
Perl version 5.12.2 documentation - perlmacosx

Page 1http://perldoc.perl.org

NAME
README.macosx - Perl under Mac OS X

SYNOPSIS
This document briefly describes perl under Mac OS X.

DESCRIPTION
The latest Perl release (5.8.8 as of this writing) builds without changes
 under Mac OS X. Under 10.3
"Panther" and newer OS versions, all self-tests
 pass, and all standard features are supported.

Earlier Mac OS X releases (10.2 "Jaguar" and older) did not include a
 completely thread-safe libc, so
threading is not fully supported. Also,
 earlier releases included a buggy libdb, so some of the DB_File
tests
 are known to fail on those releases.

Installation Prefix
The default installation location for this release uses the traditional
 UNIX directory layout under
/usr/local. This is the recommended location
 for most users, and will leave the Apple-supplied Perl
and its modules
 undisturbed.

Using an installation prefix of '/usr' will result in a directory layout
 that mirrors that of Apple's default
Perl, with core modules stored in
 '/System/Library/Perl/${version}', CPAN modules stored in

'/Library/Perl/${version}', and the addition of
 '/Network/Library/Perl/${version}' to @INC for modules
that are stored
 on a file server and used by many Macs.

SDK support
First, export the path to the SDK into the build environment:

 export SDK=/Developer/SDKs/MacOSX10.3.9.sdk

Use an SDK by exporting some additions to Perl's 'ccflags' and '..flags'
 config variables:

 ./Configure -Accflags="-nostdinc -B$SDK/usr/include/gcc \
 -B$SDK/usr/lib/gcc -isystem$SDK/usr/include \
 -F$SDK/System/Library/Frameworks" \
 -Aldflags="-Wl,-syslibroot,$SDK" \
 -de

Universal Binary support
To compile perl as a universal binary (built for both ppc and intel), export
 the SDK variable as above,
selecting the 10.4u SDK:

 export SDK=/Developer/SDKs/MacOSX10.4u.sdk

In addition to the compiler flags used to select the SDK, also add the flags
 for creating a universal
binary:

 ./Configure -Accflags="-arch i686 -arch ppc -nostdinc
-B$SDK/usr/include/gcc \
 -B$SDK/usr/lib/gcc -isystem$SDK/usr/include \
 -F$SDK/System/Library/Frameworks" \
 -Aldflags="-arch i686 -arch ppc -Wl,-syslibroot,$SDK" \
 -de

In Leopard (MacOSX 10.5.6 at the time of this writing) you must use the 10.5 SDK:

 export SDK=/Developer/SDKs/MacOSX10.5.sdk

Perl version 5.12.2 documentation - perlmacosx

Page 2http://perldoc.perl.org

You can use the same compiler flags you would use with the 10.4u SDK.

Keep in mind that these compiler and linker settings will also be used when
 building CPAN modules.
For XS modules to be compiled as a universal binary, any
 libraries it links to must also be universal
binaries. The system libraries that
 Apple includes with the 10.4u SDK are all universal, but
user-installed libraries
 may need to be re-installed as universal binaries.

64-bit PPC support
Follow the instructions in INSTALL to build perl with support for 64-bit integers (use64bitint) or
both 64-bit integers and 64-bit addressing
 (use64bitall). In the latter case, the resulting binary will
run only
 on G5-based hosts.

Support for 64-bit addressing is experimental: some aspects of Perl may be
 omitted or buggy. Note
the messages output by Configure for further information. Please use perlbug to submit a problem
report in the
 event that you encounter difficulties.

When building 64-bit modules, it is your responsiblity to ensure that linked
 external libraries and
frameworks provide 64-bit support: if they do not,
 module building may appear to succeed, but
attempts to use the module will
 result in run-time dynamic linking errors, and subsequent test failures.

You can use file to discover the architectures supported by a library:

 $ file libgdbm.3.0.0.dylib
 libgdbm.3.0.0.dylib: Mach-O fat file with 2 architectures
 libgdbm.3.0.0.dylib (for architecture ppc): Mach-O dynamically
linked shared library ppc
 libgdbm.3.0.0.dylib (for architecture ppc64): Mach-O 64-bit
dynamically linked shared library ppc64

Note that this issue precludes the building of many Macintosh-specific CPAN
 modules (Mac::*), as
the required Apple frameworks do not provide PPC64
 support. Similarly, downloads from Fink or
Darwinports are unlikely to provide
 64-bit support; the libraries must be rebuilt from source with the
appropriate
 compiler and linker flags. For further information, see Apple's 64-Bit Transition Guide at
http://developer.apple.com/documentation/Darwin/Conceptual/64bitPorting/index.html.

libperl and Prebinding
Mac OS X ships with a dynamically-loaded libperl, but the default for
 this release is to compile a static
libperl. The reason for this is
 pre-binding. Dynamic libraries can be pre-bound to a specific address in

memory in order to decrease load time. To do this, one needs to be aware
 of the location and size of
all previously-loaded libraries. Apple
 collects this information as part of their overall OS build process,
and
 thus has easy access to it when building Perl, but ordinary users would
 need to go to a great deal
of effort to obtain the information needed
 for pre-binding.

You can override the default and build a shared libperl if you wish
 (Configure ... -Duseshrlib), but the
load time on pre-10.4 OS
 releases will be greater than either the static library, or Apple's
 pre-bound
dynamic library.

With 10.4 "Tiger" and newer, Apple has all but eliminated the performance
 penalty for non-prebound
libraries.

Updating Apple's Perl
In a word - don't, at least without a *very* good reason. Your scripts
 can just as easily begin with
"#!/usr/local/bin/perl" as with
 "#!/usr/bin/perl". Scripts supplied by Apple and other third parties as
 part
of installation packages and such have generally only been tested
 with the /usr/bin/perl that's installed
by Apple.

If you find that you do need to update the system Perl, one issue worth
 keeping in mind is the
question of static vs. dynamic libraries. If you
 upgrade using the default static libperl, you will find that
the dynamic
 libperl supplied by Apple will not be deleted. If both libraries are
 present when an

Perl version 5.12.2 documentation - perlmacosx

Page 3http://perldoc.perl.org

application that links against libperl is built, ld will
 link against the dynamic library by default. So, if you
need to replace
 Apple's dynamic libperl with a static libperl, you need to be sure to
 delete the older
dynamic library after you've installed the update.

Known problems
If you have installed extra libraries such as GDBM through Fink
 (in other words, you have libraries
under /sw/lib), or libdlcompat
 to /usr/local/lib, you may need to be extra careful when running

Configure to not to confuse Configure and Perl about which libraries
 to use. Being confused will show
up for example as "dyld" errors about
 symbol problems, for example during "make test". The safest
bet is to run
 Configure as

 Configure ... -Uloclibpth -Dlibpth=/usr/lib

to make Configure look only into the system libraries. If you have some
 extra library directories that
you really want to use (such as newer
 Berkeley DB libraries in pre-Panther systems), add those to the
libpth:

 Configure ... -Uloclibpth -Dlibpth='/usr/lib /opt/lib'

The default of building Perl statically may cause problems with complex
 applications like Tk: in that
case consider building shared Perl

 Configure ... -Duseshrplib

but remember that there's a startup cost to pay in that case (see above
 "libperl and Prebinding").

Starting with Tiger (Mac OS X 10.4), Apple shipped broken locale files for
 the eu_ES locale
(Basque-Spain). In previous releases of Perl, this resulted in
 failures in the lib/locale test. These
failures have been supressed
 in the current release of Perl by making the test ignore the broken
locale.
 If you need to use the eu_ES locale, you should contact Apple support.

MacPerl
Quite a bit has been written about MacPerl, the Perl distribution for
 "Classic MacOS" - that is,
versions 9 and earlier of MacOS. Because it
 runs in environment that's very different from that of
UNIX, many things
 are done differently in MacPerl. Modules are installed using a different
 procedure,
Perl itself is built differently, path names are different,
 etc.

From the perspective of a Perl programmer, Mac OS X is more like a
 traditional UNIX than Classic
MacOS. If you find documentation that
 refers to a special procedure that's needed for MacOS that's
drastically
 different from the instructions provided for UNIX, the MacOS
 instructions are quite often
intended for MacPerl on Classic MacOS. In
 that case, the correct procedure on Mac OS X is usually
to follow the
 UNIX instructions, rather than the MacPerl instructions.

Carbon
MacPerl ships with a number of modules that are used to access the
 classic MacOS toolbox. Many of
these modules have been updated to use
 Mac OS X's newer "Carbon" toolbox, and are available from
CPAN in the
 "Mac::Carbon" module.

Cocoa
There are two ways to use Cocoa from Perl. Apple's PerlObjCBridge
 module, included with Mac OS
X, can be used by standalone scripts to
 access Foundation (i.e. non-GUI) classes and objects.

An alternative is CamelBones, a framework that allows access to both
 Foundation and AppKit classes
and objects, so that full GUI applications
 can be built in Perl. CamelBones can be found on
SourceForge, at http://www.sourceforge.net/projects/camelbones/.

Perl version 5.12.2 documentation - perlmacosx

Page 4http://perldoc.perl.org

Starting From Scratch
Unfortunately it is not that difficult somehow manage to break one's
 Mac OS X Perl rather severely. If
all else fails and you want to
 really, REALLY, start from scratch and remove even your Apple Perl

installation (which has become corrupted somehow), the following
 instructions should do it. Please
think twice before following
 these instructions: they are much like conducting brain surgery to
yourself. Without anesthesia. We will not come to fix your system
 if you do this.

First, get rid of the libperl.dylib:

 # cd /System/Library/Perl/darwin/CORE
 # rm libperl.dylib

Then delete every .bundle file found anywhere in the folders:

 /System/Library/Perl
 /Library/Perl

You can find them for example by

 # find /System/Library/Perl /Library/Perl -name '*.bundle' -print

After this you can either copy Perl from your operating system media
 (you will need at least the
/System/Library/Perl and /usr/bin/perl),
 or rebuild Perl from the source code with Configure
-Dprefix=/usr
 -Dusershrplib NOTE: the -Dprefix=/usr to replace the system Perl
 works
much better with Perl 5.8.1 and later, in Perl 5.8.0 the
 settings were not quite right.

"Pacifist" from CharlesSoft (http://www.charlessoft.com/) is a nice
 way to extract the Perl binaries from
the OS media, without having to
 reinstall the entire OS.

AUTHOR
This README was written by Sherm Pendley <sherm@dot-app.org>,
 and subsequently updated by
Dominic Dunlop <domo@computer.org>.
 The "Starting From Scratch" recipe was contributed by John
Montbriand <montbriand@apple.com>.

DATE
Last modified 2006-02-24.

