
Perl version 5.24.0 documentation - perldbmfilter

Page 1http://perldoc.perl.org

NAME
perldbmfilter - Perl DBM Filters

SYNOPSIS
 $db = tie %hash, 'DBM', ...

 $old_filter = $db->filter_store_key (sub { ... });
 $old_filter = $db->filter_store_value(sub { ... });
 $old_filter = $db->filter_fetch_key (sub { ... });
 $old_filter = $db->filter_fetch_value(sub { ... });

DESCRIPTION
The four filter_* methods shown above are available in all the DBM
 modules that ship with Perl,
namely DB_File, GDBM_File, NDBM_File,
 ODBM_File and SDBM_File.

Each of the methods works identically, and is used to install (or
 uninstall) a single DBM Filter. The
only difference between them is the
 place that the filter is installed.

To summarise:

filter_store_key

If a filter has been installed with this method, it will be invoked
 every time you write a key to
a DBM database.

filter_store_value

If a filter has been installed with this method, it will be invoked
 every time you write a value
to a DBM database.

filter_fetch_key

If a filter has been installed with this method, it will be invoked
 every time you read a key
from a DBM database.

filter_fetch_value

If a filter has been installed with this method, it will be invoked
 every time you read a value
from a DBM database.

You can use any combination of the methods from none to all four.

All filter methods return the existing filter, if present, or undef
 if not.

To delete a filter pass undef to it.

The Filter
When each filter is called by Perl, a local copy of $_ will contain
 the key or value to be filtered.
Filtering is achieved by modifying
 the contents of $_. The return code from the filter is ignored.

An Example: the NULL termination problem.
DBM Filters are useful for a class of problems where you always
 want to make the same
transformation to all keys, all values or both.

For example, consider the following scenario. You have a DBM database
 that you need to share with
a third-party C application. The C application
 assumes that all keys and values are NULL terminated.
Unfortunately
 when Perl writes to DBM databases it doesn't use NULL termination, so
 your Perl
application will have to manage NULL termination itself. When
 you write to the database you will have
to use something like this:

 $hash{"$key\0"} = "$value\0";

Perl version 5.24.0 documentation - perldbmfilter

Page 2http://perldoc.perl.org

Similarly the NULL needs to be taken into account when you are considering
 the length of existing
keys/values.

It would be much better if you could ignore the NULL terminations issue
 in the main application code
and have a mechanism that automatically
 added the terminating NULL to all keys and values
whenever you write to
 the database and have them removed when you read from the database. As
I'm
 sure you have already guessed, this is a problem that DBM Filters can
 fix very easily.

 use strict;
 use warnings;
 use SDBM_File;
 use Fcntl;

 my %hash;
 my $filename = "filt";
 unlink $filename;

 my $db = tie(%hash, 'SDBM_File', $filename, O_RDWR|O_CREAT, 0640)
 or die "Cannot open $filename: $!\n";

 # Install DBM Filters
 $db->filter_fetch_key (sub { s/\0$// });
 $db->filter_store_key (sub { $_ .= "\0" });
 $db->filter_fetch_value(
 sub { no warnings 'uninitialized'; s/\0$// });
 $db->filter_store_value(sub { $_ .= "\0" });

 $hash{"abc"} = "def";
 my $a = $hash{"ABC"};
 # ...
 undef $db;
 untie %hash;

The code above uses SDBM_File, but it will work with any of the DBM
 modules.

Hopefully the contents of each of the filters should be
 self-explanatory. Both "fetch" filters remove the
terminating NULL,
 and both "store" filters add a terminating NULL.

Another Example: Key is a C int.
Here is another real-life example. By default, whenever Perl writes to
 a DBM database it always
writes the key and value as strings. So when
 you use this:

 $hash{12345} = "something";

the key 12345 will get stored in the DBM database as the 5 byte string
 "12345". If you actually want
the key to be stored in the DBM database
 as a C int, you will have to use pack when writing, and
unpack
 when reading.

Here is a DBM Filter that does it:

 use strict;
 use warnings;
 use DB_File;
 my %hash;
 my $filename = "filt";
 unlink $filename;

Perl version 5.24.0 documentation - perldbmfilter

Page 3http://perldoc.perl.org

 my $db = tie %hash, 'DB_File', $filename, O_CREAT|O_RDWR, 0666,
 $DB_HASH or die "Cannot open $filename: $!\n";

 $db->filter_fetch_key (sub { $_ = unpack("i", $_) });
 $db->filter_store_key (sub { $_ = pack ("i", $_) });
 $hash{123} = "def";
 # ...
 undef $db;
 untie %hash;

The code above uses DB_File, but again it will work with any of the
 DBM modules.

This time only two filters have been used; we only need to manipulate
 the contents of the key, so it
wasn't necessary to install any value
 filters.

SEE ALSO
DB_File, GDBM_File, NDBM_File, ODBM_File and SDBM_File.

AUTHOR
Paul Marquess

