
Perl version 5.12.2 documentation - perlsec

Page 1http://perldoc.perl.org

NAME
perlsec - Perl security

DESCRIPTION
Perl is designed to make it easy to program securely even when running
 with extra privileges, like
setuid or setgid programs. Unlike most
 command line shells, which are based on multiple substitution
passes on
 each line of the script, Perl uses a more conventional evaluation scheme
 with fewer hidden
snags. Additionally, because the language has more
 builtin functionality, it can rely less upon external
(and possibly
 untrustworthy) programs to accomplish its purposes.

SECURITY VULNERABILITY CONTACT INFORMATION
If you believe you have found a security vulnerability in Perl, please email

perl5-security-report@perl.org with details. This points to a closed
 subscription, unarchived mailing
list. Please only use this address for
 security issues in the Perl core, not for modules independently
distributed on
 CPAN.

SECURITY MECHANISMS AND CONCERNS
Taint mode

Perl automatically enables a set of special security checks, called taint
 mode, when it detects its
program running with differing real and effective
 user or group IDs. The setuid bit in Unix permissions
is mode 04000, the
 setgid bit mode 02000; either or both may be set. You can also enable taint
 mode
explicitly by using the -T command line flag. This flag is strongly suggested for server programs and
any program run on behalf of
 someone else, such as a CGI script. Once taint mode is on, it's on for

the remainder of your script.

While in this mode, Perl takes special precautions called taint
 checks to prevent both obvious and
subtle traps. Some of these checks
 are reasonably simple, such as verifying that path directories
aren't
 writable by others; careful programmers have always used checks like
 these. Other checks,
however, are best supported by the language itself,
 and it is these checks especially that contribute to
making a set-id Perl
 program more secure than the corresponding C program.

You may not use data derived from outside your program to affect
 something else outside your
program--at least, not by accident. All
 command line arguments, environment variables, locale
information (see perllocale), results of certain system calls (readdir(), readlink(), the variable of
shmread(), the messages returned by msgrcv(), the password, gcos and shell fields returned by
the getpwxxx() calls), and all file input are marked as "tainted".
 Tainted data may not be used
directly or indirectly in any command
 that invokes a sub-shell, nor in any command that modifies files,

directories, or processes, with the following exceptions:

Arguments to print and syswrite are not checked for taintedness.

Symbolic methods

 $obj->$method(@args);

and symbolic sub references

 &{$foo}(@args);
 $foo->(@args);

are not checked for taintedness. This requires extra carefulness
 unless you want external data
to affect your control flow. Unless
 you carefully limit what these symbolic values are, people
are able
 to call functions outside your Perl code, such as POSIX::system,
 in which case they
are able to run arbitrary external code.

Hash keys are never tainted.

For efficiency reasons, Perl takes a conservative view of
 whether data is tainted. If an expression
contains tainted data,
 any subexpression may be considered tainted, even if the value
 of the

Perl version 5.12.2 documentation - perlsec

Page 2http://perldoc.perl.org

subexpression is not itself affected by the tainted data.

Because taintedness is associated with each scalar value, some
 elements of an array or hash can be
tainted and others not.
 The keys of a hash are never tainted.

For example:

 $arg = shift;		 # $arg is tainted
 $hid = $arg, 'bar';		 # $hid is also tainted
 $line = <>;			 # Tainted
 $line = <STDIN>;		 # Also tainted
 open FOO, "/home/me/bar" or die $!;
 $line = <FOO>;		 # Still tainted
 $path = $ENV{'PATH'};	 # Tainted, but see below
 $data = 'abc';		 # Not tainted

 system "echo $arg";		 # Insecure
 system "/bin/echo", $arg;	 # Considered insecure
				 # (Perl doesn't know about /bin/echo)
 system "echo $hid";		 # Insecure
 system "echo $data";	 # Insecure until PATH set

 $path = $ENV{'PATH'};	 # $path now tainted

 $ENV{'PATH'} = '/bin:/usr/bin';
 delete @ENV{'IFS', 'CDPATH', 'ENV', 'BASH_ENV'};

 $path = $ENV{'PATH'};	 # $path now NOT tainted
 system "echo $data";	 # Is secure now!

 open(FOO, "< $arg");	 # OK - read-only file
 open(FOO, "> $arg"); 	 # Not OK - trying to write

 open(FOO,"echo $arg|");	 # Not OK
 open(FOO,"-|")
	 or exec 'echo', $arg;	 # Also not OK

 $shout = `echo $arg`;	 # Insecure, $shout now tainted

 unlink $data, $arg;		 # Insecure
 umask $arg;			 # Insecure

 exec "echo $arg";		 # Insecure
 exec "echo", $arg;		 # Insecure
 exec "sh", '-c', $arg;	 # Very insecure!

 @files = <*.c>;		 # insecure (uses readdir() or similar)
 @files = glob('*.c');	 # insecure (uses readdir() or similar)

 # In Perl releases older than 5.6.0 the <*.c> and glob('*.c') would
 # have used an external program to do the filename expansion; but in
 # either case the result is tainted since the list of filenames comes
 # from outside of the program.

Perl version 5.12.2 documentation - perlsec

Page 3http://perldoc.perl.org

 $bad = ($arg, 23);		 # $bad will be tainted
 $arg, `true`;		 # Insecure (although it isn't really)

If you try to do something insecure, you will get a fatal error saying
 something like "Insecure
dependency" or "Insecure $ENV{PATH}".

The exception to the principle of "one tainted value taints the whole
 expression" is with the ternary
conditional operator ?:. Since code
 with a ternary conditional

 $result = $tainted_value ? "Untainted" : "Also untainted";

is effectively

 if ($tainted_value) {
 $result = "Untainted";
 } else {
 $result = "Also untainted";
 }

it doesn't make sense for $result to be tainted.

Laundering and Detecting Tainted Data
To test whether a variable contains tainted data, and whose use would
 thus trigger an "Insecure
dependency" message, you can use the tainted() function of the Scalar::Util module, available in
your
 nearby CPAN mirror, and included in Perl starting from the release 5.8.0.
 Or you may be able to
use the following is_tainted() function.

 sub is_tainted {
 return ! eval { eval("#" . substr(join("", @_), 0, 0)); 1 };
 }

This function makes use of the fact that the presence of tainted data
 anywhere within an expression
renders the entire expression tainted. It
 would be inefficient for every operator to test every argument
for
 taintedness. Instead, the slightly more efficient and conservative
 approach is used that if any
tainted value has been accessed within the
 same expression, the whole expression is considered
tainted.

But testing for taintedness gets you only so far. Sometimes you have just
 to clear your data's
taintedness. Values may be untainted by using them
 as keys in a hash; otherwise the only way to
bypass the tainting
 mechanism is by referencing subpatterns from a regular expression match.
 Perl
presumes that if you reference a substring using $1, $2, etc., that
 you knew what you were doing
when you wrote the pattern. That means using
 a bit of thought--don't just blindly untaint anything, or
you defeat the
 entire mechanism. It's better to verify that the variable has only good
 characters (for
certain values of "good") rather than checking whether it
 has any bad characters. That's because it's
far too easy to miss bad
 characters that you never thought of.

Here's a test to make sure that the data contains nothing but "word"
 characters (alphabetics,
numerics, and underscores), a hyphen, an at sign,
 or a dot.

 if ($data =~ /^([-\@\w.]+)$/) {
	 $data = $1; 			 # $data now untainted
 } else {
	 die "Bad data in '$data'"; 	 # log this somewhere
 }

This is fairly secure because /\w+/ doesn't normally match shell
 metacharacters, nor are dot, dash,
or at going to mean something special
 to the shell. Use of /.+/ would have been insecure in theory

Perl version 5.12.2 documentation - perlsec

Page 4http://perldoc.perl.org

because
 it lets everything through, but Perl doesn't check for that. The lesson
 is that when untainting,
you must be exceedingly careful with your patterns.
 Laundering data using regular expression is the
only mechanism for
 untainting dirty data, unless you use the strategy detailed below to fork
 a child of
lesser privilege.

The example does not untaint $data if use locale is in effect,
 because the characters matched by
\w are determined by the locale.
 Perl considers that locale definitions are untrustworthy because they
contain data from outside the program. If you are writing a
 locale-aware program, and want to launder
data with a regular expression
 containing \w, put no locale ahead of the expression in the same

block. See "SECURITY" in perllocale for further discussion and examples.

Switches On the "#!" Line
When you make a script executable, in order to make it usable as a
 command, the system will pass
switches to perl from the script's #!
 line. Perl checks that any command line switches given to a setuid
(or setgid) script actually match the ones set on the #! line. Some
 Unix and Unix-like environments
impose a one-switch limit on the #!
 line, so you may need to use something like -wU instead of -w -U
under such systems. (This issue should arise only in Unix or
 Unix-like environments that support #!
and setuid or setgid scripts.)

Taint mode and @INC
When the taint mode (-T) is in effect, the "." directory is removed
 from @INC, and the environment
variables PERL5LIB and PERLLIB
 are ignored by Perl. You can still adjust @INC from outside the

program by using the -I command line option as explained in perlrun. The two environment variables
are ignored because
 they are obscured, and a user running a program could be unaware that
 they
are set, whereas the -I option is clearly visible and
 therefore permitted.

Another way to modify @INC without modifying the program, is to use
 the lib pragma, e.g.:

 perl -Mlib=/foo program

The benefit of using -Mlib=/foo over -I/foo, is that the former
 will automagically remove any
duplicated directories, while the later
 will not.

Note that if a tainted string is added to @INC, the following
 problem will be reported:

 Insecure dependency in require while running with -T switch

Cleaning Up Your Path
For "Insecure $ENV{PATH}" messages, you need to set $ENV{'PATH'} to
 a known value, and each
directory in the path must be absolute and
 non-writable by others than its owner and group. You may
be surprised to
 get this message even if the pathname to your executable is fully
 qualified. This is not
generated because you didn't supply a full path
 to the program; instead, it's generated because you
never set your PATH
 environment variable, or you didn't set it to something that was safe.
 Because
Perl can't guarantee that the executable in question isn't itself
 going to turn around and execute some
other program that is dependent on
 your PATH, it makes sure you set the PATH.

The PATH isn't the only environment variable which can cause problems.
 Because some shells may
use the variables IFS, CDPATH, ENV, and
 BASH_ENV, Perl checks that those are either empty or
untainted when
 starting subprocesses. You may wish to add something like this to your
 setid and
taint-checking scripts.

 delete @ENV{qw(IFS CDPATH ENV BASH_ENV)}; # Make %ENV safer

It's also possible to get into trouble with other operations that don't
 care whether they use tainted
values. Make judicious use of the file
 tests in dealing with any user-supplied filenames. When
possible, do
 opens and such after properly dropping any special user (or group!)
 privileges. Perl
doesn't prevent you from opening tainted filenames for reading,
 so be careful what you print out. The

Perl version 5.12.2 documentation - perlsec

Page 5http://perldoc.perl.org

tainting mechanism is intended to
 prevent stupid mistakes, not to remove the need for thought.

Perl does not call the shell to expand wild cards when you pass system
 and exec explicit parameter
lists instead of strings with possible shell
 wildcards in them. Unfortunately, the open, glob, and

backtick functions provide no such alternate calling convention, so more
 subterfuge will be required.

Perl provides a reasonably safe way to open a file or pipe from a setuid
 or setgid program: just create
a child process with reduced privilege who
 does the dirty work for you. First, fork a child using the
special open syntax that connects the parent and child by a pipe. Now the
 child resets its ID set and
any other per-process attributes, like
 environment variables, umasks, current working directories,
back to the
 originals or known safe values. Then the child process, which no longer
 has any special
permissions, does the open or other system call.
 Finally, the child passes the data it managed to
access back to the
 parent. Because the file or pipe was opened in the child while running
 under less
privilege than the parent, it's not apt to be tricked into
 doing something it shouldn't.

Here's a way to do backticks reasonably safely. Notice how the exec is
 not called with a string that
the shell could expand. This is by far the
 best way to call something that might be subjected to shell
escapes: just
 never call the shell at all.

 use English '-no_match_vars';
 die "Can't fork: $!" unless defined($pid = open(KID, "-|"));
 if ($pid) { # parent
 while (<KID>) {
 # do something
 }
 close KID;
 } else {
 my @temp = ($EUID, $EGID);
 my $orig_uid = $UID;
 my $orig_gid = $GID;
 $EUID = $UID;
 $EGID = $GID;
 # Drop privileges
 $UID = $orig_uid;
 $GID = $orig_gid;
 # Make sure privs are really gone
 ($EUID, $EGID) = @temp;
 die "Can't drop privileges"
 unless $UID == $EUID && $GID eq $EGID;
 $ENV{PATH} = "/bin:/usr/bin"; # Minimal PATH.
	 # Consider sanitizing the environment even more.
 exec 'myprog', 'arg1', 'arg2'
 or die "can't exec myprog: $!";
 }

A similar strategy would work for wildcard expansion via glob, although
 you can use readdir
instead.

Taint checking is most useful when although you trust yourself not to have
 written a program to give
away the farm, you don't necessarily trust those
 who end up using it not to try to trick it into doing
something bad. This
 is the kind of security checking that's useful for set-id programs and
 programs
launched on someone else's behalf, like CGI programs.

This is quite different, however, from not even trusting the writer of the
 code not to try to do something
evil. That's the kind of trust needed
 when someone hands you a program you've never seen before
and says, "Here,
 run this." For that kind of safety, you might want to check out the Safe
 module,
included standard in the Perl distribution. This module allows the
 programmer to set up special
compartments in which all system operations
 are trapped and namespace access is carefully

Perl version 5.12.2 documentation - perlsec

Page 6http://perldoc.perl.org

controlled. Safe should
 not be considered bullet-proof, though: it will not prevent the foreign
 code to
set up infinite loops, allocate gigabytes of memory, or even
 abusing perl bugs to make the host
interpreter crash or behave in
 unpredictable ways. In any case it's better avoided completely if you're

really concerned about security.

Security Bugs
Beyond the obvious problems that stem from giving special privileges to
 systems as flexible as
scripts, on many versions of Unix, set-id scripts
 are inherently insecure right from the start. The
problem is a race
 condition in the kernel. Between the time the kernel opens the file to
 see which
interpreter to run and when the (now-set-id) interpreter turns
 around and reopens the file to interpret
it, the file in question may have
 changed, especially if you have symbolic links on your system.

Fortunately, sometimes this kernel "feature" can be disabled.
 Unfortunately, there are two ways to
disable it. The system can simply
 outlaw scripts with any set-id bit set, which doesn't help much.

Alternately, it can simply ignore the set-id bits on scripts.

However, if the kernel set-id script feature isn't disabled, Perl will
 complain loudly that your set-id
script is insecure. You'll need to
 either disable the kernel set-id script feature, or put a C wrapper
around
 the script. A C wrapper is just a compiled program that does nothing
 except call your Perl
program. Compiled programs are not subject to the
 kernel bug that plagues set-id scripts. Here's a
simple wrapper, written
 in C:

 #define REAL_PATH "/path/to/script"
 main(ac, av)
	 char **av;
 {
	 execv(REAL_PATH, av);
 }

Compile this wrapper into a binary executable and then make it rather
 than your script setuid or
setgid.

In recent years, vendors have begun to supply systems free of this
 inherent security bug. On such
systems, when the kernel passes the name
 of the set-id script to open to the interpreter, rather than
using a
 pathname subject to meddling, it instead passes /dev/fd/3. This is a
 special file already
opened on the script, so that there can be no race
 condition for evil scripts to exploit. On these
systems, Perl should be
 compiled with -DSETUID_SCRIPTS_ARE_SECURE_NOW. The Configure

program that builds Perl tries to figure this out for itself, so you
 should never have to specify this
yourself. Most modern releases of
 SysVr4 and BSD 4.4 use this approach to avoid the kernel race
condition.

Protecting Your Programs
There are a number of ways to hide the source to your Perl programs,
 with varying levels of
"security".

First of all, however, you can't take away read permission, because
 the source code has to be
readable in order to be compiled and
 interpreted. (That doesn't mean that a CGI script's source is

readable by people on the web, though.) So you have to leave the
 permissions at the socially friendly
0755 level. This lets people on your local system only see your source.

Some people mistakenly regard this as a security problem. If your program does
 insecure things, and
relies on people not knowing how to exploit those
 insecurities, it is not secure. It is often possible for
someone to
 determine the insecure things and exploit them without viewing the
 source. Security
through obscurity, the name for hiding your bugs
 instead of fixing them, is little security indeed.

You can try using encryption via source filters (Filter::* from CPAN,
 or Filter::Util::Call and
Filter::Simple since Perl 5.8).
 But crackers might be able to decrypt it. You can try using the byte
 code
compiler and interpreter described below, but crackers might be
 able to de-compile it. You can try

Perl version 5.12.2 documentation - perlsec

Page 7http://perldoc.perl.org

using the native-code compiler
 described below, but crackers might be able to disassemble it. These

pose varying degrees of difficulty to people wanting to get at your
 code, but none can definitively
conceal it (this is true of every
 language, not just Perl).

If you're concerned about people profiting from your code, then the
 bottom line is that nothing but a
restrictive license will give you
 legal security. License your software and pepper it with threatening

statements like "This is unpublished proprietary software of XYZ Corp.
 Your access to it does not give
you permission to use it blah blah
 blah." You should see a lawyer to be sure your license's wording
will
 stand up in court.

Unicode
Unicode is a new and complex technology and one may easily overlook
 certain security pitfalls. See
perluniintro for an overview and perlunicode for details, and "Security Implications of Unicode" in
perlunicode for security implications in particular.

Algorithmic Complexity Attacks
Certain internal algorithms used in the implementation of Perl can
 be attacked by choosing the input
carefully to consume large amounts
 of either time or space or both. This can lead into the so-called
Denial of Service (DoS) attacks.

Hash Function - the algorithm used to "order" hash elements has been
 changed several times
during the development of Perl, mainly to be
 reasonably fast. In Perl 5.8.1 also the security
aspect was taken
 into account.

In Perls before 5.8.1 one could rather easily generate data that as
 hash keys would cause Perl
to consume large amounts of time because
 internal structure of hashes would badly
degenerate. In Perl 5.8.1
 the hash function is randomly perturbed by a pseudorandom seed
which
 makes generating such naughty hash keys harder.
 See "PERL_HASH_SEED" in
perlrun for more information.

In Perl 5.8.1 the random perturbation was done by default, but as of
 5.8.2 it is only used on
individual hashes if the internals detect the
 insertion of pathological data. If one wants for
some reason emulate the
 old behaviour (and expose oneself to DoS attacks) one can set the

environment variable PERL_HASH_SEED to zero to disable the protection
 (or any other
integer to force a known perturbation, rather than random). One possible reason for wanting to
emulate the old behaviour is that in the
 new behaviour consecutive runs of Perl will order hash
keys differently,
 which may confuse some applications (like Data::Dumper: the outputs of two

different runs are no longer identical).

Perl has never guaranteed any ordering of the hash keys, and the
 ordering has already
changed several times during the lifetime of
 Perl 5. Also, the ordering of hash keys has always
been, and
 continues to be, affected by the insertion order.

Also note that while the order of the hash elements might be
 randomised, this
"pseudoordering" should not be used for
 applications like shuffling a list randomly (use
List::Util::shuffle()
 for that, see List::Util, a standard core module since Perl 5.8.0;
 or the CPAN
module Algorithm::Numerical::Shuffle), or for generating
 permutations (use e.g. the CPAN
modules Algorithm::Permute or
 Algorithm::FastPermute), or for any cryptographic
applications.

Regular expressions - Perl's regular expression engine is so called NFA
 (Non-deterministic
Finite Automaton), which among other things means that
 it can rather easily consume large
amounts of both time and space if the
 regular expression may match in several ways. Careful
crafting of the
 regular expressions can help but quite often there really isn't much
 one can do
(the book "Mastering Regular Expressions" is required
 reading, see perlfaq2). Running out of
space manifests itself by
 Perl running out of memory.

Sorting - the quicksort algorithm used in Perls before 5.8.0 to
 implement the sort() function is
very easy to trick into misbehaving
 so that it consumes a lot of time. Starting from Perl 5.8.0 a
different
 sorting algorithm, mergesort, is used by default. Mergesort cannot
 misbehave on any

Perl version 5.12.2 documentation - perlsec

Page 8http://perldoc.perl.org

input.See http://www.cs.rice.edu/~scrosby/hash/ for more information,
 and any computer science textbook
on algorithmic complexity.

SEE ALSO
perlrun for its description of cleaning up environment variables.

