
Perl version 5.18.0 documentation - perlunitut

Page 1http://perldoc.perl.org

NAME
perlunitut - Perl Unicode Tutorial

DESCRIPTION
The days of just flinging strings around are over. It's well established that
 modern programs need to
be capable of communicating funny accented letters, and
 things like euro symbols. This means that
programmers need new habits. It's
 easy to program Unicode capable software, but it does require
discipline to do
 it right.

There's a lot to know about character sets, and text encodings. It's probably
 best to spend a full day
learning all this, but the basics can be learned in
 minutes.

These are not the very basics, though. It is assumed that you already
 know the difference between
bytes and characters, and realise (and accept!)
 that there are many different character sets and
encodings, and that your
 program has to be explicit about them. Recommended reading is "The
Absolute
 Minimum Every Software Developer Absolutely, Positively Must Know About Unicode
 and
Character Sets (No Excuses!)" by Joel Spolsky, at http://joelonsoftware.com/articles/Unicode.html.

This tutorial speaks in rather absolute terms, and provides only a limited view
 of the wealth of
character string related features that Perl has to offer. For
 most projects, this information will probably
suffice.

Definitions
It's important to set a few things straight first. This is the most important
 part of this tutorial. This view
may conflict with other information that you
 may have found on the web, but that's mostly because
many sources are wrong.

You may have to re-read this entire section a few times...

Unicode

Unicode is a character set with room for lots of characters. The ordinal
 value of a character is called
a code point. (But in practice, the
 distinction between code point and character is blurred, so the
terms often
 are used interchangeably.)

There are many, many code points, but computers work with bytes, and a byte has
 room for only 256
values. Unicode has many more characters than that,
 so you need a method to make these
accessible.

Unicode is encoded using several competing encodings, of which UTF-8 is the
 most used. In a
Unicode encoding, multiple subsequent bytes can be used to
 store a single code point, or simply:
character.

UTF-8

UTF-8 is a Unicode encoding. Many people think that Unicode and UTF-8 are
 the same thing, but
they're not. There are more Unicode encodings, but much of
 the world has standardized on UTF-8.

UTF-8 treats the first 128 codepoints, 0..127, the same as ASCII. They take
 only one byte per
character. All other characters are encoded as two or more
 (up to six) bytes using a complex scheme.
Fortunately, Perl handles this for
 us, so we don't have to worry about this.

Text strings (character strings)

Text strings, or character strings are made of characters. Bytes are
 irrelevant here, and so are
encodings. Each character is just that: the
 character.

On a text string, you would do things like:

 $text =~ s/foo/bar/;
 if ($string =~ /^\d+$/) { ... }
 $text = ucfirst $text;

Perl version 5.18.0 documentation - perlunitut

Page 2http://perldoc.perl.org

 my $character_count = length $text;

The value of a character (ord, chr) is the corresponding Unicode code
 point.

Binary strings (byte strings)

Binary strings, or byte strings are made of bytes. Here, you don't have
 characters, just bytes. All
communication with the outside world (anything
 outside of your current Perl process) is done in
binary.

On a binary string, you would do things like:

 my (@length_content) = unpack "(V/a)*", $binary;
 $binary =~ s/\x00\x0F/\xFF\xF0/; # for the brave :)
 print {$fh} $binary;
 my $byte_count = length $binary;

Encoding

Encoding (as a verb) is the conversion from text to binary. To encode,
 you have to supply the target
encoding, for example iso-8859-1 or UTF-8.
 Some encodings, like the iso-8859 ("latin") range,
do not support the full
 Unicode standard; characters that can't be represented are lost in the

conversion.

Decoding

Decoding is the conversion from binary to text. To decode, you have to
 know what encoding was
used during the encoding phase. And most of all, it must
 be something decodable. It doesn't make
much sense to decode a PNG image into a
 text string.

Internal format

Perl has an internal format, an encoding that it uses to encode text strings
 so it can store them in
memory. All text strings are in this internal format.
 In fact, text strings are never in any other format!

You shouldn't worry about what this format is, because conversion is
 automatically done when you
decode or encode.

Your new toolkit
Add to your standard heading the following line:

 use Encode qw(encode decode);

Or, if you're lazy, just:

 use Encode;

I/O flow (the actual 5 minute tutorial)
The typical input/output flow of a program is:

 1. Receive and decode
 2. Process
 3. Encode and output

If your input is binary, and is supposed to remain binary, you shouldn't decode
 it to a text string, of
course. But in all other cases, you should decode it.

Decoding can't happen reliably if you don't know how the data was encoded. If
 you get to choose, it's
a good idea to standardize on UTF-8.

Perl version 5.18.0 documentation - perlunitut

Page 3http://perldoc.perl.org

 my $foo = decode('UTF-8', get 'http://example.com/');
 my $bar = decode('ISO-8859-1', readline STDIN);
 my $xyzzy = decode('Windows-1251', $cgi->param('foo'));

Processing happens as you knew before. The only difference is that you're now
 using characters
instead of bytes. That's very useful if you use things like substr, or length.

It's important to realize that there are no bytes in a text string. Of course,
 Perl has its internal
encoding to store the string in memory, but ignore that.
 If you have to do anything with the number of
bytes, it's probably best to move
 that part to step 3, just after you've encoded the string. Then you
know
 exactly how many bytes it will be in the destination string.

The syntax for encoding text strings to binary strings is as simple as decoding:

 $body = encode('UTF-8', $body);

If you needed to know the length of the string in bytes, now's the perfect time
 for that. Because $body
is now a byte string, length will report the
 number of bytes, instead of the number of characters. The
number of
 characters is no longer known, because characters only exist in text strings.

 my $byte_count = length $body;

And if the protocol you're using supports a way of letting the recipient know
 which character encoding
you used, please help the receiving end by using that
 feature! For example, E-mail and HTTP support
MIME headers, so you can use the Content-Type header. They can also have Content-Length
to indicate the
 number of bytes, which is always a good idea to supply if the number is
 known.

 "Content-Type: text/plain; charset=UTF-8",
 "Content-Length: $byte_count"

SUMMARY
Decode everything you receive, encode everything you send out. (If it's text
 data.)

Q and A (or FAQ)
After reading this document, you ought to read perlunifaq too.

ACKNOWLEDGEMENTS
Thanks to Johan Vromans from Squirrel Consultancy. His UTF-8 rants during the
 Amsterdam Perl
Mongers meetings got me interested and determined to find out
 how to use character encodings in
Perl in ways that don't break easily.

Thanks to Gerard Goossen from TTY. His presentation "UTF-8 in the wild" (Dutch
 Perl Workshop
2006) inspired me to publish my thoughts and write this tutorial.

Thanks to the people who asked about this kind of stuff in several Perl IRC
 channels, and have
constantly reminded me that a simpler explanation was
 needed.

Thanks to the people who reviewed this document for me, before it went public.
 They are: Benjamin
Smith, Jan-Pieter Cornet, Johan Vromans, Lukas Mai, Nathan
 Gray.

AUTHOR
Juerd Waalboer <#####@juerd.nl>

SEE ALSO
perlunifaq, perlunicode, perluniintro, Encode

