
Perl version 5.18.0 documentation - perlbs2000

Page 1http://perldoc.perl.org

NAME
perlbs2000 - building and installing Perl for BS2000.

SYNOPSIS
This document will help you Configure, build, test and install Perl
 on BS2000 in the POSIX
subsystem.

DESCRIPTION
This is a ported perl for the POSIX subsystem in BS2000 VERSION OSD
 V3.1A or later. It may work
on other versions, but we started porting
 and testing it with 3.1A and are currently using Version
V4.0A.

You may need the following GNU programs in order to install perl:

gzip on BS2000
We used version 1.2.4, which could be installed out of the box with
 one failure during 'make check'.

bison on BS2000
The yacc coming with BS2000 POSIX didn't work for us. So we had to
 use bison. We had to make a
few changes to perl in order to use the
 pure (reentrant) parser of bison. We used version 1.25, but we
had to
 add a few changes due to EBCDIC. See below for more details
 concerning yacc.

Unpacking Perl Distribution on BS2000
To extract an ASCII tar archive on BS2000 POSIX you need an ASCII
 filesystem (we used the
mountpoint /usr/local/ascii for this). Now
 you extract the archive in the ASCII filesystem without

I/O-conversion:

cd /usr/local/ascii
 export IO_CONVERSION=NO
 gunzip < /usr/local/src/perl.tar.gz | pax -r

You may ignore the error message for the first element of the archive
 (this doesn't look like a tar
archive / skipping to next file...),
 it's only the directory which will be created automatically anyway.

After extracting the archive you copy the whole directory tree to your
 EBCDIC filesystem. This time
you use I/O-conversion:

cd /usr/local/src
 IO_CONVERSION=YES
 cp -r /usr/local/ascii/perl5.005_02 ./

Compiling Perl on BS2000
There is a "hints" file for BS2000 called hints.posix-bc (because
 posix-bc is the OS name given by
`uname`) that specifies the correct
 values for most things. The major problem is (of course) the
EBCDIC
 character set. We have german EBCDIC version.

Because of our problems with the native yacc we used GNU bison to
 generate a pure (=reentrant)
parser for perly.y. So our yacc is
 really the following script:

-----8<-----/usr/local/bin/yacc-----8<-----
 #! /usr/bin/sh

Bison as a reentrant yacc:

save parameters:
 params=""
 while [[$# -gt 1]]; do
 params="$params $1"
 shift
 done

add flag %pure_parser:

tmpfile=/tmp/bison.$$.y
 echo %pure_parser > $tmpfile
 cat $1 >> $tmpfile

call bison:

echo "/usr/local/bin/bison --yacc $params $1\t\t\t(Pure Parser)"
 /usr/local/bin/bison --yacc $params
$tmpfile

Perl version 5.18.0 documentation - perlbs2000

Page 2http://perldoc.perl.org

cleanup:

rm -f $tmpfile
 -----8<----------8<-----

We still use the normal yacc for a2p.y though!!! We made a softlink
 called byacc to distinguish
between the two versions:

ln -s /usr/bin/yacc /usr/local/bin/byacc

We build perl using GNU make. We tried the native make once and it
 worked too.

Testing Perl on BS2000
We still got a few errors during make test. Some of them are the
 result of using bison. Bison prints
parser error instead of syntax
 error, so we may ignore them. The following list shows
 our errors, your
results may differ:

op/numconvert.......FAILED tests 1409-1440
 op/regexp...........FAILED tests 483, 496

op/regexp_noamp.....FAILED tests 483, 496
 pragma/overload.....FAILED tests 152-153, 170-171

pragma/warnings.....FAILED tests 14, 82, 129, 155, 192, 205, 207
 lib/bigfloat........FAILED tests
351-352, 355
 lib/bigfltpm........FAILED tests 354-355, 358
 lib/complex.........FAILED tests 267, 487

lib/dumper..........FAILED tests 43, 45
 Failed 11/231 test scripts, 95.24% okay. 57/10595 subtests
failed, 99.46% okay.

Installing Perl on BS2000
We have no nroff on BS2000 POSIX (yet), so we ignored any errors while
 installing the
documentation.

Using Perl in the Posix-Shell of BS2000
BS2000 POSIX doesn't support the shebang notation
 (#!/usr/local/bin/perl), so you have to
use the following lines
 instead:

: # use perl
 eval 'exec /usr/local/bin/perl -S $0 ${1+"$@"}'
 if $running_under_some_shell;

Using Perl in "native" BS2000
We don't have much experience with this yet, but try the following:

Copy your Perl executable to a BS2000 LLM using bs2cp:

bs2cp /usr/local/bin/perl 'bs2:perl(perl,l)'

Now you can start it with the following (SDF) command:

/START-PROG FROM-FILE=*MODULE(PERL,PERL),PROG-MODE=*ANY,RUN-MODE=*ADV

First you get the BS2000 commandline prompt ('*'). Here you may enter
 your parameters, e.g. -e
'print "Hello World!\\n";' (note the
 double backslash!) or -w and the name of your Perl
script.
 Filenames starting with / are searched in the Posix filesystem,
 others are searched in the
BS2000 filesystem. You may even use
 wildcards if you put a % in front of your filename (e.g. -w

checkfiles.pl %*.c). Read your C/C++ manual for additional
 possibilities of the commandline
prompt (look for
 PARAMETER-PROMPTING).

Floating point anomalies on BS2000
There appears to be a bug in the floating point implementation on BS2000 POSIX
 systems such that
calling int() on the product of a number and a small
 magnitude number is not the same as calling int()
on the quotient of
 that number and a large magnitude number. For example, in the following
 Perl
code:

 my $x = 100000.0;
 my $y = int($x * 1e-5) * 1e5; # '0'
 my $z = int($x / 1e+5) * 1e5; # '100000'

Perl version 5.18.0 documentation - perlbs2000

Page 3http://perldoc.perl.org

 print "\$y is $y and \$z is $z\n"; # $y is 0 and $z is 100000

Although one would expect the quantities $y and $z to be the same and equal
 to 100000 they will
differ and instead will be 0 and 100000 respectively.

Using PerlIO and different encodings on ASCII and EBCDIC partitions
Since version 5.8 Perl uses the new PerlIO on BS2000. This enables
 you using different encodings
per IO channel. For example you may use

 use Encode;
 open($f, ">:encoding(ascii)", "test.ascii");
 print $f "Hello World!\n";
 open($f, ">:encoding(posix-bc)", "test.ebcdic");
 print $f "Hello World!\n";
 open($f, ">:encoding(latin1)", "test.latin1");
 print $f "Hello World!\n";
 open($f, ">:encoding(utf8)", "test.utf8");
 print $f "Hello World!\n";

to get two files containing "Hello World!\n" in ASCII, EBCDIC, ISO
 Latin-1 (in this example identical to
ASCII) respective UTF-EBCDIC (in
 this example identical to normal EBCDIC). See the documentation
of
 Encode::PerlIO for details.

As the PerlIO layer uses raw IO internally, all this totally ignores
 the type of your filesystem (ASCII or
EBCDIC) and the IO_CONVERSION
 environment variable. If you want to get the old behavior, that
the
 BS2000 IO functions determine conversion depending on the filesystem
 PerlIO still is your friend.
You use IO_CONVERSION as usual and tell
 Perl, that it should use the native IO layer:

 export IO_CONVERSION=YES
 export PERLIO=stdio

Now your IO would be ASCII on ASCII partitions and EBCDIC on EBCDIC
 partitions. See the
documentation of PerlIO (without Encode::!)
 for further possibilities.

AUTHORS
Thomas Dorner

SEE ALSO
INSTALL, perlport.

Mailing list
If you are interested in the z/OS (formerly known as OS/390)
 and POSIX-BC (BS2000) ports of Perl
then see the perl-mvs mailing list.
 To subscribe, send an empty message to
perl-mvs-subscribe@perl.org.

See also:

 http://lists.perl.org/list/perl-mvs.html

There are web archives of the mailing list at:

 http://www.xray.mpe.mpg.de/mailing-lists/perl-mvs/
 http://archive.develooper.com/perl-mvs@perl.org/

Perl version 5.18.0 documentation - perlbs2000

Page 4http://perldoc.perl.org

HISTORY
This document was originally written by Thomas Dorner for the 5.005
 release of Perl.

This document was podified for the 5.6 release of perl 11 July 2000.

