
Perl version 5.18.0 documentation - Tie::Memoize

Page 1http://perldoc.perl.org

NAME
Tie::Memoize - add data to hash when needed

SYNOPSIS
 require Tie::Memoize;
 tie %hash, 'Tie::Memoize',
 \&fetch,			 # The rest is optional
 $DATA, \&exists,
 {%ini_value}, {%ini_existence};

DESCRIPTION
This package allows a tied hash to autoload its values on the first access,
 and to use the cached
value on the following accesses.

Only read-accesses (via fetching the value or exists) result in calls to
 the functions; the
modify-accesses are performed as on a normal hash.

The required arguments during tie are the hash, the package, and
 the reference to the FETCHing
function. The optional arguments are
 an arbitrary scalar $data, the reference to the EXISTS function,

and initial values of the hash and of the existence cache.

Both the FETCHing function and the EXISTS functions have the
 same signature: the arguments are
$key, $data; $data is the same
 value as given as argument during tie()ing. Both functions should

return an empty list if the value does not exist. If EXISTS
 function is different from the FETCHing
function, it should return
 a TRUE value on success. The FETCHing function should return the
 intended
value if the key is valid.

Inheriting from Tie::Memoize
The structure of the tied() data is an array reference with elements

 0: cache of known values
 1: cache of known existence of keys
 2: FETCH function
 3: EXISTS function
 4: $data

The rest is for internal usage of this package. In particular, if
 TIEHASH is overwritten, it should call
SUPER::TIEHASH.

EXAMPLE
 sub slurp {
 my ($key, $dir) = shift;
 open my $h, '<', "$dir/$key" or return;
 local $/; <$h>			 # slurp it all
 }
 sub exists { my ($key, $dir) = shift; return -f "$dir/$key" }

 tie %hash, 'Tie::Memoize', \&slurp, $directory, \&exists,
 { fake_file1 => $content1, fake_file2 => $content2 },
 { pretend_does_not_exists => 0, known_to_exist => 1 };

This example treats the slightly modified contents of $directory as a
 hash. The modifications are that
the keys fake_file1 and fake_file2 fetch values $content1 and $content2, and
pretend_does_not_exists will never be accessed. Additionally, the
 existence of known_to_exist is
never checked (so if it does not
 exists when its content is needed, the user of %hash may be

Perl version 5.18.0 documentation - Tie::Memoize

Page 2http://perldoc.perl.org

confused).BUGS
FIRSTKEY and NEXTKEY methods go through the keys which were already read,
 not all the possible
keys of the hash.

AUTHOR
Ilya Zakharevich mailto:perl-module-hash-memoize@ilyaz.org.

