
Perl version 5.14.0 documentation - perlform

Page 1http://perldoc.perl.org

NAME
perlform - Perl formats

DESCRIPTION
Perl has a mechanism to help you generate simple reports and charts. To
 facilitate this, Perl helps
you code up your output page close to how it
 will look when it's printed. It can keep track of things like
how many
 lines are on a page, what page you're on, when to print page headers,
 etc. Keywords are
borrowed from FORTRAN: format() to declare and write()
 to execute; see their entries in perlfunc.
Fortunately, the layout is
 much more legible, more like BASIC's PRINT USING statement. Think of it

as a poor man's nroff(1).

Formats, like packages and subroutines, are declared rather than
 executed, so they may occur at any
point in your program. (Usually it's
 best to keep them all together though.) They have their own
namespace
 apart from all the other "types" in Perl. This means that if you have a
 function named
"Foo", it is not the same thing as having a format named
 "Foo". However, the default name for the
format associated with a given
 filehandle is the same as the name of the filehandle. Thus, the default

format for STDOUT is named "STDOUT", and the default format for filehandle
 TEMP is named
"TEMP". They just look the same. They aren't.

Output record formats are declared as follows:

 format NAME =
 FORMLIST
 .

If the name is omitted, format "STDOUT" is defined. A single "." in column 1 is used to terminate a
format. FORMLIST consists of a sequence of lines, each of which may be one of three types:

1. A comment, indicated by putting a '#' in the first column.

2. A "picture" line giving the format for one output line.

3. An argument line supplying values to plug into the previous picture line.

Picture lines contain output field definitions, intermingled with
 literal text. These lines do not undergo
any kind of variable interpolation.
 Field definitions are made up from a set of characters, for starting
and
 extending a field to its desired width. This is the complete set of
 characters for field definitions:

 @ start of regular field
 ^ start of special field
 < pad character for left justification
 | pad character for centering
 > pad character for right justification
 # pad character for a right-justified numeric field
 0 instead of first #: pad number with leading zeroes
 . decimal point within a numeric field
 ... terminate a text field, show "..." as truncation evidence
 @* variable width field for a multi-line value
 ^* variable width field for next line of a multi-line value
 ~ suppress line with all fields empty
 ~~ repeat line until all fields are exhausted

Each field in a picture line starts with either "@" (at) or "^" (caret),
 indicating what we'll call,
respectively, a "regular" or "special" field.
 The choice of pad characters determines whether a field is
textual or
 numeric. The tilde operators are not part of a field. Let's look at
 the various possibilities in
detail.

Perl version 5.14.0 documentation - perlform

Page 2http://perldoc.perl.org

Text Fields
The length of the field is supplied by padding out the field with multiple "<", ">", or "|" characters to
specify a non-numeric field with,
 respectively, left justification, right justification, or centering. For a
regular field, the value (up to the first newline) is taken and
 printed according to the selected
justification, truncating excess characters.
 If you terminate a text field with "...", three dots will be
shown if
 the value is truncated. A special text field may be used to do rudimentary multi-line text block
filling; see Using Fill Mode for details.

 Example:
 format STDOUT =
 @<<<<<< @|||||| @>>>>>>
 "left", "middle", "right"
 .
 Output:
 left middle right

Numeric Fields
Using "#" as a padding character specifies a numeric field, with
 right justification. An optional "."
defines the position of the
 decimal point. With a "0" (zero) instead of the first "#", the
 formatted
number will be padded with leading zeroes if necessary.
 A special numeric field is blanked out if the
value is undefined.
 If the resulting value would exceed the width specified the field is
 filled with "#" as
overflow evidence.

 Example:
 format STDOUT =
 @### @.### @##.### @### @### ^####
 42, 3.1415, undef, 0, 10000, undef
 .
 Output:
 42 3.142 0.000 0 ####

The Field @* for Variable-Width Multi-Line Text
The field "@*" can be used for printing multi-line, nontruncated
 values; it should (but need not) appear
by itself on a line. A final
 line feed is chomped off, but all other characters are emitted verbatim.

The Field ^* for Variable-Width One-line-at-a-time Text
Like "@*", this is a variable-width field. The value supplied must be a scalar variable. Perl puts the
first line (up to the first "\n") of the text into the field, and then chops off the front of the string so that
the next time the variable is referenced, more of the text can be printed. The variable will not be
restored.

 Example:
 $text = "line 1\nline 2\nline 3";
 format STDOUT =
 Text: ^*
 $text
 ~~ ^*
 $text
 .
 Output:
 Text: line 1
 line 2
 line 3

Perl version 5.14.0 documentation - perlform

Page 3http://perldoc.perl.org

Specifying Values
The values are specified on the following format line in the same order as
 the picture fields. The
expressions providing the values must be
 separated by commas. They are all evaluated in a list
context
 before the line is processed, so a single list expression could produce
 multiple list elements.
The expressions may be spread out to more than
 one line if enclosed in braces. If so, the opening
brace must be the first
 token on the first line. If an expression evaluates to a number with a
 decimal
part, and if the corresponding picture specifies that the decimal
 part should appear in the output (that
is, any picture except multiple "#"
 characters without an embedded "."), the character used for the
decimal
 point is determined by the current LC_NUMERIC locale if use locale is in
 effect. This
means that, if, for example, the run-time environment happens
 to specify a German locale, "," will be
used instead of the default ".". See perllocale and WARNINGS for more information.

Using Fill Mode
On text fields the caret enables a kind of fill mode. Instead of an
 arbitrary expression, the value
supplied must be a scalar variable
 that contains a text string. Perl puts the next portion of the text into

the field, and then chops off the front of the string so that the next time
 the variable is referenced,
more of the text can be printed. (Yes, this
 means that the variable itself is altered during execution of
the write()
 call, and is not restored.) The next portion of text is determined by
 a crude line-breaking
algorithm. You may use the carriage return character
 (\r) to force a line break. You can change
which characters are legal to break on by changing the variable $: (that's
$FORMAT_LINE_BREAK_CHARACTERS if you're using the English module) to a list of the desired
characters.

Normally you would use a sequence of fields in a vertical stack associated with the same scalar
variable to print out a block of text. You might wish to end the final field with the text "...", which will
appear in the output if the text was too long to appear in its entirety.

Suppressing Lines Where All Fields Are Void
Using caret fields can produce lines where all fields are blank. You can
 suppress such lines by putting
a "~" (tilde) character anywhere in the
 line. The tilde will be translated to a space upon output.

Repeating Format Lines
If you put two contiguous tilde characters "~~" anywhere into a line,
 the line will be repeated until all
the fields on the line are exhausted,
 i.e. undefined. For special (caret) text fields this will occur sooner
or
 later, but if you use a text field of the at variety, the expression you
 supply had better not give the
same value every time forever! (shift(@f)
 is a simple example that would work.) Don't use a
regular (at) numeric field in such lines, because it will never go blank.

Top of Form Processing
Top-of-form processing is by default handled by a format with the
 same name as the current
filehandle with "_TOP" concatenated to it.
 It's triggered at the top of each page. See "write" in perlfunc
.

Examples:

 # a report on the /etc/passwd file
 format STDOUT_TOP =
 Passwd File
 Name Login Office Uid Gid Home
 --
 .
 format STDOUT =
 @<<<<<<<<<<<<<<<<<< @||||||| @<<<<<<@>>>> @>>>> @<<<<<<<<<<<<<<<<<
 $name, $login, $office,$uid,$gid, $home
 .

Perl version 5.14.0 documentation - perlform

Page 4http://perldoc.perl.org

 # a report from a bug report form
 format STDOUT_TOP =
 Bug Reports
 @<<<<<<<<<<<<<<<<<<<<<<< @||| @>>>>>>>>>>>>>>>>>>>>>>>
 $system, $%, $date
 --
 .
 format STDOUT =
 Subject: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $subject
 Index: @<<<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $index, $description
 Priority: @<<<<<<<<<< Date: @<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $priority, $date, $description
 From: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $from, $description
 Assigned to: @<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $programmer, $description
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<...
 $description
 .

It is possible to intermix print()s with write()s on the same output
 channel, but you'll have to handle $-
($FORMAT_LINES_LEFT)
 yourself.

Format Variables
The current format name is stored in the variable $~ ($FORMAT_NAME),
 and the current top of form
format name is in $^ ($FORMAT_TOP_NAME).
 The current output page number is stored in $% (
$FORMAT_PAGE_NUMBER),
 and the number of lines on the page is in $= (
$FORMAT_LINES_PER_PAGE).
 Whether to autoflush output on this handle is stored in $|
 (
$OUTPUT_AUTOFLUSH). The string output before each top of page (except
 the first) is stored in $^L (
$FORMAT_FORMFEED). These variables are
 set on a per-filehandle basis, so you'll need to select()
into a different
 one to affect them:

 select((select(OUTF),
	 $~ = "My_Other_Format",
	 $^ = "My_Top_Format"
)[0]);

Pretty ugly, eh? It's a common idiom though, so don't be too surprised
 when you see it. You can at
least use a temporary variable to hold
 the previous filehandle: (this is a much better approach in
general,
 because not only does legibility improve, you now have an intermediary
 stage in the
expression to single-step the debugger through):

 $ofh = select(OUTF);
 $~ = "My_Other_Format";
 $^ = "My_Top_Format";
 select($ofh);

Perl version 5.14.0 documentation - perlform

Page 5http://perldoc.perl.org

If you use the English module, you can even read the variable names:

 use English '-no_match_vars';
 $ofh = select(OUTF);
 $FORMAT_NAME = "My_Other_Format";
 $FORMAT_TOP_NAME = "My_Top_Format";
 select($ofh);

But you still have those funny select()s. So just use the FileHandle
 module. Now, you can access
these special variables using lowercase
 method names instead:

 use FileHandle;
 format_name OUTF "My_Other_Format";
 format_top_name OUTF "My_Top_Format";

Much better!

NOTES
Because the values line may contain arbitrary expressions (for at fields,
 not caret fields), you can farm
out more sophisticated processing
 to other functions, like sprintf() or one of your own. For example:

 format Ident =
	 @<<<<<<<<<<<<<<<
	 &commify($n)
 .

To get a real at or caret into the field, do this:

 format Ident =
 I have an @ here.
	 "@"
 .

To center a whole line of text, do something like this:

 format Ident =
 @|||
	 "Some text line"
 .

There is no builtin way to say "float this to the right hand side
 of the page, however wide it is." You
have to specify where it goes.
 The truly desperate can generate their own format on the fly, based
 on
the current number of columns, and then eval() it:

 $format = "format STDOUT = \n"
 . '^' . '<' x $cols . "\n"
 . '$entry' . "\n"
 . "\t^" . "<" x ($cols-8) . "~~\n"
 . '$entry' . "\n"
 . ".\n";
 print $format if $Debugging;
 eval $format;
 die $@ if $@;

Which would generate a format looking something like this:

Perl version 5.14.0 documentation - perlform

Page 6http://perldoc.perl.org

 format STDOUT =
 ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $entry
 ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~~
 $entry
 .

Here's a little program that's somewhat like fmt(1):

 format =
 ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ~~
 $_

 .

 $/ = '';
 while (<>) {
 s/\s*\n\s*/ /g;
 write;
 }

Footers
While $FORMAT_TOP_NAME contains the name of the current header format,
 there is no
corresponding mechanism to automatically do the same thing
 for a footer. Not knowing how big a
format is going to be until you
 evaluate it is one of the major problems. It's on the TODO list.

Here's one strategy: If you have a fixed-size footer, you can get footers
 by checking
$FORMAT_LINES_LEFT before each write() and print the footer
 yourself if necessary.

Here's another strategy: Open a pipe to yourself, using open(MYSELF, "|-")
 (see "open
FILEHANDLE" in perlfunc) and always write() to MYSELF instead of STDOUT.
 Have your child
process massage its STDIN to rearrange headers and footers
 however you like. Not very convenient,
but doable.

Accessing Formatting Internals
For low-level access to the formatting mechanism. you may use formline()
 and access $^A (the
$ACCUMULATOR variable) directly.

For example:

 $str = formline <<'END', 1,2,3;
 @<<< @||| @>>>
 END

 print "Wow, I just stored `$^A' in the accumulator!\n";

Or to make an swrite() subroutine, which is to write() what sprintf()
 is to printf(), do this:

 use Carp;
 sub swrite {
	 croak "usage: swrite PICTURE ARGS" unless @_;
	 my $format = shift;
	 $^A = "";
	 formline($format,@_);
	 return $^A;
 }

Perl version 5.14.0 documentation - perlform

Page 7http://perldoc.perl.org

 $string = swrite(<<'END', 1, 2, 3);
 Check me out
 @<<< @||| @>>>
 END
 print $string;

WARNINGS
The lone dot that ends a format can also prematurely end a mail
 message passing through a
misconfigured Internet mailer (and based on
 experience, such misconfiguration is the rule, not the
exception). So
 when sending format code through mail, you should indent it so that
 the format-ending
dot is not on the left margin; this will prevent
 SMTP cutoff.

Lexical variables (declared with "my") are not visible within a
 format unless the format is declared
within the scope of the lexical
 variable. (They weren't visible at all before version 5.001.)

If a program's environment specifies an LC_NUMERIC locale and use
 locale is in effect when the
format is declared, the locale is used
 to specify the decimal point character in formatted output.
Formatted
 output cannot be controlled by use locale at the time when write()
 is called. See
perllocale for further discussion of locale handling.

Within strings that are to be displayed in a fixed-length text field,
 each control character is substituted
by a space. (But remember the
 special meaning of \r when using fill mode.) This is done to avoid

misalignment when control characters "disappear" on some output media.

