
Perl version 5.8.9 documentation - Thread

Page 1http://perldoc.perl.org

NAME
Thread - manipulate threads in Perl (for old code only)

CAVEAT
Perl has two thread models.

In Perl 5.005 the thread model was that all data is implicitly shared
 and shared access to data has to
be explicitly synchronized.
 This model is called "5005threads".

In Perl 5.6 a new model was introduced in which all is was thread
 local and shared access to data has
to be explicitly declared.
 This model is called "ithreads", for "interpreter threads".

In Perl 5.6 the ithreads model was not available as a public API,
 only as an internal API that was
available for extension writers,
 and to implement fork() emulation on Win32 platforms.

In Perl 5.8 the ithreads model became available through the threads
 module.

In Perl 5.10, the 5005threads model will be removed from the Perl interpreter.

Neither model is configured by default into Perl (except, as mentioned
 above, in Win32 ithreads are
always available.) You can see your
 Perl's threading configuration by running perl -V and looking
for
 the use...threads variables, or inside script by use Config;
 and testing for
$Config{use5005threads} and $Config{useithreads}.

For old code and interim backwards compatibility, the Thread module
 has been reworked to function
as a frontend for both 5005threads and
 ithreads.

Note that the compatibility is not complete: because the data sharing
 models are directly opposed,
anything to do with data sharing has to
 be thought differently. With the ithreads you must explicitly
share()
 variables between the threads.

For new code the use of the Thread module is discouraged and
 the direct use of the threads and
threads::shared modules
 is encouraged instead.

Finally, note that there are many known serious problems with the
 5005threads, one of the least of
which is that regular expression
 match variables like $1 are not threadsafe, that is, they easily get

corrupted by competing threads. Other problems include more insidious
 data corruption and
mysterious crashes. You are seriously urged to
 use ithreads instead.

SYNOPSIS
 use Thread qw(:DEFAULT async yield);

 my $t = Thread->new(\&start_sub, @start_args);

 $result = $t->join;
 $result = $t->eval; # not available with ithreads
 $t->detach;

 if ($t->done) {
 $t->join;
 }

 if($t->equal($another_thread)) {
 # ...
 }

 yield();

Perl version 5.8.9 documentation - Thread

Page 2http://perldoc.perl.org

 my $tid = Thread->self->tid;

 lock($scalar);
 lock(@array);
 lock(%hash);

 lock(\&sub); # not available with ithreads

 $flags = $t->flags; # not available with ithreads

 my @list = Thread->list;

DESCRIPTION
The Thread module provides multithreading support for perl.

FUNCTIONS
$thread = Thread->new(\&start_sub)

$thread = Thread->new(\&start_sub, LIST)

new starts a new thread of execution in the referenced subroutine. The
 optional list is
passed as parameters to the subroutine. Execution
 continues in both the subroutine
and the code after the new call.

Thread->new returns a thread object representing the newly created
 thread.

lock VARIABLE

lock places a lock on a variable until the lock goes out of scope.

If the variable is locked by another thread, the lock call will
 block until it's available.
lock is recursive, so multiple calls
 to lock are safe--the variable will remain locked
until the
 outermost lock on the variable goes out of scope.

Locks on variables only affect lock calls--they do not affect normal
 access to a
variable. (Locks on subs are different, and covered in a bit.)
 If you really, really want
locks to block access, then go ahead and tie
 them to something and manage this
yourself. This is done on purpose.
 While managing access to variables is a good thing,
Perl doesn't force
 you out of its living room...

If a container object, such as a hash or array, is locked, all the
 elements of that
container are not locked. For example, if a thread
 does a lock @a, any other thread
doing a lock($a[12]) won't
 block.

With 5005threads you may also lock a sub, using lock &sub.
 Any calls to that sub
from another thread will block until the lock
 is released. This behaviour is not
equivalent to declaring the sub
 with the :locked attribute (5005threads only). The
:locked
 attribute serializes
 access to a subroutine, but allows different threads
non-simultaneous
 access. lock &sub, on the other hand, will not allow any other

thread access for the duration of the lock.

Finally, lock will traverse up references exactly one level. lock(\$a) is equivalent to
lock($a), while lock(\\$a) is not.

async BLOCK;

async creates a thread to execute the block immediately following
 it. This block is
treated as an anonymous sub, and so must have a
 semi-colon after the closing brace.
Like Thread->new, async
 returns a thread object.

Thread->self

Perl version 5.8.9 documentation - Thread

Page 3http://perldoc.perl.org

The Thread->self function returns a thread object that represents
 the thread
making the Thread->self call.

Thread->list

Returns a list of all non-joined, non-detached Thread objects.

cond_wait VARIABLE

The cond_wait function takes a locked variable as
 a parameter, unlocks the
variable, and blocks until another thread
 does a cond_signal or cond_broadcast
for that same locked
 variable. The variable that cond_wait blocked on is relocked

after the cond_wait is satisfied. If there are multiple threads cond_waiting on the
same variable, all but one will reblock waiting
 to reaquire the lock on the variable. (So
if you're only using cond_wait for synchronization, give up the lock as soon as

possible.)

cond_signal VARIABLE

The cond_signal function takes a locked variable as a parameter and
 unblocks one
thread that's cond_waiting on that variable. If more than
 one thread is blocked in a
cond_wait on that variable, only one (and
 which one is indeterminate) will be
unblocked.

If there are no threads blocked in a cond_wait on the variable,
 the signal is
discarded.

cond_broadcast VARIABLE

The cond_broadcast function works similarly to cond_signal. cond_broadcast,
though, will unblock all the threads that are
 blocked in a cond_wait on the locked
variable, rather than only
 one.

yield

The yield function allows another thread to take control of the
 CPU. The exact
results are implementation-dependent.

METHODS
join

join waits for a thread to end and returns any values the thread
 exited with. join will
block until the thread has ended, though
 it won't block if the thread has already
terminated.

If the thread being joined died, the error it died with will
 be returned at this time. If
you don't want the thread performing
 the join to die as well, you should either wrap
the join in
 an eval or use the eval thread method instead of join.

eval

The eval method wraps an eval around a join, and so waits for
 a thread to exit,
passing along any values the thread might have returned.
 Errors, of course, get placed
into $@. (Not available with ithreads.)

detach

detach tells a thread that it is never going to be joined i.e.
 that all traces of its
existence can be removed once it stops running.
 Errors in detached threads will not be
visible anywhere - if you want
 to catch them, you should use $SIG{__DIE__} or
something like that.

equal

equal tests whether two thread objects represent the same thread and
 returns true if
they do.

Perl version 5.8.9 documentation - Thread

Page 4http://perldoc.perl.org

tid

The tid method returns the tid of a thread. The tid is
 a monotonically increasing
integer assigned when a thread is
 created. The main thread of a program will have a
tid of zero,
 while subsequent threads will have tids assigned starting with one.

flags

The flags method returns the flags for the thread. This is the
 integer value
corresponding to the internal flags for the thread,
 and the value may not be all that
meaningful to you.
 (Not available with ithreads.)

done

The done method returns true if the thread you're checking has
 finished, and false
otherwise.

LIMITATIONS
The sequence number used to assign tids is a simple integer, and no
 checking is done to make sure
the tid isn't currently in use. If a
 program creates more than 2**32 - 1 threads in a single run, threads

may be assigned duplicate tids. This limitation may be lifted in
 a future version of Perl.

SEE ALSO
threads::shared (not available with 5005threads)

attributes, Thread::Queue, Thread::Semaphore, Thread::Specific (not available with ithreads)

