
Perl version 5.18.0 documentation - perlhacktut

Page 1http://perldoc.perl.org

NAME
perlhacktut - Walk through the creation of a simple C code patch

DESCRIPTION
This document takes you through a simple patch example.

If you haven't read perlhack yet, go do that first! You might also
 want to read through perlsource too.

Once you're done here, check out perlhacktips next.

EXAMPLE OF A SIMPLE PATCH
Let's take a simple patch from start to finish.

Here's something Larry suggested: if a U is the first active format
 during a pack, (for example, pack
"U3C8", @stuff) then the
 resulting string should be treated as UTF-8 encoded.

If you are working with a git clone of the Perl repository, you will
 want to create a branch for your
changes. This will make creating a
 proper patch much simpler. See the perlgit for details on how to do
this.

Writing the patch
How do we prepare to fix this up? First we locate the code in question
 - the pack happens at runtime,
so it's going to be in one of the pp files. Sure enough, pp_pack is in pp.c. Since we're going
 to be
altering this file, let's copy it to pp.c~.

[Well, it was in pp.c when this tutorial was written. It has now
 been split off with pp_unpack to its own
file, pp_pack.c]

Now let's look over pp_pack: we take a pattern into pat, and then
 loop over the pattern, taking each
format character in turn into datum_type. Then for each possible format character, we swallow up

the other arguments in the pattern (a field width, an asterisk, and so
 on) and convert the next chunk
input into the specified format, adding
 it onto the output SV cat.

How do we know if the U is the first format in the pat? Well, if
 we have a pointer to the start of pat
then, if we see a U we can
 test whether we're still at the start of the string. So, here's where pat is set
up:

 STRLEN fromlen;
 char *pat = SvPVx(*++MARK, fromlen);
 char *patend = pat + fromlen;
 I32 len;
 I32 datumtype;
 SV *fromstr;

We'll have another string pointer in there:

 STRLEN fromlen;
 char *pat = SvPVx(*++MARK, fromlen);
 char *patend = pat + fromlen;
 + char *patcopy;
 I32 len;
 I32 datumtype;
 SV *fromstr;

And just before we start the loop, we'll set patcopy to be the start
 of pat:

 items = SP - MARK;
 MARK++;

Perl version 5.18.0 documentation - perlhacktut

Page 2http://perldoc.perl.org

 sv_setpvn(cat, "", 0);
 + patcopy = pat;
 while (pat < patend) {

Now if we see a U which was at the start of the string, we turn on
 the UTF8 flag for the output SV, cat
:

 + if (datumtype == 'U' && pat==patcopy+1)
 + SvUTF8_on(cat);
 if (datumtype == '#') {
 while (pat < patend && *pat != '\n')
 pat++;

Remember that it has to be patcopy+1 because the first character of
 the string is the U which has
been swallowed into datumtype!

Oops, we forgot one thing: what if there are spaces at the start of the
 pattern? pack(" U*",
@stuff) will have U as the first active
 character, even though it's not the first thing in the pattern. In
this
 case, we have to advance patcopy along with pat when we see
 spaces:

 if (isSPACE(datumtype))
 continue;

needs to become

 if (isSPACE(datumtype)) {
 patcopy++;
 continue;
 }

OK. That's the C part done. Now we must do two additional things before
 this patch is ready to go:
we've changed the behaviour of Perl, and so
 we must document that change. We must also provide
some more regression
 tests to make sure our patch works and doesn't create a bug somewhere
 else
along the line.

Testing the patch
The regression tests for each operator live in t/op/, and so we make
 a copy of t/op/pack.t to
t/op/pack.t~. Now we can add our tests
 to the end. First, we'll test that the U does indeed create
Unicode
 strings.

t/op/pack.t has a sensible ok() function, but if it didn't we could use
 the one from t/test.pl.

 require './test.pl';
 plan(tests => 159);

so instead of this:

 print 'not ' unless "1.20.300.4000" eq sprintf "%vd",
 pack("U*",1,20,300,4000);
 print "ok $test\n"; $test++;

we can write the more sensible (see Test::More for a full
 explanation of is() and other testing
functions).

 is("1.20.300.4000", sprintf "%vd", pack("U*",1,20,300,4000),
 "U* produces Unicode");

Perl version 5.18.0 documentation - perlhacktut

Page 3http://perldoc.perl.org

Now we'll test that we got that space-at-the-beginning business right:

 is("1.20.300.4000", sprintf "%vd", pack(" U*",1,20,300,4000),
 " with spaces at the beginning");

And finally we'll test that we don't make Unicode strings if U is not the first active format:

 isnt(v1.20.300.4000, sprintf "%vd", pack("C0U*",1,20,300,4000),
 "U* not first isn't Unicode");

Mustn't forget to change the number of tests which appears at the top,
 or else the automated tester
will get confused. This will either look
 like this:

 print "1..156\n";

or this:

 plan(tests => 156);

We now compile up Perl, and run it through the test suite. Our new
 tests pass, hooray!

Documenting the patch
Finally, the documentation. The job is never done until the paperwork
 is over, so let's describe the
change we've just made. The relevant
 place is pod/perlfunc.pod; again, we make a copy, and then
we'll
 insert this text in the description of pack:

 =item *

 If the pattern begins with a C<U>, the resulting string will be treated
 as UTF-8-encoded Unicode. You can force UTF-8 encoding on in a string
 with an initial C<U0>, and the bytes that follow will be interpreted as
 Unicode characters. If you don't want this to happen, you can begin
 your pattern with C<C0> (or anything else) to force Perl not to UTF-8
 encode your string, and then follow this with a C<U*> somewhere in your
 pattern.

Submit
See perlhack for details on how to submit this patch.

AUTHOR
This document was originally written by Nathan Torkington, and is
 maintained by the perl5-porters
mailing list.

