
Perl version 5.14.0 documentation - charnames

Page 1http://perldoc.perl.org

NAME
charnames - access to Unicode character names and named character sequences; also define
character names

SYNOPSIS
 use charnames ':full';
 print "\N{GREEK SMALL LETTER SIGMA} is called sigma.\n";
 print "\N{LATIN CAPITAL LETTER E WITH VERTICAL LINE BELOW}",
 " is an officially named sequence of two Unicode characters\n";

 use charnames ':short';
 print "\N{greek:Sigma} is an upper-case sigma.\n";

 use charnames qw(cyrillic greek);
 print "\N{sigma} is Greek sigma, and \N{be} is Cyrillic b.\n";

 use charnames ":full", ":alias" => {
 e_ACUTE => "LATIN SMALL LETTER E WITH ACUTE",
 mychar => 0xE8000, # Private use area
 };
 print "\N{e_ACUTE} is a small letter e with an acute.\n";
 print "\\N{mychar} allows me to name private use characters.\n";

 use charnames ();
 print charnames::viacode(0x1234); # prints "ETHIOPIC SYLLABLE SEE"
 printf "%04X", charnames::vianame("GOTHIC LETTER AHSA"); # prints
 # "10330"
 print charnames::vianame("LATIN CAPITAL LETTER A"); # prints 65 on
 # ASCII platforms;
 # 193 on EBCDIC
 print charnames::string_vianame("LATIN CAPITAL LETTER A"); # prints "A"

DESCRIPTION
Pragma use charnames is used to gain access to the names of the
 Unicode characters and named
character sequences, and to allow you to define
 your own character and character sequence names.

All forms of the pragma enable use of the following 3 functions:

charnames::string_vianame(name) for run-time lookup of a
 either a character name or a
named character sequence, returning its string
 representation

charnames::vianame(name) for run-time lookup of a
 character name (but not a named
character sequence) to get its ordinal value
 (code point)

charnames::viacode(code) for run-time lookup of a code point to get its
 Unicode name.

All forms other than "use charnames ();" also enable the use of \N{CHARNAME} sequences to
compile a Unicode character into a
 string, based on its name.

Note that \N{U+...}, where the ... is a hexadecimal number,
 also inserts a character into a string,
but doesn't require the use of
 this pragma. The character it inserts is the one whose code point

(ordinal value) is equal to the number. For example, "\N{U+263a}" is
 the Unicode (white
background, black foreground) smiley face; it doesn't
 require this pragma, whereas the equivalent,
"\N{WHITE SMILING FACE}"
 does.
 Also, \N{...} can mean a regex quantifier instead of a
character
 name, when the ... is a number (or comma separated pair of numbers
 (see
"QUANTIFIERS" in perlreref), and is not related to this pragma.

Perl version 5.14.0 documentation - charnames

Page 2http://perldoc.perl.org

The charnames pragma supports arguments :full, :short, script
 names and customized aliases.
If :full is present, for expansion of \N{CHARNAME}, the string CHARNAME is first looked up in the
list of
 standard Unicode character names. If :short is present, and CHARNAME has the form
SCRIPT:CNAME, then CNAME is looked up
 as a letter in script SCRIPT. If use charnames is used

with script name arguments, then for \N{CHARNAME} the name CHARNAME is looked up as a letter
in the given scripts (in the
 specified order). Customized aliases can override these, and are explained
in CUSTOM ALIASES.

For lookup of CHARNAME inside a given script SCRIPTNAME
 this pragma looks for the names

 SCRIPTNAME CAPITAL LETTER CHARNAME
 SCRIPTNAME SMALL LETTER CHARNAME
 SCRIPTNAME LETTER CHARNAME

in the table of standard Unicode names. If CHARNAME is lowercase,
 then the CAPITAL variant is
ignored, otherwise the SMALL variant
 is ignored.

Note that \N{...} is compile-time; it's a special form of string
 constant used inside double-quotish
strings; this means that you cannot
 use variables inside the \N{...}. If you want similar run-time

functionality, use charnames::string_vianame().

For the C0 and C1 control characters (U+0000..U+001F, U+0080..U+009F)
 there are no official
Unicode names but you can use instead the ISO 6429
 names (LINE FEED, ESCAPE, and so forth,
and their abbreviations, LF,
 ESC, ...). In Unicode 3.2 (as of Perl 5.8) some naming changes took

place, and ISO 6429 was updated, see ALIASES.

If the input name is unknown, \N{NAME} raises a warning and
 substitutes the Unicode
REPLACEMENT CHARACTER (U+FFFD).

For \N{NAME}, it is a fatal error if use bytes is in effect and the
 input name is that of a character
that won't fit into a byte (i.e., whose
 ordinal is above 255).

Otherwise, any string that includes a \N{charname} or \N{U+code point} will automatically have
Unicode semantics (see "Byte and Character Semantics" in perlunicode).

ALIASES
A few aliases have been defined for convenience: instead of having
 to use the official names

 LINE FEED (LF)
 FORM FEED (FF)
 CARRIAGE RETURN (CR)
 NEXT LINE (NEL)

(yes, with parentheses), one can use

 LINE FEED
 FORM FEED
 CARRIAGE RETURN
 NEXT LINE
 LF
 FF
 CR
 NEL

All the other standard abbreviations for the controls, such as ACK for ACKNOWLEDGE also can be
used.

One can also use

Perl version 5.14.0 documentation - charnames

Page 3http://perldoc.perl.org

 BYTE ORDER MARK
 BOM

and these abbreviations

 Abbreviation Full Name

 CGJ COMBINING GRAPHEME JOINER
 FVS1 MONGOLIAN FREE VARIATION SELECTOR ONE
 FVS2 MONGOLIAN FREE VARIATION SELECTOR TWO
 FVS3 MONGOLIAN FREE VARIATION SELECTOR THREE
 LRE LEFT-TO-RIGHT EMBEDDING
 LRM LEFT-TO-RIGHT MARK
 LRO LEFT-TO-RIGHT OVERRIDE
 MMSP MEDIUM MATHEMATICAL SPACE
 MVS MONGOLIAN VOWEL SEPARATOR
 NBSP NO-BREAK SPACE
 NNBSP NARROW NO-BREAK SPACE
 PDF POP DIRECTIONAL FORMATTING
 RLE RIGHT-TO-LEFT EMBEDDING
 RLM RIGHT-TO-LEFT MARK
 RLO RIGHT-TO-LEFT OVERRIDE
 SHY SOFT HYPHEN
 VS1 VARIATION SELECTOR-1
 .
 .
 .
 VS256 VARIATION SELECTOR-256
 WJ WORD JOINER
 ZWJ ZERO WIDTH JOINER
 ZWNJ ZERO WIDTH NON-JOINER
 ZWSP ZERO WIDTH SPACE

For backward compatibility one can use the old names for
 certain C0 and C1 controls

 old new

 FILE SEPARATOR INFORMATION SEPARATOR FOUR
 GROUP SEPARATOR INFORMATION SEPARATOR THREE
 HORIZONTAL TABULATION CHARACTER TABULATION
 HORIZONTAL TABULATION SET CHARACTER TABULATION SET
 HORIZONTAL TABULATION WITH JUSTIFICATION CHARACTER TABULATION
 WITH JUSTIFICATION
 PARTIAL LINE DOWN PARTIAL LINE FORWARD
 PARTIAL LINE UP PARTIAL LINE BACKWARD
 RECORD SEPARATOR INFORMATION SEPARATOR TWO
 REVERSE INDEX REVERSE LINE FEED
 UNIT SEPARATOR INFORMATION SEPARATOR ONE
 VERTICAL TABULATION LINE TABULATION
 VERTICAL TABULATION SET LINE TABULATION SET

but the old names in addition to giving the character
 will also give a warning about being deprecated.

And finally, certain published variants are usable, including some for
 controls that have no Unicode
names:

Perl version 5.14.0 documentation - charnames

Page 4http://perldoc.perl.org

 name character

 END OF PROTECTED AREA END OF GUARDED AREA, U+0097
 HIGH OCTET PRESET U+0081
 HOP U+0081
 IND U+0084
 INDEX U+0084
 PAD U+0080
 PADDING CHARACTER U+0080
 PRIVATE USE 1 PRIVATE USE ONE, U+0091
 PRIVATE USE 2 PRIVATE USE TWO, U+0092
 SGC U+0099
 SINGLE GRAPHIC CHARACTER INTRODUCER U+0099
 SINGLE-SHIFT 2 SINGLE SHIFT TWO, U+008E
 SINGLE-SHIFT 3 SINGLE SHIFT THREE, U+008F
 START OF PROTECTED AREA START OF GUARDED AREA, U+0096

CUSTOM ALIASES
You can add customized aliases to standard (:full) Unicode naming
 conventions. The aliases
override any standard definitions, so, if
 you're twisted enough, you can change "\N{LATIN
CAPITAL LETTER A}" to
 mean "B", etc.

Note that an alias should not be something that is a legal curly
 brace-enclosed quantifier (see
"QUANTIFIERS" in perlreref). For example \N{123} means to match 123 non-newline characters,
and is not treated as a
 charnames alias. Aliases are discouraged from beginning with anything
 other
than an alphabetic character and from containing anything other
 than alphanumerics, spaces, dashes,
parentheses, and underscores.
 Currently they must be ASCII.

An alias can map to either an official Unicode character name or to a
 numeric code point (ordinal).
The latter is useful for assigning names
 to code points in Unicode private use areas such as U+E800
through
 U+F8FF.
 A numeric code point must be a non-negative integer or a string beginning
 with
"U+" or "0x" with the remainder considered to be a
 hexadecimal integer. A literal numeric constant
must be unsigned; it
 will be interpreted as hex if it has a leading zero or contains
 non-decimal hex
digits; otherwise it will be interpreted as decimal.

Aliases are added either by the use of anonymous hashes:

 use charnames ":alias" => {
 e_ACUTE => "LATIN SMALL LETTER E WITH ACUTE",
 mychar1 => 0xE8000,
 };
 my $str = "\N{e_ACUTE}";

or by using a file containing aliases:

 use charnames ":alias" => "pro";

This will try to read "unicore/pro_alias.pl" from the @INC path. This
 file should return a list in
plain perl:

 (
 A_GRAVE => "LATIN CAPITAL LETTER A WITH GRAVE",
 A_CIRCUM => "LATIN CAPITAL LETTER A WITH CIRCUMFLEX",
 A_DIAERES => "LATIN CAPITAL LETTER A WITH DIAERESIS",
 A_TILDE => "LATIN CAPITAL LETTER A WITH TILDE",
 A_BREVE => "LATIN CAPITAL LETTER A WITH BREVE",

Perl version 5.14.0 documentation - charnames

Page 5http://perldoc.perl.org

 A_RING => "LATIN CAPITAL LETTER A WITH RING ABOVE",
 A_MACRON => "LATIN CAPITAL LETTER A WITH MACRON",
 mychar2 => "U+E8001",
);

Both these methods insert ":full" automatically as the first argument (if no
 other argument is
given), and you can give the ":full" explicitly as
 well, like

 use charnames ":full", ":alias" => "pro";

Also, both these methods currently allow only a single character to be named.
 To name a sequence
of characters, use a custom translator (described below).

charnames::viacode(code)
Returns the full name of the character indicated by the numeric code.
 For example,

 print charnames::viacode(0x2722);

prints "FOUR TEARDROP-SPOKED ASTERISK".

The name returned is the official name for the code point, if
 available; otherwise your custom alias for
it. This means that your
 alias will only be returned for code points that don't have an official
 Unicode
name (nor Unicode version 1 name), such as private use code
 points, and the 4 control characters
U+0080, U+0081, U+0084, and U+0099.
 If you define more than one name for the code point, it is
indeterminate
 which one will be returned.

The function returns undef if no name is known for the code point.
 In Unicode the proper name of
these is the empty string, which undef stringifies to. (If you ask for a code point past the legal

Unicode maximum of U+10FFFF that you haven't assigned an alias to, you
 get undef plus a
warning.)

The input number must be a non-negative integer or a string beginning
 with "U+" or "0x" with the
remainder considered to be a
 hexadecimal integer. A literal numeric constant must be unsigned; it
 will
be interpreted as hex if it has a leading zero or contains
 non-decimal hex digits; otherwise it will be
interpreted as decimal.

Notice that the name returned for of U+FEFF is "ZERO WIDTH NO-BREAK
 SPACE", not "BYTE
ORDER MARK".

charnames::string_vianame(name)
This is a runtime equivalent to \N{...}. name can be any expression
 that evaluates to a name
accepted by \N{...} under the :full option to charnames. In addition, any other options for the

controlling "use charnames" in the same scope apply, like any script list, :short option, or
custom aliases you
 may have defined.

The only difference is that if the input name is unknown, string_vianame
 returns undef instead of
the REPLACEMENT CHARACTER and does not raise a
 warning message.

charnames::vianame(name)
This is similar to string_vianame. The main difference is that under most
 circumstances (see
BUGS for the others), vianame returns an ordinal code
 point, whereas string_vianame returns a
string. For example,

 printf "U+%04X", charnames::vianame("FOUR TEARDROP-SPOKED ASTERISK");

prints "U+2722".

This leads to the other two differences. Since a single code point is
 returned, the function can't handle

Perl version 5.14.0 documentation - charnames

Page 6http://perldoc.perl.org

named character sequences, as these are
 composed of multiple characters. And, the code point can
be that of any
 character, even ones that aren't legal under the use bytes pragma,

CUSTOM TRANSLATORS
The mechanism of translation of \N{...} escapes is general and not
 hardwired into charnames.pm.
A module can install custom
 translations (inside the scope which uses the module) with the
 following
magic incantation:

 sub import {
 shift;
 $^H{charnames} = \&translator;
 }

Here translator() is a subroutine which takes CHARNAME as an
 argument, and returns text to insert
into the string instead of the \N{CHARNAME} escape. Since the text to insert should be different
 in
bytes mode and out of it, the function should check the current
 state of bytes-flag as in:

 use bytes (); # for $bytes::hint_bits
 sub translator {
 if ($^H & $bytes::hint_bits) {
 return bytes_translator(@_);
 }
 else {
 return utf8_translator(@_);
 }
 }

See CUSTOM ALIASES above for restrictions on CHARNAME.

Of course, vianame and viacode would need to be overridden as
 well.

BUGS
vianame normally returns an ordinal code point, but when the input name is of
 the form U+..., it
returns a chr instead. In this case, if use bytes is
 in effect and the character won't fit into a byte, it
returns undef and
 raises a warning.

Names must be ASCII characters only, which means that you are out of luck if
 you want to create
aliases in a language where some or all the characters of
 the desired aliases are non-ASCII.

Since evaluation of the translation function (see CUSTOM TRANSLATORS) happens in the middle of
compilation (of a string
 literal), the translation function should not do any evals or requires. This
restriction should be lifted (but is low priority) in
 a future version of Perl.

