
Perl version 5.12.2 documentation - autodie::exception

Page 1http://perldoc.perl.org

NAME
autodie::exception - Exceptions from autodying functions.

SYNOPSIS
 eval {
 use autodie;

 open(my $fh, '<', 'some_file.txt');

 ...
 };

 if (my $E = $@) {
 say "Ooops! ",$E->caller," had problems: $@";
 }

DESCRIPTION
When an autodie enabled function fails, it generates an autodie::exception object. This can be
interrogated to
 determine further information about the error that occurred.

This document is broken into two sections; those methods that
 are most useful to the end-developer,
and those methods for
 anyone wishing to subclass or get very familiar with autodie::exception.

Common Methods
These methods are intended to be used in the everyday dealing
 of exceptions.

The following assume that the error has been copied into
 a separate scalar:

 if ($E = $@) {
 ...
 }

This is not required, but is recommended in case any code
 is called which may reset or alter $@.

args

 my $array_ref = $E->args;

Provides a reference to the arguments passed to the subroutine
 that died.

function

 my $sub = $E->function;

The subroutine (including package) that threw the exception.

file

 my $file = $E->file;

The file in which the error occurred (eg, myscript.pl or MyTest.pm).

package

 my $package = $E->package;

The package from which the exceptional subroutine was called.

Perl version 5.12.2 documentation - autodie::exception

Page 2http://perldoc.perl.org

caller

 my $caller = $E->caller;

The subroutine that called the exceptional code.

line

 my $line = $E->line;

The line in $E->file where the exceptional code was called.

context

 my $context = $E->context;

The context in which the subroutine was called. This can be
 'list', 'scalar', or undefined (unknown). It
will never be 'void', as autodie always captures the return value in one way or another.

return

 my $return_value = $E->return;

The value(s) returned by the failed subroutine. When the subroutine
 was called in a list context, this
will always be a reference to an
 array containing the results. When the subroutine was called in
 a
scalar context, this will be the actual scalar returned.

errno

 my $errno = $E->errno;

The value of $! at the time when the exception occurred.

NOTE: This method will leave the main autodie::exception class
 and become part of a role in
the future. You should only call errno for exceptions where $! would reasonably have been
 set on
failure.

eval_error

 my $old_eval_error = $E->eval_error;

The contents of $@ immediately after autodie triggered an
 exception. This may be useful when
dealing with modules such
 as Text::Balanced that set (but do not throw) $@ on error.

matches

 if ($e->matches('open')) { ... }

 if ($e ~~ 'open') { ... }

matches is used to determine whether a
 given exception matches a particular role. On Perl 5.10,

using smart-match (~~) with an autodie::exception object
 will use matches underneath.

An exception is considered to match a string if:

For a string not starting with a colon, the string exactly matches the
 package and subroutine
that threw the exception. For example, MyModule::log. If the string does not contain a
package name, CORE:: is assumed.

For a string that does start with a colon, if the subroutine
 throwing the exception does that
behaviour. For example, the CORE::open subroutine does :file, :io and :all.

Perl version 5.12.2 documentation - autodie::exception

Page 3http://perldoc.perl.org

See "CATEGORIES" in autodie for futher information.

Advanced methods
The following methods, while usable from anywhere, are primarily
 intended for developers wishing to
subclass autodie::exception,
 write code that registers custom error messages, or otherwise

work closely with the autodie::exception model.

register

 autodie::exception->register('CORE::open' => \&mysub);

The register method allows for the registration of a message
 handler for a given subroutine. The
full subroutine name including
 the package should be used.

Registered message handlers will receive the autodie::exception
 object as the first parameter.

add_file_and_line

 say "Problem occurred",$@->add_file_and_line;

Returns the string at %s line %d, where %s is replaced with
 the filename, and %d is replaced with
the line number.

Primarily intended for use by format handlers.

stringify

 say "The error was: ",$@->stringify;

Formats the error as a human readable string. Usually there's no
 reason to call this directly, as it is
used automatically if an autodie::exception object is ever used as a string.

Child classes can override this method to change how they're
 stringified.

format_default

 my $error_string = $E->format_default;

This produces the default error string for the given exception, without using any registered message
handlers. It is primarily
 intended to be called from a message handler when they have
 been passed
an exception they don't want to format.

Child classes can override this method to change how default
 messages are formatted.

new

 my $error = autodie::exception->new(
 args => \@_,
 function => "CORE::open",
 errno => $!,
 context => 'scalar',
 return => undef,
);

Creates a new autodie::exception object. Normally called
 directly from an autodying function.
The function argument
 is required, its the function we were trying to call that
 generated the
exception. The args parameter is optional.

The errno value is optional. In versions of autodie::exception
 1.99 and earlier the code would
try to automatically use the
 current value of $!, but this was unreliable and is no longer
 supported.

Perl version 5.12.2 documentation - autodie::exception

Page 4http://perldoc.perl.org

Atrributes such as package, file, and caller are determined
 automatically, and cannot be specified.

SEE ALSO
autodie, autodie::exception::system

LICENSE
Copyright (C)2008 Paul Fenwick

This is free software. You may modify and/or redistribute this
 code under the same terms as Perl 5.10
itself, or, at your option,
 any later version of Perl 5.

AUTHOR
Paul Fenwick <pjf@perltraining.com.au>

