
Perl version 5.14.0 documentation - B::Deparse

Page 1http://perldoc.perl.org

NAME
B::Deparse - Perl compiler backend to produce perl code

SYNOPSIS
perl -MO=Deparse[,-d][,-fFILE][,-p][,-q][,-l]
 [,-sLETTERS][,-xLEVEL] prog.pl

DESCRIPTION
B::Deparse is a backend module for the Perl compiler that generates
 perl source code, based on the
internal compiled structure that perl
 itself creates after parsing a program. The output of B::Deparse
won't
 be exactly the same as the original source, since perl doesn't keep
 track of comments or
whitespace, and there isn't a one-to-one
 correspondence between perl's syntactical constructions and
their
 compiled form, but it will often be close. When you use the -p
 option, the output also includes
parentheses even when they are not
 required by precedence, which can make it easy to see if perl is

parsing your expressions the way you intended.

While B::Deparse goes to some lengths to try to figure out what your
 original program was doing,
some parts of the language can still trip
 it up; it still fails even on some parts of Perl's own test suite. If

you encounter a failure other than the most common ones described in
 the BUGS section below, you
can help contribute to B::Deparse's
 ongoing development by submitting a bug report with a small

example.

OPTIONS
As with all compiler backend options, these must follow directly after
 the '-MO=Deparse', separated by
a comma but not any white space.

-d

Output data values (when they appear as constants) using Data::Dumper.
 Without this option,
B::Deparse will use some simple routines of its
 own for the same purpose. Currently,
Data::Dumper is better for some
 kinds of data (such as complex structures with sharing and

self-reference) while the built-in routines are better for others
 (such as odd floating-point
values).

-fFILE

Normally, B::Deparse deparses the main code of a program, and all the subs
 defined in the
same file. To include subs defined in other files, pass the -f option with the filename. You can
pass the -f option several times, to
 include more than one secondary file. (Most of the time
you don't want to
 use it at all.) You can also use this option to include subs which are
 defined
in the scope of a #line directive with two parameters.

-l

Add '#line' declarations to the output based on the line and file
 locations of the original code.

-p

Print extra parentheses. Without this option, B::Deparse includes
 parentheses in its output
only when they are needed, based on the
 structure of your program. With -p, it uses
parentheses (almost)
 whenever they would be legal. This can be useful if you are used to

LISP, or if you want to see how perl parses your input. If you say

 if ($var & 0x7f == 65) {print "Gimme an A!"}
 print ($which ? $a : $b), "\n";
 $name = $ENV{USER} or "Bob";

B::Deparse,-p will print

 if (($var & 0)) {
 print('Gimme an A!')
 };

Perl version 5.14.0 documentation - B::Deparse

Page 2http://perldoc.perl.org

 (print(($which ? $a : $b)), '???');
 (($name = $ENV{'USER'}) or '???')

which probably isn't what you intended (the '???' is a sign that
 perl optimized away a
constant value).

-P

Disable prototype checking. With this option, all function calls are
 deparsed as if no prototype
was defined for them. In other words,

 perl -MO=Deparse,-P -e 'sub foo (\@) { 1 } foo @x'

will print

 sub foo (\@) {
	 1;
 }
 &foo(\@x);

making clear how the parameters are actually passed to foo.

-q

Expand double-quoted strings into the corresponding combinations of
 concatenation, uc,
ucfirst, lc, lcfirst, quotemeta, and join. For
 instance, print

 print "Hello, $world, @ladies, \u$gentlemen\E, \u\L$me!";

as

 print 'Hello, ' . $world . ', ' . join($", @ladies) . ', '
 . ucfirst($gentlemen) . ', ' . ucfirst(lc $me . '!');

Note that the expanded form represents the way perl handles such
 constructions internally --
this option actually turns off the reverse
 translation that B::Deparse usually does. On the other
hand, note that $x = "$y" is not the same as $x = $y: the former makes the value
 of $y
into a string before doing the assignment.

-sLETTERS

Tweak the style of B::Deparse's output. The letters should follow
 directly after the 's', with no
space or punctuation. The following
 options are available:

C

Cuddle elsif, else, and continue blocks. For example, print

 if (...) {
 ...
 } else {
 ...
 }

instead of

 if (...) {
 ...
 }
 else {
 ...
 }

The default is not to cuddle.

Perl version 5.14.0 documentation - B::Deparse

Page 3http://perldoc.perl.org

iNUMBER

Indent lines by multiples of NUMBER columns. The default is 4 columns.

T

Use tabs for each 8 columns of indent. The default is to use only spaces.
 For instance,
if the style options are -si4T, a line that's indented
 3 times will be preceded by one tab
and four spaces; if the options were -si8T, the same line would be preceded by three
tabs.

vSTRING.

Print STRING for the value of a constant that can't be determined
 because it was
optimized away (mnemonic: this happens when a constant
 is used in void context).
The end of the string is marked by a period.
 The string should be a valid perl
expression, generally a constant.
 Note that unless it's a number, it probably needs to
be quoted, and on
 a command line quotes need to be protected from the shell. Some

conventional values include 0, 1, 42, '', 'foo', and
 'Useless use of constant omitted'
(which may need to be -sv"'Useless use of constant omitted'."
 or something similar
depending on your shell). The default is '???'.
 If you're using B::Deparse on a module
or other file that's require'd,
 you shouldn't use a value that evaluates to false, since the
customary
 true constant at the end of a module will be in void context when the
 file is
compiled as a main program.

-xLEVEL

Expand conventional syntax constructions into equivalent ones that expose
 their internal
operation. LEVEL should be a digit, with higher values
 meaning more expansion. As with -q,
this actually involves turning off
 special cases in B::Deparse's normal operations.

If LEVEL is at least 3, for loops will be translated into equivalent
 while loops with continue
blocks; for instance

 for ($i = 0; $i < 10; ++$i) {
 print $i;
 }

turns into

 $i = 0;
 while ($i < 10) {
 print $i;
 } continue {
 ++$i
 }

Note that in a few cases this translation can't be perfectly carried back
 into the source code --
if the loop's initializer declares a my variable,
 for instance, it won't have the correct scope
outside of the loop.

If LEVEL is at least 5, use declarations will be translated into BEGIN blocks containing calls to
require and import; for
 instance,

 use strict 'refs';

turns into

 sub BEGIN {
 require strict;
 do {
 'strict'->import('refs')
 };

Perl version 5.14.0 documentation - B::Deparse

Page 4http://perldoc.perl.org

 }

If LEVEL is at least 7, if statements will be translated into
 equivalent expressions using &&,
?: and do {}; for instance

 print 'hi' if $nice;
 if ($nice) {
 print 'hi';
 }
 if ($nice) {
 print 'hi';
 } else {
 print 'bye';
 }

turns into

 $nice and print 'hi';
 $nice and do { print 'hi' };
 $nice ? do { print 'hi' } : do { print 'bye' };

Long sequences of elsifs will turn into nested ternary operators, which
 B::Deparse doesn't
know how to indent nicely.

USING B::Deparse AS A MODULE
Synopsis

 use B::Deparse;
 $deparse = B::Deparse->new("-p", "-sC");
 $body = $deparse->coderef2text(\&func);
 eval "sub func $body"; # the inverse operation

Description
B::Deparse can also be used on a sub-by-sub basis from other perl
 programs.

new
 $deparse = B::Deparse->new(OPTIONS)

Create an object to store the state of a deparsing operation and any
 options. The options are the
same as those that can be given on the
 command line (see OPTIONS); options that are separated by
commas
 after -MO=Deparse should be given as separate strings.

ambient_pragmas
 $deparse->ambient_pragmas(strict => 'all', '$[' => $[);

The compilation of a subroutine can be affected by a few compiler
 directives, pragmas. These are:

use strict;

use warnings;

Assigning to the special variable $[

use integer;

use bytes;

use utf8;

Perl version 5.14.0 documentation - B::Deparse

Page 5http://perldoc.perl.org

use re;

Ordinarily, if you use B::Deparse on a subroutine which has
 been compiled in the presence of one or
more of these pragmas,
 the output will include statements to turn on the appropriate
 directives. So if
you then compile the code returned by coderef2text,
 it will behave the same way as the subroutine
which you deparsed.

However, you may know that you intend to use the results in a
 particular context, where some
pragmas are already in scope. In
 this case, you use the ambient_pragmas method to describe the

assumptions you wish to make.

Not all of the options currently have any useful effect. See BUGS for more details.

The parameters it accepts are:

strict

Takes a string, possibly containing several values separated
 by whitespace. The special
values "all" and "none" mean what you'd
 expect.

 $deparse->ambient_pragmas(strict => 'subs refs');

$[

Takes a number, the value of the array base $[.

bytes

utf8

integer

If the value is true, then the appropriate pragma is assumed to
 be in the ambient scope,
otherwise not.

re

Takes a string, possibly containing a whitespace-separated list of
 values. The values "all" and
"none" are special. It's also permissible
 to pass an array reference here.

 $deparser->ambient_pragmas(re => 'eval');

warnings

Takes a string, possibly containing a whitespace-separated list of
 values. The values "all" and
"none" are special, again. It's also
 permissible to pass an array reference here.

 $deparser->ambient_pragmas(warnings => [qw[void io]]);

If one of the values is the string "FATAL", then all the warnings
 in that list will be considered
fatal, just as with the warnings
 pragma itself. Should you need to specify that some warnings
are
 fatal, and others are merely enabled, you can pass the warnings
 parameter twice:

 $deparser->ambient_pragmas(
	 warnings => 'all',
	 warnings => [FATAL => qw/void io/],
);

See perllexwarn for more information about lexical warnings.

hint_bits

warning_bits

These two parameters are used to specify the ambient pragmas in
 the format used by the
special variables $^H and ${^WARNING_BITS}.

Perl version 5.14.0 documentation - B::Deparse

Page 6http://perldoc.perl.org

They exist principally so that you can write code like:

 { my ($hint_bits, $warning_bits);
 BEGIN {($hint_bits, $warning_bits) = ($^H, ${^WARNING_BITS})}
 $deparser->ambient_pragmas (
	 hint_bits => $hint_bits,
	 warning_bits => $warning_bits,
	 '$[' => 0 + $[
); }

which specifies that the ambient pragmas are exactly those which
 are in scope at the point of
calling.

%^H

This parameter is used to specify the ambient pragmas which are
 stored in the special hash
%^H.

coderef2text
 $body = $deparse->coderef2text(\&func)
 $body = $deparse->coderef2text(sub ($$) { ... })

Return source code for the body of a subroutine (a block, optionally
 preceded by a prototype in
parens), given a reference to the
 sub. Because a subroutine can have no names, or more than one
name,
 this method doesn't return a complete subroutine definition -- if you
 want to eval the result, you
should prepend "sub subname ", or "sub "
 for an anonymous function constructor. Unless the sub was
defined in
 the main:: package, the code will include a package declaration.

BUGS
The only pragmas to be completely supported are: use warnings, use strict 'refs',
use bytes, and use integer. ($[, which
 behaves like a pragma, is also supported.)

Excepting those listed above, we're currently unable to guarantee that
 B::Deparse will produce
a pragma at the correct point in the program.
 (Specifically, pragmas at the beginning of a
block often appear right
 before the start of the block instead.)
 Since the effects of pragmas are
often lexically scoped, this can mean
 that the pragma holds sway over a different portion of
the program
 than in the input file.

In fact, the above is a specific instance of a more general problem:
 we can't guarantee to
produce BEGIN blocks or use declarations in
 exactly the right place. So if you use a module
which affects compilation
 (such as by over-riding keywords, overloading constants or
whatever)
 then the output code might not work as intended.

This is the most serious outstanding problem, and will require some help
 from the Perl core to
fix.

If a keyword is over-ridden, and your program explicitly calls
 the built-in version by using
CORE::keyword, the output of B::Deparse
 will not reflect this. If you run the resulting code, it
will call
 the over-ridden version rather than the built-in one. (Maybe there
 should be an option
to always print keyword calls as CORE::name.)

Some constants don't print correctly either with or without -d.
 For instance, neither B::Deparse
nor Data::Dumper know how to print
 dual-valued scalars correctly, as in:

 use constant E2BIG => ($!=7); $y = E2BIG; print $y, 0+$y;

 use constant H => { "#" => 1 }; H->{"#"};

An input file that uses source filtering probably won't be deparsed into
 runnable code, because
it will still include the use declaration
 for the source filtering module, even though the code that

Perl version 5.14.0 documentation - B::Deparse

Page 7http://perldoc.perl.org

is
 produced is already ordinary Perl which shouldn't be filtered again.

Optimised away statements are rendered as '???'. This includes statements that
 have a
compile-time side-effect, such as the obscure

 my $x if 0;

which is not, consequently, deparsed correctly.

 foreach my $i (@_) { 0 }
 =>
 foreach my $i (@_) { '???' }

Lexical (my) variables declared in scopes external to a subroutine
 appear in code2ref output
text as package variables. This is a tricky
 problem, as perl has no native facility for referring to
a lexical variable
 defined within a different scope, although PadWalker is a good start.

There are probably many more bugs on non-ASCII platforms (EBCDIC).

AUTHOR
Stephen McCamant <smcc@CSUA.Berkeley.EDU>, based on an earlier version
 by Malcolm Beattie
<mbeattie@sable.ox.ac.uk>, with contributions from
 Gisle Aas, James Duncan, Albert Dvornik, Robin
Houston, Dave Mitchell,
 Hugo van der Sanden, Gurusamy Sarathy, Nick Ing-Simmons, and Rafael

Garcia-Suarez.

