
Perl version 5.8.9 documentation - perldebguts

Page 1http://perldoc.perl.org

NAME
perldebguts - Guts of Perl debugging

DESCRIPTION
This is not the perldebug(1) manpage, which tells you how to use
 the debugger. This manpage
describes low-level details concerning
 the debugger's internals, which range from difficult to
impossible
 to understand for anyone who isn't incredibly intimate with Perl's guts.
 Caveat lector.

Debugger Internals
Perl has special debugging hooks at compile-time and run-time used
 to create debugging
environments. These hooks are not to be confused
 with the perl -Dxxx command described in perlrun,
which is
 usable only if a special Perl is built per the instructions in the INSTALL podpage in the Perl
source tree.

For example, whenever you call Perl's built-in caller function
 from the package DB, the arguments
that the corresponding stack
 frame was called with are copied to the @DB::args array. These

mechanisms are enabled by calling Perl with the -d switch.
 Specifically, the following additional
features are enabled
 (cf. "$^P" in perlvar):

Perl inserts the contents of $ENV{PERL5DB} (or BEGIN {require
 'perl5db.pl'} if not
present) before the first line of your program.

Each array @{"_<$filename"} holds the lines of $filename for a
 file compiled by Perl. The
same is also true for evaled strings
 that contain subroutines, or which are currently being
executed.
 The $filename for evaled strings looks like (eval 34).
 Code assertions in
regexes look like (re_eval 19).

Values in this array are magical in numeric context: they compare
 equal to zero only if the line
is not breakable.

Each hash %{"_<$filename"} contains breakpoints and actions keyed
 by line number.
Individual entries (as opposed to the whole hash)
 are settable. Perl only cares about Boolean
true here, although
 the values used by perl5db.pl have the form
"$break_condition\0$action".

The same holds for evaluated strings that contain subroutines, or
 which are currently being
executed. The $filename for evaled strings
 looks like (eval 34) or (re_eval 19).

Each scalar ${"_<$filename"} contains "_<$filename". This is
 also the case for
evaluated strings that contain subroutines, or
 which are currently being executed. The
$filename for evaled
 strings looks like (eval 34) or (re_eval 19).

After each required file is compiled, but before it is executed,
DB::postponed(*{"_<$filename"}) is called if the subroutine DB::postponed exists.
Here, the $filename is the expanded name of
 the required file, as found in the values of
%INC.

After each subroutine subname is compiled, the existence of $DB::postponed{subname}
is checked. If this key exists, DB::postponed(subname) is called if the DB::postponed
subroutine
 also exists.

A hash %DB::sub is maintained, whose keys are subroutine names
 and whose values have
the form filename:startline-endline. filename has the form (eval 34) for
subroutines defined inside evals, or (re_eval 19) for those within regex code assertions.

When the execution of your program reaches a point that can hold a
 breakpoint, the
DB::DB() subroutine is called if any of the variables $DB::trace, $DB::single, or
$DB::signal is true. These variables
 are not localizable. This feature is disabled when
executing
 inside DB::DB(), including functions called from it unless $^D & (1<<30) is true.

Perl version 5.8.9 documentation - perldebguts

Page 2http://perldoc.perl.org

When execution of the program reaches a subroutine call, a call to &DB::sub(args) is made
instead, with $DB::sub holding the
 name of the called subroutine. (This doesn't happen if the
subroutine
 was compiled in the DB package.)

Note that if &DB::sub needs external data for it to work, no
 subroutine call is possible without it. As
an example, the standard
 debugger's &DB::sub depends on the $DB::deep variable
 (it defines how
many levels of recursion deep into the debugger you can go
 before a mandatory break). If
$DB::deep is not defined, subroutine
 calls are not possible, even though &DB::sub exists.

Writing Your Own Debugger
Environment Variables

The PERL5DB environment variable can be used to define a debugger.
 For example, the minimal
"working" debugger (it actually doesn't do anything)
 consists of one line:

 sub DB::DB {}

It can easily be defined like this:

 $ PERL5DB="sub DB::DB {}" perl -d your-script

Another brief debugger, slightly more useful, can be created
 with only the line:

 sub DB::DB {print ++$i; scalar <STDIN>}

This debugger prints a number which increments for each statement
 encountered and waits for you to
hit a newline before continuing
 to the next statement.

The following debugger is actually useful:

 {
 package DB;
 sub DB {}
 sub sub {print ++$i, " $sub\n"; &$sub}
 }

It prints the sequence number of each subroutine call and the name of the
 called subroutine. Note
that &DB::sub is being compiled into the
 package DB through the use of the package directive.

When it starts, the debugger reads your rc file (./.perldb or ~/.perldb under Unix), which can set
important options.
 (A subroutine (&afterinit) can be defined here as well; it is executed
 after the
debugger completes its own initialization.)

After the rc file is read, the debugger reads the PERLDB_OPTS
 environment variable and uses it to
set debugger options. The
 contents of this variable are treated as if they were the argument
 of an o
... debugger command (q.v. in "Options" in perldebug).

Debugger internal variables
 In addition to the file and subroutine-related variables mentioned above,
 the
debugger also maintains various magical internal variables.

@DB::dbline is an alias for @{"::_<current_file"}, which
 holds the lines of the
currently-selected file (compiled by Perl), either
 explicitly chosen with the debugger's f
command, or implicitly by flow
 of execution.

Values in this array are magical in numeric context: they compare
 equal to zero only if the line
is not breakable.

%DB::dbline, is an alias for %{"::_<current_file"}, which
 contains breakpoints and
actions keyed by line number in
 the currently-selected file, either explicitly chosen with the

debugger's f command, or implicitly by flow of execution.

Perl version 5.8.9 documentation - perldebguts

Page 3http://perldoc.perl.org

As previously noted, individual entries (as opposed to the whole hash)
 are settable. Perl only
cares about Boolean true here, although
 the values used by perl5db.pl have the form
"$break_condition\0$action".

Debugger customization functions

Some functions are provided to simplify customization.

See "Configurable Options" in perldebug for a description of options parsed by
DB::parse_options(string).

DB::dump_trace(skip[,count]) skips the specified number of frames
 and returns a list
containing information about the calling frames (all
 of them, if count is missing). Each entry is
reference to a hash
 with keys context (either ., $, or @), sub (subroutine
 name, or info
about eval), args (undef or a reference to
 an array), file, and line.

DB::print_trace(FH, skip[, count[, short]]) prints
 formatted info about caller
frames. The last two functions may be
 convenient as arguments to <, << commands.

Note that any variables and functions that are not documented in
 this manpages (or in perldebug) are
considered for internal use only, and as such are subject to change without notice.

Frame Listing Output Examples
The frame option can be used to control the output of frame information. For example, contrast this
expression trace:

 $ perl -de 42
 Stack dump during die enabled outside of evals.

 Loading DB routines from perl5db.pl patch level 0.94
 Emacs support available.

 Enter h or `h h' for help.

 main::(-e:1): 0
 DB<1> sub foo { 14 }

 DB<2> sub bar { 3 }

 DB<3> t print foo() * bar()
 main::((eval 172):3): print foo() + bar();
 main::foo((eval 168):2):
 main::bar((eval 170):2):
 42

with this one, once the option frame=2 has been set:

 DB<4> o f=2
 frame = '2'
 DB<5> t print foo() * bar()
 3: foo() * bar()
 entering main::foo
 2: sub foo { 14 };
 exited main::foo
 entering main::bar
 2: sub bar { 3 };
 exited main::bar

Perl version 5.8.9 documentation - perldebguts

Page 4http://perldoc.perl.org

 42

By way of demonstration, we present below a laborious listing
 resulting from setting your
PERLDB_OPTS environment variable to
 the value f=n N, and running perl -d -V from the command
line.
 Examples use various values of n are shown to give you a feel
 for the difference between
settings. Long those it may be, this
 is not a complete listing, but only excerpts.

1 entering main::BEGIN
 entering Config::BEGIN
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 Package lib/Config.pm.
 entering Config::TIEHASH
 entering Exporter::import
 entering Exporter::export
 entering Config::myconfig
 entering Config::FETCH
 entering Config::FETCH
 entering Config::FETCH
 entering Config::FETCH

2 entering main::BEGIN
 entering Config::BEGIN
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 exited Config::BEGIN
 Package lib/Config.pm.
 entering Config::TIEHASH
 exited Config::TIEHASH
 entering Exporter::import
 entering Exporter::export
 exited Exporter::export
 exited Exporter::import
 exited main::BEGIN
 entering Config::myconfig
 entering Config::FETCH
 exited Config::FETCH
 entering Config::FETCH
 exited Config::FETCH
 entering Config::FETCH

3 in $=main::BEGIN() from /dev/null:0
 in $=Config::BEGIN() from lib/Config.pm:2
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 Package lib/Config.pm.
 in $=Config::TIEHASH('Config') from lib/Config.pm:644
 in $=Exporter::import('Config', 'myconfig', 'config_vars') from
/dev/null:0
 in $=Exporter::export('Config', 'main', 'myconfig',
'config_vars') from li
 in @=Config::myconfig() from /dev/null:0
 in $=Config::FETCH(ref(Config), 'package') from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'baserev') from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'PERL_VERSION') from

Perl version 5.8.9 documentation - perldebguts

Page 5http://perldoc.perl.org

lib/Config.pm:574 in $=Config::FETCH(ref(Config),
'PERL_SUBVERSION') from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'osname') from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'osvers') from lib/Config.pm:574

4 in $=main::BEGIN() from /dev/null:0
 in $=Config::BEGIN() from lib/Config.pm:2
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 out $=Config::BEGIN() from lib/Config.pm:0
 Package lib/Config.pm.
 in $=Config::TIEHASH('Config') from lib/Config.pm:644
 out $=Config::TIEHASH('Config') from lib/Config.pm:644
 in $=Exporter::import('Config', 'myconfig', 'config_vars') from
/dev/null:0
 in $=Exporter::export('Config', 'main', 'myconfig',
'config_vars') from lib/
 out $=Exporter::export('Config', 'main', 'myconfig',
'config_vars') from lib/
 out $=Exporter::import('Config', 'myconfig', 'config_vars') from
/dev/null:0
 out $=main::BEGIN() from /dev/null:0
 in @=Config::myconfig() from /dev/null:0
 in $=Config::FETCH(ref(Config), 'package') from lib/Config.pm:574
 out $=Config::FETCH(ref(Config), 'package') from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'baserev') from lib/Config.pm:574
 out $=Config::FETCH(ref(Config), 'baserev') from lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'PERL_VERSION') from
lib/Config.pm:574
 out $=Config::FETCH(ref(Config), 'PERL_VERSION') from
lib/Config.pm:574
 in $=Config::FETCH(ref(Config), 'PERL_SUBVERSION') from
lib/Config.pm:574

5 in $=main::BEGIN() from /dev/null:0
 in $=Config::BEGIN() from lib/Config.pm:2
 Package lib/Exporter.pm.
 Package lib/Carp.pm.
 out $=Config::BEGIN() from lib/Config.pm:0
 Package lib/Config.pm.
 in $=Config::TIEHASH('Config') from lib/Config.pm:644
 out $=Config::TIEHASH('Config') from lib/Config.pm:644
 in $=Exporter::import('Config', 'myconfig', 'config_vars') from
/dev/null:0
 in $=Exporter::export('Config', 'main', 'myconfig',
'config_vars') from lib/E
 out $=Exporter::export('Config', 'main', 'myconfig',
'config_vars') from lib/E
 out $=Exporter::import('Config', 'myconfig', 'config_vars') from
/dev/null:0
 out $=main::BEGIN() from /dev/null:0
 in @=Config::myconfig() from /dev/null:0
 in $=Config::FETCH('Config=HASH(0x1aa444)', 'package') from
lib/Config.pm:574
 out $=Config::FETCH('Config=HASH(0x1aa444)', 'package') from

Perl version 5.8.9 documentation - perldebguts

Page 6http://perldoc.perl.org

lib/Config.pm:574 in $=Config::FETCH('Config=HASH(0x1aa444)',
'baserev') from lib/Config.pm:574
 out $=Config::FETCH('Config=HASH(0x1aa444)', 'baserev') from
lib/Config.pm:574

6 in $=CODE(0x15eca4)() from /dev/null:0
 in $=CODE(0x182528)() from lib/Config.pm:2
 Package lib/Exporter.pm.
 out $=CODE(0x182528)() from lib/Config.pm:0
 scalar context return from CODE(0x182528): undef
 Package lib/Config.pm.
 in $=Config::TIEHASH('Config') from lib/Config.pm:628
 out $=Config::TIEHASH('Config') from lib/Config.pm:628
 scalar context return from Config::TIEHASH: empty hash
 in $=Exporter::import('Config', 'myconfig', 'config_vars') from
/dev/null:0
 in $=Exporter::export('Config', 'main', 'myconfig',
'config_vars') from lib/Exporter.pm:171
 out $=Exporter::export('Config', 'main', 'myconfig',
'config_vars') from lib/Exporter.pm:171
 scalar context return from Exporter::export: ''
 out $=Exporter::import('Config', 'myconfig', 'config_vars') from
/dev/null:0
 scalar context return from Exporter::import: ''

In all cases shown above, the line indentation shows the call tree.
 If bit 2 of frame is set, a line is
printed on exit from a
 subroutine as well. If bit 4 is set, the arguments are printed
 along with the caller
info. If bit 8 is set, the arguments are
 printed even if they are tied or references. If bit 16 is set, the

return value is printed, too.

When a package is compiled, a line like this

 Package lib/Carp.pm.

is printed with proper indentation.

Debugging regular expressions
There are two ways to enable debugging output for regular expressions.

If your perl is compiled with -DDEBUGGING, you may use the -Dr flag on the command line.

Otherwise, one can use re 'debug', which has effects at
 compile time and run time. It is not
lexically scoped.

Compile-time output
The debugging output at compile time looks like this:

 Compiling REx `[bc]d(ef*g)+h[ij]k$'
 size 45 Got 364 bytes for offset annotations.
 first at 1
 rarest char g at 0
 rarest char d at 0
 1: ANYOF[bc](12)
 12: EXACT <d>(14)
 14: CURLYX[0] {1,32767}(28)
 16: OPEN1(18)
 18: EXACT <e>(20)

Perl version 5.8.9 documentation - perldebguts

Page 7http://perldoc.perl.org

 20: STAR(23)
 21: EXACT <f>(0)
 23: EXACT <g>(25)
 25: CLOSE1(27)
 27: WHILEM[1/1](0)
 28: NOTHING(29)
 29: EXACT <h>(31)
 31: ANYOF[ij](42)
 42: EXACT <k>(44)
 44: EOL(45)
 45: END(0)
 anchored `de' at 1 floating `gh' at 3..2147483647 (checking floating)
 stclass `ANYOF[bc]' minlen 7
 Offsets: [45]
 	 1[4] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 5[1]
 	 0[0] 12[1] 0[0] 6[1] 0[0] 7[1] 0[0] 9[1] 8[1] 0[0] 10[1] 0[0]
 	 11[1] 0[0] 12[0] 12[0] 13[1] 0[0] 14[4] 0[0] 0[0] 0[0] 0[0]
 	 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 18[1] 0[0] 19[1] 20[0]
 Omitting $` $& $' support.

The first line shows the pre-compiled form of the regex. The second
 shows the size of the compiled
form (in arbitrary units, usually
 4-byte words) and the total number of bytes allocated for the

offset/length table, usually 4+size*8. The next line shows the
 label id of the first node that does a
match.

The

 anchored `de' at 1 floating `gh' at 3..2147483647 (checking floating)
 stclass `ANYOF[bc]' minlen 7

line (split into two lines above) contains optimizer
 information. In the example shown, the optimizer
found that the match should contain a substring de at offset 1, plus substring gh
 at some offset
between 3 and infinity. Moreover, when checking for
 these substrings (to abandon impossible
matches quickly), Perl will check
 for the substring gh before checking for the substring de. The

optimizer may also use the knowledge that the match starts (at the first id) with a character class,
and no string shorter than 7 characters can possibly match.

The fields of interest which may appear in this line are

anchored STRING at POS

floating STRING at POS1..POS2

See above.

matching floating/anchored

Which substring to check first.

minlen

The minimal length of the match.

stclass TYPE

Type of first matching node.

noscan

Don't scan for the found substrings.

isall

Perl version 5.8.9 documentation - perldebguts

Page 8http://perldoc.perl.org

Means that the optimizer information is all that the regular
 expression contains, and thus one
does not need to enter the regex engine at
 all.

GPOS

Set if the pattern contains \G.

plus

Set if the pattern starts with a repeated char (as in x+y).

implicit

Set if the pattern starts with .*.

with eval

Set if the pattern contain eval-groups, such as (?{ code }) and (??{ code }).

anchored(TYPE)

If the pattern may match only at a handful of places, (with TYPE
 being BOL, MBOL, or GPOS.
See the table below.

If a substring is known to match at end-of-line only, it may be
 followed by $, as in floating `k'$.

The optimizer-specific information is used to avoid entering (a slow) regex
 engine on strings that will
not definitely match. If the isall flag
 is set, a call to the regex engine may be avoided even when the
optimizer
 found an appropriate place for the match.

Above the optimizer section is the list of nodes of the compiled
 form of the regex. Each line has
format

 id: TYPE OPTIONAL-INFO (next-id)

Types of nodes
Here are the possible types, with short descriptions:

 # TYPE arg-description [num-args] [longjump-len] DESCRIPTION

 # Exit points
 END		 no	 End of program.
 SUCCEED	 no	 Return from a subroutine, basically.

 # Anchors:
 BOL		 no	 Match "" at beginning of line.
 MBOL	 no	 Same, assuming multiline.
 SBOL	 no	 Same, assuming singleline.
 EOS		 no	 Match "" at end of string.
 EOL		 no	 Match "" at end of line.
 MEOL	 no	 Same, assuming multiline.
 SEOL	 no	 Same, assuming singleline.
 BOUND	 no	 Match "" at any word boundary
 BOUNDL	 no	 Match "" at any word boundary
 NBOUND	 no	 Match "" at any word non-boundary
 NBOUNDL	 no	 Match "" at any word non-boundary
 GPOS	 no	 Matches where last m//g left off.

 # [Special] alternatives
 ANY		 no	 Match any one character (except newline).
 SANY	 no	 Match any one character.
 ANYOF	 sv	 Match character in (or not in) this class.

Perl version 5.8.9 documentation - perldebguts

Page 9http://perldoc.perl.org

 ALNUM	 no	 Match any alphanumeric character
 ALNUML	 no	 Match any alphanumeric char in locale
 NALNUM	 no	 Match any non-alphanumeric character
 NALNUML	 no	 Match any non-alphanumeric char in locale
 SPACE	 no	 Match any whitespace character
 SPACEL	 no	 Match any whitespace char in locale
 NSPACE	 no	 Match any non-whitespace character
 NSPACEL	 no	 Match any non-whitespace char in locale
 DIGIT	 no	 Match any numeric character
 NDIGIT	 no	 Match any non-numeric character

 # BRANCH	 The set of branches constituting a single choice are hooked
 #		 together with their "next" pointers, since precedence prevents
 #		 anything being concatenated to any individual branch. The
 #		 "next" pointer of the last BRANCH in a choice points to the
 #		 thing following the whole choice. This is also where the
 #		 final "next" pointer of each individual branch points; each
 #		 branch starts with the operand node of a BRANCH node.
 #
 BRANCH	 node	 Match this alternative, or the next...

 # BACK	 Normal "next" pointers all implicitly point forward; BACK
 #		 exists to make loop structures possible.
 # not used
 BACK	 no	 Match "", "next" ptr points backward.

 # Literals
 EXACT	 sv	 Match this string (preceded by length).
 EXACTF	 sv	 Match this string, folded (prec. by length).
 EXACTFL	 sv	 Match this string, folded in locale (w/len).

 # Do nothing
 NOTHING	 no	 Match empty string.
 # A variant of above which delimits a group, thus stops optimizations
 TAIL	 no	 Match empty string. Can jump here from outside.

 # STAR,PLUS	 '?', and complex '*' and '+', are implemented as circular
 #		 BRANCH structures using BACK. Simple cases (one character
 #		 per match) are implemented with STAR and PLUS for speed
 #		 and to minimize recursive plunges.
 #
 STAR	 node	 Match this (simple) thing 0 or more times.
 PLUS	 node	 Match this (simple) thing 1 or more times.

 CURLY	 sv 2	 Match this simple thing {n,m} times.
 CURLYN	 no 2	 Match next-after-this simple thing
 #			 {n,m} times, set parens.
 CURLYM	 no 2	 Match this medium-complex thing {n,m} times.
 CURLYX	 sv 2	 Match this complex thing {n,m} times.

 # This terminator creates a loop structure for CURLYX
 WHILEM	 no	 Do curly processing and see if rest matches.

Perl version 5.8.9 documentation - perldebguts

Page 10http://perldoc.perl.org

 # OPEN,CLOSE,GROUPP	 ...are numbered at compile time.
 OPEN	 num 1	 Mark this point in input as start of #n.
 CLOSE	 num 1	 Analogous to OPEN.

 REF		 num 1	 Match some already matched string
 REFF	 num 1	 Match already matched string, folded
 REFFL	 num 1	 Match already matched string, folded in loc.

 # grouping assertions
 IFMATCH	 off 1 2	 Succeeds if the following matches.
 UNLESSM	 off 1 2	 Fails if the following matches.
 SUSPEND	 off 1 1	 "Independent" sub-regex.
 IFTHEN	 off 1 1	 Switch, should be preceded by switcher .
 GROUPP	 num 1	 Whether the group matched.

 # Support for long regex
 LONGJMP	 off 1 1	 Jump far away.
 BRANCHJ	 off 1 1	 BRANCH with long offset.

 # The heavy worker
 EVAL	 evl 1	 Execute some Perl code.

 # Modifiers
 MINMOD	 no	 Next operator is not greedy.
 LOGICAL	 no	 Next opcode should set the flag only.

 # This is not used yet
 RENUM	 off 1 1	 Group with independently numbered parens.

 # This is not really a node, but an optimized away piece of a "long"
node.
 # To simplify debugging output, we mark it as if it were a node
 OPTIMIZED	 off	 Placeholder for dump.

Following the optimizer information is a dump of the offset/length
 table, here split across several lines:

 Offsets: [45]
 	 1[4] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 5[1]
 	 0[0] 12[1] 0[0] 6[1] 0[0] 7[1] 0[0] 9[1] 8[1] 0[0] 10[1] 0[0]
 	 11[1] 0[0] 12[0] 12[0] 13[1] 0[0] 14[4] 0[0] 0[0] 0[0] 0[0]
 	 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 18[1] 0[0] 19[1] 20[0]

The first line here indicates that the offset/length table contains 45
 entries. Each entry is a pair of
integers, denoted by offset[length].
 Entries are numbered starting with 1, so entry #1 here is
1[4] and
 entry #12 is 5[1]. 1[4] indicates that the node labeled 1:
 (the 1: ANYOF[bc]) begins at
character position 1 in the
 pre-compiled form of the regex, and has a length of 4 characters. 5[1] in
position 12 indicates that the node labeled 12:
 (the 12: EXACT <d>) begins at character position 5
in the
 pre-compiled form of the regex, and has a length of 1 character. 12[1] in position 14 indicates
that the node labeled 14:
 (the 14: CURLYX[0] {1,32767}) begins at character position 12 in the

pre-compiled form of the regex, and has a length of 1 character---that
 is, it corresponds to the +
symbol in the precompiled regex.

0[0] items indicate that there is no corresponding node.

Perl version 5.8.9 documentation - perldebguts

Page 11http://perldoc.perl.org

Run-time output
First of all, when doing a match, one may get no run-time output even
 if debugging is enabled. This
means that the regex engine was never
 entered and that all of the job was therefore done by the
optimizer.

If the regex engine was entered, the output may look like this:

 Matching `[bc]d(ef*g)+h[ij]k$' against `abcdefg__gh__'
 Setting an EVAL scope, savestack=3
 2 <ab> <cdefg__gh_> | 1: ANYOF
 3 <abc> <defg__gh_> | 11: EXACT <d>
 4 <abcd> <efg__gh_> | 13: CURLYX {1,32767}
 4 <abcd> <efg__gh_> | 26: WHILEM
				 0 out of 1..32767 cc=effff31c
 4 <abcd> <efg__gh_> | 15: OPEN1
 4 <abcd> <efg__gh_> | 17: EXACT <e>
 5 <abcde> <fg__gh_> | 19: STAR
			 EXACT <f> can match 1 times out of 32767...
 Setting an EVAL scope, savestack=3
 6 <bcdef> <g__gh__> | 22: EXACT <g>
 7 <bcdefg> <__gh__> | 24: CLOSE1
 7 <bcdefg> <__gh__> | 26: WHILEM
				 1 out of 1..32767 cc=effff31c
 Setting an EVAL scope, savestack=12
 7 <bcdefg> <__gh__> | 15: OPEN1
 7 <bcdefg> <__gh__> | 17: EXACT <e>
 restoring \1 to 4(4)..7
				 failed, try continuation...
 7 <bcdefg> <__gh__> | 27: NOTHING
 7 <bcdefg> <__gh__> | 28: EXACT <h>
				 failed...
				 failed...

The most significant information in the output is about the particular node
 of the compiled regex that is
currently being tested against the target string.
 The format of these lines is

 STRING-OFFSET <PRE-STRING> <POST-STRING> |ID: TYPE

The TYPE info is indented with respect to the backtracking level.
 Other incidental information appears
interspersed within.

Debugging Perl memory usage
Perl is a profligate wastrel when it comes to memory use. There
 is a saying that to estimate memory
usage of Perl, assume a reasonable
 algorithm for memory allocation, multiply that estimate by 10,
and
 while you still may miss the mark, at least you won't be quite so
 astonished. This is not absolutely
true, but may provide a good
 grasp of what happens.

Assume that an integer cannot take less than 20 bytes of memory, a
 float cannot take less than 24
bytes, a string cannot take less
 than 32 bytes (all these examples assume 32-bit architectures, the

result are quite a bit worse on 64-bit architectures). If a variable
 is accessed in two of three different
ways (which require an integer,
 a float, or a string), the memory footprint may increase yet another
 20
bytes. A sloppy malloc(3) implementation can inflate these
 numbers dramatically.

On the opposite end of the scale, a declaration like

 sub foo;

Perl version 5.8.9 documentation - perldebguts

Page 12http://perldoc.perl.org

may take up to 500 bytes of memory, depending on which release of Perl
 you're running.

Anecdotal estimates of source-to-compiled code bloat suggest an
 eightfold increase. This means that
the compiled form of reasonable
 (normally commented, properly indented etc.) code will take
 about
eight times more space in memory than the code took
 on disk.

The -DL command-line switch is obsolete since circa Perl 5.6.0
 (it was available only if Perl was built
with -DDEBUGGING).
 The switch was used to track Perl's memory allocations and possible
 memory
leaks. These days the use of malloc debugging tools like Purify or valgrind is suggested instead. See
also "PERL_MEM_LOG" in perlhack.

One way to find out how much memory is being used by Perl data
 structures is to install the
Devel::Size module from CPAN: it gives
 you the minimum number of bytes required to store a
particular data
 structure. Please be mindful of the difference between the size()
 and total_size().

If Perl has been compiled using Perl's malloc you can analyze Perl
 memory usage by setting the
$ENV{PERL_DEBUG_MSTATS}.

Using $ENV{PERL_DEBUG_MSTATS}
If your perl is using Perl's malloc() and was compiled with the
 necessary switches (this is the default),
then it will print memory
 usage statistics after compiling your code when
$ENV{PERL_DEBUG_MSTATS}
 > 1, and before termination of the program when
$ENV{PERL_DEBUG_MSTATS} >= 1. The report format is similar to
 the following example:

 $ PERL_DEBUG_MSTATS=2 perl -e "require Carp"
 Memory allocation statistics after compilation: (buckets 4(4)..8188(8192)
 14216 free: 130 117 28 7 9 0 2 2 1 0 0
		 437 61 36 0 5
 60924 used: 125 137 161 55 7 8 6 16 2 0 1
		 74 109 304 84 20
 Total sbrk(): 77824/21:119. Odd ends: pad+heads+chain+tail: 0+636+0+2048.
 Memory allocation statistics after execution: (buckets 4(4)..8188(8192)
 30888 free: 245 78 85 13 6 2 1 3 2 0 1
		 315 162 39 42 11
 175816 used: 265 176 1112 111 26 22 11 27 2 1 1
		 196 178 1066 798 39
 Total sbrk(): 215040/47:145. Odd ends: pad+heads+chain+tail:
0+2192+0+6144.

It is possible to ask for such a statistic at arbitrary points in
 your execution using the mstat() function
out of the standard
 Devel::Peek module.

Here is some explanation of that format:

buckets SMALLEST(APPROX)..GREATEST(APPROX)

Perl's malloc() uses bucketed allocations. Every request is rounded
 up to the closest bucket
size available, and a bucket is taken from
 the pool of buckets of that size.

The line above describes the limits of buckets currently in use.
 Each bucket has two sizes:
memory footprint and the maximal size
 of user data that can fit into this bucket. Suppose in
the above
 example that the smallest bucket were size 4. The biggest bucket
 would have
usable size 8188, and the memory footprint would be 8192.

In a Perl built for debugging, some buckets may have negative usable
 size. This means that
these buckets cannot (and will not) be used.
 For larger buckets, the memory footprint may be
one page greater
 than a power of 2. If so, case the corresponding power of two is
 printed in
the APPROX field above.

Free/Used

Perl version 5.8.9 documentation - perldebguts

Page 13http://perldoc.perl.org

The 1 or 2 rows of numbers following that correspond to the number
 of buckets of each size
between SMALLEST and GREATEST. In
 the first row, the sizes (memory footprints) of buckets
are powers
 of two--or possibly one page greater. In the second row, if present,
 the memory
footprints of the buckets are between the memory footprints
 of two buckets "above".

For example, suppose under the previous example, the memory footprints
 were

 free: 8 16 32 64 128 256 512 1024 2048 4096
8192
	 4 12 24 48 80

With non-DEBUGGING perl, the buckets starting from 128 have
 a 4-byte overhead, and thus
an 8192-long bucket may take up to
 8188-byte allocations.

Total sbrk(): SBRKed/SBRKs:CONTINUOUS

The first two fields give the total amount of memory perl sbrk(2)ed
 (ess-broken? :-) and
number of sbrk(2)s used. The third number is
 what perl thinks about continuity of returned
chunks. So long as
 this number is positive, malloc() will assume that it is probable
 that sbrk(2)
will provide continuous memory.

Memory allocated by external libraries is not counted.

pad: 0

The amount of sbrk(2)ed memory needed to keep buckets aligned.

heads: 2192

Although memory overhead of bigger buckets is kept inside the bucket, for
 smaller buckets, it
is kept in separate areas. This field gives the
 total size of these areas.

chain: 0

malloc() may want to subdivide a bigger bucket into smaller buckets.
 If only a part of the
deceased bucket is left unsubdivided, the rest
 is kept as an element of a linked list. This field
gives the total
 size of these chunks.

tail: 6144

To minimize the number of sbrk(2)s, malloc() asks for more memory. This
 field gives the size
of the yet unused part, which is sbrk(2)ed, but
 never touched.

SEE ALSO
perldebug, perlguts, perlrun re,
 and Devel::DProf.

