
Perl version 5.8.9 documentation - bigint

Page 1http://perldoc.perl.org

NAME
bigint - Transparent BigInteger support for Perl

SYNOPSIS
 use bigint;

 $x = 2 + 4.5,"\n";			 # BigInt 6
 print 2 ** 512,"\n";			 # really is what you think it is
 print inf + 42,"\n";			 # inf
 print NaN * 7,"\n";			 # NaN
 print hex("0x1234567890123490"),"\n";	 # Perl v5.9.4 or later

 {
 no bigint;
 print 2 ** 256,"\n";		 # a normal Perl scalar now
 }

 # Note that this will be global:
 use bigint qw/hex oct/;
 print hex("0x1234567890123490"),"\n";
 print oct("01234567890123490"),"\n";

DESCRIPTION
All operators (including basic math operations) are overloaded. Integer
 constants are created as
proper BigInts.

Floating point constants are truncated to integer. All parts and results of
 expressions are also
truncated.

Unlike integer, this pragma creates integer constants that are only
 limited in their size by the available
memory and CPU time.

use integer vs. use bigint
There is one small difference between use integer and use bigint: the
 former will not affect
assignments to variables and the return value of
 some functions. bigint truncates these results to
integer too:

	 # perl -Minteger -wle 'print 3.2'
	 3.2
	 # perl -Minteger -wle 'print 3.2 + 0'
	 3
	 # perl -Mbigint -wle 'print 3.2'
	 3
	 # perl -Mbigint -wle 'print 3.2 + 0'
	 3

	 # perl -Mbigint -wle 'print exp(1) + 0'
	 2
	 # perl -Mbigint -wle 'print exp(1)'
	 2
	 # perl -Minteger -wle 'print exp(1)'
	 2.71828182845905
	 # perl -Minteger -wle 'print exp(1) + 0'
	 2

Perl version 5.8.9 documentation - bigint

Page 2http://perldoc.perl.org

In practice this makes seldom a difference as parts and results of
 expressions will be truncated
anyway, but this can, for instance, affect the
 return value of subroutines:

	 sub three_integer { use integer; return 3.2; }
	 sub three_bigint { use bigint; return 3.2; }

	 print three_integer(), " ", three_bigint(),"\n";	 # prints "3.2 3"

Options
bigint recognizes some options that can be passed while loading it via use.
 The options can
(currently) be either a single letter form, or the long form.
 The following options exist:

a or accuracy

This sets the accuracy for all math operations. The argument must be greater
 than or equal to
zero. See Math::BigInt's bround() function for details.

	 perl -Mbigint=a,2 -le 'print 12345+1'

Note that setting precision and accurary at the same time is not possible.

p or precision

This sets the precision for all math operations. The argument can be any
 integer. Negative values
mean a fixed number of digits after the dot, and
 are ignored since all operations happen
in integer space.
 A positive value rounds to this digit left from the dot. 0 or 1 mean round to
 integer
and are ignore like negative values.

See Math::BigInt's bfround() function for details.

	 perl -Mbignum=p,5 -le 'print 123456789+123'

Note that setting precision and accurary at the same time is not possible.

t or trace

This enables a trace mode and is primarily for debugging bigint or
 Math::BigInt.

hex

Override the built-in hex() method with a version that can handle big
 integers. Note that under Perl
v5.9.4 or ealier, this will be global
 and cannot be disabled with "no bigint;".

oct

Override the built-in oct() method with a version that can handle big
 integers. Note that under Perl
v5.9.4 or ealier, this will be global
 and cannot be disabled with "no bigint;".

l, lib, try or only

Load a different math lib, see Math Library.

	 perl -Mbigint=lib,GMP -e 'print 2 ** 512'
	 perl -Mbigint=try,GMP -e 'print 2 ** 512'
	 perl -Mbigint=only,GMP -e 'print 2 ** 512'

Currently there is no way to specify more than one library on the command
 line. This means the
following does not work:

	 perl -Mbignum=l,GMP,Pari -e 'print 2 ** 512'

This will be hopefully fixed soon ;)

v or version

This prints out the name and version of all modules used and then exits.

Perl version 5.8.9 documentation - bigint

Page 3http://perldoc.perl.org

	 perl -Mbigint=v

Math Library
Math with the numbers is done (by default) by a module called
 Math::BigInt::Calc. This is equivalent to
saying:

	 use bigint lib => 'Calc';

You can change this by using:

	 use bignum lib => 'GMP';

The following would first try to find Math::BigInt::Foo, then
 Math::BigInt::Bar, and when this also fails,
revert to Math::BigInt::Calc:

	 use bigint lib => 'Foo,Math::BigInt::Bar';

Using lib warns if none of the specified libraries can be found and Math::BigInt did fall back to one of
the default libraries.
 To supress this warning, use try instead:

 use bignum try => 'GMP';

If you want the code to die instead of falling back, use only instead:

 use bignum only => 'GMP';

Please see respective module documentation for further details.

Internal Format
The numbers are stored as objects, and their internals might change at anytime,
 especially between
math operations. The objects also might belong to different
 classes, like Math::BigInt, or
Math::BigInt::Lite. Mixing them together, even
 with normal scalars is not extraordinary, but normal and
expected.

You should not depend on the internal format, all accesses must go through
 accessor methods. E.g.
looking at $x->{sign} is not a good idea since there
 is no guaranty that the object in question has such
a hash key, nor is a hash
 underneath at all.

Sign
The sign is either '+', '-', 'NaN', '+inf' or '-inf'.
 You can access it with the sign() method.

A sign of 'NaN' is used to represent the result when input arguments are not
 numbers or as a result of
0/0. '+inf' and '-inf' represent plus respectively
 minus infinity. You will get '+inf' when dividing a positive
number by 0, and
 '-inf' when dividing any negative number by 0.

Methods
Since all numbers are now objects, you can use all functions that are part of
 the BigInt API. You can
only use the bxxx() notation, and not the fxxx()
 notation, though.

inf()

A shortcut to return Math::BigInt->binf(). Useful because Perl does not always
 handle bareword
inf properly.

NaN()

A shortcut to return Math::BigInt->bnan(). Useful because Perl does not always
 handle bareword
NaN properly.

Perl version 5.8.9 documentation - bigint

Page 4http://perldoc.perl.org

e

	 # perl -Mbigint=e -wle 'print e'

Returns Euler's number e, aka exp(1). Note that under bigint, this is
 truncated to an integer, and
hence simple '2'.

PI

	 # perl -Mbigint=PI -wle 'print PI'

Returns PI. Note that under bigint, this is truncated to an integer, and hence
 simple '3'.

bexp()

	 bexp($power,$accuracy);

Returns Euler's number e raised to the appropriate power, to
 the wanted accuracy.

Note that under bigint, the result is truncated to an integer.

Example:

	 # perl -Mbigint=bexp -wle 'print bexp(1,80)'

bpi()

	 bpi($accuracy);

Returns PI to the wanted accuracy. Note that under bigint, this is truncated
 to an integer, and
hence simple '3'.

Example:

	 # perl -Mbigint=bpi -wle 'print bpi(80)'

upgrade()

Return the class that numbers are upgraded to, is in fact returning $Math::BigInt::upgrade.

in_effect()

	 use bigint;

	 print "in effect\n" if bigint::in_effect;	 # true
	 {
	 no bigint;
	 print "in effect\n" if bigint::in_effect;	 # false
	 }

Returns true or false if bigint is in effect in the current scope.

This method only works on Perl v5.9.4 or later.

MATH LIBRARY
Math with the numbers is done (by default) by a module called

Caveat
But a warning is in order. When using the following to make a copy of a number,
 only a shallow copy
will be made.

	 $x = 9; $y = $x;
	 $x = $y = 7;

Perl version 5.8.9 documentation - bigint

Page 5http://perldoc.perl.org

Using the copy or the original with overloaded math is okay, e.g. the
 following work:

	 $x = 9; $y = $x;
	 print $x + 1, " ", $y,"\n";	 # prints 10 9

but calling any method that modifies the number directly will result in both the original and the copy
being destroyed:

	 $x = 9; $y = $x;
	 print $x->badd(1), " ", $y,"\n";	 # prints 10 10

 $x = 9; $y = $x;
	 print $x->binc(1), " ", $y,"\n";	 # prints 10 10

	 $x = 9; $y = $x;
	 print $x->bmul(2), " ", $y,"\n";	 # prints 18 18

Using methods that do not modify, but testthe contents works:

	 $x = 9; $y = $x;
	 $z = 9 if $x->is_zero();		 # works fine

See the documentation about the copy constructor and = in overload, as
 well as the documentation in
BigInt for further details.

CAVAETS
in_effect()

This method only works on Perl v5.9.4 or later.

hex()/oct()

bigint overrides these routines with versions that can also handle
 big integer values. Under Perl
prior to version v5.9.4, however, this
 will not happen unless you specifically ask for it with the two

import tags "hex" and "oct" - and then it will be global and cannot be
 disabled inside a scope with
"no bigint":

	 use bigint qw/hex oct/;

	 print hex("0x1234567890123456");
	 {
		 no bigint;
		 print hex("0x1234567890123456");
	 }

The second call to hex() will warn about a non-portable constant.

Compare this to:

	 use bigint;

	 # will warn only under Perl older than v5.9.4
	 print hex("0x1234567890123456");

MODULES USED
bigint is just a thin wrapper around various modules of the Math::BigInt
 family. Think of it as the
head of the family, who runs the shop, and orders
 the others to do the work.

The following modules are currently used by bigint:

Perl version 5.8.9 documentation - bigint

Page 6http://perldoc.perl.org

	 Math::BigInt::Lite	 (for speed, and only if it is loadable)
	 Math::BigInt

EXAMPLES
Some cool command line examples to impress the Python crowd ;) You might want
 to compare them
to the results under -Mbignum or -Mbigrat:

	 perl -Mbigint -le 'print sqrt(33)'
	 perl -Mbigint -le 'print 2*255'
	 perl -Mbigint -le 'print 4.5+2*255'
	 perl -Mbigint -le 'print 3/7 + 5/7 + 8/3'
	 perl -Mbigint -le 'print 123->is_odd()'
	 perl -Mbigint -le 'print log(2)'
	 perl -Mbigint -le 'print 2 ** 0.5'
	 perl -Mbigint=a,65 -le 'print 2 ** 0.2'
	 perl -Mbignum=a,65,l,GMP -le 'print 7 ** 7777'

LICENSE
This program is free software; you may redistribute it and/or modify it under
 the same terms as Perl
itself.

SEE ALSO
Especially bigrat as in perl -Mbigrat -le 'print 1/3+1/4' and bignum as in perl
-Mbignum -le 'print sqrt(2)'.

Math::BigInt, Math::BigRat and Math::Big as well
 as Math::BigInt::BitVect, Math::BigInt::Pari and
Math::BigInt::GMP.

AUTHORS
(C) by Tels http://bloodgate.com/ in early 2002 - 2007.

