
Perl version 5.8.9 documentation - File::DosGlob

Page 1http://perldoc.perl.org

NAME
File::DosGlob - DOS like globbing and then some

SYNOPSIS
 require 5.004;

 # override CORE::glob in current package
 use File::DosGlob 'glob';

 # override CORE::glob in ALL packages (use with extreme caution!)
 use File::DosGlob 'GLOBAL_glob';

 @perlfiles = glob "..\\pe?l/*.p?";
 print <..\\pe?l/*.p?>;

 # from the command line (overrides only in main::)
 > perl -MFile::DosGlob=glob -e "print <../pe*/*p?>"

DESCRIPTION
A module that implements DOS-like globbing with a few enhancements.
 It is largely compatible with
perlglob.exe (the M$ setargv.obj
 version) in all but one respect--it understands wildcards in
 directory
components.

For example, <..\\l*b\\file/*glob.p?> will work as expected (in
 that it will find something like
'..\lib\File/DosGlob.pm' alright).
 Note that all path components are case-insensitive, and that

backslashes and forward slashes are both accepted, and preserved.
 You may have to double the
backslashes if you are putting them in
 literally, due to double-quotish parsing of the pattern by perl.

Spaces in the argument delimit distinct patterns, so glob('*.exe *.dll') globs all filenames that
end in .exe
 or .dll. If you want to put in literal spaces in the glob
 pattern, you can escape them with
either double quotes, or backslashes.
 e.g. glob('c:/"Program Files"/*/*.dll'), or
glob('c:/Program\ Files/*/*.dll'). The argument is tokenized using
Text::ParseWords::parse_line(), so see Text::ParseWords for details
 of the quoting rules
used.

Extending it to csh patterns is left as an exercise to the reader.

NOTES
Mac OS (Classic) users should note a few differences. The specification of pathnames in glob
patterns adheres to the usual Mac OS conventions: The path separator is a colon ':', not a
slash '/' or backslash '\'. A full path always begins with a volume name. A relative pathname on
Mac OS must always begin with a ':', except when specifying a file or directory name in the
current working directory, where the leading colon is optional. If specifying a volume name
only, a trailing ':' is required. Due to these rules, a glob like <*:> will find all mounted volumes,
while a glob like <*> or <:*> will find all files and directories in the current directory.

Note that updirs in the glob pattern are resolved before the matching begins,
 i.e. a pattern like
"*HD:t?p::a*" will be matched as "*HD:a*". Note also,
 that a single trailing ':' in the pattern is
ignored (unless it's a volume
 name pattern like "*HD:"), i.e. a glob like <:*:> will find both
directories and files (and not, as one might expect, only directories).

The metachars '*', '?' and the escape char '\' are valid characters in volume, directory and file
names on Mac OS. Hence, if you want to match
 a '*', '?' or '\' literally, you have to escape
these characters. Due to perl's quoting rules, things may get a bit complicated, when you want
to match a string like '*' literally, or when you want to match '\' literally, but treat the
immediately following character '*' as metachar. So, here's a rule of thumb (applies to both

Perl version 5.8.9 documentation - File::DosGlob

Page 2http://perldoc.perl.org

single- and double-quoted strings): escape each '*' or '?' or '\' with a backslash, if you want to
treat them literally, and then double each backslash and your are done. E.g.

- Match '*' literally

 escape both '\' and '*' : '*'
 double the backslashes : '*'

(Internally, the glob routine sees a '*', which means that both '\' and '*' are escaped.)

- Match '\' literally, treat '*' as metachar

 escape '\' but not '*' : '*'
 double the backslashes : '*'

(Internally, the glob routine sees a '*', which means that '\' is escaped and '*' is not.)

Note that you also have to quote literal spaces in the glob pattern, as described
 above.

EXPORTS (by request only)
glob()

BUGS
Should probably be built into the core, and needs to stop
 pandering to DOS habits. Needs a dose of
optimizium too.

AUTHOR
Gurusamy Sarathy <gsar@activestate.com>

HISTORY
Support for globally overriding glob() (GSAR 3-JUN-98)

Scalar context, independent iterator context fixes (GSAR 15-SEP-97)

A few dir-vs-file optimizations result in glob importation being
 10 times faster than using
perlglob.exe, and using perlglob.bat is
 only twice as slow as perlglob.exe (GSAR 28-MAY-97)

Several cleanups prompted by lack of compatible perlglob.exe
 under Borland (GSAR
27-MAY-97)

Initial version (GSAR 20-FEB-97)

SEE ALSO
perl

perlglob.bat

Text::ParseWords

