
Perl version 5.12.4 documentation - Module::Build::Cookbook

Page 1http://perldoc.perl.org

NAME
Module::Build::Cookbook - Examples of Module::Build Usage

DESCRIPTION
Module::Build isn't conceptually very complicated, but examples are
 always helpful. The following
recipes should help developers and/or
 installers put together the pieces from the other parts of the

documentation.

BASIC RECIPES
Installing modules that use Module::Build

In most cases, you can just issue the following commands:

 perl Build.PL
 ./Build
 ./Build test
 ./Build install

There's nothing complicated here - first you're running a script
 called Build.PL, then you're running a
(newly-generated) script
 called Build and passing it various arguments.

The exact commands may vary a bit depending on how you invoke perl
 scripts on your system. For
instance, if you have multiple versions
 of perl installed, you can install to one particular perl's library

directories like so:

 /usr/bin/perl5.8.1 Build.PL
 ./Build
 ./Build test
 ./Build install

If you're on Windows where the current directory is always searched
 first for scripts, you'll probably do
something like this:

 perl Build.PL
 Build
 Build test
 Build install

On the old Mac OS (version 9 or lower) using MacPerl, you can
 double-click on the Build.PL script to
create the Build script,
 then double-click on the Build script to run its build, test,
 and install
actions.

The Build script knows what perl was used to run Build.PL, so
 you don't need to re-invoke the Build
script with the complete perl
 path each time. If you invoke it with the wrong perl path, you'll
 get a
warning or a fatal error.

Modifying Config.pm values
Module::Build relies heavily on various values from perl's Config.pm to do its work. For example,
default installation paths
 are given by installsitelib and installvendorman3dir and
 friends,
C linker & compiler settings are given by ld, lddlflags, cc, ccflags, and so on. If you're pretty
sure
 you know what you're doing, you can tell Module::Build to pretend
 there are different values
in Config.pm than what's really there,
 by passing arguments for the --config parameter on the
command
 line:

 perl Build.PL --config cc=gcc --config ld=gcc

Inside the Build.PL script the same thing can be accomplished by
 passing values for the config

Perl version 5.12.4 documentation - Module::Build::Cookbook

Page 2http://perldoc.perl.org

parameter to new():

 my $build = Module::Build->new
 (
 ...
 config => { cc => 'gcc', ld => 'gcc' },
 ...
);

In custom build code, the same thing can be accomplished by calling
 the "config" in Module::Build
method:

 $build->config(cc => 'gcc'); # Set
 $build->config(ld => 'gcc'); # Set
 ...
 my $linker = $build->config('ld'); # Get

Installing modules using the programmatic interface
If you need to build, test, and/or install modules from within some
 other perl code (as opposed to
having the user type installation
 commands at the shell), you can use the programmatic interface.

Create a Module::Build object (or an object of a custom Module::Build
 subclass) and then invoke its
dispatch() method to run various
 actions.

 my $build = Module::Build->new
 (
 module_name => 'Foo::Bar',
 license => 'perl',
 requires => { 'Some::Module' => '1.23' },
);
 $build->dispatch('build');
 $build->dispatch('test', verbose => 1);
 $build->dispatch('install');

The first argument to dispatch() is the name of the action, and any
 following arguments are named
parameters.

This is the interface we use to test Module::Build itself in the
 regression tests.

Installing to a temporary directory
To create packages for package managers like RedHat's rpm or
 Debian's deb, you may need to
install to a temporary directory
 first and then create the package from that temporary installation.
 To
do this, specify the destdir parameter to the install action:

 ./Build install --destdir /tmp/my-package-1.003

This essentially just prepends all the installation paths with the /tmp/my-package-1.003 directory.

Installing to a non-standard directory
To install to a non-standard directory (for example, if you don't have
 permission to install in the
system-wide directories), you can use the install_base or prefix parameters:

 ./Build install --install_base /foo/bar

See "INSTALL PATHS" in Module::Build for a much more complete
 discussion of how installation
paths are determined.

Perl version 5.12.4 documentation - Module::Build::Cookbook

Page 3http://perldoc.perl.org

Installing in the same location as ExtUtils::MakeMaker
With the introduction of --prefix in Module::Build 0.28 and INSTALL_BASE in
ExtUtils::MakeMaker 6.31 its easy to get them both
 to install to the same locations.

First, ensure you have at least version 0.28 of Module::Build
 installed and 6.31 of
ExtUtils::MakeMaker. Prior versions have
 differing (and in some cases quite strange) installation
behaviors.

The following installation flags are equivalent between ExtUtils::MakeMaker and
Module::Build.

 MakeMaker Module::Build
 PREFIX=... --prefix ...
 INSTALL_BASE=... --install_base ...
 DESTDIR=... --destdir ...
 LIB=... --install_path lib=...
 INSTALLDIRS=... --installdirs ...
 INSTALLDIRS=perl --installdirs core
 UNINST=... --uninst ...
 INC=... --extra_compiler_flags ...
 POLLUTE=1 --extra_compiler_flags -DPERL_POLLUTE

For example, if you are currently installing MakeMaker modules with
 this command:

 perl Makefile.PL PREFIX=~
 make test
 make install UNINST=1

You can install into the same location with Module::Build using this:

 perl Build.PL --prefix ~
 ./Build test
 ./Build install --uninst 1

prefix vs install_base

The behavior of prefix is complicated and depends on
 how your Perl is configured. The resulting
installation locations
 will vary from machine to machine and even different installations of
 Perl on the
same machine. Because of this, it's difficult to document
 where prefix will place your modules.

In contrast, install_base has predictable, easy to explain
 installation locations. Now that
Module::Build and MakeMaker both
 have install_base there is little reason to use prefix
other
 than to preserve your existing installation locations. If you are
 starting a fresh Perl installation
we encourage you to use install_base. If you have an existing installation installed via prefix,
consider moving it to an installation structure matching install_base and using that instead.

Running a single test file
Module::Build supports running a single test, which enables you to
 track down errors more
quickly. Use the following format:

 ./Build test --test_files t/mytest.t

In addition, you may want to run the test in verbose mode to get more
 informative output:

 ./Build test --test_files t/mytest.t --verbose 1

I run this so frequently that I define the following shell alias:

Perl version 5.12.4 documentation - Module::Build::Cookbook

Page 4http://perldoc.perl.org

 alias t './Build test --verbose 1 --test_files'

So then I can just execute t t/mytest.t to run a single test.

ADVANCED RECIPES
Making a CPAN.pm-compatible distribution

New versions of CPAN.pm understand how to use a Build.PL script,
 but old versions don't. If authors
want to help users who have old
 versions, some form of Makefile.PL should be supplied. The easiest

way to accomplish this is to use the create_makefile_pl parameter to Module::Build->new()
in the Build.PL script, which can
 create various flavors of Makefile.PL during the dist action.

As a best practice, we recommend using the "traditional" style of Makefile.PL unless your distribution
has needs that can't be
 accomplished that way.

The Module::Build::Compat module, which is part of Module::Build's distribution, is
responsible for creating these Makefile.PLs. Please see Module::Build::Compat for the details.

Changing the order of the build process
The build_elements property specifies the steps Module::Build
 will take when building a
distribution. To change the build order,
 change the order of the entries in that property:

 # Process pod files first
 my @e = @{$build->build_elements};
 my ($i) = grep {$e[$_] eq 'pod'} 0..$#e;
 unshift @e, splice @e, $i, 1;

Currently, build_elements has the following default value:

 [qw(PL support pm xs pod script)]

Do take care when altering this property, since there may be
 non-obvious (and non-documented!)
ordering dependencies in the Module::Build code.

Adding new file types to the build process
Sometimes you might have extra types of files that you want to install
 alongside the standard types
like .pm and .pod files. For
 instance, you might have a Bar.dat file containing some data
 related to the
Foo::Bar module and you'd like for it to end up as Foo/Bar.dat somewhere in perl's @INC path so
Foo::Bar can
 access it easily at runtime. The following code from a sample Build.PL file
demonstrates how to accomplish this:

 use Module::Build;
 my $build = Module::Build->new
 (
 module_name => 'Foo::Bar',
 ...other stuff here...
);
 $build->add_build_element('dat');
 $build->create_build_script;

This will find all .dat files in the lib/ directory, copy them
 to the blib/lib/ directory during the build
action, and install
 them during the install action.

If your extra files aren't located in the lib/ directory in your
 distribution, you can explicitly say where
they are, just as you'd do
 with .pm or .pod files:

 use Module::Build;
 my $build = new Module::Build

Perl version 5.12.4 documentation - Module::Build::Cookbook

Page 5http://perldoc.perl.org

 (
 module_name => 'Foo::Bar',
 dat_files => {'some/dir/Bar.dat' => 'lib/Foo/Bar.dat'},
 ...other stuff here...
);
 $build->add_build_element('dat');
 $build->create_build_script;

If your extra files actually need to be created on the user's machine,
 or if they need some other kind of
special processing, you'll probably
 want to subclass Module::Build and create a special method to
process them, named process_${kind}_files():

 use Module::Build;
 my $class = Module::Build->subclass(code => <<'EOF');
 sub process_dat_files {
 my $self = shift;
 ... locate and process *.dat files,
 ... and create something in blib/lib/
 }
 EOF
 my $build = $class->new
 (
 module_name => 'Foo::Bar',
 ...other stuff here...
);
 $build->add_build_element('dat');
 $build->create_build_script;

If your extra files don't go in lib/ but in some other place, see Adding new elements to the install
process for how to actually
 get them installed.

Please note that these examples use some capabilities of Module::Build
 that first appeared in version
0.26. Before that it could
 still be done, but the simple cases took a bit more work.

Adding new elements to the install process
By default, Module::Build creates seven subdirectories of the blib
 directory during the build process:
lib, arch, bin, script, bindoc, libdoc, and html (some of these may be
 missing or empty if there's
nothing to go in them). Anything copied
 to these directories during the build will eventually be installed
during the install action (see "INSTALL PATHS" in Module::Build.

If you need to create a new custom type of installable element, e.g. conf,
 then you need to tell
Module::Build where things in blib/conf/
 should be installed. To do this, use the install_path
parameter to
 the new() method:

 my $build = Module::Build->new
 (
 ...other stuff here...
 install_path => { conf => $installation_path }
);

Or you can call the install_path() method later:

 $build->install_path(conf => $installation_path);

The user may also specify the path on the command line:

 perl Build.PL --install_path conf=/foo/path/etc

Perl version 5.12.4 documentation - Module::Build::Cookbook

Page 6http://perldoc.perl.org

The important part, though, is that somehow the install path needs
 to be set, or else nothing in the
blib/conf/ directory will get
 installed, and a runtime error during the install action will
 result.

See also Adding new file types to the build process for how to
 create the stuff in blib/conf/ in the first
place.

EXAMPLES ON CPAN
Several distributions on CPAN are making good use of various features
 of Module::Build. They can
serve as real-world examples for others.

SVN-Notify-Mirror
http://search.cpan.org/~jpeacock/SVN-Notify-Mirror/

John Peacock, author of the SVN-Notify-Mirror distribution, says:

1. Using auto_features, I check to see whether two optional
 modules are available -
SVN::Notify::Config and Net::SSH;

2. If the S::N::Config module is loaded, I automatically
 generate test files for it during Build (using the
PL_files
 property).

3. If the ssh_feature is available, I ask if the user wishes
 to perform the ssh tests (since it requires
a little preliminary
 setup);

4. Only if the user has ssh_feature and answers yes to the
 testing, do I generate a test file.

I'm sure I could not have handled this complexity with EU::MM, but it
 was very easy to do with
M::B.

Modifying an action
Sometimes you might need an to have an action, say ./Build install,
 do something unusual.
For instance, you might need to change the
 ownership of a file or do something else peculiar to your
application.

You can subclass Module::Build on the fly using the subclass()
 method and override the
methods that perform the actions. You may
 need to read through Module::Build::Authoring
and Module::Build::API to find the methods you want to override. All
 "action" methods are
implemented by a method called "ACTION_" followed
 by the action's name, so here's an example of
how it would work for
 the install action:

 # Build.PL
 use Module::Build;
 my $class = Module::Build->subclass(
 class => "Module::Build::Custom",
 code => <<'SUBCLASS');

 sub ACTION_install {
 my $self = shift;
 # YOUR CODE HERE
 $self->SUPER::ACTION_install;
 }
 SUBCLASS

 $class->new(
 module_name => 'Your::Module',
 # rest of the usual Module::Build parameters
)->create_build_script;

Perl version 5.12.4 documentation - Module::Build::Cookbook

Page 7http://perldoc.perl.org

Adding an action
You can add a new ./Build action simply by writing the method for
 it in your subclass. Use
depends_on to declare that another action
 must have been run before your action.

For example, let's say you wanted to be able to write ./Build
 commit to test your code and commit
it to Subversion.

 # Build.PL
 use Module::Build;
 my $class = Module::Build->subclass(
 class => "Module::Build::Custom",
 code => <<'SUBCLASS');

 sub ACTION_commit {
 my $self = shift;

 $self->depends_on("test");
 $self->do_system(qw(svn commit));
 }
 SUBCLASS

Bundling Module::Build
Note: This section probably needs an update as the technology improves
 (see contrib/bundle.pl in the
distribution).

Suppose you want to use some new-ish features of Module::Build,
 e.g. newer than the version of
Module::Build your users are likely to
 already have installed on their systems. The first thing you
should
 do is set configure_requires to your minimum version of
 Module::Build. See
Module::Build::Authoring.

But not every build system honors configure_requires yet. Here's
 how you can ship a copy of
Module::Build, but still use a newer
 installed version to take advantage of any bug fixes and upgrades.

First, install Module::Build into Your-Project/inc/Module-Build.
 CPAN will not index anything in the inc
directory so this copy will
 not show up in CPAN searches.

 cd Module-Build
 perl Build.PL --install_base /path/to/Your-Project/inc/Module-Build
 ./Build test
 ./Build install

You should now have all the Module::Build .pm files in Your-Project/inc/Module-Build/lib/perl5.

Next, add this to the top of your Build.PL.

 my $Bundled_MB = 0.30; # or whatever version it was.

 # Find out what version of Module::Build is installed or fail quietly.
 # This should be cross-platform.
 my $Installed_MB =
 `$^X -e "eval q{require Module::Build; print
Module::Build->VERSION} or exit 1";

 # some operating systems put a newline at the end of every print.
 chomp $Installed_MB;

Perl version 5.12.4 documentation - Module::Build::Cookbook

Page 8http://perldoc.perl.org

 $Installed_MB = 0 if $?;

 # Use our bundled copy of Module::Build if it's newer than the
installed.
 unshift @INC, "inc/Module-Build/lib/perl5" if $Bundled_MB >
$Installed_MB;

 require Module::Build;

And write the rest of your Build.PL normally. Module::Build will
 remember your change to @INC and
use it when you run ./Build.

In the future, we hope to provide a more automated solution for this
 scenario; see inc/latest.pm in
the Module::Build distribution for
 one indication of the direction we're moving.

AUTHOR
Ken Williams <kwilliams@cpan.org>

COPYRIGHT
Copyright (c) 2001-2008 Ken Williams. All rights reserved.

This library is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

SEE ALSO
perl(1), Module::Build(3), Module::Build::Authoring(3), Module::Build::API(3)

