
Perl version 5.12.2 documentation - perluniintro

Page 1http://perldoc.perl.org

NAME
perluniintro - Perl Unicode introduction

DESCRIPTION
This document gives a general idea of Unicode and how to use Unicode
 in Perl.

Unicode
Unicode is a character set standard which plans to codify all of the
 writing systems of the world, plus
many other symbols.

Unicode and ISO/IEC 10646 are coordinated standards that provide code
 points for characters in
almost all modern character set standards,
 covering more than 30 writing systems and hundreds of
languages,
 including all commercially-important modern languages. All characters
 in the largest
Chinese, Japanese, and Korean dictionaries are also
 encoded. The standards will eventually cover
almost all characters in
 more than 250 writing systems and thousands of languages.
 Unicode 1.0 was
released in October 1991, and 4.0 in April 2003.

A Unicode character is an abstract entity. It is not bound to any
 particular integer width, especially not
to the C language char.
 Unicode is language-neutral and display-neutral: it does not encode the

language of the text, and it does not generally define fonts or other graphical
 layout details. Unicode
operates on characters and on text built from
 those characters.

Unicode defines characters like LATIN CAPITAL LETTER A or GREEK
 SMALL LETTER ALPHA
and unique numbers for the characters, in this
 case 0x0041 and 0x03B1, respectively. These unique
numbers are called code points.

The Unicode standard prefers using hexadecimal notation for the code
 points. If numbers like 0x0041
are unfamiliar to you, take a peek
 at a later section, Hexadecimal Notation. The Unicode standard

uses the notation U+0041 LATIN CAPITAL LETTER A, to give the
 hexadecimal code point and the
normative name of the character.

Unicode also defines various properties for the characters, like
 "uppercase" or "lowercase", "decimal
digit", or "punctuation";
 these properties are independent of the names of the characters.

Furthermore, various operations on the characters like uppercasing,
 lowercasing, and collating
(sorting) are defined.

A Unicode logical "character" can actually consist of more than one internal actual "character" or code
point. For Western languages, this is adequately
 modelled by a base character (like LATIN CAPITAL
 LETTER A) followed
 by one or more modifiers (like COMBINING ACUTE ACCENT). This sequence
of
 base character and modifiers is called a combining character
 sequence. Some non-western
languages require more complicated
 models, so Unicode created the grapheme cluster concept, and
then the extended grapheme cluster. For example, a Korean Hangul syllable is
 considered a single
logical character, but most often consists of three actual
 Unicode characters: a leading consonant
followed by an interior vowel followed
 by a trailing consonant.

Whether to call these extended grapheme clusters "characters" depends on your
 point of view. If you
are a programmer, you probably would tend towards seeing
 each element in the sequences as one
unit, or "character". The whole sequence
 could be seen as one "character", however, from the user's
point of view, since
 that's probably what it looks like in the context of the user's language.

With this "whole sequence" view of characters, the total number of
 characters is open-ended. But in
the programmer's "one unit is one
 character" point of view, the concept of "characters" is more

deterministic. In this document, we take that second point of view:
 one "character" is one Unicode
code point.

For some combinations, there are precomposed characters. LATIN CAPITAL LETTER A WITH
ACUTE, for example, is defined as
 a single code point. These precomposed characters are, however,

only available for some combinations, and are mainly
 meant to support round-trip conversions
between Unicode and legacy
 standards (like the ISO 8859). In the general case, the composing

Perl version 5.12.2 documentation - perluniintro

Page 2http://perldoc.perl.org

method is more extensible. To support conversion between
 different compositions of the characters,
various normalization
 forms to standardize representations are also defined.

Because of backward compatibility with legacy encodings, the "a unique
 number for every character"
idea breaks down a bit: instead, there is
 "at least one number for every character". The same
character could
 be represented differently in several legacy encodings. The
 converse is also not true:
some code points do not have an assigned
 character. Firstly, there are unallocated code points within
otherwise used blocks. Secondly, there are special Unicode control
 characters that do not represent
true characters.

A common myth about Unicode is that it is "16-bit", that is,
 Unicode is only represented as 0x10000
(or 65536) characters from 0x0000 to 0xFFFF. This is untrue. Since Unicode 2.0 (July
 1996),
Unicode has been defined all the way up to 21 bits (0x10FFFF),
 and since Unicode 3.1 (March 2001),
characters have been defined
 beyond 0xFFFF. The first 0x10000 characters are called the Plane 0,
or the Basic Multilingual Plane (BMP). With Unicode
 3.1, 17 (yes, seventeen) planes in all were
defined--but they are
 nowhere near full of defined characters, yet.

Another myth is about Unicode blocks--that they have something to
 do with languages--that each
block would define the characters used
 by a language or a set of languages. This is also untrue.

The division into blocks exists, but it is almost completely
 accidental--an artifact of how the characters
have been and
 still are allocated. Instead, there is a concept called scripts, which is
 more useful:
there is Latin script, Greek script, and so on. Scripts
 usually span varied parts of several blocks.
For more information about
 scripts, see "Scripts" in perlunicode.

The Unicode code points are just abstract numbers. To input and
 output these abstract numbers, the
numbers must be encoded or serialised somehow. Unicode defines several character encoding
 forms
, of which UTF-8 is perhaps the most popular. UTF-8 is a
 variable length encoding that encodes
Unicode characters as 1 to 6
 bytes. Other encodings
 include UTF-16 and UTF-32 and their big- and
little-endian variants
 (UTF-8 is byte-order independent) The ISO/IEC 10646 defines the UCS-2
 and
UCS-4 encoding forms.

For more information about encodings--for instance, to learn what surrogates and byte order marks
(BOMs) are--see perlunicode.

Perl's Unicode Support
Starting from Perl 5.6.0, Perl has had the capacity to handle Unicode
 natively. Perl 5.8.0, however, is
the first recommended release for
 serious Unicode work. The maintenance release 5.6.1 fixed many
of the
 problems of the initial Unicode implementation, but for example
 regular expressions still do not
work with Unicode in 5.6.1.

Starting from Perl 5.8.0, the use of use utf8 is needed only in much more restricted
circumstances. In earlier releases the utf8 pragma was used to declare
 that operations in the
current block or file would be Unicode-aware.
 This model was found to be wrong, or at least clumsy:
the "Unicodeness"
 is now carried with the data, instead of being attached to the
 operations. Only one
case remains where an explicit use utf8 is
 needed: if your Perl script itself is encoded in UTF-8,
you can use
 UTF-8 in your identifier names, and in string and regular expression
 literals, by saying
use utf8. This is not the default because
 scripts with legacy 8-bit data in them would break. See
utf8.

Perl's Unicode Model
Perl supports both pre-5.6 strings of eight-bit native bytes, and
 strings of Unicode characters. The
principle is that Perl tries to
 keep its data as eight-bit bytes for as long as possible, but as soon
 as
Unicodeness cannot be avoided, the data is (mostly) transparently upgraded
 to Unicode. There are
some problems--see "The "Unicode Bug"" in perlunicode.

Internally, Perl currently uses either whatever the native eight-bit
 character set of the platform (for
example Latin-1) is, defaulting to
 UTF-8, to encode Unicode strings. Specifically, if all code points in

the string are 0xFF or less, Perl uses the native eight-bit
 character set. Otherwise, it uses UTF-8.

Perl version 5.12.2 documentation - perluniintro

Page 3http://perldoc.perl.org

A user of Perl does not normally need to know nor care how Perl
 happens to encode its internal
strings, but it becomes relevant when
 outputting Unicode strings to a stream without a PerlIO layer
(one with
 the "default" encoding). In such a case, the raw bytes used internally
 (the native character
set or UTF-8, as appropriate for each string)
 will be used, and a "Wide character" warning will be
issued if those
 strings contain a character beyond 0x00FF.

For example,

 perl -e 'print "\x{DF}\n", "\x{0100}\x{DF}\n"'

produces a fairly useless mixture of native bytes and UTF-8, as well
 as a warning:

 Wide character in print at ...

To output UTF-8, use the :encoding or :utf8 output layer. Prepending

 binmode(STDOUT, ":utf8");

to this sample program ensures that the output is completely UTF-8,
 and removes the program's
warning.

You can enable automatic UTF-8-ification of your standard file
 handles, default open() layer, and
@ARGV by using either
 the -C command line switch or the PERL_UNICODE environment
 variable, see
perlrun for the documentation of the -C switch.

Note that this means that Perl expects other software to work, too:
 if Perl has been led to believe that
STDIN should be UTF-8, but then
 STDIN coming in from another command is not UTF-8, Perl will
complain
 about the malformed UTF-8.

All features that combine Unicode and I/O also require using the new
 PerlIO feature. Almost all Perl
5.8 platforms do use PerlIO, though:
 you can see whether yours is by running "perl -V" and looking for
useperlio=define.

Unicode and EBCDIC
Perl 5.8.0 also supports Unicode on EBCDIC platforms. There,
 Unicode support is somewhat more
complex to implement since
 additional conversions are needed at every step.

Later Perl releases have added code that will not work on EBCDIC platforms, and
 no one has
complained, so the divergence has continued. If you want to run
 Perl on an EBCDIC platform, send
email to perlbug@perl.org

On EBCDIC platforms, the internal Unicode encoding form is UTF-EBCDIC
 instead of UTF-8. The
difference is that as UTF-8 is "ASCII-safe" in
 that ASCII characters encode to UTF-8 as-is, while
UTF-EBCDIC is
 "EBCDIC-safe".

Creating Unicode
To create Unicode characters in literals for code points above 0xFF,
 use the \x{...} notation in
double-quoted strings:

 my $smiley = "\x{263a}";

Similarly, it can be used in regular expression literals

 $smiley =~ /\x{263a}/;

At run-time you can use chr():

 my $hebrew_alef = chr(0x05d0);

Perl version 5.12.2 documentation - perluniintro

Page 4http://perldoc.perl.org

See Further Resources for how to find all these numeric codes.

Naturally, ord() will do the reverse: it turns a character into
 a code point.

Note that \x.. (no {} and only two hexadecimal digits), \x{...},
 and chr(...) for arguments
less than 0x100 (decimal 256)
 generate an eight-bit character for backward compatibility with older

Perls. For arguments of 0x100 or more, Unicode characters are
 always produced. If you want to
force the production of Unicode
 characters regardless of the numeric value, use pack("U", ...)

instead of \x.., \x{...}, or chr().

You can also use the charnames pragma to invoke characters
 by name in double-quoted strings:

 use charnames ':full';
 my $arabic_alef = "\N{ARABIC LETTER ALEF}";

And, as mentioned above, you can also pack() numbers into Unicode
 characters:

 my $georgian_an = pack("U", 0x10a0);

Note that both \x{...} and \N{...} are compile-time string
 constants: you cannot use variables in
them. if you want similar
 run-time functionality, use chr() and charnames::vianame().

If you want to force the result to Unicode characters, use the special "U0" prefix. It consumes no
arguments but causes the following bytes
 to be interpreted as the UTF-8 encoding of Unicode
characters:

 my $chars = pack("U0W*", 0x80, 0x42);

Likewise, you can stop such UTF-8 interpretation by using the special "C0" prefix.

Handling Unicode
Handling Unicode is for the most part transparent: just use the
 strings as usual. Functions like
index(), length(), and substr() will work on the Unicode characters; regular expressions
 will
work on the Unicode characters (see perlunicode and perlretut).

Note that Perl considers grapheme clusters to be separate characters, so for
 example

 use charnames ':full';
 print length("\N{LATIN CAPITAL LETTER A}\N{COMBINING ACUTE ACCENT}"),
"\n";

will print 2, not 1. The only exception is that regular expressions
 have \X for matching an extended
grapheme cluster.

Life is not quite so transparent, however, when working with legacy
 encodings, I/O, and certain
special cases:

Legacy Encodings
When you combine legacy data and Unicode the legacy data needs
 to be upgraded to Unicode.
Normally ISO 8859-1 (or EBCDIC, if
 applicable) is assumed.

The Encode module knows about many encodings and has interfaces
 for doing conversions between
those encodings:

 use Encode 'decode';
 $data = decode("iso-8859-3", $data); # convert from legacy to utf-8

Perl version 5.12.2 documentation - perluniintro

Page 5http://perldoc.perl.org

Unicode I/O
Normally, writing out Unicode data

 print FH $some_string_with_unicode, "\n";

produces raw bytes that Perl happens to use to internally encode the
 Unicode string. Perl's internal
encoding depends on the system as
 well as what characters happen to be in the string at the time. If

any of the characters are at code points 0x100 or above, you will get
 a warning. To ensure that the
output is explicitly rendered in the
 encoding you desire--and to avoid the warning--open the stream
with
 the desired encoding. Some examples:

 open FH, ">:utf8", "file";

 open FH, ">:encoding(ucs2)", "file";
 open FH, ">:encoding(UTF-8)", "file";
 open FH, ">:encoding(shift_jis)", "file";

and on already open streams, use binmode():

 binmode(STDOUT, ":utf8");

 binmode(STDOUT, ":encoding(ucs2)");
 binmode(STDOUT, ":encoding(UTF-8)");
 binmode(STDOUT, ":encoding(shift_jis)");

The matching of encoding names is loose: case does not matter, and
 many encodings have several
aliases. Note that the :utf8 layer
 must always be specified exactly like that; it is not subject to
 the
loose matching of encoding names. Also note that :utf8 is unsafe for
 input, because it accepts the
data without validating that it is indeed valid
 UTF8.

See PerlIO for the :utf8 layer, PerlIO::encoding and Encode::PerlIO for the :encoding() layer,
and Encode::Supported for many encodings supported by the Encode
 module.

Reading in a file that you know happens to be encoded in one of the
 Unicode or legacy encodings
does not magically turn the data into
 Unicode in Perl's eyes. To do that, specify the appropriate
 layer
when opening files

 open(my $fh,'<:encoding(utf8)', 'anything');
 my $line_of_unicode = <$fh>;

 open(my $fh,'<:encoding(Big5)', 'anything');
 my $line_of_unicode = <$fh>;

The I/O layers can also be specified more flexibly with
 the open pragma. See open, or look at the
following example.

 use open ':encoding(utf8)'; # input/output default encoding will be
UTF-8
 open X, ">file";
 print X chr(0x100), "\n";
 close X;
 open Y, "<file";
 printf "%#x\n", ord(<Y>); # this should print 0x100
 close Y;

Perl version 5.12.2 documentation - perluniintro

Page 6http://perldoc.perl.org

With the open pragma you can use the :locale layer

 BEGIN { $ENV{LC_ALL} = $ENV{LANG} = 'ru_RU.KOI8-R' }
 # the :locale will probe the locale environment variables like LC_ALL
 use open OUT => ':locale'; # russki parusski
 open(O, ">koi8");
 print O chr(0x430); # Unicode CYRILLIC SMALL LETTER A = KOI8-R 0xc1
 close O;
 open(I, "<koi8");
 printf "%#x\n", ord(<I>), "\n"; # this should print 0xc1
 close I;

These methods install a transparent filter on the I/O stream that
 converts data from the specified
encoding when it is read in from the
 stream. The result is always Unicode.

The open pragma affects all the open() calls after the pragma by
 setting default layers. If you want
to affect only certain
 streams, use explicit layers directly in the open() call.

You can switch encodings on an already opened stream by using binmode(); see "binmode" in
perlfunc.

The :locale does not currently (as of Perl 5.8.0) work with open() and binmode(), only with the
open pragma. The :utf8 and :encoding(...) methods do work with all of open(), binmode(),
and the open pragma.

Similarly, you may use these I/O layers on output streams to
 automatically convert Unicode to the
specified encoding when it is
 written to the stream. For example, the following snippet copies the

contents of the file "text.jis" (encoded as ISO-2022-JP, aka JIS) to
 the file "text.utf8", encoded as
UTF-8:

 open(my $nihongo, '<:encoding(iso-2022-jp)', 'text.jis');
 open(my $unicode, '>:utf8', 'text.utf8');
 while (<$nihongo>) { print $unicode $_ }

The naming of encodings, both by the open() and by the open
 pragma allows for flexible names:
koi8-r and KOI8R will both be
 understood.

Common encodings recognized by ISO, MIME, IANA, and various other
 standardisation organisations
are recognised; for a more detailed
 list see Encode::Supported.

read() reads characters and returns the number of characters. seek() and tell() operate on
byte counts, as do sysread()
 and sysseek().

Notice that because of the default behaviour of not doing any
 conversion upon input if there is no
default layer,
 it is easy to mistakenly write code that keeps on expanding a file
 by repeatedly encoding
the data:

 # BAD CODE WARNING
 open F, "file";
 local $/; ## read in the whole file of 8-bit characters
 $t = <F>;
 close F;
 open F, ">:encoding(utf8)", "file";
 print F $t; ## convert to UTF-8 on output
 close F;

If you run this code twice, the contents of the file will be twice
 UTF-8 encoded. A use open
':encoding(utf8)' would have avoided the
 bug, or explicitly opening also the file for input as

Perl version 5.12.2 documentation - perluniintro

Page 7http://perldoc.perl.org

UTF-8.NOTE: the :utf8 and :encoding features work only if your
 Perl has been built with the new
PerlIO feature (which is the default
 on most systems).

Displaying Unicode As Text
Sometimes you might want to display Perl scalars containing Unicode as
 simple ASCII (or EBCDIC)
text. The following subroutine converts
 its argument so that Unicode characters with code points
greater than
 255 are displayed as \x{...}, control characters (like \n) are
 displayed as \x.., and
the rest of the characters as themselves:

 sub nice_string {
 join("",
 map { $_ > 255 ? # if wide character...
 sprintf("\\x{%04X}", $_) : # \x{...}
 chr($_) =~ /[[:cntrl:]]/ ? # else if control character ...
 sprintf("\\x%02X", $_) : # \x..
 quotemeta(chr($_)) # else quoted or as themselves
 } unpack("W*", $_[0])); # unpack Unicode characters
 }

For example,

 nice_string("foo\x{100}bar\n")

returns the string

 'foo\x{0100}bar\x0A'

which is ready to be printed.

Special Cases
Bit Complement Operator ~ And vec()

The bit complement operator ~ may produce surprising results if
 used on strings containing
characters with ordinal values above
 255. In such a case, the results are consistent with the
internal
 encoding of the characters, but not with much else. So don't do
 that. Similarly for
vec(): you will be operating on the
 internally-encoded bit patterns of the Unicode characters,
not on
 the code point values, which is very probably not what you want.

Peeking At Perl's Internal Encoding

Normal users of Perl should never care how Perl encodes any particular
 Unicode string
(because the normal ways to get at the contents of a
 string with Unicode--via input and
output--should always be via
 explicitly-defined I/O layers). But if you must, there are two
 ways
of looking behind the scenes.

One way of peeking inside the internal encoding of Unicode characters
 is to use
unpack("C*", ... to get the bytes of whatever the string
 encoding happens to be, or
unpack("U0..", ...) to get the bytes of the
 UTF-8 encoding:

 # this prints c4 80 for the UTF-8 bytes 0xc4 0x80
 print join(" ", unpack("U0(H2)*", pack("U", 0x100))), "\n";

Yet another way would be to use the Devel::Peek module:

 perl -MDevel::Peek -e 'Dump(chr(0x100))'

That shows the UTF8 flag in FLAGS and both the UTF-8 bytes
 and Unicode characters in PV.
See also later in this document
 the discussion about the utf8::is_utf8() function.

Perl version 5.12.2 documentation - perluniintro

Page 8http://perldoc.perl.org

Advanced Topics
String Equivalence

The question of string equivalence turns somewhat complicated
 in Unicode: what do you
mean by "equal"?

(Is LATIN CAPITAL LETTER A WITH ACUTE equal to LATIN CAPITAL LETTER A?)

The short answer is that by default Perl compares equivalence (eq, ne) based only on code
points of the characters. In the above
 case, the answer is no (because 0x00C1 != 0x0041).
But sometimes, any
 CAPITAL LETTER As should be considered equal, or even As of any
case.

The long answer is that you need to consider character normalization
 and casing issues: see
Unicode::Normalize, Unicode Technical Report #15, Unicode Normalization Forms and

sections on case mapping in the Unicode Standard.

As of Perl 5.8.0, the "Full" case-folding of Case
 Mappings/SpecialCasing is implemented, but
bugs remain in qr//i with them.

String Collation

People like to see their strings nicely sorted--or as Unicode
 parlance goes, collated. But again,
what do you mean by collate?

(Does LATIN CAPITAL LETTER A WITH ACUTE come before or after LATIN CAPITAL
LETTER A WITH GRAVE?)

The short answer is that by default, Perl compares strings (lt, le, cmp, ge, gt) based only
on the code points of the
 characters. In the above case, the answer is "after", since 0x00C1 >
0x00C0.

The long answer is that "it depends", and a good answer cannot be
 given without knowing (at
the very least) the language context.
 See Unicode::Collate, and Unicode Collation Algorithm
http://www.unicode.org/unicode/reports/tr10/

Miscellaneous
Character Ranges and Classes

Character ranges in regular expression character classes (/[a-z]/)
 and in the tr/// (also
known as y///) operator are not magically
 Unicode-aware. What this means is that
[A-Za-z] will not magically start
 to mean "all alphabetic letters"; not that it does mean that
even for
 8-bit characters, you should be using /[[:alpha:]]/ in that case.

For specifying character classes like that in regular expressions,
 you can use the various
Unicode properties--\pL, or perhaps \p{Alphabetic}, in this particular case. You can use
Unicode
 code points as the end points of character ranges, but there is no
 magic associated
with specifying a certain range. For further
 information--there are dozens of Unicode character
classes--see perlunicode.

String-To-Number Conversions

Unicode does define several other decimal--and numeric--characters
 besides the familiar 0 to
9, such as the Arabic and Indic digits.
 Perl does not support string-to-number conversion for
digits other
 than ASCII 0 to 9 (and ASCII a to f for hexadecimal).

Questions With Answers
Will My Old Scripts Break?

Very probably not. Unless you are generating Unicode characters
 somehow, old behaviour
should be preserved. About the only behaviour
 that has changed and which could start
generating Unicode is the old
 behaviour of chr() where supplying an argument more than
255
 produced a character modulo 255. chr(300), for example, was equal
 to chr(45) or "-"
(in ASCII), now it is LATIN CAPITAL LETTER I WITH
 BREVE.

Perl version 5.12.2 documentation - perluniintro

Page 9http://perldoc.perl.org

How Do I Make My Scripts Work With Unicode?

Very little work should be needed since nothing changes until you
 generate Unicode data. The
most important thing is getting input as
 Unicode; for that, see the earlier I/O discussion.

How Do I Know Whether My String Is In Unicode?

You shouldn't have to care. But you may, because currently the semantics of the
 characters
whose ordinals are in the range 128 to 255 is different depending on
 whether the string they
are contained within is in Unicode or not.
 (See "When Unicode Does Not Happen" in
perlunicode.)

To determine if a string is in Unicode, use:

 print utf8::is_utf8($string) ? 1 : 0, "\n";

But note that this doesn't mean that any of the characters in the
 string are necessary UTF-8
encoded, or that any of the characters have
 code points greater than 0xFF (255) or even 0x80
(128), or that the
 string has any characters at all. All the is_utf8() does is to
 return the
value of the internal "utf8ness" flag attached to the $string. If the flag is off, the bytes in the
scalar are interpreted
 as a single byte encoding. If the flag is on, the bytes in the scalar
 are
interpreted as the (multi-byte, variable-length) UTF-8 encoded code
 points of the characters.
Bytes added to a UTF-8 encoded string are
 automatically upgraded to UTF-8. If mixed
non-UTF-8 and UTF-8 scalars
 are merged (double-quoted interpolation, explicit
concatenation, and
 printf/sprintf parameter substitution), the result will be UTF-8 encoded
 as if
copies of the byte strings were upgraded to UTF-8: for example,

 $a = "ab\x80c";
 $b = "\x{100}";
 print "$a = $b\n";

the output string will be UTF-8-encoded ab\x80c = \x{100}\n, but $a will stay
byte-encoded.

Sometimes you might really need to know the byte length of a string
 instead of the character
length. For that use either the Encode::encode_utf8() function or the bytes pragma and

the length() function:

 my $unicode = chr(0x100);
 print length($unicode), "\n"; # will print 1
 require Encode;
 print length(Encode::encode_utf8($unicode)), "\n"; # will print 2
 use bytes;
 print length($unicode), "\n"; # will also print 2
 # (the 0xC4 0x80 of the UTF-8)

How Do I Detect Data That's Not Valid In a Particular Encoding?

Use the Encode package to try converting it.
 For example,

 use Encode 'decode_utf8';

 if (eval { decode_utf8($string, Encode::FB_CROAK); 1 }) {
 # $string is valid utf8
 } else {
 # $string is not valid utf8
 }

Or use unpack to try decoding it:

 use warnings;
 @chars = unpack("C0U*", $string_of_bytes_that_I_think_is_utf8);

Perl version 5.12.2 documentation - perluniintro

Page 10http://perldoc.perl.org

If invalid, a Malformed UTF-8 character warning is produced. The "C0" means
 "process
the string character per character". Without that, the unpack("U*", ...) would work in U0
mode (the default if the format
 string starts with U) and it would return the bytes making up the
UTF-8
 encoding of the target string, something that will always work.

How Do I Convert Binary Data Into a Particular Encoding, Or Vice Versa?

This probably isn't as useful as you might think.
 Normally, you shouldn't need to.

In one sense, what you are asking doesn't make much sense: encodings
 are for characters,
and binary data are not "characters", so converting
 "data" into some encoding isn't meaningful
unless you know in what
 character set and encoding the binary data is in, in which case it's

not just binary data, now is it?

If you have a raw sequence of bytes that you know should be
 interpreted via a particular
encoding, you can use Encode:

 use Encode 'from_to';
 from_to($data, "iso-8859-1", "utf-8"); # from latin-1 to utf-8

The call to from_to() changes the bytes in $data, but nothing
 material about the nature of
the string has changed as far as Perl is
 concerned. Both before and after the call, the string
$data
 contains just a bunch of 8-bit bytes. As far as Perl is concerned,
 the encoding of the
string remains as "system-native 8-bit bytes".

You might relate this to a fictional 'Translate' module:

 use Translate;
 my $phrase = "Yes";
 Translate::from_to($phrase, 'english', 'deutsch');
 ## phrase now contains "Ja"

The contents of the string changes, but not the nature of the string.
 Perl doesn't know any
more after the call than before that the
 contents of the string indicates the affirmative.

Back to converting data. If you have (or want) data in your system's
 native 8-bit encoding (e.g.
Latin-1, EBCDIC, etc.), you can use
 pack/unpack to convert to/from Unicode.

 $native_string = pack("W*", unpack("U*", $Unicode_string));
 $Unicode_string = pack("U*", unpack("W*", $native_string));

If you have a sequence of bytes you know is valid UTF-8,
 but Perl doesn't know it yet, you
can make Perl a believer, too:

 use Encode 'decode_utf8';
 $Unicode = decode_utf8($bytes);

or:

 $Unicode = pack("U0a*", $bytes);

You can find the bytes that make up a UTF-8 sequence with

	 @bytes = unpack("C*", $Unicode_string)

and you can create well-formed Unicode with

	 $Unicode_string = pack("U*", 0xff, ...)

How Do I Display Unicode? How Do I Input Unicode?

See http://www.alanwood.net/unicode/ and http://www.cl.cam.ac.uk/~mgk25/unicode.html

How Does Unicode Work With Traditional Locales?

In Perl, not very well. Avoid using locales through the locale
 pragma. Use only one or the

Perl version 5.12.2 documentation - perluniintro

Page 11http://perldoc.perl.org

other. But see perlrun for the
 description of the -C switch and its environment counterpart,
$ENV{PERL_UNICODE} to see how to enable various Unicode features,
 for example by using
locale settings.

Hexadecimal Notation
The Unicode standard prefers using hexadecimal notation because
 that more clearly shows the
division of Unicode into blocks of 256 characters.
 Hexadecimal is also simply shorter than decimal.
You can use decimal
 notation, too, but learning to use hexadecimal just makes life easier
 with the
Unicode standard. The U+HHHH notation uses hexadecimal,
 for example.

The 0x prefix means a hexadecimal number, the digits are 0-9 and
 a-f (or A-F, case doesn't matter).
Each hexadecimal digit represents
 four bits, or half a byte. print 0x..., "\n" will show a

hexadecimal number in decimal, and printf "%x\n", $decimal will
 show a decimal number in
hexadecimal. If you have just the
 "hex digits" of a hexadecimal number, you can use the hex()
function.

 print 0x0009, "\n"; # 9
 print 0x000a, "\n"; # 10
 print 0x000f, "\n"; # 15
 print 0x0010, "\n"; # 16
 print 0x0011, "\n"; # 17
 print 0x0100, "\n"; # 256

 print 0x0041, "\n"; # 65

 printf "%x\n", 65; # 41
 printf "%#x\n", 65; # 0x41

 print hex("41"), "\n"; # 65

Further Resources
Unicode Consortium

http://www.unicode.org/

Unicode FAQ

http://www.unicode.org/unicode/faq/

Unicode Glossary

http://www.unicode.org/glossary/

Unicode Useful Resources

http://www.unicode.org/unicode/onlinedat/resources.html

Unicode and Multilingual Support in HTML, Fonts, Web Browsers and Other Applications

http://www.alanwood.net/unicode/

UTF-8 and Unicode FAQ for Unix/Linux

http://www.cl.cam.ac.uk/~mgk25/unicode.html

Legacy Character Sets

http://www.czyborra.com/ http://www.eki.ee/letter/

The Unicode support files live within the Perl installation in the
 directory

 $Config{installprivlib}/unicore

Perl version 5.12.2 documentation - perluniintro

Page 12http://perldoc.perl.org

in Perl 5.8.0 or newer, and

 $Config{installprivlib}/unicode

in the Perl 5.6 series. (The renaming to lib/unicore was done to
 avoid naming conflicts with
lib/Unicode in case-insensitive filesystems.)
 The main Unicode data file is UnicodeData.txt (or
Unicode.301 in
 Perl 5.6.1.) You can find the $Config{installprivlib} by

 perl "-V:installprivlib"

You can explore various information from the Unicode data files using
 the Unicode::UCD
module.

UNICODE IN OLDER PERLS
If you cannot upgrade your Perl to 5.8.0 or later, you can still
 do some Unicode processing by using
the modules Unicode::String, Unicode::Map8, and Unicode::Map, available from CPAN.
 If
you have the GNU recode installed, you can also use the
 Perl front-end Convert::Recode for
character conversions.

The following are fast conversions from ISO 8859-1 (Latin-1) bytes
 to UTF-8 bytes and back, the code
works even with older Perl 5 versions.

 # ISO 8859-1 to UTF-8
 s/([\x80-\xFF])/chr(0xC0|ord($1)>>6).chr(0x80|ord($1)&0x3F)/eg;

 # UTF-8 to ISO 8859-1
 s/([\xC2\xC3])([\x80-\xBF])/chr(ord($1)<<6&0xC0|ord($2)&0x3F)/eg;

SEE ALSO
perlunitut, perlunicode, Encode, open, utf8, bytes, perlretut, perlrun, Unicode::Collate,
Unicode::Normalize, Unicode::UCD

ACKNOWLEDGMENTS
Thanks to the kind readers of the perl5-porters@perl.org,
 perl-unicode@perl.org,
linux-utf8@nl.linux.org, and unicore@unicode.org
 mailing lists for their valuable feedback.

AUTHOR, COPYRIGHT, AND LICENSE
Copyright 2001-2002 Jarkko Hietaniemi <jhi@iki.fi>

This document may be distributed under the same terms as Perl itself.

