
Perl version 5.8.9 documentation - perlunicode

Page 1http://perldoc.perl.org

NAME
perlunicode - Unicode support in Perl

DESCRIPTION
Important Caveats

Unicode support is an extensive requirement. While Perl does not
 implement the Unicode standard or
the accompanying technical reports
 from cover to cover, Perl does support many Unicode features.

People who want to learn to use Unicode in Perl, should probably read the Perl Unicode tutorial,
perlunitut, before reading
 this reference document.

Input and Output Layers

Perl knows when a filehandle uses Perl's internal Unicode encodings
 (UTF-8, or UTF-EBCDIC
if in EBCDIC) if the filehandle is opened with
 the ":utf8" layer. Other encodings can be
converted to Perl's
 encoding on input or from Perl's encoding on output by use of the

":encoding(...)" layer. See open.

To indicate that Perl source itself is in UTF-8, use use utf8;.

Regular Expressions

The regular expression compiler produces polymorphic opcodes. That is,
 the pattern adapts to
the data and automatically switches to the Unicode
 character scheme when presented with
data that is internally encoded in
 UTF-8 -- or instead uses a traditional byte scheme when
presented with
 byte data.

use utf8 still needed to enable UTF-8/UTF-EBCDIC in scripts

As a compatibility measure, the use utf8 pragma must be explicitly
 included to enable
recognition of UTF-8 in the Perl scripts themselves
 (in string or regular expression literals, or
in identifier names) on
 ASCII-based machines or to recognize UTF-EBCDIC on
EBCDIC-based
 machines. These are the only times when an explicit use utf8
 is
needed. See utf8.

BOM-marked scripts and UTF-16 scripts autodetected

If a Perl script begins marked with the Unicode BOM (UTF-16LE, UTF16-BE,
 or UTF-8), or if
the script looks like non-BOM-marked UTF-16 of either
 endianness, Perl will correctly read in
the script as Unicode.
 (BOMless UTF-8 cannot be effectively recognized or differentiated from

ISO 8859-1 or other eight-bit encodings.)

use encoding needed to upgrade non-Latin-1 byte strings

By default, there is a fundamental asymmetry in Perl's Unicode model:
 implicit upgrading from
byte strings to Unicode strings assumes that
 they were encoded in ISO 8859-1 (Latin-1), but
Unicode strings are
 downgraded with UTF-8 encoding. This happens because the first 256

codepoints in Unicode happens to agree with Latin-1.

See Byte and Character Semantics for more details.

Byte and Character Semantics
Beginning with version 5.6, Perl uses logically-wide characters to
 represent strings internally.

In future, Perl-level operations will be expected to work with
 characters rather than bytes.

However, as an interim compatibility measure, Perl aims to
 provide a safe migration path from byte
semantics to character
 semantics for programs. For operations where Perl can unambiguously
 decide
that the input data are characters, Perl switches to
 character semantics. For operations where this
determination cannot
 be made without additional information from the user, Perl decides in
 favor of
compatibility and chooses to use byte semantics.

This behavior preserves compatibility with earlier versions of Perl,
 which allowed byte semantics in

Perl version 5.8.9 documentation - perlunicode

Page 2http://perldoc.perl.org

Perl operations only if
 none of the program's inputs were marked as being as source of Unicode

character data. Such data may come from filehandles, from calls to
 external programs, from
information provided by the system (such as %ENV),
 or from literals and constants in the source text.

The bytes pragma will always, regardless of platform, force byte
 semantics in a particular lexical
scope. See bytes.

The utf8 pragma is primarily a compatibility device that enables
 recognition of UTF-(8|EBCDIC) in
literals encountered by the parser.
 Note that this pragma is only required while Perl defaults to byte

semantics; when character semantics become the default, this pragma
 may become a no-op. See
utf8.

Unless explicitly stated, Perl operators use character semantics
 for Unicode data and byte semantics
for non-Unicode data.
 The decision to use character semantics is made transparently. If
 input data
comes from a Unicode source--for example, if a character
 encoding layer is added to a filehandle or a
literal Unicode
 string constant appears in a program--character semantics apply.
 Otherwise, byte
semantics are in effect. The bytes pragma should
 be used to force byte semantics on Unicode data.

If strings operating under byte semantics and strings with Unicode
 character data are concatenated,
the new string will be created by
 decoding the byte strings as ISO 8859-1 (Latin-1), even if the
 old
Unicode string used EBCDIC. This translation is done without
 regard to the system's native 8-bit
encoding.

Under character semantics, many operations that formerly operated on
 bytes now operate on
characters. A character in Perl is
 logically just a number ranging from 0 to 2**31 or so. Larger

characters may encode into longer sequences of bytes internally, but
 this internal detail is mostly
hidden for Perl code.
 See perluniintro for more.

Effects of Character Semantics
Character semantics have the following effects:

Strings--including hash keys--and regular expression patterns may
 contain characters that
have an ordinal value larger than 255.

If you use a Unicode editor to edit your program, Unicode characters may
 occur directly within
the literal strings in UTF-8 encoding, or UTF-16.
 (The former requires a BOM or use utf8,
the latter requires a BOM.)

Unicode characters can also be added to a string by using the \x{...}
 notation. The
Unicode code for the desired character, in hexadecimal,
 should be placed in the braces. For
instance, a smiley face is \x{263A}. This encoding scheme only works for all characters, but

for characters under 0x100, note that Perl may use an 8 bit encoding
 internally, for
optimization and/or backward compatibility.

Additionally, if you

 use charnames ':full';

you can use the \N{...} notation and put the official Unicode
 character name within the
braces, such as \N{WHITE SMILING FACE}.

If an appropriate encoding is specified, identifiers within the
 Perl script may contain Unicode
alphanumeric characters, including
 ideographs. Perl does not currently attempt to canonicalize
variable
 names.

Regular expressions match characters instead of bytes. "." matches
 a character instead of a
byte.

Character classes in regular expressions match characters instead of
 bytes and match against
the character properties specified in the
 Unicode properties database. \w can be used to
match a Japanese
 ideograph, for instance.

Perl version 5.8.9 documentation - perlunicode

Page 3http://perldoc.perl.org

Named Unicode properties, scripts, and block ranges may be used like
 character classes via
the \p{} "matches property" construct and
 the \P{} negation, "doesn't match property".

See Unicode Character Properties for more details.

You can define your own character properties and use them
 in the regular expression with the
\p{} or \P{} construct.

See User-Defined Character Properties for more details.

The special pattern \X matches any extended Unicode
 sequence--"a combining character
sequence" in Standardese--where the
 first character is a base character and subsequent
characters are mark
 characters that apply to the base character. \X is equivalent to
(?>\PM\pM*).

The tr/// operator translates characters instead of bytes. Note
 that the tr///CU
functionality has been removed. For similar
 functionality see pack('U0', ...) and pack('C0', ...).

Case translation operators use the Unicode case translation tables
 when character input is
provided. Note that uc(), or \U in
 interpolated strings, translates to uppercase, while
ucfirst,
 or \u in interpolated strings, translates to titlecase in languages
 that make the
distinction.

Most operators that deal with positions or lengths in a string will
 automatically switch to using
character positions, including chop(), chomp(), substr(), pos(), index(), rindex(),
sprintf(), write(), and length(). Operators that
 specifically do not switch include
vec(), pack(), and unpack(). Operators that really don't care include
 operators that treat
strings as a bucket of bits such as sort(),
 and operators dealing with filenames.

The pack()/unpack() letter C does not change, since it is often used for byte-oriented
formats. Again, think char in the C language.

There is a new U specifier that converts between Unicode characters
 and code points. There
is also a W specifier that is the equivalent of chr/ord and properly handles character values
even if they are above 255.

The chr() and ord() functions work on characters, similar to pack("W") and
unpack("W"), not pack("C") and unpack("C"). pack("C") and unpack("C") are
methods for
 emulating byte-oriented chr() and ord() on Unicode strings.
 While these
methods reveal the internal encoding of Unicode strings,
 that is not something one normally
needs to care about at all.

The bit string operators, & | ^ ~, can operate on character data.
 However, for backward
compatibility, such as when using bit string
 operations when characters are all less than 256 in
ordinal value, one
 should not use ~ (the bit complement) with characters of both
 values less
than 256 and values greater than 256. Most importantly,
 DeMorgan's laws (~($x|$y) eq
~$x&~$y and ~($x&$y) eq ~$x|~$y)
 will not hold. The reason for this mathematical faux
pas is that
 the complement cannot return both the 8-bit (byte-wide) bit
 complement and the
full character-wide bit complement.

lc(), uc(), lcfirst(), and ucfirst() work for the following cases:

the case mapping is from a single Unicode character to another
 single Unicode
character, or

the case mapping is from a single Unicode character to more
 than one Unicode
character.

Things to do with locales (Lithuanian, Turkish, Azeri) do not work
 since Perl does not
understand the concept of Unicode locales.

See the Unicode Technical Report #21, Case Mappings, for more details.

But you can also define your own mappings to be used in the lc(),
 lcfirst(), uc(), and ucfirst()

Perl version 5.8.9 documentation - perlunicode

Page 4http://perldoc.perl.org

(or their string-inlined versions).

See User-Defined Case Mappings for more details.

And finally, scalar reverse() reverses by character rather than by byte.

Unicode Character Properties
Named Unicode properties, scripts, and block ranges may be used like
 character classes via the
\p{} "matches property" construct and
 the \P{} negation, "doesn't match property".

For instance, \p{Lu} matches any character with the Unicode "Lu"
 (Letter, uppercase) property,
while \p{M} matches any character
 with an "M" (mark--accents and such) property. Brackets are not

required for single letter properties, so \p{M} is equivalent to \pM. Many predefined properties are
available, such as \p{Mirrored} and \p{Tibetan}.

The official Unicode script and block names have spaces and dashes as
 separators, but for
convenience you can use dashes, spaces, or
 underbars, and case is unimportant. It is recommended,
however, that
 for consistency you use the following naming: the official Unicode
 script, property, or
block name (see below for the additional rules
 that apply to block names) with whitespace and dashes
removed, and the
 words "uppercase-first-lowercase-rest". Latin-1 Supplement thus
 becomes
Latin1Supplement.

You can also use negation in both \p{} and \P{} by introducing a caret
 (^) between the first brace
and the property name: \p{^Tamil} is
 equal to \P{Tamil}.

NOTE: the properties, scripts, and blocks listed here are as of
 Unicode 5.0.0 in July 2006.

General Category

Here are the basic Unicode General Category properties, followed by their
 long form. You can
use either; \p{Lu} and \p{UppercaseLetter},
 for instance, are identical.

 Short Long

 L Letter
 LC CasedLetter
 Lu UppercaseLetter
 Ll LowercaseLetter
 Lt TitlecaseLetter
 Lm ModifierLetter
 Lo OtherLetter

 M Mark
 Mn NonspacingMark
 Mc SpacingMark
 Me EnclosingMark

 N Number
 Nd DecimalNumber
 Nl LetterNumber
 No OtherNumber

 P Punctuation
 Pc ConnectorPunctuation
 Pd DashPunctuation
 Ps OpenPunctuation
 Pe ClosePunctuation
 Pi InitialPunctuation
 (may behave like Ps or Pe depending on usage)
 Pf FinalPunctuation

Perl version 5.8.9 documentation - perlunicode

Page 5http://perldoc.perl.org

 (may behave like Ps or Pe depending on usage)
 Po OtherPunctuation

 S Symbol
 Sm MathSymbol
 Sc CurrencySymbol
 Sk ModifierSymbol
 So OtherSymbol

 Z Separator
 Zs SpaceSeparator
 Zl LineSeparator
 Zp ParagraphSeparator

 C Other
 Cc Control
 Cf Format
 Cs Surrogate (not usable)
 Co PrivateUse
 Cn Unassigned

Single-letter properties match all characters in any of the
 two-letter sub-properties starting with
the same letter. LC and L& are special cases, which are aliases for the set of Ll, Lu, and Lt.

Because Perl hides the need for the user to understand the internal
 representation of Unicode
characters, there is no need to implement
 the somewhat messy concept of surrogates. Cs is
therefore not
 supported.

Bidirectional Character Types

Because scripts differ in their directionality--Hebrew is
 written right to left, for
example--Unicode supplies these properties in
 the BidiClass class:

 Property Meaning

 L Left-to-Right
 LRE Left-to-Right Embedding
 LRO Left-to-Right Override
 R Right-to-Left
 AL Right-to-Left Arabic
 RLE Right-to-Left Embedding
 RLO Right-to-Left Override
 PDF Pop Directional Format
 EN European Number
 ES European Number Separator
 ET European Number Terminator
 AN Arabic Number
 CS Common Number Separator
 NSM Non-Spacing Mark
 BN Boundary Neutral
 B Paragraph Separator
 S Segment Separator
 WS Whitespace
 ON Other Neutrals

For example, \p{BidiClass:R} matches characters that are normally
 written right to left.

Scripts

Perl version 5.8.9 documentation - perlunicode

Page 6http://perldoc.perl.org

The script names which can be used by \p{...} and \P{...},
 such as in \p{Latin} or
\p{Cyrillic}, are as follows:

 Arabic
 Armenian
 Balinese
 Bengali
 Bopomofo
 Braille
 Buginese
 Buhid
 CanadianAboriginal
 Cherokee
 Coptic
 Cuneiform
 Cypriot
 Cyrillic
 Deseret
 Devanagari
 Ethiopic
 Georgian
 Glagolitic
 Gothic
 Greek
 Gujarati
 Gurmukhi
 Han
 Hangul
 Hanunoo
 Hebrew
 Hiragana
 Inherited
 Kannada
 Katakana
 Kharoshthi
 Khmer
 Lao
 Latin
 Limbu
 LinearB
 Malayalam
 Mongolian
 Myanmar
 NewTaiLue
 Nko
 Ogham
 OldItalic
 OldPersian
 Oriya
 Osmanya
 PhagsPa
 Phoenician
 Runic
 Shavian
 Sinhala
 SylotiNagri
 Syriac

Perl version 5.8.9 documentation - perlunicode

Page 7http://perldoc.perl.org

 Tagalog
 Tagbanwa
 TaiLe
 Tamil
 Telugu
 Thaana
 Thai
 Tibetan
 Tifinagh
 Ugaritic
 Yi

Extended property classes

Extended property classes can supplement the basic
 properties, defined by the PropList
Unicode database:

 ASCIIHexDigit
 BidiControl
 Dash
 Deprecated
 Diacritic
 Extender
 HexDigit
 Hyphen
 Ideographic
 IDSBinaryOperator
 IDSTrinaryOperator
 JoinControl
 LogicalOrderException
 NoncharacterCodePoint
 OtherAlphabetic
 OtherDefaultIgnorableCodePoint
 OtherGraphemeExtend
 OtherIDStart
 OtherIDContinue
 OtherLowercase
 OtherMath
 OtherUppercase
 PatternSyntax
 PatternWhiteSpace
 QuotationMark
 Radical
 SoftDotted
 STerm
 TerminalPunctuation
 UnifiedIdeograph
 VariationSelector
 WhiteSpace

and there are further derived properties:

 Alphabetic = Lu + Ll + Lt + Lm + Lo + Nl + OtherAlphabetic
 Lowercase = Ll + OtherLowercase
 Uppercase = Lu + OtherUppercase
 Math = Sm + OtherMath

 IDStart = Lu + Ll + Lt + Lm + Lo + Nl + OtherIDStart

Perl version 5.8.9 documentation - perlunicode

Page 8http://perldoc.perl.org

 IDContinue = IDStart + Mn + Mc + Nd + Pc + OtherIDContinue

 DefaultIgnorableCodePoint
 = OtherDefaultIgnorableCodePoint
 + Cf + Cc + Cs + Noncharacters + VariationSelector
 - WhiteSpace - FFF9..FFFB (Annotation Characters)

 Any = Any code points (i.e. U+0000 to U+10FFFF)
 Assigned = Any non-Cn code points (i.e. synonym for \P{Cn})
 Unassigned = Synonym for \p{Cn}
 ASCII = ASCII (i.e. U+0000 to U+007F)

 Common = Any character (or unassigned code point)
 not explicitly assigned to a script

Use of "Is" Prefix

For backward compatibility (with Perl 5.6), all properties mentioned
 so far may have Is
prepended to their name, so \P{IsLu}, for
 example, is equal to \P{Lu}.

Blocks

In addition to scripts, Unicode also defines blocks of
 characters. The difference between
scripts and blocks is that the
 concept of scripts is closer to natural languages, while the
concept
 of blocks is more of an artificial grouping based on groups of 256
 Unicode characters.
For example, the Latin script contains letters
 from many blocks but does not contain all the
characters from those
 blocks. It does not, for example, contain digits, because digits are

shared across many scripts. Digits and similar groups, like
 punctuation, are in a category
called Common.

For more about scripts, see the UAX#24 "Script Names":

 http://www.unicode.org/reports/tr24/

For more about blocks, see:

 http://www.unicode.org/Public/UNIDATA/Blocks.txt

Block names are given with the In prefix. For example, the
 Katakana block is referenced via
\p{InKatakana}. The In
 prefix may be omitted if there is no naming conflict with a script
 or
any other property, but it is recommended that In always be used
 for block tests to avoid
confusion.

These block names are supported:

 InAegeanNumbers
 InAlphabeticPresentationForms
 InAncientGreekMusicalNotation
 InAncientGreekNumbers
 InArabic
 InArabicPresentationFormsA
 InArabicPresentationFormsB
 InArabicSupplement
 InArmenian
 InArrows
 InBalinese
 InBasicLatin
 InBengali
 InBlockElements
 InBopomofo
 InBopomofoExtended

Perl version 5.8.9 documentation - perlunicode

Page 9http://perldoc.perl.org

 InBoxDrawing
 InBraillePatterns
 InBuginese
 InBuhid
 InByzantineMusicalSymbols
 InCJKCompatibility
 InCJKCompatibilityForms
 InCJKCompatibilityIdeographs
 InCJKCompatibilityIdeographsSupplement
 InCJKRadicalsSupplement
 InCJKStrokes
 InCJKSymbolsAndPunctuation
 InCJKUnifiedIdeographs
 InCJKUnifiedIdeographsExtensionA
 InCJKUnifiedIdeographsExtensionB
 InCherokee
 InCombiningDiacriticalMarks
 InCombiningDiacriticalMarksSupplement
 InCombiningDiacriticalMarksforSymbols
 InCombiningHalfMarks
 InControlPictures
 InCoptic
 InCountingRodNumerals
 InCuneiform
 InCuneiformNumbersAndPunctuation
 InCurrencySymbols
 InCypriotSyllabary
 InCyrillic
 InCyrillicSupplement
 InDeseret
 InDevanagari
 InDingbats
 InEnclosedAlphanumerics
 InEnclosedCJKLettersAndMonths
 InEthiopic
 InEthiopicExtended
 InEthiopicSupplement
 InGeneralPunctuation
 InGeometricShapes
 InGeorgian
 InGeorgianSupplement
 InGlagolitic
 InGothic
 InGreekExtended
 InGreekAndCoptic
 InGujarati
 InGurmukhi
 InHalfwidthAndFullwidthForms
 InHangulCompatibilityJamo
 InHangulJamo
 InHangulSyllables
 InHanunoo
 InHebrew
 InHighPrivateUseSurrogates
 InHighSurrogates
 InHiragana

Perl version 5.8.9 documentation - perlunicode

Page 10http://perldoc.perl.org

 InIPAExtensions
 InIdeographicDescriptionCharacters
 InKanbun
 InKangxiRadicals
 InKannada
 InKatakana
 InKatakanaPhoneticExtensions
 InKharoshthi
 InKhmer
 InKhmerSymbols
 InLao
 InLatin1Supplement
 InLatinExtendedA
 InLatinExtendedAdditional
 InLatinExtendedB
 InLatinExtendedC
 InLatinExtendedD
 InLetterlikeSymbols
 InLimbu
 InLinearBIdeograms
 InLinearBSyllabary
 InLowSurrogates
 InMalayalam
 InMathematicalAlphanumericSymbols
 InMathematicalOperators
 InMiscellaneousMathematicalSymbolsA
 InMiscellaneousMathematicalSymbolsB
 InMiscellaneousSymbols
 InMiscellaneousSymbolsAndArrows
 InMiscellaneousTechnical
 InModifierToneLetters
 InMongolian
 InMusicalSymbols
 InMyanmar
 InNKo
 InNewTaiLue
 InNumberForms
 InOgham
 InOldItalic
 InOldPersian
 InOpticalCharacterRecognition
 InOriya
 InOsmanya
 InPhagspa
 InPhoenician
 InPhoneticExtensions
 InPhoneticExtensionsSupplement
 InPrivateUseArea
 InRunic
 InShavian
 InSinhala
 InSmallFormVariants
 InSpacingModifierLetters
 InSpecials
 InSuperscriptsAndSubscripts
 InSupplementalArrowsA

Perl version 5.8.9 documentation - perlunicode

Page 11http://perldoc.perl.org

 InSupplementalArrowsB
 InSupplementalMathematicalOperators
 InSupplementalPunctuation
 InSupplementaryPrivateUseAreaA
 InSupplementaryPrivateUseAreaB
 InSylotiNagri
 InSyriac
 InTagalog
 InTagbanwa
 InTags
 InTaiLe
 InTaiXuanJingSymbols
 InTamil
 InTelugu
 InThaana
 InThai
 InTibetan
 InTifinagh
 InUgaritic
 InUnifiedCanadianAboriginalSyllabics
 InVariationSelectors
 InVariationSelectorsSupplement
 InVerticalForms
 InYiRadicals
 InYiSyllables
 InYijingHexagramSymbols

User-Defined Character Properties
You can define your own character properties by defining subroutines
 whose names begin with "In" or
"Is". The subroutines can be defined in
 any package. The user-defined properties can be used in the
regular
 expression \p and \P constructs; if you are using a user-defined
 property from a package
other than the one you are in, you must specify
 its package in the \p or \P construct.

 # assuming property IsForeign defined in Lang::
 package main; # property package name required
 if ($txt =~ /\p{Lang::IsForeign}+/) { ... }

 package Lang; # property package name not required
 if ($txt =~ /\p{IsForeign}+/) { ... }

Note that the effect is compile-time and immutable once defined.

The subroutines must return a specially-formatted string, with one
 or more newline-separated lines.
Each line must be one of the following:

A single hexadecimal number denoting a Unicode code point to include.

Two hexadecimal numbers separated by horizontal whitespace (space or
 tabular characters)
denoting a range of Unicode code points to include.

Something to include, prefixed by "+": a built-in character
 property (prefixed by "utf8::") or a
user-defined character property,
 to represent all the characters in that property; two
hexadecimal code
 points for a range; or a single hexadecimal code point.

Something to exclude, prefixed by "-": an existing character
 property (prefixed by "utf8::") or a
user-defined character property,
 to represent all the characters in that property; two
hexadecimal code
 points for a range; or a single hexadecimal code point.

Perl version 5.8.9 documentation - perlunicode

Page 12http://perldoc.perl.org

Something to negate, prefixed "!": an existing character
 property (prefixed by "utf8::") or a
user-defined character property,
 to represent all the characters in that property; two
hexadecimal code
 points for a range; or a single hexadecimal code point.

Something to intersect with, prefixed by "&": an existing character
 property (prefixed by
"utf8::") or a user-defined character property,
 for all the characters except the characters in the
property; two
 hexadecimal code points for a range; or a single hexadecimal code point.

For example, to define a property that covers both the Japanese
 syllabaries (hiragana and katakana),
you can define

 sub InKana {
	 return <<END;
 3040\t309F
 30A0\t30FF
 END
 }

Imagine that the here-doc end marker is at the beginning of the line.
 Now you can use \p{InKana}
and \P{InKana}.

You could also have used the existing block property names:

 sub InKana {
	 return <<'END';
 +utf8::InHiragana
 +utf8::InKatakana
 END
 }

Suppose you wanted to match only the allocated characters,
 not the raw block ranges: in other words,
you want to remove
 the non-characters:

 sub InKana {
	 return <<'END';
 +utf8::InHiragana
 +utf8::InKatakana
 -utf8::IsCn
 END
 }

The negation is useful for defining (surprise!) negated classes.

 sub InNotKana {
	 return <<'END';
 !utf8::InHiragana
 -utf8::InKatakana
 +utf8::IsCn
 END
 }

Intersection is useful for getting the common characters matched by
 two (or more) classes.

 sub InFooAndBar {
 return <<'END';
 +main::Foo
 &main::Bar

Perl version 5.8.9 documentation - perlunicode

Page 13http://perldoc.perl.org

 END
 }

It's important to remember not to use "&" for the first set -- that
 would be intersecting with nothing
(resulting in an empty set).

User-Defined Case Mappings
You can also define your own mappings to be used in the lc(),
 lcfirst(), uc(), and ucfirst() (or their
string-inlined versions).
 The principle is similar to that of user-defined character
 properties: to define
subroutines in the main package
 with names like ToLower (for lc() and lcfirst()), ToTitle (for
 the
first character in ucfirst()), and ToUpper (for uc(), and the
 rest of the characters in ucfirst()).

The string returned by the subroutines needs now to be three
 hexadecimal numbers separated by
tabulators: start of the source
 range, end of the source range, and start of the destination range.
 For
example:

 sub ToUpper {
	 return <<END;
 0061\t0063\t0041
 END
 }

defines an uc() mapping that causes only the characters "a", "b", and
 "c" to be mapped to "A", "B",
"C", all other characters will remain
 unchanged.

If there is no source range to speak of, that is, the mapping is from
 a single character to another
single character, leave the end of the
 source range empty, but the two tabulator characters are still
needed.
 For example:

 sub ToLower {
	 return <<END;
 0041\t\t0061
 END
 }

defines a lc() mapping that causes only "A" to be mapped to "a", all
 other characters will remain
unchanged.

(For serious hackers only) If you want to introspect the default
 mappings, you can find the data in the
directory $Config{privlib}/unicore/To/. The mapping data is returned as
 the here-document, and
the utf8::ToSpecFoo are special exception
 mappings derived from <$Config{privlib}>/
unicore/SpecialCasing.txt.
 The Digit and Fold mappings that one can see in the directory
 are not
directly user-accessible, one can use either the Unicode::UCD module, or just match
case-insensitively (that's when
 the Fold mapping is used).

A final note on the user-defined case mappings: they will be used
 only if the scalar has been marked
as having Unicode characters.
 Old byte-style strings will not be affected.

Character Encodings for Input and Output
See Encode.

Unicode Regular Expression Support Level
The following list of Unicode support for regular expressions describes
 all the features currently
supported. The references to "Level N"
 and the section numbers refer to the Unicode Technical
Standard #18,
 "Unicode Regular Expressions", version 11, in May 2005.

Level 1 - Basic Unicode Support

Perl version 5.8.9 documentation - perlunicode

Page 14http://perldoc.perl.org

 RL1.1 Hex Notation - done
[1]
 RL1.2 Properties - done
[2][3]
 RL1.2a Compatibility Properties - done
[4]
 RL1.3 Subtraction and Intersection - MISSING
[5]
 RL1.4 Simple Word Boundaries - done
[6]
 RL1.5 Simple Loose Matches - done
[7]
 RL1.6 Line Boundaries - MISSING
[8]
 RL1.7 Supplementary Code Points - done
[9]

 [1] \x{...}
 [2] \p{...} \P{...}
 [3] supports not only minimal list (general category,
scripts,
 Alphabetic, Lowercase, Uppercase, WhiteSpace,
 NoncharacterCodePoint, DefaultIgnorableCodePoint, Any,
 ASCII, Assigned), but also bidirectional types, blocks,
etc.
 (see L</"Unicode Character Properties">)
 [4] \d \D \s \S \w \W \X [:prop:] [:^prop:]
 [5] can use regular expression look-ahead [a] or
 user-defined character properties [b] to emulate set
operations
 [6] \b \B
 [7] note that Perl does Full case-folding in matching, not
Simple:
 for example U+1F88 is equivalent with U+1F00 U+03B9,
 not with 1F80. This difference matters for certain
Greek
 capital letters with certain modifiers: the Full
case-folding
 decomposes the letter, while the Simple case-folding
would map
 it to a single character.
 [8] should do ^ and $ also on U+000B (\v in C), FF (\f), CR
(\r),
 CRLF (\r\n), NEL (U+0085), LS (U+2028), and PS (U+2029);
 should also affect <>, $., and script line numbers;
 should not split lines within CRLF [c] (i.e. there is no
 empty
 line between \r and \n)
 [9] UTF-8/UTF-EBDDIC used in perl allows not only U+10000 to
 U+10FFFF
 but also beyond U+10FFFF [d]

[a] You can mimic class subtraction using lookahead.
 For example, what UTS#18 might write
as

 [{Greek}-[{UNASSIGNED}]]

Perl version 5.8.9 documentation - perlunicode

Page 15http://perldoc.perl.org

in Perl can be written as:

 (?!\p{Unassigned})\p{InGreekAndCoptic}
 (?=\p{Assigned})\p{InGreekAndCoptic}

But in this particular example, you probably really want

 \p{GreekAndCoptic}

which will match assigned characters known to be part of the Greek script.

Also see the Unicode::Regex::Set module, it does implement the full
 UTS#18 grouping,
intersection, union, and removal (subtraction) syntax.

[b] '+' for union, '-' for removal (set-difference), '&' for intersection
 (see User-Defined Character
Properties)

[c] Try the :crlf layer (see PerlIO).

[d] Avoid use warning 'utf8'; (or say no warning 'utf8';) to allow
 U+FFFF (
\x{FFFF}).

Level 2 - Extended Unicode Support

 RL2.1 Canonical Equivalents - MISSING
[10][11]
 RL2.2 Default Grapheme Clusters - MISSING
[12][13]
 RL2.3 Default Word Boundaries - MISSING [14]
 RL2.4 Default Loose Matches - MISSING [15]
 RL2.5 Name Properties - MISSING [16]
 RL2.6 Wildcard Properties - MISSING

 [10] see UAX#15 "Unicode Normalization Forms"
 [11] have Unicode::Normalize but not integrated to regexes
 [12] have \X but at this level . should equal that
 [13] UAX#29 "Text Boundaries" considers CRLF and Hangul
syllable
 clusters as a single grapheme cluster.
 [14] see UAX#29, Word Boundaries
 [15] see UAX#21 "Case Mappings"
 [16] have \N{...} but neither compute names of CJK Ideographs
 and Hangul Syllables nor use a loose match [e]

[e] \N{...} allows namespaces (see charnames).

Level 3 - Tailored Support

 RL3.1 Tailored Punctuation - MISSING
 RL3.2 Tailored Grapheme Clusters - MISSING
[17][18]
 RL3.3 Tailored Word Boundaries - MISSING
 RL3.4 Tailored Loose Matches - MISSING
 RL3.5 Tailored Ranges - MISSING
 RL3.6 Context Matching - MISSING [19]
 RL3.7 Incremental Matches - MISSING
 (RL3.8 Unicode Set Sharing)
 RL3.9 Possible Match Sets - MISSING
 RL3.10 Folded Matching - MISSING [20]
 RL3.11 Submatchers - MISSING

 [17] see UAX#10 "Unicode Collation Algorithms"

Perl version 5.8.9 documentation - perlunicode

Page 16http://perldoc.perl.org

 [18] have Unicode::Collate but not integrated to regexes
 [19] have (?<=x) and (?=x), but look-aheads or look-behinds
should see
 outside of the target substring
 [20] need insensitive matching for linguistic features other
than case;
 for example, hiragana to katakana, wide and narrow,
simplified Han
 to traditional Han (see UTR#30 "Character Foldings")

Unicode Encodings
Unicode characters are assigned to code points, which are abstract
 numbers. To use these numbers,
various encodings are needed.

UTF-8

UTF-8 is a variable-length (1 to 6 bytes, current character allocations
 require 4 bytes),
byte-order independent encoding. For ASCII (and we
 really do mean 7-bit ASCII, not another
8-bit encoding), UTF-8 is
 transparent.

The following table is from Unicode 3.2.

 Code Points 1st Byte 2nd Byte 3rd Byte 4th Byte

 U+0000..U+007F 00..7F
 U+0080..U+07FF C2..DF 80..BF
 U+0800..U+0FFF E0 A0..BF 80..BF
 U+1000..U+CFFF E1..EC 80..BF 80..BF
 U+D000..U+D7FF ED 80..9F 80..BF
 U+D800..U+DFFF ******* ill-formed *******
 U+E000..U+FFFF EE..EF 80..BF 80..BF
 U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
 U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
 U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

Note the A0..BF in U+0800..U+0FFF, the 80..9F in U+D000...U+D7FF, the 90..BF in
U+10000..U+3FFFF, and the 80...8F in U+100000..U+10FFFF. The "gaps" are caused
by legal
 UTF-8 avoiding non-shortest encodings: it is technically possible to
 UTF-8-encode a
single code point in different ways, but that is
 explicitly forbidden, and the shortest possible
encoding should always
 be used. So that's what Perl does.

Another way to look at it is via bits:

 Code Points 1st Byte 2nd Byte 3rd Byte 4th
Byte

 0aaaaaaa 0aaaaaaa
 00000bbbbbaaaaaa 110bbbbb 10aaaaaa
 ccccbbbbbbaaaaaa 1110cccc 10bbbbbb 10aaaaaa
 00000dddccccccbbbbbbaaaaaa 11110ddd 10cccccc 10bbbbbb
10aaaaaa

As you can see, the continuation bytes all begin with 10, and the
 leading bits of the start byte
tell how many bytes the are in the
 encoded character.

UTF-EBCDIC

Like UTF-8 but EBCDIC-safe, in the way that UTF-8 is ASCII-safe.

UTF-16, UTF-16BE, UTF-16LE, Surrogates, and BOMs (Byte Order Marks)

Perl version 5.8.9 documentation - perlunicode

Page 17http://perldoc.perl.org

The followings items are mostly for reference and general Unicode
 knowledge, Perl doesn't
use these constructs internally.

UTF-16 is a 2 or 4 byte encoding. The Unicode code points U+0000..U+FFFF are stored in a
single 16-bit unit, and the code
 points U+10000..U+10FFFF in two 16-bit units. The latter
case is
 using surrogates, the first 16-bit unit being the high
 surrogate, and the second being
the low surrogate.

Surrogates are code points set aside to encode the U+10000..U+10FFFF
 range of Unicode
code points in pairs of 16-bit units. The high
 surrogates are the range U+D800..U+DBFF, and
the low surrogates
 are the range U+DC00..U+DFFF. The surrogate encoding is

	 $hi = ($uni - 0x10000) / 0x400 + 0xD800;
	 $lo = ($uni - 0x10000) % 0x400 + 0xDC00;

and the decoding is

	 $uni = 0x10000 + ($hi - 0xD800) * 0x400 + ($lo - 0xDC00);

If you try to generate surrogates (for example by using chr()), you
 will get a warning if
warnings are turned on, because those code
 points are not valid for a Unicode character.

Because of the 16-bitness, UTF-16 is byte-order dependent. UTF-16
 itself can be used for
in-memory computations, but if storage or
 transfer is required either UTF-16BE (big-endian) or
UTF-16LE
 (little-endian) encodings must be chosen.

This introduces another problem: what if you just know that your data
 is UTF-16, but you don't
know which endianness? Byte Order Marks, or
 BOMs, are a solution to this. A special
character has been reserved
 in Unicode to function as a byte order marker: the character with
the
 code point U+FEFF is the BOM.

The trick is that if you read a BOM, you will know the byte order,
 since if it was written on a
big-endian platform, you will read the
 bytes 0xFE 0xFF, but if it was written on a little-endian
platform,
 you will read the bytes 0xFF 0xFE. (And if the originating platform
 was writing in
UTF-8, you will read the bytes 0xEF 0xBB 0xBF.)

The way this trick works is that the character with the code point U+FFFE is guaranteed not to
be a valid Unicode character, so the
 sequence of bytes 0xFF 0xFE is unambiguously "BOM,
represented in
 little-endian format" and cannot be U+FFFE, represented in big-endian
 format".

UTF-32, UTF-32BE, UTF-32LE

The UTF-32 family is pretty much like the UTF-16 family, expect that
 the units are 32-bit, and
therefore the surrogate scheme is not
 needed. The BOM signatures will be 0x00 0x00 0xFE
 0xFF for BE and 0xFF 0xFE 0x00 0x00 for LE.

UCS-2, UCS-4

Encodings defined by the ISO 10646 standard. UCS-2 is a 16-bit
 encoding. Unlike UTF-16,
UCS-2 is not extensible beyond U+FFFF,
 because it does not use surrogates. UCS-4 is a
32-bit encoding,
 functionally identical to UTF-32.

UTF-7

A seven-bit safe (non-eight-bit) encoding, which is useful if the
 transport or storage is not
eight-bit safe. Defined by RFC 2152.

Security Implications of Unicode
Malformed UTF-8

Unfortunately, the specification of UTF-8 leaves some room for
 interpretation of how many
bytes of encoded output one should generate
 from one input Unicode character. Strictly
speaking, the shortest
 possible sequence of UTF-8 bytes should be generated,
 because
otherwise there is potential for an input buffer overflow at
 the receiving end of a UTF-8
connection. Perl always generates the
 shortest length UTF-8, and with warnings on Perl will

Perl version 5.8.9 documentation - perlunicode

Page 18http://perldoc.perl.org

warn about
 non-shortest length UTF-8 along with other malformations, such as the
 surrogates,
which are not real Unicode code points.

Regular expressions behave slightly differently between byte data and
 character (Unicode)
data. For example, the "word character" character
 class \w will work differently depending on
if data is eight-bit bytes
 or Unicode.

In the first case, the set of \w characters is either small--the
 default set of alphabetic
characters, digits, and the "_"--or, if you
 are using a locale (see perllocale), the \w might
contain a few
 more letters according to your language and country.

In the second case, the \w set of characters is much, much larger.
 Most importantly, even in
the set of the first 256 characters, it will
 probably match different characters: unlike most
locales, which are
 specific to a language and country pair, Unicode classifies all the

characters that are letters somewhere as \w. For example, your
 locale might not think that
LATIN SMALL LETTER ETH is a letter (unless
 you happen to speak Icelandic), but Unicode
does.

As discussed elsewhere, Perl has one foot (two hooves?) planted in
 each of two worlds: the
old world of bytes and the new world of
 characters, upgrading from bytes to characters when
necessary.
 If your legacy code does not explicitly use Unicode, no automatic
 switch-over to
characters should happen. Characters shouldn't get
 downgraded to bytes, either. It is possible
to accidentally mix bytes
 and characters, however (see perluniintro), in which case \w in

regular expressions might start behaving differently. Review your
 code. Use warnings and the
strict pragma.

Unicode in Perl on EBCDIC
The way Unicode is handled on EBCDIC platforms is still
 experimental. On such platforms, references
to UTF-8 encoding in this
 document and elsewhere should be read as meaning the UTF-EBCDIC

specified in Unicode Technical Report 16, unless ASCII vs. EBCDIC issues
 are specifically discussed.
There is no utfebcdic pragma or
 ":utfebcdic" layer; rather, "utf8" and ":utf8" are reused to mean
 the
platform's "natural" 8-bit encoding of Unicode. See perlebcdic
 for more discussion of the issues.

Locales
Usually locale settings and Unicode do not affect each other, but
 there are a couple of exceptions:

You can enable automatic UTF-8-ification of your standard file
 handles, default open() layer,
and @ARGV by using either
 the -C command line switch or the PERL_UNICODE environment

variable, see perlrun for the documentation of the -C switch.

Perl tries really hard to work both with Unicode and the old
 byte-oriented world. Most often this
is nice, but sometimes Perl's
 straddling of the proverbial fence causes problems.

When Unicode Does Not Happen
While Perl does have extensive ways to input and output in Unicode,
 and few other 'entry points' like
the @ARGV which can be interpreted
 as Unicode (UTF-8), there still are many places where Unicode
(in some
 encoding or another) could be given as arguments or received as
 results, or both, but it is
not.

The following are such interfaces. For all of these interfaces Perl
 currently (as of 5.8.3) simply
assumes byte strings both as arguments
 and results, or UTF-8 strings if the encoding pragma has
been used.

One reason why Perl does not attempt to resolve the role of Unicode in
 this cases is that the answers
are highly dependent on the operating
 system and the file system(s). For example, whether filenames
can be
 in Unicode, and in exactly what kind of encoding, is not exactly a
 portable concept. Similarly
for the qx and system: how well will the
 'command line interface' (and which of them?) handle
Unicode?

chdir, chmod, chown, chroot, exec, link, lstat, mkdir, rename, rmdir, stat, symlink, truncate,

Perl version 5.8.9 documentation - perlunicode

Page 19http://perldoc.perl.org

unlink, utime, -X

%ENV

glob (aka the <*>)

open, opendir, sysopen

qx (aka the backtick operator), system

readdir, readlink

Forcing Unicode in Perl (Or Unforcing Unicode in Perl)
Sometimes (see When Unicode Does Not Happen) there are
 situations where you simply need to
force Perl to believe that a byte
 string is UTF-8, or vice versa. The low-level calls

utf8::upgrade($bytestring) and utf8::downgrade($utf8string) are
 the answers.

Do not use them without careful thought, though: Perl may easily get
 very confused, angry, or even
crash, if you suddenly change the 'nature'
 of scalar like that. Especially careful you have to be if you
use the
 utf8::upgrade(): any random byte string is not valid UTF-8.

Using Unicode in XS
If you want to handle Perl Unicode in XS extensions, you may find the
 following C APIs useful. See
also "Unicode Support" in perlguts for an
 explanation about Unicode at the XS level, and perlapi for
the API
 details.

DO_UTF8(sv) returns true if the UTF8 flag is on and the bytes
 pragma is not in effect.
SvUTF8(sv) returns true is the UTF8
 flag is on; the bytes pragma is ignored. The UTF8 flag
being on
 does not mean that there are any characters of code points greater
 than 255 (or
127) in the scalar or that there are even any characters
 in the scalar. What the UTF8 flag
means is that the sequence of
 octets in the representation of the scalar is the sequence of
UTF-8
 encoded code points of the characters of a string. The UTF8 flag
 being off means that
each octet in this representation encodes a
 single character with code point 0..255 within the
string. Perl's
 Unicode model is not to use UTF-8 until it is absolutely necessary.

uvuni_to_utf8(buf, chr) writes a Unicode character code point into
 a buffer encoding
the code point as UTF-8, and returns a pointer
 pointing after the UTF-8 bytes.

utf8_to_uvuni(buf, lenp) reads UTF-8 encoded bytes from a buffer and
 returns the
Unicode character code point and, optionally, the length of
 the UTF-8 byte sequence.

utf8_length(start, end) returns the length of the UTF-8 encoded buffer
 in characters.
sv_len_utf8(sv) returns the length of the UTF-8 encoded
 scalar.

sv_utf8_upgrade(sv) converts the string of the scalar to its UTF-8
 encoded form.
sv_utf8_downgrade(sv) does the opposite, if
 possible. sv_utf8_encode(sv) is like
sv_utf8_upgrade except that
 it does not set the UTF8 flag. sv_utf8_decode() does the

opposite of sv_utf8_encode(). Note that none of these are to be
 used as general-purpose
encoding or decoding interfaces: use Encode
 for that. sv_utf8_upgrade() is affected by
the encoding pragma
 but sv_utf8_downgrade() is not (since the encoding pragma is

designed to be a one-way street).

is_utf8_char(s) returns true if the pointer points to a valid UTF-8
 character.

is_utf8_string(buf, len) returns true if len bytes of the buffer
 are valid UTF-8.

UTF8SKIP(buf) will return the number of bytes in the UTF-8 encoded
 character in the buffer.
UNISKIP(chr) will return the number of bytes
 required to UTF-8-encode the Unicode
character code point. UTF8SKIP()
 is useful for example for iterating over the characters of a
UTF-8
 encoded buffer; UNISKIP() is useful, for example, in computing
 the size required for a
UTF-8 encoded buffer.

Perl version 5.8.9 documentation - perlunicode

Page 20http://perldoc.perl.org

utf8_distance(a, b) will tell the distance in characters between the
 two pointers pointing
to the same UTF-8 encoded buffer.

utf8_hop(s, off) will return a pointer to an UTF-8 encoded buffer
 that is off (positive or
negative) Unicode characters displaced
 from the UTF-8 buffer s. Be careful not to overstep
the buffer: utf8_hop() will merrily run off the end or the beginning of the
 buffer if told to do
so.

pv_uni_display(dsv, spv, len, pvlim, flags) and sv_uni_display(dsv,
ssv, pvlim, flags) are useful for debugging the
 output of Unicode strings and scalars.
By default they are useful
 only for debugging--they display all characters as hexadecimal code
points--but with the flags UNI_DISPLAY_ISPRINT, UNI_DISPLAY_BACKSLASH, and
UNI_DISPLAY_QQ you can make the
 output more readable.

ibcmp_utf8(s1, pe1, u1, l1, u1, s2, pe2, l2, u2) can be used to
 compare two
strings case-insensitively in Unicode. For case-sensitive
 comparisons you can just use
memEQ() and memNE() as usual.

For more information, see perlapi, and utf8.c and utf8.h
 in the Perl source code distribution.

BUGS
Interaction with Locales

Use of locales with Unicode data may lead to odd results. Currently,
 Perl attempts to attach 8-bit
locale info to characters in the range
 0..255, but this technique is demonstrably incorrect for locales
that
 use characters above that range when mapped into Unicode. Perl's
 Unicode support will also
tend to run slower. Use of locales with
 Unicode is discouraged.

Interaction with Extensions
When Perl exchanges data with an extension, the extension should be
 able to understand the UTF8
flag and act accordingly. If the
 extension doesn't know about the flag, it's likely that the extension
 will
return incorrectly-flagged data.

So if you're working with Unicode data, consult the documentation of
 every module you're using if
there are any issues with Unicode data
 exchange. If the documentation does not talk about Unicode
at all,
 suspect the worst and probably look at the source to learn how the
 module is implemented.
Modules written completely in Perl shouldn't
 cause problems. Modules that directly or indirectly
access code written
 in other programming languages are at risk.

For affected functions, the simple strategy to avoid data corruption is
 to always make the encoding of
the exchanged data explicit. Choose an
 encoding that you know the extension can handle. Convert
arguments passed
 to the extensions to that encoding and convert results back from that
 encoding.
Write wrapper functions that do the conversions for you, so
 you can later change the functions when
the extension catches up.

To provide an example, let's say the popular Foo::Bar::escape_html
 function doesn't deal with
Unicode data yet. The wrapper function
 would convert the argument to raw UTF-8 and convert the
result back to
 Perl's internal representation like so:

 sub my_escape_html ($) {
 my($what) = shift;
 return unless defined $what;

Encode::decode_utf8(Foo::Bar::escape_html(Encode::encode_utf8($what)));
 }

Sometimes, when the extension does not convert data but just stores
 and retrieves them, you will be
in a position to use the otherwise
 dangerous Encode::_utf8_on() function. Let's say the popular
Foo::Bar extension, written in C, provides a param method that
 lets you store and retrieve data

Perl version 5.8.9 documentation - perlunicode

Page 21http://perldoc.perl.org

according to these prototypes:

 $self->param($name, $value); # set a scalar
 $value = $self->param($name); # retrieve a scalar

If it does not yet provide support for any encoding, one could write a
 derived class with such a param
method:

 sub param {
 my($self,$name,$value) = @_;
 utf8::upgrade($name); # make sure it is UTF-8 encoded
 if (defined $value) {
 utf8::upgrade($value); # make sure it is UTF-8 encoded
 return $self->SUPER::param($name,$value);
 } else {
 my $ret = $self->SUPER::param($name);
 Encode::_utf8_on($ret); # we know, it is UTF-8 encoded
 return $ret;
 }
 }

Some extensions provide filters on data entry/exit points, such as
 DB_File::filter_store_key and family.
Look out for such filters in
 the documentation of your extensions, they can make the transition to

Unicode data much easier.

Speed
Some functions are slower when working on UTF-8 encoded strings than
 on byte encoded strings. All
functions that need to hop over
 characters such as length(), substr() or index(), or matching regular

expressions can work much faster when the underlying data are
 byte-encoded.

In Perl 5.8.0 the slowness was often quite spectacular; in Perl 5.8.1
 a caching scheme was introduced
which will hopefully make the slowness
 somewhat less spectacular, at least for some operations. In
general,
 operations with UTF-8 encoded strings are still slower. As an example,
 the Unicode
properties (character classes) like \p{Nd} are known to
 be quite a bit slower (5-20 times) than their
simpler counterparts
 like \d (then again, there 268 Unicode characters matching Nd
 compared with
the 10 ASCII characters matching d).

Porting code from perl-5.6.X
Perl 5.8 has a different Unicode model from 5.6. In 5.6 the programmer
 was required to use the utf8
pragma to declare that a given scope
 expected to deal with Unicode data and had to make sure that
only
 Unicode data were reaching that scope. If you have code that is
 working with 5.6, you will need
some of the following adjustments to
 your code. The examples are written such that the code will
continue
 to work under 5.6, so you should be safe to try them out.

A filehandle that should read or write UTF-8

 if ($] > 5.007) {
 binmode $fh, ":encoding(utf8)";
 }

A scalar that is going to be passed to some extension

Be it Compress::Zlib, Apache::Request or any extension that has no
 mention of Unicode in the
manpage, you need to make sure that the
 UTF8 flag is stripped off. Note that at the time of
this writing
 (October 2002) the mentioned modules are not UTF-8-aware. Please
 check the
documentation to verify if this is still true.

 if ($] > 5.007) {

Perl version 5.8.9 documentation - perlunicode

Page 22http://perldoc.perl.org

 require Encode;
 $val = Encode::encode_utf8($val); # make octets
 }

A scalar we got back from an extension

If you believe the scalar comes back as UTF-8, you will most likely
 want the UTF8 flag
restored:

 if ($] > 5.007) {
 require Encode;
 $val = Encode::decode_utf8($val);
 }

Same thing, if you are really sure it is UTF-8

 if ($] > 5.007) {
 require Encode;
 Encode::_utf8_on($val);
 }

A wrapper for fetchrow_array and fetchrow_hashref

When the database contains only UTF-8, a wrapper function or method is
 a convenient way to
replace all your fetchrow_array and
 fetchrow_hashref calls. A wrapper function will also make
it easier to
 adapt to future enhancements in your database driver. Note that at the
 time of this
writing (October 2002), the DBI has no standardized way
 to deal with UTF-8 data. Please
check the documentation to verify if
 that is still true.

 sub fetchrow {
 my($self, $sth, $what) = @_; # $what is one of
fetchrow_{array,hashref}
 if ($] < 5.007) {
 return $sth->$what;
 } else {
 require Encode;
 if (wantarray) {
 my @arr = $sth->$what;
 for (@arr) {
 defined && /[^\000-\177]/ && Encode::_utf8_on($_);
 }
 return @arr;
 } else {
 my $ret = $sth->$what;
 if (ref $ret) {
 for my $k (keys %$ret) {
 defined && /[^\000-\177]/ && Encode::_utf8_on($_) for
$ret->{$k};
 }
 return $ret;
 } else {
 defined && /[^\000-\177]/ && Encode::_utf8_on($_) for $ret;
 return $ret;
 }
 }
 }
 }

Perl version 5.8.9 documentation - perlunicode

Page 23http://perldoc.perl.org

A large scalar that you know can only contain ASCII

Scalars that contain only ASCII and are marked as UTF-8 are sometimes
 a drag to your
program. If you recognize such a situation, just remove
 the UTF8 flag:

 utf8::downgrade($val) if $] > 5.007;

SEE ALSO
perlunitut, perluniintro, Encode, open, utf8, bytes, perlretut, "${^UNICODE}" in perlvar

