
Perl version 5.8.9 documentation - Time::Local

Page 1http://perldoc.perl.org

NAME
Time::Local - efficiently compute time from local and GMT time

SYNOPSIS
 $time = timelocal($sec,$min,$hour,$mday,$mon,$year);
 $time = timegm($sec,$min,$hour,$mday,$mon,$year);

DESCRIPTION
This module provides functions that are the inverse of built-in perl
 functions localtime() and
gmtime(). They accept a date as a
 six-element array, and return the corresponding time(2) value
in
 seconds since the system epoch (Midnight, January 1, 1970 GMT on Unix,
 for example). This value
can be positive or negative, though POSIX
 only requires support for positive values, so dates before
the
 system's epoch may not work on all operating systems.

It is worth drawing particular attention to the expected ranges for
 the values provided. The value for
the day of the month is the actual
 day (ie 1..31), while the month is the number of months since
January
 (0..11). This is consistent with the values returned from localtime() and gmtime().

FUNCTIONS
timelocal() and timegm()

This module exports two functions by default, timelocal() and timegm().

The timelocal() and timegm() functions perform range checking on
 the input $sec, $min, $hour,
$mday, and $mon values by default.

timelocal_nocheck() and timegm_nocheck()
If you are working with data you know to be valid, you can speed your
 code up by using the "nocheck"
variants, timelocal_nocheck() and timegm_nocheck(). These variants must be explicitly
imported.

 use Time::Local 'timelocal_nocheck';

 # The 365th day of 1999
 print scalar localtime timelocal_nocheck 0,0,0,365,0,99;

If you supply data which is not valid (month 27, second 1,000) the
 results will be unpredictable (so
don't do that).

Year Value Interpretation
Strictly speaking, the year should be specified in a form consistent
 with localtime(), i.e. the offset
from 1900. In order to make the
 interpretation of the year easier for humans, however, who are more

accustomed to seeing years as two-digit or four-digit values, the
 following conventions are followed:

Years greater than 999 are interpreted as being the actual year,
 rather than the offset from
1900. Thus, 1964 would indicate the year
 Martin Luther King won the Nobel prize, not the year
3864.

Years in the range 100..999 are interpreted as offset from 1900, so
 that 112 indicates 2012.
This rule also applies to years less than
 zero (but see note below regarding date range).

Years in the range 0..99 are interpreted as shorthand for years in the
 rolling "current century,"
defined as 50 years on either side of the
 current year. Thus, today, in 1999, 0 would refer to
2000, and 45 to
 2045, but 55 would refer to 1955. Twenty years from now, 55 would
 instead
refer to 2055. This is messy, but matches the way people
 currently think about two digit dates.
Whenever possible, use an
 absolute four digit year instead.

Perl version 5.8.9 documentation - Time::Local

Page 2http://perldoc.perl.org

The scheme above allows interpretation of a wide range of dates,
 particularly if 4-digit years are used.

Limits of time_t
The range of dates that can be actually be handled depends on the size
 of time_t (usually a signed
integer) on the given
 platform. Currently, this is 32 bits for most systems, yielding an
 approximate
range from Dec 1901 to Jan 2038.

Both timelocal() and timegm() croak if given dates outside the
 supported range.

Ambiguous Local Times (DST)
Because of DST changes, there are many time zones where the same local
 time occurs for two
different GMT times on the same day. For example,
 in the "Europe/Paris" time zone, the local time of
2001-10-28 02:30:00
 can represent either 2001-10-28 00:30:00 GMT, or 2001-10-28
 01:30:00 GMT.

When given an ambiguous local time, the timelocal() function should
 always return the epoch for the
earlier of the two possible GMT
 times.

Non-Existent Local Times (DST)
When a DST change causes a locale clock to skip one hour forward,
 there will be an hour's worth of
local times that don't exist. Again,
 for the "Europe/Paris" time zone, the local clock jumped from

2001-03-25 01:59:59 to 2001-03-25 03:00:00.

If the timelocal() function is given a non-existent local time, it
 will simply return an epoch value for
the time one hour later.

Negative Epoch Values
Negative epoch (time_t) values are not officially supported by the
 POSIX standards, so this
module's tests do not test them. On some
 systems, they are known not to work. These include
MacOS (pre-OSX) and
 Win32.

On systems which do support negative epoch values, this module should
 be able to cope with dates
before the start of the epoch, down the
 minimum value of time_t for the system.

IMPLEMENTATION
These routines are quite efficient and yet are always guaranteed to
 agree with localtime() and
gmtime(). We manage this by caching
 the start times of any months we've seen before. If we know
the start
 time of the month, we can always calculate any time within the month.
 The start times are
calculated using a mathematical formula. Unlike
 other algorithms that do multiple calls to gmtime().

The timelocal() function is implemented using the same cache. We
 just assume that we're
translating a GMT time, and then fudge it when
 we're done for the timezone and daylight savings
arguments. Note that
 the timezone is evaluated for each date because countries occasionally
 change
their official timezones. Assuming that localtime() corrects
 for these changes, this routine will also
be correct.

BUGS
The whole scheme for interpreting two-digit years can be considered a
 bug.

SUPPORT
Support for this module is provided via the datetime@perl.org email
 list. See http://lists.perl.org/ for
more details.

Please submit bugs to the CPAN RT system at

http://rt.cpan.org/NoAuth/ReportBug.html?Queue=Time-Local or via email
 at
bug-time-local@rt.cpan.org.

Perl version 5.8.9 documentation - Time::Local

Page 3http://perldoc.perl.org

COPYRIGHT
Copyright (c) 1997-2003 Graham Barr, 2003-2007 David Rolsky. All
 rights reserved. This program is
free software; you can redistribute
 it and/or modify it under the same terms as Perl itself.

The full text of the license can be found in the LICENSE file included
 with this module.

AUTHOR
This module is based on a Perl 4 library, timelocal.pl, that was
 included with Perl 4.036, and was most
likely written by Tom
 Christiansen.

The current version was written by Graham Barr.

It is now being maintained separately from the Perl core by Dave
 Rolsky, <autarch@urth.org>.

