef, undef, $file)
	 || warn "Couldn't touch $file: $!";
 }

Under NFS this will use the time of the NFS server, not the time of
 the local machine. If there
is a time synchronization problem, the
 NFS server and local machine will have different times.
The Unix touch(1) command will in fact normally use this form instead of the
 one shown in the
first example.

Passing only one of the first two elements as undef is
 equivalent to passing a 0 and will not
have the effect described when
 both are undef. This also triggers an
 uninitialized warning.

On systems that support futimes(2), you may pass filehandles among the
 files. On systems
that don't support futimes(2), passing filehandles raises
 an exception. Filehandles must be
passed as globs or glob references to be
 recognized; barewords are considered filenames.

Portability issues: "utime" in perlport.

values HASH

values ARRAY

In list context, returns a list consisting of all the values of the named
 hash. In Perl 5.12 or later
only, will also return a list of the values of
 an array; prior to that release, attempting to use an
array argument will
 produce a syntax error. In scalar context, returns the number of values.

Hash entries are returned in an apparently random order. The actual random
 order is specific
to a given hash; the exact same series of operations
 on two hashes may result in a different
order for each hash. Any insertion
 into the hash may change the order, as will any deletion,
with the exception
 that the most recent key returned by each or keys may be deleted without
changing the order. So
 long as a given hash is unmodified you may rely on keys, values
and each to repeatedly return the same order
 as each other. See "Algorithmic Complexity
Attacks" in perlsec for
 details on why hash order is randomized. Aside from the guarantees

provided here the exact details of Perl's hash algorithm and the hash
 traversal order are
subject to change in any release of Perl. Tied hashes
 may behave differently to Perl's hashes
with respect to changes in order on
 insertion and deletion of items.

As a side effect, calling values resets the HASH or
 ARRAY's internal iterator, see each. (In
particular,
 calling values in void context resets the iterator
 with no other overhead. Apart
from resetting the iterator, values @array in list context is the same as plain @array.
 (We
recommend that you use void context keys @array for this, but
 reasoned that taking
values @array out would require more
 documentation than leaving it in.)

Perl version 5.24.0 documentation - perlfunc

Page 110http://perldoc.perl.org

Note that the values are not copied, which means modifying them will
 modify the contents of
the hash:

 for (values %hash) { s/foo/bar/g } # modifies %hash values
 for (@hash{keys %hash}) { s/foo/bar/g } # same

Starting with Perl 5.14, an experimental feature allowed values to take a
 scalar expression.
This experiment has been deemed unsuccessful, and was
 removed as of Perl 5.24.

To avoid confusing would-be users of your code who are running earlier
 versions of Perl with
mysterious syntax errors, put this sort of thing at
 the top of your file to signal that your code
will work only on Perls of
 a recent vintage:

 use 5.012;	 # so keys/values/each work on arrays

See also keys, each, and sort.

vec EXPR,OFFSET,BITS

Treats the string in EXPR as a bit vector made up of elements of
 width BITS and returns the
value of the element specified by OFFSET
 as an unsigned integer. BITS therefore specifies
the number of bits
 that are reserved for each element in the bit vector. This must
 be a power
of two from 1 to 32 (or 64, if your platform supports
 that).

If BITS is 8, "elements" coincide with bytes of the input string.

If BITS is 16 or more, bytes of the input string are grouped into chunks
 of size BITS/8, and
each group is converted to a number as with pack/unpack with
 big-endian formats n/N (and
analogously for BITS==64). See pack for details.

If bits is 4 or less, the string is broken into bytes, then the bits
 of each byte are broken into
8/BITS groups. Bits of a byte are
 numbered in a little-endian-ish way, as in 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80. For example,
 breaking the single input byte chr(0x36) into
two groups gives a list (0x6, 0x3); breaking it into 4 groups gives (0x2, 0x1, 0x3,
0x0).

vec may also be assigned to, in which case
 parentheses are needed
 to give the expression
the correct precedence as in

 vec($image, $max_x * $x + $y, 8) = 3;

If the selected element is outside the string, the value 0 is returned.
 If an element off the end
of the string is written to, Perl will first
 extend the string with sufficiently many zero bytes. It is
an error
 to try to write off the beginning of the string (i.e., negative OFFSET).

If the string happens to be encoded as UTF-8 internally (and thus has
 the UTF8 flag set), this
is ignored by vec,
 and it operates on the
 internal byte string, not the conceptual character
string, even if you
 only have characters with values less than 256.

Strings created with vec can also be
 manipulated with the logical
 operators |, &, ^, and ~.
These operators will assume a bit
 vector operation is desired when both operands are strings.

See "Bitwise String Operators" in perlop.

The following code will build up an ASCII string saying 'PerlPerlPerl'.
 The comments
show the string after each step. Note that this code works
 in the same way on big-endian or
little-endian machines.

 my $foo = '';
 vec($foo, 0, 32) = 0x5065726C; # 'Perl'

 # $foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
 print vec($foo, 0, 8); # prints 80 == 0x50 == ord('P')

 vec($foo, 2, 16) = 0x5065; # 'PerlPe'
 vec($foo, 3, 16) = 0x726C; # 'PerlPerl'

Perl version 5.24.0 documentation - perlfunc

Page 111http://perldoc.perl.org

 vec($foo, 8, 8) = 0x50; # 'PerlPerlP'
 vec($foo, 9, 8) = 0x65; # 'PerlPerlPe'
 vec($foo, 20, 4) = 2; # 'PerlPerlPe' . "\x02"
 vec($foo, 21, 4) = 7; # 'PerlPerlPer'
 # 'r' is "\x72"
 vec($foo, 45, 2) = 3; # 'PerlPerlPer' . "\x0c"
 vec($foo, 93, 1) = 1; # 'PerlPerlPer' . "\x2c"
 vec($foo, 94, 1) = 1; # 'PerlPerlPerl'
 # 'l' is "\x6c"

To transform a bit vector into a string or list of 0's and 1's, use these:

 my $bits = unpack("b*", $vector);
 my @bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the *.

Here is an example to illustrate how the bits actually fall in place:

 #!/usr/bin/perl -wl

 print <<'EOT';
 0 1 2 3
 unpack("V",$_) 01234567890123456789012345678901
 --
 EOT

 for $w (0..3) {
 $width = 2**$w;
 for ($shift=0; $shift < $width; ++$shift) {
 for ($off=0; $off < 32/$width; ++$off) {
 $str = pack("B*", "0"x32);
 $bits = (1<<$shift);
 vec($str, $off, $width) = $bits;
 $res = unpack("b*",$str);
 $val = unpack("V", $str);
 write;
 }
 }
 }

 format STDOUT =
 vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
 $off, $width, $bits, $val, $res
 .
 __END__

Regardless of the machine architecture on which it runs, the
 example above should print the
following table:

 0 1 2 3
 unpack("V",$_) 01234567890123456789012345678901
 --
 vec($_, 0, 1) = 1 == 1 10000000000000000000000000000000
 vec($_, 1, 1) = 1 == 2 01000000000000000000000000000000
 vec($_, 2, 1) = 1 == 4 00100000000000000000000000000000
 vec($_, 3, 1) = 1 == 8 00010000000000000000000000000000
 vec($_, 4, 1) = 1 == 16 00001000000000000000000000000000
 vec($_, 5, 1) = 1 == 32 00000100000000000000000000000000

Perl version 5.24.0 documentation - perlfunc

Page 112http://perldoc.perl.org

 vec($_, 6, 1) = 1 == 64 00000010000000000000000000000000
 vec($_, 7, 1) = 1 == 128 00000001000000000000000000000000
 vec($_, 8, 1) = 1 == 256 00000000100000000000000000000000
 vec($_, 9, 1) = 1 == 512 00000000010000000000000000000000
 vec($_,10, 1) = 1 == 1024 00000000001000000000000000000000
 vec($_,11, 1) = 1 == 2048 00000000000100000000000000000000
 vec($_,12, 1) = 1 == 4096 00000000000010000000000000000000
 vec($_,13, 1) = 1 == 8192 00000000000001000000000000000000
 vec($_,14, 1) = 1 == 16384 00000000000000100000000000000000
 vec($_,15, 1) = 1 == 32768 00000000000000010000000000000000
 vec($_,16, 1) = 1 == 65536 00000000000000001000000000000000
 vec($_,17, 1) = 1 == 131072 00000000000000000100000000000000
 vec($_,18, 1) = 1 == 262144 00000000000000000010000000000000
 vec($_,19, 1) = 1 == 524288 00000000000000000001000000000000
 vec($_,20, 1) = 1 == 1048576 00000000000000000000100000000000
 vec($_,21, 1) = 1 == 2097152 00000000000000000000010000000000
 vec($_,22, 1) = 1 == 4194304 00000000000000000000001000000000
 vec($_,23, 1) = 1 == 8388608 00000000000000000000000100000000
 vec($_,24, 1) = 1 == 16777216 00000000000000000000000010000000
 vec($_,25, 1) = 1 == 33554432 00000000000000000000000001000000
 vec($_,26, 1) = 1 == 67108864 00000000000000000000000000100000
 vec($_,27, 1) = 1 == 134217728 00000000000000000000000000010000
 vec($_,28, 1) = 1 == 268435456 00000000000000000000000000001000
 vec($_,29, 1) = 1 == 536870912 00000000000000000000000000000100
 vec($_,30, 1) = 1 == 1073741824 00000000000000000000000000000010
 vec($_,31, 1) = 1 == 2147483648 00000000000000000000000000000001
 vec($_, 0, 2) = 1 == 1 10000000000000000000000000000000
 vec($_, 1, 2) = 1 == 4 00100000000000000000000000000000
 vec($_, 2, 2) = 1 == 16 00001000000000000000000000000000
 vec($_, 3, 2) = 1 == 64 00000010000000000000000000000000
 vec($_, 4, 2) = 1 == 256 00000000100000000000000000000000
 vec($_, 5, 2) = 1 == 1024 00000000001000000000000000000000
 vec($_, 6, 2) = 1 == 4096 00000000000010000000000000000000
 vec($_, 7, 2) = 1 == 16384 00000000000000100000000000000000
 vec($_, 8, 2) = 1 == 65536 00000000000000001000000000000000
 vec($_, 9, 2) = 1 == 262144 00000000000000000010000000000000
 vec($_,10, 2) = 1 == 1048576 00000000000000000000100000000000
 vec($_,11, 2) = 1 == 4194304 00000000000000000000001000000000
 vec($_,12, 2) = 1 == 16777216 00000000000000000000000010000000
 vec($_,13, 2) = 1 == 67108864 00000000000000000000000000100000
 vec($_,14, 2) = 1 == 268435456 00000000000000000000000000001000
 vec($_,15, 2) = 1 == 1073741824 00000000000000000000000000000010
 vec($_, 0, 2) = 2 == 2 01000000000000000000000000000000
 vec($_, 1, 2) = 2 == 8 00010000000000000000000000000000
 vec($_, 2, 2) = 2 == 32 00000100000000000000000000000000
 vec($_, 3, 2) = 2 == 128 00000001000000000000000000000000
 vec($_, 4, 2) = 2 == 512 00000000010000000000000000000000
 vec($_, 5, 2) = 2 == 2048 00000000000100000000000000000000
 vec($_, 6, 2) = 2 == 8192 00000000000001000000000000000000
 vec($_, 7, 2) = 2 == 32768 00000000000000010000000000000000
 vec($_, 8, 2) = 2 == 131072 00000000000000000100000000000000
 vec($_, 9, 2) = 2 == 524288 00000000000000000001000000000000
 vec($_,10, 2) = 2 == 2097152 00000000000000000000010000000000
 vec($_,11, 2) = 2 == 8388608 00000000000000000000000100000000
 vec($_,12, 2) = 2 == 33554432 00000000000000000000000001000000
 vec($_,13, 2) = 2 == 134217728 00000000000000000000000000010000

Perl version 5.24.0 documentation - perlfunc

Page 113http://perldoc.perl.org

 vec($_,14, 2) = 2 == 536870912 00000000000000000000000000000100
 vec($_,15, 2) = 2 == 2147483648 00000000000000000000000000000001
 vec($_, 0, 4) = 1 == 1 10000000000000000000000000000000
 vec($_, 1, 4) = 1 == 16 00001000000000000000000000000000
 vec($_, 2, 4) = 1 == 256 00000000100000000000000000000000
 vec($_, 3, 4) = 1 == 4096 00000000000010000000000000000000
 vec($_, 4, 4) = 1 == 65536 00000000000000001000000000000000
 vec($_, 5, 4) = 1 == 1048576 00000000000000000000100000000000
 vec($_, 6, 4) = 1 == 16777216 00000000000000000000000010000000
 vec($_, 7, 4) = 1 == 268435456 00000000000000000000000000001000
 vec($_, 0, 4) = 2 == 2 01000000000000000000000000000000
 vec($_, 1, 4) = 2 == 32 00000100000000000000000000000000
 vec($_, 2, 4) = 2 == 512 00000000010000000000000000000000
 vec($_, 3, 4) = 2 == 8192 00000000000001000000000000000000
 vec($_, 4, 4) = 2 == 131072 00000000000000000100000000000000
 vec($_, 5, 4) = 2 == 2097152 00000000000000000000010000000000
 vec($_, 6, 4) = 2 == 33554432 00000000000000000000000001000000
 vec($_, 7, 4) = 2 == 536870912 00000000000000000000000000000100
 vec($_, 0, 4) = 4 == 4 00100000000000000000000000000000
 vec($_, 1, 4) = 4 == 64 00000010000000000000000000000000
 vec($_, 2, 4) = 4 == 1024 00000000001000000000000000000000
 vec($_, 3, 4) = 4 == 16384 00000000000000100000000000000000
 vec($_, 4, 4) = 4 == 262144 00000000000000000010000000000000
 vec($_, 5, 4) = 4 == 4194304 00000000000000000000001000000000
 vec($_, 6, 4) = 4 == 67108864 00000000000000000000000000100000
 vec($_, 7, 4) = 4 == 1073741824 00000000000000000000000000000010
 vec($_, 0, 4) = 8 == 8 00010000000000000000000000000000
 vec($_, 1, 4) = 8 == 128 00000001000000000000000000000000
 vec($_, 2, 4) = 8 == 2048 00000000000100000000000000000000
 vec($_, 3, 4) = 8 == 32768 00000000000000010000000000000000
 vec($_, 4, 4) = 8 == 524288 00000000000000000001000000000000
 vec($_, 5, 4) = 8 == 8388608 00000000000000000000000100000000
 vec($_, 6, 4) = 8 == 134217728 00000000000000000000000000010000
 vec($_, 7, 4) = 8 == 2147483648 00000000000000000000000000000001
 vec($_, 0, 8) = 1 == 1 10000000000000000000000000000000
 vec($_, 1, 8) = 1 == 256 00000000100000000000000000000000
 vec($_, 2, 8) = 1 == 65536 00000000000000001000000000000000
 vec($_, 3, 8) = 1 == 16777216 00000000000000000000000010000000
 vec($_, 0, 8) = 2 == 2 01000000000000000000000000000000
 vec($_, 1, 8) = 2 == 512 00000000010000000000000000000000
 vec($_, 2, 8) = 2 == 131072 00000000000000000100000000000000
 vec($_, 3, 8) = 2 == 33554432 00000000000000000000000001000000
 vec($_, 0, 8) = 4 == 4 00100000000000000000000000000000
 vec($_, 1, 8) = 4 == 1024 00000000001000000000000000000000
 vec($_, 2, 8) = 4 == 262144 00000000000000000010000000000000
 vec($_, 3, 8) = 4 == 67108864 00000000000000000000000000100000
 vec($_, 0, 8) = 8 == 8 00010000000000000000000000000000
 vec($_, 1, 8) = 8 == 2048 00000000000100000000000000000000
 vec($_, 2, 8) = 8 == 524288 00000000000000000001000000000000
 vec($_, 3, 8) = 8 == 134217728 00000000000000000000000000010000
 vec($_, 0, 8) = 16 == 16 00001000000000000000000000000000
 vec($_, 1, 8) = 16 == 4096 00000000000010000000000000000000
 vec($_, 2, 8) = 16 == 1048576 00000000000000000000100000000000
 vec($_, 3, 8) = 16 == 268435456 00000000000000000000000000001000
 vec($_, 0, 8) = 32 == 32 00000100000000000000000000000000
 vec($_, 1, 8) = 32 == 8192 00000000000001000000000000000000

Perl version 5.24.0 documentation - perlfunc

Page 114http://perldoc.perl.org

 vec($_, 2, 8) = 32 == 2097152 00000000000000000000010000000000
 vec($_, 3, 8) = 32 == 536870912 00000000000000000000000000000100
 vec($_, 0, 8) = 64 == 64 00000010000000000000000000000000
 vec($_, 1, 8) = 64 == 16384 00000000000000100000000000000000
 vec($_, 2, 8) = 64 == 4194304 00000000000000000000001000000000
 vec($_, 3, 8) = 64 == 1073741824 00000000000000000000000000000010
 vec($_, 0, 8) = 128 == 128 00000001000000000000000000000000
 vec($_, 1, 8) = 128 == 32768 00000000000000010000000000000000
 vec($_, 2, 8) = 128 == 8388608 00000000000000000000000100000000
 vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001

wait

Behaves like wait(2) on your system: it waits for a child
 process to terminate and returns the
pid of the deceased process, or -1 if there are no child processes. The status is returned in
$? and ${^CHILD_ERROR_NATIVE}.
 Note that a return value of -1 could mean that child
processes are
 being automatically reaped, as described in perlipc.

If you use wait in your handler for $SIG{CHLD}, it may accidentally wait for the child
 created
by qx or system.
 See perlipc for details.

Portability issues: "wait" in perlport.

waitpid PID,FLAGS

Waits for a particular child process to terminate and returns the pid of
 the deceased process,
or -1 if there is no such child process. A
 non-blocking wait (with WNOHANG in FLAGS) can
return 0 if
 there are child processes matching PID but none have terminated yet.
 The status is
returned in $? and ${^CHILD_ERROR_NATIVE}.

A PID of 0 indicates to wait for any child process whose process group ID is
 equal to that of
the current process. A PID of less than -1 indicates to
 wait for any child process whose
process group ID is equal to -PID. A PID of -1 indicates to wait for any child process.

If you say

 use POSIX ":sys_wait_h";

 my $kid;
 do {
 $kid = waitpid(-1, WNOHANG);
 } while $kid > 0;

or

 1 while waitpid(-1, WNOHANG) > 0;

then you can do a non-blocking wait for all pending zombie processes (see "WAIT" in POSIX).
Non-blocking wait is available on machines supporting either the waitpid(2) or wait4(2)
syscalls. However, waiting for a particular
 pid with FLAGS of 0 is implemented everywhere.
(Perl emulates the
 system call by remembering the status values of processes that have

exited but have not been harvested by the Perl script yet.)

Note that on some systems, a return value of -1 could mean that child
 processes are being
automatically reaped. See perlipc for details,
 and for other examples.

Portability issues: "waitpid" in perlport.

wantarray

Returns true if the context of the currently executing subroutine or eval is looking for a list
value. Returns false if the
 context is
 looking for a scalar. Returns the undefined value if the
context is
 looking for no value (void context).

Perl version 5.24.0 documentation - perlfunc

Page 115http://perldoc.perl.org

 return unless defined wantarray; # don't bother doing more
 my @a = complex_calculation();
 return wantarray ? @a : "@a";

wantarray's result is unspecified in the top level of a file,
 in a BEGIN, UNITCHECK, CHECK,
INIT or END block, or
 in a DESTROY method.

This function should have been named wantlist() instead.

warn LIST

Prints the value of LIST to STDERR. If the last element of LIST does
 not end in a newline, it
appends the same file/line number text as die does.

If the output is empty and $@ already contains a value
 (typically from a previous eval) that
value is used after appending "\t...caught" to $@. This is useful for staying
 almost, but
not entirely similar to die.

If $@ is empty, then the string "Warning: Something's wrong" is used.

No message is printed if there is a $SIG{__WARN__}
 handler
 installed. It is the handler's
responsibility to deal with the message
 as it sees fit (like, for instance, converting it into a die
). Most
 handlers must therefore arrange to actually display the
 warnings that they are not
prepared to deal with, by calling warn
 again in the handler. Note that this is quite safe and will
not
 produce an endless loop, since __WARN__ hooks are not called from
 inside one.

You will find this behavior is slightly different from that of $SIG{__DIE__} handlers (which
don't suppress the
 error text, but can instead call die again to change
 it).

Using a __WARN__ handler provides a powerful way to silence all
 warnings (even the
so-called mandatory ones). An example:

 # wipe out *all* compile-time warnings
 BEGIN { $SIG{'__WARN__'} = sub { warn $_[0] if $DOWARN } }
 my $foo = 10;
 my $foo = 20; # no warning about duplicate my $foo,
 # but hey, you asked for it!
 # no compile-time or run-time warnings before here
 $DOWARN = 1;

 # run-time warnings enabled after here
 warn "\$foo is alive and $foo!"; # does show up

See perlvar for details on setting %SIG entries
 and for more
 examples. See the Carp module
for other kinds of warnings using its carp and cluck functions.

write FILEHANDLE

write EXPR

write

Writes a formatted record (possibly multi-line) to the specified FILEHANDLE,
 using the format
associated with that file. By default the format for
 a file is the one having the same name as
the filehandle, but the
 format for the current output channel (see the select function) may be
set explicitly by
 assigning the name of the format to the $~ variable.

Top of form processing is handled automatically: if there is insufficient
 room on the current
page for the formatted record, the page is advanced by
 writing a form feed and a special
top-of-page
 format is used to format the new
 page header before the record is written. By
default, the top-of-page
 format is the name of the filehandle with _TOP appended, or top
 in
the current package if the former does not exist. This would be a
 problem with autovivified
filehandles, but it may be dynamically set to the
 format of your choice by assigning the name
to the $^
 variable while that filehandle is selected. The number of lines
 remaining on the
current page is in variable $-, which
 can be set to 0 to force a new page.

Perl version 5.24.0 documentation - perlfunc

Page 116http://perldoc.perl.org

If FILEHANDLE is unspecified, output goes to the current default output
 channel, which starts
out as STDOUT but may be changed by the select operator. If the FILEHANDLE is an
EXPR,
 then the expression
 is evaluated and the resulting string is used to look up the name of
the FILEHANDLE at run time. For more on formats, see perlform.

Note that write is not the opposite of read. Unfortunately.

y///

The transliteration operator. Same as tr///. See "Quote-Like Operators" in perlop.

Non-function Keywords by Cross-reference
perldata

__DATA__

__END__

These keywords are documented in "Special Literals" in perldata.

perlmod

BEGIN

CHECK

END

INIT

UNITCHECK

These compile phase keywords are documented in "BEGIN, UNITCHECK, CHECK, INIT and
END" in perlmod.

perlobj

DESTROY

This method keyword is documented in "Destructors" in perlobj.

perlop

and

cmp

eq

ge

gt

le

lt

ne

not

or

x

xor

These operators are documented in perlop.

perlsub

AUTOLOAD

This keyword is documented in "Autoloading" in perlsub.

Perl version 5.24.0 documentation - perlfunc

Page 117http://perldoc.perl.org

perlsyn

else

elsif

for

foreach

if

unless

until

while

These flow-control keywords are documented in "Compound Statements" in perlsyn.

elseif

The "else if" keyword is spelled elsif in Perl. There's no elif
 or else if either. It does
parse elseif, but only to warn you
 about not using it.

See the documentation for flow-control keywords in "Compound Statements" in perlsyn.

default

given

when

These flow-control keywords related to the experimental switch feature are
 documented in
"Switch Statements" in perlsyn.

