
Perl version 5.24.0 documentation - Test::Simple

Page 1http://perldoc.perl.org

NAME
Test::Simple - Basic utilities for writing tests.

SYNOPSIS
  use Test::Simple tests => 1;

  ok( $foo eq $bar, 'foo is bar' );

DESCRIPTION
** If you are unfamiliar with testing read Test::Tutorial first! **

This is an extremely simple, extremely basic module for writing tests
 suitable for CPAN modules and 
other pursuits. If you wish to do more
 complicated testing, use the Test::More module (a drop-in 
replacement
 for this one).

The basic unit of Perl testing is the ok. For each thing you want to
 test your program will print out an 
"ok" or "not ok" to indicate pass
 or fail. You do this with the ok() function (see below).

The only other constraint is you must pre-declare how many tests you
 plan to run. This is in case 
something goes horribly wrong during the
 test and your test program aborts, or skips a test or 
whatever. You
 do this like so:

    use Test::Simple tests => 23;

You must have a plan.

ok

  ok( $foo eq $bar, $name );
  ok( $foo eq $bar );

ok() is given an expression (in this case $foo eq $bar). If it's
 true, the test passed. If it's 
false, it didn't. That's about it.

ok() prints out either "ok" or "not ok" along with a test number (it
 keeps track of that for you).

  # This produces "ok 1 - Hell not yet frozen over" (or not ok)
  ok( get_temperature($hell) > 0, 'Hell not yet frozen over' );

If you provide a $name, that will be printed along with the "ok/not
 ok" to make it easier to find 
your test when if fails (just search for
 the name). It also makes it easier for the next guy to 
understand
 what your test is for. It's highly recommended you use test names.

All tests are run in scalar context. So this:

    ok( @stuff, 'I have some stuff' );

will do what you mean (fail if stuff is empty)

Test::Simple will start by printing number of tests run in the form
 "1..M" (so "1..5" means you're going 
to run 5 tests). This strange
 format lets Test::Harness know how many tests you plan on running in

case something goes horribly wrong.

If all your tests passed, Test::Simple will exit with zero (which is
 normal). If anything failed it will exit 
with how many failed. If
 you run less (or more) tests than you planned, the missing (or extras)
 will be 
considered failures. If no tests were ever run Test::Simple
 will throw a warning and exit with 255. If the
test died, even after
 having successfully completed all its tests, it will still be
 considered a failure and 
will exit with 255.

So the exit codes are...



Perl version 5.24.0 documentation - Test::Simple

Page 2http://perldoc.perl.org

    0                   all tests successful
    255                 test died or all passed but wrong # of tests run
    any other number    how many failed (including missing or extras)

If you fail more than 254 tests, it will be reported as 254.

This module is by no means trying to be a complete testing system.
 It's just to get you started. Once 
you're off the ground its
 recommended you look at Test::More.

EXAMPLE
Here's an example of a simple .t file for the fictional Film module.

    use Test::Simple tests => 5;

    use Film;  # What you're testing.

    my $btaste = Film->new({ Title    => 'Bad Taste',
                             Director => 'Peter Jackson',
                             Rating   => 'R',
                             NumExplodingSheep => 1
                           });
    ok( defined($btaste) && ref $btaste eq 'Film',     'new() works' );

    ok( $btaste->Title      eq 'Bad Taste',     'Title() get'    );
    ok( $btaste->Director   eq 'Peter Jackson', 'Director() get' );
    ok( $btaste->Rating     eq 'R',             'Rating() get'   );
    ok( $btaste->NumExplodingSheep == 1,        'NumExplodingSheep() get' 
);

It will produce output like this:

    1..5
    ok 1 - new() works
    ok 2 - Title() get
    ok 3 - Director() get
    not ok 4 - Rating() get
    #   Failed test 'Rating() get'
    #   in t/film.t at line 14.
    ok 5 - NumExplodingSheep() get
    # Looks like you failed 1 tests of 5

Indicating the Film::Rating() method is broken.

CAVEATS
Test::Simple will only report a maximum of 254 failures in its exit
 code. If this is a problem, you 
probably have a huge test script.
 Split it into multiple files. (Otherwise blame the Unix folks for
 using 
an unsigned short integer as the exit status).

Because VMS's exit codes are much, much different than the rest of the
 universe, and perl does 
horrible mangling to them that gets in my way,
 it works like this on VMS.

    0     SS$_NORMAL        all tests successful
    4     SS$_ABORT         something went wrong

Unfortunately, I can't differentiate any further.



Perl version 5.24.0 documentation - Test::Simple

Page 3http://perldoc.perl.org

NOTES
Test::Simple is explicitly tested all the way back to perl 5.6.0.

Test::Simple is thread-safe in perl 5.8.1 and up.

HISTORY
This module was conceived while talking with Tony Bowden in his
 kitchen one night about the 
problems I was having writing some really
 complicated feature into the new Testing module. He 
observed that the
 main problem is not dealing with these edge cases but that people hate
 to write 
tests at all. What was needed was a dead simple module
 that took all the hard work out of testing and
was really, really easy
 to learn. Paul Johnson simultaneously had this idea (unfortunately,
 he wasn't in
Tony's kitchen). This is it.

SEE ALSO
Test::More

More testing functions! Once you outgrow Test::Simple, look at Test::More. Test::Simple is 
100% forward compatible with Test::More 
 (i.e. you can just use Test::More instead of 
Test::Simple in your
 programs and things will still work).

Look in Test::More's SEE ALSO for more testing modules.

AUTHORS
Idea by Tony Bowden and Paul Johnson, code by Michael G Schwern <schwern@pobox.com>, 
wardrobe by Calvin Klein.

MAINTAINERS
Chad Granum <exodist@cpan.org>

COPYRIGHT
Copyright 2001-2008 by Michael G Schwern <schwern@pobox.com>.

This program is free software; you can redistribute it and/or modify it under the same terms as Perl 
itself.

See http://www.perl.com/perl/misc/Artistic.html


