
Perl version 5.18.0 documentation - B::Concise

Page 1http://perldoc.perl.org

NAME
B::Concise - Walk Perl syntax tree, printing concise info about ops

SYNOPSIS
 perl -MO=Concise[,OPTIONS] foo.pl

 use B::Concise qw(set_style add_callback);

DESCRIPTION
This compiler backend prints the internal OPs of a Perl program's syntax
 tree in one of several
space-efficient text formats suitable for debugging
 the inner workings of perl or other compiler
backends. It can print OPs in
 the order they appear in the OP tree, in the order they will execute, or
 in
a text approximation to their tree structure, and the format of the
 information displayed is
customizable. Its function is similar to that of
 perl's -Dx debugging flag or the B::Terse module, but it
is more
 sophisticated and flexible.

EXAMPLE
Here's two outputs (or 'renderings'), using the -exec and -basic
 (i.e. default) formatting conventions on
the same code snippet.

 % perl -MO=Concise,-exec -e '$a = $b + 42'
 1 <0> enter
 2 <;> nextstate(main 1 -e:1) v
 3 <#> gvsv[*b] s
 4 <$> const[IV 42] s
 * 5 <2> add[t3] sK/2
 6 <#> gvsv[*a] s
 7 <2> sassign vKS/2
 8 <@> leave[1 ref] vKP/REFC

In this -exec rendering, each opcode is executed in the order shown.
 The add opcode, marked with '*',
is discussed in more detail.

The 1st column is the op's sequence number, starting at 1, and is
 displayed in base 36 by default.
Here they're purely linear; the
 sequences are very helpful when looking at code with loops and

branches.

The symbol between angle brackets indicates the op's type, for
 example; <2> is a BINOP, <@> a
LISTOP, and <#> is a PADOP, which is
 used in threaded perls. (see OP class abbreviations).

The opname, as in 'add[t1]', may be followed by op-specific
 information in parentheses or brackets
(ex '[t1]').

The op-flags (ex 'sK/2') are described in (OP flags abbreviations).

 % perl -MO=Concise -e '$a = $b + 42'
 8 <@> leave[1 ref] vKP/REFC ->(end)
 1 <0> enter ->2
 2 <;> nextstate(main 1 -e:1) v ->3
 7 <2> sassign vKS/2 ->8
 * 5 <2> add[t1] sK/2 ->6
 - <1> ex-rv2sv sK/1 ->4
 3 <$> gvsv(*b) s ->4
 4 <$> const(IV 42) s ->5
 - <1> ex-rv2sv sKRM*/1 ->7
 6 <$> gvsv(*a) s ->7

Perl version 5.18.0 documentation - B::Concise

Page 2http://perldoc.perl.org

The default rendering is top-down, so they're not in execution order.
 This form reflects the way the
stack is used to parse and evaluate
 expressions; the add operates on the two terms below it in the
tree.

Nullops appear as ex-opname, where opname is an op that has been
 optimized away by perl.
They're displayed with a sequence-number of
 '-', because they are not executed (they don't appear in
previous
 example), they're printed here because they reflect the parse.

The arrow points to the sequence number of the next op; they're not
 displayed in -exec mode, for
obvious reasons.

Note that because this rendering was done on a non-threaded perl, the
 PADOPs in the previous
examples are now SVOPs, and some (but not all)
 of the square brackets have been replaced by
round ones. This is a
 subtle feature to provide some visual distinction between renderings
 on
threaded and un-threaded perls.

OPTIONS
Arguments that don't start with a hyphen are taken to be the names of
 subroutines or formats to
render; if no
 such functions are specified, the main
 body of the program (outside any subroutines, and
not including use'd
 or require'd files) is rendered. Passing BEGIN, UNITCHECK, CHECK, INIT, or END
will cause all of the corresponding
 special blocks to be printed. Arguments must follow options.

Options affect how things are rendered (ie printed). They're presented
 here by their visual effect, 1st
being strongest. They're grouped
 according to how they interrelate; within each group the options are

mutually exclusive (unless otherwise stated).

Options for Opcode Ordering
These options control the 'vertical display' of opcodes. The display
 'order' is also called 'mode'
elsewhere in this document.

-basic

Print OPs in the order they appear in the OP tree (a preorder
 traversal, starting at the root).
The indentation of each OP shows its
 level in the tree, and the '->' at the end of the line
indicates the
 next opcode in execution order. This mode is the default, so the flag
 is included
simply for completeness.

-exec

Print OPs in the order they would normally execute (for the majority
 of constructs this is a
postorder traversal of the tree, ending at the
 root). In most cases the OP that usually follows a
given OP will
 appear directly below it; alternate paths are shown by indentation. In
 cases like
loops when control jumps out of a linear path, a 'goto'
 line is generated.

-tree

Print OPs in a text approximation of a tree, with the root of the tree
 at the left and 'left-to-right'
order of children transformed into
 'top-to-bottom'. Because this mode grows both to the right
and down,
 it isn't suitable for large programs (unless you have a very wide
 terminal).

Options for Line-Style
These options select the line-style (or just style) used to render
 each opcode, and dictates what info is
actually printed into each line.

-concise

Use the author's favorite set of formatting conventions. This is the
 default, of course.

-terse

Use formatting conventions that emulate the output of B::Terse. The
 basic mode is almost
indistinguishable from the real B::Terse, and the
 exec mode looks very similar, but is in a

Perl version 5.18.0 documentation - B::Concise

Page 3http://perldoc.perl.org

more logical order and lacks
 curly brackets. B::Terse doesn't have a tree mode, so the tree
mode
 is only vaguely reminiscent of B::Terse.

-linenoise

Use formatting conventions in which the name of each OP, rather than being
 written out in full,
is represented by a one- or two-character abbreviation.
 This is mainly a joke.

-debug

Use formatting conventions reminiscent of B::Debug; these aren't
 very concise at all.

-env

Use formatting conventions read from the environment variables B_CONCISE_FORMAT,
B_CONCISE_GOTO_FORMAT, and B_CONCISE_TREE_FORMAT.

Options for tree-specific formatting
-compact

Use a tree format in which the minimum amount of space is used for the
 lines connecting
nodes (one character in most cases). This squeezes out
 a few precious columns of screen
real estate.

-loose

Use a tree format that uses longer edges to separate OP nodes. This format
 tends to look
better than the compact one, especially in ASCII, and is
 the default.

-vt

Use tree connecting characters drawn from the VT100 line-drawing set.
 This looks better if
your terminal supports it.

-ascii

Draw the tree with standard ASCII characters like + and |. These don't
 look as clean as the
VT100 characters, but they'll work with almost any
 terminal (or the horizontal scrolling mode of
less(1)) and are suitable
 for text documentation or email. This is the default.

These are pairwise exclusive, i.e. compact or loose, vt or ascii.

Options controlling sequence numbering
-basen

Print OP sequence numbers in base n. If n is greater than 10, the
 digit for 11 will be 'a', and so
on. If n is greater than 36, the digit
 for 37 will be 'A', and so on until 62. Values greater than 62
are not
 currently supported. The default is 36.

-bigendian

Print sequence numbers with the most significant digit first. This is the
 usual convention for
Arabic numerals, and the default.

-littleendian

Print sequence numbers with the least significant digit first. This is
 obviously mutually
exclusive with bigendian.

Other options
-src

With this option, the rendering of each statement (starting with the
 nextstate OP) will be
preceded by the 1st line of source code that
 generates it. For example:

 1 <0> enter
 # 1: my $i;

Perl version 5.18.0 documentation - B::Concise

Page 4http://perldoc.perl.org

 2 <;> nextstate(main 1 junk.pl:1) v:{
 3 <0> padsv[$i:1,10] vM/LVINTRO
 # 3: for $i (0..9) {
 4 <;> nextstate(main 3 junk.pl:3) v:{
 5 <0> pushmark s
 6 <$> const[IV 0] s
 7 <$> const[IV 9] s
 8 <{> enteriter(next->j last->m redo->9)[$i:1,10] lKS
 k <0> iter s
 l <|> and(other->9) vK/1
 # 4: print "line ";
 9 <;> nextstate(main 2 junk.pl:4) v
 a <0> pushmark s
 b <$> const[PV "line "] s
 c <@> print vK
 # 5: print "$i\n";
 ...

-stash="somepackage"

With this, "somepackage" will be required, then the stash is
 inspected, and each function is
rendered.

The following options are pairwise exclusive.

-main

Include the main program in the output, even if subroutines were also
 specified. This
rendering is normally suppressed when a subroutine
 name or reference is given.

-nomain

This restores the default behavior after you've changed it with '-main'
 (it's not normally
needed). If no subroutine name/ref is given, main is
 rendered, regardless of this flag.

-nobanner

Renderings usually include a banner line identifying the function name
 or stringified subref.
This suppresses the printing of the banner.

TBC: Remove the stringified coderef; while it provides a 'cookie' for
 each function rendered,
the cookies used should be 1,2,3.. not a
 random hex-address. It also complicates string
comparison of two
 different trees.

-banner

restores default banner behavior.

-banneris => subref

TBC: a hookpoint (and an option to set it) for a user-supplied
 function to produce a banner
appropriate for users needs. It's not
 ideal, because the rendering-state variables, which are a
natural
 candidate for use in concise.t, are unavailable to the user.

Option Stickiness
If you invoke Concise more than once in a program, you should know that
 the options are 'sticky'. This
means that the options you provide in
 the first call will be remembered for the 2nd call, unless you

re-specify or change them.

ABBREVIATIONS
The concise style uses symbols to convey maximum info with minimal
 clutter (like hex addresses).
With just a little practice, you can
 start to see the flowers, not just the branches, in the trees.

Perl version 5.18.0 documentation - B::Concise

Page 5http://perldoc.perl.org

OP class abbreviations
These symbols appear before the op-name, and indicate the
 B:: namespace that represents the ops
in your Perl code.

 0 OP (aka BASEOP) An OP with no children
 1 UNOP An OP with one child
 2 BINOP An OP with two children
 | LOGOP A control branch OP
 @ LISTOP An OP that could have lots of children
 / PMOP An OP with a regular expression
 $ SVOP An OP with an SV
 " PVOP An OP with a string
 { LOOP An OP that holds pointers for a loop
 ; COP An OP that marks the start of a statement
 # PADOP An OP with a GV on the pad

OP flags abbreviations
OP flags are either public or private. The public flags alter the
 behavior of each opcode in consistent
ways, and are represented by 0
 or more single characters.

 v OPf_WANT_VOID Want nothing (void context)
 s OPf_WANT_SCALAR Want single value (scalar context)
 l OPf_WANT_LIST Want list of any length (list context)
 Want is unknown
 K OPf_KIDS There is a firstborn child.
 P OPf_PARENS This operator was parenthesized.
 (Or block needs explicit scope entry.)
 R OPf_REF Certified reference.
 (Return container, not containee).
 M OPf_MOD Will modify (lvalue).
 S OPf_STACKED Some arg is arriving on the stack.
 * OPf_SPECIAL Do something weird for this op (see op.h)

Private flags, if any are set for an opcode, are displayed after a '/'

 8 <@> leave[1 ref] vKP/REFC ->(end)
 7 <2> sassign vKS/2 ->8

They're opcode specific, and occur less often than the public ones, so
 they're represented by short
mnemonics instead of single-chars; see op.h for gory details, or try this quick 2-liner:

 $> perl -MB::Concise -de 1
 DB<1> |x \%B::Concise::priv

FORMATTING SPECIFICATIONS
For each line-style ('concise', 'terse', 'linenoise', etc.) there are
 3 format-specs which control how OPs
are rendered.

The first is the 'default' format, which is used in both basic and exec
 modes to print all opcodes. The
2nd, goto-format, is used in exec
 mode when branches are encountered. They're not real opcodes,
and are
 inserted to look like a closing curly brace. The tree-format is tree
 specific.

When a line is rendered, the correct format-spec is copied and scanned
 for the following items; data is
substituted in, and other
 manipulations like basic indenting are done, for each opcode rendered.

There are 3 kinds of items that may be populated; special patterns,
 #vars, and literal text, which is

Perl version 5.18.0 documentation - B::Concise

Page 6http://perldoc.perl.org

copied verbatim. (Yes, it's a set
 of s///g steps.)

Special Patterns
These items are the primitives used to perform indenting, and to
 select text from amongst
alternatives.

(x(exec_text;basic_text)x)

Generates exec_text in exec mode, or basic_text in basic mode.

(*(text)*)

Generates one copy of text for each indentation level.

(*(text1;text2)*)

Generates one fewer copies of text1 than the indentation level, followed
 by one copy of text2 if
the indentation level is more than 0.

(?(text1#varText2)?)

If the value of var is true (not empty or zero), generates the
 value of var surrounded by text1
and Text2, otherwise
 nothing.

~

Any number of tildes and surrounding whitespace will be collapsed to
 a single space.

Variables
These #vars represent opcode properties that you may want as part of
 your rendering. The '#' is
intended as a private sigil; a #var's
 value is interpolated into the style-line, much like "read $this".

These vars take 3 forms:

#var

A property named 'var' is assumed to exist for the opcodes, and is
 interpolated into the
rendering.

#varN

Generates the value of var, left justified to fill N spaces.
 Note that this means while you can
have properties 'foo' and 'foo2',
 you cannot render 'foo2', but you could with 'foo2a'. You would
be
 wise not to rely on this behavior going forward ;-)

#Var

This ucfirst form of #var generates a tag-value form of itself for
 display; it converts '#Var' into a
'Var => #var' style, which is then
 handled as described above. (Imp-note: #Vars cannot be
used for
 conditional-fills, because the => #var transform is done after the check
 for #Var's
value).

The following variables are 'defined' by B::Concise; when they are
 used in a style, their respective
values are plugged into the
 rendering of each opcode.

Only some of these are used by the standard styles, the others are
 provided for you to delve into
optree mechanics, should you wish to
 add a new style (see add_style below) that uses them. You can
also add new ones using add_callback.

#addr

The address of the OP, in hexadecimal.

#arg

The OP-specific information of the OP (such as the SV for an SVOP, the
 non-local exit
pointers for a LOOP, etc.) enclosed in parentheses.

Perl version 5.18.0 documentation - B::Concise

Page 7http://perldoc.perl.org

#class

The B-determined class of the OP, in all caps.

#classsym

A single symbol abbreviating the class of the OP.

#coplabel

The label of the statement or block the OP is the start of, if any.

#exname

The name of the OP, or 'ex-foo' if the OP is a null that used to be a foo.

#extarg

The target of the OP, or nothing for a nulled OP.

#firstaddr

The address of the OP's first child, in hexadecimal.

#flags

The OP's flags, abbreviated as a series of symbols.

#flagval

The numeric value of the OP's flags.

#hints

The COP's hint flags, rendered with abbreviated names if possible. An empty
 string if this is
not a COP. Here are the symbols used:

 $ strict refs
 & strict subs
 * strict vars
 x$ explicit use/no strict refs
 x& explicit use/no strict subs
 x* explicit use/no strict vars
 i integers
 l locale
 b bytes
 { block scope
 % localise %^H
 < open in
 > open out
 I overload int
 F overload float
 B overload binary
 S overload string
 R overload re
 T taint
 E eval
 X filetest access
 U utf-8

#hintsval

The numeric value of the COP's hint flags, or an empty string if this is not
 a COP.

#hyphseq

The sequence number of the OP, or a hyphen if it doesn't have one.

Perl version 5.18.0 documentation - B::Concise

Page 8http://perldoc.perl.org

#label

'NEXT', 'LAST', or 'REDO' if the OP is a target of one of those in exec
 mode, or empty
otherwise.

#lastaddr

The address of the OP's last child, in hexadecimal.

#name

The OP's name.

#NAME

The OP's name, in all caps.

#next

The sequence number of the OP's next OP.

#nextaddr

The address of the OP's next OP, in hexadecimal.

#noise

A one- or two-character abbreviation for the OP's name.

#private

The OP's private flags, rendered with abbreviated names if possible.

#privval

The numeric value of the OP's private flags.

#seq

The sequence number of the OP. Note that this is a sequence number
 generated by
B::Concise.

#seqnum

5.8.x and earlier only. 5.9 and later do not provide this.

The real sequence number of the OP, as a regular number and not adjusted
 to be relative to
the start of the real program. (This will generally be
 a fairly large number because all of
B::Concise is compiled before
 your program is).

#opt

Whether or not the op has been optimised by the peephole optimiser.

Only available in 5.9 and later.

#sibaddr

The address of the OP's next youngest sibling, in hexadecimal.

#svaddr

The address of the OP's SV, if it has an SV, in hexadecimal.

#svclass

The class of the OP's SV, if it has one, in all caps (e.g., 'IV').

#svval

The value of the OP's SV, if it has one, in a short human-readable format.

#targ

Perl version 5.18.0 documentation - B::Concise

Page 9http://perldoc.perl.org

The numeric value of the OP's targ.

#targarg

The name of the variable the OP's targ refers to, if any, otherwise the
 letter t followed by the
OP's targ in decimal.

#targarglife

Same as #targarg, but followed by the COP sequence numbers that delimit
 the variable's
lifetime (or 'end' for a variable in an open scope) for a
 variable.

#typenum

The numeric value of the OP's type, in decimal.

One-Liner Command tips
perl -MO=Concise,bar foo.pl

Renders only bar() from foo.pl. To see main, drop the ',bar'. To see
 both, add ',-main'

perl -MDigest::MD5=md5 -MO=Concise,md5 -e1

Identifies md5 as an XS function. The export is needed so that BC can
 find it in main.

perl -MPOSIX -MO=Concise,_POSIX_ARG_MAX -e1

Identifies _POSIX_ARG_MAX as a constant sub, optimized to an IV.
 Although POSIX isn't
entirely consistent across platforms, this is
 likely to be present in virtually all of them.

perl -MPOSIX -MO=Concise,a -e 'print _POSIX_SAVED_IDS'

This renders a print statement, which includes a call to the function.
 It's identical to rendering a
file with a use call and that single
 statement, except for the filename which appears in the
nextstate ops.

perl -MPOSIX -MO=Concise,a -e 'sub a{_POSIX_SAVED_IDS}'

This is very similar to previous, only the first two ops differ. This
 subroutine rendering is more
representative, insofar as a single main
 program will have many subs.

perl -MB::Concise -e 'B::Concise::compile("-exec","-src", \%B::Concise::)->()'

This renders all functions in the B::Concise package with the source
 lines. It eschews the O
framework so that the stashref can be passed
 directly to B::Concise::compile(). See -stash
option for a more
 convenient way to render a package.

Using B::Concise outside of the O framework
The common (and original) usage of B::Concise was for command-line
 renderings of simple code, as
given in EXAMPLE. But you can also use B::Concise from your code, and call compile() directly, and
repeatedly. By doing so, you can avoid the compile-time only
 operation of O.pm, and even use the
debugger to step through
 B::Concise::compile() itself.

Once you're doing this, you may alter Concise output by adding new
 rendering styles, and by
optionally adding callback routines which
 populate new variables, if such were referenced from those
(just
 added) styles.

Example: Altering Concise Renderings
 use B::Concise qw(set_style add_callback);
 add_style($yourStyleName => $defaultfmt, $gotofmt, $treefmt);
 add_callback
 (sub {
 my ($h, $op, $format, $level, $stylename) = @_;
 $h->{variable} = some_func($op);
 });

Perl version 5.18.0 documentation - B::Concise

Page 10http://perldoc.perl.org

 $walker = B::Concise::compile(@options,@subnames,@subrefs);
 $walker->();

set_style()
set_style accepts 3 arguments, and updates the three format-specs
 comprising a line-style
(basic-exec, goto, tree). It has one minor
 drawback though; it doesn't register the style under a new
name. This
 can become an issue if you render more than once and switch styles.
 Thus you may
prefer to use add_style() and/or set_style_standard()
 instead.

set_style_standard($name)
This restores one of the standard line-styles: terse, concise, linenoise, debug, env, into effect.
It also accepts style
 names previously defined with add_style().

add_style ()
This subroutine accepts a new style name and three style arguments as
 above, and creates,
registers, and selects the newly named style. It is
 an error to re-add a style; call set_style_standard()
to switch between
 several styles.

add_callback ()
If your newly minted styles refer to any new #variables, you'll need
 to define a callback subroutine that
will populate (or modify) those
 variables. They are then available for use in the style you've
 chosen.

The callbacks are called for each opcode visited by Concise, in the
 same order as they are added.
Each subroutine is passed five
 parameters.

 1. A hashref, containing the variable names and values which are
 populated into the report-line for the op
 2. the op, as a B<B::OP> object
 3. a reference to the format string
 4. the formatting (indent) level
 5. the selected stylename

To define your own variables, simply add them to the hash, or change
 existing values if you need to.
The level and format are passed in as
 references to scalars, but it is unlikely that they will need to be

changed or even used.

Running B::Concise::compile()
compile accepts options as described above in OPTIONS, and
 arguments, which are either coderefs,
or subroutine names.

It constructs and returns a $treewalker coderef, which when invoked,
 traverses, or walks, and renders
the optrees of the given arguments to
 STDOUT. You can reuse this, and can change the rendering
style used
 each time; thereafter the coderef renders in the new style.

walk_output lets you change the print destination from STDOUT to
 another open filehandle, or into a
string passed as a ref (unless
 you've built perl with -Uuseperlio).

 my $walker = B::Concise::compile('-terse','aFuncName', \&aSubRef); # 1
 walk_output(\my $buf);
 $walker->();			 # 1 renders -terse
 set_style_standard('concise');	 # 2
 $walker->();			 # 2 renders -concise
 $walker->(@new);			 # 3 renders whatever
 print "3 different renderings: terse, concise, and @new: $buf\n";

When $walker is called, it traverses the subroutines supplied when it
 was created, and renders them

Perl version 5.18.0 documentation - B::Concise

Page 11http://perldoc.perl.org

using the current style. You can change
 the style afterwards in several different ways:

 1. call C<compile>, altering style or mode/order
 2. call C<set_style_standard>
 3. call $walker, passing @new options

Passing new options to the $walker is the easiest way to change
 amongst any pre-defined styles (the
ones you add are automatically
 recognized as options), and is the only way to alter rendering order

without calling compile again. Note however that rendering state is
 still shared amongst multiple
$walker objects, so they must still be
 used in a coordinated manner.

B::Concise::reset_sequence()
This function (not exported) lets you reset the sequence numbers (note
 that they're numbered
arbitrarily, their goal being to be human
 readable). Its purpose is mostly to support testing, i.e. to
compare
 the concise output from two identical anonymous subroutines (but
 different instances).
Without the reset, B::Concise, seeing that
 they're separate optrees, generates different sequence
numbers in
 the output.

Errors
Errors in rendering (non-existent function-name, non-existent coderef)
 are written to the STDOUT, or
wherever you've set it via
 walk_output().

Errors using the various *style* calls, and bad args to walk_output(),
 result in die(). Use an eval if you
wish to catch these errors and
 continue processing.

AUTHOR
Stephen McCamant, <smcc@CSUA.Berkeley.EDU>.

