
Perl version 5.18.0 documentation - Compress::Raw::Zlib

Page 1http://perldoc.perl.org

NAME
Compress::Raw::Zlib - Low-Level Interface to zlib compression library

SYNOPSIS
 use Compress::Raw::Zlib ;

 ($d, $status) = new Compress::Raw::Zlib::Deflate([OPT]) ;
 $status = $d->deflate($input, $output) ;
 $status = $d->flush($output [, $flush_type]) ;
 $d->deflateReset() ;
 $d->deflateParams(OPTS) ;
 $d->deflateTune(OPTS) ;
 $d->dict_adler() ;
 $d->crc32() ;
 $d->adler32() ;
 $d->total_in() ;
 $d->total_out() ;
 $d->msg() ;
 $d->get_Strategy();
 $d->get_Level();
 $d->get_BufSize();

 ($i, $status) = new Compress::Raw::Zlib::Inflate([OPT]) ;
 $status = $i->inflate($input, $output [, $eof]) ;
 $status = $i->inflateSync($input) ;
 $i->inflateReset() ;
 $i->dict_adler() ;
 $d->crc32() ;
 $d->adler32() ;
 $i->total_in() ;
 $i->total_out() ;
 $i->msg() ;
 $d->get_BufSize();

 $crc = adler32($buffer [,$crc]) ;
 $crc = crc32($buffer [,$crc]) ;

 $crc = adler32_combine($crc1, $crc2, $len2)l
 $crc = crc32_combine($adler1, $adler2, $len2)

 my $version = Compress::Raw::Zlib::zlib_version();
 my $flags = Compress::Raw::Zlib::zlibCompileFlags();

DESCRIPTION
The Compress::Raw::Zlib module provides a Perl interface to the zlib
 compression library (see
AUTHOR for details about where to get zlib).

Compress::Raw::Zlib::Deflate
This section defines an interface that allows in-memory compression using
 the deflate interface
provided by zlib.

Here is a definition of the interface available:

Perl version 5.18.0 documentation - Compress::Raw::Zlib

Page 2http://perldoc.perl.org

($d, $status) = new Compress::Raw::Zlib::Deflate([OPT])
Initialises a deflation object.

If you are familiar with the zlib library, it combines the
 features of the zlib functions deflateInit,
deflateInit2
 and deflateSetDictionary.

If successful, it will return the initialised deflation object, $d
 and a $status of Z_OK in a list context.
In scalar context it
 returns the deflation object, $d, only.

If not successful, the returned deflation object, $d, will be undef and $status will hold the a zlib error
code.

The function optionally takes a number of named options specified as Name => value pairs. This
allows individual options to be
 tailored without having to specify them all in the parameter list.

For backward compatibility, it is also possible to pass the parameters
 as a reference to a hash
containing the name=>value pairs.

Below is a list of the valid options:

-Level

Defines the compression level. Valid values are 0 through 9, Z_NO_COMPRESSION,
Z_BEST_SPEED, Z_BEST_COMPRESSION, and Z_DEFAULT_COMPRESSION.

The default is Z_DEFAULT_COMPRESSION.

-Method

Defines the compression method. The only valid value at present (and
 the default) is
Z_DEFLATED.

-WindowBits

To compress an RFC 1950 data stream, set WindowBits to a positive
 number between 8
and 15.

To compress an RFC 1951 data stream, set WindowBits to -MAX_WBITS.

To compress an RFC 1952 data stream (i.e. gzip), set WindowBits to WANT_GZIP.

For a definition of the meaning and valid values for WindowBits
 refer to the zlib
documentation for deflateInit2.

Defaults to MAX_WBITS.

-MemLevel

For a definition of the meaning and valid values for MemLevel
 refer to the zlib
documentation for deflateInit2.

Defaults to MAX_MEM_LEVEL.

-Strategy

Defines the strategy used to tune the compression. The valid values are
Z_DEFAULT_STRATEGY, Z_FILTERED, Z_RLE, Z_FIXED and Z_HUFFMAN_ONLY.

The default is Z_DEFAULT_STRATEGY.

-Dictionary

When a dictionary is specified Compress::Raw::Zlib will automatically
 call
deflateSetDictionary directly after calling deflateInit. The
 Adler32 value for the
dictionary can be obtained by calling the method $d->dict_adler().

The default is no dictionary.

-Bufsize

Perl version 5.18.0 documentation - Compress::Raw::Zlib

Page 3http://perldoc.perl.org

Sets the initial size for the output buffer used by the $d->deflate
 and $d->flush
methods. If the buffer has to be
 reallocated to increase the size, it will grow in increments of
Bufsize.

The default buffer size is 4096.

-AppendOutput

This option controls how data is written to the output buffer by the $d->deflate and $d->
flush methods.

If the AppendOutput option is set to false, the output buffers in the $d->deflate and $d-
>flush methods will be truncated before
 uncompressed data is written to them.

If the option is set to true, uncompressed data will be appended to the
 output buffer in the
$d->deflate and $d->flush methods.

This option defaults to false.

-CRC32

If set to true, a crc32 checksum of the uncompressed data will be
 calculated. Use the $d->
crc32 method to retrieve this value.

This option defaults to false.

-ADLER32

If set to true, an adler32 checksum of the uncompressed data will be
 calculated. Use the
$d->adler32 method to retrieve this value.

This option defaults to false.

Here is an example of using the Compress::Raw::Zlib::Deflate optional
 parameter list to
override the default buffer size and compression
 level. All other options will take their default values.

 my $d = new Compress::Raw::Zlib::Deflate (-Bufsize => 300,
 -Level => Z_BEST_SPEED) ;

$status = $d->deflate($input, $output)
Deflates the contents of $input and writes the compressed data to $output.

The $input and $output parameters can be either scalars or scalar
 references.

When finished, $input will be completely processed (assuming there
 were no errors). If the deflation
was successful it writes the deflated
 data to $output and returns a status value of Z_OK.

On error, it returns a zlib error code.

If the AppendOutput option is set to true in the constructor for
 the $d object, the compressed data
will be appended to $output. If
 it is false, $output will be truncated before any compressed data is

written to it.

Note: This method will not necessarily write compressed data to $output every time it is called. So
do not assume that there has been
 an error if the contents of $output is empty on returning from
 this
method. As long as the return code from the method is Z_OK,
 the deflate has succeeded.

$status = $d->flush($output [, $flush_type])
Typically used to finish the deflation. Any pending output will be
 written to $output.

Returns Z_OK if successful.

Note that flushing can seriously degrade the compression ratio, so it
 should only be used to terminate
a decompression (using Z_FINISH) or
 when you want to create a full flush point (using
Z_FULL_FLUSH).

Perl version 5.18.0 documentation - Compress::Raw::Zlib

Page 4http://perldoc.perl.org

By default the flush_type used is Z_FINISH. Other valid values
 for flush_type are
Z_NO_FLUSH, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH
 and Z_FULL_FLUSH. It is strongly
recommended that you only set the flush_type parameter if you fully understand the implications of
what it does. See the zlib documentation for details.

If the AppendOutput option is set to true in the constructor for
 the $d object, the compressed data
will be appended to $output. If
 it is false, $output will be truncated before any compressed data is

written to it.

$status = $d->deflateReset()
This method will reset the deflation object $d. It can be used when you
 are compressing multiple data
streams and want to use the same object to
 compress each of them. It should only be used once the
previous data stream
 has been flushed successfully, i.e. a call to $d->flush(Z_FINISH) has

returned Z_OK.

Returns Z_OK if successful.

$status = $d->deflateParams([OPT])
Change settings for the deflate object $d.

The list of the valid options is shown below. Options not specified
 will remain unchanged.

-Level

Defines the compression level. Valid values are 0 through 9, Z_NO_COMPRESSION,
Z_BEST_SPEED, Z_BEST_COMPRESSION, and Z_DEFAULT_COMPRESSION.

-Strategy

Defines the strategy used to tune the compression. The valid values are
Z_DEFAULT_STRATEGY, Z_FILTERED and Z_HUFFMAN_ONLY.

-BufSize

Sets the initial size for the output buffer used by the $d->deflate
 and $d->flush
methods. If the buffer has to be
 reallocated to increase the size, it will grow in increments of
Bufsize.

$status = $d->deflateTune($good_length, $max_lazy, $nice_length, $max_chain)
Tune the internal settings for the deflate object $d. This option is
 only available if you are running zlib
1.2.2.3 or better.

Refer to the documentation in zlib.h for instructions on how to fly deflateTune.

$d->dict_adler()
Returns the adler32 value for the dictionary.

$d->crc32()
Returns the crc32 value for the uncompressed data to date.

If the CRC32 option is not enabled in the constructor for this object,
 this method will always return 0;

$d->adler32()
Returns the adler32 value for the uncompressed data to date.

$d->msg()
Returns the last error message generated by zlib.

$d->total_in()
Returns the total number of bytes uncompressed bytes input to deflate.

Perl version 5.18.0 documentation - Compress::Raw::Zlib

Page 5http://perldoc.perl.org

$d->total_out()
Returns the total number of compressed bytes output from deflate.

$d->get_Strategy()
Returns the deflation strategy currently used. Valid values are Z_DEFAULT_STRATEGY, Z_FILTERED
and Z_HUFFMAN_ONLY.

$d->get_Level()
Returns the compression level being used.

$d->get_BufSize()
Returns the buffer size used to carry out the compression.

Example
Here is a trivial example of using deflate. It simply reads standard
 input, deflates it and writes it to
standard output.

 use strict ;
 use warnings ;

 use Compress::Raw::Zlib ;

 binmode STDIN;
 binmode STDOUT;
 my $x = new Compress::Raw::Zlib::Deflate
 or die "Cannot create a deflation stream\n" ;

 my ($output, $status) ;
 while (<>)
 {
 $status = $x->deflate($_, $output) ;

 $status == Z_OK
 or die "deflation failed\n" ;

 print $output ;
 }

 $status = $x->flush($output) ;

 $status == Z_OK
 or die "deflation failed\n" ;

 print $output ;

Compress::Raw::Zlib::Inflate
This section defines an interface that allows in-memory uncompression using
 the inflate interface
provided by zlib.

Here is a definition of the interface:

Perl version 5.18.0 documentation - Compress::Raw::Zlib

Page 6http://perldoc.perl.org

 ($i, $status) = new Compress::Raw::Zlib::Inflate([OPT])
Initialises an inflation object.

In a list context it returns the inflation object, $i, and the zlib status code ($status). In a scalar
context it returns the
 inflation object only.

If successful, $i will hold the inflation object and $status will
 be Z_OK.

If not successful, $i will be undef and $status will hold the zlib error code.

The function optionally takes a number of named options specified as -Name => value pairs. This
allows individual options to be
 tailored without having to specify them all in the parameter list.

For backward compatibility, it is also possible to pass the parameters
 as a reference to a hash
containing the name=>value pairs.

Here is a list of the valid options:

-WindowBits

To uncompress an RFC 1950 data stream, set WindowBits to a positive
 number between
8 and 15.

To uncompress an RFC 1951 data stream, set WindowBits to -MAX_WBITS.

To uncompress an RFC 1952 data stream (i.e. gzip), set WindowBits to WANT_GZIP.

To auto-detect and uncompress an RFC 1950 or RFC 1952 data stream (i.e.
 gzip), set
WindowBits to WANT_GZIP_OR_ZLIB.

For a full definition of the meaning and valid values for WindowBits
 refer to the zlib
documentation for inflateInit2.

Defaults to MAX_WBITS.

-Bufsize

Sets the initial size for the output buffer used by the $i->inflate
 method. If the output
buffer in this method has to be reallocated to
 increase the size, it will grow in increments of
Bufsize.

Default is 4096.

-Dictionary

The default is no dictionary.

-AppendOutput

This option controls how data is written to the output buffer by the $i->inflate method.

If the option is set to false, the output buffer in the $i->inflate
 method will be truncated
before uncompressed data is written to it.

If the option is set to true, uncompressed data will be appended to the
 output buffer by the
$i->inflate method.

This option defaults to false.

-CRC32

If set to true, a crc32 checksum of the uncompressed data will be
 calculated. Use the $i->
crc32 method to retrieve this value.

This option defaults to false.

-ADLER32

If set to true, an adler32 checksum of the uncompressed data will be
 calculated. Use the
$i->adler32 method to retrieve this value.

Perl version 5.18.0 documentation - Compress::Raw::Zlib

Page 7http://perldoc.perl.org

This option defaults to false.

-ConsumeInput

If set to true, this option will remove compressed data from the input
 buffer of the
$i->inflate method as the inflate progresses.

This option can be useful when you are processing compressed data that is
 embedded in
another file/buffer. In this case the data that immediately
 follows the compressed stream will
be left in the input buffer.

This option defaults to true.

-LimitOutput

The LimitOutput option changes the behavior of the $i->inflate
 method so that the
amount of memory used by the output buffer can be
 limited.

When LimitOutput is used the size of the output buffer used will either
 be the value of the
Bufsize option or the amount of memory already
 allocated to $output, whichever is
larger. Predicting the output size
 available is tricky, so don't rely on getting an exact output
buffer size.

When LimitOutout is not specified $i->inflate will use as much
 memory as it takes to
write all the uncompressed data it creates by
 uncompressing the input buffer.

If LimitOutput is enabled, the ConsumeInput option will also be
 enabled.

This option defaults to false.

See The LimitOutput option for a discussion on why LimitOutput is
 needed and how to
use it.

Here is an example of using an optional parameter to override the default
 buffer size.

 my ($i, $status) = new Compress::Raw::Zlib::Inflate(-Bufsize => 300)
;

 $status = $i->inflate($input, $output [,$eof])
Inflates the complete contents of $input and writes the uncompressed
 data to $output. The
$input and $output parameters can either be
 scalars or scalar references.

Returns Z_OK if successful and Z_STREAM_END if the end of the
 compressed data has been
successfully reached.

If not successful $status will hold the zlib error code.

If the ConsumeInput option has been set to true when the Compress::Raw::Zlib::Inflate
object is created, the $input parameter
 is modified by inflate. On completion it will contain what
remains
 of the input buffer after inflation. In practice, this means that when
 the return status is Z_OK
the $input parameter will contain an
 empty string, and when the return status is Z_STREAM_END the
$input
 parameter will contains what (if anything) was stored in the input buffer
 after the deflated
data stream.

This feature is useful when processing a file format that encapsulates
 a compressed data stream (e.g.
gzip, zip) and there is useful data
 immediately after the deflation stream.

If the AppendOutput option is set to true in the constructor for
 this object, the uncompressed data
will be appended to $output. If
 it is false, $output will be truncated before any uncompressed data

is written to it.

The $eof parameter needs a bit of explanation.

Prior to version 1.2.0, zlib assumed that there was at least one trailing
 byte immediately after the
compressed data stream when it was carrying out
 decompression. This normally isn't a problem

Perl version 5.18.0 documentation - Compress::Raw::Zlib

Page 8http://perldoc.perl.org

because the majority of zlib
 applications guarantee that there will be data directly after the

compressed data stream. For example, both gzip (RFC 1950) and zip both
 define trailing data that
follows the compressed data stream.

The $eof parameter only needs to be used if all of the following
 conditions apply

1 You are either using a copy of zlib that is older than version 1.2.0 or you
 want your
application code to be able to run with as many different
 versions of zlib as possible.

2 You have set the WindowBits parameter to -MAX_WBITS in the constructor
 for this object,
i.e. you are uncompressing a raw deflated data stream
 (RFC 1951).

3 There is no data immediately after the compressed data stream.

If all of these are the case, then you need to set the $eof parameter
 to true on the final call (and only
the final call) to $i->inflate.

If you have built this module with zlib >= 1.2.0, the $eof parameter is
 ignored. You can still set it if
you want, but it won't be used behind the
 scenes.

$status = $i->inflateSync($input)
This method can be used to attempt to recover good data from a compressed
 data stream that is
partially corrupt.
 It scans $input until it reaches either a full flush point or the
 end of the buffer.

If a full flush point is found, Z_OK is returned and $input
 will be have all data up to the flush point
removed. This data can then be
 passed to the $i->inflate method to be uncompressed.

Any other return code means that a flush point was not found. If more
 data is available,
inflateSync can be called repeatedly with more
 compressed data until the flush point is found.

Note full flush points are not present by default in compressed
 data streams. They must have been
added explicitly when the data stream
 was created by calling Compress::Deflate::flush with
Z_FULL_FLUSH.

$status = $i->inflateReset()
This method will reset the inflation object $i. It can be used when you
 are uncompressing multiple
data streams and want to use the same object to
 uncompress each of them.

Returns Z_OK if successful.

$i->dict_adler()
Returns the adler32 value for the dictionary.

$i->crc32()
Returns the crc32 value for the uncompressed data to date.

If the CRC32 option is not enabled in the constructor for this object,
 this method will always return 0;

$i->adler32()
Returns the adler32 value for the uncompressed data to date.

If the ADLER32 option is not enabled in the constructor for this object,
 this method will always return
0;

$i->msg()
Returns the last error message generated by zlib.

$i->total_in()
Returns the total number of bytes compressed bytes input to inflate.

Perl version 5.18.0 documentation - Compress::Raw::Zlib

Page 9http://perldoc.perl.org

$i->total_out()
Returns the total number of uncompressed bytes output from inflate.

$d->get_BufSize()
Returns the buffer size used to carry out the decompression.

Examples
Here is an example of using inflate.

 use strict ;
 use warnings ;

 use Compress::Raw::Zlib;

 my $x = new Compress::Raw::Zlib::Inflate()
 or die "Cannot create a inflation stream\n" ;

 my $input = '' ;
 binmode STDIN;
 binmode STDOUT;

 my ($output, $status) ;
 while (read(STDIN, $input, 4096))
 {
 $status = $x->inflate($input, $output) ;

 print $output ;

 last if $status != Z_OK ;
 }

 die "inflation failed\n"
 unless $status == Z_STREAM_END ;

The next example show how to use the LimitOutput option. Notice the use
 of two nested loops in
this case. The outer loop reads the data from the
 input source - STDIN and the inner loop repeatedly
calls inflate until $input is exhausted, we get an error, or the end of the stream is
 reached. One
point worth remembering is by using the LimitOutput option
 you also get ConsumeInput set as
well - this makes the code below much
 simpler.

 use strict ;
 use warnings ;

 use Compress::Raw::Zlib;

 my $x = new Compress::Raw::Zlib::Inflate(LimitOutput => 1)
 or die "Cannot create a inflation stream\n" ;

 my $input = '' ;
 binmode STDIN;
 binmode STDOUT;

Perl version 5.18.0 documentation - Compress::Raw::Zlib

Page 10http://perldoc.perl.org

 my ($output, $status) ;

 OUTER:
 while (read(STDIN, $input, 4096))
 {
 do
 {
 $status = $x->inflate($input, $output) ;

 print $output ;

 last OUTER
 unless $status == Z_OK || $status == Z_BUF_ERROR ;
 }
 while ($status == Z_OK && length $input);
 }

 die "inflation failed\n"
 unless $status == Z_STREAM_END ;

CHECKSUM FUNCTIONS
Two functions are provided by zlib to calculate checksums. For the
 Perl interface, the order of the two
parameters in both functions has
 been reversed. This allows both running checksums and one off

calculations to be done.

 $crc = adler32($buffer [,$crc]) ;
 $crc = crc32($buffer [,$crc]) ;

The buffer parameters can either be a scalar or a scalar reference.

If the $crc parameters is undef, the crc value will be reset.

If you have built this module with zlib 1.2.3 or better, two more
 CRC-related functions are available.

 $crc = adler32_combine($crc1, $crc2, $len2)l
 $crc = crc32_combine($adler1, $adler2, $len2)

These functions allow checksums to be merged.

Misc
my $version = Compress::Raw::Zlib::zlib_version();

Returns the version of the zlib library.

my $flags = Compress::Raw::Zlib::zlibCompileFlags();
Returns the flags indicating compile-time options that were used to build the zlib library. See the zlib
documentation for a description of the flags
 returned by zlibCompileFlags.

Note that when the zlib sources are built along with this module the sprintf flags (bits 24, 25 and
26) should be ignored.

If you are using zlib 1.2.0 or older, zlibCompileFlags will return 0.

The LimitOutput option.
By default $i->inflate($input, $output) will uncompress all data
 in $input and write all of
the uncompressed data it has generated to $output. This makes the interface to inflate much

Perl version 5.18.0 documentation - Compress::Raw::Zlib

Page 11http://perldoc.perl.org

simpler - if the
 method has uncompressed $input successfully all compressed data in $input will
have been dealt with. So if you are reading from an input
 source and uncompressing as you go the
code will look something like this

 use strict ;
 use warnings ;

 use Compress::Raw::Zlib;

 my $x = new Compress::Raw::Zlib::Inflate()
 or die "Cannot create a inflation stream\n" ;

 my $input = '' ;

 my ($output, $status) ;
 while (read(STDIN, $input, 4096))
 {
 $status = $x->inflate($input, $output) ;

 print $output ;

 last if $status != Z_OK ;
 }

 die "inflation failed\n"
 unless $status == Z_STREAM_END ;

The points to note are

The main processing loop in the code handles reading of compressed data
 from STDIN.

The status code returned from inflate will only trigger termination of
 the main processing
loop if it isn't Z_OK. When LimitOutput has not
 been used the Z_OK status means means
that the end of the compressed
 data stream has been reached or there has been an error in
uncompression.

After the call to inflate all of the uncompressed data in $input
 will have been
processed. This means the subsequent call to read can
 overwrite it's contents without any
problem.

For most use-cases the behavior described above is acceptable (this module
 and it's predecessor,
Compress::Zlib, have used it for over 10 years
 without an issue), but in a few very specific
use-cases the amount of
 memory required for $output can prohibitively large. For example, if the

compressed data stream contains the same pattern repeated thousands of
 times, a relatively small
compressed data stream can uncompress into
 hundreds of megabytes. Remember inflate will
keep allocating memory
 until all the uncompressed data has been written to the output buffer -
 the
size of $output is unbounded.

The LimitOutput option is designed to help with this use-case.

The main difference in your code when using LimitOutput is having to
 deal with cases where the
$input parameter still contains some
 uncompressed data that inflate hasn't processed yet. The
status code
 returned from inflate will be Z_OK if uncompression took place and Z_BUF_ERROR if
the output buffer is full.

Below is typical code that shows how to use LimitOutput.

Perl version 5.18.0 documentation - Compress::Raw::Zlib

Page 12http://perldoc.perl.org

 use strict ;
 use warnings ;

 use Compress::Raw::Zlib;

 my $x = new Compress::Raw::Zlib::Inflate(LimitOutput => 1)
 or die "Cannot create a inflation stream\n" ;

 my $input = '' ;
 binmode STDIN;
 binmode STDOUT;

 my ($output, $status) ;

 OUTER:
 while (read(STDIN, $input, 4096))
 {
 do
 {
 $status = $x->inflate($input, $output) ;

 print $output ;

 last OUTER
 unless $status == Z_OK || $status == Z_BUF_ERROR ;
 }
 while ($status == Z_OK && length $input);
 }

 die "inflation failed\n"
 unless $status == Z_STREAM_END ;

Points to note this time:

There are now two nested loops in the code: the outer loop for reading the
 compressed data
from STDIN, as before; and the inner loop to carry out the
 uncompression.

There are two exit points from the inner uncompression loop.

Firstly when inflate has returned a status other than Z_OK or Z_BUF_ERROR. This means
that either the end of the compressed data
 stream has been reached (Z_STREAM_END) or
there is an error in the
 compressed data. In either of these cases there is no point in
continuing
 with reading the compressed data, so both loops are terminated.

The second exit point tests if there is any data left in the input buffer, $input - remember
that the ConsumeInput option is automatically
 enabled when LimitOutput is used. When
the input buffer has been
 exhausted, the outer loop can run again and overwrite a now
empty $input.

ACCESSING ZIP FILES
Although it is possible (with some effort on your part) to use this module
 to access .zip files, there are
other perl modules available that will do
 all the hard work for you. Check out Archive::Zip,
Archive::Zip::SimpleZip, IO::Compress::Zip and IO::Uncompress::Unzip.

Perl version 5.18.0 documentation - Compress::Raw::Zlib

Page 13http://perldoc.perl.org

FAQ
Compatibility with Unix compress/uncompress.

This module is not compatible with Unix compress.

If you have the uncompress program available, you can use this to read
 compressed files

 open F, "uncompress -c $filename |";
 while (<F>)
 {
 ...

Alternatively, if you have the gunzip program available, you can use
 this to read compressed files

 open F, "gunzip -c $filename |";
 while (<F>)
 {
 ...

and this to write compress files, if you have the compress program
 available

 open F, "| compress -c $filename ";
 print F "data";
 ...
 close F ;

Accessing .tar.Z files
See previous FAQ item.

If the Archive::Tar module is installed and either the uncompress or gunzip programs are
available, you can use one of these workarounds to
 read .tar.Z files.

Firstly with uncompress

 use strict;
 use warnings;
 use Archive::Tar;

 open F, "uncompress -c $filename |";
 my $tar = Archive::Tar->new(*F);
 ...

and this with gunzip

 use strict;
 use warnings;
 use Archive::Tar;

 open F, "gunzip -c $filename |";
 my $tar = Archive::Tar->new(*F);
 ...

Similarly, if the compress program is available, you can use this to
 write a .tar.Z file

 use strict;
 use warnings;
 use Archive::Tar;

Perl version 5.18.0 documentation - Compress::Raw::Zlib

Page 14http://perldoc.perl.org

 use IO::File;

 my $fh = new IO::File "| compress -c >$filename";
 my $tar = Archive::Tar->new();
 ...
 $tar->write($fh);
 $fh->close ;

Zlib Library Version Support
By default Compress::Raw::Zlib will build with a private copy of version
 1.2.5 of the zlib library.
(See the README file for details of
 how to override this behaviour)

If you decide to use a different version of the zlib library, you need to be
 aware of the following issues

First off, you must have zlib 1.0.5 or better.

You need to have zlib 1.2.1 or better if you want to use the -Merge
 option with
IO::Compress::Gzip, IO::Compress::Deflate and IO::Compress::RawDeflate.

CONSTANTS
All the zlib constants are automatically imported when you make use
 of Compress::Raw::Zlib.

SEE ALSO
Compress::Zlib, IO::Compress::Gzip, IO::Uncompress::Gunzip, IO::Compress::Deflate,
IO::Uncompress::Inflate, IO::Compress::RawDeflate, IO::Uncompress::RawInflate,
IO::Compress::Bzip2, IO::Uncompress::Bunzip2, IO::Compress::Lzma, IO::Uncompress::UnLzma,
IO::Compress::Xz, IO::Uncompress::UnXz, IO::Compress::Lzop, IO::Uncompress::UnLzop,
IO::Compress::Lzf, IO::Uncompress::UnLzf, IO::Uncompress::AnyInflate,
IO::Uncompress::AnyUncompress

IO::Compress::FAQ

File::GlobMapper, Archive::Zip, Archive::Tar, IO::Zlib

For RFC 1950, 1951 and 1952 see http://www.faqs.org/rfcs/rfc1950.html,
http://www.faqs.org/rfcs/rfc1951.html and http://www.faqs.org/rfcs/rfc1952.html

The zlib compression library was written by Jean-loup Gailly gzip@prep.ai.mit.edu and Mark Adler
madler@alumni.caltech.edu.

The primary site for the zlib compression library is http://www.zlib.org.

The primary site for gzip is http://www.gzip.org.

AUTHOR
This module was written by Paul Marquess, pmqs@cpan.org.

MODIFICATION HISTORY
See the Changes file.

COPYRIGHT AND LICENSE
Copyright (c) 2005-2013 Paul Marquess. All rights reserved.

This program is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

