
Perl version 5.24.0 documentation - perlreapi

Page 1http://perldoc.perl.org

NAME
perlreapi - Perl regular expression plugin interface

DESCRIPTION
As of Perl 5.9.5 there is a new interface for plugging and using
 regular expression engines other than
the default one.

Each engine is supposed to provide access to a constant structure of the
 following format:

 typedef struct regexp_engine {
 REGEXP* (*comp) (pTHX_
 const SV * const pattern, const U32 flags);
 I32 (*exec) (pTHX_
 REGEXP * const rx,
 char* stringarg,
 char* strend, char* strbeg,
 SSize_t minend, SV* sv,
 void* data, U32 flags);
 char* (*intuit) (pTHX_
 REGEXP * const rx, SV *sv,
			 const char * const strbeg,
 char *strpos, char *strend, U32 flags,
 struct re_scream_pos_data_s *data);
 SV* (*checkstr) (pTHX_ REGEXP * const rx);
 void (*free) (pTHX_ REGEXP * const rx);
 void (*numbered_buff_FETCH) (pTHX_
 REGEXP * const rx,
 const I32 paren,
 SV * const sv);
 void (*numbered_buff_STORE) (pTHX_
 REGEXP * const rx,
 const I32 paren,
 SV const * const value);
 I32 (*numbered_buff_LENGTH) (pTHX_
 REGEXP * const rx,
 const SV * const sv,
 const I32 paren);
 SV* (*named_buff) (pTHX_
 REGEXP * const rx,
 SV * const key,
 SV * const value,
 U32 flags);
 SV* (*named_buff_iter) (pTHX_
 REGEXP * const rx,
 const SV * const lastkey,
 const U32 flags);
 SV* (*qr_package)(pTHX_ REGEXP * const rx);
 #ifdef USE_ITHREADS
 void* (*dupe) (pTHX_ REGEXP * const rx, CLONE_PARAMS *param);
 #endif
 REGEXP* (*op_comp) (...);

When a regexp is compiled, its engine field is then set to point at
 the appropriate structure, so that
when it needs to be used Perl can find
 the right routines to do so.

In order to install a new regexp handler, $^H{regcomp} is set
 to an integer which (when casted

Perl version 5.24.0 documentation - perlreapi

Page 2http://perldoc.perl.org

appropriately) resolves to one of these
 structures. When compiling, the comp method is executed,
and the
 resulting regexp structure's engine field is expected to point back at
 the same structure.

The pTHX_ symbol in the definition is a macro used by Perl under threading
 to provide an extra
argument to the routine holding a pointer back to
 the interpreter that is executing the regexp. So
under threading all
 routines get an extra argument.

Callbacks
comp

 REGEXP* comp(pTHX_ const SV * const pattern, const U32 flags);

Compile the pattern stored in pattern using the given flags and
 return a pointer to a prepared
REGEXP structure that can perform
 the match. See The REGEXP structure below for an explanation
of
 the individual fields in the REGEXP struct.

The pattern parameter is the scalar that was used as the
 pattern. Previous versions of Perl would
pass two char* indicating
 the start and end of the stringified pattern; the following snippet can
 be
used to get the old parameters:

 STRLEN plen;
 char* exp = SvPV(pattern, plen);
 char* xend = exp + plen;

Since any scalar can be passed as a pattern, it's possible to implement
 an engine that does
something with an array ("ook" =~ [qw/ eek
 hlagh /]) or with the non-stringified form of a
compiled regular
 expression ("ook" =~ qr/eek/). Perl's own engine will always
 stringify everything
using the snippet above, but that doesn't mean
 other engines have to.

The flags parameter is a bitfield which indicates which of the msixpn flags the regex was compiled
with. It also contains
 additional info, such as if use locale is in effect.

The eogc flags are stripped out before being passed to the comp
 routine. The regex engine does not
need to know if any of these
 are set, as those flags should only affect what Perl does with the
 pattern
and its match variables, not how it gets compiled and
 executed.

By the time the comp callback is called, some of these flags have
 already had effect (noted below
where applicable). However most of
 their effect occurs after the comp callback has run, in routines
that
 read the rx->extflags field which it populates.

In general the flags should be preserved in rx->extflags after
 compilation, although the regex
engine might want to add or delete
 some of them to invoke or disable some special behavior in Perl.
The
 flags along with any special behavior they cause are documented below:

The pattern modifiers:

/m - RXf_PMf_MULTILINE

If this is in rx->extflags it will be passed to Perl_fbm_instr by pp_split which will
treat the subject string
 as a multi-line string.

/s - RXf_PMf_SINGLELINE

/i - RXf_PMf_FOLD

/x - RXf_PMf_EXTENDED

If present on a regex, "#" comments will be handled differently by the
 tokenizer in some
cases.

TODO: Document those cases.

/p - RXf_PMf_KEEPCOPY

Perl version 5.24.0 documentation - perlreapi

Page 3http://perldoc.perl.org

TODO: Document this

Character set

The character set rules are determined by an enum that is contained
 in this field. This is still
experimental and subject to change, but
 the current interface returns the rules by use of the
in-line function get_regex_charset(const U32 flags). The only currently documented

value returned from it is REGEX_LOCALE_CHARSET, which is set if use locale is in
effect. If present in rx->extflags, split will use the locale dependent definition of
whitespace
 when RXf_SKIPWHITE or RXf_WHITE is in effect. ASCII whitespace
 is defined as
per isSPACE, and by the internal
 macros is_utf8_space under UTF-8, and isSPACE_LC
under use
 locale.

Additional flags:

RXf_SPLIT

This flag was removed in perl 5.18.0. split ' ' is now special-cased
 solely in the parser.
RXf_SPLIT is still #defined, so you can test for it.
 This is how it used to work:

If split is invoked as split ' ' or with no arguments (which
 really means split(' ',
$_), see split), Perl will
 set this flag. The regex engine can then check for it and set the

SKIPWHITE and WHITE extflags. To do this, the Perl engine does:

 if (flags & RXf_SPLIT && r->prelen == 1 && r->precomp[0] == ' ')
 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);

These flags can be set during compilation to enable optimizations in
 the split operator.

RXf_SKIPWHITE

This flag was removed in perl 5.18.0. It is still #defined, so you can
 set it, but doing so will
have no effect. This is how it used to work:

If the flag is present in rx->extflags split will delete
 whitespace from the start of the
subject string before it's operated
 on. What is considered whitespace depends on if the
subject is a
 UTF-8 string and if the RXf_PMf_LOCALE flag is set.

If RXf_WHITE is set in addition to this flag, split will behave like split " " under the Perl
engine.

RXf_START_ONLY

Tells the split operator to split the target string on newlines
 (\n) without invoking the regex
engine.

Perl's engine sets this if the pattern is /^/ (plen == 1 && *exp
 == '^'), even under
/^/s; see split. Of course a
 different regex engine might want to use the same optimizations

with a different syntax.

RXf_WHITE

Tells the split operator to split the target string on whitespace
 without invoking the regex
engine. The definition of whitespace varies
 depending on if the target string is a UTF-8 string
and on
 if RXf_PMf_LOCALE is set.

Perl's engine sets this flag if the pattern is \s+.

RXf_NULL

Tells the split operator to split the target string on
 characters. The definition of character varies
depending on if
 the target string is a UTF-8 string.

Perl's engine sets this flag on empty patterns, this optimization
 makes split // much faster
than it would otherwise be. It's even
 faster than unpack.

RXf_NO_INPLACE_SUBST

Perl version 5.24.0 documentation - perlreapi

Page 4http://perldoc.perl.org

Added in perl 5.18.0, this flag indicates that a regular expression might
 perform an operation
that would interfere with inplace substitution. For
 instance it might contain lookbehind, or
assign to non-magical variables
 (such as $REGMARK and $REGERROR) during matching.
s/// will skip
 certain optimisations when this is set.

exec
 I32 exec(pTHX_ REGEXP * const rx,
 char *stringarg, char* strend, char* strbeg,
 SSize_t minend, SV* sv,
 void* data, U32 flags);

Execute a regexp. The arguments are

rx

The regular expression to execute.

sv

This is the SV to be matched against. Note that the
 actual char array to be matched against is
supplied by the arguments
 described below; the SV is just used to determine UTF8ness,
pos() etc.

strbeg

Pointer to the physical start of the string.

strend

Pointer to the character following the physical end of the string (i.e.
 the \0, if any).

stringarg

Pointer to the position in the string where matching should start; it might
 not be equal to
strbeg (for example in a later iteration of /.../g).

minend

Minimum length of string (measured in bytes from stringarg) that must
 match; if the engine
reaches the end of the match but hasn't reached this
 position in the string, it should fail.

data

Optimisation data; subject to change.

flags

Optimisation flags; subject to change.

intuit
 char* intuit(pTHX_
		 REGEXP * const rx,
		 SV *sv,
		 const char * const strbeg,
		 char *strpos,
		 char *strend,
		 const U32 flags,
		 struct re_scream_pos_data_s *data);

Find the start position where a regex match should be attempted,
 or possibly if the regex engine
should not be run because the
 pattern can't match. This is called, as appropriate, by the core,

depending on the values of the extflags member of the regexp
 structure.

Arguments:

Perl version 5.24.0 documentation - perlreapi

Page 5http://perldoc.perl.org

 rx: the regex to match against
 sv: the SV being matched: only used for utf8 flag; the string
	 itself is accessed via the pointers below. Note that on
	 something like an overloaded SV, SvPOK(sv) may be false
	 and the string pointers may point to something unrelated to
	 the SV itself.
 strbeg: real beginning of string
 strpos: the point in the string at which to begin matching
 strend: pointer to the byte following the last char of the string
 flags currently unused; set to 0
 data: currently unused; set to NULL

checkstr
 SV*	 checkstr(pTHX_ REGEXP * const rx);

Return a SV containing a string that must appear in the pattern. Used
 by split for optimising
matches.

free
 void free(pTHX_ REGEXP * const rx);

Called by Perl when it is freeing a regexp pattern so that the engine
 can release any resources
pointed to by the pprivate member of the regexp structure. This is only responsible for freeing
private data;
 Perl will handle releasing anything else contained in the regexp structure.

Numbered capture callbacks
Called to get/set the value of $`, $', $& and their named
 equivalents, ${^PREMATCH},
${^POSTMATCH} and ${^MATCH}, as well as the
 numbered capture groups ($1, $2, ...).

The paren parameter will be 1 for $1, 2 for $2 and so
 forth, and have these symbolic values for the
special variables:

 ${^PREMATCH} RX_BUFF_IDX_CARET_PREMATCH
 ${^POSTMATCH} RX_BUFF_IDX_CARET_POSTMATCH
 ${^MATCH} RX_BUFF_IDX_CARET_FULLMATCH
 $` RX_BUFF_IDX_PREMATCH
 $' RX_BUFF_IDX_POSTMATCH
 $& RX_BUFF_IDX_FULLMATCH

Note that in Perl 5.17.3 and earlier, the last three constants were also
 used for the caret variants of
the variables.

The names have been chosen by analogy with Tie::Scalar methods
 names with an additional
LENGTH callback for efficiency. However
 named capture variables are currently not tied internally but
implemented via magic.

numbered_buff_FETCH

 void numbered_buff_FETCH(pTHX_ REGEXP * const rx, const I32 paren,
 SV * const sv);

Fetch a specified numbered capture. sv should be set to the scalar
 to return, the scalar is passed as
an argument rather than being
 returned from the function because when it's called Perl already has a

scalar to store the value, creating another one would be
 redundant. The scalar can be set with
sv_setsv, sv_setpvn and
 friends, see perlapi.

Perl version 5.24.0 documentation - perlreapi

Page 6http://perldoc.perl.org

This callback is where Perl untaints its own capture variables under
 taint mode (see perlsec). See the
Perl_reg_numbered_buff_fetch
 function in regcomp.c for how to untaint capture variables if

that's something you'd like your engine to do as well.

numbered_buff_STORE

 void (*numbered_buff_STORE) (pTHX_
 REGEXP * const rx,
 const I32 paren,
 SV const * const value);

Set the value of a numbered capture variable. value is the scalar
 that is to be used as the new value.
It's up to the engine to make
 sure this is used as the new value (or reject it).

Example:

 if ("ook" =~ /(o*)/) {
 # 'paren' will be '1' and 'value' will be 'ee'
 $1 =~ tr/o/e/;
 }

Perl's own engine will croak on any attempt to modify the capture
 variables, to do this in another
engine use the following callback
 (copied from Perl_reg_numbered_buff_store):

 void
 Example_reg_numbered_buff_store(pTHX_
 REGEXP * const rx,
 const I32 paren,
 SV const * const value)
 {
 PERL_UNUSED_ARG(rx);
 PERL_UNUSED_ARG(paren);
 PERL_UNUSED_ARG(value);

 if (!PL_localizing)
 Perl_croak(aTHX_ PL_no_modify);
 }

Actually Perl will not always croak in a statement that looks
 like it would modify a numbered capture
variable. This is because the
 STORE callback will not be called if Perl can determine that it
 doesn't
have to modify the value. This is exactly how tied variables
 behave in the same situation:

 package CaptureVar;
 use parent 'Tie::Scalar';

 sub TIESCALAR { bless [] }
 sub FETCH { undef }
 sub STORE { die "This doesn't get called" }

 package main;

 tie my $sv => "CaptureVar";
 $sv =~ y/a/b/;

Because $sv is undef when the y/// operator is applied to it,
 the transliteration won't actually
execute and the program won't die. This is different to how 5.8 and earlier versions behaved
 since

Perl version 5.24.0 documentation - perlreapi

Page 7http://perldoc.perl.org

the capture variables were READONLY variables then; now they'll
 just die when assigned to in the
default engine.

numbered_buff_LENGTH

 I32 numbered_buff_LENGTH (pTHX_
 REGEXP * const rx,
 const SV * const sv,
 const I32 paren);

Get the length of a capture variable. There's a special callback
 for this so that Perl doesn't have to
do a FETCH and run length on
 the result, since the length is (in Perl's case) known from an offset

stored in rx->offs, this is much more efficient:

 I32 s1 = rx->offs[paren].start;
 I32 s2 = rx->offs[paren].end;
 I32 len = t1 - s1;

This is a little bit more complex in the case of UTF-8, see what
Perl_reg_numbered_buff_length does with is_utf8_string_loclen.

Named capture callbacks
Called to get/set the value of %+ and %-, as well as by some
 utility functions in re.

There are two callbacks, named_buff is called in all the cases the
 FETCH, STORE, DELETE,
CLEAR, EXISTS and SCALAR Tie::Hash callbacks
 would be on changes to %+ and %- and
named_buff_iter in the
 same cases as FIRSTKEY and NEXTKEY.

The flags parameter can be used to determine which of these
 operations the callbacks should
respond to. The following flags are
 currently defined:

Which Tie::Hash operation is being performed from the Perl level on %+ or %+, if any:

 RXapif_FETCH
 RXapif_STORE
 RXapif_DELETE
 RXapif_CLEAR
 RXapif_EXISTS
 RXapif_SCALAR
 RXapif_FIRSTKEY
 RXapif_NEXTKEY

If %+ or %- is being operated on, if any.

 RXapif_ONE /* %+ */
 RXapif_ALL /* %- */

If this is being called as re::regname, re::regnames or re::regnames_count, if any. The first
two will be combined with RXapif_ONE or RXapif_ALL.

 RXapif_REGNAME
 RXapif_REGNAMES
 RXapif_REGNAMES_COUNT

Internally %+ and %- are implemented with a real tied interface
 via Tie::Hash::NamedCapture. The
methods in that package will call
 back into these functions. However the usage of
Tie::Hash::NamedCapture for this purpose might change in future
 releases. For instance this might be
implemented by magic instead
 (would need an extension to mgvtbl).

Perl version 5.24.0 documentation - perlreapi

Page 8http://perldoc.perl.org

named_buff

 SV* (*named_buff) (pTHX_ REGEXP * const rx, SV * const key,
 SV * const value, U32 flags);

named_buff_iter

 SV* (*named_buff_iter) (pTHX_
 REGEXP * const rx,
 const SV * const lastkey,
 const U32 flags);

qr_package
 SV* qr_package(pTHX_ REGEXP * const rx);

The package the qr// magic object is blessed into (as seen by ref
 qr//). It is recommended that
engines change this to their package
 name for identification regardless of if they implement methods

on the object.

The package this method returns should also have the internal Regexp package in its @ISA.
qr//->isa("Regexp") should always
 be true regardless of what engine is being used.

Example implementation might be:

 SV*
 Example_qr_package(pTHX_ REGEXP * const rx)
 {
 	 PERL_UNUSED_ARG(rx);
 	 return newSVpvs("re::engine::Example");
 }

Any method calls on an object created with qr// will be dispatched to the
 package as a normal
object.

 use re::engine::Example;
 my $re = qr//;
 $re->meth; # dispatched to re::engine::Example::meth()

To retrieve the REGEXP object from the scalar in an XS function use
 the SvRX macro, see "REGEXP
Functions" in perlapi.

 void meth(SV * rv)
 PPCODE:
 REGEXP * re = SvRX(sv);

dupe
 void* dupe(pTHX_ REGEXP * const rx, CLONE_PARAMS *param);

On threaded builds a regexp may need to be duplicated so that the pattern
 can be used by multiple
threads. This routine is expected to handle the
 duplication of any private data pointed to by the
pprivate member of
 the regexp structure. It will be called with the preconstructed new regexp
structure as an argument, the pprivate member will point at
 the old private structure, and it is this
routine's responsibility to
 construct a copy and return a pointer to it (which Perl will then use to

overwrite the field as passed to this routine.)

This allows the engine to dupe its private data but also if necessary
 modify the final structure if it really

Perl version 5.24.0 documentation - perlreapi

Page 9http://perldoc.perl.org

must.

On unthreaded builds this field doesn't exist.

op_comp
This is private to the Perl core and subject to change. Should be left
 null.

The REGEXP structure
The REGEXP struct is defined in regexp.h.
 All regex engines must be able to
 correctly build such a
structure in their comp routine.

The REGEXP structure contains all the data that Perl needs to be aware of
 to properly work with the
regular expression. It includes data about
 optimisations that Perl can use to determine if the regex
engine should
 really be used, and various other control info that is needed to properly
 execute
patterns in various contexts, such as if the pattern anchored in
 some way, or what flags were used
during the compile, or if the
 program contains special constructs that Perl needs to be aware of.

In addition it contains two fields that are intended for the private
 use of the regex engine that compiled
the pattern. These are the intflags and pprivate members. pprivate is a void pointer to
 an
arbitrary structure, whose use and management is the responsibility
 of the compiling engine. Perl will
never modify either of these
 values.

 typedef struct regexp {
 /* what engine created this regexp? */
 const struct regexp_engine* engine;

 /* what re is this a lightweight copy of? */
 struct regexp* mother_re;

 /* Information about the match that the Perl core uses to manage
 * things */
 U32 extflags; /* Flags used both externally and internally */
	 I32 minlen;	 /* mininum possible number of chars in */
 string to match */
	 I32 minlenret;	 /* mininum possible number of chars in $& */
 U32 gofs; /* chars left of pos that we search from */

 /* substring data about strings that must appear
 in the final match, used for optimisations */
 struct reg_substr_data *substrs;

 U32 nparens; /* number of capture groups */

 /* private engine specific data */
 U32 intflags; /* Engine Specific Internal flags */
 void *pprivate; /* Data private to the regex engine which
 created this object. */

 /* Data about the last/current match. These are modified during
 * matching*/
 U32 lastparen; /* highest close paren matched ($+) */
 U32 lastcloseparen; /* last close paren matched ($^N) */
 regexp_paren_pair *swap; /* Swap copy of *offs */
 regexp_paren_pair *offs; /* Array of offsets for (@-) and
 (@+) */

Perl version 5.24.0 documentation - perlreapi

Page 10http://perldoc.perl.org

 char *subbeg; /* saved or original string so \digit works
 forever. */
 SV_SAVED_COPY /* If non-NULL, SV which is COW from original */
 I32 sublen; /* Length of string pointed by subbeg */
 I32 suboffset;	 /* byte offset of subbeg from logical start of
 str */
	 I32 subcoffset;	 /* suboffset equiv, but in chars (for @-/@+) */

 /* Information about the match that isn't often used */
 I32 prelen; /* length of precomp */
 const char *precomp; /* pre-compilation regular expression */

 char *wrapped; /* wrapped version of the pattern */
 I32 wraplen; /* length of wrapped */

 I32 seen_evals; /* number of eval groups in the pattern - for
 security checks */
 HV *paren_names; /* Optional hash of paren names */

 /* Refcount of this regexp */
 I32 refcnt; /* Refcount of this regexp */
 } regexp;

The fields are discussed in more detail below:

engine
This field points at a regexp_engine structure which contains pointers
 to the subroutines that are to
be used for performing a match. It
 is the compiling routine's responsibility to populate this field before

returning the regexp object.

Internally this is set to NULL unless a custom engine is specified in $^H{regcomp}, Perl's own set of
callbacks can be accessed in the struct
 pointed to by RE_ENGINE_PTR.

mother_re
TODO, see http://www.mail-archive.com/perl5-changes@perl.org/msg17328.html

extflags
This will be used by Perl to see what flags the regexp was compiled
 with, this will normally be set to
the value of the flags parameter by
 the comp callback. See the comp documentation for
 valid flags.

minlen minlenret
The minimum string length (in characters) required for the pattern to match.
 This is used to
 prune the
search space by not bothering to match any closer to the end of a
 string than would allow a match.
For instance there is no point in even
 starting the regex engine if the minlen is 10 but the string is only
5
 characters long. There is no way that the pattern can match.

minlenret is the minimum length (in characters) of the string that would
 be found in $& after a
match.

The difference between minlen and minlenret can be seen in the
 following pattern:

 /ns(?=\d)/

where the minlen would be 3 but minlenret would only be 2 as the \d is
 required to match but is
not actually
 included in the matched content. This
 distinction is particularly important as the

Perl version 5.24.0 documentation - perlreapi

Page 11http://perldoc.perl.org

substitution logic uses the minlenret to tell if it can do in-place substitutions (these can
 result in
considerable speed-up).

gofs
Left offset from pos() to start match at.

substrs
Substring data about strings that must appear in the final match. This
 is currently only used internally
by Perl's engine, but might be
 used in the future for all engines for optimisations.

nparens, lastparen, and lastcloseparen
These fields are used to keep track of how many paren groups could be matched
 in the pattern, which
was the last open paren to be entered, and which was
 the last close paren to be entered.

intflags
The engine's private copy of the flags the pattern was compiled with. Usually
 this is the same as
extflags unless the engine chose to modify one of them.

pprivate
A void* pointing to an engine-defined
 data structure. The Perl engine uses the regexp_internal
structure (see "Base Structures" in perlreguts) but a custom
 engine should use something else.

swap
Unused. Left in for compatibility with Perl 5.10.0.

offs
A regexp_paren_pair structure which defines offsets into the string being
 matched which
correspond to the $& and $1, $2 etc. captures, the regexp_paren_pair struct is defined as follows:

 typedef struct regexp_paren_pair {
 I32 start;
 I32 end;
 } regexp_paren_pair;

If ->offs[num].start or ->offs[num].end is -1 then that
 capture group did not match.
->offs[0].start/end represents $& (or ${^MATCH} under //p) and ->offs[paren].end
matches $$paren where $paren = 1>.

precomp prelen
Used for optimisations. precomp holds a copy of the pattern that
 was compiled and prelen its
length. When a new pattern is to be
 compiled (such as inside a loop) the internal regcomp operator

checks if the last compiled REGEXP's precomp and prelen
 are equivalent to the new one, and if so
uses the old pattern instead
 of compiling a new one.

The relevant snippet from Perl_pp_regcomp:

	 if (!re || !re->precomp || re->prelen != (I32)len ||
	 memNE(re->precomp, t, len))
 /* Compile a new pattern */

paren_names
This is a hash used internally to track named capture groups and their
 offsets. The keys are the
names of the buffers the values are dualvars,
 with the IV slot holding the number of buffers with the
given name and the
 pv being an embedded array of I32. The values may also be contained

independently in the data array in cases where named backreferences are
 used.

Perl version 5.24.0 documentation - perlreapi

Page 12http://perldoc.perl.org

substrs
Holds information on the longest string that must occur at a fixed
 offset from the start of the pattern,
and the longest string that must
 occur at a floating offset from the start of the pattern. Used to do

Fast-Boyer-Moore searches on the string to find out if its worth using
 the regex engine at all, and if so
where in the string to search.

subbeg sublen saved_copy suboffset subcoffset
Used during the execution phase for managing search and replace patterns,
 and for providing the text
for $&, $1 etc. subbeg points to a
 buffer (either the original string, or a copy in the case of
RX_MATCH_COPIED(rx)), and sublen is the length of the buffer. The RX_OFFS start and end
indices index into this buffer.

In the presence of the REXEC_COPY_STR flag, but with the addition of
 the REXEC_COPY_SKIP_PRE
or REXEC_COPY_SKIP_POST flags, an engine
 can choose not to copy the full buffer (although it must
still do so in
 the presence of RXf_PMf_KEEPCOPY or the relevant bits being set in
PL_sawampersand). In this case, it may set suboffset to indicate the
 number of bytes from the
logical start of the buffer to the physical start
 (i.e. subbeg). It should also set subcoffset, the
number of
 characters in the offset. The latter is needed to support @- and @+
 which work in
characters, not bytes.

wrapped wraplen
Stores the string qr// stringifies to. The Perl engine for example
 stores (?^:eek) in the case of
qr/eek/.

When using a custom engine that doesn't support the (?:) construct
 for inline modifiers, it's probably
best to have qr// stringify to
 the supplied pattern, note that this will create undesired patterns in

cases such as:

 my $x = qr/a|b/; # "a|b"
 my $y = qr/c/i; # "c"
 my $z = qr/$x$y/; # "a|bc"

There's no solution for this problem other than making the custom
 engine understand a construct like
(?:).

seen_evals
This stores the number of eval groups in
 the pattern. This is used for security
 purposes when
embedding compiled regexes into larger patterns with qr//.

refcnt
The number of times the structure is referenced. When
 this falls to 0, the regexp is automatically freed
by a call to pregfree. This should be set to 1 in
 each engine's comp routine.

HISTORY
Originally part of perlreguts.

AUTHORS
Originally written by Yves Orton, expanded by Ævar Arnfjörð
 Bjarmason.

LICENSE
Copyright 2006 Yves Orton and 2007 Ævar Arnfjörð Bjarmason.

This program is free software; you can redistribute it and/or modify it under
 the same terms as Perl
itself.

