
Perl version 5.24.0 documentation - Socket

Page 1http://perldoc.perl.org

NAME
Socket - networking constants and support functions

SYNOPSIS
Socket a low-level module used by, among other things, the IO::Socket
 family of modules. The
following examples demonstrate some low-level uses but
 a practical program would likely use the
higher-level API provided by IO::Socket or similar instead.

 use Socket qw(PF_INET SOCK_STREAM pack_sockaddr_in inet_aton);

 socket(my $socket, PF_INET, SOCK_STREAM, 0)
 or die "socket: $!";

 my $port = getservbyname "echo", "tcp";
 connect($socket, pack_sockaddr_in($port, inet_aton("localhost")))
 or die "connect: $!";

 print $socket "Hello, world!\n";
 print <$socket>;

See also the EXAMPLES section.

DESCRIPTION
This module provides a variety of constants, structure manipulators and other
 functions related to
socket-based networking. The values and functions
 provided are useful when used in conjunction with
Perl core functions such as
 socket(), setsockopt() and bind(). It also provides several other support

functions, mostly for dealing with conversions of network addresses between
 human-readable and
native binary forms, and for hostname resolver operations.

Some constants and functions are exported by default by this module; but for
 backward-compatibility
any recently-added symbols are not exported by default
 and must be requested explicitly. When an
import list is provided to the use Socket line, the default exports are not automatically imported. It is
therefore best practice to always to explicitly list all the symbols required.

Also, some common socket "newline" constants are provided: the constants CR, LF, and CRLF, as
well as $CR, $LF, and $CRLF, which map
 to \015, \012, and \015\012. If you do not want to use
the literal
 characters in your programs, then use the constants provided here. They are
 not exported
by default, but can be imported individually, and with the :crlf export tag:

 use Socket qw(:DEFAULT :crlf);

 $sock->print("GET / HTTP/1.0$CRLF");

The entire getaddrinfo() subsystem can be exported using the tag :addrinfo;
 this exports the
getaddrinfo() and getnameinfo() functions, and all the AI_*, NI_*, NIx_* and EAI_* constants.

CONSTANTS
In each of the following groups, there may be many more constants provided
 than just the ones given
as examples in the section heading. If the heading
 ends ... then this means there are likely more;
the exact constants
 provided will depend on the OS and headers found at compile-time.

PF_INET, PF_INET6, PF_UNIX, ...
Protocol family constants to use as the first argument to socket() or the
 value of the SO_DOMAIN or
SO_FAMILY socket option.

Perl version 5.24.0 documentation - Socket

Page 2http://perldoc.perl.org

AF_INET, AF_INET6, AF_UNIX, ...
Address family constants used by the socket address structures, to pass to
 such functions as
inet_pton() or getaddrinfo(), or are returned by such
 functions as sockaddr_family().

SOCK_STREAM, SOCK_DGRAM, SOCK_RAW, ...
Socket type constants to use as the second argument to socket(), or the value
 of the SO_TYPE socket
option.

SOCK_NONBLOCK. SOCK_CLOEXEC
Linux-specific shortcuts to specify the O_NONBLOCK and FD_CLOEXEC flags
 during a socket(2) call.

 socket(my $sockh, PF_INET, SOCK_DGRAM|SOCK_NONBLOCK, 0)

SOL_SOCKET
Socket option level constant for setsockopt() and getsockopt().

SO_ACCEPTCONN, SO_BROADCAST, SO_ERROR, ...
Socket option name constants for setsockopt() and getsockopt() at the SOL_SOCKET level.

IP_OPTIONS, IP_TOS, IP_TTL, ...
Socket option name constants for IPv4 socket options at the IPPROTO_IP
 level.

IPTOS_LOWDELAY, IPTOS_THROUGHPUT, IPTOS_RELIABILITY, ...
Socket option value constants for IP_TOS socket option.

MSG_BCAST, MSG_OOB, MSG_TRUNC, ...
Message flag constants for send() and recv().

SHUT_RD, SHUT_RDWR, SHUT_WR
Direction constants for shutdown().

INADDR_ANY, INADDR_BROADCAST, INADDR_LOOPBACK, INADDR_NONE
Constants giving the special AF_INET addresses for wildcard, broadcast,
 local loopback, and invalid
addresses.

Normally equivalent to inet_aton('0.0.0.0'), inet_aton('255.255.255.255'),
 inet_aton('localhost') and
inet_aton('255.255.255.255') respectively.

IPPROTO_IP, IPPROTO_IPV6, IPPROTO_TCP, ...
IP protocol constants to use as the third argument to socket(), the level
 argument to getsockopt() or
setsockopt(), or the value of the SO_PROTOCOL
 socket option.

TCP_CORK, TCP_KEEPALIVE, TCP_NODELAY, ...
Socket option name constants for TCP socket options at the IPPROTO_TCP
 level.

IN6ADDR_ANY, IN6ADDR_LOOPBACK
Constants giving the special AF_INET6 addresses for wildcard and local
 loopback.

Normally equivalent to inet_pton(AF_INET6, "::") and
 inet_pton(AF_INET6, "::1") respectively.

IPV6_ADD_MEMBERSHIP, IPV6_MTU, IPV6_V6ONLY, ...
Socket option name constants for IPv6 socket options at the IPPROTO_IPV6
 level.

STRUCTURE MANIPULATORS
The following functions convert between lists of Perl values and packed binary
 strings representing
structures.

Perl version 5.24.0 documentation - Socket

Page 3http://perldoc.perl.org

$family = sockaddr_family $sockaddr
Takes a packed socket address (as returned by pack_sockaddr_in(),
 pack_sockaddr_un() or the perl
builtin functions getsockname() and
 getpeername()). Returns the address family tag. This will be one
of the AF_* constants, such as AF_INET for a sockaddr_in addresses or AF_UNIX for a
sockaddr_un. It can be used to figure out what unpack to
 use for a sockaddr of unknown type.

$sockaddr = pack_sockaddr_in $port, $ip_address
Takes two arguments, a port number and an opaque string (as returned by
 inet_aton(), or a v-string).
Returns the sockaddr_in structure with those
 arguments packed in and AF_INET filled in. For
Internet domain sockets,
 this structure is normally what you need for the arguments in bind(),

connect(), and send().

($port, $ip_address) = unpack_sockaddr_in $sockaddr
Takes a sockaddr_in structure (as returned by pack_sockaddr_in(),
 getpeername() or recv()).
Returns a list of two elements: the port and an
 opaque string representing the IP address (you can
use inet_ntoa() to convert
 the address to the four-dotted numeric format). Will croak if the structure

does not represent an AF_INET address.

In scalar context will return just the IP address.

$sockaddr = sockaddr_in $port, $ip_address
($port, $ip_address) = sockaddr_in $sockaddr

A wrapper of pack_sockaddr_in() or unpack_sockaddr_in(). In list context,
 unpacks its argument and
returns a list consisting of the port and IP address.
 In scalar context, packs its port and IP address
arguments as a sockaddr_in
 and returns it.

Provided largely for legacy compatibility; it is better to use
 pack_sockaddr_in() or
unpack_sockaddr_in() explicitly.

$sockaddr = pack_sockaddr_in6 $port, $ip6_address, [$scope_id, [$flowinfo]]
Takes two to four arguments, a port number, an opaque string (as returned by
 inet_pton()), optionally
a scope ID number, and optionally a flow label
 number. Returns the sockaddr_in6 structure with
those arguments packed in
 and AF_INET6 filled in. IPv6 equivalent of pack_sockaddr_in().

($port, $ip6_address, $scope_id, $flowinfo) = unpack_sockaddr_in6 $sockaddr
Takes a sockaddr_in6 structure. Returns a list of four elements: the port
 number, an opaque string
representing the IPv6 address, the scope ID, and the
 flow label. (You can use inet_ntop() to convert
the address to the usual
 string format). Will croak if the structure does not represent an AF_INET6

address.

In scalar context will return just the IP address.

$sockaddr = sockaddr_in6 $port, $ip6_address, [$scope_id, [$flowinfo]]
($port, $ip6_address, $scope_id, $flowinfo) = sockaddr_in6 $sockaddr

A wrapper of pack_sockaddr_in6() or unpack_sockaddr_in6(). In list context,
 unpacks its argument
according to unpack_sockaddr_in6(). In scalar context,
 packs its arguments according to
pack_sockaddr_in6().

Provided largely for legacy compatibility; it is better to use
 pack_sockaddr_in6() or
unpack_sockaddr_in6() explicitly.

$sockaddr = pack_sockaddr_un $path
Takes one argument, a pathname. Returns the sockaddr_un structure with that
 path packed in with
AF_UNIX filled in. For PF_UNIX sockets, this
 structure is normally what you need for the arguments in
bind(), connect(),
 and send().

Perl version 5.24.0 documentation - Socket

Page 4http://perldoc.perl.org

($path) = unpack_sockaddr_un $sockaddr
Takes a sockaddr_un structure (as returned by pack_sockaddr_un(),
 getpeername() or recv()).
Returns a list of one element: the pathname. Will
 croak if the structure does not represent an
AF_UNIX address.

$sockaddr = sockaddr_un $path
($path) = sockaddr_un $sockaddr

A wrapper of pack_sockaddr_un() or unpack_sockaddr_un(). In a list context,
 unpacks its argument
and returns a list consisting of the pathname. In a
 scalar context, packs its pathname as a
sockaddr_un and returns it.

Provided largely for legacy compatibility; it is better to use
 pack_sockaddr_un() or
unpack_sockaddr_un() explicitly.

These are only supported if your system has <sys/un.h>.

$ip_mreq = pack_ip_mreq $multiaddr, $interface
Takes an IPv4 multicast address and optionally an interface address (or INADDR_ANY). Returns the
ip_mreq structure with those arguments packed
 in. Suitable for use with the IP_ADD_MEMBERSHIP
and IP_DROP_MEMBERSHIP
 sockopts.

($multiaddr, $interface) = unpack_ip_mreq $ip_mreq
Takes an ip_mreq structure. Returns a list of two elements; the IPv4
 multicast address and interface
address.

$ip_mreq_source = pack_ip_mreq_source $multiaddr, $source, $interface
Takes an IPv4 multicast address, source address, and optionally an interface
 address (or
INADDR_ANY). Returns the ip_mreq_source structure with those
 arguments packed in. Suitable for
use with the IP_ADD_SOURCE_MEMBERSHIP
 and IP_DROP_SOURCE_MEMBERSHIP sockopts.

($multiaddr, $source, $interface) = unpack_ip_mreq_source $ip_mreq
Takes an ip_mreq_source structure. Returns a list of three elements; the
 IPv4 multicast address,
source address and interface address.

$ipv6_mreq = pack_ipv6_mreq $multiaddr6, $ifindex
Takes an IPv6 multicast address and an interface number. Returns the ipv6_mreq structure with
those arguments packed in. Suitable for use with
 the IPV6_ADD_MEMBERSHIP and
IPV6_DROP_MEMBERSHIP sockopts.

($multiaddr6, $ifindex) = unpack_ipv6_mreq $ipv6_mreq
Takes an ipv6_mreq structure. Returns a list of two elements; the IPv6
 address and an interface
number.

FUNCTIONS
$ip_address = inet_aton $string

Takes a string giving the name of a host, or a textual representation of an IP
 address and translates
that to an packed binary address structure suitable to
 pass to pack_sockaddr_in(). If passed a
hostname that cannot be resolved,
 returns undef. For multi-homed hosts (hosts with more than one
address),
 the first address found is returned.

For portability do not assume that the result of inet_aton() is 32 bits wide,
 in other words, that it would
contain only the IPv4 address in network order.

This IPv4-only function is provided largely for legacy reasons. Newly-written
 code should use
getaddrinfo() or inet_pton() instead for IPv6 support.

Perl version 5.24.0 documentation - Socket

Page 5http://perldoc.perl.org

$string = inet_ntoa $ip_address
Takes a packed binary address structure such as returned by
 unpack_sockaddr_in() (or a v-string
representing the four octets of the IPv4
 address in network order) and translates it into a string of the
form d.d.d.d where the ds are numbers less than 256 (the normal
 human-readable four dotted
number notation for Internet addresses).

This IPv4-only function is provided largely for legacy reasons. Newly-written
 code should use
getnameinfo() or inet_ntop() instead for IPv6 support.

$address = inet_pton $family, $string
Takes an address family (such as AF_INET or AF_INET6) and a string
 containing a textual
representation of an address in that family and
 translates that to an packed binary address structure.

See also getaddrinfo() for a more powerful and flexible function to look up
 socket addresses given
hostnames or textual addresses.

$string = inet_ntop $family, $address
Takes an address family and a packed binary address structure and translates
 it into a
human-readable textual representation of the address; typically in d.d.d.d form for AF_INET or
hhhh:hhhh::hhhh form for AF_INET6.

See also getnameinfo() for a more powerful and flexible function to turn
 socket addresses into
human-readable textual representations.

($err, @result) = getaddrinfo $host, $service, [$hints]
Given both a hostname and service name, this function attempts to resolve the
 host name into a list of
network addresses, and the service name into a
 protocol and port number, and then returns a list of
address structures
 suitable to connect() to it.

Given just a host name, this function attempts to resolve it to a list of
 network addresses, and then
returns a list of address structures giving these
 addresses.

Given just a service name, this function attempts to resolve it to a protocol
 and port number, and then
returns a list of address structures that represent
 it suitable to bind() to. This use should be combined
with the AI_PASSIVE
 flag; see below.

Given neither name, it generates an error.

If present, $hints should be a reference to a hash, where the following keys
 are recognised:

flags => INT

A bitfield containing AI_* constants; see below.

family => INT

Restrict to only generating addresses in this address family

socktype => INT

Restrict to only generating addresses of this socket type

protocol => INT

Restrict to only generating addresses for this protocol

The return value will be a list; the first value being an error indication,
 followed by a list of address
structures (if no error occurred).

The error value will be a dualvar; comparable to the EI_* error constants,
 or printable as a
human-readable error message string. If no error occurred it
 will be zero numerically and an empty
string.

Perl version 5.24.0 documentation - Socket

Page 6http://perldoc.perl.org

Each value in the results list will be a hash reference containing the following
 fields:

family => INT

The address family (e.g. AF_INET)

socktype => INT

The socket type (e.g. SOCK_STREAM)

protocol => INT

The protocol (e.g. IPPROTO_TCP)

addr => STRING

The address in a packed string (such as would be returned by
 pack_sockaddr_in())

canonname => STRING

The canonical name for the host if the AI_CANONNAME flag was provided, or undef
otherwise. This field will only be present on the first returned
 address.

The following flag constants are recognised in the $hints hash. Other flag
 constants may exist as
provided by the OS.

AI_PASSIVE

Indicates that this resolution is for a local bind() for a passive (i.e.
 listening) socket, rather than
an active (i.e. connecting) socket.

AI_CANONNAME

Indicates that the caller wishes the canonical hostname (canonname) field
 of the result to be
filled in.

AI_NUMERICHOST

Indicates that the caller will pass a numeric address, rather than a hostname,
 and that
getaddrinfo() must not perform a resolve operation on this name. This
 flag will prevent a
possibly-slow network lookup operation, and instead return
 an error if a hostname is passed.

($err, $hostname, $servicename) = getnameinfo $sockaddr, [$flags, [$xflags]]
Given a packed socket address (such as from getsockname(), getpeername(), or
 returned by
getaddrinfo() in a addr field), returns the hostname and
 symbolic service name it represents. $flags
may be a bitmask of NI_*
 constants, or defaults to 0 if unspecified.

The return value will be a list; the first value being an error condition,
 followed by the hostname and
service name.

The error value will be a dualvar; comparable to the EI_* error constants,
 or printable as a
human-readable error message string. The host and service
 names will be plain strings.

The following flag constants are recognised as $flags. Other flag constants may
 exist as provided by
the OS.

NI_NUMERICHOST

Requests that a human-readable string representation of the numeric address be
 returned
directly, rather than performing a name resolve operation that may
 convert it into a hostname.
This will also avoid potentially-blocking network
 IO.

NI_NUMERICSERV

Requests that the port number be returned directly as a number representation
 rather than
performing a name resolve operation that may convert it into a
 service name.

NI_NAMEREQD

Perl version 5.24.0 documentation - Socket

Page 7http://perldoc.perl.org

If a name resolve operation fails to provide a name, then this flag will cause
 getnameinfo() to
indicate an error, rather than returning the numeric
 representation as a human-readable string.

NI_DGRAM

Indicates that the socket address relates to a SOCK_DGRAM socket, for the
 services whose
name differs between TCP and UDP protocols.

The following constants may be supplied as $xflags.

NIx_NOHOST

Indicates that the caller is not interested in the hostname of the result, so
 it does not have to
be converted. undef will be returned as the hostname.

NIx_NOSERV

Indicates that the caller is not interested in the service name of the result,
 so it does not have
to be converted. undef will be returned as the service
 name.

getaddrinfo() / getnameinfo() ERROR CONSTANTS
The following constants may be returned by getaddrinfo() or getnameinfo().
 Others may be provided
by the OS.

EAI_AGAIN

A temporary failure occurred during name resolution. The operation may be
 successful if it is
retried later.

EAI_BADFLAGS

The value of the flags hint to getaddrinfo(), or the $flags parameter to
 getnameinfo()
contains unrecognised flags.

EAI_FAMILY

The family hint to getaddrinfo(), or the family of the socket address
 passed to getnameinfo()
is not supported.

EAI_NODATA

The host name supplied to getaddrinfo() did not provide any usable address
 data.

EAI_NONAME

The host name supplied to getaddrinfo() does not exist, or the address
 supplied to
getnameinfo() is not associated with a host name and the NI_NAMEREQD flag was supplied.

EAI_SERVICE

The service name supplied to getaddrinfo() is not available for the socket
 type given in the
$hints.

EXAMPLES
Lookup for connect()

The getaddrinfo() function converts a hostname and a service name into a list
 of structures, each
containing a potential way to connect() to the named
 service on the named host.

 use IO::Socket;
 use Socket qw(SOCK_STREAM getaddrinfo);

 my %hints = (socktype => SOCK_STREAM);
 my ($err, @res) = getaddrinfo("localhost", "echo", \%hints);
 die "Cannot getaddrinfo - $err" if $err;

Perl version 5.24.0 documentation - Socket

Page 8http://perldoc.perl.org

 my $sock;

 foreach my $ai (@res) {
 my $candidate = IO::Socket->new();

 $candidate->socket($ai->{family}, $ai->{socktype}, $ai->{protocol})
 or next;

 $candidate->connect($ai->{addr})
 or next;

 $sock = $candidate;
 last;
 }

 die "Cannot connect to localhost:echo" unless $sock;

 $sock->print("Hello, world!\n");
 print <$sock>;

Because a list of potential candidates is returned, the while loop tries
 each in turn until it finds one
that succeeds both the socket() and connect()
 calls.

This function performs the work of the legacy functions gethostbyname(),
 getservbyname(),
inet_aton() and pack_sockaddr_in().

In practice this logic is better performed by IO::Socket::IP.

Making a human-readable string out of an address
The getnameinfo() function converts a socket address, such as returned by
 getsockname() or
getpeername(), into a pair of human-readable strings
 representing the address and service name.

 use IO::Socket::IP;
 use Socket qw(getnameinfo);

 my $server = IO::Socket::IP->new(LocalPort => 12345, Listen => 1) or
 die "Cannot listen - $@";

 my $socket = $server->accept or die "accept: $!";

 my ($err, $hostname, $servicename) = getnameinfo($socket->peername);
 die "Cannot getnameinfo - $err" if $err;

 print "The peer is connected from $hostname\n";

Since in this example only the hostname was used, the redundant conversion of
 the port number into
a service name may be omitted by passing the NIx_NOSERV flag.

 use Socket qw(getnameinfo NIx_NOSERV);

 my ($err, $hostname) = getnameinfo($socket->peername, 0, NIx_NOSERV);

This function performs the work of the legacy functions unpack_sockaddr_in(),
 inet_ntoa(),

Perl version 5.24.0 documentation - Socket

Page 9http://perldoc.perl.org

gethostbyaddr() and getservbyport().

In practice this logic is better performed by IO::Socket::IP.

Resolving hostnames into IP addresses
To turn a hostname into a human-readable plain IP address use getaddrinfo()
 to turn the hostname
into a list of socket structures, then getnameinfo() on
 each one to make it a readable IP address
again.

 use Socket qw(:addrinfo SOCK_RAW);

 my ($err, @res) = getaddrinfo($hostname, "", {socktype => SOCK_RAW});
 die "Cannot getaddrinfo - $err" if $err;

 while(my $ai = shift @res) {
 my ($err, $ipaddr) = getnameinfo($ai->{addr}, NI_NUMERICHOST,
NIx_NOSERV);
 die "Cannot getnameinfo - $err" if $err;

 print "$ipaddr\n";
 }

The socktype hint to getaddrinfo() filters the results to only include one
 socket type and protocol.
Without this most OSes return three combinations,
 for SOCK_STREAM, SOCK_DGRAM and SOCK_RAW,
resulting in triplicate
 output of addresses. The NI_NUMERICHOST flag to getnameinfo() causes it to

return a string-formatted plain IP address, rather than reverse resolving it
 back into a hostname.

This combination performs the work of the legacy functions gethostbyname()
 and inet_ntoa().

Accessing socket options
The many SO_* and other constants provide the socket option names for
 getsockopt() and
setsockopt().

 use IO::Socket::INET;
 use Socket qw(SOL_SOCKET SO_RCVBUF IPPROTO_IP IP_TTL);

 my $socket = IO::Socket::INET->new(LocalPort => 0, Proto => 'udp')
 or die "Cannot create socket: $@";

 $socket->setsockopt(SOL_SOCKET, SO_RCVBUF, 64*1024) or
 die "setsockopt: $!";

 print "Receive buffer is ", $socket->getsockopt(SOL_SOCKET, SO_RCVBUF),
 " bytes\n";

 print "IP TTL is ", $socket->getsockopt(IPPROTO_IP, IP_TTL), "\n";

As a convenience, IO::Socket's setsockopt() method will convert a number
 into a packed byte buffer,
and getsockopt() will unpack a byte buffer of the
 correct size back into a number.

AUTHOR
This module was originally maintained in Perl core by the Perl 5 Porters.

It was extracted to dual-life on CPAN at version 1.95 by
 Paul Evans <leonerd@leonerd.org.uk>

