
Perl version 5.18.0 documentation - perlretut

Page 1http://perldoc.perl.org

NAME
perlretut - Perl regular expressions tutorial

DESCRIPTION
This page provides a basic tutorial on understanding, creating and
 using regular expressions in Perl.
It serves as a complement to the
 reference page on regular expressions perlre. Regular expressions

are an integral part of the m//, s///, qr// and split
 operators and so this tutorial also overlaps
with "Regexp Quote-Like Operators" in perlop and "split" in perlfunc.

Perl is widely renowned for excellence in text processing, and regular
 expressions are one of the big
factors behind this fame. Perl regular
 expressions display an efficiency and flexibility unknown in most
other computer languages. Mastering even the basics of regular
 expressions will allow you to
manipulate text with surprising ease.

What is a regular expression? A regular expression is simply a string
 that describes a pattern.
Patterns are in common use these days;
 examples are the patterns typed into a search engine to find
web pages
 and the patterns used to list files in a directory, e.g., ls *.txt
 or dir *.*. In Perl, the
patterns described by regular expressions
 are used to search strings, extract desired parts of strings,
and to
 do search and replace operations.

Regular expressions have the undeserved reputation of being abstract
 and difficult to understand.
Regular expressions are constructed using
 simple concepts like conditionals and loops and are no
more difficult
 to understand than the corresponding if conditionals and while
 loops in the Perl
language itself. In fact, the main challenge in
 learning regular expressions is just getting used to the
terse
 notation used to express these concepts.

This tutorial flattens the learning curve by discussing regular
 expression concepts, along with their
notation, one at a time and with
 many examples. The first part of the tutorial will progress from the

simplest word searches to the basic regular expression concepts. If
 you master the first part, you will
have all the tools needed to solve
 about 98% of your needs. The second part of the tutorial is for
those
 comfortable with the basics and hungry for more power tools. It
 discusses the more advanced
regular expression operators and
 introduces the latest cutting-edge innovations.

A note: to save time, 'regular expression' is often abbreviated as
 regexp or regex. Regexp is a more
natural abbreviation than regex, but
 is harder to pronounce. The Perl pod documentation is evenly
split on
 regexp vs regex; in Perl, there is more than one way to abbreviate it.
 We'll use regexp in this
tutorial.

Part 1: The basics
Simple word matching

The simplest regexp is simply a word, or more generally, a string of
 characters. A regexp consisting of
a word matches any string that
 contains that word:

 "Hello World" =~ /World/; # matches

What is this Perl statement all about? "Hello World" is a simple
 double-quoted string. World is
the regular expression and the // enclosing /World/ tells Perl to search a string for a match.
 The
operator =~ associates the string with the regexp match and
 produces a true value if the regexp
matched, or false if the regexp
 did not match. In our case, World matches the second word in
"Hello World", so the expression is true. Expressions like this
 are useful in conditionals:

 if ("Hello World" =~ /World/) {
 print "It matches\n";
 }
 else {
 print "It doesn't match\n";
 }

Perl version 5.18.0 documentation - perlretut

Page 2http://perldoc.perl.org

There are useful variations on this theme. The sense of the match can
 be reversed by using the !~
operator:

 if ("Hello World" !~ /World/) {
 print "It doesn't match\n";
 }
 else {
 print "It matches\n";
 }

The literal string in the regexp can be replaced by a variable:

 $greeting = "World";
 if ("Hello World" =~ /$greeting/) {
 print "It matches\n";
 }
 else {
 print "It doesn't match\n";
 }

If you're matching against the special default variable $_, the $_ =~ part can be omitted:

 $_ = "Hello World";
 if (/World/) {
 print "It matches\n";
 }
 else {
 print "It doesn't match\n";
 }

And finally, the // default delimiters for a match can be changed
 to arbitrary delimiters by putting an
'm' out front:

 "Hello World" =~ m!World!; # matches, delimited by '!'
 "Hello World" =~ m{World}; # matches, note the matching '{}'
 "/usr/bin/perl" =~ m"/perl"; # matches after '/usr/bin',
 # '/' becomes an ordinary char

/World/, m!World!, and m{World} all represent the
 same thing. When, e.g., the quote (") is used
as a delimiter, the forward
 slash '/' becomes an ordinary character and can be used in this regexp

without trouble.

Let's consider how different regexps would match "Hello World":

 "Hello World" =~ /world/; # doesn't match
 "Hello World" =~ /o W/; # matches
 "Hello World" =~ /oW/; # doesn't match
 "Hello World" =~ /World /; # doesn't match

The first regexp world doesn't match because regexps are
 case-sensitive. The second regexp
matches because the substring 'o W' occurs in the string "Hello World". The space
 character ' '
is treated like any other character in a regexp and is
 needed to match in this case. The lack of a
space character is the
 reason the third regexp 'oW' doesn't match. The fourth regexp 'World '
doesn't match because there is a space at the end of the
 regexp, but not at the end of the string. The
lesson here is that
 regexps must match a part of the string exactly in order for the
 statement to be
true.

Perl version 5.18.0 documentation - perlretut

Page 3http://perldoc.perl.org

If a regexp matches in more than one place in the string, Perl will
 always match at the earliest
possible point in the string:

 "Hello World" =~ /o/; # matches 'o' in 'Hello'
 "That hat is red" =~ /hat/; # matches 'hat' in 'That'

With respect to character matching, there are a few more points you
 need to know about. First of all,
not all characters can be used 'as
 is' in a match. Some characters, called metacharacters, are
reserved
 for use in regexp notation. The metacharacters are

 {}[]()^$.|*+?\

The significance of each of these will be explained
 in the rest of the tutorial, but for now, it is important
only to know
 that a metacharacter can be matched by putting a backslash before it:

 "2+2=4" =~ /2+2/; # doesn't match, + is a metacharacter
 "2+2=4" =~ /2\+2/; # matches, \+ is treated like an ordinary +
 "The interval is [0,1)." =~ /[0,1)./ # is a syntax error!
 "The interval is [0,1)." =~ /\[0,1\)\./ # matches
 "#!/usr/bin/perl" =~ /#!\/usr\/bin\/perl/; # matches

In the last regexp, the forward slash '/' is also backslashed,
 because it is used to delimit the regexp.
This can lead to LTS
 (leaning toothpick syndrome), however, and it is often more readable
 to change
delimiters.

 "#!/usr/bin/perl" =~ m!#\!/usr/bin/perl!; # easier to read

The backslash character '\' is a metacharacter itself and needs to
 be backslashed:

 'C:\WIN32' =~ /C:\\WIN/; # matches

In addition to the metacharacters, there are some ASCII characters
 which don't have printable
character equivalents and are instead
 represented by escape sequences. Common examples are \t
for a
 tab, \n for a newline, \r for a carriage return and \a for a
 bell (or alert). If your string is better
thought of as a sequence of arbitrary
 bytes, the octal escape sequence, e.g., \033, or hexadecimal
escape
 sequence, e.g., \x1B may be a more natural representation for your
 bytes. Here are some
examples of escapes:

 "1000\t2000" =~ m(0\t2) # matches
 "1000\n2000" =~ /0\n20/ # matches
 "1000\t2000" =~ /\000\t2/ # doesn't match, "0" ne "\000"
 "cat" =~ /\o{143}\x61\x74/ # matches in ASCII, but a weird way
 # to spell cat

If you've been around Perl a while, all this talk of escape sequences
 may seem familiar. Similar
escape sequences are used in double-quoted
 strings and in fact the regexps in Perl are mostly
treated as
 double-quoted strings. This means that variables can be used in
 regexps as well. Just like
double-quoted strings, the values of the
 variables in the regexp will be substituted in before the
regexp is
 evaluated for matching purposes. So we have:

 $foo = 'house';
 'housecat' =~ /$foo/; # matches
 'cathouse' =~ /cat$foo/; # matches
 'housecat' =~ /${foo}cat/; # matches

So far, so good. With the knowledge above you can already perform
 searches with just about any

Perl version 5.18.0 documentation - perlretut

Page 4http://perldoc.perl.org

literal string regexp you can dream up.
 Here is a very simple emulation of the Unix grep program:

 % cat > simple_grep
 #!/usr/bin/perl
 $regexp = shift;
 while (<>) {
 print if /$regexp/;
 }
 ^D

 % chmod +x simple_grep

 % simple_grep abba /usr/dict/words
 Babbage
 cabbage
 cabbages
 sabbath
 Sabbathize
 Sabbathizes
 sabbatical
 scabbard
 scabbards

This program is easy to understand. #!/usr/bin/perl is the standard
 way to invoke a perl
program from the shell. $regexp = shift; saves the first command line argument as the
 regexp to
be used, leaving the rest of the command line arguments to
 be treated as files. while (<>) loops
over all the lines in
 all the files. For each line, print if /$regexp/; prints the
 line if the regexp
matches the line. In this line, both print and /$regexp/ use the default variable $_ implicitly.

With all of the regexps above, if the regexp matched anywhere in the
 string, it was considered a
match. Sometimes, however, we'd like to
 specify where in the string the regexp should try to match.
To do
 this, we would use the anchor metacharacters ^ and $. The
 anchor ^ means match at the
beginning of the string and the anchor $ means match at the end of the string, or before a newline at
the
 end of the string. Here is how they are used:

 "housekeeper" =~ /keeper/; # matches
 "housekeeper" =~ /^keeper/; # doesn't match
 "housekeeper" =~ /keeper$/; # matches
 "housekeeper\n" =~ /keeper$/; # matches

The second regexp doesn't match because ^ constrains keeper to
 match only at the beginning of the
string, but "housekeeper" has
 keeper starting in the middle. The third regexp does match, since the
$ constrains keeper to match only at the end of the string.

When both ^ and $ are used at the same time, the regexp has to
 match both the beginning and the
end of the string, i.e., the regexp
 matches the whole string. Consider

 "keeper" =~ /^keep$/; # doesn't match
 "keeper" =~ /^keeper$/; # matches
 "" =~ /^$/; # ^$ matches an empty string

The first regexp doesn't match because the string has more to it than keep. Since the second regexp
is exactly the string, it
 matches. Using both ^ and $ in a regexp forces the complete
 string to match,
so it gives you complete control over which strings
 match and which don't. Suppose you are looking
for a fellow named
 bert, off in a string by himself:

Perl version 5.18.0 documentation - perlretut

Page 5http://perldoc.perl.org

 "dogbert" =~ /bert/; # matches, but not what you want

 "dilbert" =~ /^bert/; # doesn't match, but ..
 "bertram" =~ /^bert/; # matches, so still not good enough

 "bertram" =~ /^bert$/; # doesn't match, good
 "dilbert" =~ /^bert$/; # doesn't match, good
 "bert" =~ /^bert$/; # matches, perfect

Of course, in the case of a literal string, one could just as easily
 use the string comparison $string
eq 'bert' and it would be
 more efficient. The ^...$ regexp really becomes useful when we
 add in
the more powerful regexp tools below.

Using character classes
Although one can already do quite a lot with the literal string
 regexps above, we've only scratched the
surface of regular expression
 technology. In this and subsequent sections we will introduce regexp

concepts (and associated metacharacter notations) that will allow a
 regexp to represent not just a
single character sequence, but a whole
 class of them.

One such concept is that of a character class. A character class
 allows a set of possible characters,
rather than just a single
 character, to match at a particular point in a regexp. Character
 classes are
denoted by brackets [...], with the set of characters
 to be possibly matched inside. Here are some
examples:

 /cat/; # matches 'cat'
 /[bcr]at/; # matches 'bat, 'cat', or 'rat'
 /item[0123456789]/; # matches 'item0' or ... or 'item9'
 "abc" =~ /[cab]/; # matches 'a'

In the last statement, even though 'c' is the first character in
 the class, 'a' matches because the
first character position in the
 string is the earliest point at which the regexp can match.

 /[yY][eE][sS]/; # match 'yes' in a case-insensitive way
 # 'yes', 'Yes', 'YES', etc.

This regexp displays a common task: perform a case-insensitive
 match. Perl provides a way of
avoiding all those brackets by simply
 appending an 'i' to the end of the match. Then
/[yY][eE][sS]/;
 can be rewritten as /yes/i;. The 'i' stands for
 case-insensitive and is an
example of a modifier of the matching
 operation. We will meet other modifiers later in the tutorial.

We saw in the section above that there were ordinary characters, which
 represented themselves, and
special characters, which needed a
 backslash \ to represent themselves. The same is true in a

character class, but the sets of ordinary and special characters
 inside a character class are different
than those outside a character
 class. The special characters for a character class are -]\^$ (and
 the
pattern delimiter, whatever it is).] is special because it denotes the end of a character class. $ is

special because it denotes a scalar variable. \ is special because
 it is used in escape sequences, just
like above. Here is how the
 special characters]$\ are handled:

 /[\]c]def/; # matches ']def' or 'cdef'
 $x = 'bcr';
 /[$x]at/; # matches 'bat', 'cat', or 'rat'
 /[\$x]at/; # matches '$at' or 'xat'
 /[\\$x]at/; # matches '\at', 'bat, 'cat', or 'rat'

The last two are a little tricky. In [\$x], the backslash protects
 the dollar sign, so the character class
has two members $ and x.
 In [\\$x], the backslash is protected, so $x is treated as a
 variable and

Perl version 5.18.0 documentation - perlretut

Page 6http://perldoc.perl.org

substituted in double quote fashion.

The special character '-' acts as a range operator within character
 classes, so that a contiguous set
of characters can be written as a
 range. With ranges, the unwieldy [0123456789] and
[abc...xyz]
 become the svelte [0-9] and [a-z]. Some examples are

 /item[0-9]/; # matches 'item0' or ... or 'item9'
 /[0-9bx-z]aa/; # matches '0aa', ..., '9aa',
 # 'baa', 'xaa', 'yaa', or 'zaa'
 /[0-9a-fA-F]/; # matches a hexadecimal digit
 /[0-9a-zA-Z_]/; # matches a "word" character,
 # like those in a Perl variable name

If '-' is the first or last character in a character class, it is
 treated as an ordinary character; [-ab],
[ab-] and [a\-b] are
 all equivalent.

The special character ^ in the first position of a character class
 denotes a negated character class,
which matches any character but
 those in the brackets. Both [...] and [^...] must match a

character, or the match fails. Then

 /[^a]at/; # doesn't match 'aat' or 'at', but matches
 # all other 'bat', 'cat, '0at', '%at', etc.
 /[^0-9]/; # matches a non-numeric character
 /[a^]at/; # matches 'aat' or '^at'; here '^' is ordinary

Now, even [0-9] can be a bother to write multiple times, so in the
 interest of saving keystrokes and
making regexps more readable, Perl
 has several abbreviations for common character classes, as
shown below.
 Since the introduction of Unicode, unless the //a modifier is in
 effect, these character
classes match more than just a few characters in
 the ASCII range.

\d matches a digit, not just [0-9] but also digits from non-roman scripts

\s matches a whitespace character, the set [\ \t\r\n\f] and others

\w matches a word character (alphanumeric or _), not just [0-9a-zA-Z_]
 but also digits and
characters from non-roman scripts

\D is a negated \d; it represents any other character than a digit, or [^\d]

\S is a negated \s; it represents any non-whitespace character [^\s]

\W is a negated \w; it represents any non-word character [^\w]

The period '.' matches any character but "\n" (unless the modifier //s is
 in effect, as explained
below).

\N, like the period, matches any character but "\n", but it does so
 regardless of whether the
modifier //s is in effect.

The //a modifier, available starting in Perl 5.14, is used to
 restrict the matches of \d, \s, and \w to just
those in the ASCII range.
 It is useful to keep your program from being needlessly exposed to full

Unicode (and its accompanying security considerations) when all you want
 is to process English-like
text. (The "a" may be doubled, //aa, to
 provide even more restrictions, preventing case-insensitive
matching of
 ASCII with non-ASCII characters; otherwise a Unicode "Kelvin Sign"
 would caselessly
match a "k" or "K".)

The \d\s\w\D\S\W abbreviations can be used both inside and outside
 of character classes. Here
are some in use:

 /\d\d:\d\d:\d\d/; # matches a hh:mm:ss time format

Perl version 5.18.0 documentation - perlretut

Page 7http://perldoc.perl.org

 /[\d\s]/; # matches any digit or whitespace character
 /\w\W\w/; # matches a word char, followed by a
 # non-word char, followed by a word char
 /..rt/; # matches any two chars, followed by 'rt'
 /end\./; # matches 'end.'
 /end[.]/; # same thing, matches 'end.'

Because a period is a metacharacter, it needs to be escaped to match
 as an ordinary period.
Because, for example, \d and \w are sets
 of characters, it is incorrect to think of [^\d\w] as
[\D\W]; in
 fact [^\d\w] is the same as [^\w], which is the same as [\W]. Think DeMorgan's laws.

An anchor useful in basic regexps is the word anchor \b. This matches a boundary between a word
character and a non-word
 character \w\W or \W\w:

 $x = "Housecat catenates house and cat";
 $x =~ /cat/; # matches cat in 'housecat'
 $x =~ /\bcat/; # matches cat in 'catenates'
 $x =~ /cat\b/; # matches cat in 'housecat'
 $x =~ /\bcat\b/; # matches 'cat' at end of string

Note in the last example, the end of the string is considered a word
 boundary.

You might wonder why '.' matches everything but "\n" - why not
 every character? The reason is
that often one is matching against
 lines and would like to ignore the newline characters. For instance,

while the string "\n" represents one line, we would like to think
 of it as empty. Then

 "" =~ /^$/; # matches
 "\n" =~ /^$/; # matches, $ anchors before "\n"

 "" =~ /./; # doesn't match; it needs a char
 "" =~ /^.$/; # doesn't match; it needs a char
 "\n" =~ /^.$/; # doesn't match; it needs a char other than "\n"
 "a" =~ /^.$/; # matches
 "a\n" =~ /^.$/; # matches, $ anchors before "\n"

This behavior is convenient, because we usually want to ignore
 newlines when we count and match
characters in a line. Sometimes,
 however, we want to keep track of newlines. We might even want ^

and $ to anchor at the beginning and end of lines within the
 string, rather than just the beginning and
end of the string. Perl
 allows us to choose between ignoring and paying attention to newlines
 by using
the //s and //m modifiers. //s and //m stand for
 single line and multi-line and they determine
whether a string is to
 be treated as one continuous string, or as a set of lines. The two
 modifiers affect
two aspects of how the regexp is interpreted: 1) how
 the '.' character class is defined, and 2) where
the anchors ^
 and $ are able to match. Here are the four possible combinations:

no modifiers (//): Default behavior. '.' matches any character
 except "\n". ^ matches only
at the beginning of the string and $ matches only at the end or before a newline at the end.

s modifier (//s): Treat string as a single long line. '.' matches
 any character, even "\n". ^
matches only at the beginning of
 the string and $ matches only at the end or before a newline
at the
 end.

m modifier (//m): Treat string as a set of multiple lines. '.'
 matches any character except
"\n". ^ and $ are able to match
 at the start or end of any line within the string.

both s and m modifiers (//sm): Treat string as a single long line, but
 detect multiple lines. '.'
matches any character, even "\n". ^ and $, however, are able to match at the start or end
 of
any line within the string.

Perl version 5.18.0 documentation - perlretut

Page 8http://perldoc.perl.org

Here are examples of //s and //m in action:

 $x = "There once was a girl\nWho programmed in Perl\n";

 $x =~ /^Who/; # doesn't match, "Who" not at start of string
 $x =~ /^Who/s; # doesn't match, "Who" not at start of string
 $x =~ /^Who/m; # matches, "Who" at start of second line
 $x =~ /^Who/sm; # matches, "Who" at start of second line

 $x =~ /girl.Who/; # doesn't match, "." doesn't match "\n"
 $x =~ /girl.Who/s; # matches, "." matches "\n"
 $x =~ /girl.Who/m; # doesn't match, "." doesn't match "\n"
 $x =~ /girl.Who/sm; # matches, "." matches "\n"

Most of the time, the default behavior is what is wanted, but //s and //m are occasionally very
useful. If //m is being used, the start
 of the string can still be matched with \A and the end of the
string
 can still be matched with the anchors \Z (matches both the end and
 the newline before, like $),
and \z (matches only the end):

 $x =~ /^Who/m; # matches, "Who" at start of second line
 $x =~ /\AWho/m; # doesn't match, "Who" is not at start of string

 $x =~ /girl$/m; # matches, "girl" at end of first line
 $x =~ /girl\Z/m; # doesn't match, "girl" is not at end of string

 $x =~ /Perl\Z/m; # matches, "Perl" is at newline before end
 $x =~ /Perl\z/m; # doesn't match, "Perl" is not at end of string

We now know how to create choices among classes of characters in a
 regexp. What about choices
among words or character strings? Such
 choices are described in the next section.

Matching this or that
Sometimes we would like our regexp to be able to match different
 possible words or character strings.
This is accomplished by using
 the alternation metacharacter |. To match dog or cat, we
 form the
regexp dog|cat. As before, Perl will try to match the
 regexp at the earliest possible point in the
string. At each
 character position, Perl will first try to match the first
 alternative, dog. If dog doesn't
match, Perl will then try the
 next alternative, cat. If cat doesn't match either, then the
 match fails and
Perl moves to the next position in the string. Some
 examples:

 "cats and dogs" =~ /cat|dog|bird/; # matches "cat"
 "cats and dogs" =~ /dog|cat|bird/; # matches "cat"

Even though dog is the first alternative in the second regexp, cat is able to match earlier in the
string.

 "cats" =~ /c|ca|cat|cats/; # matches "c"
 "cats" =~ /cats|cat|ca|c/; # matches "cats"

Here, all the alternatives match at the first string position, so the
 first alternative is the one that
matches. If some of the
 alternatives are truncations of the others, put the longest ones first
 to give
them a chance to match.

 "cab" =~ /a|b|c/ # matches "c"
 # /a|b|c/ == /[abc]/

Perl version 5.18.0 documentation - perlretut

Page 9http://perldoc.perl.org

The last example points out that character classes are like
 alternations of characters. At a given
character position, the first
 alternative that allows the regexp match to succeed will be the one
 that
matches.

Grouping things and hierarchical matching
Alternation allows a regexp to choose among alternatives, but by
 itself it is unsatisfying. The reason is
that each alternative is a whole
 regexp, but sometime we want alternatives for just part of a
 regexp.
For instance, suppose we want to search for housecats or
 housekeepers. The regexp
housecat|housekeeper fits the bill, but is
 inefficient because we had to type house twice. It would
be nice to
 have parts of the regexp be constant, like house, and some
 parts have alternatives, like
cat|keeper.

The grouping metacharacters () solve this problem. Grouping
 allows parts of a regexp to be treated
as a single unit. Parts of a
 regexp are grouped by enclosing them in parentheses. Thus we could
solve
 the housecat|housekeeper by forming the regexp as house(cat|keeper). The regexp
house(cat|keeper) means match house followed by either cat or keeper. Some more
examples
 are

 /(a|b)b/; # matches 'ab' or 'bb'
 /(ac|b)b/; # matches 'acb' or 'bb'
 /(^a|b)c/; # matches 'ac' at start of string or 'bc' anywhere
 /(a|[bc])d/; # matches 'ad', 'bd', or 'cd'

 /house(cat|)/; # matches either 'housecat' or 'house'
 /house(cat(s|)|)/; # matches either 'housecats' or 'housecat' or
 # 'house'. Note groups can be nested.

 /(19|20|)\d\d/; # match years 19xx, 20xx, or the Y2K problem, xx
 "20" =~ /(19|20|)\d\d/; # matches the null alternative '()\d\d',
 # because '20\d\d' can't match

Alternations behave the same way in groups as out of them: at a given
 string position, the leftmost
alternative that allows the regexp to
 match is taken. So in the last example at the first string position,
"20" matches the second alternative, but there is nothing left over
 to match the next two digits \d\d.
So Perl moves on to the next
 alternative, which is the null alternative and that works, since "20" is
two digits.

The process of trying one alternative, seeing if it matches, and
 moving on to the next alternative, while
going back in the string
 from where the previous alternative was tried, if it doesn't, is called
backtracking. The term 'backtracking' comes from the idea that
 matching a regexp is like a walk in the
woods. Successfully matching
 a regexp is like arriving at a destination. There are many possible

trailheads, one for each string position, and each one is tried in
 order, left to right. From each trailhead
there may be many paths,
 some of which get you there, and some which are dead ends. When you

walk along a trail and hit a dead end, you have to backtrack along the
 trail to an earlier point to try
another trail. If you hit your
 destination, you stop immediately and forget about trying all the
 other
trails. You are persistent, and only if you have tried all the
 trails from all the trailheads and not arrived
at your destination, do
 you declare failure. To be concrete, here is a step-by-step analysis
 of what
Perl does when it tries to match the regexp

 "abcde" =~ /(abd|abc)(df|d|de)/;

0 Start with the first letter in the string 'a'.

1 Try the first alternative in the first group 'abd'.

2 Match 'a' followed by 'b'. So far so good.

Perl version 5.18.0 documentation - perlretut

Page 10http://perldoc.perl.org

3 'd' in the regexp doesn't match 'c' in the string - a dead
 end. So backtrack two characters and
pick the second alternative in
 the first group 'abc'.

4 Match 'a' followed by 'b' followed by 'c'. We are on a roll
 and have satisfied the first group. Set
$1 to 'abc'.

5 Move on to the second group and pick the first alternative
 'df'.

6 Match the 'd'.

7 'f' in the regexp doesn't match 'e' in the string, so a dead
 end. Backtrack one character and
pick the second alternative in the
 second group 'd'.

8 'd' matches. The second grouping is satisfied, so set $2 to
 'd'.

9 We are at the end of the regexp, so we are done! We have
 matched 'abcd' out of the string
"abcde".

There are a couple of things to note about this analysis. First, the
 third alternative in the second group
'de' also allows a match, but we
 stopped before we got to it - at a given character position, leftmost

wins. Second, we were able to get a match at the first character
 position of the string 'a'. If there were
no matches at the first
 position, Perl would move to the second character position 'b' and
 attempt the
match all over again. Only when all possible paths at all
 possible character positions have been
exhausted does Perl give
 up and declare $string =~ /(abd|abc)(df|d|de)/; to be false.

Even with all this work, regexp matching happens remarkably fast. To
 speed things up, Perl compiles
the regexp into a compact sequence of
 opcodes that can often fit inside a processor cache. When the
code is
 executed, these opcodes can then run at full throttle and search very
 quickly.

Extracting matches
The grouping metacharacters () also serve another completely
 different function: they allow the
extraction of the parts of a string
 that matched. This is very useful to find out what matched and for

text processing in general. For each grouping, the part that matched
 inside goes into the special
variables $1, $2, etc. They can be
 used just as ordinary variables:

 # extract hours, minutes, seconds
 if ($time =~ /(\d\d):(\d\d):(\d\d)/) { # match hh:mm:ss format
	 $hours = $1;
	 $minutes = $2;
	 $seconds = $3;
 }

Now, we know that in scalar context, $time =~ /(\d\d):(\d\d):(\d\d)/ returns a true or false
value. In list context, however, it returns the list of matched values ($1,$2,$3). So we could write
the code more compactly as

 # extract hours, minutes, seconds
 ($hours, $minutes, $second) = ($time =~ /(\d\d):(\d\d):(\d\d)/);

If the groupings in a regexp are nested, $1 gets the group with the
 leftmost opening parenthesis, $2
the next opening parenthesis,
 etc. Here is a regexp with nested groups:

 /(ab(cd|ef)((gi)|j))/;
 1 2 34

If this regexp matches, $1 contains a string starting with 'ab', $2 is either set to 'cd' or 'ef', $3
equals either 'gi' or 'j', and $4 is either set to 'gi', just like $3,
 or it remains undefined.

Perl version 5.18.0 documentation - perlretut

Page 11http://perldoc.perl.org

For convenience, Perl sets $+ to the string held by the highest numbered $1, $2,... that got assigned
(and, somewhat related, $^N to the
 value of the $1, $2,... most-recently assigned; i.e. the $1, $2,...
associated with the rightmost closing parenthesis used in the
 match).

Backreferences
Closely associated with the matching variables $1, $2, ... are
 the backreferences \g1, \g2,...
Backreferences are simply
 matching variables that can be used inside a regexp. This is a
 really nice
feature; what matches later in a regexp is made to depend on
 what matched earlier in the regexp.
Suppose we wanted to look
 for doubled words in a text, like 'the the'. The following regexp finds
 all
3-letter doubles with a space in between:

 /\b(\w\w\w)\s\g1\b/;

The grouping assigns a value to \g1, so that the same 3-letter sequence
 is used for both parts.

A similar task is to find words consisting of two identical parts:

 % simple_grep '^(\w\w\w\w|\w\w\w|\w\w|\w)\g1$' /usr/dict/words
 beriberi
 booboo
 coco
 mama
 murmur
 papa

The regexp has a single grouping which considers 4-letter
 combinations, then 3-letter combinations,
etc., and uses \g1 to look for
 a repeat. Although $1 and \g1 represent the same thing, care should
be
 taken to use matched variables $1, $2,... only outside a regexp
 and backreferences \g1, \g2,...
only inside a regexp; not doing
 so may lead to surprising and unsatisfactory results.

Relative backreferences
Counting the opening parentheses to get the correct number for a
 backreference is error-prone as
soon as there is more than one
 capturing group. A more convenient technique became available
 with
Perl 5.10: relative backreferences. To refer to the immediately
 preceding capture group one now may
write \g{-1}, the next but
 last is available via \g{-2}, and so on.

Another good reason in addition to readability and maintainability
 for using relative backreferences is
illustrated by the following example,
 where a simple pattern for matching peculiar strings is used:

 $a99a = '([a-z])(\d)\g2\g1'; # matches a11a, g22g, x33x, etc.

Now that we have this pattern stored as a handy string, we might feel
 tempted to use it as a part of
some other pattern:

 $line = "code=e99e";
 if ($line =~ /^(\w+)=$a99a$/){ # unexpected behavior!
 print "$1 is valid\n";
 } else {
 print "bad line: '$line'\n";
 }

But this doesn't match, at least not the way one might expect. Only
 after inserting the interpolated
$a99a and looking at the resulting
 full text of the regexp is it obvious that the backreferences have

backfired. The subexpression (\w+) has snatched number 1 and
 demoted the groups in $a99a by
one rank. This can be avoided by
 using relative backreferences:

 $a99a = '([a-z])(\d)\g{-1}\g{-2}'; # safe for being interpolated

Perl version 5.18.0 documentation - perlretut

Page 12http://perldoc.perl.org

Named backreferences
Perl 5.10 also introduced named capture groups and named backreferences.
 To attach a name to a
capturing group, you write either (?<name>...) or (?'name'...). The backreference may
 then be
written as \g{name}. It is permissible to attach the
 same name to more than one group, but then only
the leftmost one of the
 eponymous set can be referenced. Outside of the pattern a named
 capture
group is accessible through the %+ hash.

Assuming that we have to match calendar dates which may be given in one
 of the three formats
yyyy-mm-dd, mm/dd/yyyy or dd.mm.yyyy, we can write
 three suitable patterns where we use 'd', 'm'
and 'y' respectively as the
 names of the groups capturing the pertaining components of a date. The

matching operation combines the three patterns as alternatives:

 $fmt1 = '(?<y>\d\d\d\d)-(?<m>\d\d)-(?<d>\d\d)';
 $fmt2 = '(?<m>\d\d)/(?<d>\d\d)/(?<y>\d\d\d\d)';
 $fmt3 = '(?<d>\d\d)\.(?<m>\d\d)\.(?<y>\d\d\d\d)';
 for my $d qw(2006-10-21 15.01.2007 10/31/2005){
 if ($d =~ m{$fmt1|$fmt2|$fmt3}){
 print "day=$+{d} month=$+{m} year=$+{y}\n";
 }
 }

If any of the alternatives matches, the hash %+ is bound to contain the
 three key-value pairs.

Alternative capture group numbering
Yet another capturing group numbering technique (also as from Perl 5.10)
 deals with the problem of
referring to groups within a set of alternatives.
 Consider a pattern for matching a time of the day, civil
or military style:

 if ($time =~ /(\d\d|\d):(\d\d)|(\d\d)(\d\d)/){
 # process hour and minute
 }

Processing the results requires an additional if statement to determine
 whether $1 and $2 or $3 and
$4 contain the goodies. It would
 be easier if we could use group numbers 1 and 2 in second
alternative as
 well, and this is exactly what the parenthesized construct (?|...),
 set around an
alternative achieves. Here is an extended version of the
 previous pattern:

 if ($time =~ /(?|(\d\d|\d):(\d\d)|(\d\d)(\d\d))\s+([A-Z][A-Z][A-Z])/
){
	 print "hour=$1 minute=$2 zone=$3\n";
 }

Within the alternative numbering group, group numbers start at the same
 position for each alternative.
After the group, numbering continues
 with one higher than the maximum reached across all the
alternatives.

Position information
In addition to what was matched, Perl also provides the
 positions of what was matched as contents of
the @- and @+
 arrays. $-[0] is the position of the start of the entire match and $+[0] is the position
of the end. Similarly, $-[n] is the
 position of the start of the $n match and $+[n] is the position
 of
the end. If $n is undefined, so are $-[n] and $+[n]. Then
 this code

 $x = "Mmm...donut, thought Homer";
 $x =~ /^(Mmm|Yech)\.\.\.(donut|peas)/; # matches
 foreach $expr (1..$#-) {
 print "Match $expr: '${$expr}' at position

Perl version 5.18.0 documentation - perlretut

Page 13http://perldoc.perl.org

($-[$expr],$+[$expr])\n"; }

prints

 Match 1: 'Mmm' at position (0,3)
 Match 2: 'donut' at position (6,11)

Even if there are no groupings in a regexp, it is still possible to
 find out what exactly matched in a
string. If you use them, Perl
 will set $` to the part of the string before the match, will set $&
 to the part
of the string that matched, and will set $' to the part
 of the string after the match. An example:

 $x = "the cat caught the mouse";
 $x =~ /cat/; # $` = 'the ', $& = 'cat', $' = ' caught the mouse'
 $x =~ /the/; # $` = '', $& = 'the', $' = ' cat caught the mouse'

In the second match, $` equals '' because the regexp matched at the
 first character position in the
string and stopped; it never saw the
 second 'the'. It is important to note that using $` and $'
 slows
down regexp matching quite a bit, while $& slows it down to a
 lesser extent, because if they are used
in one regexp in a program,
 they are generated for all regexps in the program. So if raw
 performance
is a goal of your application, they should be avoided.
 If you need to extract the corresponding
substrings, use @- and @+ instead:

 $` is the same as substr($x, 0, $-[0])
 $& is the same as substr($x, $-[0], $+[0]-$-[0])
 $' is the same as substr($x, $+[0])

As of Perl 5.10, the ${^PREMATCH}, ${^MATCH} and ${^POSTMATCH}
 variables may be used.
These are only set if the /p modifier is present.
 Consequently they do not penalize the rest of the
program.

Non-capturing groupings
A group that is required to bundle a set of alternatives may or may not be
 useful as a capturing group.
If it isn't, it just creates a superfluous
 addition to the set of available capture group values, inside as
well as
 outside the regexp. Non-capturing groupings, denoted by (?:regexp),
 still allow the regexp
to be treated as a single unit, but don't establish
 a capturing group at the same time. Both capturing
and non-capturing
 groupings are allowed to co-exist in the same regexp. Because there is
 no
extraction, non-capturing groupings are faster than capturing
 groupings. Non-capturing groupings are
also handy for choosing exactly
 which parts of a regexp are to be extracted to matching variables:

 # match a number, $1-$4 are set, but we only want $1
 /([+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?)/;

 # match a number faster , only $1 is set
 /([+-]?\ *(?:\d+(?:\.\d*)?|\.\d+)(?:[eE][+-]?\d+)?)/;

 # match a number, get $1 = whole number, $2 = exponent
 /([+-]?\ *(?:\d+(?:\.\d*)?|\.\d+)(?:[eE]([+-]?\d+))?)/;

Non-capturing groupings are also useful for removing nuisance
 elements gathered from a split
operation where parentheses are
 required for some reason:

 $x = '12aba34ba5';
 @num = split /(a|b)+/, $x; # @num = ('12','a','34','a','5')
 @num = split /(?:a|b)+/, $x; # @num = ('12','34','5')

Perl version 5.18.0 documentation - perlretut

Page 14http://perldoc.perl.org

Matching repetitions
The examples in the previous section display an annoying weakness. We
 were only matching 3-letter
words, or chunks of words of 4 letters or
 less. We'd like to be able to match words or, more generally,
strings
 of any length, without writing out tedious alternatives like \w\w\w\w|\w\w\w|\w\w|\w.

This is exactly the problem the quantifier metacharacters ?, *, +, and {} were created for. They allow
us to delimit the
 number of repeats for a portion of a regexp we consider to be a
 match. Quantifiers
are put immediately after the character, character
 class, or grouping that we want to specify. They
have the following
 meanings:

a? means: match 'a' 1 or 0 times

a* means: match 'a' 0 or more times, i.e., any number of times

a+ means: match 'a' 1 or more times, i.e., at least once

a{n,m} means: match at least n times, but not more than m
 times.

a{n,} means: match at least n or more times

a{n} means: match exactly n times

Here are some examples:

 /[a-z]+\s+\d*/; # match a lowercase word, at least one space, and
 # any number of digits
 /(\w+)\s+\g1/; # match doubled words of arbitrary length
 /y(es)?/i; # matches 'y', 'Y', or a case-insensitive 'yes'
 $year =~ /^\d{2,4}$/; # make sure year is at least 2 but not more
 # than 4 digits
 $year =~ /^\d{4}$|^\d{2}$/; # better match; throw out 3-digit dates
 $year =~ /^\d{2}(\d{2})?$/; # same thing written differently. However,
 # this captures the last two digits in $1
 # and the other does not.

 % simple_grep '^(\w+)\g1$' /usr/dict/words # isn't this easier?
 beriberi
 booboo
 coco
 mama
 murmur
 papa

For all of these quantifiers, Perl will try to match as much of the
 string as possible, while still allowing
the regexp to succeed. Thus
 with /a?.../, Perl will first try to match the regexp with the a
 present; if
that fails, Perl will try to match the regexp without the a present. For the quantifier *, we get the
following:

 $x = "the cat in the hat";
 $x =~ /^(.*)(cat)(.*)$/; # matches,
 # $1 = 'the '
 # $2 = 'cat'
 # $3 = ' in the hat'

Which is what we might expect, the match finds the only cat in the
 string and locks onto it. Consider,
however, this regexp:

 $x =~ /^(.*)(at)(.*)$/; # matches,

Perl version 5.18.0 documentation - perlretut

Page 15http://perldoc.perl.org

 # $1 = 'the cat in the h'
 # $2 = 'at'
 # $3 = '' (0 characters match)

One might initially guess that Perl would find the at in cat and
 stop there, but that wouldn't give the
longest possible string to the
 first quantifier .*. Instead, the first quantifier .* grabs as
 much of the
string as possible while still having the regexp match. In
 this example, that means having the at
sequence with the final at
 in the string. The other important principle illustrated here is that,
 when
there are two or more elements in a regexp, the leftmost
 quantifier, if there is one, gets to grab as
much of the string as
 possible, leaving the rest of the regexp to fight over scraps. Thus in
 our
example, the first quantifier .* grabs most of the string, while
 the second quantifier .* gets the empty
string. Quantifiers that
 grab as much of the string as possible are called maximal match or greedy
quantifiers.

When a regexp can match a string in several different ways, we can use
 the principles above to
predict which way the regexp will match:

Principle 0: Taken as a whole, any regexp will be matched at the
 earliest possible position in
the string.

Principle 1: In an alternation a|b|c..., the leftmost alternative
 that allows a match for the
whole regexp will be the one used.

Principle 2: The maximal matching quantifiers ?, *, + and {n,m} will in general match as
much of the string as possible while
 still allowing the whole regexp to match.

Principle 3: If there are two or more elements in a regexp, the
 leftmost greedy quantifier, if
any, will match as much of the string
 as possible while still allowing the whole regexp to
match. The next
 leftmost greedy quantifier, if any, will try to match as much of the
 string
remaining available to it as possible, while still allowing the
 whole regexp to match. And so on,
until all the regexp elements are
 satisfied.

As we have seen above, Principle 0 overrides the others. The regexp
 will be matched as early as
possible, with the other principles
 determining how the regexp matches at that earliest character

position.

Here is an example of these principles in action:

 $x = "The programming republic of Perl";
 $x =~ /^(.+)(e|r)(.*)$/; # matches,
 # $1 = 'The programming republic of Pe'
 # $2 = 'r'
 # $3 = 'l'

This regexp matches at the earliest string position, 'T'. One
 might think that e, being leftmost in the
alternation, would be
 matched, but r produces the longest string in the first quantifier.

 $x =~ /(m{1,2})(.*)$/; # matches,
 # $1 = 'mm'
 # $2 = 'ing republic of Perl'

Here, The earliest possible match is at the first 'm' in programming. m{1,2} is the first quantifier,
so it gets to match
 a maximal mm.

 $x =~ /.*(m{1,2})(.*)$/; # matches,
 # $1 = 'm'
 # $2 = 'ing republic of Perl'

Perl version 5.18.0 documentation - perlretut

Page 16http://perldoc.perl.org

Here, the regexp matches at the start of the string. The first
 quantifier .* grabs as much as possible,
leaving just a single 'm' for the second quantifier m{1,2}.

 $x =~ /(.?)(m{1,2})(.*)$/; # matches,
 # $1 = 'a'
 # $2 = 'mm'
 # $3 = 'ing republic of Perl'

Here, .? eats its maximal one character at the earliest possible
 position in the string, 'a' in
programming, leaving m{1,2}
 the opportunity to match both m's. Finally,

 "aXXXb" =~ /(X*)/; # matches with $1 = ''

because it can match zero copies of 'X' at the beginning of the
 string. If you definitely want to match
at least one 'X', use X+, not X*.

Sometimes greed is not good. At times, we would like quantifiers to
 match a minimal piece of string,
rather than a maximal piece. For
 this purpose, Larry Wall created the minimal match or non-greedy
quantifiers ??, *?, +?, and {}?. These are
 the usual quantifiers with a ? appended to them. They
have the
 following meanings:

a?? means: match 'a' 0 or 1 times. Try 0 first, then 1.

a*? means: match 'a' 0 or more times, i.e., any number of times,
 but as few times as possible

a+? means: match 'a' 1 or more times, i.e., at least once, but
 as few times as possible

a{n,m}? means: match at least n times, not more than m
 times, as few times as possible

a{n,}? means: match at least n times, but as few times as
 possible

a{n}? means: match exactly n times. Because we match exactly n times, a{n}? is
equivalent to a{n} and is just there for
 notational consistency.

Let's look at the example above, but with minimal quantifiers:

 $x = "The programming republic of Perl";
 $x =~ /^(.+?)(e|r)(.*)$/; # matches,
 # $1 = 'Th'
 # $2 = 'e'
 # $3 = ' programming republic of Perl'

The minimal string that will allow both the start of the string ^
 and the alternation to match is Th, with
the alternation e|r
 matching e. The second quantifier .* is free to gobble up the
 rest of the string.

 $x =~ /(m{1,2}?)(.*?)$/; # matches,
 # $1 = 'm'
 # $2 = 'ming republic of Perl'

The first string position that this regexp can match is at the first 'm' in programming. At this position,
the minimal m{1,2}?
 matches just one 'm'. Although the second quantifier .*? would
 prefer to
match no characters, it is constrained by the end-of-string
 anchor $ to match the rest of the string.

 $x =~ /(.*?)(m{1,2}?)(.*)$/; # matches,
 # $1 = 'The progra'
 # $2 = 'm'
 # $3 = 'ming republic of Perl'

In this regexp, you might expect the first minimal quantifier .*?
 to match the empty string, because it

Perl version 5.18.0 documentation - perlretut

Page 17http://perldoc.perl.org

is not constrained by a ^
 anchor to match the beginning of the word. Principle 0 applies here,

however. Because it is possible for the whole regexp to match at the
 start of the string, it will match at
the start of the string. Thus
 the first quantifier has to match everything up to the first m. The
 second
minimal quantifier matches just one m and the third
 quantifier matches the rest of the string.

 $x =~ /(.??)(m{1,2})(.*)$/; # matches,
 # $1 = 'a'
 # $2 = 'mm'
 # $3 = 'ing republic of Perl'

Just as in the previous regexp, the first quantifier .?? can match
 earliest at position 'a', so it does.
The second quantifier is
 greedy, so it matches mm, and the third matches the rest of the
 string.

We can modify principle 3 above to take into account non-greedy
 quantifiers:

Principle 3: If there are two or more elements in a regexp, the
 leftmost greedy (non-greedy)
quantifier, if any, will match as much
 (little) of the string as possible while still allowing the
whole
 regexp to match. The next leftmost greedy (non-greedy) quantifier, if
 any, will try to
match as much (little) of the string remaining
 available to it as possible, while still allowing the
whole regexp to
 match. And so on, until all the regexp elements are satisfied.

Just like alternation, quantifiers are also susceptible to
 backtracking. Here is a step-by-step analysis
of the example

 $x = "the cat in the hat";
 $x =~ /^(.*)(at)(.*)$/; # matches,
 # $1 = 'the cat in the h'
 # $2 = 'at'
 # $3 = '' (0 matches)

0 Start with the first letter in the string 't'.

1 The first quantifier '.*' starts out by matching the whole
 string 'the cat in the hat'.

2 'a' in the regexp element 'at' doesn't match the end of the
 string. Backtrack one character.

3 'a' in the regexp element 'at' still doesn't match the last
 letter of the string 't', so backtrack one
more character.

4 Now we can match the 'a' and the 't'.

5 Move on to the third element '.*'. Since we are at the end of
 the string and '.*' can match 0
times, assign it the empty string.

6 We are done!

Most of the time, all this moving forward and backtracking happens
 quickly and searching is fast.
There are some pathological regexps,
 however, whose execution time exponentially grows with the
size of the
 string. A typical structure that blows up in your face is of the form

 /(a|b+)*/;

The problem is the nested indeterminate quantifiers. There are many
 different ways of partitioning a
string of length n between the +
 and *: one repetition with b+ of length n, two repetitions with
 the first
b+ length k and the second with length n-k, m repetitions
 whose bits add up to length n, etc. In fact
there are an exponential
 number of ways to partition a string as a function of its length. A
 regexp may
get lucky and match early in the process, but if there is
 no match, Perl will try every possibility before
giving up. So be
 careful with nested *'s, {n,m}'s, and +'s. The book Mastering Regular Expressions
by Jeffrey Friedl gives a wonderful
 discussion of this and other efficiency issues.

Perl version 5.18.0 documentation - perlretut

Page 18http://perldoc.perl.org

Possessive quantifiers
Backtracking during the relentless search for a match may be a waste
 of time, particularly when the
match is bound to fail. Consider
 the simple pattern

 /^\w+\s+\w+$/; # a word, spaces, a word

Whenever this is applied to a string which doesn't quite meet the
 pattern's expectations such as "abc
 " or "abc def ",
 the regex engine will backtrack, approximately once for each character
 in the
string. But we know that there is no way around taking all
 of the initial word characters to match the
first repetition, that all
 spaces must be eaten by the middle part, and the same goes for the second

word.

With the introduction of the possessive quantifiers in Perl 5.10, we
 have a way of instructing the regex
engine not to backtrack, with the
 usual quantifiers with a + appended to them. This makes them
greedy as
 well as stingy; once they succeed they won't give anything back to permit
 another solution.
They have the following meanings:

a{n,m}+ means: match at least n times, not more than m times,
 as many times as possible,
and don't give anything up. a?+ is short
 for a{0,1}+

a{n,}+ means: match at least n times, but as many times as possible,
 and don't give
anything up. a*+ is short for a{0,}+ and a++ is
 short for a{1,}+.

a{n}+ means: match exactly n times. It is just there for
 notational consistency.

These possessive quantifiers represent a special case of a more general
 concept, the independent
subexpression, see below.

As an example where a possessive quantifier is suitable we consider
 matching a quoted string, as it
appears in several programming languages.
 The backslash is used as an escape character that
indicates that the
 next character is to be taken literally, as another character for the
 string. Therefore,
after the opening quote, we expect a (possibly
 empty) sequence of alternatives: either some character
except an
 unescaped quote or backslash or an escaped character.

 /"(?:[^"\\]++|\\.)*+"/;

Building a regexp
At this point, we have all the basic regexp concepts covered, so let's
 give a more involved example of
a regular expression. We will build a
 regexp that matches numbers.

The first task in building a regexp is to decide what we want to match
 and what we want to exclude. In
our case, we want to match both
 integers and floating point numbers and we want to reject any string

that isn't a number.

The next task is to break the problem down into smaller problems that
 are easily converted into a
regexp.

The simplest case is integers. These consist of a sequence of digits,
 with an optional sign in front.
The digits we can represent with \d+ and the sign can be matched with [+-]. Thus the integer

regexp is

 /[+-]?\d+/; # matches integers

A floating point number potentially has a sign, an integral part, a
 decimal point, a fractional part, and
an exponent. One or more of these
 parts is optional, so we need to check out the different

possibilities. Floating point numbers which are in proper form include
 123., 0.345, .34, -1e6, and
25.4E-72. As with integers, the sign out
 front is completely optional and can be matched by [+-]?.
We can
 see that if there is no exponent, floating point numbers must have a
 decimal point, otherwise

Perl version 5.18.0 documentation - perlretut

Page 19http://perldoc.perl.org

they are integers. We might be tempted to
 model these with \d*\.\d*, but this would also match just
a single
 decimal point, which is not a number. So the three cases of floating
 point number without
exponent are

 /[+-]?\d+\./; # 1., 321., etc.
 /[+-]?\.\d+/; # .1, .234, etc.
 /[+-]?\d+\.\d+/; # 1.0, 30.56, etc.

These can be combined into a single regexp with a three-way alternation:

 /[+-]?(\d+\.\d+|\d+\.|\.\d+)/; # floating point, no exponent

In this alternation, it is important to put '\d+\.\d+' before '\d+\.'. If '\d+\.' were first, the
regexp would happily match that
 and ignore the fractional part of the number.

Now consider floating point numbers with exponents. The key
 observation here is that both integers
and numbers with decimal
 points are allowed in front of an exponent. Then exponents, like the
 overall
sign, are independent of whether we are matching numbers with
 or without decimal points, and can
be 'decoupled' from the
 mantissa. The overall form of the regexp now becomes clear:

 /^(optional sign)(integer | f.p. mantissa)(optional exponent)$/;

The exponent is an e or E, followed by an integer. So the
 exponent regexp is

 /[eE][+-]?\d+/; # exponent

Putting all the parts together, we get a regexp that matches numbers:

 /^[+-]?(\d+\.\d+|\d+\.|\.\d+|\d+)([eE][+-]?\d+)?$/; # Ta da!

Long regexps like this may impress your friends, but can be hard to
 decipher. In complex situations
like this, the //x modifier for a
 match is invaluable. It allows one to put nearly arbitrary whitespace

and comments into a regexp without affecting their meaning. Using it,
 we can rewrite our 'extended'
regexp in the more pleasing form

 /^
 [+-]? # first, match an optional sign
 (# then match integers or f.p. mantissas:
 \d+\.\d+ # mantissa of the form a.b
 |\d+\. # mantissa of the form a.
 |\.\d+ # mantissa of the form .b
 |\d+ # integer of the form a
)
 ([eE][+-]?\d+)? # finally, optionally match an exponent
 $/x;

If whitespace is mostly irrelevant, how does one include space
 characters in an extended regexp?
The answer is to backslash it '\ ' or put it in a character class []. The same thing
 goes for pound
signs: use \# or [#]. For instance, Perl allows
 a space between the sign and the mantissa or integer,
and we could add
 this to our regexp as follows:

 /^
 [+-]?\ * # first, match an optional sign *and space*
 (# then match integers or f.p. mantissas:
 \d+\.\d+ # mantissa of the form a.b
 |\d+\. # mantissa of the form a.
 |\.\d+ # mantissa of the form .b

Perl version 5.18.0 documentation - perlretut

Page 20http://perldoc.perl.org

 |\d+ # integer of the form a
)
 ([eE][+-]?\d+)? # finally, optionally match an exponent
 $/x;

In this form, it is easier to see a way to simplify the
 alternation. Alternatives 1, 2, and 4 all start with
\d+, so it
 could be factored out:

 /^
 [+-]?\ * # first, match an optional sign
 (# then match integers or f.p. mantissas:
 \d+ # start out with a ...
 (
 \.\d* # mantissa of the form a.b or a.
)? # ? takes care of integers of the form a
 |\.\d+ # mantissa of the form .b
)
 ([eE][+-]?\d+)? # finally, optionally match an exponent
 $/x;

or written in the compact form,

 /^[+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?$/;

This is our final regexp. To recap, we built a regexp by

specifying the task in detail,

breaking down the problem into smaller parts,

translating the small parts into regexps,

combining the regexps,

and optimizing the final combined regexp.

These are also the typical steps involved in writing a computer
 program. This makes perfect sense,
because regular expressions are
 essentially programs written in a little computer language that
specifies
 patterns.

Using regular expressions in Perl
The last topic of Part 1 briefly covers how regexps are used in Perl
 programs. Where do they fit into
Perl syntax?

We have already introduced the matching operator in its default /regexp/ and arbitrary delimiter
m!regexp! forms. We have used
 the binding operator =~ and its negation !~ to test for string

matches. Associated with the matching operator, we have discussed the
 single line //s, multi-line
//m, case-insensitive //i and
 extended //x modifiers. There are a few more things you might
 want
to know about matching operators.

Prohibiting substitution

If you change $pattern after the first substitution happens, Perl
 will ignore it. If you don't want any
substitutions at all, use the
 special delimiter m'':

 @pattern = ('Seuss');
 while (<>) {
 print if m'@pattern'; # matches literal '@pattern', not 'Seuss'
 }

Perl version 5.18.0 documentation - perlretut

Page 21http://perldoc.perl.org

Similar to strings, m'' acts like apostrophes on a regexp; all other m delimiters act like quotes. If the
regexp evaluates to the empty string,
 the regexp in the last successful match is used instead. So we
have

 "dog" =~ /d/; # 'd' matches
 "dogbert =~ //; # this matches the 'd' regexp used before

Global matching

The final two modifiers we will discuss here, //g and //c, concern multiple matches.
 The modifier
//g stands for global matching and allows the
 matching operator to match within a string as many
times as possible.
 In scalar context, successive invocations against a string will have //g jump from
match to match, keeping track of position in the
 string as it goes along. You can get or set the position
with the pos() function.

The use of //g is shown in the following example. Suppose we have
 a string that consists of words
separated by spaces. If we know how
 many words there are in advance, we could extract the words
using
 groupings:

 $x = "cat dog house"; # 3 words
 $x =~ /^\s*(\w+)\s+(\w+)\s+(\w+)\s*$/; # matches,
 # $1 = 'cat'
 # $2 = 'dog'
 # $3 = 'house'

But what if we had an indeterminate number of words? This is the sort
 of task //g was made for. To
extract all words, form the simple
 regexp (\w+) and loop over all matches with /(\w+)/g:

 while ($x =~ /(\w+)/g) {
 print "Word is $1, ends at position ", pos $x, "\n";
 }

prints

 Word is cat, ends at position 3
 Word is dog, ends at position 7
 Word is house, ends at position 13

A failed match or changing the target string resets the position. If
 you don't want the position reset
after failure to match, add the //c, as in /regexp/gc. The current position in the string is
 associated
with the string, not the regexp. This means that different
 strings have different positions and their
respective positions can be
 set or read independently.

In list context, //g returns a list of matched groupings, or if
 there are no groupings, a list of matches
to the whole regexp. So if
 we wanted just the words, we could use

 @words = ($x =~ /(\w+)/g); # matches,
 # $words[0] = 'cat'
 # $words[1] = 'dog'
 # $words[2] = 'house'

Closely associated with the //g modifier is the \G anchor. The \G anchor matches at the point where
the previous //g match left
 off. \G allows us to easily do context-sensitive matching:

 $metric = 1; # use metric units
 ...
 $x = <FILE>; # read in measurement
 $x =~ /^([+-]?\d+)\s*/g; # get magnitude

Perl version 5.18.0 documentation - perlretut

Page 22http://perldoc.perl.org

 $weight = $1;
 if ($metric) { # error checking
 print "Units error!" unless $x =~ /\Gkg\./g;
 }
 else {
 print "Units error!" unless $x =~ /\Glbs\./g;
 }
 $x =~ /\G\s+(widget|sprocket)/g; # continue processing

The combination of //g and \G allows us to process the string a
 bit at a time and use arbitrary Perl
logic to decide what to do next.
 Currently, the \G anchor is only fully supported when used to anchor

to the start of the pattern.

\G is also invaluable in processing fixed-length records with
 regexps. Suppose we have a snippet of
coding region DNA, encoded as
 base pair letters ATCGTTGAAT... and we want to find all the stop

codons TGA. In a coding region, codons are 3-letter sequences, so
 we can think of the DNA snippet
as a sequence of 3-letter records. The
 naive regexp

 # expanded, this is "ATC GTT GAA TGC AAA TGA CAT GAC"
 $dna = "ATCGTTGAATGCAAATGACATGAC";
 $dna =~ /TGA/;

doesn't work; it may match a TGA, but there is no guarantee that
 the match is aligned with codon
boundaries, e.g., the substring GTT GAA gives a match. A better solution is

 while ($dna =~ /(\w\w\w)*?TGA/g) { # note the minimal *?
 print "Got a TGA stop codon at position ", pos $dna, "\n";
 }

which prints

 Got a TGA stop codon at position 18
 Got a TGA stop codon at position 23

Position 18 is good, but position 23 is bogus. What happened?

The answer is that our regexp works well until we get past the last
 real match. Then the regexp will
fail to match a synchronized TGA
 and start stepping ahead one character position at a time, not what
we
 want. The solution is to use \G to anchor the match to the codon
 alignment:

 while ($dna =~ /\G(\w\w\w)*?TGA/g) {
 print "Got a TGA stop codon at position ", pos $dna, "\n";
 }

This prints

 Got a TGA stop codon at position 18

which is the correct answer. This example illustrates that it is
 important not only to match what is
desired, but to reject what is not
 desired.

(There are other regexp modifiers that are available, such as //o, but their specialized uses are
beyond the
 scope of this introduction.)

Search and replace

Regular expressions also play a big role in search and replace
 operations in Perl. Search and replace
is accomplished with the s/// operator. The general form is s/regexp/replacement/modifiers

Perl version 5.18.0 documentation - perlretut

Page 23http://perldoc.perl.org

, with everything we know about
 regexps and modifiers applying in this case as well. The
replacement is a Perl double-quoted string that replaces in the
 string whatever is matched with the
regexp. The operator =~ is
 also used here to associate a string with s///. If matching
 against $_,
the $_ =~ can be dropped. If there is a match, s/// returns the number of substitutions made;
otherwise it returns
 false. Here are a few examples:

 $x = "Time to feed the cat!";
 $x =~ s/cat/hacker/; # $x contains "Time to feed the hacker!"
 if ($x =~ s/^(Time.*hacker)!$/$1 now!/) {
 $more_insistent = 1;
 }
 $y = "'quoted words'";
 $y =~ s/^'(.*)'$/$1/; # strip single quotes,
 # $y contains "quoted words"

In the last example, the whole string was matched, but only the part
 inside the single quotes was
grouped. With the s/// operator, the
 matched variables $1, $2, etc. are immediately available for
use
 in the replacement expression, so we use $1 to replace the quoted
 string with just what was
quoted. With the global modifier, s///g
 will search and replace all occurrences of the regexp in the
string:

 $x = "I batted 4 for 4";
 $x =~ s/4/four/; # doesn't do it all:
 # $x contains "I batted four for 4"
 $x = "I batted 4 for 4";
 $x =~ s/4/four/g; # does it all:
 # $x contains "I batted four for four"

If you prefer 'regex' over 'regexp' in this tutorial, you could use
 the following program to replace it:

 % cat > simple_replace
 #!/usr/bin/perl
 $regexp = shift;
 $replacement = shift;
 while (<>) {
 s/$regexp/$replacement/g;
 print;
 }
 ^D

 % simple_replace regexp regex perlretut.pod

In simple_replace we used the s///g modifier to replace all
 occurrences of the regexp on each
line. (Even though the regular
 expression appears in a loop, Perl is smart enough to compile it
 only
once.) As with simple_grep, both the print and the s/$regexp/$replacement/g use $_
implicitly.

If you don't want s/// to change your original variable you can use
 the non-destructive substitute
modifier, s///r. This changes the
 behavior so that s///r returns the final substituted string
 (instead
of the number of substitutions):

 $x = "I like dogs.";
 $y = $x =~ s/dogs/cats/r;
 print "$x $y\n";

That example will print "I like dogs. I like cats". Notice the original $x variable has not been affected.

Perl version 5.18.0 documentation - perlretut

Page 24http://perldoc.perl.org

The overall
 result of the substitution is instead stored in $y. If the
 substitution doesn't affect anything
then the original string is
 returned:

 $x = "I like dogs.";
 $y = $x =~ s/elephants/cougars/r;
 print "$x $y\n"; # prints "I like dogs. I like dogs."

One other interesting thing that the s///r flag allows is chaining
 substitutions:

 $x = "Cats are great.";
 print $x =~ s/Cats/Dogs/r =~ s/Dogs/Frogs/r =~ s/Frogs/Hedgehogs/r,
"\n";
 # prints "Hedgehogs are great."

A modifier available specifically to search and replace is the s///e evaluation modifier. s///e treats
the
 replacement text as Perl code, rather than a double-quoted
 string. The value that the code returns
is substituted for the
 matched substring. s///e is useful if you need to do a bit of
 computation in the
process of replacing text. This example counts
 character frequencies in a line:

 $x = "Bill the cat";
 $x =~ s/(.)/$chars{$1}++;$1/eg; # final $1 replaces char with itself
 print "frequency of '$_' is $chars{$_}\n"
 foreach (sort {$chars{$b} <=> $chars{$a}} keys %chars);

This prints

 frequency of ' ' is 2
 frequency of 't' is 2
 frequency of 'l' is 2
 frequency of 'B' is 1
 frequency of 'c' is 1
 frequency of 'e' is 1
 frequency of 'h' is 1
 frequency of 'i' is 1
 frequency of 'a' is 1

As with the match m// operator, s/// can use other delimiters,
 such as s!!! and s{}{}, and even
s{}//. If single quotes are
 used s''', then the regexp and replacement are
 treated as single-quoted
strings and there are no
 variable substitutions. s/// in list context
 returns the same thing as in scalar
context, i.e., the number of
 matches.

The split function

The split() function is another place where a regexp is used. split /regexp/, string,
limit separates the string operand into
 a list of substrings and returns that list. The regexp must
be designed
 to match whatever constitutes the separators for the desired substrings.
 The limit, if
present, constrains splitting into no more than limit
 number of strings. For example, to split a string
into words, use

 $x = "Calvin and Hobbes";
 @words = split /\s+/, $x; # $word[0] = 'Calvin'
 # $word[1] = 'and'
 # $word[2] = 'Hobbes'

If the empty regexp // is used, the regexp always matches and
 the string is split into individual
characters. If the regexp has
 groupings, then the resulting list contains the matched substrings from
the
 groupings as well. For instance,

Perl version 5.18.0 documentation - perlretut

Page 25http://perldoc.perl.org

 $x = "/usr/bin/perl";
 @dirs = split m!/!, $x; # $dirs[0] = ''
 # $dirs[1] = 'usr'
 # $dirs[2] = 'bin'
 # $dirs[3] = 'perl'
 @parts = split m!(/)!, $x; # $parts[0] = ''
 # $parts[1] = '/'
 # $parts[2] = 'usr'
 # $parts[3] = '/'
 # $parts[4] = 'bin'
 # $parts[5] = '/'
 # $parts[6] = 'perl'

Since the first character of $x matched the regexp, split prepended
 an empty initial element to the
list.

If you have read this far, congratulations! You now have all the basic
 tools needed to use regular
expressions to solve a wide range of text
 processing problems. If this is your first time through the
tutorial,
 why not stop here and play around with regexps a while.... Part 2
 concerns the more esoteric
aspects of regular expressions and those
 concepts certainly aren't needed right at the start.

Part 2: Power tools
OK, you know the basics of regexps and you want to know more. If
 matching regular expressions is
analogous to a walk in the woods, then
 the tools discussed in Part 1 are analogous to topo maps and
a
 compass, basic tools we use all the time. Most of the tools in part 2
 are analogous to flare guns and
satellite phones. They aren't used
 too often on a hike, but when we are stuck, they can be invaluable.

What follows are the more advanced, less used, or sometimes esoteric
 capabilities of Perl regexps. In
Part 2, we will assume you are
 comfortable with the basics and concentrate on the advanced
features.

More on characters, strings, and character classes
There are a number of escape sequences and character classes that we
 haven't covered yet.

There are several escape sequences that convert characters or strings
 between upper and lower
case, and they are also available within
 patterns. \l and \u convert the next character to lower or

upper case, respectively:

 $x = "perl";
 $string =~ /\u$x/; # matches 'Perl' in $string
 $x = "M(rs?|s)\\."; # note the double backslash
 $string =~ /\l$x/; # matches 'mr.', 'mrs.', and 'ms.',

A \L or \U indicates a lasting conversion of case, until
 terminated by \E or thrown over by another \U
or \L:

 $x = "This word is in lower case:\L SHOUT\E";
 $x =~ /shout/; # matches
 $x = "I STILL KEYPUNCH CARDS FOR MY 360"
 $x =~ /\Ukeypunch/; # matches punch card string

If there is no \E, case is converted until the end of the
 string. The regexps \L\u$word or
\u\L$word convert the first
 character of $word to uppercase and the rest of the characters to

lowercase.

Control characters can be escaped with \c, so that a control-Z
 character would be matched with \cZ.
The escape sequence \Q...\E quotes, or protects most non-alphabetic characters. For
 instance,

Perl version 5.18.0 documentation - perlretut

Page 26http://perldoc.perl.org

 $x = "\QThat !^*&%~& cat!";
 $x =~ /\Q!^*&%~&\E/; # check for rough language

It does not protect $ or @, so that variables can still be
 substituted.

\Q, \L, \l, \U, \u and \E are actually part of
 double-quotish syntax, and not part of regexp syntax
proper. They will
 work if they appear in a regular expression embedded directly in a
 program, but not
when contained in a string that is interpolated in a
 pattern.

Perl regexps can handle more than just the
 standard ASCII character set. Perl supports Unicode, a
standard
 for representing the alphabets from virtually all of the world's written
 languages, and a host
of symbols. Perl's text strings are Unicode strings, so
 they can contain characters with a value
(codepoint or character number) higher
 than 255.

What does this mean for regexps? Well, regexp users don't need to know
 much about Perl's internal
representation of strings. But they do need
 to know 1) how to represent Unicode characters in a
regexp and 2) that
 a matching operation will treat the string to be searched as a sequence
 of
characters, not bytes. The answer to 1) is that Unicode characters
 greater than chr(255) are
represented using the \x{hex} notation, because
 \x hex (without curly braces) doesn't go further
than 255. (Starting in Perl
 5.14, if you're an octal fan, you can also use \o{oct}.)

 /\x{263a}/; # match a Unicode smiley face :)

NOTE: In Perl 5.6.0 it used to be that one needed to say use
 utf8 to use any Unicode features.
This is no more the case: for
 almost all Unicode processing, the explicit utf8 pragma is not
 needed.
(The only case where it matters is if your Perl script is in
 Unicode and encoded in UTF-8, then an
explicit use utf8 is needed.)

Figuring out the hexadecimal sequence of a Unicode character you want
 or deciphering someone
else's hexadecimal Unicode regexp is about as
 much fun as programming in machine code. So
another way to specify
 Unicode characters is to use the named character escape
 sequence \N{name
}. name is a name for the Unicode character, as
 specified in the Unicode standard. For instance, if
we wanted to
 represent or match the astrological sign for the planet Mercury, we
 could use

 $x = "abc\N{MERCURY}def";
 $x =~ /\N{MERCURY}/; # matches

One can also use "short" names:

 print "\N{GREEK SMALL LETTER SIGMA} is called sigma.\n";
 print "\N{greek:Sigma} is an upper-case sigma.\n";

You can also restrict names to a certain alphabet by specifying the charnames pragma:

 use charnames qw(greek);
 print "\N{sigma} is Greek sigma\n";

An index of character names is available on-line from the Unicode
 Consortium,
http://www.unicode.org/charts/charindex.html; explanatory
 material with links to other resources at
http://www.unicode.org/standard/where.

The answer to requirement 2) is that a regexp (mostly)
 uses Unicode characters. The "mostly" is for
messy backward
 compatibility reasons, but starting in Perl 5.14, any regex compiled in
 the scope of a
use feature 'unicode_strings' (which is automatically
 turned on within the scope of a use
5.012 or higher) will turn that
 "mostly" into "always". If you want to handle Unicode properly, you

should ensure that 'unicode_strings' is turned on.
 Internally, this is encoded to bytes using
either UTF-8 or a native 8
 bit encoding, depending on the history of the string, but conceptually
 it is a

Perl version 5.18.0 documentation - perlretut

Page 27http://perldoc.perl.org

sequence of characters, not bytes. See perlunitut for a
 tutorial about that.

Let us now discuss Unicode character classes. Just as with Unicode
 characters, there are named
Unicode character classes represented by the \p{name} escape sequence. Closely associated is the
\P{name}
 character class, which is the negation of the \p{name} class. For
 example, to match
lower and uppercase characters,

 $x = "BOB";
 $x =~ /^\p{IsUpper}/; # matches, uppercase char class
 $x =~ /^\P{IsUpper}/; # doesn't match, char class sans uppercase
 $x =~ /^\p{IsLower}/; # doesn't match, lowercase char class
 $x =~ /^\P{IsLower}/; # matches, char class sans lowercase

(The "Is" is optional.)

Here is the association between some Perl named classes and the
 traditional Unicode classes:

 Perl class name Unicode class name or regular expression

 IsAlpha /^[LM]/
 IsAlnum /^[LMN]/
 IsASCII $code <= 127
 IsCntrl /^C/
 IsBlank $code =~ /^(0020|0009)$/ || /^Z[^lp]/
 IsDigit Nd
 IsGraph /^([LMNPS]|Co)/
 IsLower Ll
 IsPrint /^([LMNPS]|Co|Zs)/
 IsPunct /^P/
 IsSpace /^Z/ || ($code =~ /^(0009|000A|000B|000C|000D)$/
 IsSpacePerl /^Z/ || ($code =~
/^(0009|000A|000C|000D|0085|2028|2029)$/
 IsUpper /^L[ut]/
 IsWord /^[LMN]/ || $code eq "005F"
 IsXDigit $code =~ /^00(3[0-9]|[46][1-6])$/

You can also use the official Unicode class names with \p and \P, like \p{L} for Unicode 'letters',
\p{Lu} for uppercase
 letters, or \P{Nd} for non-digits. If a name is just one
 letter, the braces can be
dropped. For instance, \pM is the
 character class of Unicode 'marks', for example accent marks.
 For
the full list see perlunicode.

Unicode has also been separated into various sets of characters
 which you can test with \p{...}
(in) and \P{...} (not in).
 To test whether a character is (or is not) an element of a script
 you would
use the script name, for example \p{Latin}, \p{Greek},
 or \P{Katakana}.

What we have described so far is the single form of the \p{...} character
 classes. There is also a
compound form which you may run into. These
 look like \p{name=value} or \p{name:value}
(the equals sign and colon
 can be used interchangeably). These are more general than the single
form,
 and in fact most of the single forms are just Perl-defined shortcuts for common
 compound
forms. For example, the script examples in the previous paragraph
 could be written equivalently as
\p{Script=Latin}, \p{Script:Greek}, and \P{script=katakana} (case is irrelevant
between the {} braces). You may
 never have to use the compound forms, but sometimes it is
necessary, and their
 use can make your code easier to understand.

\X is an abbreviation for a character class that comprises
 a Unicode extended grapheme cluster. This
represents a "logical character":
 what appears to be a single character, but may be represented
internally by more
 than one. As an example, using the Unicode full names, e.g., A + COMBINING

Perl version 5.18.0 documentation - perlretut

Page 28http://perldoc.perl.org

RING is a grapheme cluster with base character A and combining character COMBINING RING, which
translates in Danish to A with the circle atop it,
 as in the word Angstrom.

For the full and latest information about Unicode see the latest
 Unicode standard, or the Unicode
Consortium's website http://www.unicode.org

As if all those classes weren't enough, Perl also defines POSIX-style
 character classes. These have
the form [:name:], with name the
 name of the POSIX class. The POSIX classes are alpha, alnum,
ascii, cntrl, digit, graph, lower, print, punct, space, upper, and xdigit, and two
extensions, word (a Perl
 extension to match \w), and blank (a GNU extension). The //a
 modifier
restricts these to matching just in the ASCII range; otherwise
 they can match the same as their
corresponding Perl Unicode classes: [:upper:] is the same as \p{IsUpper}, etc. (There are
some
 exceptions and gotchas with this; see perlrecharclass for a full
 discussion.) The [:digit:],
[:word:], and [:space:] correspond to the familiar \d, \w, and \s
 character classes. To negate
a POSIX class, put a ^ in front of
 the name, so that, e.g., [:^digit:] corresponds to \D and, under

Unicode, \P{IsDigit}. The Unicode and POSIX character classes can
 be used just like \d, with
the exception that POSIX character
 classes can only be used inside of a character class:

 /\s+[abc[:digit:]xyz]\s*/; # match a,b,c,x,y,z, or a digit
 /^=item\s[[:digit:]]/; # match '=item',
 # followed by a space and a digit
 /\s+[abc\p{IsDigit}xyz]\s+/; # match a,b,c,x,y,z, or a digit
 /^=item\s\p{IsDigit}/; # match '=item',
 # followed by a space and a digit

Whew! That is all the rest of the characters and character classes.

Compiling and saving regular expressions
In Part 1 we mentioned that Perl compiles a regexp into a compact
 sequence of opcodes. Thus, a
compiled regexp is a data structure
 that can be stored once and used again and again. The regexp
quote qr// does exactly that: qr/string/ compiles the string as a
 regexp and transforms the
result into a form that can be assigned to a
 variable:

 $reg = qr/foo+bar?/; # reg contains a compiled regexp

Then $reg can be used as a regexp:

 $x = "fooooba";
 $x =~ $reg; # matches, just like /foo+bar?/
 $x =~ /$reg/; # same thing, alternate form

$reg can also be interpolated into a larger regexp:

 $x =~ /(abc)?$reg/; # still matches

As with the matching operator, the regexp quote can use different
 delimiters, e.g., qr!!, qr{} or
qr~~. Apostrophes
 as delimiters (qr'') inhibit any interpolation.

Pre-compiled regexps are useful for creating dynamic matches that
 don't need to be recompiled each
time they are encountered. Using
 pre-compiled regexps, we write a grep_step program which greps
for a sequence of patterns, advancing to the next pattern as soon
 as one has been satisfied.

 % cat > grep_step
 #!/usr/bin/perl
 # grep_step - match <number> regexps, one after the other
 # usage: multi_grep <number> regexp1 regexp2 ... file1 file2 ...

Perl version 5.18.0 documentation - perlretut

Page 29http://perldoc.perl.org

 $number = shift;
 $regexp[$_] = shift foreach (0..$number-1);
 @compiled = map qr/$_/, @regexp;
 while ($line = <>) {
 if ($line =~ /$compiled[0]/) {
 print $line;
 shift @compiled;
 last unless @compiled;
 }
 }
 ^D

 % grep_step 3 shift print last grep_step
 $number = shift;
 print $line;
 last unless @compiled;

Storing pre-compiled regexps in an array @compiled allows us to
 simply loop through the regexps
without any recompilation, thus gaining
 flexibility without sacrificing speed.

Composing regular expressions at runtime
Backtracking is more efficient than repeated tries with different regular
 expressions. If there are
several regular expressions and a match with
 any of them is acceptable, then it is possible to combine
them into a set
 of alternatives. If the individual expressions are input data, this
 can be done by
programming a join operation. We'll exploit this idea in
 an improved version of the simple_grep
program: a program that matches
 multiple patterns:

 % cat > multi_grep
 #!/usr/bin/perl
 # multi_grep - match any of <number> regexps
 # usage: multi_grep <number> regexp1 regexp2 ... file1 file2 ...

 $number = shift;
 $regexp[$_] = shift foreach (0..$number-1);
 $pattern = join '|', @regexp;

 while ($line = <>) {
 print $line if $line =~ /$pattern/;
 }
 ^D

 % multi_grep 2 shift for multi_grep
 $number = shift;
 $regexp[$_] = shift foreach (0..$number-1);

Sometimes it is advantageous to construct a pattern from the input
 that is to be analyzed and use the
permissible values on the left
 hand side of the matching operations. As an example for this somewhat
paradoxical situation, let's assume that our input contains a command
 verb which should match one
out of a set of available command verbs,
 with the additional twist that commands may be abbreviated
as long as
 the given string is unique. The program below demonstrates the basic
 algorithm.

 % cat > keymatch
 #!/usr/bin/perl
 $kwds = 'copy compare list print';
 while($command = <>){

Perl version 5.18.0 documentation - perlretut

Page 30http://perldoc.perl.org

 $command =~ s/^\s+|\s+$//g; # trim leading and trailing spaces
 if((@matches = $kwds =~ /\b$command\w*/g) == 1){
 print "command: '@matches'\n";
 } elsif(@matches == 0){
 print "no such command: '$command'\n";
 } else {
 print "not unique: '$command' (could be one of: @matches)\n";
 }
 }
 ^D

 % keymatch
 li
 command: 'list'
 co
 not unique: 'co' (could be one of: copy compare)
 printer
 no such command: 'printer'

Rather than trying to match the input against the keywords, we match the
 combined set of keywords
against the input. The pattern matching
 operation $kwds =~ /\b($command\w*)/g does several
things at the
 same time. It makes sure that the given command begins where a keyword
 begins (\b).
It tolerates abbreviations due to the added \w*. It
 tells us the number of matches (scalar
@matches) and all the keywords
 that were actually matched. You could hardly ask for more.

Embedding comments and modifiers in a regular expression
Starting with this section, we will be discussing Perl's set of extended patterns. These are extensions
to the traditional regular
 expression syntax that provide powerful new tools for pattern
 matching. We
have already seen extensions in the form of the minimal
 matching constructs ??, *?, +?, {n,m}?,
and {n,}?. Most
 of the extensions below have the form (?char...), where the char is a character
that determines the type of extension.

The first extension is an embedded comment (?#text). This embeds a
 comment into the regular
expression without affecting its meaning. The
 comment should not have any closing parentheses in
the text. An
 example is

 /(?# Match an integer:)[+-]?\d+/;

This style of commenting has been largely superseded by the raw,
 freeform commenting that is
allowed with the //x modifier.

Most modifiers, such as //i, //m, //s and //x (or any
 combination thereof) can also be embedded
in
 a regexp using (?i), (?m), (?s), and (?x). For instance,

 /(?i)yes/; # match 'yes' case insensitively
 /yes/i; # same thing
 /(?x)(# freeform version of an integer regexp
 [+-]? # match an optional sign
 \d+ # match a sequence of digits
)
 /x;

Embedded modifiers can have two important advantages over the usual
 modifiers. Embedded
modifiers allow a custom set of modifiers to each regexp pattern. This is great for matching an array
of regexps
 that must have different modifiers:

Perl version 5.18.0 documentation - perlretut

Page 31http://perldoc.perl.org

 $pattern[0] = '(?i)doctor';
 $pattern[1] = 'Johnson';
 ...
 while (<>) {
 foreach $patt (@pattern) {
 print if /$patt/;
 }
 }

The second advantage is that embedded modifiers (except //p, which
 modifies the entire regexp)
only affect the regexp
 inside the group the embedded modifier is contained in. So grouping
 can be
used to localize the modifier's effects:

 /Answer: ((?i)yes)/; # matches 'Answer: yes', 'Answer: YES', etc.

Embedded modifiers can also turn off any modifiers already present
 by using, e.g., (?-i). Modifiers
can also be combined into
 a single expression, e.g., (?s-i) turns on single line mode and
 turns off
case insensitivity.

Embedded modifiers may also be added to a non-capturing grouping. (?i-m:regexp) is a
non-capturing grouping that matches regexp
 case insensitively and turns off multi-line mode.

Looking ahead and looking behind
This section concerns the lookahead and lookbehind assertions. First,
 a little background.

In Perl regular expressions, most regexp elements 'eat up' a certain
 amount of string when they
match. For instance, the regexp element [abc}] eats up one character of the string when it matches,
in the
 sense that Perl moves to the next character position in the string
 after the match. There are
some elements, however, that don't eat up
 characters (advance the character position) if they match.
The examples
 we have seen so far are the anchors. The anchor ^ matches the
 beginning of the line,
but doesn't eat any characters. Similarly, the
 word boundary anchor \b matches wherever a character
matching \w
 is next to a character that doesn't, but it doesn't eat up any
 characters itself. Anchors are
examples of zero-width assertions:
 zero-width, because they consume
 no characters, and assertions,
because they test some property of the
 string. In the context of our walk in the woods analogy to
regexp
 matching, most regexp elements move us along a trail, but anchors have
 us stop a moment
and check our surroundings. If the local environment
 checks out, we can proceed forward. But if the
local environment
 doesn't satisfy us, we must backtrack.

Checking the environment entails either looking ahead on the trail,
 looking behind, or both. ^ looks
behind, to see that there are no
 characters before. $ looks ahead, to see that there are no
 characters
after. \b looks both ahead and behind, to see if the
 characters on either side differ in their
"word-ness".

The lookahead and lookbehind assertions are generalizations of the
 anchor concept. Lookahead and
lookbehind are zero-width assertions
 that let us specify which characters we want to test for. The

lookahead assertion is denoted by (?=regexp) and the lookbehind
 assertion is denoted by
(?<=fixed-regexp). Some examples are

 $x = "I catch the housecat 'Tom-cat' with catnip";
 $x =~ /cat(?=\s)/; # matches 'cat' in 'housecat'
 @catwords = ($x =~ /(?<=\s)cat\w+/g); # matches,
 # $catwords[0] = 'catch'
 # $catwords[1] = 'catnip'
 $x =~ /\bcat\b/; # matches 'cat' in 'Tom-cat'
 $x =~ /(?<=\s)cat(?=\s)/; # doesn't match; no isolated 'cat' in
 # middle of $x

Perl version 5.18.0 documentation - perlretut

Page 32http://perldoc.perl.org

Note that the parentheses in (?=regexp) and (?<=regexp) are
 non-capturing, since these are
zero-width assertions. Thus in the
 second regexp, the substrings captured are those of the whole
regexp
 itself. Lookahead (?=regexp) can match arbitrary regexps, but
 lookbehind
(?<=fixed-regexp) only works for regexps of fixed
 width, i.e., a fixed number of characters long.
Thus (?<=(ab|bc)) is fine, but (?<=(ab)*) is not. The
 negated versions of the lookahead and
lookbehind assertions are
 denoted by (?!regexp) and (?<!fixed-regexp) respectively.
 They
evaluate true if the regexps do not match:

 $x = "foobar";
 $x =~ /foo(?!bar)/; # doesn't match, 'bar' follows 'foo'
 $x =~ /foo(?!baz)/; # matches, 'baz' doesn't follow 'foo'
 $x =~ /(?<!\s)foo/; # matches, there is no \s before 'foo'

The \C is unsupported in lookbehind, because the already
 treacherous definition of \C would become
even more so
 when going backwards.

Here is an example where a string containing blank-separated words,
 numbers and single dashes is
to be split into its components.
 Using /\s+/ alone won't work, because spaces are not required
between
 dashes, or a word or a dash. Additional places for a split are established
 by looking ahead
and behind:

 $str = "one two - --6-8";
 @toks = split / \s+ # a run of spaces
 | (?<=\S) (?=-) # any non-space followed by '-'
 | (?<=-) (?=\S) # a '-' followed by any non-space
 /x, $str; # @toks = qw(one two - - - 6 - 8)

Using independent subexpressions to prevent backtracking
Independent subexpressions are regular expressions, in the
 context of a larger regular expression,
that function independently of
 the larger regular expression. That is, they consume as much or as
 little
of the string as they wish without regard for the ability of
 the larger regexp to match. Independent
subexpressions are represented
 by (?>regexp). We can illustrate their behavior by first
 considering
an ordinary regexp:

 $x = "ab";
 $x =~ /a*ab/; # matches

This obviously matches, but in the process of matching, the
 subexpression a* first grabbed the a.
Doing so, however,
 wouldn't allow the whole regexp to match, so after backtracking, a*
 eventually
gave back the a and matched the empty string. Here, what a* matched was dependent on what the
rest of the regexp matched.

Contrast that with an independent subexpression:

 $x =~ /(?>a*)ab/; # doesn't match!

The independent subexpression (?>a*) doesn't care about the rest
 of the regexp, so it sees an a
and grabs it. Then the rest of the
 regexp ab cannot match. Because (?>a*) is independent, there
 is
no backtracking and the independent subexpression does not give
 up its a. Thus the match of the
regexp as a whole fails. A similar
 behavior occurs with completely independent regexps:

 $x = "ab";
 $x =~ /a*/g; # matches, eats an 'a'
 $x =~ /\Gab/g; # doesn't match, no 'a' available

Here //g and \G create a 'tag team' handoff of the string from
 one regexp to the other. Regexps with

Perl version 5.18.0 documentation - perlretut

Page 33http://perldoc.perl.org

an independent subexpression are
 much like this, with a handoff of the string to the independent

subexpression, and a handoff of the string back to the enclosing
 regexp.

The ability of an independent subexpression to prevent backtracking
 can be quite useful. Suppose we
want to match a non-empty string
 enclosed in parentheses up to two levels deep. Then the following

regexp matches:

 $x = "abc(de(fg)h"; # unbalanced parentheses
 $x =~ /\(([^()]+ | \([^()]*\))+ \)/x;

The regexp matches an open parenthesis, one or more copies of an
 alternation, and a close
parenthesis. The alternation is two-way, with
 the first alternative [^()]+ matching a substring with no
parentheses and the second alternative \([^()]*\) matching a
 substring delimited by parentheses.
The problem with this regexp is
 that it is pathological: it has nested indeterminate quantifiers
 of the
form (a+|b)+. We discussed in Part 1 how nested quantifiers
 like this could take an exponentially
long time to execute if there
 was no match possible. To prevent the exponential blowup, we need to

prevent useless backtracking at some point. This can be done by
 enclosing the inner quantifier as an
independent subexpression:

 $x =~ /\(((?>[^()]+) | \([^()]*\))+ \)/x;

Here, (?>[^()]+) breaks the degeneracy of string partitioning
 by gobbling up as much of the string
as possible and keeping it. Then
 match failures fail much more quickly.

Conditional expressions
A conditional expression is a form of if-then-else statement
 that allows one to choose which patterns
are to be matched, based on
 some condition. There are two types of conditional expression:
(?(condition)yes-regexp) and (?(condition)yes-regexp|no-regexp).
(?(condition)yes-regexp) is
 like an 'if () {}' statement in Perl. If the condition is true,

the yes-regexp will be matched. If the condition is false, the yes-regexp will be skipped and
Perl will move onto the next regexp
 element. The second form is like an 'if () {} else {}'
statement
 in Perl. If the condition is true, the yes-regexp will be
 matched, otherwise the
no-regexp will be matched.

The condition can have several forms. The first form is simply an
 integer in parentheses
(integer). It is true if the corresponding
 backreference \integer matched earlier in the regexp.
The same
 thing can be done with a name associated with a capture group, written
 as (<name>) or
('name'). The second form is a bare
 zero-width assertion (?...), either a lookahead, a
lookbehind, or a
 code assertion (discussed in the next section). The third set of forms
 provides tests
that return true if the expression is executed within
 a recursion ((R)) or is being called from some
capturing group,
 referenced either by number ((R1), (R2),...) or by name
 ((R&name)).

The integer or name form of the condition allows us to choose,
 with more flexibility, what to match
based on what matched earlier in the
 regexp. This searches for words of the form "xx" or
"xyyx":

 % simple_grep '^(\w+)(\w+)?(?(2)\g2\g1|\g1)$' /usr/dict/words
 beriberi
 coco
 couscous
 deed
 ...
 toot
 toto
 tutu

The lookbehind condition allows, along with backreferences,
 an earlier part of the match to

Perl version 5.18.0 documentation - perlretut

Page 34http://perldoc.perl.org

influence a later part of the
 match. For instance,

 /[ATGC]+(?(?<=AA)G|C)$/;

matches a DNA sequence such that it either ends in AAG, or some
 other base pair combination and C.
Note that the form is (?(?<=AA)G|C) and not (?((?<=AA))G|C); for the
 lookahead, lookbehind or
code assertions, the parentheses around the
 conditional are not needed.

Defining named patterns
Some regular expressions use identical subpatterns in several places.
 Starting with Perl 5.10, it is
possible to define named subpatterns in
 a section of the pattern so that they can be called up by
name
 anywhere in the pattern. This syntactic pattern for this definition
 group is
(?(DEFINE)(?<name>pattern)...). An insertion
 of a named pattern is written as (?&name).

The example below illustrates this feature using the pattern for
 floating point numbers that was
presented earlier on. The three
 subpatterns that are used more than once are the optional sign, the

digit sequence for an integer and the decimal fraction. The DEFINE
 group at the end of the pattern
contains their definition. Notice
 that the decimal fraction pattern is the first place where we can
 reuse
the integer pattern.

 /^ (?&osg)\ * ((?&int)(?&dec)? | (?&dec))
 (?: [eE](?&osg)(?&int))?
 $
 (?(DEFINE)
 (?<osg>[-+]?) # optional sign
 (?<int>\d++) # integer
 (?<dec>\.(?&int)) # decimal fraction
)/x

Recursive patterns
This feature (introduced in Perl 5.10) significantly extends the
 power of Perl's pattern matching. By
referring to some other
 capture group anywhere in the pattern with the construct (?group-ref), the
pattern within the referenced group is used
 as an independent subpattern in place of the group
reference itself.
 Because the group reference may be contained within the group it
 refers to, it is now
possible to apply pattern matching to tasks that
 hitherto required a recursive parser.

To illustrate this feature, we'll design a pattern that matches if
 a string contains a palindrome. (This is
a word or a sentence that,
 while ignoring spaces, interpunctuation and case, reads the same
backwards
 as forwards. We begin by observing that the empty string or a string
 containing just one
word character is a palindrome. Otherwise it must
 have a word character up front and the same at its
end, with another
 palindrome in between.

 /(?: (\w) (?...Here be a palindrome...) \g{-1} | \w?)/x

Adding \W* at either end to eliminate what is to be ignored, we already
 have the full pattern:

 my $pp = qr/^(\W* (?: (\w) (?1) \g{-1} | \w?) \W*)$/ix;
 for $s ("saippuakauppias", "A man, a plan, a canal: Panama!"){
 print "'$s' is a palindrome\n" if $s =~ /$pp/;
 }

In (?...) both absolute and relative backreferences may be used.
 The entire pattern can be
reinserted with (?R) or (?0).
 If you prefer to name your groups, you can use (?&name) to
 recurse
into that group.

Perl version 5.18.0 documentation - perlretut

Page 35http://perldoc.perl.org

A bit of magic: executing Perl code in a regular expression
Normally, regexps are a part of Perl expressions. Code evaluation expressions turn that around by
allowing
 arbitrary Perl code to be a part of a regexp. A code evaluation
 expression is denoted
(?{code}), with code a string of Perl
 statements.

Be warned that this feature is considered experimental, and may be
 changed without notice.

Code expressions are zero-width assertions, and the value they return
 depends on their environment.
There are two possibilities: either the
 code expression is used as a conditional in a conditional
expression (?(condition)...), or it is not. If the code expression is a
 conditional, the code is
evaluated and the result (i.e., the result of
 the last statement) is used to determine truth or falsehood.
If the
 code expression is not used as a conditional, the assertion always
 evaluates true and the result
is put into the special variable $^R. The variable $^R can then be used in code expressions later
 in
the regexp. Here are some silly examples:

 $x = "abcdef";
 $x =~ /abc(?{print "Hi Mom!";})def/; # matches,
 # prints 'Hi Mom!'
 $x =~ /aaa(?{print "Hi Mom!";})def/; # doesn't match,
 # no 'Hi Mom!'

Pay careful attention to the next example:

 $x =~ /abc(?{print "Hi Mom!";})ddd/; # doesn't match,
 # no 'Hi Mom!'
 # but why not?

At first glance, you'd think that it shouldn't print, because obviously
 the ddd isn't going to match the
target string. But look at this
 example:

 $x =~ /abc(?{print "Hi Mom!";})[dD]dd/; # doesn't match,
 # but _does_ print

Hmm. What happened here? If you've been following along, you know that
 the above pattern should
be effectively (almost) the same as the last one;
 enclosing the d in a character class isn't going to
change what it
 matches. So why does the first not print while the second one does?

The answer lies in the optimizations the regex engine makes. In the first
 case, all the engine sees are
plain old characters (aside from the ?{} construct). It's smart enough to realize that the string 'ddd'

doesn't occur in our target string before actually running the pattern
 through. But in the second case,
we've tricked it into thinking that our
 pattern is more complicated. It takes a look, sees our
 character
class, and decides that it will have to actually run the
 pattern to determine whether or not it matches,
and in the process of
 running it hits the print statement before it discovers that we don't
 have a match.

To take a closer look at how the engine does optimizations, see the
 section Pragmas and debugging
below.

More fun with ?{}:

 $x =~ /(?{print "Hi Mom!";})/; # matches,
 # prints 'Hi Mom!'
 $x =~ /(?{$c = 1;})(?{print "$c";})/; # matches,
 # prints '1'
 $x =~ /(?{$c = 1;})(?{print "$^R";})/; # matches,
 # prints '1'

The bit of magic mentioned in the section title occurs when the regexp
 backtracks in the process of

Perl version 5.18.0 documentation - perlretut

Page 36http://perldoc.perl.org

searching for a match. If the regexp
 backtracks over a code expression and if the variables used
within are
 localized using local, the changes in the variables produced by the
 code expression are
undone! Thus, if we wanted to count how many times
 a character got matched inside a group, we
could use, e.g.,

 $x = "aaaa";
 $count = 0; # initialize 'a' count
 $c = "bob"; # test if $c gets clobbered
 $x =~ /(?{local $c = 0;}) # initialize count
 (a # match 'a'
 (?{local $c = $c + 1;}) # increment count
)* # do this any number of times,
 aa # but match 'aa' at the end
 (?{$count = $c;}) # copy local $c var into $count
 /x;
 print "'a' count is $count, \$c variable is '$c'\n";

This prints

 'a' count is 2, $c variable is 'bob'

If we replace the (?{local $c = $c + 1;}) with (?{$c = $c + 1;}), the variable changes
are not undone
 during backtracking, and we get

 'a' count is 4, $c variable is 'bob'

Note that only localized variable changes are undone. Other side
 effects of code expression
execution are permanent. Thus

 $x = "aaaa";
 $x =~ /(a(?{print "Yow\n";}))*aa/;

produces

 Yow
 Yow
 Yow
 Yow

The result $^R is automatically localized, so that it will behave
 properly in the presence of
backtracking.

This example uses a code expression in a conditional to match a
 definite article, either 'the' in English
or 'der|die|das' in German:

 $lang = 'DE'; # use German
 ...
 $text = "das";
 print "matched\n"
 if $text =~ /(?(?{
 $lang eq 'EN'; # is the language English?
 })
 the | # if so, then match 'the'
 (der|die|das) # else, match 'der|die|das'
)
 /xi;

Perl version 5.18.0 documentation - perlretut

Page 37http://perldoc.perl.org

Note that the syntax here is (?(?{...})yes-regexp|no-regexp), not
(?((?{...}))yes-regexp|no-regexp). In other words, in the case of a
 code expression, we
don't need the extra parentheses around the
 conditional.

If you try to use code expressions where the code text is contained within
 an interpolated variable,
rather than appearing literally in the pattern,
 Perl may surprise you:

 $bar = 5;
 $pat = '(?{ 1 })';
 /foo(?{ $bar })bar/; # compiles ok, $bar not interpolated
 /foo(?{ 1 })$bar/; # compiles ok, $bar interpolated
 /foo${pat}bar/; # compile error!

 $pat = qr/(?{ $foo = 1 })/; # precompile code regexp
 /foo${pat}bar/; # compiles ok

If a regexp has a variable that interpolates a code expression, Perl
 treats the regexp as an error. If the
code expression is precompiled into
 a variable, however, interpolating is ok. The question is, why is
this an
 error?

The reason is that variable interpolation and code expressions
 together pose a security risk. The
combination is dangerous because
 many programmers who write search engines often take user
input and
 plug it directly into a regexp:

 $regexp = <>; # read user-supplied regexp
 $chomp $regexp; # get rid of possible newline
 $text =~ /$regexp/; # search $text for the $regexp

If the $regexp variable contains a code expression, the user could
 then execute arbitrary Perl code.
For instance, some joker could
 search for system('rm -rf *'); to erase your files. In this
 sense,
the combination of interpolation and code expressions taints
 your regexp. So by default, using both
interpolation and code
 expressions in the same regexp is not allowed. If you're not
 concerned about
malicious users, it is possible to bypass this
 security check by invoking use re 'eval':

 use re 'eval'; # throw caution out the door
 $bar = 5;
 $pat = '(?{ 1 })';
 /foo${pat}bar/; # compiles ok

Another form of code expression is the pattern code expression.
 The pattern code expression is like a
regular code expression, except
 that the result of the code evaluation is treated as a regular

expression and matched immediately. A simple example is

 $length = 5;
 $char = 'a';
 $x = 'aaaaabb';
 $x =~ /(??{$char x $length})/x; # matches, there are 5 of 'a'

This final example contains both ordinary and pattern code
 expressions. It detects whether a binary
string 1101010010001... has a
 Fibonacci spacing 0,1,1,2,3,5,... of the 1's:

 $x = "1101010010001000001";
 $z0 = ''; $z1 = '0'; # initial conditions
 print "It is a Fibonacci sequence\n"
 if $x =~ /^1 # match an initial '1'
 (?:
 ((??{ $z0 })) # match some '0'

Perl version 5.18.0 documentation - perlretut

Page 38http://perldoc.perl.org

 1 # and then a '1'
		 (?{ $z0 = $z1; $z1 .= $^N; })
)+ # repeat as needed
 $ # that is all there is
 /x;
 printf "Largest sequence matched was %d\n", length($z1)-length($z0);

Remember that $^N is set to whatever was matched by the last
 completed capture group. This prints

 It is a Fibonacci sequence
 Largest sequence matched was 5

Ha! Try that with your garden variety regexp package...

Note that the variables $z0 and $z1 are not substituted when the
 regexp is compiled, as happens for
ordinary variables outside a code
 expression. Rather, the whole code block is parsed as perl code at
the
 same time as perl is compiling the code containing the literal regexp
 pattern.

The regexp without the //x modifier is

 /^1(?:((??{ $z0 }))1(?{ $z0 = $z1; $z1 .= $^N; }))+$/

which shows that spaces are still possible in the code parts. Nevertheless,
 when working with code
and conditional expressions, the extended form of
 regexps is almost necessary in creating and
debugging regexps.

Backtracking control verbs
Perl 5.10 introduced a number of control verbs intended to provide
 detailed control over the
backtracking process, by directly influencing
 the regexp engine and by providing monitoring
techniques. As all
 the features in this group are experimental and subject to change or
 removal in a
future version of Perl, the interested reader is
 referred to "Special Backtracking Control Verbs" in
perlre for a
 detailed description.

Below is just one example, illustrating the control verb (*FAIL),
 which may be abbreviated as (*F).
If this is inserted in a regexp
 it will cause it to fail, just as it would at some
 mismatch between the
pattern and the string. Processing
 of the regexp continues as it would after any "normal"
 failure, so
that, for instance, the next position in the string or another
 alternative will be tried. As failing to match
doesn't preserve capture
 groups or produce results, it may be necessary to use this in
 combination
with embedded code.

 %count = ();
 "supercalifragilisticexpialidocious" =~
 /([aeiou])(?{ $count{$1}++; })(*FAIL)/i;
 printf "%3d '%s'\n", $count{$_}, $_ for (sort keys %count);

The pattern begins with a class matching a subset of letters. Whenever
 this matches, a statement like
$count{'a'}++; is executed, incrementing
 the letter's counter. Then (*FAIL) does what it says,
and
 the regexp engine proceeds according to the book: as long as the end of
 the string hasn't been
reached, the position is advanced before looking
 for another vowel. Thus, match or no match makes
no difference, and the
 regexp engine proceeds until the entire string has been inspected.
 (It's
remarkable that an alternative solution using something like

 $count{lc($_)}++ for split('', "supercalifragilisticexpialidocious");
 printf "%3d '%s'\n", $count2{$_}, $_ for (qw{ a e i o u });

is considerably slower.)

Perl version 5.18.0 documentation - perlretut

Page 39http://perldoc.perl.org

Pragmas and debugging
Speaking of debugging, there are several pragmas available to control
 and debug regexps in Perl. We
have already encountered one pragma in
 the previous section, use re 'eval';, that allows
variable
 interpolation and code expressions to coexist in a regexp. The other
 pragmas are

 use re 'taint';
 $tainted = <>;
 @parts = ($tainted =~ /(\w+)\s+(\w+)/; # @parts is now tainted

The taint pragma causes any substrings from a match with a tainted
 variable to be tainted as well.
This is not normally the case, as
 regexps are often used to extract the safe bits from a tainted

variable. Use taint when you are not extracting safe bits, but are
 performing some other processing.
Both taint and eval pragmas
 are lexically scoped, which means they are in effect only until
 the end
of the block enclosing the pragmas.

 use re '/m'; # or any other flags
 $multiline_string =~ /^foo/; # /m is implied

The re '/flags' pragma (introduced in Perl
 5.14) turns on the given regular expression flags
 until
the end of the lexical scope. See "'/flags' mode" in re for more
 detail.

 use re 'debug';
 /^(.*)$/s; # output debugging info

 use re 'debugcolor';
 /^(.*)$/s; # output debugging info in living color

The global debug and debugcolor pragmas allow one to get
 detailed debugging info about regexp
compilation and
 execution. debugcolor is the same as debug, except the debugging
 information is
displayed in color on terminals that can display
 termcap color sequences. Here is example output:

 % perl -e 'use re "debug"; "abc" =~ /a*b+c/;'
 Compiling REx 'a*b+c'
 size 9 first at 1
 1: STAR(4)
 2: EXACT <a>(0)
 4: PLUS(7)
 5: EXACT (0)
 7: EXACT <c>(9)
 9: END(0)
 floating 'bc' at 0..2147483647 (checking floating) minlen 2
 Guessing start of match, REx 'a*b+c' against 'abc'...
 Found floating substr 'bc' at offset 1...
 Guessed: match at offset 0
 Matching REx 'a*b+c' against 'abc'
 Setting an EVAL scope, savestack=3
 0 <> <abc> | 1: STAR
 EXACT <a> can match 1 times out of 32767...
 Setting an EVAL scope, savestack=3
 1 <a> <bc> | 4: PLUS
 EXACT can match 1 times out of 32767...
 Setting an EVAL scope, savestack=3
 2 <ab> <c> | 7: EXACT <c>
 3 <abc> <> | 9: END
 Match successful!
 Freeing REx: 'a*b+c'

Perl version 5.18.0 documentation - perlretut

Page 40http://perldoc.perl.org

If you have gotten this far into the tutorial, you can probably guess
 what the different parts of the
debugging output tell you. The first
 part

 Compiling REx 'a*b+c'
 size 9 first at 1
 1: STAR(4)
 2: EXACT <a>(0)
 4: PLUS(7)
 5: EXACT (0)
 7: EXACT <c>(9)
 9: END(0)

describes the compilation stage. STAR(4) means that there is a
 starred object, in this case 'a', and
if it matches, goto line 4,
 i.e., PLUS(7). The middle lines describe some heuristics and
 optimizations
performed before a match:

 floating 'bc' at 0..2147483647 (checking floating) minlen 2
 Guessing start of match, REx 'a*b+c' against 'abc'...
 Found floating substr 'bc' at offset 1...
 Guessed: match at offset 0

Then the match is executed and the remaining lines describe the
 process:

 Matching REx 'a*b+c' against 'abc'
 Setting an EVAL scope, savestack=3
 0 <> <abc> | 1: STAR
 EXACT <a> can match 1 times out of 32767...
 Setting an EVAL scope, savestack=3
 1 <a> <bc> | 4: PLUS
 EXACT can match 1 times out of 32767...
 Setting an EVAL scope, savestack=3
 2 <ab> <c> | 7: EXACT <c>
 3 <abc> <> | 9: END
 Match successful!
 Freeing REx: 'a*b+c'

Each step is of the form n <x> <y>, with <x> the
 part of the string matched and <y> the part not yet
matched. The | 1: STAR says that Perl is at line number 1
 in the compilation list above. See
"Debugging Regular Expressions" in perldebguts for much more detail.

An alternative method of debugging regexps is to embed print
 statements within the regexp. This
provides a blow-by-blow account of
 the backtracking in an alternation:

 "that this" =~ m@(?{print "Start at position ", pos, "\n";})
 t(?{print "t1\n";})
 h(?{print "h1\n";})
 i(?{print "i1\n";})
 s(?{print "s1\n";})
 |
 t(?{print "t2\n";})
 h(?{print "h2\n";})
 a(?{print "a2\n";})
 t(?{print "t2\n";})
 (?{print "Done at position ", pos, "\n";})
 @x;

Perl version 5.18.0 documentation - perlretut

Page 41http://perldoc.perl.org

prints

 Start at position 0
 t1
 h1
 t2
 h2
 a2
 t2
 Done at position 4

BUGS
Code expressions, conditional expressions, and independent expressions
 are experimental. Don't use
them in production code. Yet.

SEE ALSO
This is just a tutorial. For the full story on Perl regular
 expressions, see the perlre regular expressions
reference page.

For more information on the matching m// and substitution s///
 operators, see "Regexp Quote-Like
Operators" in perlop. For
 information on the split operation, see "split" in perlfunc.

For an excellent all-around resource on the care and feeding of
 regular expressions, see the book
Mastering Regular Expressions by
 Jeffrey Friedl (published by O'Reilly, ISBN 1556592-257-3).

AUTHOR AND COPYRIGHT
Copyright (c) 2000 Mark Kvale
 All rights reserved.

This document may be distributed under the same terms as Perl itself.

Acknowledgments
The inspiration for the stop codon DNA example came from the ZIP
 code example in chapter 7 of
Mastering Regular Expressions.

The author would like to thank Jeff Pinyan, Andrew Johnson, Peter
 Haworth, Ronald J Kimball, and
Joe Smith for all their helpful
 comments.

