
Perl version 5.18.0 documentation - Storable

Page 1http://perldoc.perl.org

NAME
Storable - persistence for Perl data structures

SYNOPSIS
 use Storable;
 store \%table, 'file';
 $hashref = retrieve('file');

 use Storable qw(nstore store_fd nstore_fd freeze thaw dclone);

 # Network order
 nstore \%table, 'file';
 $hashref = retrieve('file');	 # There is NO nretrieve()

 # Storing to and retrieving from an already opened file
 store_fd \@array, *STDOUT;
 nstore_fd \%table, *STDOUT;
 $aryref = fd_retrieve(*SOCKET);
 $hashref = fd_retrieve(*SOCKET);

 # Serializing to memory
 $serialized = freeze \%table;
 %table_clone = %{ thaw($serialized) };

 # Deep (recursive) cloning
 $cloneref = dclone($ref);

 # Advisory locking
 use Storable qw(lock_store lock_nstore lock_retrieve)
 lock_store \%table, 'file';
 lock_nstore \%table, 'file';
 $hashref = lock_retrieve('file');

DESCRIPTION
The Storable package brings persistence to your Perl data structures
 containing SCALAR, ARRAY,
HASH or REF objects, i.e. anything that can be
 conveniently stored to disk and retrieved at a later
time.

It can be used in the regular procedural way by calling store with
 a reference to the object to be
stored, along with the file name where
 the image should be written.

The routine returns undef for I/O problems or other internal error,
 a true value otherwise. Serious
errors are propagated as a die exception.

To retrieve data stored to disk, use retrieve with a file name.
 The objects stored into that file are
recreated into memory for you,
 and a reference to the root object is returned. In case an I/O error

occurs while reading, undef is returned instead. Other serious
 errors are propagated via die.

Since storage is performed recursively, you might want to stuff references
 to objects that share a lot
of common data into a single array or hash
 table, and then store that object. That way, when you
retrieve back the
 whole thing, the objects will continue to share what they originally shared.

At the cost of a slight header overhead, you may store to an already
 opened file descriptor using the
store_fd routine, and retrieve
 from a file via fd_retrieve. Those names aren't imported by
default,
 so you will have to do that explicitly if you need those routines.
 The file descriptor you supply

Perl version 5.18.0 documentation - Storable

Page 2http://perldoc.perl.org

must be already opened, for read
 if you're going to retrieve and for write if you wish to store.

	 store_fd(\%table, *STDOUT) || die "can't store to stdout\n";
	 $hashref = fd_retrieve(*STDIN);

You can also store data in network order to allow easy sharing across
 multiple platforms, or when
storing on a socket known to be remotely
 connected. The routines to call have an initial n prefix for
network,
 as in nstore and nstore_fd. At retrieval time, your data will be
 correctly restored so you
don't have to know whether you're restoring
 from native or network ordered data. Double values are
stored stringified
 to ensure portability as well, at the slight risk of loosing some precision
 in the last
decimals.

When using fd_retrieve, objects are retrieved in sequence, one
 object (i.e. one recursive tree) per
associated store_fd.

If you're more from the object-oriented camp, you can inherit from
 Storable and directly store your
objects by invoking store as
 a method. The fact that the root of the to-be-stored tree is a
 blessed
reference (i.e. an object) is special-cased so that the
 retrieve does not provide a reference to that
object but rather the
 blessed object reference itself. (Otherwise, you'd get a reference
 to that blessed
object).

MEMORY STORE
The Storable engine can also store data into a Perl scalar instead, to
 later retrieve them. This is
mainly used to freeze a complex structure in
 some safe compact memory place (where it can possibly
be sent to another
 process via some IPC, since freezing the structure also serializes it in
 effect). Later
on, and maybe somewhere else, you can thaw the Perl scalar
 out and recreate the original complex
structure in memory.

Surprisingly, the routines to be called are named freeze and thaw.
 If you wish to send out the
frozen scalar to another machine, use nfreeze instead to get a portable image.

Note that freezing an object structure and immediately thawing it
 actually achieves a deep cloning of
that structure:

 dclone(.) = thaw(freeze(.))

Storable provides you with a dclone interface which does not create
 that intermediary scalar but
instead freezes the structure in some
 internal memory space and then immediately thaws it out.

ADVISORY LOCKING
The lock_store and lock_nstore routine are equivalent to store and nstore, except that they
get an exclusive lock on
 the file before writing. Likewise, lock_retrieve does the same
 as
retrieve, but also gets a shared lock on the file before reading.

As with any advisory locking scheme, the protection only works if you
 systematically use
lock_store and lock_retrieve. If one side of
 your application uses store whilst the other uses
lock_retrieve,
 you will get no protection at all.

The internal advisory locking is implemented using Perl's flock()
 routine. If your system does not
support any form of flock(), or if
 you share your files across NFS, you might wish to use other forms
 of
locking by using modules such as LockFile::Simple which lock a
 file using a filesystem entry, instead
of locking the file descriptor.

SPEED
The heart of Storable is written in C for decent speed. Extra low-level
 optimizations have been made
when manipulating perl internals, to
 sacrifice encapsulation for the benefit of greater speed.

Perl version 5.18.0 documentation - Storable

Page 3http://perldoc.perl.org

CANONICAL REPRESENTATION
Normally, Storable stores elements of hashes in the order they are
 stored internally by Perl, i.e.
pseudo-randomly. If you set $Storable::canonical to some TRUE value, Storable will store

hashes with the elements sorted by their key. This allows you to
 compare data structures by
comparing their frozen representations (or
 even the compressed frozen representations), which can
be useful for
 creating lookup tables for complicated queries.

Canonical order does not imply network order; those are two orthogonal
 settings.

CODE REFERENCES
Since Storable version 2.05, CODE references may be serialized with
 the help of B::Deparse. To
enable this feature, set $Storable::Deparse to a true value. To enable deserialization,
$Storable::Eval should be set to a true value. Be aware that
 deserialization is done through eval
, which is dangerous if the
 Storable file contains malicious data. You can set $Storable::Eval
 to a
subroutine reference which would be used instead of eval. See
 below for an example using a Safe
compartment for deserialization
 of CODE references.

If $Storable::Deparse and/or $Storable::Eval are set to false
 values, then the value of
$Storable::forgive_me (see below) is
 respected while serializing and deserializing.

FORWARD COMPATIBILITY
This release of Storable can be used on a newer version of Perl to
 serialize data which is not
supported by earlier Perls. By default,
 Storable will attempt to do the right thing, by croak()ing if it

encounters data that it cannot deserialize. However, the defaults
 can be changed as follows:

utf8 data

Perl 5.6 added support for Unicode characters with code points > 255,
 and Perl 5.8 has full
support for Unicode characters in hash keys.
 Perl internally encodes strings with these
characters using utf8, and
 Storable serializes them as utf8. By default, if an older version of

Perl encounters a utf8 value it cannot represent, it will croak().
 To change this behaviour so
that Storable deserializes utf8 encoded
 values as the string of bytes (effectively dropping the
is_utf8 flag)
 set $Storable::drop_utf8 to some TRUE value. This is a form of
 data loss,
because with $drop_utf8 true, it becomes impossible to tell
 whether the original data was
the Unicode string, or a series of bytes
 that happen to be valid utf8.

restricted hashes

Perl 5.8 adds support for restricted hashes, which have keys
 restricted to a given set, and can
have values locked to be read only.
 By default, when Storable encounters a restricted hash on
a perl
 that doesn't support them, it will deserialize it as a normal hash,
 silently discarding any
placeholder keys and leaving the keys and
 all values unlocked. To make Storable croak()
instead, set $Storable::downgrade_restricted to a FALSE value. To restore
 the
default set it back to some TRUE value.

files from future versions of Storable

Earlier versions of Storable would immediately croak if they encountered
 a file with a higher
internal version number than the reading Storable
 knew about. Internal version numbers are
increased each time new data
 types (such as restricted hashes) are added to the vocabulary
of the file
 format. This meant that a newer Storable module had no way of writing a
 file
readable by an older Storable, even if the writer didn't store newer
 data types.

This version of Storable will defer croaking until it encounters a data
 type in the file that it does
not recognize. This means that it will
 continue to read files generated by newer Storable
modules which are careful
 in what they write out, making it easier to upgrade Storable
modules in a
 mixed environment.

The old behaviour of immediate croaking can be re-instated by setting
$Storable::accept_future_minor to some FALSE value.

Perl version 5.18.0 documentation - Storable

Page 4http://perldoc.perl.org

All these variables have no effect on a newer Perl which supports the
 relevant feature.

ERROR REPORTING
Storable uses the "exception" paradigm, in that it does not try to workaround
 failures: if something bad
happens, an exception is generated from the
 caller's perspective (see Carp and croak()). Use eval
{} to trap
 those exceptions.

When Storable croaks, it tries to report the error via the logcroak()
 routine from the Log::Agent
package, if it is available.

Normal errors are reported by having store() or retrieve() return undef.
 Such errors are usually I/O
errors (or truncated stream errors at retrieval).

WIZARDS ONLY
Hooks

Any class may define hooks that will be called during the serialization
 and deserialization process on
objects that are instances of that class.
 Those hooks can redefine the way serialization is performed
(and therefore,
 how the symmetrical deserialization should be conducted).

Since we said earlier:

 dclone(.) = thaw(freeze(.))

everything we say about hooks should also hold for deep cloning. However,
 hooks get to know
whether the operation is a mere serialization, or a cloning.

Therefore, when serializing hooks are involved,

 dclone(.) <> thaw(freeze(.))

Well, you could keep them in sync, but there's no guarantee it will always
 hold on classes somebody
else wrote. Besides, there is little to gain in
 doing so: a serializing hook could keep only one attribute
of an object,
 which is probably not what should happen during a deep cloning of that
 same object.

Here is the hooking interface:

STORABLE_freeze obj, cloning

The serializing hook, called on the object during serialization. It can be
 inherited, or defined in
the class itself, like any other method.

Arguments: obj is the object to serialize, cloning is a flag indicating
 whether we're in a dclone()
or a regular serialization via store() or freeze().

Returned value: A LIST ($serialized, $ref1, $ref2, ...) where $serialized
 is the
serialized form to be used, and the optional $ref1, $ref2, etc... are
 extra references that you
wish to let the Storable engine serialize.

At deserialization time, you will be given back the same LIST, but all the
 extra references will
be pointing into the deserialized structure.

The first time the hook is hit in a serialization flow, you may have it
 return an empty list. That
will signal the Storable engine to further
 discard that hook for this class and to therefore revert
to the default
 serialization of the underlying Perl data. The hook will again be normally

processed in the next serialization.

Unless you know better, serializing hook should always say:

 sub STORABLE_freeze {
 my ($self, $cloning) = @_;
 return if $cloning; # Regular default serialization

Perl version 5.18.0 documentation - Storable

Page 5http://perldoc.perl.org

 }

in order to keep reasonable dclone() semantics.

STORABLE_thaw obj, cloning, serialized, ...

The deserializing hook called on the object during deserialization.
 But wait: if we're
deserializing, there's no object yet... right?

Wrong: the Storable engine creates an empty one for you. If you know Eiffel,
 you can view
STORABLE_thaw as an alternate creation routine.

This means the hook can be inherited like any other method, and that obj is your blessed
reference for this particular instance.

The other arguments should look familiar if you know STORABLE_freeze: cloning is true
when we're part of a deep clone operation, serialized
 is the serialized string you returned to
the engine in STORABLE_freeze,
 and there may be an optional list of references, in the
same order you gave
 them at serialization time, pointing to the deserialized objects (which

have been processed courtesy of the Storable engine).

When the Storable engine does not find any STORABLE_thaw hook routine,
 it tries to load the
class by requiring the package dynamically (using
 the blessed package name), and then
re-attempts the lookup. If at that
 time the hook cannot be located, the engine croaks. Note that
this mechanism
 will fail if you define several classes in the same file, but perlmod
 warned you.

It is up to you to use this information to populate obj the way you want.

Returned value: none.

STORABLE_attach class, cloning, serialized

While STORABLE_freeze and STORABLE_thaw are useful for classes where
 each instance
is independent, this mechanism has difficulty (or is
 incompatible) with objects that exist as
common process-level or
 system-level resources, such as singleton objects, database pools,
caches
 or memoized objects.

The alternative STORABLE_attach method provides a solution for these
 shared objects.
Instead of STORABLE_freeze --> STORABLE_thaw,
 you implement STORABLE_freeze -->
STORABLE_attach instead.

Arguments: class is the class we are attaching to, cloning is a flag
 indicating whether we're in
a dclone() or a regular de-serialization via
 thaw(), and serialized is the stored string for the
resource object.

Because these resource objects are considered to be owned by the entire
 process/system,
and not the "property" of whatever is being serialized,
 no references underneath the object
should be included in the serialized
 string. Thus, in any class that implements
STORABLE_attach, the STORABLE_freeze method cannot return any references, and
Storable
 will throw an error if STORABLE_freeze tries to return references.

All information required to "attach" back to the shared resource object must be contained only
in the STORABLE_freeze return string.
 Otherwise, STORABLE_freeze behaves as normal
for STORABLE_attach
 classes.

Because STORABLE_attach is passed the class (rather than an object),
 it also returns the
object directly, rather than modifying the passed
 object.

Returned value: object of type class

Predicates
Predicates are not exportable. They must be called by explicitly prefixing
 them with the Storable
package name.

Storable::last_op_in_netorder

The Storable::last_op_in_netorder() predicate will tell you whether
 network order

Perl version 5.18.0 documentation - Storable

Page 6http://perldoc.perl.org

was used in the last store or retrieve operation. If you
 don't know how to use this, just forget
about it.

Storable::is_storing

Returns true if within a store operation (via STORABLE_freeze hook).

Storable::is_retrieving

Returns true if within a retrieve operation (via STORABLE_thaw hook).

Recursion
With hooks comes the ability to recurse back to the Storable engine.
 Indeed, hooks are regular Perl
code, and Storable is convenient when
 it comes to serializing and deserializing things, so why not use
it
 to handle the serialization string?

There are a few things you need to know, however:

You can create endless loops if the things you serialize via freeze()
 (for instance) point back to
the object we're trying to serialize in
 the hook.

Shared references among objects will not stay shared: if we're serializing
 the list of object [A,
C] where both object A and C refer to the SAME object
 B, and if there is a serializing hook in A
that says freeze(B), then when
 deserializing, we'll get [A', C'] where A' refers to B', but C'
refers to D,
 a deep clone of B'. The topology was not preserved.

That's why STORABLE_freeze lets you provide a list of references
 to serialize. The engine
guarantees that those will be serialized in the
 same context as the other objects, and therefore that
shared objects will
 stay shared.

In the above [A, C] example, the STORABLE_freeze hook could return:

	 ("something", $self->{B})

and the B part would be serialized by the engine. In STORABLE_thaw, you
 would get back the
reference to the B' object, deserialized for you.

Therefore, recursion should normally be avoided, but is nonetheless supported.

Deep Cloning
There is a Clone module available on CPAN which implements deep cloning
 natively, i.e. without
freezing to memory and thawing the result. It is
 aimed to replace Storable's dclone() some day.
However, it does not currently
 support Storable hooks to redefine the way deep cloning is performed.

Storable magic
Yes, there's a lot of that :-) But more precisely, in UNIX systems
 there's a utility called file, which
recognizes data files based on
 their contents (usually their first few bytes). For this to work,
 a certain
file called magic needs to taught about the signature
 of the data. Where that configuration file lives
depends on the UNIX
 flavour; often it's something like /usr/share/misc/magic or /etc/magic. Your
system administrator needs to do the updating of
 the magic file. The necessary signature information
is output to
 STDOUT by invoking Storable::show_file_magic(). Note that the GNU
 implementation of
the file utility, version 3.38 or later,
 is expected to contain support for recognising Storable files

out-of-the-box, in addition to other kinds of Perl files.

You can also use the following functions to extract the file header
 information from Storable images:

$info = Storable::file_magic($filename)

If the given file is a Storable image return a hash describing it. If
 the file is readable, but not a
Storable image return undef. If
 the file does not exist or is unreadable then croak.

The hash returned has the following elements:

Perl version 5.18.0 documentation - Storable

Page 7http://perldoc.perl.org

version

This returns the file format version. It is a string like "2.7".

Note that this version number is not the same as the version number of
 the Storable
module itself. For instance Storable v0.7 create files
 in format v2.0 and Storable v2.15
create files in format v2.7. The
 file format version number only increment when
additional features
 that would confuse older versions of the module are added.

Files older than v2.0 will have the one of the version numbers "-1",
 "0" or "1". No minor
number was used at that time.

version_nv

This returns the file format version as number. It is a string like
 "2.007". This value is
suitable for numeric comparisons.

The constant function Storable::BIN_VERSION_NV returns a comparable
 number
that represents the highest file version number that this
 version of Storable fully
supports (but see discussion of $Storable::accept_future_minor above). The
constant Storable::BIN_WRITE_VERSION_NV function returns what file version
 is
written and might be less than Storable::BIN_VERSION_NV in some

configurations.

major, minor

This also returns the file format version. If the version is "2.7"
 then major would be 2
and minor would be 7. The minor element is
 missing for when major is less than 2.

hdrsize

The is the number of bytes that the Storable header occupies.

netorder

This is TRUE if the image store data in network order. This means
 that it was created
with nstore() or similar.

byteorder

This is only present when netorder is FALSE. It is the
 $Config{byteorder} string of
the perl that created this image. It is
 a string like "1234" (32 bit little endian) or
"87654321" (64 bit big
 endian). This must match the current perl for the image to be

readable by Storable.

intsize, longsize, ptrsize, nvsize

These are only present when netorder is FALSE. These are the sizes of
 various C
datatypes of the perl that created this image. These must
 match the current perl for the
image to be readable by Storable.

The nvsize element is only present for file format v2.2 and
 higher.

file

The name of the file.

$info = Storable::read_magic($buffer)

$info = Storable::read_magic($buffer, $must_be_file)

The $buffer should be a Storable image or the first few bytes of it.
 If $buffer starts with a
Storable header, then a hash describing the
 image is returned, otherwise undef is returned.

The hash has the same structure as the one returned by
 Storable::file_magic(). The file
element is true if the image is a
 file image.

If the $must_be_file argument is provided and is TRUE, then return undef unless the image
looks like it belongs to a file dump.

Perl version 5.18.0 documentation - Storable

Page 8http://perldoc.perl.org

The maximum size of a Storable header is currently 21 bytes. If the
 provided $buffer is only
the first part of a Storable image it should
 at least be this long to ensure that read_magic() will
recognize it as
 such.

EXAMPLES
Here are some code samples showing a possible usage of Storable:

	 use Storable qw(store retrieve freeze thaw dclone);

	 %color = ('Blue' => 0.1, 'Red' => 0.8, 'Black' => 0, 'White' => 1);

	 store(\%color, 'mycolors') or die "Can't store %a in mycolors!\n";

	 $colref = retrieve('mycolors');
	 die "Unable to retrieve from mycolors!\n" unless defined $colref;
	 printf "Blue is still %lf\n", $colref->{'Blue'};

	 $colref2 = dclone(\%color);

	 $str = freeze(\%color);
	 printf "Serialization of %%color is %d bytes long.\n", length($str);
	 $colref3 = thaw($str);

which prints (on my machine):

	 Blue is still 0.100000
	 Serialization of %color is 102 bytes long.

Serialization of CODE references and deserialization in a safe
 compartment:

	 use Storable qw(freeze thaw);
	 use Safe;
	 use strict;
	 my $safe = new Safe;
 # because of opcodes used in "use strict":
	 $safe->permit(qw(:default require));
	 local $Storable::Deparse = 1;
	 local $Storable::Eval = sub { $safe->reval($_[0]) };
	 my $serialized = freeze(sub { 42 });
	 my $code = thaw($serialized);
	 $code->() == 42;

SECURITY WARNING
Do not accept Storable documents from untrusted sources!

Some features of Storable can lead to security vulnerabilities if you
 accept Storable documents from
untrusted sources. Most obviously, the
 optional (off by default) CODE reference serialization feature
allows
 transfer of code to the deserializing process. Furthermore, any
 serialized object will cause
Storable to helpfully load the module
 corresponding to the class of the object in the deserializing
module.
 For manipulated module names, this can load almost arbitrary code.
 Finally, the deserialized
object's destructors will be invoked when
 the objects get destroyed in the deserializing process.
Maliciously
 crafted Storable documents may put such objects in the value of
 a hash key that is
overridden by another key/value pair in the
 same hash, thus causing immediate destructor execution.

In a future version of Storable, we intend to provide options to disable
 loading modules for classes

Perl version 5.18.0 documentation - Storable

Page 9http://perldoc.perl.org

and to disable deserializing objects
 altogether. Nonetheless, Storable deserializing documents from

untrusted sources is expected to have other, yet undiscovered,
 security concerns such as allowing an
attacker to cause the deserializer
 to crash hard.

Therefore, let me repeat: Do not accept Storable documents from
 untrusted sources!

If your application requires accepting data from untrusted sources, you
 are best off with a less
powerful and more-likely safe serialization format
 and implementation. If your data is sufficently
simple, JSON is a good
 choice and offers maximum interoperability.

WARNING
If you're using references as keys within your hash tables, you're bound
 to be disappointed when
retrieving your data. Indeed, Perl stringifies
 references used as hash table keys. If you later wish to
access the
 items via another reference stringification (i.e. using the same
 reference that was used for
the key originally to record the value into
 the hash table), it will work because both references stringify
to the
 same string.

It won't work across a sequence of store and retrieve operations,
 however, because the
addresses in the retrieved objects, which are
 part of the stringified references, will probably differ from
the
 original addresses. The topology of your structure is preserved,
 but not hidden semantics like
those.

On platforms where it matters, be sure to call binmode() on the
 descriptors that you pass to
Storable functions.

Storing data canonically that contains large hashes can be
 significantly slower than storing the same
data normally, as
 temporary arrays to hold the keys for each hash have to be allocated,
 populated,
sorted and freed. Some tests have shown a halving of the
 speed of storing -- the exact penalty will
depend on the complexity of
 your data. There is no slowdown on retrieval.

BUGS
You can't store GLOB, FORMLINE, REGEXP, etc.... If you can define semantics
 for those operations,
feel free to enhance Storable so that it can
 deal with them.

The store functions will croak if they run into such references
 unless you set
$Storable::forgive_me to some TRUE value. In that
 case, the fatal message is turned in a
warning and some
 meaningless string is stored instead.

Setting $Storable::canonical may not yield frozen strings that
 compare equal due to possible
stringification of numbers. When the
 string version of a scalar exists, it is the form stored; therefore,
 if
you happen to use your numbers as strings between two freezing
 operations on the same data
structures, you will get different
 results.

When storing doubles in network order, their value is stored as text.
 However, you should also not
expect non-numeric floating-point values
 such as infinity and "not a number" to pass successfully
through a
 nstore()/retrieve() pair.

As Storable neither knows nor cares about character sets (although it
 does know that characters may
be more than eight bits wide), any difference
 in the interpretation of character codes between a host
and a target
 system is your problem. In particular, if host and target use different
 code points to
represent the characters used in the text representation
 of floating-point numbers, you will not be able
be able to exchange
 floating-point data, even with nstore().

Storable::drop_utf8 is a blunt tool. There is no facility either to
 return all strings as utf8
sequences, or to attempt to convert utf8
 data back to 8 bit and croak() if the conversion fails.

Prior to Storable 2.01, no distinction was made between signed and
 unsigned integers on storing. By
default Storable prefers to store a
 scalars string representation (if it has one) so this would only cause
problems when storing large unsigned integers that had never been converted
 to string or floating
point. In other words values that had been generated
 by integer operations such as logic ops and

Perl version 5.18.0 documentation - Storable

Page 10http://perldoc.perl.org

then not used in any string or
 arithmetic context before storing.

64 bit data in perl 5.6.0 and 5.6.1
This section only applies to you if you have existing data written out
 by Storable 2.02 or earlier on perl
5.6.0 or 5.6.1 on Unix or Linux which
 has been configured with 64 bit integer support (not the default)

If you got a precompiled perl, rather than running Configure to build
 your own perl from source, then it
almost certainly does not affect you,
 and you can stop reading now (unless you're curious). If you're
using perl
 on Windows it does not affect you.

Storable writes a file header which contains the sizes of various C
 language types for the C compiler
that built Storable (when not writing in
 network order), and will refuse to load files written by a Storable
not
 on the same (or compatible) architecture. This check and a check on
 machine byteorder is
needed because the size of various fields in the file
 are given by the sizes of the C language types,
and so files written on
 different architectures are incompatible. This is done for increased speed.

(When writing in network order, all fields are written out as standard
 lengths, which allows full
interworking, but takes longer to read and write)

Perl 5.6.x introduced the ability to optional configure the perl interpreter
 to use C's long long type to
allow scalars to store 64 bit integers on 32
 bit systems. However, due to the way the Perl
configuration system
 generated the C configuration files on non-Windows platforms, and the way

Storable generates its header, nothing in the Storable file header reflected
 whether the perl writing
was using 32 or 64 bit integers, despite the fact
 that Storable was storing some data differently in the
file. Hence Storable
 running on perl with 64 bit integers will read the header from a file
 written by a 32
bit perl, not realise that the data is actually in a subtly
 incompatible format, and then go horribly wrong
(possibly crashing) if it
 encountered a stored integer. This is a design failure.

Storable has now been changed to write out and read in a file header with
 information about the size
of integers. It's impossible to detect whether
 an old file being read in was written with 32 or 64 bit
integers (they have
 the same header) so it's impossible to automatically switch to a correct
 backwards
compatibility mode. Hence this Storable defaults to the new,
 correct behaviour.

What this means is that if you have data written by Storable 1.x running
 on perl 5.6.0 or 5.6.1
configured with 64 bit integers on Unix or Linux
 then by default this Storable will refuse to read it,
giving the error Byte order is not compatible. If you have such data then you you
 should set
$Storable::interwork_56_64bit to a true value to make this
 Storable read and write files with
the old header. You should also
 migrate your data, or any older perl you are communicating with, to
this
 current version of Storable.

If you don't have data written with specific configuration of perl described
 above, then you do not and
should not do anything. Don't set the flag -
 not only will Storable on an identically configured perl
refuse to load them,
 but Storable a differently configured perl will load them believing them
 to be
correct for it, and then may well fail or crash part way through
 reading them.

CREDITS
Thank you to (in chronological order):

	 Jarkko Hietaniemi <jhi@iki.fi>
	 Ulrich Pfeifer <pfeifer@charly.informatik.uni-dortmund.de>
	 Benjamin A. Holzman <bholzman@earthlink.net>
	 Andrew Ford <A.Ford@ford-mason.co.uk>
	 Gisle Aas <gisle@aas.no>
	 Jeff Gresham <gresham_jeffrey@jpmorgan.com>
	 Murray Nesbitt <murray@activestate.com>
	 Marc Lehmann <pcg@opengroup.org>
	 Justin Banks <justinb@wamnet.com>
	 Jarkko Hietaniemi <jhi@iki.fi> (AGAIN, as perl 5.7.0 Pumpkin!)
	 Salvador Ortiz Garcia <sog@msg.com.mx>
	 Dominic Dunlop <domo@computer.org>

Perl version 5.18.0 documentation - Storable

Page 11http://perldoc.perl.org

	 Erik Haugan <erik@solbors.no>
 Benjamin A. Holzman <ben.holzman@grantstreet.com>

for their bug reports, suggestions and contributions.

Benjamin Holzman contributed the tied variable support, Andrew Ford
 contributed the canonical order
for hashes, and Gisle Aas fixed
 a few misunderstandings of mine regarding the perl internals,
 and
optimized the emission of "tags" in the output streams by
 simply counting the objects instead of
tagging them (leading to
 a binary incompatibility for the Storable image starting at version
 0.6--older
images are, of course, still properly understood).
 Murray Nesbitt made Storable thread-safe. Marc
Lehmann added overloading
 and references to tied items support. Benjamin Holzman added a
performance
 improvement for overloaded classes; thanks to Grant Street Group for footing
 the bill.

AUTHOR
Storable was written by Raphael Manfredi <Raphael_Manfredi@pobox.com>
 Maintenance is now
done by the perl5-porters <perl5-porters@perl.org>

Please e-mail us with problems, bug fixes, comments and complaints,
 although if you have
compliments you should send them to Raphael.
 Please don't e-mail Raphael with problems, as he no
longer works on
 Storable, and your message will be delayed while he forwards it to us.

SEE ALSO
Clone.

