
Perl version 5.10.1 documentation - version

Page 1http://perldoc.perl.org

NAME
version - Perl extension for Version Objects

SYNOPSIS
  # Parsing version strings (decimal or dotted-decimal)

  use version 0.77; # get latest bug-fixes and API
  $ver = version->parse($string)

  # Declaring a dotted-decimal $VERSION (keep on one line!)

  use version 0.77; our $VERSION = version->declare("v1.2.3"); # formal
  use version 0.77; our $VERSION = qv("v1.2.3");               # shorthand
  use version 0.77; our $VERSION = qv("v1.2_3");               # alpha

  # Declaring an old-style decimal $VERSION (use quotes!)

  use version 0.77; our $VERSION = version->parse("1.0203");   # formal
  use version 0.77; our $VERSION = version->parse("1.02_03");  # alpha

  # Comparing mixed version styles (decimals, dotted-decimals, objects)

  if ( version->parse($v1) == version->parse($v2) ) {
    # do stuff
  }

  # Sorting mixed version styles

  @ordered = sort { version->parse($a) <=> version->parse($b) } @list;

DESCRIPTION
Version objects were added to Perl in 5.10. This module implements version
 objects for older version 
of Perl and provides the version object API for all
 versions of Perl. All previous releases before 0.74 
are deprecated and should
 not be used due to incompatible API changes. Version 0.77 introduces the
new
 'parse' and 'declare' methods to standardize usage. You are strongly urged to
 set 0.77 as a 
minimum in your code, e.g.

  use version 0.77; # even for Perl v.5.10.0

TYPES OF VERSION OBJECTS
There are two different types of version objects, corresponding to the two
 different styles of versions 
in use:

Decimal Versions

The classic floating-point number $VERSION. The advantage to this style is
 that you don't need to
do anything special, just type a number (without
 quotes) into your source file.

Dotted Decimal Versions

The more modern form of version assignment, with 3 (or potentially more)
 integers seperated by 
decimal points (e.g. v1.2.3). This is the form that
 Perl itself has used since 5.6.0 was released. 
The leading "v" is now strongly recommended for clarity, and will throw a warning in a future

release if omitted.



Perl version 5.10.1 documentation - version

Page 2http://perldoc.perl.org

See VERSION OBJECT DETAILS for further information.

DECLARING VERSIONS
If you have a module that uses a decimal $VERSION (floating point), and you
 do not intend to ever 
change that, this module is not for you. There is
 nothing that version.pm gains you over a simple 
$VERSION assignment:

  our $VERSION = 1.02;

Since Perl v5.10.0 includes the version.pm comparison logic anyways, you don't need to do anything 
at all.

How to convert a module from decimal to dotted-decimal
If you have used a decimal $VERSION in the past and wish to switch to a
 dotted-decimal $VERSION,
then you need to make a one-time conversion to
 the new format.

Important Note: you must ensure that your new $VERSION is numerically
 greater than your current 
decimal $VERSION; this is not always obvious. First,
 convert your old decimal version (e.g. 1.02) to a 
normalized dotted-decimal
 form:

  $ perl -Mversion -e 'print version->parse("1.02")->normal'
  v1.20.0

Then increment any of the dotted-decimal components (v1.20.1 or v1.21.0).

How to declare() a dotted-decimal version
  use version 0.77; our $VERSION = version->declare("v1.2.3");

The declare() method always creates dotted-decimal version objects. When
 used in a module, you
must put it on the same line as "use version" to
 ensure that $VERSION is read correctly by PAUSE 
and installer tools. You
 should also add 'version' to the 'configure_requires' section of your
 module 
metadata file. See instructions in ExtUtils::MakeMaker or Module::Build for details.

Important Note: Even if you pass in what looks like a decimal number
 ("1.2"), a dotted-decimal will 
be created ("v1.200.0"). To avoid confusion
 or unintentional errors on older Perls, follow these 
guidelines:

Always use a dotted-decimal with (at least) three components

Always use a leading-v

Always quote the version

If you really insist on using version.pm with an ordinary decimal version,
 use parse() instead of 
declare. See the PARSING AND COMPARING VERSIONS
 for details.

See also VERSION OBJECT DETAILS for more on version number conversion,
 quoting, calculated 
version numbers and declaring developer or "alpha" version
 numbers.

PARSING AND COMPARING VERSIONS
If you need to compare version numbers, but can't be sure whether they are
 expressed as numbers, 
strings, v-strings or version objects, then you can
 use version.pm to parse them all into objects for 
comparison.

How to parse() a version
The parse() method takes in anything that might be a version and returns
 a corresponding version 
object, doing any necessary conversion along the way.



Perl version 5.10.1 documentation - version

Page 3http://perldoc.perl.org

Dotted-decimal: bare v-strings (v1.2.3) and strings with more than one
 decimal point and a leading
'v' ("v1.2.3"); NOTE you can technically use a
 v-string or strings with a leading-v and only one 
decimal point (v1.2 or
 "v1.2"), but you will confuse both yourself and others.

Decimal: regular decimal numbers (literal or in a string)

Some examples:

  $variable   version->parse($variable)
  ---------   -------------------------
  1.23        v1.230.0
  "1.23"      v1.230.0
  v1.23       v1.23.0
  "v1.23"     v1.23.0
  "1.2.3"     v1.2.3
  "v1.2.3"    v1.2.3

See VERSION OBJECT DETAILS for more on version number conversion.

How to compare version objects
Version objects overload the cmp and <=> operators. Perl
 automatically generates all of the other 
comparison operators based on those
 two so all the normal logical comparisons will work.

  if ( version->parse($v1) == version->parse($v2) ) {
    # do stuff
  }

If a version object is compared against a non-version object, the non-object
 term will be converted to 
a version object using parse(). This may give
 surprising results:

  $v1 = version->parse("v0.95.0");
  $bool = $v1 < 0.96; # FALSE since 0.96 is v0.960.0

Always comparing to a version object will help avoid surprises:

  $bool = $v1 < version->parse("v0.96.0"); # TRUE

VERSION OBJECT DETAILS
Equivalence between Decimal and Dotted-Decimal Versions

When Perl 5.6.0 was released, the decision was made to provide a
 transformation between the 
old-style decimal versions and new-style
 dotted-decimal versions:

  5.6.0    == 5.006000
  5.005_04 == 5.5.40

The floating point number is taken and split first on the single decimal
 place, then each group of three 
digits to the right of the decimal makes up
 the next digit, and so on until the number of significant 
digits is exhausted, plus enough trailing zeros to reach the next multiple of three.

This was the method that version.pm adopted as well. Some examples may be
 helpful:

                            equivalent
  decimal    zero-padded    dotted-decimal
  -------    -----------    --------------
  1.2        1.200          v1.200.0
  1.02       1.020          v1.20.0
  1.002      1.002          v1.2.0



Perl version 5.10.1 documentation - version

Page 4http://perldoc.perl.org

  1.0023     1.002300       v1.2.300
  1.00203    1.002030       v1.2.30
  1.002003   1.002003       v1.2.3

Quoting rules
Because of the nature of the Perl parsing and tokenizing routines,
 certain initialization values must be
quoted in order to correctly
 parse as the intended version, especially when using the declare or qv 
methods. While you do not have to quote decimal numbers when
 creating version objects, it is always
safe to quote all initial values
 when using version.pm methods, as this will ensure that what you type 
is
 what is used.

Additionally, if you quote your initializer, then the quoted value that goes in will be be exactly what 
comes out when your $VERSION is printed
 (stringified). If you do not quote your value, Perl's normal 
numeric handling
 comes into play and you may not get back what you were expecting.

If you use a mathematic formula that resolves to a floating point number,
 you are dependent on Perl's 
conversion routines to yield the version you
 expect. You are pretty safe by dividing by a power of 10, 
for example,
 but other operations are not likely to be what you intend. For example:

  $VERSION = version->new((qw$Revision: 1.4)[1]/10);
  print $VERSION;          # yields 0.14
  $V2 = version->new(100/9); # Integer overflow in decimal number
  print $V2;               # yields something like 11.111.111.100

Perl 5.8.1 and beyond are able to automatically quote v-strings but
 that is not possible in earlier 
versions of Perl. In other words:

  $version = version->new("v2.5.4");  # legal in all versions of Perl
  $newvers = version->new(v2.5.4);    # legal only in Perl >= 5.8.1

What about v-strings?
There are two ways to enter v-strings: a bare number with two or more
 decimal points, or a bare 
number with one or more decimal points and a leading 'v' character (also bare). For example:

  $vs1 = 1.2.3; # encoded as \1\2\3
  $vs2 = v1.2;  # encoded as \1\2

However, the use of bare v-strings to initialize version objects is strongly discouraged in all 
circumstances. Also, bare
 v-strings are not completely supported in any version of Perl prior to
 5.8.1.

If you insist on using bare v-strings with Perl > 5.6.0, be aware of the following limitations:

1) For Perl releases 5.6.0 through 5.8.0, the v-string code merely guesses, based on some 
characteristics of v-strings. You must use a three part
 version, e.g. 1.2.3 or v1.2.3 in order for this 
heuristic to be successful.

2) For Perl releases 5.8.1 and later, v-strings have changed in the Perl
 core to be magical, which 
means that the version.pm code can automatically
 determine whether the v-string encoding was 
used.

3) In all cases, a version created using v-strings will have a stringified
 form that has a leading 'v' 
character, for the simple reason that sometimes
 it is impossible to tell whether one was present 
initially.

Alpha versions
For module authors using CPAN, the convention has been to note unstable
 releases with an 
underscore in the version string. (See CPAN.) version.pm
 follows this convention and alpha releases 



Perl version 5.10.1 documentation - version

Page 5http://perldoc.perl.org

will test as being newer than the
 more recent stable release, and less than the next stable release. 
For
 dotted-decimal versions, only the last element may be separated by an
 underscore:

  # Declaring
  use version 0.77; our $VERSION = version->declare("v1.2_3");

  # Parsing
  $v1 = version->parse("v1.2_3");
  $v1 = version->parse("1.002_003");

OBJECT METHODS
is_alpha()

True if and only if the version object was created with a underscore, e.g.

  version->parse('1.002_03')->is_alpha;  # TRUE
  version->declare('1.2.3_4')->is_alpha; # TRUE

is_qv()
True only if the version object is a dotted-decimal version, e.g.

  version->parse('v1.2.0')->is_qv;        # TRUE
  version->declare('v1.2')->is_qv;       # TRUE
  qv('1.2')->is_qv;                      # TRUE
  version->parse('1.2')->is_qv;          # FALSE

normal()
Returns a string with a standard 'normalized' dotted-decimal form with a
 leading-v and at least 3 
components.

 version->declare('v1.2')->normal;  # v1.2.0
 version->parse('1.2')->normal;     # v1.200.0

numify()
Returns a value representing the object in a pure decimal form without
 trailing zeroes.

 version->declare('v1.2')->numify;  # 1.002
 version->parse('1.2')->numify;     # 1.2

stringify()
Returns a string that is as close to the original representation as possible.
 If the original 
representation was a numeric literal, it will be returned the
 way perl would normally represent it in a 
string. This method is used whenever
 a version object is interpolated into a string.

 version->declare('v1.2')->stringify;    # v1.2
 version->parse('1.200')->stringify;     # 1.200
 version->parse(1.02_30)->stringify;     # 1.023

EXPORTED FUNCTIONS
qv()

This function is no longer recommended for use, but is maintained for
 compatibility with existing code.
If you do not want to have it exported
 to your namespace, use this form:

  use version 0.77 ();



Perl version 5.10.1 documentation - version

Page 6http://perldoc.perl.org

AUTHOR
John Peacock <jpeacock@cpan.org>

SEE ALSO
version::Internal.

perl.


