
Perl version 5.8.9 documentation - B::CC

Page 1http://perldoc.perl.org

NAME
B::CC - Perl compiler's optimized C translation backend

SYNOPSIS
	 perl -MO=CC[,OPTIONS] foo.pl

DESCRIPTION
This compiler backend takes Perl source and generates C source code
 corresponding to the flow of
your program. In other words, this
 backend is somewhat a "real" compiler in the sense that many
people
 think about compilers. Note however that, currently, it is a very
 poor compiler in that although it
generates (mostly, or at least
 sometimes) correct code, it performs relatively few optimisations.
 This
will change as the compiler develops. The result is that
 running an executable compiled with this
backend may start up more
 quickly than running the original Perl program (a feature shared
 by the C
compiler backend--see B::C) and may also execute
 slightly faster. This is by no means a good
optimising compiler--yet.

OPTIONS
If there are any non-option arguments, they are taken to be
 names of objects to be saved (probably
doesn't work properly yet).
 Without extra arguments, it saves the main program.

-ofilename

Output to filename instead of STDOUT

-v

Verbose compilation (currently gives a few compilation statistics).

--

Force end of options

-uPackname

Force apparently unused subs from package Packname to be compiled.
 This allows programs
to use eval "foo()" even when sub foo is never
 seen to be used at compile time. The down
side is that any subs which
 really are never used also have code generated. This option is

necessary, for example, if you have a signal handler foo which you
 initialise with $SIG{BAR}
= "foo". A better fix, though, is just
 to change it to $SIG{BAR} = \&foo. You can have
multiple -u
 options. The compiler tries to figure out which packages may possibly
 have subs in
which need compiling but the current version doesn't do
 it very well. In particular, it is confused
by nested packages (i.e.
 of the form A::B) where package A does not contain any subs.

-mModulename

Instead of generating source for a runnable executable, generate
 source for an XSUB module.
The boot_Modulename function (which
 DynaLoader can look for) does the appropriate
initialisation and runs
 the main part of the Perl source that is being compiled.

-D

Debug options (concatenated or separate flags like perl -D).

-Dr

Writes debugging output to STDERR just as it's about to write to the
 program's runtime
(otherwise writes debugging info as comments in
 its C output).

-DO

Outputs each OP as it's compiled

-Ds

Perl version 5.8.9 documentation - B::CC

Page 2http://perldoc.perl.org

Outputs the contents of the shadow stack at each OP

-Dp

Outputs the contents of the shadow pad of lexicals as it's loaded for
 each sub or the main
program.

-Dq

Outputs the name of each fake PP function in the queue as it's about
 to process it.

-Dl

Output the filename and line number of each original line of Perl
 code as it's processed (
pp_nextstate).

-Dt

Outputs timing information of compilation stages.

-f

Force optimisations on or off one at a time.

-ffreetmps-each-bblock

Delays FREETMPS from the end of each statement to the end of the each
 basic block.

-ffreetmps-each-loop

Delays FREETMPS from the end of each statement to the end of the group
 of basic blocks
forming a loop. At most one of the freetmps-each-*
 options can be used.

-fomit-taint

Omits generating code for handling perl's tainting mechanism.

-On

Optimisation level (n = 0, 1, 2, ...). -O means -O1.
 Currently, -O1 sets
-ffreetmps-each-bblock and -O2
 sets -ffreetmps-each-loop.

EXAMPLES
 perl -MO=CC,-O2,-ofoo.c foo.pl
 perl cc_harness -o foo foo.c

Note that cc_harness lives in the B subdirectory of your perl
 library directory. The utility called
perlcc may also be used to
 help make use of this compiler.

 perl -MO=CC,-mFoo,-oFoo.c Foo.pm
 perl cc_harness -shared -c -o Foo.so Foo.c

BUGS
Plenty. Current status: experimental.

DIFFERENCES
These aren't really bugs but they are constructs which are heavily
 tied to perl's compile-and-go
implementation and with which this
 compiler backend cannot cope.

Loops
Standard perl calculates the target of "next", "last", and "redo"
 at run-time. The compiler calculates the
targets at compile-time.
 For example, the program

 sub skip_on_odd { next NUMBER if $_[0] % 2 }
 NUMBER: for ($i = 0; $i < 5; $i++) {

Perl version 5.8.9 documentation - B::CC

Page 3http://perldoc.perl.org

 skip_on_odd($i);
 print $i;
 }

produces the output

 024

with standard perl but gives a compile-time error with the compiler.

Context of ".."
The context (scalar or array) of the ".." operator determines whether
 it behaves as a range or a
flip/flop. Standard perl delays until
 runtime the decision of which context it is in but the compiler needs
to know the context at compile-time. For example,

 @a = (4,6,1,0,0,1);
 sub range { (shift @a)..(shift @a) }
 print range();
 while (@a) { print scalar(range()) }

generates the output

 456123E0

with standard Perl but gives a compile-time error with compiled Perl.

Arithmetic
Compiled Perl programs use native C arithmetic much more frequently
 than standard perl. Operations
on large numbers or on boundary
 cases may produce different behaviour.

Deprecated features
Features of standard perl such as $[which have been deprecated
 in standard perl since Perl5 was
released have not been implemented
 in the compiler.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk

