
Perl version 5.14.0 documentation - Digest

Page 1http://perldoc.perl.org

NAME
Digest - Modules that calculate message digests

SYNOPSIS
 $md5 = Digest->new("MD5");
 $sha1 = Digest->new("SHA-1");
 $sha256 = Digest->new("SHA-256");
 $sha384 = Digest->new("SHA-384");
 $sha512 = Digest->new("SHA-512");

 $hmac = Digest->HMAC_MD5($key);

DESCRIPTION
The Digest:: modules calculate digests, also called "fingerprints"
 or "hashes", of some data, called
a message. The digest is (usually)
 some small/fixed size string. The actual size of the digest depend
of
 the algorithm used. The message is simply a sequence of arbitrary
 bytes or bits.

An important property of the digest algorithms is that the digest is likely to change if the message
change in some way. Another
 property is that digest functions are one-way functions, that is it
 should
be hard to find a message that correspond to some given
 digest. Algorithms differ in how "likely" and
how "hard", as well as
 how efficient they are to compute.

Note that the properties of the algorithms change over time, as the
 algorithms are analyzed and
machines grow faster. If your application
 for instance depends on it being "impossible" to generate the
same
 digest for a different message it is wise to make it easy to plug in
 stronger algorithms as the one
used grow weaker. Using the interface
 documented here should make it easy to change algorithms
later.

All Digest:: modules provide the same programming interface. A
 functional interface for simple
use, as well as an object oriented
 interface that can handle messages of arbitrary length and which
can
 read files directly.

The digest can be delivered in three formats:

binary

This is the most compact form, but it is not well suited for printing
 or embedding in
places that can't handle arbitrary data.

hex

A twice as long string of lowercase hexadecimal digits.

base64

A string of portable printable characters. This is the base64 encoded
 representation of
the digest with any trailing padding removed. The
 string will be about 30% longer than
the binary version. MIME::Base64 tells you more about this encoding.

The functional interface is simply importable functions with the same
 name as the algorithm. The
functions take the message as argument and
 return the digest. Example:

 use Digest::MD5 qw(md5);
 $digest = md5($message);

There are also versions of the functions with "_hex" or "_base64"
 appended to the name, which
returns the digest in the indicated form.

Perl version 5.14.0 documentation - Digest

Page 2http://perldoc.perl.org

OO INTERFACE
The following methods are available for all Digest:: modules:

$ctx = Digest->XXX($arg,...)

$ctx = Digest->new(XXX => $arg,...)

$ctx = Digest::XXX->new($arg,...)

The constructor returns some object that encapsulate the state of the
 message-digest
algorithm. You can add data to the object and finally
 ask for the digest. The "XXX" should of
course be replaced by the proper
 name of the digest algorithm you want to use.

The two first forms are simply syntactic sugar which automatically
 load the right module on
first use. The second form allow you to use
 algorithm names which contains letters which are
not legal perl
 identifiers, e.g. "SHA-1". If no implementation for the given algorithm
 can be
found, then an exception is raised.

If new() is called as an instance method (i.e. $ctx->new) it will just
 reset the state the object to
the state of a newly created object. No
 new object is created in this case, and the return value
is the
 reference to the object (i.e. $ctx).

$other_ctx = $ctx->clone

The clone method creates a copy of the digest state object and returns
 a reference to the
copy.

$ctx->reset

This is just an alias for $ctx->new.

$ctx->add($data)

$ctx->add($chunk1, $chunk2, ...)

The string value of the $data provided as argument is appended to the
 message we calculate
the digest for. The return value is the $ctx
 object itself.

If more arguments are provided then they are all appended to the
 message, thus all these
lines will have the same effect on the state
 of the $ctx object:

 $ctx->add("a"); $ctx->add("b"); $ctx->add("c");
 $ctx->add("a")->add("b")->add("c");
 $ctx->add("a", "b", "c");
 $ctx->add("abc");

Most algorithms are only defined for strings of bytes and this method
 might therefore croak if
the provided arguments contain chars with
 ordinal number above 255.

$ctx->addfile($io_handle)

The $io_handle is read until EOF and the content is appended to the
 message we calculate
the digest for. The return value is the $ctx
 object itself.

The addfile() method will croak() if it fails reading data for some
 reason. If it croaks it is
unpredictable what the state of the $ctx
 object will be in. The addfile() method might have
been able to read
 the file partially before it failed. It is probably wise to discard
 or reset the
$ctx object if this occurs.

In most cases you want to make sure that the $io_handle is in
 "binmode" before you pass it as
argument to the addfile() method.

$ctx->add_bits($data, $nbits)

$ctx->add_bits($bitstring)

The add_bits() method is an alternative to add() that allow partial
 bytes to be appended to the
message. Most users should just ignore
 this method as partial bytes is very unlikely to be of

Perl version 5.14.0 documentation - Digest

Page 3http://perldoc.perl.org

any practical
 use.

The two argument form of add_bits() will add the first $nbits bits
 from $data. For the last
potentially partial byte only the high order $nbits % 8 bits are used. If $nbits is greater than
length($data) * 8, then this method would do the same as $ctx->add($data).

The one argument form of add_bits() takes a $bitstring of "1" and "0"
 chars as argument. It's a
shorthand for $ctx->add_bits(pack("B*",
 $bitstring), length($bitstring)).

The return value is the $ctx object itself.

This example shows two calls that should have the same effect:

 $ctx->add_bits("111100001010");
 $ctx->add_bits("\xF0\xA0", 12);

Most digest algorithms are byte based and for these it is not possible
 to add bits that are not a
multiple of 8, and the add_bits() method
 will croak if you try.

$ctx->digest

Return the binary digest for the message.

Note that the digest operation is effectively a destructive,
 read-once operation. Once it has
been performed, the $ctx object is
 automatically reset and can be used to calculate another
digest
 value. Call $ctx->clone->digest if you want to calculate the digest
 without resetting the
digest state.

$ctx->hexdigest

Same as $ctx->digest, but will return the digest in hexadecimal form.

$ctx->b64digest

Same as $ctx->digest, but will return the digest as a base64 encoded
 string.

Digest speed
This table should give some indication on the relative speed of
 different algorithms. It is sorted by
throughput based on a benchmark
 done with of some implementations of this API:

 Algorithm Size Implementation MB/s

 MD4 128 Digest::MD4 v1.3 165.0
 MD5 128 Digest::MD5 v2.33 98.8
 SHA-256 256 Digest::SHA2 v1.1.0 66.7
 SHA-1 160 Digest::SHA v4.3.1 58.9
 SHA-1 160 Digest::SHA1 v2.10 48.8
 SHA-256 256 Digest::SHA v4.3.1 41.3
 Haval-256 256 Digest::Haval256 v1.0.4 39.8
 SHA-384 384 Digest::SHA2 v1.1.0 19.6
 SHA-512 512 Digest::SHA2 v1.1.0 19.3
 SHA-384 384 Digest::SHA v4.3.1 19.2
 SHA-512 512 Digest::SHA v4.3.1 19.2
 Whirlpool 512 Digest::Whirlpool v1.0.2 13.0
 MD2 128 Digest::MD2 v2.03 9.5

 Adler-32 32 Digest::Adler32 v0.03 1.3
 CRC-16 16 Digest::CRC v0.05 1.1
 CRC-32 32 Digest::CRC v0.05 1.1
 MD5 128 Digest::Perl::MD5 v1.5 1.0
 CRC-CCITT 16 Digest::CRC v0.05 0.8

Perl version 5.14.0 documentation - Digest

Page 4http://perldoc.perl.org

These numbers was achieved Apr 2004 with ActivePerl-5.8.3 running
 under Linux on a P4 2.8 GHz
CPU. The last 5 entries differ by being
 pure perl implementations of the algorithms, which explains
why they
 are so slow.

SEE ALSO
Digest::Adler32, Digest::CRC, Digest::Haval256, Digest::HMAC, Digest::MD2, Digest::MD4,
Digest::MD5, Digest::SHA, Digest::SHA1, Digest::SHA2, Digest::Whirlpool

New digest implementations should consider subclassing from Digest::base.

MIME::Base64

http://en.wikipedia.org/wiki/Cryptographic_hash_function

AUTHOR
Gisle Aas <gisle@aas.no>

The Digest:: interface is based on the interface originally
 developed by Neil Winton for his MD5
module.

This library is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

 Copyright 1998-2006 Gisle Aas.
 Copyright 1995,1996 Neil Winton.

