@ Pefl Perl version 5.14.0 documentation - perlipc

NAME

perlipc - Perl interprocess communication (signals, fifos, pipes, safe subprocesses, sockets, and
semaphores)

DESCRIPTION

The basic IPC facilities of Perl are built out of the good old Unix signals, named pipes, pipe opens, the
Berkeley socket routines, and SysV IPC calls. Each is used in slightly different situations.

Signals

Perl uses a simple signal handling model: the %SIG hash contains names or references of
user-installed signal handlers. These handlers will be called with an argument which is the name of
the signal that triggered it. A signal may be generated intentionally from a particular keyboard
sequence like control-C or control-Z, sent to you from another process, or triggered automatically by
the kernel when special events transpire, like a child process exiting, your own process running out of
stack space, or hitting a process file-size limit.

For example, to trap an interrupt signal, set up a handler like this:
our $shucks;
sub catch_zap {
my $signame = shift;

$shucks++;
die "Somebody sent me a SIG$signame";

}
$SIG{INT} = _ PACKAGE__ . "::catch_zap";
$SIG{INT} = \&catch zap; # best strategy

Prior to Perl 5.7.3 it was necessary to do as little as you possibly could in your handler; notice how all
we do is set a global variable and then raise an exception. That's because on most systems, libraries
are not re-entrant; particularly, memory allocation and I/O routines are not. That meant that doing
nearly anything in your handler could in theory trigger a memory fault and subsequent core dump -
see Deferred Signals (Safe Signals) below.

The names of the signals are the ones listed out by ki Il -1 on your system, or you can retrieve
them from the Config module. Set up an @signame list indexed by number to get the name and a
%signo hash table indexed by name to get the number:

use Config;
defined($Config{sig_name}) || die "No sigs?";
foreach $name (split(" ™, $Config{sig_name})) {
$signo{$Sname} = $i;
$signame[$i] = $name;
Si++;

}

So to check whether signal 17 and SIGALRM were the same, do just this:

print “signal #17 = $signame[17]\n"";
if ($signo{ALRM}) {

print "SIGALRM is $signo{ALRM}\n**;
}

You may also choose to assign the strings ""IGNORE"" or ""DEFAULT"" as the handler, in which case
Perl will try to discard the signal or do the default thing.

http://perldoc.perl.org Page 1

@ Pefl Perl version 5.14.0 documentation - perlipc

On most Unix platforms, the CHLD (sometimes also known as CLD) signal has special behavior with
respect to a value of ""IGNORE"". Setting $SI1G{CHLD} to " IGNORE"" on such a platform has the effect
of not creating zombie processes when the parent process fails to wait() on its child processes (i.e.,
child processes are automatically reaped). Calling wait() with $S1G{CHLD} set to ""IGNORE""
usually returns -1 on such platforms.

Some signals can be neither trapped nor ignored, such as the KILL and STOP (but not the TSTP)
signals. One strategy for temporarily ignoring signals is to use a local() on that hash element,
automatically restoring a previous value once your block is exited. Remember that values created by
the dynamically-scoped local() are "inherited" by functions called from within their caller's scope.

sub precious {
local $SIG{INT} = "IGNORE";
more_functions();

}

sub more_functions {
interrupts still ignored, for now...

}

Sending a signal to a negative process ID means that you send the signal to the entire Unix process
group. This code sends a hang-up signal to all processes in the current process group, and also sets
$SIG{HUP} to ""IGNORE"" so it doesn't kill itself:

block scope for local

local $SIG{HUP} = "I1GNORE";

kill HUP => -$$;

snazzy writing of: kill(""HUP", -$%)
}

Another interesting signal to send is signal number zero. This doesn't actually affect a child process,
but instead checks whether it's alive or has changed its UID.

unless (kill 0 => $kid_pid) {
warn "'something wicked happened to $kid _pid";
}

When directed at a process whose UID is not identical to that of the sending process, signal number
zero may fail because you lack permission to send the signal, even though the process is alive. You
may be able to determine the cause of failure using %1!.

unless (kill(0 => $pid) || $!'{EPERM}) {
warn "$pid looks dead";

}

You might also want to employ anonymous functions for simple signal handlers:

$SIG{INT} = sub { die "\nOutta here!\n" };

But that will be problematic for the more complicated handlers that need to reinstall themselves.
Because Perl's signal mechanism is currently based on the signal(3) function from the C library, you
may sometimes be so unfortunate as to run on systems where that function is "broken"; that is, it
behaves in the old unreliable SysV way rather than the newer, more reasonable BSD and POSIX
fashion. So you'll see defensive people writing signal handlers like this:

sub REAPER {
$waitedpid = wait;

http://perldoc.perl.org Page 2

@ Pefl Perl version 5.14.0 documentation - perlipc

loathe SysV: it makes us not only reinstate
the handler, but place it after the wait
$SIG{CHLD} = \&REAPER;

}
$SIG{CHLD} = \&REAPER;

now do something that forks...

or better still:

use POSIX ":sys_wait_h";
sub REAPER {
my $child;
IT a second child dies while in the signal handler caused by the
First death, we won"t get another signal. So must loop here else
we will leave the unreaped child as a zombie. And the next time
two children die we get another zombie. And so on.
while (($child = waitpid(-1, WNOHANG)) > 0) {
$Kid_Status{Schild} = $?;
}
$SIG{CHLD} = \&REAPER; # still loathe SysV
}
$SIG{CHLD} = \&REAPER;
do something that forks...

Be careful: gx(), system(), and some modules for calling external commands do a fork(), then wait()
for the result. Thus, your signal handler (&REAPER in the example) will be called. Because wait() was
already called by system() or gx(), the wait() in the signal handler will see no more zombies and will
therefore block.

The best way to prevent this issue is to use waitpid(), as in the following example:

use POSIX ":sys wait _h"; # for nonblocking read
my %children;

$SIG{CHLD} = sub {
don"t change $! and $? outside handler
local (8!, $?);
my $pid = waitpid(-1, WNOHANG);
return if $pid == -1;
return unless defined $children{$pid};
delete $children{$pid};
cleanup_child($pid, $?);

}:

while (1) {
my $pid = fork(Q);
die "cannot fork"™ unless defined $pid;
if ($pid == 0) {
#o...
exit 0;
} else {
$Schildren{$pid}=1;
#o...
system($command) ;

http://perldoc.perl.org Page 3

@ Pefl Perl version 5.14.0 documentation - perlipc

}

Signal handling is also used for timeouts in Unix. While safely protected within an eval{} block, you
set a signal handler to trap alarm signals and then schedule to have one delivered to you in some
number of seconds. Then try your blocking operation, clearing the alarm when it's done but not before
you've exited your eval{} block. If it goes off, you'll use die() to jump out of the block, much as you
might using longjmp() or throw() in other languages.

Here's an example:

my $ALARM_EXCEPTION = "alarm clock restart';
eval {
local $SIG{ALRM} = sub { die $ALARM_EXCEPTION };
alarm 10;
flock(FH, 2) # blocking write lock
|| die "cannot flock: $!";
alarm 0;

i% (3@ && $@ '~ quotemeta($ALARM_EXCEPTION)) { die }

If the operation being timed out is system() or gx(), this technique is liable to generate zombies. If this
matters to you, you'll need to do your own fork() and exec(), and kill the errant child process.

For more complex signal handling, you might see the standard POSIX module. Lamentably, this is
almost entirely undocumented, but the t/lib/posix.t file from the Perl source distribution has some
examples in it.

Handling the SIGHUP Signal in Daemons

A process that usually starts when the system boots and shuts down when the system is shut down is
called a daemon (Disk And Execution MON!itor). If a daemon process has a configuration file which is
modified after the process has been started, there should be a way to tell that process to reread its
configuration file without stopping the process. Many daemons provide this mechanism using a
SIGHUP signal handler. When you want to tell the daemon to reread the file, simply send it the
SIGHUP signal.

Not all platforms automatically reinstall their (native) signal handlers after a signal delivery. This
means that the handler works the first time the signal is sent, only. The solution to this problem is to
use POSIX signal handlers if available; their behavior is well-defined.

The following example implements a simple daemon, which restarts itself every time the SIGHUP
signal is received. The actual code is located in the subroutine code (), which just prints some
debugging info to show that it works; it should be replaced with the real code.

#1/usr/bin/perl -w
use POSIX O;
use FindBin ;

use File::Basename ();
use File::Spec::Functions;

$l = 1;

make the daemon cross-platform, so exec always calls the script
i1tself with the right path, no matter how the script was invoked.

http://perldoc.perl.org Page 4

@ Pefl Perl version 5.14.0 documentation - perlipc

my $script = File::Basename: :basename($0);
my $SELF = catfile($FindBin::Bin, $script);

POSIX unmasks the sigprocmask properly
my $sigset = POSIX::SigSet->new();
my $action = POSIX::SigAction->new(*'sigHUP_handler",
$sigset,
&POSIX: :SA_NODEFER) ;
POSIX: :sigaction(&POSIX: :SIGHUP, $action);

sub sigHUP_handler {
print ""got SIGHUP\n";
exec($SELF, @ARGV) || die "$0: couldn™t restart: $!";

}

code();

sub code {
print "PID: $$\n";
print "ARGV: @ARGV\n";
my $count = O;
while (++$count) {
sleep 2;
print "$count\n";

}

Deferred Signals (Safe Signals)

Before Perl 5.7.3, installing Perl code to deal with signals exposed you to danger from two things.
First, few system library functions are re-entrant. If the signal interrupts while Perl is executing one
function (like malloc(3) or printf(3)), and your signal handler then calls the same function again, you
could get unpredictable behavior--often, a core dump. Second, Perl isn't itself re-entrant at the lowest
levels. If the signal interrupts Perl while Perl is changing its own internal data structures, similarly
unpredictable behavior may result.

There were two things you could do, knowing this: be paranoid or be pragmatic. The paranoid
approach was to do as little as possible in your signal handler. Set an existing integer variable that
already has a value, and return. This doesn't help you if you're in a slow system call, which will just
restart. That means you have to die to longjmp(3) out of the handler. Even this is a little cavalier for
the true paranoiac, who avoids die in a handler because the system is out to get you. The pragmatic
approach was to say "l know the risks, but prefer the convenience", and to do anything you wanted in
your signal handler, and be prepared to clean up core dumps now and again.

Perl 5.7.3 and later avoid these problems by "deferring" signals. That is, when the signal is delivered
to the process by the system (to the C code that implements Perl) a flag is set, and the handler
returns immediately. Then at strategic "safe" points in the Perl interpreter (e.g. when it is about to
execute a new opcode) the flags are checked and the Perl level handler from %SIG is executed. The
"deferred" scheme allows much more flexibility in the coding of signal handlers as we know the Perl
interpreter is in a safe state, and that we are not in a system library function when the handler is
called. However the implementation does differ from previous Perls in the following ways:

Long-running opcodes

As the Perl interpreter looks at signal flags only when it is about to execute a new opcode, a
signal that arrives during a long-running opcode (e.g. a regular expression operation on a very
large string) will not be seen until the current opcode completes.

http://perldoc.perl.org Page 5

@ Pefl Perl version 5.14.0 documentation - perlipc

If a signal of any given type fires multiple times during an opcode (such as from a fine-grained
timer), the handler for that signal will be called only once, after the opcode completes; all other
instances will be discarded. Furthermore, if your system's signal queue gets flooded to the
point that there are signals that have been raised but not yet caught (and thus not deferred) at
the time an opcode completes, those signals may well be caught and deferred during
subsequent opcodes, with sometimes surprising results. For example, you may see alarms
delivered even after calling alarm(0) as the latter stops the raising of alarms but does not
cancel the delivery of alarms raised but not yet caught. Do not depend on the behaviors
described in this paragraph as they are side effects of the current implementation and may
change in future versions of Perl.

Interrupting 10

When a signal is delivered (e.g., SIGINT from a control-C) the operating system breaks into 10
operations like read(2), which is used to implement Perl's readline() function, the <> operator.
On older Perls the handler was called immediately (and as read is not "unsafe"”, this worked
well). With the "deferred" scheme the handler is not called immediately, and if Perl is using the
system's stdio library that library may restart the read without returning to Perl to give it a
chance to call the %SIG handler. If this happens on your system the solution is to use the
cperlio layer to do I0--at least on those handles that you want to be able to break into with
signals. (The :perlio layer checks the signal flags and calls %SIG handlers before resuming
IO operation.)

The default in Perl 5.7.3 and later is to automatically use the -perlio layer.

Note that it is not advisable to access a file handle within a signal handler where that signal
has interrupted an I/O operation on that same handle. While perl will at least try hard not to
crash, there are no guarantees of data integrity; for example, some data might get dropped or
written twice.

Some networking library functions like gethostbyname() are known to have their own
implementations of timeouts which may conflict with your timeouts. If you have problems with
such functions, try using the POSIX sigaction() function, which bypasses Perl safe signals. Be
warned that this does subject you to possible memory corruption, as described above.

Instead of setting $SIG{ALRM}:
local $SIG{ALRM} = sub { die "alarm" };

try something like the following:

use POSIX qw(SIGALRM);
POSIX: :sigaction(SIGALRM,
POSIX: :SigAction->new(sub { die "alarm” }))
Il die "Error setting SIGALRM handler: $!\n";

Another way to disable the safe signal behavior locally is to use the
Perl::Unsafe: :Signals module from CPAN, which affects all signals.

Restartable system calls

On systems that supported it, older versions of Perl used the SA_RESTART flag when
installing %SIG handlers. This meant that restartable system calls would continue rather than
returning when a signal arrived. In order to deliver deferred signals promptly, Perl 5.7.3 and
later do not use SA_RESTART. Consequently, restartable system calls can fail (with $! set to
EINTR) in places where they previously would have succeeded.

The default zperlio layer retries read, write and close as described above; interrupted
wait and waitpid calls will always be retried.
Signals as "faults"

Certain signals like SEGV, ILL, and BUS are generated by virtual memory addressing errors
and similar "faults". These are normally fatal: there is little a Perl-level handler can do with

http://perldoc.perl.org Page 6

@ Pefl Perl version 5.14.0 documentation - perlipc

them. So Perl now delivers them immediately rather than attempting to defer them.

Signals triggered by operating system state

On some operating systems certain signal handlers are supposed to "do something" before
returning. One example can be CHLD or CLD, which indicates a child process has completed.
On some operating systems the signal handler is expected to wait for the completed child
process. On such systems the deferred signal scheme will not work for those signals: it does
not do the wait. Again the failure will look like a loop as the operating system will reissue the
signal because there are completed child processes that have not yet been waited for.

If you want the old signal behavior back despite possible memory corruption, set the environment
variable PERL_SIGNALS to ""'unsafe"'. This feature first appeared in Perl 5.8.1.

Named Pipes

A named pipe (often referred to as a FIFO) is an old Unix IPC mechanism for processes
communicating on the same machine. It works just like regular anonymous pipes, except that the
processes rendezvous using a filename and need not be related.

To create a named pipe, use the POS1X: :mkfifo() function.
use POSIX qw(mkfifo);
mkFfifo($path, 0700) Il die "mkfifo $path failed: $!";
You can also use the Unix command mknod(1), or on some systems, mkfifo(1). These may not be in

your normal path, though.

system return val is backwards, so && not ||

#
$ENV{PATH} .= ":/etc:/usr/etc";
it (system("'mknod", $path, "p')
&& system("mkfifo", $path))
{
die "mk{nod,fifo} $path failed";
}

A fifo is convenient when you want to connect a process to an unrelated one. When you open a fifo,
the program will block until there's something on the other end.

For example, let's say you'd like to have your .signature file be a named pipe that has a Perl program
on the other end. Now every time any program (like a mailer, news reader, finger program, etc.) tries
to read from that file, the reading program will read the new signature from your program. We'll use

the pipe-checking file-test operator, -p, to find out whether anyone (or anything) has accidentally
removed our fifo.

chdirQ; # go home
my $FIFO = ".signature";

while (1) {
unless (-p $FIF0) {
unlink $FIFO; # discard any failure, will catch later
require POSIX; # delayed loading of heavy module
POSIX: :mkFifo($FIFO, 0700)
|| die "can"t mkfifo $FIFO: $!';
}

next line blocks till there"s a reader
open (FIFO, "> $FIFO™) || die "can"t open $FIFO: $!";

http://perldoc.perl.org Page 7

@ Pefl Perl version 5.14.0 documentation - perlipc

print FIFO ""John Smith (smith\@host.org)\n', ~fortune -s~;
close(FIFO) || die "can"t close $FIFO: $!1";
sleep 2; # to avoid dup signals

}

Using open() for IPC

Perl's basic open() statement can also be used for unidirectional interprocess communication by
either appending or prepending a pipe symbol to the second argument to open(). Here's how to start
something up in a child process you intend to write to:

open(SPOOLER, ™| cat -v | Ipr -h 2>/dev/null™)
|| die "can"t fork: $!";
local $SIG{PIPE} = sub { die "spooler pipe broke" };
print SPOOLER "stuff\n';
close SPOOLER || die "bad spool: $! $?';

And here's how to start up a child process you intend to read from:

open(STATUS, "netstat -an 2>&1 |')
|| die "can"t fork: $!";
while (<STATUS>) {
next if /~(tcpludp)/;
print;
}
close STATUS || die "bad netstat: $! $?";

If one can be sure that a particular program is a Perl script expecting filenames in @ARGV, the clever
programmer can write something like this:

% program f1 "cmd1]™ - f2 "cmd2|™ 3 < tmpfFile

and no matter which sort of shell it's called from, the Perl program will read from the file f1, the
process cmd1l, standard input (tmpfile in this case), the f2 file, the cmd2 command, and finally the 3
file. Pretty nifty, eh?

You might notice that you could use backticks for much the same effect as opening a pipe for reading:

print grep { '/~(tcpludp)/ } "netstat -an 2>&1";
die "bad netstatus ($?)" if $7?;

While this is true on the surface, it's much more efficient to process the file one line or record at a time
because then you don't have to read the whole thing into memory at once. It also gives you finer
control of the whole process, letting you kill off the child process early if you'd like.

Be careful to check the return values from both open() and close(). If you're writing to a pipe, you
should also trap SIGPIPE. Otherwise, think of what happens when you start up a pipe to a command
that doesn't exist: the open() will in all likelihood succeed (it only reflects the fork()'s success), but
then your output will fail--spectacularly. Perl can't know whether the command worked, because your
command is actually running in a separate process whose exec() might have failed. Therefore, while
readers of bogus commands return just a quick EOF, writers to bogus commands will get hit with a
signal, which they'd best be prepared to handle. Consider:

open(FH, "|bogus'™) || die "can"t fork: $I";

print FH "bang\n'; # neither necessary nor sufficient
to check print retval!

close(FH) || die "can"t close: $!";

http://perldoc.perl.org Page 8

@ Pefl Perl version 5.14.0 documentation - perlipc

The reason for not checking the return value from print() is because of pipe buffering; physical writes
are delayed. That won't blow up until the close, and it will blow up with a SIGPIPE. To catch it, you
could use this:

$SIG{PIPE} = "I1GNORE";

open(FH, "|bogus'™) || die "can"t fork: $!';
print FH "bang\n';
close(FH) || die "can"t close: status=$?";

Filehandles

Both the main process and any child processes it forks share the same STDIN, STDOUT, and
STDERR filehandles. If both processes try to access them at once, strange things can happen. You
may also want to close or reopen the filehandles for the child. You can get around this by opening
your pipe with open(), but on some systems this means that the child process cannot outlive the
parent.

Background Processes
You can run a command in the background with:

system('cmd &'");

The command's STDOUT and STDERR (and possibly STDIN, depending on your shell) will be the
same as the parent's. You won't need to catch SIGCHLD because of the double-fork taking place; see
below for details.

Complete Dissociation of Child from Parent

In some cases (starting server processes, for instance) you'll want to completely dissociate the child
process from the parent. This is often called daemonization. A well-behaved daemon will also chdir()
to the root directory so it doesn't prevent unmounting the filesystem containing the directory from
which it was launched, and redirect its standard file descriptors from and to /dev/null so that random
output doesn't wind up on the user's terminal.

use POSIX "'setsid";

sub daemonize {

chdir('/™) || die "can"t chdir to /: $!";

open(STDIN, "< /dev/null'™) || die "can"t read /dev/null: $I1";

open(STDOUT, "> /dev/null'™) |l die "can"t write to /dev/null:
$r;

defined(my $pid = forkQ)) || die "can"t fork: $I!";

exit if $pid; # non-zero now means 1 am the
parent

(setsid() = -1) |l die "Can"t start a new session:
s

open(STDERR, ''>&STDOUT'™) || die "can"t dup stdout: $!";

}

The fork() has to come before the setsid() to ensure you aren't a process group leader; the setsid()
will fail if you are. If your system doesn't have the setsid() function, open /dev/tty and use the
TIOCNOTTY ioctl() on it instead. See tty(4) for details.

Non-Unix users should check their Your_0S: :Process module for other possible solutions.

Safe Pipe Opens

Another interesting approach to IPC is making your single program go multiprocess and communicate
between--or even amongst--yourselves. The open() function will accept a file argument of either **-]**

http://perldoc.perl.org Page 9

@ Pefl Perl version 5.14.0 documentation - perlipc

or ""|-"" to do a very interesting thing: it forks a child connected to the filehandle you've opened. The
child is running the same program as the parent. This is useful for safely opening a file when running
under an assumed UID or GID, for example. If you open a pipe to minus, you can write to the
filehandle you opened and your kid will find it in his STDIN. If you open a pipe from minus, you can
read from the filehandle you opened whatever your kid writes to his STDOUT.

use English gw[-no_match vars];

my $PRECIOUS = "/path/to/some/safe/Tile";
my $sleep_count;

my $pid;

do {
$pid = open(KID_TO WRITE, "|-");
unless (defined $pid) {
warn "‘cannot fork: $!";
die "bailing out" if $sleep_count++ > 6;

sleep 10;
}
} until defined $pid;
if ($pid) { # 1 am the parent
print KID_TO WRITE @some_data;
close(KID_TO_WRITE) [l warn "kid exited $?";
} else { # 1 am the child

drop permissions in setuid and/or setgid programs:
($EUID, S$EGID) = ($UID, $GID);
open (OUTFILE, "> $PRECIOUS™)

|| die "can"t open $PRECIOUS: $!';
while (<STDIN>) {

print OUTFILE; # child"s STDIN is parent"s KID_TO _WRITE
}
close(OUTFILE) || die "can"t close $PRECIOUS: $!';
exit(0); # don"t forget this!!

}

Another common use for this construct is when you need to execute something without the shell's
interference. With system(), it's straightforward, but you can't use a pipe open or backticks safely.
That's because there's no way to stop the shell from getting its hands on your arguments. Instead,
use lower-level control to call exec() directly.

Here's a safe backtick or pipe open for read:

my $pid = open(KID_TO_READ, "-]'");
defined($pid) || die "can"t fork: $!';
if ($pid) { # parent

while (<KID_TO_READ>) {
do something interesting

}
close(KID_TO _READ) || warn "kid exited $?";
} else { # child

($EUID, $EGID) = ($UID, $GID); # suid only
exec($program, @options, @args)
|| die "can"t exec program: $I";

http://perldoc.perl.org Page 10

@ Pefl Perl version 5.14.0 documentation - perlipc

NOTREACHED

}

And here's a safe pipe open for writing:
my $pid = open(KID_TO_WRITE, "]|-");
defined($pid) || die "can"t fork: $!';

$SIG{PIPE} = sub { die "whoops, $program pipe broke" };

if (Bpid) { # parent
print KID_TO WRITE @data;
close(KID_TO_WRITE) || warn "kid exited $?";

} else { # child
($EUID, $EGID) = ($UID, $GID);
exec($program, @options, @args)
|| die "can"t exec program: $!';
NOTREACHED
}

It is very easy to dead-lock a process using this form of open(), or indeed with any use of pipe() with
multiple subprocesses. The example above is "safe" because it is simple and calls exec(). See
Avoiding Pipe Deadlocks for general safety principles, but there are extra gotchas with Safe Pipe
Opens.

In particular, if you opened the pipe using open FH, "']-", then you cannot simply use close() in the
parent process to close an unwanted writer. Consider this code:

my $pid = open(WRITER, "]-"");: # fork open a kid
defined($pid) |l die "first fork failed: $!";
it ($pid) {

if (my $sub_pid = forkQ)) {
defined($sub_pid) || die "second fork failed: $!";
close(WRITER) || die "couldn®"t close WRITER: $I";
now do something else...

}
else {
first write to WRITER
...
then when finished
close(WRITER) || die "couldn®"t close WRITER: $I";
exit(0);
}
}
else {
First do something with STDIN, then
exit(0);
}

In the example above, the true parent does not want to write to the WRITER filehandle, so it closes it.
However, because WRITER was opened using open FH, *|-"', it has a special behavior: closing it
calls waitpid() (see "waitpid" in perlfunc), which waits for the subprocess to exit. If the child process
ends up waiting for something happening in the section marked "do something else", you have
deadlock.

http://perldoc.perl.org Page 11

@ Pefl Perl version 5.14.0 documentation - perlipc

This can also be a problem with intermediate subprocesses in more complicated code, which will call
waitpid() on all open filehandles during global destruction--in no predictable order.

To solve this, you must manually use pipe(), fork(), and the form of open() which sets one file
descriptor to another, as shown below:

pipe(READER, WRITER) || die "pipe failed: $!";

$pid = fork(Q);

defined($pid) || die "First fork failed: $I!";
it ($pid) {

close READER;
if (my $sub_pid = fork()) {

defined($sub_pid) || die "First fork failed: $I!";
close(WRITER) || die "can"t close WRITER: $I";
}
else {
write to WRITER. ..
...
then when finished
close(WRITER) || die "can"t close WRITER: $I";
exit(0);
}
write to WRITER. ..
}
else {
open(STDIN, "<&READER'™) || die "can"t reopen STDIN: $I";
close(WRITER) || die "can"t close WRITER: $I";
do something. ..
exit(0);
}

Since Perl 5.8.0, you can also use the list form of open for pipes. This is preferred when you wish to
avoid having the shell interpret metacharacters that may be in your command string.

So for example, instead of using:

open(PS_PIPE, "ps aux|'™) || die "can"t open ps pipe: $!";

One would use either of these:

open(PS_PIPE, "-]', "ps™, "aux')
|| die "can"t open ps pipe: $!";

@ps_args = qw[ps aux];
open(PS_PIPE, "-|", @ps_args)
|| die "can"t open @ps_args|: $!";

Because there are more than three arguments to open(), forks the ps(1) command without spawning
a shell, and reads its standard output via the PS_PIPE filehandle. The corresponding syntax to write
to command pipes is to use "'|-"" in place of ""—]"".

This was admittedly a rather silly example, because you're using string literals whose content is
perfectly safe. There is therefore no cause to resort to the harder-to-read, multi-argument form of pipe
open(). However, whenever you cannot be assured that the program arguments are free of shell
metacharacters, the fancier form of open() should be used. For example:

@grep_args = (egrep', "-i", $some_pattern, @many Files);

http://perldoc.perl.org Page 12

@ Pefl Perl version 5.14.0 documentation - perlipc

open(GREP_PIPE, *-|", @grep_args)
|| die "can"t open @grep_args|: $!";

Here the multi-argument form of pipe open() is preferred because the pattern and indeed even the
filenames themselves might hold metacharacters.

Be aware that these operations are full Unix forks, which means they may not be correctly
implemented on all alien systems. Additionally, these are not true multithreading. To learn more about
threading, see the modules file mentioned below in the SEE ALSO section.

Avoiding Pipe Deadlocks

Whenever you have more than one subprocess, you must be careful that each closes whichever half
of any pipes created for interprocess communication it is not using. This is because any child process
reading from the pipe and expecting an EOF will never receive it, and therefore never exit. A single
process closing a pipe is not enough to close it; the last process with the pipe open must close it for it
to read EOF.

Certain built-in Unix features help prevent this most of the time. For instance, filehandles have a
“close on exec" flag, which is set en masse under control of the $MF variable. This is so any
filehandles you didn't explicitly route to the STDIN, STDOUT or STDERR of a child program will be
automatically closed.

Always explicitly and immediately call close() on the writable end of any pipe, unless that process is
actually writing to it. Even if you don't explicitly call close(), Perl will still close() all filehandles during
global destruction. As previously discussed, if those filehandles have been opened with Safe Pipe
Open, this will result in calling waitpid(), which may again deadlock.

Bidirectional Communication with Another Process

While this works reasonably well for unidirectional communication, what about bidirectional
communication? The most obvious approach doesn't work:

THIS DOES NOT WORK!!
open(PROG_FOR_READING_AND_WRITING, '] some program |')

If you forget to use warnings, you'll miss out entirely on the helpful diagnostic message:

Can"t do bidirectional pipe at -e line 1.

If you really want to, you can use the standard open2() from the 1PC: :Open2 module to catch both
ends. There's also an open3() in IPC: :Open3 for tridirectional I/O so you can also catch your child's
STDERR, but doing so would then require an awkward select() loop and wouldn't allow you to use
normal Perl input operations.

If you look at its source, you'll see that open2() uses low-level primitives like the pipe() and exec()
syscalls to create all the connections. Although it might have been more efficient by using
socketpair(), this would have been even less portable than it already is. The open2() and open3()
functions are unlikely to work anywhere except on a Unix system, or at least one purporting POSIX
compliance.

Here's an example of using open2():

use FileHandle;

use IPC::Open2;

$pid = open2(*Reader, *Writer, '"cat -un');
print Writer “stuff\n";

$got = <Reader>;

http://perldoc.perl.org Page 13

@ Pefl Perl version 5.14.0 documentation - perlipc

The problem with this is that buffering is really going to ruin your day. Even though your Writer
filehandle is auto-flushed so the process on the other end gets your data in a timely manner, you can't
usually do anything to force that process to give its data to you in a similarly quick fashion. In this
special case, we could actually so, because we gave cat a -u flag to make it unbuffered. But very few
commands are designed to operate over pipes, so this seldom works unless you yourself wrote the
program on the other end of the double-ended pipe.

A solution to this is to use a library which uses pseudottys to make your program behave more
reasonably. This way you don't have to have control over the source code of the program you're
using. The Expect module from CPAN also addresses this kind of thing. This module requires two
other modules from CPAN, 10: :Pty and 10: :Stty. It sets up a pseudo terminal to interact with
programs that insist on talking to the terminal device driver. If your system is supported, this may be
your best bet.

Bidirectional Communication with Yourself

If you want, you may make low-level pipe() and fork() syscalls to stitch this together by hand. This
example only talks to itself, but you could reopen the appropriate handles to STDIN and STDOUT and
call other processes. (The following example lacks proper error checking.)

#1/usr/bin/perl -w

pipel - bidirectional communication using two pipe pairs

designed for the socketpair-challenged

use 10::Handle; # thousands of lines just for autoflush

pipe(PARENT_RDR, CHILD WTR); # XXX: check failure?
pipe(CHILD_RDR, PARENT_WTR); # XXX: check failure?
CHILD _WTR->autoflush(1);
PARENT_WTR->autoflush(1);

if ($pid = forkQ)) {
close PARENT_RDR;
close PARENT_WTR;
print CHILD_WTR "Parent Pid 3 is sending this\n";
chomp($line = <CHILD_RDR>);
print "Parent Pid $$ just read this: “$line"\n";
close CHILD RDR; close CHILD _WTR;
waitpid($pid, 0);
} else {
die "cannot fork: $!" unless defined $pid;
close CHILD _RDR;
close CHILD WTR;
chomp($line = <PARENT_RDR>);
print "Child Pid $$ just read this: “$line*\n";
print PARENT_WTR "Child Pid 3 is sending this\n";
close PARENT_RDR;
close PARENT_WTR;
exit(0);
3

But you don't actually have to make two pipe calls. If you have the socketpair() system call, it will do
this all for you.

#1/usr/bin/perl -w
pipe2 - bidirectional communication using socketpair
'"the best ones always go both ways"

http://perldoc.perl.org Page 14

@ Pefl Perl version 5.14.0 documentation - perlipc

use Socket;
use 10::Handle; # thousands of lines just for autoflush :-(

We say AF_UNIX because although * LOCAL is the

POSIX 1003.1g form of the constant, many machines

still don"t have iIt.

socketpair(CHILD, PARENT, AF_UNIX, SOCK_STREAM, PF_UNSPEC)
Il die "socketpair: $!";

CHILD->autoflush(l);
PARENT->autoflush(l);

if ($pid = forkQ) {
close PARENT;
print CHILD "Parent Pid $$ is sending this\n";
chomp($line = <CHILD>);
print "Parent Pid $$ just read this: “$line"\n";
close CHILD;
waitpid($pid, 0);

} else {
die "cannot fork: $!" unless defined $pid;
close CHILD;
chomp($line = <PARENT>);
print "Child Pid $$ just read this: "$line"\n";
print PARENT "Child Pid $$ is sending this\n";
close PARENT;
exit(0);

}

Sockets: Client/Server Communication

While not entirely limited to Unix-derived operating systems (e.g., WinSock on PCs provides socket
support, as do some VMS libraries), you might not have sockets on your system, in which case this
section probably isn't going to do you much good. With sockets, you can do both virtual circuits like
TCP streams and datagrams like UDP packets. You may be able to do even more depending on your
system.

The Perl functions for dealing with sockets have the same names as the corresponding system calls
in C, but their arguments tend to differ for two reasons. First, Perl filehandles work differently than C
file descriptors. Second, Perl already knows the length of its strings, so you don't need to pass that
information.

One of the major problems with ancient, antemillennial socket code in Perl was that it used
hard-coded values for some of the constants, which severely hurt portability. If you ever see code that
does anything like explicitly setting $AF_INET = 2, you know you're in for big trouble. An
immeasurably superior approach is to use the Socket module, which more reliably grants access to
the various constants and functions you'll need.

If you're not writing a server/client for an existing protocol like NNTP or SMTP, you should give some
thought to how your server will know when the client has finished talking, and vice-versa. Most
protocols are based on one-line messages and responses (so one party knows the other has finished
when a "\n" is received) or multi-line messages and responses that end with a period on an empty line
("\n.\n" terminates a message/response).

http://perldoc.perl.org Page 15

@ Pefl Perl version 5.14.0 documentation - perlipc

Internet Line Terminators

The Internet line terminator is "\015\012". Under ASCII variants of Unix, that could usually be written
as "\r\n", but under other systems, "\r\n" might at times be "\015\015\012", "\012\012\015", or
something completely different. The standards specify writing "\015\012" to be conformant (be strict in
what you provide), but they also recommend accepting a lone "\012" on input (be lenient in what you
require). We haven't always been very good about that in the code in this manpage, but unless you're
on a Mac from way back in its pre-Unix dark ages, you'll probably be ok.

Internet TCP Clients and Servers

Use Internet-domain sockets when you want to do client-server communication that might extend to
machines outside of your own system.

Here's a sample TCP client using Internet-domain sockets:

#1/usr/bin/perl -w

use strict;

use Socket;

my ($remote, $port, $iaddr, $paddr, $proto, $line);

$remote shift |] "localhost";

$port shift || 2345; # random port

ifT ($port =~ /\D/) { $port = getservbyname($port, "tcp'™) }
die "No port"” unless $port;

$iaddr = inet_aton($remote) || die "no host: $remote';

$paddr sockaddr_in($port, $iaddr);

$proto = getprotobyname(*'tcp™);

socket(SOCK, PF_INET, SOCK_STREAM, $proto) || die "socket: $I'";
connect(SOCK, $paddr) || die "connect: $!";

while ($line = <SOCK>) {
print $line;
}

close (SOCK) Il die “"close: $I';
exit(0);

And here's a corresponding server to go along with it. We'll leave the address as INADDR_ANY so that
the kernel can choose the appropriate interface on multihomed hosts. If you want sit on a particular
interface (like the external side of a gateway or firewall machine), fill this in with your real address
instead.

#1/usr/bin/perl -Tw

use strict;

BEGIN { $ENV{PATH} = "/usr/bin:/bin" }
use Socket;

use Carp;

my $EOL = ""\015\012";

sub logmsg { print "$0 $$: @_ at ', scalar localtime(), '"\n" }

my $port = shift || 2345;
die "invalid port"” unless if $port =~ /™ \d+ $/x;

my $proto = getprotobyname(*'tcp');

http://perldoc.perl.org Page 16

@ Pefl Perl version 5.14.0 documentation - perlipc

socket(Server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
setsockopt(Server, SOL _SOCKET, SO_REUSEADDR, pack('l', 1))
|l die "setsockopt:

$!Il;
bind(Server, sockaddr_in($port, INADDR_AN