
Perl version 5.12.4 documentation - TAP::Parser

Page 1http://perldoc.perl.org

NAME
TAP::Parser - Parse TAP output

VERSION
Version 3.17

SYNOPSIS
 use TAP::Parser;

 my $parser = TAP::Parser->new({ source => $source });

 while (my $result = $parser->next) {
 print $result->as_string;
 }

DESCRIPTION
TAP::Parser is designed to produce a proper parse of TAP output. For
 an example of how to run
tests through this module, see the simple
 harnesses examples/.

There's a wiki dedicated to the Test Anything Protocol:

http://testanything.org

It includes the TAP::Parser Cookbook:

http://testanything.org/wiki/index.php/TAP::Parser_Cookbook

METHODS
Class Methods
new

 my $parser = TAP::Parser->new(\%args);

Returns a new TAP::Parser object.

The arguments should be a hashref with one of the following keys:

* source

This is the preferred method of passing arguments to the constructor. To
 determine how to
handle the source, the following steps are taken.

If the source contains a newline, it's assumed to be a string of raw TAP
 output.

If the source is a reference, it's assumed to be something to pass to
 the
TAP::Parser::Iterator::Stream constructor. This is used
 internally and you should not use it.

Otherwise, the parser does a -e check to see if the source exists. If so,
 it attempts to execute
the source and read the output as a stream. This is by
 far the preferred method of using the
parser.

 foreach my $file (@test_files) {
 my $parser = TAP::Parser->new({ source => $file });
 # do stuff with the parser
 }

* tap

The value should be the complete TAP output.

Perl version 5.12.4 documentation - TAP::Parser

Page 2http://perldoc.perl.org

* exec

If passed an array reference, will attempt to create the iterator by
 passing a
TAP::Parser::Source object to TAP::Parser::Iterator::Source, using the array reference strings
as
 the command arguments to IPC::Open3::open3:

 exec => ['/usr/bin/ruby', 't/my_test.rb']

Note that source and exec are mutually exclusive.

The following keys are optional.

* callback

If present, each callback corresponding to a given result type will be called
 with the result as
the argument if the run method is used:

 my %callbacks = (
 test => \&test_callback,
 plan => \&plan_callback,
 comment => \&comment_callback,
 bailout => \&bailout_callback,
 unknown => \&unknown_callback,
);

 my $aggregator = TAP::Parser::Aggregator->new;
 foreach my $file (@test_files) {
 my $parser = TAP::Parser->new(
 {
 source => $file,
 callbacks => \%callbacks,
 }
);
 $parser->run;
 $aggregator->add($file, $parser);
 }

* switches

If using a Perl file as a source, optional switches may be passed which will
 be used when
invoking the perl executable.

 my $parser = TAP::Parser->new({
 source => $test_file,
 switches => '-Ilib',
 });

* test_args

Used in conjunction with the source option to supply a reference to
 an @ARGV style array of
arguments to pass to the test program.

* spool

If passed a filehandle will write a copy of all parsed TAP to that handle.

* merge

If false, STDERR is not captured (though it is 'relayed' to keep it
 somewhat synchronized with
STDOUT.)

If true, STDERR and STDOUT are the same filehandle. This may cause
 breakage if STDERR
contains anything resembling TAP format, but does
 allow exact synchronization.

Perl version 5.12.4 documentation - TAP::Parser

Page 3http://perldoc.perl.org

Subtleties of this behavior may be platform-dependent and may change in
 the future.

* source_class

This option was introduced to let you easily customize which source class
 the parser should
use. It defaults to TAP::Parser::Source.

See also make_source.

* perl_source_class

This option was introduced to let you easily customize which perl source
 class the parser
should use. It defaults to TAP::Parser::Source::Perl.

See also make_perl_source.

* grammar_class

This option was introduced to let you easily customize which grammar class
 the parser should
use. It defaults to TAP::Parser::Grammar.

See also make_grammar.

* iterator_factory_class

This option was introduced to let you easily customize which iterator
 factory class the parser
should use. It defaults to TAP::Parser::IteratorFactory.

See also make_iterator.

* result_factory_class

This option was introduced to let you easily customize which result
 factory class the parser
should use. It defaults to TAP::Parser::ResultFactory.

See also make_result.

Instance Methods
next

 my $parser = TAP::Parser->new({ source => $file });
 while (my $result = $parser->next) {
 print $result->as_string, "\n";
 }

This method returns the results of the parsing, one result at a time. Note
 that it is destructive. You
can't rewind and examine previous results.

If callbacks are used, they will be issued before this call returns.

Each result returned is a subclass of TAP::Parser::Result. See that
 module and related classes for
more information on how to use them.

run

 $parser->run;

This method merely runs the parser and parses all of the TAP.

make_source

Make a new TAP::Parser::Source object and return it. Passes through any
 arguments given.

The source_class can be customized, as described in new.

Perl version 5.12.4 documentation - TAP::Parser

Page 4http://perldoc.perl.org

make_perl_source

Make a new TAP::Parser::Source::Perl object and return it. Passes through
 any arguments given.

The perl_source_class can be customized, as described in new.

make_grammar

Make a new TAP::Parser::Grammar object and return it. Passes through any
 arguments given.

The grammar_class can be customized, as described in new.

make_iterator

Make a new TAP::Parser::Iterator object using the parser's TAP::Parser::IteratorFactory, and return it.
Passes through any arguments
 given.

The iterator_factory_class can be customized, as described in new.

make_result

Make a new TAP::Parser::Result object using the parser's TAP::Parser::ResultFactory, and return it.
Passes through any arguments
 given.

The result_factory_class can be customized, as described in new.

INDIVIDUAL RESULTS
If you've read this far in the docs, you've seen this:

 while (my $result = $parser->next) {
 print $result->as_string;
 }

Each result returned is a TAP::Parser::Result subclass, referred to as result types.

Result types
Basically, you fetch individual results from the TAP. The six types, with
 examples of each, are as
follows:

* Version

 TAP version 12

* Plan

 1..42

* Pragma

 pragma +strict

* Test

 ok 3 - We should start with some foobar!

* Comment

 # Hope we don't use up the foobar.

* Bailout

 Bail out! We ran out of foobar!

Perl version 5.12.4 documentation - TAP::Parser

Page 5http://perldoc.perl.org

* Unknown

 ... yo, this ain't TAP! ...

Each result fetched is a result object of a different type. There are common
 methods to each result
object and different types may have methods unique to
 their type. Sometimes a type method may be
overridden in a subclass, but its
 use is guaranteed to be identical.

Common type methods
type

Returns the type of result, such as comment or test.

as_string

Prints a string representation of the token. This might not be the exact
 output, however. Tests will
have test numbers added if not present, TODO and
 SKIP directives will be capitalized and, in general,
things will be cleaned
 up. If you need the original text for the token, see the raw method.

raw

Returns the original line of text which was parsed.

is_plan

Indicates whether or not this is the test plan line.

is_test

Indicates whether or not this is a test line.

is_comment

Indicates whether or not this is a comment. Comments will generally only
 appear in the TAP stream if
STDERR is merged to STDOUT. See the merge option.

is_bailout

Indicates whether or not this is bailout line.

is_yaml

Indicates whether or not the current item is a YAML block.

is_unknown

Indicates whether or not the current line could be parsed.

is_ok

 if ($result->is_ok) { ... }

Reports whether or not a given result has passed. Anything which is not a
 test result returns true.
This is merely provided as a convenient shortcut
 which allows you to do this:

 my $parser = TAP::Parser->new({ source => $source });
 while (my $result = $parser->next) {
 # only print failing results
 print $result->as_string unless $result->is_ok;
 }

plan methods
 if ($result->is_plan) { ... }

If the above evaluates as true, the following methods will be available on the $result object.

Perl version 5.12.4 documentation - TAP::Parser

Page 6http://perldoc.perl.org

plan

 if ($result->is_plan) {
 print $result->plan;
 }

This is merely a synonym for as_string.

directive

 my $directive = $result->directive;

If a SKIP directive is included with the plan, this method will return it.

 1..0 # SKIP: why bother?

explanation

 my $explanation = $result->explanation;

If a SKIP directive was included with the plan, this method will return the
 explanation, if any.

pragma methods
 if ($result->is_pragma) { ... }

If the above evaluates as true, the following methods will be available on the $result object.

pragmas

Returns a list of pragmas each of which is a + or - followed by the
 pragma name.

commment methods
 if ($result->is_comment) { ... }

If the above evaluates as true, the following methods will be available on the $result object.

comment

 if ($result->is_comment) {
 my $comment = $result->comment;
 print "I have something to say: $comment";
 }

bailout methods
 if ($result->is_bailout) { ... }

If the above evaluates as true, the following methods will be available on the $result object.

explanation

 if ($result->is_bailout) {
 my $explanation = $result->explanation;
 print "We bailed out because ($explanation)";
 }

If, and only if, a token is a bailout token, you can get an "explanation" via
 this method. The
explanation is the text after the mystical "Bail out!" words
 which appear in the tap output.

Perl version 5.12.4 documentation - TAP::Parser

Page 7http://perldoc.perl.org

unknown methods
 if ($result->is_unknown) { ... }

There are no unique methods for unknown results.

test methods
 if ($result->is_test) { ... }

If the above evaluates as true, the following methods will be available on the $result object.

ok

 my $ok = $result->ok;

Returns the literal text of the ok or not ok status.

number

 my $test_number = $result->number;

Returns the number of the test, even if the original TAP output did not supply
 that number.

description

 my $description = $result->description;

Returns the description of the test, if any. This is the portion after the
 test number but before the
directive.

directive

 my $directive = $result->directive;

Returns either TODO or SKIP if either directive was present for a test
 line.

explanation

 my $explanation = $result->explanation;

If a test had either a TODO or SKIP directive, this method will return
 the accompanying explantion, if
present.

 not ok 17 - 'Pigs can fly' # TODO not enough acid

For the above line, the explanation is not enough acid.

is_ok

 if ($result->is_ok) { ... }

Returns a boolean value indicating whether or not the test passed. Remember
 that for TODO tests,
the test always passes.

Note: this was formerly passed. The latter method is deprecated and
 will issue a warning.

is_actual_ok

 if ($result->is_actual_ok) { ... }

Returns a boolean value indicating whether or not the test passed, regardless
 of its TODO status.

Perl version 5.12.4 documentation - TAP::Parser

Page 8http://perldoc.perl.org

Note: this was formerly actual_passed. The latter method is deprecated
 and will issue a warning.

is_unplanned

 if ($test->is_unplanned) { ... }

If a test number is greater than the number of planned tests, this method will
 return true. Unplanned
tests will always return false for is_ok,
 regardless of whether or not the test has_todo (see
TAP::Parser::Result::Test for more information about this).

has_skip

 if ($result->has_skip) { ... }

Returns a boolean value indicating whether or not this test had a SKIP
 directive.

has_todo

 if ($result->has_todo) { ... }

Returns a boolean value indicating whether or not this test had a TODO
 directive.

Note that TODO tests always pass. If you need to know whether or not
 they really passed, check the
is_actual_ok method.

in_todo

 if ($parser->in_todo) { ... }

True while the most recent result was a TODO. Becomes true before the
 TODO result is returned and
stays true until just before the next non-
 TODO test is returned.

TOTAL RESULTS
After parsing the TAP, there are many methods available to let you dig through
 the results and
determine what is meaningful to you.

Individual Results
These results refer to individual tests which are run.

passed

 my @passed = $parser->passed; # the test numbers which passed
 my $passed = $parser->passed; # the number of tests which passed

This method lets you know which (or how many) tests passed. If a test failed
 but had a TODO
directive, it will be counted as a passed test.

failed

 my @failed = $parser->failed; # the test numbers which failed
 my $failed = $parser->failed; # the number of tests which failed

This method lets you know which (or how many) tests failed. If a test passed
 but had a TODO
directive, it will NOT be counted as a failed test.

actual_passed

 # the test numbers which actually passed
 my @actual_passed = $parser->actual_passed;

 # the number of tests which actually passed

Perl version 5.12.4 documentation - TAP::Parser

Page 9http://perldoc.perl.org

 my $actual_passed = $parser->actual_passed;

This method lets you know which (or how many) tests actually passed,
 regardless of whether or not a
TODO directive was found.

actual_ok

This method is a synonym for actual_passed.

actual_failed

 # the test numbers which actually failed
 my @actual_failed = $parser->actual_failed;

 # the number of tests which actually failed
 my $actual_failed = $parser->actual_failed;

This method lets you know which (or how many) tests actually failed,
 regardless of whether or not a
TODO directive was found.

todo

 my @todo = $parser->todo; # the test numbers with todo directives
 my $todo = $parser->todo; # the number of tests with todo directives

This method lets you know which (or how many) tests had TODO directives.

todo_passed

 # the test numbers which unexpectedly succeeded
 my @todo_passed = $parser->todo_passed;

 # the number of tests which unexpectedly succeeded
 my $todo_passed = $parser->todo_passed;

This method lets you know which (or how many) tests actually passed but were
 declared as "TODO"
tests.

todo_failed

 # deprecated in favor of 'todo_passed'. This method was horribly
misnamed.

This was a badly misnamed method. It indicates which TODO tests unexpectedly
 succeeded. Will
now issue a warning and call todo_passed.

skipped

 my @skipped = $parser->skipped; # the test numbers with SKIP directives
 my $skipped = $parser->skipped; # the number of tests with SKIP directives

This method lets you know which (or how many) tests had SKIP directives.

Pragmas
pragma

Get or set a pragma. To get the state of a pragma:

 if ($p->pragma('strict')) {
 # be strict

Perl version 5.12.4 documentation - TAP::Parser

Page 10http://perldoc.perl.org

 }

To set the state of a pragma:

 $p->pragma('strict', 1); # enable strict mode

pragmas

Get a list of all the currently enabled pragmas:

 my @pragmas_enabled = $p->pragmas;

Summary Results
These results are "meta" information about the total results of an individual
 test program.

plan

 my $plan = $parser->plan;

Returns the test plan, if found.

good_plan

Deprecated. Use is_good_plan instead.

is_good_plan

 if ($parser->is_good_plan) { ... }

Returns a boolean value indicating whether or not the number of tests planned
 matches the number
of tests run.

Note: this was formerly good_plan. The latter method is deprecated and
 will issue a warning.

And since we're on that subject ...

tests_planned

 print $parser->tests_planned;

Returns the number of tests planned, according to the plan. For example, a
 plan of '1..17' will mean
that 17 tests were planned.

tests_run

 print $parser->tests_run;

Returns the number of tests which actually were run. Hopefully this will
 match the number of
$parser->tests_planned.

skip_all

Returns a true value (actually the reason for skipping) if all tests
 were skipped.

start_time

Returns the time when the Parser was created.

end_time

Returns the time when the end of TAP input was seen.

Perl version 5.12.4 documentation - TAP::Parser

Page 11http://perldoc.perl.org

has_problems

 if ($parser->has_problems) {
 ...
 }

This is a 'catch-all' method which returns true if any tests have currently
 failed, any TODO tests
unexpectedly succeeded, or any parse errors occurred.

version

 $parser->version;

Once the parser is done, this will return the version number for the
 parsed TAP. Version numbers
were introduced with TAP version 13 so if no
 version number is found version 12 is assumed.

exit

 $parser->exit;

Once the parser is done, this will return the exit status. If the parser ran
 an executable, it returns the
exit status of the executable.

wait

 $parser->wait;

Once the parser is done, this will return the wait status. If the parser ran
 an executable, it returns the
wait status of the executable. Otherwise, this
 mererely returns the exit status.

ignore_exit
 $parser->ignore_exit(1);

Tell the parser to ignore the exit status from the test when determining
 whether the test passed.
Normally tests with non-zero exit status are
 considered to have failed even if all individual tests
passed. In cases
 where it is not possible to control the exit value of the test script
 use this option to
ignore it.

parse_errors

 my @errors = $parser->parse_errors; # the parser errors
 my $errors = $parser->parse_errors; # the number of parser_errors

Fortunately, all TAP output is perfect. In the event that it is not, this
 method will return parser errors.
Note that a junk line which the parser does
 not recognize is not an error. This allows this parser to
handle future
 versions of TAP. The following are all TAP errors reported by the parser:

* Misplaced plan

The plan (for example, '1..5'), must only come at the beginning or end of the
 TAP output.

* No plan

Gotta have a plan!

* More than one plan

 1..3
 ok 1 - input file opened
 not ok 2 - first line of the input valid # todo some data
 ok 3 read the rest of the file
 1..3

Perl version 5.12.4 documentation - TAP::Parser

Page 12http://perldoc.perl.org

Right. Very funny. Don't do that.

* Test numbers out of sequence

 1..3
 ok 1 - input file opened
 not ok 2 - first line of the input valid # todo some data
 ok 2 read the rest of the file

That last test line above should have the number '3' instead of '2'.

Note that it's perfectly acceptable for some lines to have test numbers and
 others to not have
them. However, when a test number is found, it must be in
 sequence. The following is also an
error:

 1..3
 ok 1 - input file opened
 not ok - first line of the input valid # todo some data
 ok 2 read the rest of the file

But this is not:

 1..3
 ok - input file opened
 not ok - first line of the input valid # todo some data
 ok 3 read the rest of the file

get_select_handles

Get an a list of file handles which can be passed to select to
 determine the readiness of this parser.

delete_spool

Delete and return the spool.

 my $fh = $parser->delete_spool;

CALLBACKS
As mentioned earlier, a "callback" key may be added to the TAP::Parser constructor. If present,
each callback corresponding to a
 given result type will be called with the result as the argument if the
run method is used. The callback is expected to be a subroutine
 reference (or anonymous
subroutine) which is invoked with the parser
 result as its argument.

 my %callbacks = (
 test => \&test_callback,
 plan => \&plan_callback,
 comment => \&comment_callback,
 bailout => \&bailout_callback,
 unknown => \&unknown_callback,
);

 my $aggregator = TAP::Parser::Aggregator->new;
 foreach my $file (@test_files) {
 my $parser = TAP::Parser->new(
 {
 source => $file,
 callbacks => \%callbacks,
 }
);
 $parser->run;

Perl version 5.12.4 documentation - TAP::Parser

Page 13http://perldoc.perl.org

 $aggregator->add($file, $parser);
 }

Callbacks may also be added like this:

 $parser->callback(test => \&test_callback);
 $parser->callback(plan => \&plan_callback);

The following keys allowed for callbacks. These keys are case-sensitive.

* test

Invoked if $result->is_test returns true.

* version

Invoked if $result->is_version returns true.

* plan

Invoked if $result->is_plan returns true.

* comment

Invoked if $result->is_comment returns true.

* bailout

Invoked if $result->is_unknown returns true.

* yaml

Invoked if $result->is_yaml returns true.

* unknown

Invoked if $result->is_unknown returns true.

* ELSE

If a result does not have a callback defined for it, this callback will
 be invoked. Thus, if all of
the previous result types are specified as
 callbacks, this callback will never be invoked.

* ALL

This callback will always be invoked and this will happen for each
 result after one of the above
callbacks is invoked. For example, if Term::ANSIColor is loaded, you could use the following
to color your
 test output:

 my %callbacks = (
 test => sub {
 my $test = shift;
 if ($test->is_ok && not $test->directive) {
 # normal passing test
 print color 'green';
 }
 elsif (!$test->is_ok) { # even if it's TODO
 print color 'white on_red';
 }
 elsif ($test->has_skip) {
 print color 'white on_blue';

 }
 elsif ($test->has_todo) {
 print color 'white';

Perl version 5.12.4 documentation - TAP::Parser

Page 14http://perldoc.perl.org

 }
 },
 ELSE => sub {
 # plan, comment, and so on (anything which isn't a test
line)
 print color 'black on_white';
 },
 ALL => sub {
 # now print them
 print shift->as_string;
 print color 'reset';
 print "\n";
 },
);

* EOF

Invoked when there are no more lines to be parsed. Since there is no
 accompanying
TAP::Parser::Result object the TAP::Parser object is
 passed instead.

TAP GRAMMAR
If you're looking for an EBNF grammar, see TAP::Parser::Grammar.

BACKWARDS COMPATABILITY
The Perl-QA list attempted to ensure backwards compatability with Test::Harness. However, there are
some minor differences.

Differences
* TODO plans

A little-known feature of Test::Harness is that it supported TODO
 lists in the plan:

 1..2 todo 2
 ok 1 - We have liftoff
 not ok 2 - Anti-gravity device activated

Under Test::Harness, test number 2 would pass because it was
 listed as a TODO test on the
plan line. However, we are not aware of
 anyone actually using this feature and hard-coding
test numbers is
 discouraged because it's very easy to add a test and break the test
 number
sequence. This makes test suites very fragile. Instead, the
 following should be used:

 1..2
 ok 1 - We have liftoff
 not ok 2 - Anti-gravity device activated # TODO

* 'Missing' tests

It rarely happens, but sometimes a harness might encounter
 'missing tests:

 ok 1
 ok 2
 ok 15
 ok 16
 ok 17

Test::Harness would report tests 3-14 as having failed. For the TAP::Parser, these tests are
not considered failed because they've
 never run. They're reported as parse failures (tests out
of sequence).

Perl version 5.12.4 documentation - TAP::Parser

Page 15http://perldoc.perl.org

SUBCLASSING
If you find you need to provide custom functionality (as you would have using Test::Harness::Straps),
you're in luck: TAP::Parser and friends are
 designed to be easily subclassed.

Before you start, it's important to know a few things:

1 All TAP::* objects inherit from TAP::Object.

2 Most TAP::* classes have a SUBCLASSING section to guide you.

3 Note that TAP::Parser is designed to be the central 'maker' - ie: it is
 responsible for creating
new objects in the TAP::Parser::* namespace.

This makes it possible for you to have a single point of configuring what
 subclasses should be
used, which in turn means that in many cases you'll find
 you only need to sub-class one of the
parser's components.

4 By subclassing, you may end up overriding undocumented methods. That's not
 a bad thing per
se, but be forewarned that undocumented methods may change
 without warning from one release
to the next - we cannot guarantee backwards
 compatability. If any documented method needs
changing, it will be
 deprecated first, and changed in a later release.

Parser Components
Sources

A TAP parser consumes input from a source. There are currently two types
 of sources:
TAP::Parser::Source for general non-perl commands, and TAP::Parser::Source::Perl. You can
subclass both of them. You'll need to
 customize your parser by setting the source_class &
perl_source_class
 parameters. See new for more details.

If you need to customize the objects on creation, subclass TAP::Parser and
 override make_source or
make_perl_source.

Iterators

A TAP parser uses iterators to loop through the stream provided by the
 parser's source. There are
quite a few types of Iterators available.
 Choosing which class to use is the responsibility of the iterator
factory.

To create your own iterators you'll have to subclass TAP::Parser::IteratorFactory and
TAP::Parser::Iterator. Then you'll
 need to customize the class used by your parser by setting the
iterator_factory_class parameter. See new for more details.

If you need to customize the objects on creation, subclass TAP::Parser and
 override make_iterator.

Results

A TAP parser creates TAP::Parser::Results as it iterates through the
 input stream. There are quite a
few result types available; choosing
 which class to use is the responsibility of the result factory.

To create your own result types you have two options:

option 1

Subclass TAP::Parser::Result and register your new result type/class with
 the default
TAP::Parser::ResultFactory.

option 2

Subclass TAP::Parser::ResultFactory itself and implement your own TAP::Parser::Result creation
logic. Then you'll need to customize the
 class used by your parser by setting the
result_factory_class parameter.
 See new for more details.

If you need to customize the objects on creation, subclass TAP::Parser and
 override make_result.

Perl version 5.12.4 documentation - TAP::Parser

Page 16http://perldoc.perl.org

Grammar

TAP::Parser::Grammar is the heart of the parser - it tokenizes the TAP
 input stream and produces
results. If you need to customize its behaviour
 you should probably familiarize yourself with the source
first. Enough
 lecturing.

Subclass TAP::Parser::Grammar and customize your parser by setting the grammar_class
parameter. See new for more details.

If you need to customize the objects on creation, subclass TAP::Parser and
 override make_grammar

ACKNOWLEDGEMENTS
All of the following have helped. Bug reports, patches, (im)moral
 support, or just words of
encouragement have all been forthcoming.

* Michael Schwern

* Andy Lester

* chromatic

* GEOFFR

* Shlomi Fish

* Torsten Schoenfeld

* Jerry Gay

* Aristotle

* Adam Kennedy

* Yves Orton

* Adrian Howard

* Sean & Lil

* Andreas J. Koenig

* Florian Ragwitz

* Corion

* Mark Stosberg

* Matt Kraai

* David Wheeler

* Alex Vandiver

AUTHORS
Curtis "Ovid" Poe <ovid@cpan.org>

Andy Armstong <andy@hexten.net>

Eric Wilhelm @ <ewilhelm at cpan dot org>

Michael Peters <mpeters at plusthree dot com>

Leif Eriksen <leif dot eriksen at bigpond dot com>

Steve Purkis <spurkis@cpan.org>

Nicholas Clark <nick@ccl4.org>

BUGS
Please report any bugs or feature requests to bug-test-harness@rt.cpan.org, or through the
web interface at http://rt.cpan.org/NoAuth/ReportBug.html?Queue=Test-Harness.
 We will be notified,
and then you'll automatically be notified of
 progress on your bug as we make changes.

Perl version 5.12.4 documentation - TAP::Parser

Page 17http://perldoc.perl.org

Obviously, bugs which include patches are best. If you prefer, you can
 patch against bleed by via
anonymous checkout of the latest version:

 svn checkout http://svn.hexten.net/tapx

COPYRIGHT & LICENSE
Copyright 2006-2008 Curtis "Ovid" Poe, all rights reserved.

This program is free software; you can redistribute it and/or modify it
 under the same terms as Perl
itself.

