
Perl version 5.14.0 documentation - perl5131delta

Page 1http://perldoc.perl.org

NAME
perl5131delta - what is new for perl v5.13.1

DESCRIPTION
This document describes differences between the 5.13.0 release and
 the 5.13.1 release.

If you are upgrading from an earlier release such as 5.10, first read perl5120delta, which describes
differences between 5.10 and
 5.12.

Incompatible Changes
"\cX"

The backslash-c construct was designed as a way of specifying
 non-printable characters, but there
were no restrictions (on ASCII
 platforms) on what the character following the c could be. Now, that

character must be one of the ASCII characters.

localised tied hashes, arrays and scalars are no longed tied
In the following:

 tie @a, ...;
 {
	 local @a;
	 # here, @a is a now a new, untied array
 }
 # here, @a refers again to the old, tied array

The new local array used to be made tied too, which was fairly pointless,
 and has now been fixed.
This fix could however potentially cause a change
 in behaviour of some code.

given return values
Starting from this release, given blocks returns the last evaluated
 expression, or an empty list if the
block was exited by break. Thus you
 can now write:

 my $type = do {
 given ($num) {
 break when undef;
 'integer' when /^[+-]?[0-9]+$/;
 'float' when /^[+-]?[0-9]+(?:\.[0-9]+)?$/;
 'unknown';
 }
 };

See "Return value" in perlsyn for details.

Core Enhancements
Exception Handling Reliability

Several changes have been made to the way die, warn, and $@
 behave, in order to make them
more reliable and consistent.

When an exception is thrown inside an eval, the exception is no
 longer at risk of being clobbered by
code running during unwinding
 (e.g., destructors). Previously, the exception was written into $@
 early
in the throwing process, and would be overwritten if eval was
 used internally in the destructor for an
object that had to be freed
 while exiting from the outer eval. Now the exception is written
 into $@ last
thing before exiting the outer eval, so the code
 running immediately thereafter can rely on the value
in $@ correctly
 corresponding to that eval.

Likewise, a local $@ inside an eval will no longer clobber any
 exception thrown in its scope.

Perl version 5.14.0 documentation - perl5131delta

Page 2http://perldoc.perl.org

Previously, the restoration of $@ upon
 unwinding would overwrite any exception being thrown. Now
the exception
 gets to the eval anyway. So local $@ is safe inside an eval,
 albeit of rather limited
use.

Exceptions thrown from object destructors no longer modify the $@
 of the surrounding context. (If the
surrounding context was exception
 unwinding, this used to be another way to clobber the exception
being
 thrown. Due to the above change it no longer has that significance,
 but there are other
situations where $@ is significant.) Previously
 such an exception was sometimes emitted as a
warning, and then either
 string-appended to the surrounding $@ or completely replaced the

surrounding $@, depending on whether that exception and the surrounding $@ were strings or objects.
Now, an exception in this situation is
 always emitted as a warning, leaving the surrounding $@
untouched.
 In addition to object destructors, this also affects any function call
 performed by XS code
using the G_KEEPERR flag.

$@ is also no longer used as an internal temporary variable when
 preparing to die. Previously it was
internally necessary to put
 any exception object (any non-string exception) into $@ first,
 before it could
be used as an exception. (The C API still offers the
 old option, so an XS module might still clobber $@
in the old way.)
 This change together with the foregoing means that, in various places, $@ may be
observed to contain its previously-assigned value, rather
 than having been overwritten by recent
exception-related activity.

Warnings for warn can now be objects, in the same way as exceptions
 for die. If an object-based
warning gets the default handling,
 of writing to standard error, it will of course still be stringified
 along
the way. But a $SIG{__WARN__} handler will now receive an
 object-based warning as an object,
where previously it was passed the
 result of stringifying the object.

Modules and Pragmata
Updated Modules

Errno

The implementation of Errno has been refactored to use about 55% less memory.
 There
should be no user-visible changes.

Perl 4 .pl libraries

These historical libraries have been minimally modified to avoid using $[. This is to prepare
them for the deprecation of $[.

B::Deparse

A bug has been fixed when deparsing a nextstate op that has both a
 change of package
(relative to the previous nextstate), or a change of %^H or other state, and a label. Previously
the label was emitted
 first, leading to syntactically invalid output because a label is not

permitted immediately before a package declaration, BEGIN block,
 or some other things. Now
the label is emitted last.

Removed Modules and Pragmata
The following modules have been removed from the core distribution, and if
 needed should be
installed from CPAN instead.

Class::ISA

Pod::Plainer

Switch

The removal of Shell has been deferred until after 5.14, as the
 implementation of Shell shipped
with 5.12.0 did not correctly issue the
 warning that it was to be removed from core.

Perl version 5.14.0 documentation - perl5131delta

Page 3http://perldoc.perl.org

New Documentation
perlgpl

perlgpl has been updated to contain GPL version 1, as is included in the README distributed
with perl.

Selected Bug Fixes
Naming a deprecated character in \N{...} will not leak memory.

FETCH is no longer called needlessly on some tied variables.

The trie runtime code should no longer allocate massive amounts of memory,
 fixing #74484.

Changed Internals
The protocol for unwinding the C stack at the last stage of a die
 has changed how it identifies
the target stack frame. This now uses
 a separate variable PL_restartjmpenv, where
previously it relied on
 the blk_eval.cur_top_env pointer in the eval context frame that

has nominally just been discarded. This change means that code running
 during various
stages of Perl-level unwinding no longer needs to take
 care to avoid destroying the ghost
frame.

The format of entries on the scope stack has been changed, resulting in a
 reduction of
memory usage of about 10%. In particular, the memory used by
 the scope stack to record
each active lexical variable has been halved.

Memory allocation for pointer tables has been changed. Previously
Perl_ptr_table_store allocated memory from the same arena system as SV
 bodies and
HEs, with freed memory remaining bound to those arenas until
 interpreter exit. Now it allocates
memory from arenas private to the specific
 pointer table, and that memory is returned to the
system when Perl_ptr_table_free is called. Additionally, allocation and release are both

less CPU intensive.

A new function, Perl_magic_methcall has been added that wraps the setup needed
 to call a
magic method like FETCH (the existing S_magic_methcall function has
 been renamed
S_magic_methcall1).

Deprecations
The following items are now deprecated.

Perl_ptr_table_clear

Perl_ptr_table_clear is no longer part of Perl's public API. Calling it now
 generates a
deprecation warning, and it will be removed in a future
 release.

Acknowledgements
Perl 5.13.1 represents thirty days of development since Perl 5.13.0 and
 contains 15390 lines of
changes across 289 files from 34 authors and
 committers.

Thank you to the following for contributing to this release:

Ã†var ArnfjÃ¶rÃ° Bjarmason, Arkturuz, Chris 'BinGOs' Williams, Craig A. Berry,
 Curtis Jewell, Dan
Dascalescu, David Golden, David Mitchell, Father
 Chrysostomos, Gene Sullivan, gfx, Gisle Aas,
H.Merijn Brand, James E Keenan,
 James Mastros, Jan Dubois, Jesse Vincent, Karl Williamson, Leon
Brocard,
 Lubomir Rintel (GoodData), Nicholas Clark, Philippe Bruhat (BooK), Rafael
 Garcia-Suarez,
Rainer Tammer, Ricardo Signes, Richard Soderberg, Robin Barker,
 Ruslan Zakirov, Steffen Mueller,
Todd Rinaldo, Tony Cook, Vincent Pit, Zefram

Reporting Bugs
If you find what you think is a bug, you might check the articles
 recently posted to the
comp.lang.perl.misc newsgroup and the perl
 bug database at http://rt.perl.org/perlbug/ . There may

Perl version 5.14.0 documentation - perl5131delta

Page 4http://perldoc.perl.org

also be
 information at http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug
 program included with your
release. Be sure to trim your bug down
 to a tiny but sufficient test case. Your bug report, along with
the
 output of perl -V, will be sent off to perlbug@perl.org to be
 analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it
 inappropriate to send to a publicly
archived mailing list, then please send
 it to perl5-security-report@perl.org. This points to a closed
subscription
 unarchived mailing list, which includes all the core committers, who be able
 to help
assess the impact of issues, figure out a resolution, and help
 co-ordinate the release of patches to
mitigate or fix the problem across all
 platforms on which Perl is supported. Please only use this
address for
 security issues in the Perl core, not for modules independently
 distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details
 on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

