
Perl version 5.24.0 documentation - Test::Builder::Tester

Page 1http://perldoc.perl.org

NAME
Test::Builder::Tester - test testsuites that have been built with
 Test::Builder

SYNOPSIS
 use Test::Builder::Tester tests => 1;
 use Test::More;

 test_out("not ok 1 - foo");
 test_fail(+1);
 fail("foo");
 test_test("fail works");

DESCRIPTION
A module that helps you test testing modules that are built with Test::Builder.

The testing system is designed to be used by performing a three step
 process for each test you wish
to test. This process starts with using test_out and test_err in advance to declare what the
testsuite you
 are testing will output with Test::Builder to stdout and stderr.

You then can run the test(s) from your test suite that call Test::Builder. At this point the output of
Test::Builder is
 safely captured by Test::Builder::Tester rather than being
 interpreted as real test
output.

The final stage is to call test_test that will simply compare what you
 predeclared to what
Test::Builder actually outputted, and report the
 results back with a "ok" or "not ok" (with debugging) to
the normal
 output.

Functions
These are the six methods that are exported as default.

test_out

test_err

Procedures for predeclaring the output that your test suite is
 expected to produce until
test_test is called. These procedures
 automatically assume that each line terminates with
"\n". So

 test_out("ok 1","ok 2");

is the same as

 test_out("ok 1\nok 2");

which is even the same as

 test_out("ok 1");
 test_out("ok 2");

Once test_out or test_err (or test_fail or test_diag) have
 been called, all further
output from Test::Builder will be
 captured by Test::Builder::Tester. This means that you will not
be able perform further tests to the normal output in the normal way
 until you call test_test
(well, unless you manually meddle with the
 output filehandles)

test_fail

Because the standard failure message that Test::Builder produces
 whenever a test fails will be
a common occurrence in your test error
 output, and because it has changed between
Test::Builder versions, rather
 than forcing you to call test_err with the string all the time like

so

Perl version 5.24.0 documentation - Test::Builder::Tester

Page 2http://perldoc.perl.org

 test_err("# Failed test ($0 at line ".line_num(+1).")");

test_fail exists as a convenience function that can be called
 instead. It takes one
argument, the offset from the current line that
 the line that causes the fail is on.

 test_fail(+1);

This means that the example in the synopsis could be rewritten
 more simply as:

 test_out("not ok 1 - foo");
 test_fail(+1);
 fail("foo");
 test_test("fail works");

test_diag

As most of the remaining expected output to the error stream will be
 created by Test::Builder's
diag function, Test::Builder::Tester
 provides a convenience function test_diag that you can
use instead of test_err.

The test_diag function prepends comment hashes and spacing to the
 start and newlines to
the end of the expected output passed to it and
 adds it to the list of expected error output. So,
instead of writing

 test_err("# Couldn't open file");

you can write

 test_diag("Couldn't open file");

Remember that Test::Builder's diag function will not add newlines to
 the end of output and
test_diag will. So to check

 Test::Builder->new->diag("foo\n","bar\n");

You would do

 test_diag("foo","bar")

without the newlines.

test_test

Actually performs the output check testing the tests, comparing the
 data (with eq) that we
have captured from Test::Builder against
 what was declared with test_out and test_err.

This takes name/value pairs that effect how the test is run.

title (synonym 'name', 'label')

The name of the test that will be displayed after the ok or not
 ok.

skip_out

Setting this to a true value will cause the test to ignore if the
 output sent by the test to
the output stream does not match that
 declared with test_out.

skip_err

Setting this to a true value will cause the test to ignore if the
 output sent by the test to
the error stream does not match that
 declared with test_err.

As a convenience, if only one argument is passed then this argument
 is assumed to be the
name of the test (as in the above examples.)

Once test_test has been run test output will be redirected back to
 the original filehandles
that Test::Builder was connected to
 (probably STDOUT and STDERR,) meaning any further

Perl version 5.24.0 documentation - Test::Builder::Tester

Page 3http://perldoc.perl.org

tests you run
 will function normally and cause success/errors for Test::Harness.

line_num

A utility function that returns the line number that the function was
 called on. You can pass it
an offset which will be added to the
 result. This is very useful for working out the correct text of
diagnostic functions that contain line numbers.

Essentially this is the same as the __LINE__ macro, but the line_num(+3) idiom is
arguably nicer.

In addition to the six exported functions there exists one
 function that can only be accessed with a
fully qualified function
 call.

color

When test_test is called and the output that your tests generate
 does not match that which
you declared, test_test will print out
 debug information showing the two conflicting
versions. As this
 output itself is debug information it can be confusing which part of
 the output
is from test_test and which was the original output from
 your original tests. Also, it may be
hard to spot things like
 extraneous whitespace at the end of lines that may cause your test to

fail even though the output looks similar.

To assist you test_test can colour the background of the debug
 information to
disambiguate the different types of output. The debug
 output will have its background coloured
green and red. The green
 part represents the text which is the same between the executed
and
 actual output, the red shows which part differs.

The color function determines if colouring should occur or not.
 Passing it a true or false
value will enable or disable colouring
 respectively, and the function called with no argument
will return the
 current setting.

To enable colouring from the command line, you can use the Text::Builder::Tester::Color
module like so:

 perl -Mlib=Text::Builder::Tester::Color test.t

Or by including the Test::Builder::Tester::Color module directly in
 the PERL5LIB.

BUGS
Calls Test::Builder->no_ending turning off the ending tests.
 This is needed as otherwise it will
trip out because we've run more
 tests than we strictly should have and it'll register any failures we
 had
that we were testing for as real failures.

The color function doesn't work unless Term::ANSIColor is
 compatible with your terminal.

Bugs (and requests for new features) can be reported to the author
 though the CPAN RT system:
http://rt.cpan.org/NoAuth/ReportBug.html?Queue=Test-Builder-Tester

AUTHOR
Copyright Mark Fowler <mark@twoshortplanks.com> 2002, 2004.

Some code taken from Test::More and Test::Catch, written by
 Michael G Schwern <
schwern@pobox.com>. Hence, those parts
 Copyright Micheal G Schwern 2001. Used and distributed
with
 permission.

This program is free software; you can redistribute it
 and/or modify it under the same terms as Perl
itself.

MAINTAINERS
Chad Granum <exodist@cpan.org>

Perl version 5.24.0 documentation - Test::Builder::Tester

Page 4http://perldoc.perl.org

NOTES
Thanks to Richard Clamp <richardc@unixbeard.net> for letting
 me use his testing system to try this
module out on.

SEE ALSO
Test::Builder, Test::Builder::Tester::Color, Test::More.

