
Perl version 5.24.0 documentation - Sys::Syslog

Page 1http://perldoc.perl.org

NAME
Sys::Syslog - Perl interface to the UNIX syslog(3) calls

VERSION
This is the documentation of version 0.33

SYNOPSIS
 use Sys::Syslog; # all except setlogsock()
 use Sys::Syslog qw(:standard :macros); # standard functions & macros

 openlog($ident, $logopt, $facility); # don't forget this
 syslog($priority, $format, @args);
 $oldmask = setlogmask($mask_priority);
 closelog();

DESCRIPTION
Sys::Syslog is an interface to the UNIX syslog(3) program.
 Call syslog() with a string priority
and a list of printf() args
 just like syslog(3).

EXPORTS
Sys::Syslog exports the following Exporter tags:

:standard exports the standard syslog(3) functions:

 openlog closelog setlogmask syslog

:extended exports the Perl specific functions for syslog(3):

 setlogsock

:macros exports the symbols corresponding to most of your syslog(3) macros and the
LOG_UPTO() and LOG_MASK() functions. See CONSTANTS for the supported constants and
their meaning.

By default, Sys::Syslog exports the symbols from the :standard tag.

FUNCTIONS
openlog($ident, $logopt, $facility)

Opens the syslog. $ident is prepended to every message. $logopt contains zero or
 more
of the options detailed below. $facility specifies the part of the system to report about, for
example LOG_USER or LOG_LOCAL0:
 see Facilities for a list of well-known facilities, and your
syslog(3) documentation for the facilities available in your system. Check SEE ALSO for
useful links. Facility can be given as a string or a numeric macro.

This function will croak if it can't connect to the syslog daemon.

Note that openlog() now takes three arguments, just like openlog(3).

You should use openlog() before calling syslog().

Options

cons - This option is ignored, since the failover mechanism will drop down to the
console automatically if all other media fail.

ndelay - Open the connection immediately (normally, the connection is
 opened when
the first message is logged).

noeol - When set to true, no end of line character (\n) will be
 appended to the
message. This can be useful for some buggy syslog daemons.

Perl version 5.24.0 documentation - Sys::Syslog

Page 2http://perldoc.perl.org

nofatal - When set to true, openlog() and syslog() will only emit warnings
instead of dying if the connection to the syslog can't be established.

nonul - When set to true, no NUL character (\0) will be
 appended to the message.
This can be useful for some buggy syslog daemons.

nowait - Don't wait for child processes that may have been created while logging the
message. (The GNU C library does not create a child
 process, so this option has no
effect on Linux.)

perror - Write the message to standard error output as well to the
 system log (added
in Sys::Syslog 0.22).

pid - Include PID with each message.

Examples

Open the syslog with options ndelay and pid, and with facility LOCAL0:

 openlog($name, "ndelay,pid", "local0");

Same thing, but this time using the macro corresponding to LOCAL0:

 openlog($name, "ndelay,pid", LOG_LOCAL0);

syslog($priority, $message)

syslog($priority, $format, @args)

If $priority permits, logs $message or sprintf($format, @args)
 with the addition
that %m in $message or $format is replaced with "$!" (the latest error message).

$priority can specify a level, or a level and a facility. Levels and facilities can be given as
strings or as macros. When using the eventlog
 mechanism, priorities DEBUG and INFO are
mapped to event type informational, NOTICE and WARNING to warning and ERR to
EMERG to error.

If you didn't use openlog() before using syslog(), syslog() will try to guess the $ident
by extracting the shortest prefix of $format that ends in a ":".

Examples

 # informational level
 syslog("info", $message);
 syslog(LOG_INFO, $message);

 # information level, Local0 facility
 syslog("info|local0", $message);
 syslog(LOG_INFO|LOG_LOCAL0, $message);

Note

Sys::Syslog version v0.07 and older passed the $message as the formatting string
to sprintf() even when no formatting arguments
 were provided. If the code calling
syslog() might execute with older versions of this module, make sure to call the
function as syslog($priority, "%s", $message) instead of
syslog($priority,
 $message). This protects against hostile formatting
sequences that
 might show up if $message contains tainted data.

setlogmask($mask_priority)

Sets the log mask for the current process to $mask_priority and returns the old mask. If
the mask argument is 0, the current log mask is not modified. See Levels for the list of
available levels. You can use the LOG_UPTO() function to allow all levels up to a given priority
(but it only accept the numeric macros as arguments).

Perl version 5.24.0 documentation - Sys::Syslog

Page 3http://perldoc.perl.org

Examples

Only log errors:

 setlogmask(LOG_MASK(LOG_ERR));

Log everything except informational messages:

 setlogmask(~(LOG_MASK(LOG_INFO)));

Log critical messages, errors and warnings:

 setlogmask(LOG_MASK(LOG_CRIT)
 | LOG_MASK(LOG_ERR)
 | LOG_MASK(LOG_WARNING));

Log all messages up to debug:

 setlogmask(LOG_UPTO(LOG_DEBUG));

setlogsock()

Sets the socket type and options to be used for the next call to openlog()
 or syslog().
Returns true on success, undef on failure.

Being Perl-specific, this function has evolved along time. It can currently
 be called as follow:

setlogsock($sock_type)

setlogsock($sock_type, $stream_location) (added in Perl 5.004_02)

setlogsock($sock_type, $stream_location, $sock_timeout) (added in
Sys::Syslog 0.25)

setlogsock(\%options) (added in Sys::Syslog 0.28)

The available options are:

type - equivalent to $sock_type, selects the socket type (or
 "mechanism"). An array
reference can be passed to specify several
 mechanisms to try, in the given order.

path - equivalent to $stream_location, sets the stream location.
 Defaults to
standard Unix location, or _PATH_LOG.

timeout - equivalent to $sock_timeout, sets the socket timeout
 in seconds.
Defaults to 0 on all systems except Mac OS X where it
 is set to 0.25 sec.

host - sets the hostname to send the messages to. Defaults to the local host.

port - sets the TCP or UDP port to connect to. Defaults to the
 first standard syslog
port available on the system.

The available mechanisms are:

"native" - use the native C functions from your syslog(3) library
 (added in
Sys::Syslog 0.15).

"eventlog" - send messages to the Win32 events logger (Win32 only; added in
Sys::Syslog 0.19).

"tcp" - connect to a TCP socket, on the syslog/tcp or syslogng/tcp service.
See also the host, port and timeout options.

"udp" - connect to a UDP socket, on the syslog/udp service.
 See also the host,
port and timeout options.

"inet" - connect to an INET socket, either TCP or UDP, tried in that order. See also

Perl version 5.24.0 documentation - Sys::Syslog

Page 4http://perldoc.perl.org

the host, port and timeout options.

"unix" - connect to a UNIX domain socket (in some systems a character special
device). The name of that socket is given by the path option
 or, if omitted, the value
returned by the _PATH_LOG macro (if your
 system defines it), /dev/log or /dev/conslog,
whichever is writable.

"stream" - connect to the stream indicated by the path option, or,
 if omitted, the
value returned by the _PATH_LOG macro (if your system
 defines it), /dev/log or
/dev/conslog, whichever is writable. For
 example Solaris and IRIX system may prefer
"stream" instead of "unix".

"pipe" - connect to the named pipe indicated by the path option,
 or, if omitted, to the
value returned by the _PATH_LOG macro (if your
 system defines it), or /dev/log (added
in Sys::Syslog 0.21).
 HP-UX is a system which uses such a named pipe.

"console" - send messages directly to the console, as for the "cons" option of
openlog().

The default is to try native, tcp, udp, unix, pipe, stream, console.
 Under systems with
the Win32 API, eventlog will be added as the first mechanism to try if Win32::EventLog is
available.

Giving an invalid value for $sock_type will croak.

Examples

Select the UDP socket mechanism:

 setlogsock("udp");

Send messages using the TCP socket mechanism on a custom port:

 setlogsock({ type => "tcp", port => 2486 });

Send messages to a remote host using the TCP socket mechanism:

 setlogsock({ type => "tcp", host => $loghost });

Try the native, UDP socket then UNIX domain socket mechanisms:

 setlogsock(["native", "udp", "unix"]);

Note

Now that the "native" mechanism is supported by Sys::Syslog and selected by
default, the use of the setlogsock() function is discouraged because other
mechanisms are less portable across operating systems. Authors of modules and
programs that use this function, especially its cargo-cult form setlogsock("unix"),
are advised to remove any occurrence of it unless they specifically want to use a given
mechanism (like TCP or UDP to connect to a remote host).

closelog()

Closes the log file and returns true on success.

THE RULES OF SYS::SYSLOG
The First Rule of Sys::Syslog is:
 You do not call setlogsock.

The Second Rule of Sys::Syslog is:
 You do not call setlogsock.

The Third Rule of Sys::Syslog is:
 The program crashes, dies, calls closelog, the log is over.

The Fourth Rule of Sys::Syslog is:
 One facility, one priority.

Perl version 5.24.0 documentation - Sys::Syslog

Page 5http://perldoc.perl.org

The Fifth Rule of Sys::Syslog is:
 One log at a time.

The Sixth Rule of Sys::Syslog is:
 No syslog before openlog.

The Seventh Rule of Sys::Syslog is:
 Logs will go on as long as they have to.

The Eighth, and Final Rule of Sys::Syslog is:
 If this is your first use of Sys::Syslog, you must read the
doc.

EXAMPLES
An example:

 openlog($program, 'cons,pid', 'user');
 syslog('info', '%s', 'this is another test');
 syslog('mail|warning', 'this is a better test: %d', time);
 closelog();

 syslog('debug', 'this is the last test');

Another example:

 openlog("$program $$", 'ndelay', 'user');
 syslog('notice', 'fooprogram: this is really done');

Example of use of %m:

 $! = 55;
 syslog('info', 'problem was %m'); # %m == $! in syslog(3)

Log to UDP port on $remotehost instead of logging locally:

 setlogsock("udp", $remotehost);
 openlog($program, 'ndelay', 'user');
 syslog('info', 'something happened over here');

CONSTANTS
Facilities

LOG_AUDIT - audit daemon (IRIX); falls back to LOG_AUTH

LOG_AUTH - security/authorization messages

LOG_AUTHPRIV - security/authorization messages (private)

LOG_CONSOLE - /dev/console output (FreeBSD); falls back to LOG_USER

LOG_CRON - clock daemons (cron and at)

LOG_DAEMON - system daemons without separate facility value

LOG_FTP - FTP daemon

LOG_KERN - kernel messages

LOG_INSTALL - installer subsystem (Mac OS X); falls back to LOG_USER

LOG_LAUNCHD - launchd - general bootstrap daemon (Mac OS X);
 falls back to LOG_DAEMON

LOG_LFMT - logalert facility; falls back to LOG_USER

LOG_LOCAL0 through LOG_LOCAL7 - reserved for local use

Perl version 5.24.0 documentation - Sys::Syslog

Page 6http://perldoc.perl.org

LOG_LPR - line printer subsystem

LOG_MAIL - mail subsystem

LOG_NETINFO - NetInfo subsystem (Mac OS X); falls back to LOG_DAEMON

LOG_NEWS - USENET news subsystem

LOG_NTP - NTP subsystem (FreeBSD, NetBSD); falls back to LOG_DAEMON

LOG_RAS - Remote Access Service (VPN / PPP) (Mac OS X);
 falls back to LOG_AUTH

LOG_REMOTEAUTH - remote authentication/authorization (Mac OS X);
 falls back to LOG_AUTH

LOG_SECURITY - security subsystems (firewalling, etc.) (FreeBSD);
 falls back to LOG_AUTH

LOG_SYSLOG - messages generated internally by syslogd

LOG_USER (default) - generic user-level messages

LOG_UUCP - UUCP subsystem

Levels
LOG_EMERG - system is unusable

LOG_ALERT - action must be taken immediately

LOG_CRIT - critical conditions

LOG_ERR - error conditions

LOG_WARNING - warning conditions

LOG_NOTICE - normal, but significant, condition

LOG_INFO - informational message

LOG_DEBUG - debug-level message

DIAGNOSTICS
Invalid argument passed to setlogsock

(F) You gave setlogsock() an invalid value for $sock_type.

eventlog passed to setlogsock, but no Win32 API available

(W) You asked setlogsock() to use the Win32 event logger but the operating system
running the program isn't Win32 or does not provides Win32
 compatible facilities.

no connection to syslog available

(F) syslog() failed to connect to the specified socket.

stream passed to setlogsock, but %s is not writable

(W) You asked setlogsock() to use a stream socket, but the given path is not writable.

stream passed to setlogsock, but could not find any device

(W) You asked setlogsock() to use a stream socket, but didn't provide a path, and
Sys::Syslog was unable to find an appropriate one.

tcp passed to setlogsock, but tcp service unavailable

(W) You asked setlogsock() to use a TCP socket, but the service is not available on the
system.

syslog: expecting argument %s

Perl version 5.24.0 documentation - Sys::Syslog

Page 7http://perldoc.perl.org

(F) You forgot to give syslog() the indicated argument.

syslog: invalid level/facility: %s

(F) You specified an invalid level or facility.

syslog: too many levels given: %s

(F) You specified too many levels.

syslog: too many facilities given: %s

(F) You specified too many facilities.

syslog: level must be given

(F) You forgot to specify a level.

udp passed to setlogsock, but udp service unavailable

(W) You asked setlogsock() to use a UDP socket, but the service is not available on the
system.

unix passed to setlogsock, but path not available

(W) You asked setlogsock() to use a UNIX socket, but Sys::Syslog was unable to find
an appropriate an appropriate device.

HISTORY
Sys::Syslog is a core module, part of the standard Perl distribution
 since 1990. At this time,
modules as we know them didn't exist, the
 Perl library was a collection of .pl files, and the one for
sending
 syslog messages with was simply lib/syslog.pl, included with Perl 3.0.
 It was converted as a
module with Perl 5.0, but had a version number
 only starting with Perl 5.6. Here is a small table with
the matching
 Perl and Sys::Syslog versions.

 Sys::Syslog Perl
 ----------- ----
 undef 5.0.0 ~ 5.5.4
 0.01 5.6.*
 0.03 5.8.0
 0.04 5.8.1, 5.8.2, 5.8.3
 0.05 5.8.4, 5.8.5, 5.8.6
 0.06 5.8.7
 0.13 5.8.8
 0.22 5.10.0
 0.27 5.8.9, 5.10.1 ~ 5.14.2
 0.29 5.16.0, 5.16.1

SEE ALSO
Other modules

Log::Log4perl - Perl implementation of the Log4j API

Log::Dispatch - Dispatches messages to one or more outputs

Log::Report - Report a problem, with exceptions and language support

Manual Pages
syslog(3)

SUSv3 issue 6, IEEE Std 1003.1, 2004 edition,
http://www.opengroup.org/onlinepubs/000095399/basedefs/syslog.h.html

GNU C Library documentation on syslog,

Perl version 5.24.0 documentation - Sys::Syslog

Page 8http://perldoc.perl.org

http://www.gnu.org/software/libc/manual/html_node/Syslog.htmlSolaris 10 documentation on syslog,
http://docs.sun.com/app/docs/doc/816-5168/syslog-3c?a=view

Mac OS X documentation on syslog,
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man3/syslog.3.html

IRIX 6.5 documentation on syslog,
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=man&fname=3c+syslog

AIX 5L 5.3 documentation on syslog,
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.ai
x.basetechref/doc/basetrf2/syslog.htm

HP-UX 11i documentation on syslog, http://docs.hp.com/en/B2355-60130/syslog.3C.html

Tru64 5.1 documentation on syslog,
http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51_HTML/MAN/MAN3/0193____.
HTM

Stratus VOS 15.1,
http://stratadoc.stratus.com/vos/15.1.1/r502-01/wwhelp/wwhimpl/js/html/wwhelp.htm
?context=r502-01&file=ch5r502-01bi.html

RFCs
RFC 3164 - The BSD syslog Protocol, http://www.faqs.org/rfcs/rfc3164.html
 -- Please note that this is
an informational RFC, and therefore does not specify a standard of any kind.

RFC 3195 - Reliable Delivery for syslog, http://www.faqs.org/rfcs/rfc3195.html

Articles
Syslogging with Perl, http://lexington.pm.org/meetings/022001.html

Event Log
Windows Event Log,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wes/wes/windows_event_log.asp

AUTHORS & ACKNOWLEDGEMENTS
Tom Christiansen <tchrist (at) perl.com> and Larry Wall <larry (at) wall.org>.

UNIX domain sockets added by Sean Robinson <robinson_s (at) sc.maricopa.edu> with support from
Tim Bunce <Tim.Bunce (at) ig.co.uk> and the perl5-porters mailing list.

Dependency on syslog.ph replaced with XS code by Tom Hughes <tom (at) compton.nu>.

Code for constant()s regenerated by Nicholas Clark <nick (at) ccl4.org>.

Failover to different communication modes by Nick Williams <Nick.Williams (at) morganstanley.com>.

Extracted from core distribution for publishing on the CPAN by Sébastien Aperghis-Tramoni <
sebastien (at) aperghis.net>.

XS code for using native C functions borrowed from Unix::Syslog, written by Marcus Harnisch <
marcus.harnisch (at) gmx.net>.

Yves Orton suggested and helped for making Sys::Syslog use the native event logger under
Win32 systems.

Jerry D. Hedden and Reini Urban provided greatly appreciated help to debug and polish
Sys::Syslog under Cygwin.

Perl version 5.24.0 documentation - Sys::Syslog

Page 9http://perldoc.perl.org

BUGS
Please report any bugs or feature requests to bug-sys-syslog (at) rt.cpan.org, or through
the web interface at http://rt.cpan.org/Public/Dist/Display.html?Name=Sys-Syslog.
 I will be notified,
and then you'll automatically be notified of progress on
 your bug as I make changes.

SUPPORT
You can find documentation for this module with the perldoc command.

 perldoc Sys::Syslog

You can also look for information at:

* AnnoCPAN: Annotated CPAN documentation

http://annocpan.org/dist/Sys-Syslog

* CPAN Ratings

http://cpanratings.perl.org/d/Sys-Syslog

* RT: CPAN's request tracker

http://rt.cpan.org/Dist/Display.html?Queue=Sys-Syslog

* Search CPAN

http://search.cpan.org/dist/Sys-Syslog/

* MetaCPAN

https://metacpan.org/module/Sys::Syslog

* Perl Documentation

http://perldoc.perl.org/Sys/Syslog.html

COPYRIGHT
Copyright (C) 1990-2012 by Larry Wall and others.

LICENSE
This program is free software; you can redistribute it and/or modify it
 under the same terms as Perl
itself.

Notes for the future maintainer (even if it's still me..)
 -

Using Google Code Search, I search who on Earth was relying on $host being public. It found 5 hits:

* First was inside Indigo Star Perl2exe documentation. Just an old version of Sys::Syslog.

* One real hit was inside DalWeathDB, a weather related program. It simply does a

 $Sys::Syslog::host = '127.0.0.1';

- http://www.gallistel.net/nparker/weather/code/

* Two hits were in TPC, a fax server thingy. It does a

 $Sys::Syslog::host = $TPC::LOGHOST;

but also has this strange piece of code:

 # work around perl5.003 bug
 sub Sys::Syslog::hostname {}

Perl version 5.24.0 documentation - Sys::Syslog

Page 10http://perldoc.perl.org

I don't know what bug the author referred to.

- http://www.tpc.int/
 - ftp://ftp-usa.tpc.int/pub/tpc/server/UNIX/

* Last hit was in Filefix, which seems to be a FIDOnet mail program (!).
 This one does not use $host,
but has the following piece of code:

 sub Sys::Syslog::hostname
 {
 use Sys::Hostname;
 return hostname;
 }

I guess this was a more elaborate form of the previous bit, maybe because of a bug in Sys::Syslog
back then?

- ftp://ftp.kiae.su/pub/unix/fido/

Links

 Linux Fast-STREAMS
 - http://www.openss7.org/streams.html

II12021: SYSLOGD HOWTO TCPIPINFO (z/OS, OS/390, MVS)
 -
http://www-1.ibm.com/support/docview.wss?uid=isg1II12021

Getting the most out of the Event Viewer
 - http://www.codeproject.com/dotnet/evtvwr.asp?print=true

Log events to the Windows NT Event Log with JNI
 -
http://www.javaworld.com/javaworld/jw-09-2001/jw-0928-ntmessages.html

