
Perl version 5.24.0 documentation - TAP::Parser::Scheduler

Page 1http://perldoc.perl.org

NAME
TAP::Parser::Scheduler - Schedule tests during parallel testing

VERSION
Version 3.36

SYNOPSIS
 use TAP::Parser::Scheduler;

DESCRIPTION
METHODS
Class Methods
new

 my $sched = TAP::Parser::Scheduler->new(tests => \@tests);
 my $sched = TAP::Parser::Scheduler->new(
 tests => [['t/test_name.t','Test Description'], ...],
 rules => \%rules,
);

Given 'tests' and optional 'rules' as input, returns a new TAP::Parser::Scheduler object. Each
member of @tests should be either a
 a test file name, or a two element arrayref, where the first
element is a test
 file name, and the second element is a test description. By default, we'll use
 the test
name as the description.

The optional rules attribute provides direction on which tests should be run
 in parallel and which
should be run sequentially. If no rule data structure is
 provided, a default data structure is used which
makes every test eligible to
 be run in parallel:

 { par => '**' },

The rules data structure is documented more in the next section.

Rules data structure
The "rules" data structure is the the heart of the scheduler. It allows you
 to express simple rules like
"run all tests in sequence" or "run all tests in
 parallel except these five tests.". However, the rules
structure also supports
 glob-style pattern matching and recursive definitions, so you can also express

arbitarily complicated patterns.

The rule must only have one top level key: either 'par' for "parallel" or 'seq'
 for "sequence".

Values must be either strings with possible glob-style matching, or arrayrefs
 of strings or hashrefs
which follow this pattern recursively.

Every element in an arrayref directly below a 'par' key is eligible to be run
 in parallel, while vavalues
directly below a 'seq' key must be run in sequence.

Rules examples

Here are some examples:

 # All tests be run in parallel (the default rule)
 { par => '**' },

 # Run all tests in sequence, except those starting with "p"
 { par => 't/p*.t' },

Perl version 5.24.0 documentation - TAP::Parser::Scheduler

Page 2http://perldoc.perl.org

 # Run all tests in parallel, except those starting with "p"
 {
 seq => [
 { seq => 't/p*.t' },
 { par => '**' },
],
 }

 # Run some startup tests in sequence, then some parallel tests than
some
 # teardown tests in sequence.
 {
 seq => [
 { seq => 't/startup/*.t' },
 { par => ['t/a/*.t','t/b/*.t','t/c/*.t'], }
 { seq => 't/shutdown/*.t' },
],
 },

Rules resolution

* By default, all tests are eligible to be run in parallel. Specifying any of your own rules removes this
one.

* "First match wins". The first rule that matches a test will be the one that applies.

* Any test which does not match a rule will be run in sequence at the end of the run.

* The existence of a rule does not imply selecting a test. You must still specify the tests to run.

* Specifying a rule to allow tests to run in parallel does not make the run in parallel. You still need
specify the number of parallel jobs in your Harness object.

Glob-style pattern matching for rules

We implement our own glob-style pattern matching. Here are the patterns it supports:

 ** is any number of characters, including /, within a pathname
 * is zero or more characters within a filename/directory name
 ? is exactly one character within a filename/directory name
 {foo,bar,baz} is any of foo, bar or baz.
 \ is an escape character

Instance Methods
get_all

Get a list of all remaining tests.

get_job

Return the next available job as TAP::Parser::Scheduler::Job object or undef if none are available.
Returns a TAP::Parser::Scheduler::Spinner if
 the scheduler still has pending jobs but none are
available to run right now.

as_string

Return a human readable representation of the scheduling tree.
 For example:

 my @tests = (qw{
 t/startup/foo.t
 t/shutdown/foo.t

Perl version 5.24.0 documentation - TAP::Parser::Scheduler

Page 3http://perldoc.perl.org

 t/a/foo.t t/b/foo.t t/c/foo.t t/d/foo.t
 });
 my $sched = TAP::Parser::Scheduler->new(
 tests => \@tests,
 rules => {
 seq => [
 { seq => 't/startup/*.t' },
 { par => ['t/a/*.t','t/b/*.t','t/c/*.t'] },
 { seq => 't/shutdown/*.t' },
],
 },
);

Produces:

 par:
 seq:
 par:
 seq:
 par:
 seq:
 't/startup/foo.t'
 par:
 seq:
 't/a/foo.t'
 seq:
 't/b/foo.t'
 seq:
 't/c/foo.t'
 par:
 seq:
 't/shutdown/foo.t'
 't/d/foo.t'

