
Perl version 5.18.0 documentation - perl581delta

Page 1http://perldoc.perl.org

NAME
perl581delta - what is new for perl v5.8.1

DESCRIPTION
This document describes differences between the 5.8.0 release and
 the 5.8.1 release.

If you are upgrading from an earlier release such as 5.6.1, first read
 the perl58delta, which describes
differences between 5.6.0 and
 5.8.0.

In case you are wondering about 5.6.1, it was bug-fix-wise rather
 identical to the development release
5.7.1. Confused? This timeline
 hopefully helps a bit: it lists the new major releases, their maintenance

releases, and the development releases.

 New Maintenance Development

 5.6.0 2000-Mar-22
 5.7.0 2000-Sep-02
 5.6.1 2001-Apr-08
 5.7.1 2001-Apr-09
 5.7.2 2001-Jul-13
 5.7.3 2002-Mar-05
 5.8.0 2002-Jul-18
 5.8.1 2003-Sep-25

Incompatible Changes
Hash Randomisation

Mainly due to security reasons, the "random ordering" of hashes
 has been made even more random.
Previously while the order of hash
 elements from keys(), values(), and each() was essentially random,
it was still repeatable. Now, however, the order varies between
 different runs of Perl.

Perl has never guaranteed any ordering of the hash keys, and the
 ordering has already changed
several times during the lifetime of
 Perl 5. Also, the ordering of hash keys has always been, and

continues to be, affected by the insertion order.

The added randomness may affect applications.

One possible scenario is when output of an application has included
 hash data. For example, if you
have used the Data::Dumper module to
 dump data into different files, and then compared the files to
see
 whether the data has changed, now you will have false positives since
 the order in which hashes
are dumped will vary. In general the cure
 is to sort the keys (or the values); in particular for
Data::Dumper to
 use the Sortkeys option. If some particular order is really
 important, use tied
hashes: for example the Tie::IxHash module
 which by default preserves the order in which the hash
elements
 were added.

More subtle problem is reliance on the order of "global destruction".
 That is what happens at the end
of execution: Perl destroys all data
 structures, including user data. If your destructors (the DESTROY

subroutines) have assumed any particular ordering to the global
 destruction, there might be problems
ahead. For example, in a
 destructor of one object you cannot assume that objects of any other
 class
are still available, unless you hold a reference to them.
 If the environment variable
PERL_DESTRUCT_LEVEL is set to a non-zero
 value, or if Perl is exiting a spawned thread, it will
also destruct
 the ordinary references and the symbol tables that are no longer in use.
 You can't call a
class method or an ordinary function on a class that
 has been collected that way.

The hash randomisation is certain to reveal hidden assumptions about
 some particular ordering of
hash elements, and outright bugs: it
 revealed a few bugs in the Perl core and core modules.

To disable the hash randomisation in runtime, set the environment
 variable PERL_HASH_SEED to 0

Perl version 5.18.0 documentation - perl581delta

Page 2http://perldoc.perl.org

(zero) before running Perl (for more
 information see "PERL_HASH_SEED" in perlrun), or to disable
the feature
 completely in compile time, compile with -DNO_HASH_SEED (see INSTALL).

See "Algorithmic Complexity Attacks" in perlsec for the original
 rationale behind this change.

UTF-8 On Filehandles No Longer Activated By Locale
In Perl 5.8.0 all filehandles, including the standard filehandles,
 were implicitly set to be in Unicode
UTF-8 if the locale settings
 indicated the use of UTF-8. This feature caused too many problems,
 so
the feature was turned off and redesigned: see Core Enhancements.

Single-number v-strings are no longer v-strings before "=>"
The version strings or v-strings (see "Version Strings" in perldata)
 feature introduced in Perl 5.6.0 has
been a source of some confusion--
 especially when the user did not want to use it, but Perl thought it

knew better. Especially troublesome has been the feature that before
 a "=>" a version string (a "v"
followed by digits) has been interpreted
 as a v-string instead of a string literal. In other words:

	 %h = (v65 => 42);

has meant since Perl 5.6.0

	 %h = ('A' => 42);

(at least in platforms of ASCII progeny) Perl 5.8.1 restores the
 more natural interpretation

	 %h = ('v65' => 42);

The multi-number v-strings like v65.66 and 65.66.67 still continue to
 be v-strings in Perl 5.8.

(Win32) The -C Switch Has Been Repurposed
The -C switch has changed in an incompatible way. The old semantics
 of this switch only made sense
in Win32 and only in the "use utf8"
 universe in 5.6.x releases, and do not make sense for the Unicode
implementation in 5.8.0. Since this switch could not have been used
 by anyone, it has been
repurposed. The behavior that this switch
 enabled in 5.6.x releases may be supported in a
transparent,
 data-dependent fashion in a future release.

For the new life of this switch, see UTF-8 no longer default under UTF-8 locales, and "-C" in perlrun.

(Win32) The /d Switch Of cmd.exe
Perl 5.8.1 uses the /d switch when running the cmd.exe shell
 internally for system(), backticks, and
when opening pipes to external
 programs. The extra switch disables the execution of AutoRun
commands
 from the registry, which is generally considered undesirable when
 running external
programs. If you wish to retain compatibility with
 the older behavior, set PERL5SHELL in your
environment to cmd /x/c.

Core Enhancements
UTF-8 no longer default under UTF-8 locales

In Perl 5.8.0 many Unicode features were introduced. One of them
 was found to be of more nuisance
than benefit: the automagic
 (and silent) "UTF-8-ification" of filehandles, including the
 standard
filehandles, if the user's locale settings indicated
 use of UTF-8.

For example, if you had en_US.UTF-8 as your locale, your STDIN and
 STDOUT were automatically
"UTF-8", in other words an implicit
 binmode(..., ":utf8") was made. This meant that trying to print, say,

chr(0xff), ended up printing the bytes 0xc3 0xbf. Hardly what
 you had in mind unless you were aware
of this feature of Perl 5.8.0.
 The problem is that the vast majority of people weren't: for example
 in
RedHat releases 8 and 9 the default locale setting is UTF-8, so
 all RedHat users got UTF-8
filehandles, whether they wanted it or not.
 The pain was intensified by the Unicode implementation of
Perl 5.8.0
 (still) having nasty bugs, especially related to the use of s/// and
 tr///. (Bugs that have been

Perl version 5.18.0 documentation - perl581delta

Page 3http://perldoc.perl.org

fixed in 5.8.1)

Therefore a decision was made to backtrack the feature and change it
 from implicit silent default to
explicit conscious option. The new
 Perl command line option -C and its counterpart environment

variable PERL_UNICODE can now be used to control how Perl and Unicode
 interact at interfaces like
I/O and for example the command line
 arguments. See "-C" in perlrun and "PERL_UNICODE" in
perlrun for more
 information.

Unsafe signals again available
In Perl 5.8.0 the so-called "safe signals" were introduced. This
 means that Perl no longer handles
signals immediately but instead
 "between opcodes", when it is safe to do so. The earlier immediate

handling easily could corrupt the internal state of Perl, resulting
 in mysterious crashes.

However, the new safer model has its problems too. Because now an
 opcode, a basic unit of Perl
execution, is never interrupted but
 instead let to run to completion, certain operations that can take a

long time now really do take a long time. For example, certain
 network operations have their own
blocking and timeout mechanisms, and
 being able to interrupt them immediately would be nice.

Therefore perl 5.8.1 introduces a "backdoor" to restore the pre-5.8.0
 (pre-5.7.3, really) signal
behaviour. Just set the environment variable
 PERL_SIGNALS to unsafe, and the old immediate (and
unsafe)
 signal handling behaviour returns. See "PERL_SIGNALS" in perlrun
 and "Deferred Signals
(Safe Signals)" in perlipc.

In completely unrelated news, you can now use safe signals with
 POSIX::SigAction. See
"POSIX::SigAction" in POSIX.

Tied Arrays with Negative Array Indices
Formerly, the indices passed to FETCH, STORE, EXISTS, and DELETE methods in tied array class
were always non-negative. If
 the actual argument was negative, Perl would call FETCHSIZE implicitly

and add the result to the index before passing the result to the tied
 array method. This behaviour is
now optional. If the tied array class
 contains a package variable named $NEGATIVE_INDICES which
is set to
 a true value, negative values will be passed to FETCH, STORE, EXISTS, and DELETE
unchanged.

local ${$x}
The syntaxes

	 local ${$x}
	 local @{$x}
	 local %{$x}

now do localise variables, given that the $x is a valid variable name.

Unicode Character Database 4.0.0
The copy of the Unicode Character Database included in Perl 5.8 has
 been updated to 4.0.0 from
3.2.0. This means for example that the
 Unicode character properties are as in Unicode 4.0.0.

Deprecation Warnings
There is one new feature deprecation. Perl 5.8.0 forgot to add
 some deprecation warnings, these
warnings have now been added.
 Finally, a reminder of an impending feature removal.

(Reminder) Pseudo-hashes are deprecated (really)

Pseudo-hashes were deprecated in Perl 5.8.0 and will be removed in
 Perl 5.10.0, see perl58delta for
details. Each attempt to access
 pseudo-hashes will trigger the warning Pseudo-hashes are
deprecated.
 If you really want to continue using pseudo-hashes but not to see the
 deprecation
warnings, use:

 no warnings 'deprecated';

Perl version 5.18.0 documentation - perl581delta

Page 4http://perldoc.perl.org

Or you can continue to use the fields pragma, but please don't
 expect the data structures to be
pseudohashes any more.

(Reminder) 5.005-style threads are deprecated (really)

5.005-style threads (activated by use Thread;) were deprecated in
 Perl 5.8.0 and will be removed
after Perl 5.8, see perl58delta for
 details. Each 5.005-style thread creation will trigger the warning
5.005 threads are deprecated. If you really want to continue
 using the 5.005 threads but not
to see the deprecation warnings, use:

 no warnings 'deprecated';

(Reminder) The $* variable is deprecated (really)

The $* variable controlling multi-line matching has been deprecated
 and will be removed after 5.8.
The variable has been deprecated for a
 long time, and a deprecation warning Use of $* is
deprecated is given,
 now the variable will just finally be removed. The functionality has
 been
supplanted by the /s and /m modifiers on pattern matching.
 If you really want to continue using the
$*-variable but not to see
 the deprecation warnings, use:

 no warnings 'deprecated';

Miscellaneous Enhancements
map in void context is no longer expensive. map is now context
 aware, and will not construct a list if
called in void context.

If a socket gets closed by the server while printing to it, the client
 now gets a SIGPIPE. While this new
feature was not planned, it fell
 naturally out of PerlIO changes, and is to be considered an accidental

feature.

PerlIO::get_layers(FH) returns the names of the PerlIO layers
 active on a filehandle.

PerlIO::via layers can now have an optional UTF8 method to
 indicate whether the layer wants to
"auto-:utf8" the stream.

utf8::is_utf8() has been added as a quick way to test whether
 a scalar is encoded internally in UTF-8
(Unicode).

Modules and Pragmata
Updated Modules And Pragmata

The following modules and pragmata have been updated since Perl 5.8.0:

base

B::Bytecode

In much better shape than it used to be. Still far from perfect, but
 maybe worth a try.

B::Concise

B::Deparse

Benchmark

An optional feature, :hireswallclock, now allows for high
 resolution wall clock times (uses
Time::HiRes).

ByteLoader

See B::Bytecode.

bytes

Now has bytes::substr.

Perl version 5.18.0 documentation - perl581delta

Page 5http://perldoc.perl.org

CGI

charnames

One can now have custom character name aliases.

CPAN

There is now a simple command line frontend to the CPAN.pm
 module called cpan.

Data::Dumper

A new option, Pair, allows choosing the separator between hash keys
 and values.

DB_File

Devel::PPPort

Digest::MD5

Encode

Significant updates on the encoding pragma functionality
 (tr/// and the DATA filehandle,
formats).

If a filehandle has been marked as to have an encoding, unmappable
 characters are detected
already during input, not later (when the
 corrupted data is being used).

The ISO 8859-6 conversion table has been corrected (the 0x30..0x39
 erroneously mapped to
U+0660..U+0669, instead of U+0030..U+0039). The
 GSM 03.38 conversion did not handle
escape sequences correctly. The
 UTF-7 encoding has been added (making Encode
feature-complete with
 Unicode::String).

fields

libnet

Math::BigInt

A lot of bugs have been fixed since v1.60, the version included in Perl
 v5.8.0. Especially
noteworthy are the bug in Calc that caused div and mod to
 fail for some large values, and the
fixes to the handling of bad inputs.

Some new features were added, e.g. the broot() method, you can now pass
 parameters to
config() to change some settings at runtime, and it is now
 possible to trap the creation of NaN
and infinity.

As usual, some optimizations took place and made the math overall a tad
 faster. In some
cases, quite a lot faster, actually. Especially alternative
 libraries like Math::BigInt::GMP benefit
from this. In addition, a lot of the
 quite clunky routines like fsqrt() and flog() are now much
much faster.

MIME::Base64

NEXT

Diamond inheritance now works.

Net::Ping

PerlIO::scalar

Reading from non-string scalars (like the special variables, see perlvar) now works.

podlators

Pod::LaTeX

PodParsers

Pod::Perldoc

Complete rewrite. As a side-effect, no longer refuses to startup when
 run by root.

Perl version 5.18.0 documentation - perl581delta

Page 6http://perldoc.perl.org

Scalar::Util

New utilities: refaddr, isvstring, looks_like_number, set_prototype.

Storable

Can now store code references (via B::Deparse, so not foolproof).

strict

Earlier versions of the strict pragma did not check the parameters
 implicitly passed to its
"import" (use) and "unimport" (no) routine.
 This caused the false idiom such as:

 use strict qw(@ISA);
 @ISA = qw(Foo);

This however (probably) raised the false expectation that the strict
 refs, vars and subs were
being enforced (and that @ISA was somehow
 "declared"). But the strict refs, vars, and subs
are not enforced
 when using this false idiom.

Starting from Perl 5.8.1, the above will cause an error to be
 raised. This may cause programs
which used to execute seemingly
 correctly without warnings and errors to fail when run under
5.8.1.
 This happens because

 use strict qw(@ISA);

will now fail with the error:

 Unknown 'strict' tag(s) '@ISA'

The remedy to this problem is to replace this code with the correct idiom:

 use strict;
 use vars qw(@ISA);
 @ISA = qw(Foo);

Term::ANSIcolor

Test::Harness

Now much more picky about extra or missing output from test scripts.

Test::More

Test::Simple

Text::Balanced

Time::HiRes

Use of nanosleep(), if available, allows mixing subsecond sleeps with
 alarms.

threads

Several fixes, for example for join() problems and memory
 leaks. In some platforms (like
Linux) that use glibc the minimum memory
 footprint of one ithread has been reduced by
several hundred kilobytes.

threads::shared

Many memory leaks have been fixed.

Unicode::Collate

Unicode::Normalize

Win32::GetFolderPath

Win32::GetOSVersion

Now returns extra information.

Perl version 5.18.0 documentation - perl581delta

Page 7http://perldoc.perl.org

Utility Changes
The h2xs utility now produces a more modern layout: Foo-Bar/lib/Foo/Bar.pm instead of
Foo/Bar/Bar.pm.
 Also, the boilerplate test is now called t/Foo-Bar.t
 instead of t/1.t.

The Perl debugger (lib/perl5db.pl) has now been extensively
 documented and bugs found while
documenting have been fixed.

perldoc has been rewritten from scratch to be more robust and
 feature rich.

perlcc -B works now at least somewhat better, while perlcc -c
 is rather more broken. (The Perl
compiler suite as a whole continues
 to be experimental.)

New Documentation
perl573delta has been added to list the differences between the
 (now quite obsolete) development
releases 5.7.2 and 5.7.3.

perl58delta has been added: it is the perldelta of 5.8.0, detailing
 the differences between 5.6.0 and
5.8.0.

perlartistic has been added: it is the Artistic License in pod format,
 making it easier for modules to
refer to it.

perlcheat has been added: it is a Perl cheat sheet.

perlgpl has been added: it is the GNU General Public License in pod
 format, making it easier for
modules to refer to it.

perlmacosx has been added to tell about the installation and use
 of Perl in Mac OS X.

perlos400 has been added to tell about the installation and use
 of Perl in OS/400 PASE.

perlreref has been added: it is a regular expressions quick reference.

Installation and Configuration Improvements
The Unix standard Perl location, /usr/bin/perl, is no longer
 overwritten by default if it exists. This
change was very prudent
 because so many Unix vendors already provide a /usr/bin/perl,
 but
simultaneously many system utilities may depend on that
 exact version of Perl, so better not to
overwrite it.

One can now specify installation directories for site and vendor man
 and HTML pages, and site and
vendor scripts. See INSTALL.

One can now specify a destination directory for Perl installation
 by specifying the DESTDIR variable
for make install. (This feature
 is slightly different from the previous Configure
-Dinstallprefix=....)
 See INSTALL.

gcc versions 3.x introduced a new warning that caused a lot of noise
 during Perl compilation: gcc
-Ialreadyknowndirectory (warning:
 changing search order). This warning has now
been avoided by
 Configure weeding out such directories before the compilation.

One can now build subsets of Perl core modules by using the
 Configure flags
-Dnoextensions=... and -Donlyextensions=...,
 see INSTALL.

Platform-specific enhancements
In Cygwin Perl can now be built with threads (Configure -Duseithreads).
 This works with both
Cygwin 1.3.22 and Cygwin 1.5.3.

In newer FreeBSD releases Perl 5.8.0 compilation failed because of
 trying to use malloc.h, which in
FreeBSD is just a dummy file, and
 a fatal error to even try to use. Now malloc.h is not used.

Perl is now known to build also in Hitachi HI-UXMPP.

Perl version 5.18.0 documentation - perl581delta

Page 8http://perldoc.perl.org

Perl is now known to build again in LynxOS.

Mac OS X now installs with Perl version number embedded in
 installation directory names for easier
upgrading of user-compiled
 Perl, and the installation directories in general are more standard.
 In other
words, the default installation no longer breaks the
 Apple-provided Perl. On the other hand, with
Configure -Dprefix=/usr
 you can now really replace the Apple-supplied Perl (please be
careful).

Mac OS X now builds Perl statically by default. This change was done
 mainly for faster startup times.
The Apple-provided Perl is still
 dynamically linked and shared, and you can enable the sharedness for
your own Perl builds by Configure -Duseshrplib.

Perl has been ported to IBM's OS/400 PASE environment. The best way
 to build a Perl for PASE is to
use an AIX host as a cross-compilation
 environment. See README.os400.

Yet another cross-compilation option has been added: now Perl builds
 on OpenZaurus, an Linux
distribution based on Mandrake + Embedix for
 the Sharp Zaurus PDA. See the Cross/README file.

Tru64 when using gcc 3 drops the optimisation for toke.c to -O2
 because of gigantic memory use with
the default -O3.

Tru64 can now build Perl with the newer Berkeley DBs.

Building Perl on WinCE has been much enhanced, see README.ce
 and README.perlce.

Selected Bug Fixes
Closures, eval and lexicals

There have been many fixes in the area of anonymous subs, lexicals and
 closures. Although this
means that Perl is now more "correct", it is
 possible that some existing code will break that happens
to rely on
 the faulty behaviour. In practice this is unlikely unless your code
 contains a very complex
nesting of anonymous subs, evals and lexicals.

Generic fixes
If an input filehandle is marked :utf8 and Perl sees illegal UTF-8
 coming in when doing <FH>, if
warnings are enabled a warning is
 immediately given - instead of being silent about it and Perl being

unhappy about the broken data later. (The :encoding(utf8) layer
 also works the same way.)

binmode(SOCKET, ":utf8") only worked on the input side, not on the
 output side of the socket. Now it
works both ways.

For threaded Perls certain system database functions like getpwent()
 and getgrent() now grow their
result buffer dynamically, instead of
 failing. This means that at sites with lots of users and groups the

functions no longer fail by returning only partial results.

Perl 5.8.0 had accidentally broken the capability for users
 to define their own uppercase<->lowercase
Unicode mappings
 (as advertised by the Camel). This feature has been fixed and
 is also documented
better.

In 5.8.0 this

	 $some_unicode .= <FH>;

didn't work correctly but instead corrupted the data. This has now
 been fixed.

Tied methods like FETCH etc. may now safely access tied values, i.e.
 resulting in a recursive call to
FETCH etc. Remember to break the
 recursion, though.

At startup Perl blocks the SIGFPE signal away since there isn't much
 Perl can do about it. Previously
this blocking was in effect also for
 programs executed from within Perl. Now Perl restores the original

SIGFPE handling routine, whatever it was, before running external
 programs.

Perl version 5.18.0 documentation - perl581delta

Page 9http://perldoc.perl.org

Linenumbers in Perl scripts may now be greater than 65536, or 2**16.
 (Perl scripts have always been
able to be larger than that, it's just
 that the linenumber for reported errors and warnings have
"wrapped
 around".) While scripts that large usually indicate a need to rethink
 your code a bit, such
Perl scripts do exist, for example as results
 from generated code. Now linenumbers can go all the way
to
 4294967296, or 2**32.

Platform-specific fixes
Linux

Setting $0 works again (with certain limitations that
 Perl cannot do much about: see "$0" in
perlvar)

HP-UX

Setting $0 now works.

VMS

Configuration now tests for the presence of poll(), and IO::Poll
 now uses the
vendor-supplied function if detected.

A rare access violation at Perl start-up could occur if the Perl image was
 installed with
privileges or if there was an identifier with the
 subsystem attribute set in the process's
rightslist. Either of these
 circumstances triggered tainting code that contained a pointer bug.
The faulty pointer arithmetic has been fixed.

The length limit on values (not keys) in the %ENV hash has been raised
 from 255 bytes to
32640 bytes (except when the PERL_ENV_TABLES setting
 overrides the default use of
logical names for %ENV). If it is
 necessary to access these long values from outside Perl, be
aware that
 they are implemented using search list logical names that store the
 value in pieces,
each 255-byte piece (up to 128 of them) being an
 element in the search list. When doing a
lookup in %ENV from within
 Perl, the elements are combined into a single value. The existing

VMS-specific ability to access individual elements of a search list
 logical name via the
$ENV{'foo;N'} syntax (where N is the search list
 index) is unimpaired.

The piping implementation now uses local rather than global DCL
 symbols for inter-process
communication.

File::Find could become confused when navigating to a relative
 directory whose name collided
with a logical name. This problem has
 been corrected by adding directory syntax to relative
path names, thus
 preventing logical name translation.

Win32

A memory leak in the fork() emulation has been fixed.

The return value of the ioctl() built-in function was accidentally
 broken in 5.8.0. This has been
corrected.

The internal message loop executed by perl during blocking operations
 sometimes interfered
with messages that were external to Perl.
 This often resulted in blocking operations
terminating prematurely or
 returning incorrect results, when Perl was executing under
environments
 that could generate Windows messages. This has been corrected.

Pipes and sockets are now automatically in binary mode.

The four-argument form of select() did not preserve $! (errno) properly
 when there were errors
in the underlying call. This is now fixed.

The "CR CR LF" problem of has been fixed, binmode(FH, ":crlf")
 is now effectively a no-op.

Perl version 5.18.0 documentation - perl581delta

Page 10http://perldoc.perl.org

New or Changed Diagnostics
All the warnings related to pack() and unpack() were made more
 informative and consistent.

Changed "A thread exited while %d threads were running"
The old version

 A thread exited while %d other threads were still running

was misleading because the "other" included also the thread giving
 the warning.

Removed "Attempt to clear a restricted hash"
It is not illegal to clear a restricted hash, so the warning
 was removed.

New "Illegal declaration of anonymous subroutine"
You must specify the block of code for sub.

Changed "Invalid range "%s" in transliteration operator"
The old version

 Invalid [] range "%s" in transliteration operator

was simply wrong because there are no "[] ranges" in tr///.

New "Missing control char name in \c"
Self-explanatory.

New "Newline in left-justified string for %s"
The padding spaces would appear after the newline, which is
 probably not what you had in mind.

New "Possible precedence problem on bitwise %c operator"
If you think this

 $x & $y == 0

tests whether the bitwise AND of $x and $y is zero,
 you will like this warning.

New "Pseudo-hashes are deprecated"
This warning should have been already in 5.8.0, since they are.

New "read() on %s filehandle %s"
You cannot read() (or sysread()) from a closed or unopened filehandle.

New "5.005 threads are deprecated"
This warning should have been already in 5.8.0, since they are.

New "Tied variable freed while still in use"
Something pulled the plug on a live tied variable, Perl plays
 safe by bailing out.

New "To%s: illegal mapping '%s'"
An illegal user-defined Unicode casemapping was specified.

New "Use of freed value in iteration"
Something modified the values being iterated over. This is not good.

Perl version 5.18.0 documentation - perl581delta

Page 11http://perldoc.perl.org

Changed Internals
These news matter to you only if you either write XS code or like to
 know about or hack Perl internals
(using Devel::Peek or any of the B:: modules counts), or like to run Perl with the -D option.

The embedding examples of perlembed have been reviewed to be
 up to date and consistent: for
example, the correct use of
 PERL_SYS_INIT3() and PERL_SYS_TERM().

Extensive reworking of the pad code (the code responsible
 for lexical variables) has been conducted
by Dave Mitchell.

Extensive work on the v-strings by John Peacock.

UTF-8 length and position cache: to speed up the handling of Unicode
 (UTF-8) scalars, a cache was
introduced. Potential problems exist if
 an extension bypasses the official APIs and directly modifies
the PV
 of an SV: the UTF-8 cache does not get cleared as it should.

APIs obsoleted in Perl 5.8.0, like sv_2pv, sv_catpvn, sv_catsv,
 sv_setsv, are again available.

Certain Perl core C APIs like cxinc and regatom are no longer
 available at all to code outside the Perl
core of the Perl core
 extensions. This is intentional. They never should have been
 available with the
shorter names, and if you application depends on
 them, you should (be ashamed and) contact
perl5-porters to discuss
 what are the proper APIs.

Certain Perl core C APIs like Perl_list are no longer available
 without their Perl_ prefix. If your
XS module stops working
 because some functions cannot be found, in many cases a simple fix is
 to
add the Perl_ prefix to the function and the thread context aTHX_ as the first argument of the
function call. This is also how
 it should always have been done: letting the Perl_-less forms to leak

from the core was an accident. For cleaner embedding you can also
 force this for all APIs by defining
at compile time the cpp define
 PERL_NO_SHORT_NAMES.

Perl_save_bool() has been added.

Regexp objects (those created with qr) now have S-magic rather than
 R-magic. This fixed regexps of
the form /...(??{...;$x})/ to no
 longer ignore changes made to $x. The S-magic avoids dropping
 the
caching optimization and making (??{...}) constructs obscenely
 slow (and consequently useless). See
also "Magic Variables" in perlguts.
 Regexp::Copy was affected by this change.

The Perl internal debugging macros DEBUG() and DEB() have been renamed
 to PERL_DEBUG()
and PERL_DEB() to avoid namespace conflicts.

-DL removed (the leaktest had been broken and unsupported for years,
 use alternative debugging
mallocs or tools like valgrind and Purify).

Verbose modifier v added for -DXv and -Dsv, see perlrun.

New Tests
In Perl 5.8.0 there were about 69000 separate tests in about 700 test files,
 in Perl 5.8.1 there are
about 77000 separate tests in about 780 test files.
 The exact numbers depend on the Perl
configuration and on the operating
 system platform.

Known Problems
The hash randomisation mentioned in Incompatible Changes is definitely
 problematic: it will wake
dormant bugs and shake out bad assumptions.

If you want to use mod_perl 2.x with Perl 5.8.1, you will need
 mod_perl-1.99_10 or higher. Earlier
versions of mod_perl 2.x
 do not work with the randomised hashes. (mod_perl 1.x works fine.)
 You will
also need Apache::Test 1.04 or higher.

Many of the rarer platforms that worked 100% or pretty close to it
 with perl 5.8.0 have been left a little
bit untended since their
 maintainers have been otherwise busy lately, and therefore there will
 be more

Perl version 5.18.0 documentation - perl581delta

Page 12http://perldoc.perl.org

failures on those platforms. Such platforms include Mac OS
 Classic, IBM z/OS (and other EBCDIC
platforms), and NetWare. The most
 common Perl platforms (Unix and Unix-like, Microsoft platforms,
and
 VMS) have large enough testing and expert population that they are
 doing well.

Tied hashes in scalar context
Tied hashes do not currently return anything useful in scalar context,
 for example when used as
boolean tests:

	 if (%tied_hash) { ... }

The current nonsensical behaviour is always to return false,
 regardless of whether the hash is empty
or has elements.

The root cause is that there is no interface for the implementors of
 tied hashes to implement the
behaviour of a hash in scalar context.

Net::Ping 450_service and 510_ping_udp failures
The subtests 9 and 18 of lib/Net/Ping/t/450_service.t, and the
 subtest 2 of
lib/Net/Ping/t/510_ping_udp.t might fail if you have
 an unusual networking setup. For example in the
latter case the
 test is trying to send a UDP ping to the IP address 127.0.0.1.

B::C
The C-generating compiler backend B::C (the frontend being perlcc -c) is even more broken than
it used to be because of
 the extensive lexical variable changes. (The good news is that
 B::Bytecode
and ByteLoader are better than they used to be.)

Platform Specific Problems
EBCDIC Platforms

IBM z/OS and other EBCDIC platforms continue to be problematic
 regarding Unicode support. Many
Unicode tests are skipped when
 they really should be fixed.

Cygwin 1.5 problems
In Cygwin 1.5 the io/tell and op/sysio tests have failures for
 some yet unknown reason. In 1.5.5 the
threads tests stress_cv,
 stress_re, and stress_string are failing unless the environment
 variable
PERLIO is set to "perlio" (which makes also the io/tell
 failure go away).

Perl 5.8.1 does build and work well with Cygwin 1.3: with (uname -a) CYGWIN_NT-5.0 ...
1.3.22(0.78/3/2) 2003-03-18 09:20 i686 ...
 a 100% "make test" was achieved with
Configure -des -Duseithreads.

HP-UX: HP cc warnings about sendfile and sendpath
With certain HP C compiler releases (e.g. B.11.11.02) you will
 get many warnings like this (lines
wrapped for easier reading):

 cc: "/usr/include/sys/socket.h", line 504: warning 562:
 Redeclaration of "sendfile" with a different storage class specifier:
 "sendfile" will have internal linkage.
 cc: "/usr/include/sys/socket.h", line 505: warning 562:
 Redeclaration of "sendpath" with a different storage class specifier:
 "sendpath" will have internal linkage.

The warnings show up both during the build of Perl and during certain
 lib/ExtUtils tests that invoke the
C compiler. The warning, however,
 is not serious and can be ignored.

Perl version 5.18.0 documentation - perl581delta

Page 13http://perldoc.perl.org

IRIX: t/uni/tr_7jis.t falsely failing
The test t/uni/tr_7jis.t is known to report failure under 'make test'
 or the test harness with certain
releases of IRIX (at least IRIX 6.5
 and MIPSpro Compilers Version 7.3.1.1m), but if run manually the
test
 fully passes.

Mac OS X: no usemymalloc
The Perl malloc (-Dusemymalloc) does not work at all in Mac OS X.
 This is not that serious, though,
since the native malloc works just
 fine.

Tru64: No threaded builds with GNU cc (gcc)
In the latest Tru64 releases (e.g. v5.1B or later) gcc cannot be used
 to compile a threaded Perl
(-Duseithreads) because the system <pthread.h> file doesn't know about gcc.

Win32: sysopen, sysread, syswrite
As of the 5.8.0 release, sysopen()/sysread()/syswrite() do not behave
 like they used to in 5.6.1 and
earlier with respect to "text" mode.
 These built-ins now always operate in "binary" mode (even if
sysopen()
 was passed the O_TEXT flag, or if binmode() was used on the file
 handle). Note that this
issue should only make a difference for disk
 files, as sockets and pipes have always been in "binary"
mode in the
 Windows port. As this behavior is currently considered a bug,
 compatible behavior may
be re-introduced in a future release. Until
 then, the use of sysopen(), sysread() and syswrite() is not
supported
 for "text" mode operations.

Future Directions
The following things might happen in future. The first publicly
 available releases having these
characteristics will be the developer
 releases Perl 5.9.x, culminating in the Perl 5.10.0 release. These

are our best guesses at the moment: we reserve the right to rethink.

PerlIO will become The Default. Currently (in Perl 5.8.x) the stdio
 library is still used if Perl
thinks it can use certain tricks to
 make stdio go really fast. For future releases our goal is to

make PerlIO go even faster.

A new feature called assertions will be available. This means that
 one can have code called
assertions sprinkled in the code: usually
 they are optimised away, but they can be enabled
with the -A option.

A new operator // (defined-or) will be available. This means that
 one will be able to say

 $a // $b

instead of

 defined $a ? $a : $b

and

 $c //= $d;

instead of

 $c = $d unless defined $c;

The operator will have the same precedence and associativity as ||.
 A source code patch
against the Perl 5.8.1 sources will be available
 in CPAN as
authors/id/H/HM/HMBRAND/dor-5.8.1.diff.

unpack() will default to unpacking the $_.

Various Copy-On-Write techniques will be investigated in hopes
 of speeding up Perl.

CPANPLUS, Inline, and Module::Build will become core modules.

Perl version 5.18.0 documentation - perl581delta

Page 14http://perldoc.perl.org

The ability to write true lexically scoped pragmas will be introduced.

Work will continue on the bytecompiler and byteloader.

v-strings as they currently exist are scheduled to be deprecated. The
 v-less form (1.2.3) will
become a "version object" when used with use, require, and $VERSION. $^V will also be a
"version object" so the
 printf("%vd",...) construct will no longer be needed. The v-ful version

(v1.2.3) will become obsolete. The equivalence of strings and v-strings (e.g.
 that currently
5.8.0 is equal to "\5\8\0") will go away. There may be no
 deprecation warning for v-strings,
though: it is quite hard to detect when
 v-strings are being used safely, and when they are not.

5.005 Threads Will Be Removed

The $* Variable Will Be Removed
 (it was deprecated a long time ago)

Pseudohashes Will Be Removed

Reporting Bugs
If you find what you think is a bug, you might check the articles
 recently posted to the
comp.lang.perl.misc newsgroup and the perl
 bug database at http://bugs.perl.org/ . There may also be
information at http://www.perl.com/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug
 program included with your
release. Be sure to trim your bug down
 to a tiny but sufficient test case. Your bug report, along with
the
 output of perl -V, will be sent off to perlbug@perl.org to be
 analysed by the Perl porting team.
You can browse and search
 the Perl 5 bugs at http://bugs.perl.org/

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

