
Perl version 5.18.0 documentation - charnames

Page 1http://perldoc.perl.org

NAME
charnames - access to Unicode character names and named character sequences; also define
character names

SYNOPSIS
 use charnames ':full';
 print "\N{GREEK SMALL LETTER SIGMA} is called sigma.\n";
 print "\N{LATIN CAPITAL LETTER E WITH VERTICAL LINE BELOW}",
 " is an officially named sequence of two Unicode characters\n";

 use charnames ':loose';
 print "\N{Greek small-letter sigma}",
 "can be used to ignore case, underscores, most blanks,"
 "and when you aren't sure if the official name has hyphens\n";

 use charnames ':short';
 print "\N{greek:Sigma} is an upper-case sigma.\n";

 use charnames qw(cyrillic greek);
 print "\N{sigma} is Greek sigma, and \N{be} is Cyrillic b.\n";

 use utf8;
 use charnames ":full", ":alias" => {
 e_ACUTE => "LATIN SMALL LETTER E WITH ACUTE",
 mychar => 0xE8000, # Private use area
 "è‡ªè»¢è»Šã•«ä¹—ã‚‹äºº" => "BICYCLIST"
 };
 print "\N{e_ACUTE} is a small letter e with an acute.\n";
 print "\N{mychar} allows me to name private use characters.\n";
 print "And I can create synonyms in other languages,",
 " such as \N{è‡ªè»¢è»Šã•«ä¹—ã‚‹äºº} for "BICYCLIST (U+1F6B4)\n";

 use charnames ();
 print charnames::viacode(0x1234); # prints "ETHIOPIC SYLLABLE SEE"
 printf "%04X", charnames::vianame("GOTHIC LETTER AHSA"); # prints
 # "10330"
 print charnames::vianame("LATIN CAPITAL LETTER A"); # prints 65 on
 # ASCII platforms;
 # 193 on EBCDIC
 print charnames::string_vianame("LATIN CAPITAL LETTER A"); # prints "A"

DESCRIPTION
Pragma use charnames is used to gain access to the names of the
 Unicode characters and named
character sequences, and to allow you to define
 your own character and character sequence names.

All forms of the pragma enable use of the following 3 functions:

charnames::string_vianame(name) for run-time lookup of a
 either a character name or a
named character sequence, returning its string
 representation

charnames::vianame(name) for run-time lookup of a
 character name (but not a named
character sequence) to get its ordinal value
 (code point)

charnames::viacode(code) for run-time lookup of a code point to get its
 Unicode name.

Perl version 5.18.0 documentation - charnames

Page 2http://perldoc.perl.org

Starting in Perl v5.16, any occurrence of \N{CHARNAME} sequences
 in a double-quotish string
automatically loads this module with arguments :full and :short (described below) if it hasn't
already been loaded with
 different arguments, in order to compile the named Unicode character into

position in the string. Prior to v5.16, an explicit use charnames was
 required to enable this usage.
(However, prior to v5.16, the form "use
 charnames ();" did not enable \N{CHARNAME}.)

Note that \N{U+...}, where the ... is a hexadecimal number,
 also inserts a character into a string.

The character it inserts is the one whose code point
 (ordinal value) is equal to the number. For
example, "\N{U+263a}" is
 the Unicode (white background, black foreground) smiley face
 equivalent
to "\N{WHITE SMILING FACE}".
 Also note, \N{...} can mean a regex quantifier instead of a
character
 name, when the ... is a number (or comma separated pair of numbers
 (see
"QUANTIFIERS" in perlreref), and is not related to this pragma.

The charnames pragma supports arguments :full, :loose, :short,
 script names and
customized aliases.

If :full is present, for expansion of \N{CHARNAME}, the string CHARNAME is first looked up in the
list of
 standard Unicode character names.

:loose is a variant of :full which allows CHARNAME to be less
 precisely specified. Details are in
LOOSE MATCHES.

If :short is present, and CHARNAME has the form SCRIPT:CNAME, then CNAME is looked up
 as a
letter in script SCRIPT, as described in the next paragraph.
 Or, if use charnames is used
 with script
name arguments, then for \N{CHARNAME} the name CHARNAME is looked up as a letter in the given
scripts (in the
 specified order). Customized aliases can override these, and are explained in CUSTOM
ALIASES.

For lookup of CHARNAME inside a given script SCRIPTNAME,
 this pragma looks in the table of
standard Unicode names for the names

 SCRIPTNAME CAPITAL LETTER CHARNAME
 SCRIPTNAME SMALL LETTER CHARNAME
 SCRIPTNAME LETTER CHARNAME

If CHARNAME is all lowercase,
 then the CAPITAL variant is ignored, otherwise the SMALL variant
 is
ignored, and both CHARNAME and SCRIPTNAME are converted to all
 uppercase for look-up. Other
than that, both of them follow loose rules if :loose is also specified; strict otherwise.

Note that \N{...} is compile-time; it's a special form of string
 constant used inside double-quotish
strings; this means that you cannot
 use variables inside the \N{...}. If you want similar run-time

functionality, use charnames::string_vianame().

Note, starting in Perl 5.18, the name BELL refers to the Unicode character
 U+1F514, instead of the
traditional U+0007. For the latter, use ALERT
 or BEL.

It is a syntax error to use \N{NAME} where NAME is unknown.

For \N{NAME}, it is a fatal error if use bytes is in effect and the
 input name is that of a character
that won't fit into a byte (i.e., whose
 ordinal is above 255).

Otherwise, any string that includes a \N{charname} or \N{U+code point} will automatically have
Unicode semantics (see "Byte and Character Semantics" in perlunicode).

LOOSE MATCHES
By specifying :loose, Unicode's loose character name matching rules are
 selected instead of the
strict exact match used otherwise.
 That means that CHARNAME doesn't have to be so precisely
specified.
 Upper/lower case doesn't matter (except with scripts as mentioned above), nor
 do any
underscores, and the only hyphens that matter are those at the
 beginning or end of a word in the
name (with one exception: the hyphen in
 U+1180 HANGUL JUNGSEONG O-E does matter).
 Also,

Perl version 5.18.0 documentation - charnames

Page 3http://perldoc.perl.org

blanks not adjacent to hyphens don't matter.
 The official Unicode names are quite variable as to
where they use hyphens
 versus spaces to separate word-like units, and this option allows you to not

have to care as much.
 The reason non-medial hyphens matter is because of cases like
 U+0F60
TIBETAN LETTER -A versus U+0F68 TIBETAN LETTER A.
 The hyphen here is significant, as is
the space before it, and so both must be
 included.

:loose slows down look-ups by a factor of 2 to 3 versus :full, but the trade-off may be worth it to
you. Each individual look-up
 takes very little time, and the results are cached, so the speed difference

would become a factor only in programs that do look-ups of many different
 spellings, and probably
only when those look-ups are through vianame() and string_vianame(), since \N{...}
look-ups are done at compile time.

ALIASES
Starting in Unicode 6.1 and Perl v5.16, Unicode defines many abbreviations and
 names that were
formerly Perl extensions, and some additional ones that Perl
 did not previously accept. The list is
getting too long to reproduce here,
 but you can get the complete list from the Unicode web site:
http://www.unicode.org/Public/UNIDATA/NameAliases.txt.

Earlier versions of Perl accepted almost all the 6.1 names. These were most
 extensively documented
in the v5.14 version of this pod: http://perldoc.perl.org/5.14.0/charnames.html#ALIASES.

CUSTOM ALIASES
You can add customized aliases to standard (:full) Unicode naming
 conventions. The aliases
override any standard definitions, so, if
 you're twisted enough, you can change "\N{LATIN
CAPITAL LETTER A}" to
 mean "B", etc.

Aliases must begin with a character that is alphabetic. After that, each may
 contain any combination
of word (\w) characters, SPACE (U+0020),
 HYPHEN-MINUS (U+002D), LEFT PARENTHESIS
(U+0028), RIGHT PARENTHESIS (U+0029),
 and NO-BREAK SPACE (U+00A0). These last three
should never have been allowed
 in names, and are retained for backwards compatibility only; they
may be
 deprecated and removed in future releases of Perl, so don't use them for new
 names. (More
precisely, the first character of a name you specify must be
 something that matches all of
\p{ID_Start}, \p{Alphabetic}, and \p{Gc=Letter}. This makes sure it is what any
reasonable person would view
 as an alphabetic character. And, the continuation characters that
match \w
 must also match \p{ID_Continue}.) Starting with Perl v5.18, any Unicode
 characters
meeting the above criteria may be used; prior to that only
 Latin1-range characters were acceptable.

An alias can map to either an official Unicode character name (not a loose
 matched name) or to a

numeric code point (ordinal). The latter is useful for assigning names
 to code points in Unicode
private use areas such as U+E800 through
 U+F8FF.
 A numeric code point must be a non-negative
integer or a string beginning
 with "U+" or "0x" with the remainder considered to be a
 hexadecimal
integer. A literal numeric constant must be unsigned; it
 will be interpreted as hex if it has a leading
zero or contains
 non-decimal hex digits; otherwise it will be interpreted as decimal.

Aliases are added either by the use of anonymous hashes:

 use charnames ":alias" => {
 e_ACUTE => "LATIN SMALL LETTER E WITH ACUTE",
 mychar1 => 0xE8000,
 };
 my $str = "\N{e_ACUTE}";

or by using a file containing aliases:

 use charnames ":alias" => "pro";

This will try to read "unicore/pro_alias.pl" from the @INC path. This
 file should return a list in
plain perl:

Perl version 5.18.0 documentation - charnames

Page 4http://perldoc.perl.org

 (
 A_GRAVE => "LATIN CAPITAL LETTER A WITH GRAVE",
 A_CIRCUM => "LATIN CAPITAL LETTER A WITH CIRCUMFLEX",
 A_DIAERES => "LATIN CAPITAL LETTER A WITH DIAERESIS",
 A_TILDE => "LATIN CAPITAL LETTER A WITH TILDE",
 A_BREVE => "LATIN CAPITAL LETTER A WITH BREVE",
 A_RING => "LATIN CAPITAL LETTER A WITH RING ABOVE",
 A_MACRON => "LATIN CAPITAL LETTER A WITH MACRON",
 mychar2 => "U+E8001",
);

Both these methods insert ":full" automatically as the first argument (if no
 other argument is
given), and you can give the ":full" explicitly as
 well, like

 use charnames ":full", ":alias" => "pro";

":loose" has no effect with these. Input names must match exactly, using ":full" rules.

Also, both these methods currently allow only single characters to be named.
 To name a sequence of
characters, use a custom translator (described below).

charnames::string_vianame(name)
This is a runtime equivalent to \N{...}. name can be any expression
 that evaluates to a name
accepted by \N{...} under the :full option to charnames. In addition, any other options for the

controlling "use charnames" in the same scope apply, like :loose or any script list, :short
option, or custom aliases you may have defined.

The only differences are due to the fact that string_vianame is run-time
 and \N{} is compile time.
You can't interpolate inside a \N{}, (so \N{$variable} doesn't work); and if the input name is
unknown, string_vianame returns undef instead of it being a syntax error.

charnames::vianame(name)
This is similar to string_vianame. The main difference is that under most
 circumstances, vianame
returns an ordinal code
 point, whereas string_vianame returns a string. For example,

 printf "U+%04X", charnames::vianame("FOUR TEARDROP-SPOKED ASTERISK");

prints "U+2722".

This leads to the other two differences. Since a single code point is
 returned, the function can't handle
named character sequences, as these are
 composed of multiple characters (it returns undef for
these. And, the code
 point can be that of any
 character, even ones that aren't legal under the use
bytes pragma,

See BUGS for the circumstances in which the behavior differs
 from that described above.

charnames::viacode(code)
Returns the full name of the character indicated by the numeric code.
 For example,

 print charnames::viacode(0x2722);

prints "FOUR TEARDROP-SPOKED ASTERISK".

The name returned is the "best" (defined below) official name or alias
 for the code point, if
 available;
otherwise your custom alias for it, if defined; otherwise undef.
 This means that your alias will only be
returned for code points that don't
 have an official Unicode name (nor alias) such as private use code
points.

Perl version 5.18.0 documentation - charnames

Page 5http://perldoc.perl.org

If you define more than one name for the code point, it is indeterminate
 which one will be returned.

As mentioned, the function returns undef if no name is known for the code
 point. In Unicode the
proper name for these is the empty string, which undef stringifies to. (If you ask for a code point past
the legal
 Unicode maximum of U+10FFFF that you haven't assigned an alias to, you
 get undef plus a
warning.)

The input number must be a non-negative integer, or a string beginning
 with "U+" or "0x" with the
remainder considered to be a
 hexadecimal integer. A literal numeric constant must be unsigned; it
 will
be interpreted as hex if it has a leading zero or contains
 non-decimal hex digits; otherwise it will be
interpreted as decimal.

As mentioned above under ALIASES, Unicode 6.1 defines extra names
 (synonyms or aliases) for
some code points, most of which were already
 available as Perl extensions. All these are accepted by
\N{...} and the
 other functions in this module, but viacode has to choose which one
 name to
return for a given input code point, so it returns the "best" name.
 To understand how this works, it is
helpful to know more about the Unicode
 name properties. All code points actually have only a single
name, which
 (starting in Unicode 2.0) can never change once a character has been assigned
 to the
code point. But mistakes have been made in assigning names, for
 example sometimes a clerical error
was made during the publishing of the
 Standard which caused words to be misspelled, and there was
no way to correct
 those. The Name_Alias property was eventually created to handle these
 situations.
If a name was wrong, a corrected synonym would be published for
 it, using Name_Alias. viacode
will return that corrected synonym as the
 "best" name for a code point. (It is even possible, though it
hasn't happened
 yet, that the correction itself will need to be corrected, and so another
 Name_Alias
can be created for that code point; viacode will return the
 most recent correction.)

The Unicode name for each of the control characters (such as LINE FEED) is the
 empty string.
However almost all had names assigned by other standards, such
 as the ASCII Standard, or were in
common use. viacode returns these names
 as the "best" ones available. Unicode 6.1 has created
Name_Aliases for each
 of them, including alternate names, like NEW LINE. viacode uses the

original name, "LINE FEED" in preference to the alternate. Similarly the
 name returned for U+FEFF is
"ZERO WIDTH NO-BREAK SPACE", not "BYTE ORDER
 MARK".

Until Unicode 6.1, the 4 control characters U+0080, U+0081, U+0084, and U+0099
 did not have
names nor aliases.
 To preserve backwards compatibility, any alias you define for these code
 points
will be returned by this function, in preference to the official name.

Some code points also have abbreviated names, such as "LF" or "NL". viacode never returns these.

Because a name correction may be added in future Unicode releases, the name
 that viacode
returns may change as a result. This is a rare event, but it
 does happen.

CUSTOM TRANSLATORS
The mechanism of translation of \N{...} escapes is general and not
 hardwired into charnames.pm.
A module can install custom
 translations (inside the scope which uses the module) with the
 following
magic incantation:

 sub import {
 shift;
 $^H{charnames} = \&translator;
 }

Here translator() is a subroutine which takes CHARNAME as an
 argument, and returns text to insert
into the string instead of the \N{CHARNAME} escape.

This is the only way you can create a custom named sequence of code points.

Since the text to insert should be different
 in bytes mode and out of it, the function should check the
current
 state of bytes-flag as in:

Perl version 5.18.0 documentation - charnames

Page 6http://perldoc.perl.org

 use bytes (); # for $bytes::hint_bits
 sub translator {
 if ($^H & $bytes::hint_bits) {
 return bytes_translator(@_);
 }
 else {
 return utf8_translator(@_);
 }
 }

See CUSTOM ALIASES above for restrictions on CHARNAME.

Of course, vianame, viacode, and string_vianame would need to be
 overridden as well.

BUGS
vianame() normally returns an ordinal code point, but when the input name is of
 the form U+..., it
returns a chr instead. In this case, if use bytes is
 in effect and the character won't fit into a byte, it
returns undef and
 raises a warning.

Since evaluation of the translation function (see CUSTOM TRANSLATORS) happens in the middle of
compilation (of a string
 literal), the translation function should not do any evals or requires. This
restriction should be lifted (but is low priority) in
 a future version of Perl.

