
Perl version 5.14.0 documentation - overload

Page 1http://perldoc.perl.org

NAME
overload - Package for overloading Perl operations

SYNOPSIS
 package SomeThing;

 use overload
	 '+' => \&myadd,
	 '-' => \&mysub;
	 # etc
 ...

 package main;
 $a = SomeThing->new(57);
 $b = 5 + $a;
 ...
 if (overload::Overloaded $b) {...}
 ...
 $strval = overload::StrVal $b;

DESCRIPTION
This pragma allows overloading of Perl's operators for a class.
 To overload built-in functions, see
"Overriding Built-in Functions" in perlsub instead.

Fundamentals
Declaration

Arguments of the use overload directive are (key, value) pairs.
 For the full set of legal keys, see
Overloadable Operations below.

Operator implementations (the values) can be subroutines,
 references to subroutines, or anonymous
subroutines
 - in other words, anything legal inside a &{ ... } call.
 Values specified as strings are
interpreted as method names.
 Thus

 package Number;
 use overload
 "-" => "minus",
 "*=" => \&muas,
 '""' => sub { ...; };

declares that subtraction is to be implemented by method minus()
 in the class Number (or one of its
base classes),
 and that the function Number::muas() is to be used for the
 assignment form of
multiplication, *=.
 It also defines an anonymous subroutine to implement stringification:
 this is called
whenever an object blessed into the package Number
 is used in a string context (this subroutine
might, for example,
 return the number as a Roman numeral).

Calling Conventions and Magic Autogeneration

The following sample implementation of minus() (which assumes
 that Number objects are simply
blessed references to scalars)
 illustrates the calling conventions:

 package Number;
 sub minus {
 my ($self, $other, $swap) = @_;
 my $result = $$self - $other; # *
 $result = -$result if $swap;
 ref $result ? $result : bless \$result;

Perl version 5.14.0 documentation - overload

Page 2http://perldoc.perl.org

 }
 # * may recurse once - see table below

Three arguments are passed to all subroutines specified in the use overload directive (with one
exception - see nomethod).
 The first of these is the operand providing the overloaded
 operator
implementation -
 in this case, the object whose minus() method is being called.

The second argument is the other operand, or undef in the
 case of a unary operator.

The third argument is set to TRUE if (and only if) the two
 operands have been swapped. Perl may do
this to ensure that the
 first argument ($self) is an object implementing the overloaded
 operation, in
line with general object calling conventions.
 For example, if $x and $y are Numbers:

 operation | generates a call to
 ============|======================
 $x - $y | minus($x, $y, '')
 $x - 7 | minus($x, 7, '')
 7 - $x | minus($x, 7, 1)

Perl may also use minus() to implement other operators which
 have not been specified in the use
overload directive,
 according to the rules for Magic Autogeneration described later.
 For example,
the use overload above declared no subroutine
 for any of the operators --, neg (the overload key
for
 unary minus), or -=. Thus

 operation | generates a call to
 ============|======================
 -$x | minus($x, 0, 1)
 $x-- | minus($x, 1, undef)
 $x -= 3 | minus($x, 3, undef)

Note the undefs:
 where autogeneration results in the method for a standard
 operator which does not
change either of its operands, such
 as -, being used to implement an operator which changes
 the
operand ("mutators": here, -- and -=),
 Perl passes undef as the third argument.
 This still evaluates
as FALSE, consistent with the fact that
 the operands have not been swapped, but gives the
subroutine
 a chance to alter its behaviour in these cases.

In all the above examples, minus() is required
 only to return the result of the subtraction:
 Perl takes
care of the assignment to $x.
 In fact, such methods should not modify their operands,
 even if undef
is passed as the third argument
 (see Overloadable Operations).

The same is not true of implementations of ++ and --:
 these are expected to modify their operand.

An appropriate implementation of -- might look like

 use overload '--' => "decr",
 # ...
 sub decr { --${$_[0]}; }

Mathemagic, Mutators, and Copy Constructors

The term 'mathemagic' describes the overloaded implementation
 of mathematical operators.

Mathemagical operations raise an issue.
 Consider the code:

 $a = $b;
 --$a;

If $a and $b are scalars then after these statements

 $a == $b - 1

Perl version 5.14.0 documentation - overload

Page 3http://perldoc.perl.org

An object, however, is a reference to blessed data, so if $a and $b are objects then the assignment
$a = $b
 copies only the reference, leaving $a and $b referring
 to the same object data.
 One might
therefore expect the operation --$a to decrement $b as well as $a.
 However, this would not be
consistent with how we expect the
 mathematical operators to work.

Perl resolves this dilemma by transparently calling a copy
 constructor before calling a method defined
to implement
 a mutator (--, +=, and so on.).
 In the above example, when Perl reaches the decrement
statement, it makes a copy of the object data in $a and
 assigns to $a a reference to the copied data.

Only then does it call decr(), which alters the copied
 data, leaving $b unchanged.
 Thus the object
metaphor is preserved as far as possible,
 while mathemagical operations still work according to the

arithmetic metaphor.

Note: the preceding paragraph describes what happens when
 Perl autogenerates the copy
constructor for an object based
 on a scalar.
 For other cases, see Copy Constructor.

Overloadable Operations
The complete list of keys that can be specified in the use overload
 directive are given, separated
by spaces, in the values of the
 hash %overload::ops:

 with_assign	 => '+ - * / % ** << >> x .',
 assign		 => '+= -= *= /= %= **= <<= >>= x= .=',
 num_comparison	 => '< <= > >= == !=',
 '3way_comparison'=> '<=> cmp',
 str_comparison	 => 'lt le gt ge eq ne',
 binary		 => '& &= | |= ^ ^=',
 unary		 => 'neg ! ~',
 mutators	 => '++ --',
 func		 => 'atan2 cos sin exp abs log sqrt int',
 conversion	 => 'bool "" 0+ qr',
 iterators	 => '<>',
 filetest => '-X',
 dereferencing	 => '${} @{} %{} &{} *{}',
 matching	 => '~~',
 special	 => 'nomethod fallback ='

Most of the overloadable operators map one-to-one to these keys.
 Exceptions, including additional
overloadable operations not
 apparent from this hash, are included in the notes which follow.

* not

The operator not is not a valid key for use overload.
 However, if the operator ! is
overloaded then the same
 implementation will be used for not
 (since the two operators
differ only in precedence).

* neg

The key neg is used for unary minus to disambiguate it from
 binary -.

* ++, --

Assuming they are to behave analogously to Perl's ++ and --,
 overloaded implementations
of these operators are required to
 mutate their operands.

No distinction is made between prefix and postfix forms of the
 increment and decrement
operators: these differ only in the
 point at which Perl calls the associated subroutine when

evaluating an expression.

* Assignments

 += -= *= /= %= **= <<= >>= x= .=
 &= |= ^=

Perl version 5.14.0 documentation - overload

Page 4http://perldoc.perl.org

Simple assignment is not overloadable (the '=' key is used
 for the Copy Constructor).
 Perl
does have a way to make assignments to an object do whatever
 you want, but this involves
using tie(), not overload -
 see "tie" in perlfunc and the COOKBOOK examples below.

The subroutine for the assignment variant of an operator is
 required only to return the result
of the operation.
 It is permitted to change the value of its operand
 (this is safe because Perl
calls the copy constructor first),
 but this is optional since Perl assigns the returned value to

the left-hand operand anyway.

An object that overloads an assignment operator does so only in
 respect of assignments to
that object.
 In other words, Perl never calls the corresponding methods with
 the third
argument (the "swap" argument) set to TRUE.
 For example, the operation

 $a *= $b

cannot lead to $b's implementation of *= being called,
 even if $a is a scalar.
 (It can,
however, generate a call to $b's method for *).

* Non-mutators with a mutator variant

 + - * / % ** << >> x .
 & | ^

As described above,
 Perl may call methods for operators like + and & in the course
 of
implementing missing operations like ++, +=, and &=.
 While these methods may detect this
usage by testing the definedness
 of the third argument, they should in all cases avoid
changing their
 operands.
 This is because Perl does not call the copy constructor before

invoking these methods.

* int

Traditionally, the Perl function int rounds to 0
 (see "int" in perlfunc), and so for
floating-point-like types one
 should follow the same semantic.

* String, numeric, boolean, and regexp conversions

 "" 0+ bool

These conversions are invoked according to context as necessary.
 For example, the
subroutine for '""' (stringify) may be used
 where the overloaded object is passed as an
argument to print,
 and that for 'bool' where it is tested in the condition of a flow
 control
statement (like while) or the ternary ?: operation.

Of course, in contexts like, for example, $obj + 1, Perl will
 invoke $obj's implementation
of + rather than (in this
 example) converting $obj to a number using the numify method
'0+' (an exception to this is when no method has been provided
 for '+' and fallback is set
to TRUE).

The subroutines for '""', '0+', and 'bool' can return
 any arbitrary Perl value.
 If the
corresponding operation for this value is overloaded too,
 the operation will be called again
with this value.

As a special case if the overload returns the object itself then it will
 be used directly. An
overloaded conversion returning the object is
 probably a bug, because you're likely to get
something that looks like YourPackage=HASH(0x8172b34).

 qr

The subroutine for 'qr' is used wherever the object is
 interpolated into or used as a
regexp, including when it
 appears on the RHS of a =~ or !~ operator.

qr must return a compiled regexp, or a ref to a compiled regexp
 (such as qr// returns),
and any further overloading on the return
 value will be ignored.

* Iteration

Perl version 5.14.0 documentation - overload

Page 5http://perldoc.perl.org

If <> is overloaded then the same implementation is used
 for both the read-filehandle syntax
<$var> and globbing syntax <${var}>.

BUGS Even in list context, the iterator is currently called only
 once and with scalar context.

* File tests

The key '-X' is used to specify a subroutine to handle all the
 filetest operators (-f, -x, and
so on: see "-X" in perlfunc for
 the full list);
 it is not possible to overload any filetest operator
individually.
 To distinguish them, the letter following the '-' is passed as the
 second argument
(that is, in the slot that for binary operators
 is used to pass the second operand).

Calling an overloaded filetest operator does not affect the stat value
 associated with the
special filehandle _. It still refers to the
 result of the last stat, lstat or unoverloaded
filetest.

This overload was introduced in Perl 5.12.

* Matching

The key "~~" allows you to override the smart matching logic used by
 the ~~ operator and
the switch construct (given/when). See "switch" in perlsyn and feature.

Unusually, the overloaded implementation of the smart match operator
 does not get full
control of the smart match behaviour.
 In particular, in the following code:

 package Foo;
 use overload '~~' => 'match';

 my $obj = Foo->new();
 $obj ~~ [1,2,3];

the smart match does not invoke the method call like this:

 $obj->match([1,2,3],0);

rather, the smart match distributive rule takes precedence, so $obj is
 smart matched against
each array element in turn until a match is found,
 so you may see between one and three of
these calls instead:

 $obj->match(1,0);
 $obj->match(2,0);
 $obj->match(3,0);

Consult the match table in "Smart matching in detail" in perlsyn for
 details of when
overloading is invoked.

* Dereferencing

 ${} @{} %{} &{} *{}

If these operators are not explicitly overloaded then they
 work in the normal way, yielding
the underlying scalar,
 array, or whatever stores the object data (or the appropriate
 error
message if the dereference operator doesn't match it).
 Defining a catch-all 'nomethod'
(see below)
 makes no difference to this as the catch-all function will
 not be called to
implement a missing dereference operator.

If a dereference operator is overloaded then it must return a reference of the appropriate
type (for example, the
 subroutine for key '${}' should return a reference to a
 scalar, not a
scalar), or another object which overloads the
 operator: that is, the subroutine only
determines what is
 dereferenced and the actual dereferencing is left to Perl.
 As a special
case, if the subroutine returns the object itself
 then it will not be called again - avoiding
infinite recursion.

* Special

Perl version 5.14.0 documentation - overload

Page 6http://perldoc.perl.org

 nomethod fallback =

See Special Keys for use overload.

Magic Autogeneration
If a method for an operation is not found then Perl tries to
 autogenerate a substitute implementation
from the operations
 that have been defined.

Note: the behaviour described in this section can be disabled
 by setting fallback to FALSE (see
fallback).

In the following tables, numbers indicate priority.
 For example, the table below states that,
 if no
implementation for '!' has been defined then Perl will
 implement it using 'bool' (that is, by
inverting the value
 returned by the method for 'bool');
 if boolean conversion is also unimplemented
then Perl will
 use '0+' or, failing that, '""'.

 operator | can be autogenerated from
 |
 | 0+ "" bool . x
 =========|==========================
 0+ | 1 2
 "" | 1 2
 bool | 1 2
 int | 1 2 3
 ! | 2 3 1
 qr | 2 1 3
 . | 2 1 3
 x | 2 1 3
 .= | 3 2 4 1
 x= | 3 2 4 1
 <> | 2 1 3
 -X | 2 1 3

Note: The iterator ('<>') and file test ('-X')
 operators work as normal: if the operand is not a
blessed glob or
 IO reference then it is converted to a string (using the method
 for '""', '0+', or
'bool') to be interpreted as a glob
 or filename.

 operator | can be autogenerated from
 |
 | < <=> neg -= -
 =========|==========================
 neg | 1
 -= | 1
 -- | 1 2
 abs | a1 a2 b1 b2 [*]
 < | 1
 <= | 1
 > | 1
 >= | 1
 == | 1
 != | 1

 * one from [a1, a2] and one from [b1, b2]

Just as numeric comparisons can be autogenerated from the method
 for '<=>', string comparisons
can be autogenerated from
 that for 'cmp':

Perl version 5.14.0 documentation - overload

Page 7http://perldoc.perl.org

 operators | can be autogenerated from
 ====================|===========================
 lt gt le ge eq ne | cmp

Similarly, autogeneration for keys '+=' and '++' is analogous
 to '-=' and '--' above:

 operator | can be autogenerated from
 |
 | += +
 =========|==========================
 += | 1
 ++ | 1 2

And other assignment variations are analogous to '+=' and '-=' (and similar to '.=' and 'x='
above):

 operator || *= /= %= **= <<= >>= &= ^= |=
 -------------------||--------------------------------
 autogenerated from || * / % ** << >> & ^ |

Note also that the copy constructor (key '=') may be
 autogenerated, but only for objects based on
scalars.
 See Copy Constructor.

Minimal Set of Overloaded Operations

Since some operations can be automatically generated from others, there is
 a minimal set of
operations that need to be overloaded in order to have
 the complete set of overloaded operations at
one's disposal.
 Of course, the autogenerated operations may not do exactly what the user
 expects.
The minimal set is:

 + - * / % ** << >> x
 <=> cmp
 & | ^ ~
 atan2 cos sin exp log sqrt int
 "" 0+ bool
 ~~

Of the conversions, only one of string, boolean or numeric is
 needed because each can be generated
from either of the other two.

Special Keys for use overload
nomethod

The 'nomethod' key is used to specify a catch-all function to
 be called for any operator that is not
individually overloaded.
 The specified function will be passed four parameters.
 The first three
arguments coincide with those that would have been
 passed to the corresponding method if it had
been defined.
 The fourth argument is the use overload key for that missing
 method.

For example, if $a is an object blessed into a package declaring

 use overload 'nomethod' => 'catch_all', # ...

then the operation

 3 + $a

could (unless a method is specifically declared for the key '+') result in a call

Perl version 5.14.0 documentation - overload

Page 8http://perldoc.perl.org

 catch_all($a, 3, 1, '+')

See How Perl Chooses an Operator Implementation.

fallback

The value assigned to the key 'fallback' tells Perl how hard
 it should try to find an alternative way
to implement a missing
 operator.

* defined, but FALSE

 use overload "fallback" => 0, # ... ;

This disables Magic Autogeneration.

* undef

In the default case where no value is explicitly assigned to fallback, magic autogeneration
is enabled.

* TRUE

The same as for undef, but if a missing operator cannot be
 autogenerated then, instead of
issuing an error message, Perl
 is allowed to revert to what it would have done for that
 operator
if there had been no use overload directive.

Note: in most cases, particularly the Copy Constructor,
 this is unlikely to be appropriate
behaviour.

See How Perl Chooses an Operator Implementation.

Copy Constructor

As mentioned above,
 this operation is called when a mutator is applied to a reference
 that shares its
object with some other reference.
 For example, if $b is mathemagical, and '++' is overloaded
 with
'incr', and '=' is overloaded with 'clone', then the
 code

 $a = $b;
 # ... (other code which does not modify $a or $b) ...
 ++$b;

would be executed in a manner equivalent to

 $a = $b;
 # ...
 $b = $b->clone(undef, "");
 $b->incr(undef, "");

Note:

The subroutine for '=' does not overload the Perl assignment
 operator: it is used only to
allow mutators to work as described
 here. (See Assignments above.)

As for other operations, the subroutine implementing '=' is passed
 three arguments, though
the last two are always undef and ''.

The copy constructor is called only before a call to a function
 declared to implement a mutator,
for example, if ++$b; in the
 code above is effected via a method declared for key '++'
 (or
'nomethod', passed '++' as the fourth argument) or, by
 autogeneration, '+='.
 It is not called
if the increment operation is effected by a call
 to the method for '+' since, in the equivalent
code,

 $a = $b;

Perl version 5.14.0 documentation - overload

Page 9http://perldoc.perl.org

 $b = $b + 1;

the data referred to by $a is unchanged by the assignment to $b of a reference to new object
data.

The copy constructor is not called if Perl determines that it is
 unnecessary because there is no
other reference to the data being
 modified.

If 'fallback' is undefined or TRUE then a copy constructor
 can be autogenerated, but only
for objects based on scalars.
 In other cases it needs to be defined explicitly.
 Where an object's
data is stored as, for example, an array of
 scalars, the following might be appropriate:

 use overload '=' => sub { bless [@{$_[0]}] }, # ...

If 'fallback' is TRUE and no copy constructor is defined then,
 for objects not based on
scalars, Perl may silently fall back on
 simple assignment - that is, assignment of the object
reference.
 In effect, this disables the copy constructor mechanism since
 no new copy of the
object data is created.
 This is almost certainly not what you want.
 (It is, however, consistent:
for example, Perl's fallback for the ++ operator is to increment the reference itself.)

How Perl Chooses an Operator Implementation
Which is checked first, nomethod or fallback?
 If the two operands of an operator are of different
types and
 both overload the operator, which implementation is used?
 The following are the
precedence rules:

1. If the first operand has declared a subroutine to overload the
 operator then use that
implementation.

2. Otherwise, if fallback is TRUE or undefined for the
 first operand then see if the rules for
autogeneration
 allows another of its operators to be used instead.

3. Unless the operator is an assignment (+=, -=, etc.),
 repeat step (1) in respect of the second
operand.

4. Repeat Step (2) in respect of the second operand.

5. If the first operand has a "nomethod" method then use that.

6. If the second operand has a "nomethod" method then use that.

7. If fallback is TRUE for both operands
 then perform the usual operation for the operator,

treating the operands as numbers, strings, or booleans
 as appropriate for the operator (see
note).

8. Nothing worked - die.

Where there is only one operand (or only one operand with
 overloading) the checks in respect of the
other operand above are
 skipped.

There are exceptions to the above rules for dereference operations
 (which, if Step 1 fails, always fall
back to the normal, built-in
 implementations - see Dereferencing), and for ~~ (which has its
 own set of
rules - see Matching).

Note on Step 7: some operators have a different semantic depending
 on the type of their operands.

As there is no way to instruct Perl to treat the operands as, e.g.,
 numbers instead of strings, the result
here may not be what you
 expect.
 See BUGS AND PITFALLS.

Losing Overloading
The restriction for the comparison operation is that even if, for example,
 `cmp' should return a blessed
reference, the autogenerated `lt'
 function will produce only a standard logical value based on the

numerical value of the result of `cmp'. In particular, a working
 numeric conversion is needed in this

Perl version 5.14.0 documentation - overload

Page 10http://perldoc.perl.org

case (possibly expressed in terms of
 other conversions).

Similarly, .= and x= operators lose their mathemagical properties
 if the string conversion substitution
is applied.

When you chop() a mathemagical object it is promoted to a string and its
 mathemagical properties are
lost. The same can happen with other
 operations as well.

Inheritance and Overloading
Overloading respects inheritance via the @ISA hierarchy.
 Inheritance interacts with overloading in two
ways.

Method names in the use overload directive

If value in

 use overload key => value;

is a string, it is interpreted as a method name - which may
 (in the usual way) be inherited from
another class.

Overloading of an operation is inherited by derived classes

Any class derived from an overloaded class is also overloaded
 and inherits its operator
implementations.
 If the same operator is overloaded in more than one ancestor
 then the
implementation is determined by the usual inheritance
 rules.

For example, if A inherits from B and C (in that order), B overloads + with \&D::plus_sub,
and C overloads + by "plus_meth", then the subroutine D::plus_sub will
 be called to
implement operation + for an object in package A.

Note that since the value of the fallback key is not a subroutine,
 its inheritance is not governed by
the above rules. In the current
 implementation, the value of fallback in the first overloaded
 ancestor
is used, but this is accidental and subject to change.

Run-time Overloading
Since all use directives are executed at compile-time, the only way to
 change overloading during
run-time is to

 eval 'use overload "+" => \&addmethod';

You can also use

 eval 'no overload "+", "--", "<="';

though the use of these constructs during run-time is questionable.

Public Functions
Package overload.pm provides the following public functions:

overload::StrVal(arg)

Gives string value of arg as in absence of stringify overloading. If you
 are using this to get
the address of a reference (useful for checking if two
 references point to the same thing)
then you may be better off using Scalar::Util::refaddr(), which is faster.

overload::Overloaded(arg)

Returns true if arg is subject to overloading of some operations.

overload::Method(obj,op)

Returns undef or a reference to the method that implements op.

Perl version 5.14.0 documentation - overload

Page 11http://perldoc.perl.org

Overloading Constants
For some applications, the Perl parser mangles constants too much.
 It is possible to hook into this
process via overload::constant()
 and overload::remove_constant() functions.

These functions take a hash as an argument. The recognized keys of this hash
 are:

integer

to overload integer constants,

float

to overload floating point constants,

binary

to overload octal and hexadecimal constants,

q

to overload q-quoted strings, constant pieces of qq- and qx-quoted
 strings and
here-documents,

qr

to overload constant pieces of regular expressions.

The corresponding values are references to functions which take three arguments:
 the first one is the
initial string form of the constant, the second one
 is how Perl interprets this constant, the third one is
how the constant is used.
 Note that the initial string form does not
 contain string delimiters, and has
backslashes in backslash-delimiter
 combinations stripped (thus the value of delimiter is not relevant
for
 processing of this string). The return value of this function is how this
 constant is going to be
interpreted by Perl. The third argument is undefined
 unless for overloaded q- and qr- constants, it is
q in single-quote
 context (comes from strings, regular expressions, and single-quote HERE

documents), it is tr for arguments of tr/y operators,
 it is s for right-hand side of s-operator, and it is
qq otherwise.

Since an expression "ab$cd,," is just a shortcut for 'ab' . $cd . ',,',
 it is expected that
overloaded constant strings are equipped with reasonable
 overloaded catenation operator, otherwise
absurd results will result.
 Similarly, negative numbers are considered as negations of positive
constants.

Note that it is probably meaningless to call the functions overload::constant()
 and
overload::remove_constant() from anywhere but import() and unimport() methods.
 From these
methods they may be called as

	 sub import {
	 shift;
	 return unless @_;
	 die "unknown import: @_" unless @_ == 1 and $_[0] eq ':constant';
	 overload::constant integer => sub {Math::BigInt->new(shift)};
	 }

IMPLEMENTATION
What follows is subject to change RSN.

The table of methods for all operations is cached in magic for the
 symbol table hash for the package.
The cache is invalidated during
 processing of use overload, no overload, new function

definitions, and changes in @ISA. However, this invalidation remains
 unprocessed until the next
blessing into the package. Hence if you
 want to change overloading structure dynamically, you'll
need an
 additional (fake) blessing to update the table.

Perl version 5.14.0 documentation - overload

Page 12http://perldoc.perl.org

(Every SVish thing has a magic queue, and magic is an entry in that
 queue. This is how a single
variable may participate in multiple
 forms of magic simultaneously. For instance, environment
variables
 regularly have two forms at once: their %ENV magic and their taint
 magic. However, the
magic which implements overloading is applied to
 the stashes, which are rarely used directly, thus
should not slow down
 Perl.)

If an object belongs to a package using overload, it carries a special
 flag. Thus the only speed penalty
during arithmetic operations without
 overloading is the checking of this flag.

In fact, if use overload is not present, there is almost no overhead
 for overloadable operations, so
most programs should not suffer
 measurable performance penalties. A considerable effort was made
to
 minimize the overhead when overload is used in some package, but the
 arguments in question do
not belong to packages using overload. When
 in doubt, test your speed with use overload and
without it. So far
 there have been no reports of substantial speed degradation if Perl is
 compiled with
optimization turned on.

There is no size penalty for data if overload is not used. The only
 size penalty if overload is used in
some package is that all the
 packages acquire a magic during the next blessing into the
 package.
This magic is three-words-long for packages without
 overloading, and carries the cache table if the
package is overloaded.

It is expected that arguments to methods that are not explicitly supposed
 to be changed are constant
(but this is not enforced).

COOKBOOK
Please add examples to what follows!

Two-face Scalars
Put this in two_face.pm in your Perl library directory:

 package two_face;		 # Scalars with separate string and
 # numeric values.
 sub new { my $p = shift; bless [@_], $p }
 use overload '""' => \&str, '0+' => \&num, fallback => 1;
 sub num {shift->[1]}
 sub str {shift->[0]}

Use it as follows:

 require two_face;
 my $seven = two_face->new("vii", 7);
 printf "seven=$seven, seven=%d, eight=%d\n", $seven, $seven+1;
 print "seven contains `i'\n" if $seven =~ /i/;

(The second line creates a scalar which has both a string value, and a
 numeric value.) This prints:

 seven=vii, seven=7, eight=8
 seven contains `i'

Two-face References
Suppose you want to create an object which is accessible as both an
 array reference and a hash
reference.

 package two_refs;
 use overload '%{}' => \&gethash, '@{}' => sub { $ {shift()} };
 sub new {
 my $p = shift;

Perl version 5.14.0 documentation - overload

Page 13http://perldoc.perl.org

 bless \ [@_], $p;
 }
 sub gethash {
 my %h;
 my $self = shift;
 tie %h, ref $self, $self;
 \%h;
 }

 sub TIEHASH { my $p = shift; bless \ shift, $p }
 my %fields;
 my $i = 0;
 $fields{$_} = $i++ foreach qw{zero one two three};
 sub STORE {
 my $self = ${shift()};
 my $key = $fields{shift()};
 defined $key or die "Out of band access";
 $$self->[$key] = shift;
 }
 sub FETCH {
 my $self = ${shift()};
 my $key = $fields{shift()};
 defined $key or die "Out of band access";
 $$self->[$key];
 }

Now one can access an object using both the array and hash syntax:

 my $bar = two_refs->new(3,4,5,6);
 $bar->[2] = 11;
 $bar->{two} == 11 or die 'bad hash fetch';

Note several important features of this example. First of all, the actual type of $bar is a scalar
reference, and we do not overload
 the scalar dereference. Thus we can get the actual
non-overloaded
 contents of $bar by just using $$bar (what we do in functions which
 overload
dereference). Similarly, the object returned by the
 TIEHASH() method is a scalar reference.

Second, we create a new tied hash each time the hash syntax is used.
 This allows us not to worry
about a possibility of a reference loop,
 which would lead to a memory leak.

Both these problems can be cured. Say, if we want to overload hash
 dereference on a reference to an
object which is implemented as a
 hash itself, the only problem one has to circumvent is how to access
this actual hash (as opposed to the virtual hash exhibited by the
 overloaded dereference operator).
Here is one possible fetching routine:

 sub access_hash {
 my ($self, $key) = (shift, shift);
 my $class = ref $self;
 bless $self, 'overload::dummy'; # Disable overloading of %{}
 my $out = $self->{$key};
 bless $self, $class;	 # Restore overloading
 $out;
 }

To remove creation of the tied hash on each access, one may an extra
 level of indirection which
allows a non-circular structure of references:

Perl version 5.14.0 documentation - overload

Page 14http://perldoc.perl.org

 package two_refs1;
 use overload '%{}' => sub { ${shift()}->[1] },
 '@{}' => sub { ${shift()}->[0] };
 sub new {
 my $p = shift;
 my $a = [@_];
 my %h;
 tie %h, $p, $a;
 bless \ [$a, \%h], $p;
 }
 sub gethash {
 my %h;
 my $self = shift;
 tie %h, ref $self, $self;
 \%h;
 }

 sub TIEHASH { my $p = shift; bless \ shift, $p }
 my %fields;
 my $i = 0;
 $fields{$_} = $i++ foreach qw{zero one two three};
 sub STORE {
 my $a = ${shift()};
 my $key = $fields{shift()};
 defined $key or die "Out of band access";
 $a->[$key] = shift;
 }
 sub FETCH {
 my $a = ${shift()};
 my $key = $fields{shift()};
 defined $key or die "Out of band access";
 $a->[$key];
 }

Now if $baz is overloaded like this, then $baz is a reference to a
 reference to the intermediate array,
which keeps a reference to an
 actual array, and the access hash. The tie()ing object for the access

hash is a reference to a reference to the actual array, so

There are no loops of references.

Both "objects" which are blessed into the class two_refs1 are
 references to a reference to
an array, thus references to a scalar.
 Thus the accessor expression $$foo->[$ind]
involves no
 overloaded operations.

Symbolic Calculator
Put this in symbolic.pm in your Perl library directory:

 package symbolic;		 # Primitive symbolic calculator
 use overload nomethod => \&wrap;

 sub new { shift; bless ['n', @_] }
 sub wrap {
 my ($obj, $other, $inv, $meth) = @_;
 ($obj, $other) = ($other, $obj) if $inv;
 bless [$meth, $obj, $other];
 }

Perl version 5.14.0 documentation - overload

Page 15http://perldoc.perl.org

This module is very unusual as overloaded modules go: it does not
 provide any usual overloaded
operators, instead it provides an
 implementation for nomethod. In this example the nomethod

subroutine returns an object which encapsulates operations done over
 the objects:
symbolic->new(3) contains ['n', 3], 2 +
 symbolic->new(3) contains ['+', 2, ['n',
3]].

Here is an example of the script which "calculates" the side of
 circumscribed octagon using the above
package:

 require symbolic;
 my $iter = 1;			 # 2**($iter+2) = 8
 my $side = symbolic->new(1);
 my $cnt = $iter;

 while ($cnt--) {
 $side = (sqrt(1 + $side**2) - 1)/$side;
 }
 print "OK\n";

The value of $side is

 ['/', ['-', ['sqrt', ['+', 1, ['**', ['n', 1], 2]],
	 undef], 1], ['n', 1]]

Note that while we obtained this value using a nice little script,
 there is no simple way to use this
value. In fact this value may
 be inspected in debugger (see perldebug), but only if bareStringify O
ption is set, and not via p command.

If one attempts to print this value, then the overloaded operator "" will be called, which will call
nomethod operator. The
 result of this operator will be stringified again, but this result is
 again of type
symbolic, which will lead to an infinite loop.

Add a pretty-printer method to the module symbolic.pm:

 sub pretty {
 my ($meth, $a, $b) = @{+shift};
 $a = 'u' unless defined $a;
 $b = 'u' unless defined $b;
 $a = $a->pretty if ref $a;
 $b = $b->pretty if ref $b;
 "[$meth $a $b]";
 }

Now one can finish the script by

 print "side = ", $side->pretty, "\n";

The method pretty is doing object-to-string conversion, so it
 is natural to overload the operator ""
using this method. However,
 inside such a method it is not necessary to pretty-print the components
$a and $b of an object. In the above subroutine "[$meth $a $b]" is a catenation of some strings
and components $a
 and $b. If these components use overloading, the catenation operator
 will look for
an overloaded operator .; if not present, it will
 look for an overloaded operator "". Thus it is enough
to use

 use overload nomethod => \&wrap, '""' => \&str;
 sub str {
 my ($meth, $a, $b) = @{+shift};

Perl version 5.14.0 documentation - overload

Page 16http://perldoc.perl.org

 $a = 'u' unless defined $a;
 $b = 'u' unless defined $b;
 "[$meth $a $b]";
 }

Now one can change the last line of the script to

 print "side = $side\n";

which outputs

 side = [/ [- [sqrt [+ 1 [** [n 1 u] 2]] u] 1] [n 1 u]]

and one can inspect the value in debugger using all the possible
 methods.

Something is still amiss: consider the loop variable $cnt of the
 script. It was a number, not an object.
We cannot make this value of
 type symbolic, since then the loop will not terminate.

Indeed, to terminate the cycle, the $cnt should become false.
 However, the operator bool for
checking falsity is overloaded (this
 time via overloaded ""), and returns a long string, thus any object

of type symbolic is true. To overcome this, we need a way to
 compare an object to 0. In fact, it is
easier to write a numeric
 conversion routine.

Here is the text of symbolic.pm with such a routine added (and
 slightly modified str()):

 package symbolic;		 # Primitive symbolic calculator
 use overload
 nomethod => \&wrap, '""' => \&str, '0+' => \#

 sub new { shift; bless ['n', @_] }
 sub wrap {
 my ($obj, $other, $inv, $meth) = @_;
 ($obj, $other) = ($other, $obj) if $inv;
 bless [$meth, $obj, $other];
 }
 sub str {
 my ($meth, $a, $b) = @{+shift};
 $a = 'u' unless defined $a;
 if (defined $b) {
 "[$meth $a $b]";
 } else {
 "[$meth $a]";
 }
 }
 my %subr = (n => sub {$_[0]},
	 sqrt => sub {sqrt $_[0]},
	 '-' => sub {shift() - shift()},
	 '+' => sub {shift() + shift()},
	 '/' => sub {shift() / shift()},
	 '*' => sub {shift() * shift()},
	 '**' => sub {shift() ** shift()},
);
 sub num {
 my ($meth, $a, $b) = @{+shift};
 my $subr = $subr{$meth}
 or die "Do not know how to ($meth) in symbolic";
 $a = $a->num if ref $a eq __PACKAGE__;

Perl version 5.14.0 documentation - overload

Page 17http://perldoc.perl.org

 $b = $b->num if ref $b eq __PACKAGE__;
 $subr->($a,$b);
 }

All the work of numeric conversion is done in %subr and num(). Of
 course, %subr is not complete, it
contains only operators used in the
 example below. Here is the extra-credit question: why do we need
an
 explicit recursion in num()? (Answer is at the end of this section.)

Use this module like this:

 require symbolic;
 my $iter = symbolic->new(2);	 # 16-gon
 my $side = symbolic->new(1);
 my $cnt = $iter;

 while ($cnt) {
 $cnt = $cnt - 1;		 # Mutator `--' not implemented
 $side = (sqrt(1 + $side**2) - 1)/$side;
 }
 printf "%s=%f\n", $side, $side;
 printf "pi=%f\n", $side*(2**($iter+2));

It prints (without so many line breaks)

 [/ [- [sqrt [+ 1 [** [/ [- [sqrt [+ 1 [** [n 1] 2]]] 1]
			 [n 1]] 2]]] 1]
 [/ [- [sqrt [+ 1 [** [n 1] 2]]] 1] [n 1]]]=0.198912
 pi=3.182598

The above module is very primitive. It does not implement
 mutator methods (++, -= and so on), does
not do deep copying
 (not required without mutators!), and implements only those arithmetic

operations which are used in the example.

To implement most arithmetic operations is easy; one should just use
 the tables of operations, and
change the code which fills %subr to

 my %subr = ('n' => sub {$_[0]});
 foreach my $op (split " ", $overload::ops{with_assign}) {
 $subr{$op} = $subr{"$op="} = eval "sub {shift() $op shift()}";
 }
 my @bins = qw(binary 3way_comparison num_comparison str_comparison);
 foreach my $op (split " ", "@overload::ops{ @bins }") {
 $subr{$op} = eval "sub {shift() $op shift()}";
 }
 foreach my $op (split " ", "@overload::ops{qw(unary func)}") {
 print "defining `$op'\n";
 $subr{$op} = eval "sub {$op shift()}";
 }

Since subroutines implementing assignment operators are not required
 to modify their operands (see
Overloadable Operations above),
 we do not need anything special to make += and friends work,

besides adding these operators to %subr and defining a copy
 constructor (needed since Perl has no
way to know that the
 implementation of '+=' does not mutate the argument -
 see Copy Constructor).

To implement a copy constructor, add '=' => \&cpy to use overload
 line, and code (this code
assumes that mutators change things one level
 deep only, so recursive copying is not needed):

Perl version 5.14.0 documentation - overload

Page 18http://perldoc.perl.org

 sub cpy {
 my $self = shift;
 bless [@$self], ref $self;
 }

To make ++ and -- work, we need to implement actual mutators,
 either directly, or in nomethod. We
continue to do things inside nomethod, thus add

 if ($meth eq '++' or $meth eq '--') {
 @$obj = ($meth, (bless [@$obj]), 1); # Avoid circular reference
 return $obj;
 }

after the first line of wrap(). This is not a most effective
 implementation, one may consider

 sub inc { $_[0] = bless ['++', shift, 1]; }

instead.

As a final remark, note that one can fill %subr by

 my %subr = ('n' => sub {$_[0]});
 foreach my $op (split " ", $overload::ops{with_assign}) {
 $subr{$op} = $subr{"$op="} = eval "sub {shift() $op shift()}";
 }
 my @bins = qw(binary 3way_comparison num_comparison str_comparison);
 foreach my $op (split " ", "@overload::ops{ @bins }") {
 $subr{$op} = eval "sub {shift() $op shift()}";
 }
 foreach my $op (split " ", "@overload::ops{qw(unary func)}") {
 $subr{$op} = eval "sub {$op shift()}";
 }
 $subr{'++'} = $subr{'+'};
 $subr{'--'} = $subr{'-'};

This finishes implementation of a primitive symbolic calculator in
 50 lines of Perl code. Since the
numeric values of subexpressions
 are not cached, the calculator is very slow.

Here is the answer for the exercise: In the case of str(), we need no
 explicit recursion since the
overloaded .-operator will fall back
 to an existing overloaded operator "". Overloaded arithmetic

operators do not fall back to numeric conversion if fallback is
 not explicitly requested. Thus without
an explicit recursion num()
 would convert ['+', $a, $b] to $a + $b, which would just rebuild
 the
argument of num().

If you wonder why defaults for conversion are different for str() and
 num(), note how easy it was to
write the symbolic calculator. This
 simplicity is due to an appropriate choice of defaults. One extra

note: due to the explicit recursion num() is more fragile than sym():
 we need to explicitly check for the
type of $a and $b. If components
 $a and $b happen to be of some related type, this may lead to
problems.

Really Symbolic Calculator
One may wonder why we call the above calculator symbolic. The reason
 is that the actual calculation
of the value of expression is postponed
 until the value is used.

To see it in action, add a method

 sub STORE {

Perl version 5.14.0 documentation - overload

Page 19http://perldoc.perl.org

 my $obj = shift;
 $#$obj = 1;
 @$obj->[0,1] = ('=', shift);
 }

to the package symbolic. After this change one can do

 my $a = symbolic->new(3);
 my $b = symbolic->new(4);
 my $c = sqrt($a**2 + $b**2);

and the numeric value of $c becomes 5. However, after calling

 $a->STORE(12); $b->STORE(5);

the numeric value of $c becomes 13. There is no doubt now that the module
 symbolic provides a
symbolic calculator indeed.

To hide the rough edges under the hood, provide a tie()d interface to the
 package symbolic. Add
methods

 sub TIESCALAR { my $pack = shift; $pack->new(@_) }
 sub FETCH { shift }
 sub nop { }		 # Around a bug

(the bug, fixed in Perl 5.14, is described in BUGS). One can use this
 new interface as

 tie $a, 'symbolic', 3;
 tie $b, 'symbolic', 4;
 $a->nop; $b->nop;	 # Around a bug

 my $c = sqrt($a**2 + $b**2);

Now numeric value of $c is 5. After $a = 12; $b = 5 the numeric value
 of $c becomes 13. To
insulate the user of the module add a method

 sub vars { my $p = shift; tie($_, $p), $_->nop foreach @_; }

Now

 my ($a, $b);
 symbolic->vars($a, $b);
 my $c = sqrt($a**2 + $b**2);

 $a = 3; $b = 4;
 printf "c5 %s=%f\n", $c, $c;

 $a = 12; $b = 5;
 printf "c13 %s=%f\n", $c, $c;

shows that the numeric value of $c follows changes to the values of $a
 and $b.

AUTHOR
Ilya Zakharevich <ilya@math.mps.ohio-state.edu>.

Perl version 5.14.0 documentation - overload

Page 20http://perldoc.perl.org

SEE ALSO
The overloading pragma can be used to enable or disable overloaded
 operations within a lexical
scope - see overloading.

DIAGNOSTICS
When Perl is run with the -Do switch or its equivalent, overloading
 induces diagnostic messages.

Using the m command of Perl debugger (see perldebug) one can
 deduce which operations are
overloaded (and which ancestor triggers
 this overloading). Say, if eq is overloaded, then the method
(eq
 is shown by debugger. The method () corresponds to the fallback
 key (in fact a presence of
this method shows that this package has
 overloading enabled, and it is what is used by the
Overloaded
 function of module overload).

The module might issue the following warnings:

Odd number of arguments for overload::constant

(W) The call to overload::constant contained an odd number of arguments.
 The arguments
should come in pairs.

`%s' is not an overloadable type

(W) You tried to overload a constant type the overload package is unaware of.

`%s' is not a code reference

(W) The second (fourth, sixth, ...) argument of overload::constant needs
 to be a code
reference. Either an anonymous subroutine, or a reference
 to a subroutine.

BUGS AND PITFALLS
No warning is issued for invalid use overload keys.
 Such errors are not always obvious:

 use overload "+0" => sub { ...; }, # should be "0+"
 "not" => sub { ...; }; # should be "!"

(Bug #74098)

A pitfall when fallback is TRUE and Perl resorts to a built-in
 implementation of an operator is
that some operators have more
 than one semantic, for example |:

 use overload '0+' => sub { $_[0]->{n}; },
 fallback => 1;
 my $x = bless { n => 4 }, "main";
 my $y = bless { n => 8 }, "main";
 print $x | $y, "\n";

You might expect this to output "12".
 In fact, it prints "<": the ASCII result of treating "|"
 as a
bitwise string operator - that is, the result of treating
 the operands as the strings "4" and "8"
rather than numbers.
 The fact that numify (0+) is implemented but stringify
 ("") isn't makes no
difference since the latter is simply
 autogenerated from the former.

The only way to change this is to provide your own subroutine
 for '|'.

Magic autogeneration increases the potential for inadvertently
 creating self-referential
structures.
 Currently Perl will not free self-referential
 structures until cycles are explicitly
broken.
 For example,

 use overload '+' => 'add';
 sub add { bless [\$_[0], \$_[1]] };

is asking for trouble, since

 $obj += $y;

Perl version 5.14.0 documentation - overload

Page 21http://perldoc.perl.org

will effectively become

 $obj = add($obj, $y, undef);

with the same result as

 $obj = [\$obj, \$foo];

Even if no explicit assignment-variants of operators are present in
 the script, they may be
generated by the optimizer.
 For example,

 "obj = $obj\n"

may be optimized to

 my $tmp = 'obj = ' . $obj; $tmp .= "\n";

Because it is used for overloading, the per-package hash %OVERLOAD now has a special
meaning in Perl.
 The symbol table is filled with names looking like line-noise.

For the purpose of inheritance every overloaded package behaves as if fallback is present
(possibly undefined). This may create
 interesting effects if some package is not overloaded,
but inherits
 from two overloaded packages.

Before Perl 5.14, the relation between overloading and tie()ing was broken.
 Overloading is
triggered or not basing on the previous class of the
 tie()d variable.

This happened because the presence of overloading was checked
 too early, before any tie()d
access was attempted. If the
 class of the value FETCH()ed from the tied variable does not

change, a simple workaround for code that is to run on older Perl
 versions is to access the
value (via () = $foo or some such)
 immediately after tie()ing, so that after this call the
previous class
 coincides with the current one.

Barewords are not covered by overloaded string constants.

