
Perl version 5.18.0 documentation - NEXT

Page 1http://perldoc.perl.org

NAME
NEXT.pm - Provide a pseudo-class NEXT (et al) that allows method redispatch

SYNOPSIS
 use NEXT;

 package A;
 sub A::method { print "$_[0]: A method\n"; $_[0]->NEXT::method() }
 sub A::DESTROY { print "$_[0]: A dtor\n"; $_[0]->NEXT::DESTROY() }

 package B;
 use base qw(A);
 sub B::AUTOLOAD { print "$_[0]: B AUTOLOAD\n"; $_[0]->NEXT::AUTOLOAD()
}
 sub B::DESTROY { print "$_[0]: B dtor\n"; $_[0]->NEXT::DESTROY() }

 package C;
 sub C::method { print "$_[0]: C method\n"; $_[0]->NEXT::method() }
 sub C::AUTOLOAD { print "$_[0]: C AUTOLOAD\n"; $_[0]->NEXT::AUTOLOAD()
}
 sub C::DESTROY { print "$_[0]: C dtor\n"; $_[0]->NEXT::DESTROY() }

 package D;
 use base qw(B C);
 sub D::method { print "$_[0]: D method\n"; $_[0]->NEXT::method() }
 sub D::AUTOLOAD { print "$_[0]: D AUTOLOAD\n"; $_[0]->NEXT::AUTOLOAD()
}
 sub D::DESTROY { print "$_[0]: D dtor\n"; $_[0]->NEXT::DESTROY() }

 package main;

 my $obj = bless {}, "D";

 $obj->method();		 # Calls D::method, A::method, C::method
 $obj->missing_method(); # Calls D::AUTOLOAD, B::AUTOLOAD, C::AUTOLOAD

 # Clean-up calls D::DESTROY, B::DESTROY, A::DESTROY, C::DESTROY

DESCRIPTION
NEXT.pm adds a pseudoclass named NEXT to any program
 that uses it. If a method m calls $self->
NEXT::m(), the call to m is redispatched as if the calling method had not originally been found.

In other words, a call to $self->NEXT::m() resumes the depth-first,
 left-to-right search of $self's
class hierarchy that resulted in the
 original call to m.

Note that this is not the same thing as $self->SUPER::m(), which
 begins a new dispatch that is
restricted to searching the ancestors
 of the current class. $self->NEXT::m() can backtrack
 past
the current class -- to look for a suitable method in other
 ancestors of $self -- whereas $self->
SUPER::m() cannot.

A typical use would be in the destructors of a class hierarchy,
 as illustrated in the synopsis above.
Each class in the hierarchy
 has a DESTROY method that performs some class-specific action
 and
then redispatches the call up the hierarchy. As a result,
 when an object of class D is destroyed, the

Perl version 5.18.0 documentation - NEXT

Page 2http://perldoc.perl.org

destructors of all
 its parent classes are called (in depth-first, left-to-right order).

Another typical use of redispatch would be in AUTOLOAD'ed methods.
 If such a method determined
that it was not able to handle a
 particular call, it might choose to redispatch that call, in the
 hope that
some other AUTOLOAD (above it, or to its left) might
 do better.

By default, if a redispatch attempt fails to find another method
 elsewhere in the objects class
hierarchy, it quietly gives up and does
 nothing (but see Enforcing redispatch). This gracious
acquiescence
 is also unlike the (generally annoying) behaviour of SUPER, which
 throws an exception
if it cannot redispatch.

Note that it is a fatal error for any method (including AUTOLOAD)
 to attempt to redispatch any method
that does not have the
 same name. For example:

 sub D::oops { print "oops!\n"; $_[0]->NEXT::other_method() }

Enforcing redispatch
It is possible to make NEXT redispatch more demandingly (i.e. like SUPER does), so that the
redispatch throws an exception if it cannot
 find a "next" method to call.

To do this, simple invoke the redispatch as:

	 $self->NEXT::ACTUAL::method();

rather than:

	 $self->NEXT::method();

The ACTUAL tells NEXT that there must actually be a next method to call,
 or it should throw an
exception.

NEXT::ACTUAL is most commonly used in AUTOLOAD methods, as a means to
 decline an AUTOLOAD
request, but preserve the normal exception-on-failure semantics:

	 sub AUTOLOAD {
		 if ($AUTOLOAD =~ /foo|bar/) {
			 # handle here
		 }
		 else { # try elsewhere
			 shift()->NEXT::ACTUAL::AUTOLOAD(@_);
		 }
	 }

By using NEXT::ACTUAL, if there is no other AUTOLOAD to handle the
 method call, an exception will
be thrown (as usually happens in the absence of
 a suitable AUTOLOAD).

Avoiding repetitions
If NEXT redispatching is used in the methods of a "diamond" class hierarchy:

	 # A B
	 # / \ /
	 # C D
	 # \ /
	 # E

	 use NEXT;

Perl version 5.18.0 documentation - NEXT

Page 3http://perldoc.perl.org

	 package A;
	 sub foo { print "called A::foo\n"; shift->NEXT::foo() }

	 package B;
	 sub foo { print "called B::foo\n"; shift->NEXT::foo() }

	 package C; @ISA = qw(A);
	 sub foo { print "called C::foo\n"; shift->NEXT::foo() }

	 package D; @ISA = qw(A B);
	 sub foo { print "called D::foo\n"; shift->NEXT::foo() }

	 package E; @ISA = qw(C D);
	 sub foo { print "called E::foo\n"; shift->NEXT::foo() }

	 E->foo();

then derived classes may (re-)inherit base-class methods through two or
 more distinct paths (e.g. in
the way E inherits A::foo twice --
 through C and D). In such cases, a sequence of NEXT redispatches
will invoke the multiply inherited method as many times as it is
 inherited. For example, the above code
prints:

 called E::foo
 called C::foo
 called A::foo
 called D::foo
 called A::foo
 called B::foo

(i.e. A::foo is called twice).

In some cases this may be the desired effect within a diamond hierarchy,
 but in others (e.g. for
destructors) it may be more appropriate to call each method only once during a sequence of
redispatches.

To cover such cases, you can redispatch methods via:

 $self->NEXT::DISTINCT::method();

rather than:

 $self->NEXT::method();

This causes the redispatcher to only visit each distinct method method
 once. That is, to skip any
classes in the hierarchy that it has
 already visited during redispatch. So, for example, if the
 previous
example were rewritten:

 package A;
 sub foo { print "called A::foo\n"; shift->NEXT::DISTINCT::foo() }

 package B;
 sub foo { print "called B::foo\n"; shift->NEXT::DISTINCT::foo() }

 package C; @ISA = qw(A);

Perl version 5.18.0 documentation - NEXT

Page 4http://perldoc.perl.org

 sub foo { print "called C::foo\n"; shift->NEXT::DISTINCT::foo() }

 package D; @ISA = qw(A B);
 sub foo { print "called D::foo\n"; shift->NEXT::DISTINCT::foo() }

 package E; @ISA = qw(C D);
 sub foo { print "called E::foo\n"; shift->NEXT::DISTINCT::foo() }

 E->foo();

then it would print:

 called E::foo
 called C::foo
 called A::foo
 called D::foo
 called B::foo

and omit the second call to A::foo (since it would not be distinct
 from the first call to A::foo).

Note that you can also use:

 $self->NEXT::DISTINCT::ACTUAL::method();

or:

 $self->NEXT::ACTUAL::DISTINCT::method();

to get both unique invocation and exception-on-failure.

Note that, for historical compatibility, you can also use NEXT::UNSEEN instead of NEXT::DISTINCT.

Invoking all versions of a method with a single call
Yet another pseudo-class that NEXT.pm provides is EVERY.
 Its behaviour is considerably simpler
than that of the NEXT family.
 A call to:

	 $obj->EVERY::foo();

calls every method named foo that the object in $obj has inherited.
 That is:

	 use NEXT;

	 package A; @ISA = qw(B D X);
	 sub foo { print "A::foo " }

	 package B; @ISA = qw(D X);
	 sub foo { print "B::foo " }

	 package X; @ISA = qw(D);
	 sub foo { print "X::foo " }

	 package D;
	 sub foo { print "D::foo " }

Perl version 5.18.0 documentation - NEXT

Page 5http://perldoc.perl.org

	 package main;

	 my $obj = bless {}, 'A';
	 $obj->EVERY::foo(); # prints" A::foo B::foo X::foo D::foo

Prefixing a method call with EVERY:: causes every method in the
 object's hierarchy with that name to
be invoked. As the above example
 illustrates, they are not called in Perl's usual "left-most-depth-first"

order. Instead, they are called "breadth-first-dependency-wise".

That means that the inheritance tree of the object is traversed breadth-first
 and the resulting order of
classes is used as the sequence in which methods
 are called. However, that sequence is modified by
imposing a rule that the
 appropriate method of a derived class must be called before the same
method of
 any ancestral class. That's why, in the above example, X::foo is called
 before D::foo,
even though D comes before X in @B::ISA.

In general, there's no need to worry about the order of calls. They will be
 left-to-right, breadth-first,
most-derived-first. This works perfectly for
 most inherited methods (including destructors), but is
inappropriate for
 some kinds of methods (such as constructors, cloners, debuggers, and
 initializers)
where it's more appropriate that the least-derived methods be
 called first (as more-derived methods
may rely on the behaviour of their
 "ancestors"). In that case, instead of using the EVERY
pseudo-class:

	 $obj->EVERY::foo(); # prints" A::foo B::foo X::foo D::foo

you can use the EVERY::LAST pseudo-class:

	 $obj->EVERY::LAST::foo(); # prints" D::foo X::foo B::foo A::foo

which reverses the order of method call.

Whichever version is used, the actual methods are called in the same
 context (list, scalar, or void) as
the original call via EVERY, and return:

A hash of array references in list context. Each entry of the hash has the
 fully qualified method
name as its key and a reference to an array containing
 the method's list-context return values
as its value.

A reference to a hash of scalar values in scalar context. Each entry of the hash has the
 fully
qualified method name as its key and the method's scalar-context return values as its value.

Nothing in void context (obviously).

Using EVERY methods
The typical way to use an EVERY call is to wrap it in another base
 method, that all classes inherit. For
example, to ensure that every
 destructor an object inherits is actually called (as opposed to just the

left-most-depth-first-est one):

 package Base;
 sub DESTROY { $_[0]->EVERY::Destroy }

 package Derived1;
 use base 'Base';
 sub Destroy {...}

 package Derived2;
 use base 'Base', 'Derived1';
 sub Destroy {...}

Perl version 5.18.0 documentation - NEXT

Page 6http://perldoc.perl.org

et cetera. Every derived class than needs its own clean-up
 behaviour simply adds its own Destroy
method (not a DESTROY method),
 which the call to EVERY::LAST::Destroy in the inherited
destructor
 then correctly picks up.

Likewise, to create a class hierarchy in which every initializer inherited by
 a new object is invoked:

 package Base;
 sub new {
		 my ($class, %args) = @_;
		 my $obj = bless {}, $class;
		 $obj->EVERY::LAST::Init(\%args);
	 }

 package Derived1;
 use base 'Base';
 sub Init {
		 my ($argsref) = @_;
		 ...
	 }

 package Derived2;
 use base 'Base', 'Derived1';
 sub Init {
		 my ($argsref) = @_;
		 ...
	 }

et cetera. Every derived class than needs some additional initialization
 behaviour simply adds its own
Init method (not a new method),
 which the call to EVERY::LAST::Init in the inherited constructor
then correctly picks up.

AUTHOR
Damian Conway (damian@conway.org)

BUGS AND IRRITATIONS
Because it's a module, not an integral part of the interpreter, NEXT.pm
 has to guess where the
surrounding call was found in the method
 look-up sequence. In the presence of diamond inheritance
patterns
 it occasionally guesses wrong.

It's also too slow (despite caching).

Comment, suggestions, and patches welcome.

COPYRIGHT
 Copyright (c) 2000-2001, Damian Conway. All Rights Reserved.
 This module is free software. It may be used, redistributed
 and/or modified under the same terms as Perl itself.

