
Perl version 5.12.2 documentation - SelfLoader

Page 1http://perldoc.perl.org

NAME
SelfLoader - load functions only on demand

SYNOPSIS
    package FOOBAR;
    use SelfLoader;

    ... (initializing code)

    __DATA__
    sub {....

DESCRIPTION
This module tells its users that functions in the FOOBAR package are to be
 autoloaded from after the 
__DATA__ token. See also "Autoloading" in perlsub.

The __DATA__ token
The __DATA__ token tells the perl compiler that the perl code
 for compilation is finished. Everything 
after the __DATA__ token
 is available for reading via the filehandle FOOBAR::DATA,
 where FOOBAR
is the name of the current package when the __DATA__
 token is reached. This works just the same 
as __END__ does in
 package 'main', but for other modules data after __END__ is not
 automatically 
retrievable, whereas data after __DATA__ is.
 The __DATA__ token is not recognized in versions of 
perl prior to
 5.001m.

Note that it is possible to have __DATA__ tokens in the same package
 in multiple files, and that the 
last __DATA__ token in a given
 package that is encountered by the compiler is the one accessible
 by 
the filehandle. This also applies to __END__ and main, i.e. if
 the 'main' program has an __END__, but 
a module 'require'd (_not_ 'use'd)
 by that program has a 'package main;' declaration followed by an '
__DATA__',
 then the DATA filehandle is set to access the data after the __DATA__
 in the module, 
_not_ the data after the __END__ token in the 'main'
 program, since the compiler encounters the 
'require'd file later.

SelfLoader autoloading
The SelfLoader works by the user placing the __DATA__
 token after perl code which needs to be 
compiled and
 run at 'require' time, but before subroutine declarations
 that can be loaded in later - 
usually because they may never
 be called.

The SelfLoader will read from the FOOBAR::DATA filehandle to
 load in the data after __DATA__, 
and load in any subroutine
 when it is called. The costs are the one-time parsing of the
 data after 
__DATA__, and a load delay for the _first_
 call of any autoloaded function. The benefits (hopefully)

are a speeded up compilation phase, with no need to load
 functions which are never used.

The SelfLoader will stop reading from __DATA__ if
 it encounters the __END__ token - just as you 
would expect.
 If the __END__ token is present, and is followed by the
 token DATA, then the 
SelfLoader leaves the FOOBAR::DATA
 filehandle open on the line after that token.

The SelfLoader exports the AUTOLOAD subroutine to the
 package using the SelfLoader, and this 
loads the called
 subroutine when it is first called.

There is no advantage to putting subroutines which will _always_
 be called after the __DATA__ token.

Autoloading and package lexicals
A 'my $pack_lexical' statement makes the variable $pack_lexical
 local _only_ to the file up to the 
__DATA__ token. Subroutines
 declared elsewhere _cannot_ see these types of variables,
 just as if 
you declared subroutines in the package but in another
 file, they cannot see these variables.



Perl version 5.12.2 documentation - SelfLoader

Page 2http://perldoc.perl.org

So specifically, autoloaded functions cannot see package
 lexicals (this applies to both the SelfLoader
and the Autoloader).
 The vars pragma provides an alternative to defining package-level
 globals that 
will be visible to autoloaded routines. See the documentation
 on vars in the pragma section of 
perlmod.

SelfLoader and AutoLoader
The SelfLoader can replace the AutoLoader - just change 'use AutoLoader'
 to 'use SelfLoader' 
(though note that the SelfLoader exports
 the AUTOLOAD function - but if you have your own 
AUTOLOAD and
 are using the AutoLoader too, you probably know what you're doing),
 and the 
__END__ token to __DATA__. You will need perl version 5.001m
 or later to use this (version 5.001 
with all patches up to patch m).

There is no need to inherit from the SelfLoader.

The SelfLoader works similarly to the AutoLoader, but picks up the
 subs from after the __DATA__ 
instead of in the 'lib/auto' directory.
 There is a maintenance gain in not needing to run AutoSplit on the
module
 at installation, and a runtime gain in not needing to keep opening and
 closing files to load 
subs. There is a runtime loss in needing
 to parse the code after the __DATA__. Details of the 
AutoLoader and
 another view of these distinctions can be found in that module's
 documentation.

__DATA__, __END__, and the FOOBAR::DATA filehandle.
This section is only relevant if you want to use
 the FOOBAR::DATA together with the SelfLoader.

Data after the __DATA__ token in a module is read using the
 FOOBAR::DATA filehandle. __END__ 
can still be used to denote the end
 of the __DATA__ section if followed by the token DATA - this is 
supported
 by the SelfLoader. The FOOBAR::DATA filehandle is left open if an __END__ followed by a
DATA is found, with the filehandle positioned at
 the start of the line after the __END__ token. If no 
__END__ token is
 present, or an __END__ token with no DATA token on the same line, then
 the 
filehandle is closed.

The SelfLoader reads from wherever the current
 position of the FOOBAR::DATA filehandle is, until 
the
 EOF or __END__. This means that if you want to use
 that filehandle (and ONLY if you want to), 
you should either

1. Put all your subroutine declarations immediately after
 the __DATA__ token and put your own data 
after those
 declarations, using the __END__ token to mark the end
 of subroutine declarations. You 
must also ensure that the SelfLoader
 reads first by calling 'SelfLoader->load_stubs();', or by using a

function which is selfloaded;

or

2. You should read the FOOBAR::DATA filehandle first, leaving
 the handle open and positioned at the 
first line of subroutine
 declarations.

You could conceivably do both.

Classes and inherited methods.
For modules which are not classes, this section is not relevant.
 This section is only relevant if you 
have methods which could
 be inherited.

A subroutine stub (or forward declaration) looks like

  sub stub;

i.e. it is a subroutine declaration without the body of the
 subroutine. For modules which are not 
classes, there is no real
 need for stubs as far as autoloading is concerned.

For modules which ARE classes, and need to handle inherited methods,
 stubs are needed to ensure 
that the method inheritance mechanism works
 properly. You can load the stubs into the module at 



Perl version 5.12.2 documentation - SelfLoader

Page 3http://perldoc.perl.org

'require' time, by
 adding the statement 'SelfLoader->load_stubs();' to the module to do
 this.

The alternative is to put the stubs in before the __DATA__ token BEFORE
 releasing the module, and 
for this purpose the Devel::SelfStubber
 module is available. However this does require the extra 
step of ensuring
 that the stubs are in the module. If this is done I strongly recommend
 that this is done
BEFORE releasing the module - it should NOT be done
 at install time in general.

Multiple packages and fully qualified subroutine names
Subroutines in multiple packages within the same file are supported - but you
 should note that this 
requires exporting the SelfLoader::AUTOLOAD to
 every package which requires it. This is done 
automatically by the SelfLoader when it first loads the subs into the cache, but you should
 really 
specify it in the initialization before the __DATA__ by putting
 a 'use SelfLoader' statement in each 
package.

Fully qualified subroutine names are also supported. For example,

   __DATA__
   sub foo::bar {23}
   package baz;
   sub dob {32}

will all be loaded correctly by the SelfLoader, and the SelfLoader 
 will ensure that the packages 'foo' 
and 'baz' correctly have the SelfLoader AUTOLOAD method when the data after __DATA__ is first

parsed.

AUTHOR
SelfLoader is maintained by the perl5-porters. Please direct
 any questions to the canonical mailing 
list. Anything that
 is applicable to the CPAN release can be sent to its maintainer,
 though.

Author and Maintainer: The Perl5-Porters <perl5-porters@perl.org>

Maintainer of the CPAN release: Steffen Mueller <smueller@cpan.org>

COPYRIGHT AND LICENSE
This package has been part of the perl core since the first release
 of perl5. It has been released 
separately to CPAN so older installations
 can benefit from bug fixes.

This package has the same copyright and license as the perl core:

             Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
        2000, 2001, 2002, 2003, 2004, 2005, 2006 by Larry Wall and others

			    All rights reserved.

    This program is free software; you can redistribute it and/or modify
    it under the terms of either:

	 a) the GNU General Public License as published by the Free
	 Software Foundation; either version 1, or (at your option) any
	 later version, or

	 b) the "Artistic License" which comes with this Kit.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See either



Perl version 5.12.2 documentation - SelfLoader

Page 4http://perldoc.perl.org

    the GNU General Public License or the Artistic License for more 
details.

    You should have received a copy of the Artistic License with this
    Kit, in the file named "Artistic".  If not, I'll be glad to provide 
one.

    You should also have received a copy of the GNU General Public License
    along with this program in the file named "Copying". If not, write to 
the
    Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
    02111-1307, USA or visit their web page on the internet at
    http://www.gnu.org/copyleft/gpl.html.

    For those of you that choose to use the GNU General Public License,
    my interpretation of the GNU General Public License is that no Perl
    script falls under the terms of the GPL unless you explicitly put
    said script under the terms of the GPL yourself.  Furthermore, any
    object code linked with perl does not automatically fall under the
    terms of the GPL, provided such object code only adds definitions
    of subroutines and variables, and does not otherwise impair the
    resulting interpreter from executing any standard Perl script.  I
    consider linking in C subroutines in this manner to be the moral
    equivalent of defining subroutines in the Perl language itself.  You
    may sell such an object file as proprietary provided that you provide
    or offer to provide the Perl source, as specified by the GNU General
    Public License.  (This is merely an alternate way of specifying input
    to the program.)  You may also sell a binary produced by the dumping of
    a running Perl script that belongs to you, provided that you provide or
    offer to provide the Perl source as specified by the GPL.  (The
    fact that a Perl interpreter and your code are in the same binary file
    is, in this case, a form of mere aggregation.)  This is my 
interpretation
    of the GPL.  If you still have concerns or difficulties understanding
    my intent, feel free to contact me.  Of course, the Artistic License
    spells all this out for your protection, so you may prefer to use that.


