
Perl version 5.18.0 documentation - DBM_Filter

Page 1http://perldoc.perl.org

NAME
DBM_Filter -- Filter DBM keys/values

SYNOPSIS
 use DBM_Filter ;
 use SDBM_File; # or DB_File, or GDBM_File, or NDBM_File, or ODBM_File

 $db = tie %hash, ...

 $db->Filter_Push(Fetch => sub {...},
 Store => sub {...});

 $db->Filter_Push('my_filter1');
 $db->Filter_Push('my_filter2', params...);

 $db->Filter_Key_Push(...) ;
 $db->Filter_Value_Push(...) ;

 $db->Filter_Pop();
 $db->Filtered();

 package DBM_Filter::my_filter1;

 sub Store { ... }
 sub Fetch { ... }

 1;

 package DBM_Filter::my_filter2;

 sub Filter
 {
 my @opts = @_;
 ...
 return (
 sub Store { ... },
 sub Fetch { ... });
 }

 1;

DESCRIPTION
This module provides an interface that allows filters to be applied
 to tied Hashes associated with DBM
files. It builds on the DBM Filter
 hooks that are present in all the *DB*_File modules included with the

standard Perl source distribution from version 5.6.1 onwards. In addition
 to the *DB*_File modules
distributed with Perl, the BerkeleyDB module,
 available on CPAN, supports the DBM Filter hooks. See
perldbmfilter
 for more details on the DBM Filter hooks.

What is a DBM Filter?
A DBM Filter allows the keys and/or values in a tied hash to be modified
 by some user-defined code
just before it is written to the DBM file and
 just after it is read back from the DBM file. For example,

Perl version 5.18.0 documentation - DBM_Filter

Page 2http://perldoc.perl.org

this snippet
 of code

 $some_hash{"abc"} = 42;

could potentially trigger two filters, one for the writing of the key
 "abc" and another for writing the value
42. Similarly, this snippet

 my ($key, $value) = each %some_hash

will trigger two filters, one for the reading of the key and one for
 the reading of the value.

Like the existing DBM Filter functionality, this module arranges for the $_ variable to be populated
with the key or value that a filter will
 check. This usually means that most DBM filters tend to be very
short.

So what's new?
The main enhancements over the standard DBM Filter hooks are:

A cleaner interface.

The ability to easily apply multiple filters to a single DBM file.

The ability to create "canned" filters. These allow commonly used filters
 to be packaged into a
stand-alone module.

METHODS
This module will arrange for the following methods to be available via
 the object returned from the
tie call.

$db->Filter_Push() / $db->Filter_Key_Push() / $db->Filter_Value_Push()
Add a filter to filter stack for the database, $db. The three formats
 vary only in whether they apply to
the DBM key, the DBM value or both.

Filter_Push

The filter is applied to both keys and values.

Filter_Key_Push

The filter is applied to the key only.

Filter_Value_Push

The filter is applied to the value only.

$db->Filter_Pop()
Removes the last filter that was applied to the DBM file associated with $db, if present.

$db->Filtered()
Returns TRUE if there are any filters applied to the DBM associated
 with $db. Otherwise returns
FALSE.

Writing a Filter
Filters can be created in two main ways

Immediate Filters
An immediate filter allows you to specify the filter code to be used
 at the point where the filter is
applied to a dbm. In this mode the
 Filter_*_Push methods expects to receive exactly two parameters.

 my $db = tie %hash, 'SDBM_File', ...
 $db->Filter_Push(Store => sub { },

Perl version 5.18.0 documentation - DBM_Filter

Page 3http://perldoc.perl.org

 Fetch => sub { });

The code reference associated with Store will be called before any
 key/value is written to the
database and the code reference associated
 with Fetch will be called after any key/value is read
from the
 database.

For example, here is a sample filter that adds a trailing NULL character
 to all strings before they are
written to the DBM file, and removes the
 trailing NULL when they are read from the DBM file

 my $db = tie %hash, 'SDBM_File', ...
 $db->Filter_Push(Store => sub { $_ .= "\x00" ; },
 Fetch => sub { s/\x00$// ; });

Points to note:

1. Both the Store and Fetch filters manipulate $_.

Canned Filters
Immediate filters are useful for one-off situations. For more generic
 problems it can be useful to
package the filter up in its own module.

The usage is for a canned filter is:

 $db->Filter_Push("name", params)

where

"name"

is the name of the module to load. If the string specified does not
 contain the package
separator characters "::", it is assumed to refer to
 the full module name "DBM_Filter::name".
This means that the full names
 for canned filters, "null" and "utf8", included with this module
are:

 DBM_Filter::null
 DBM_Filter::utf8

params

any optional parameters that need to be sent to the filter. See the
 encode filter for an
example of a module that uses parameters.

The module that implements the canned filter can take one of two
 forms. Here is a template for the
first

 package DBM_Filter::null ;

 use strict;
 use warnings;

 sub Store
 {
 # store code here
 }

 sub Fetch
 {
 # fetch code here

Perl version 5.18.0 documentation - DBM_Filter

Page 4http://perldoc.perl.org

 }

 1;

Notes:

1. The package name uses the DBM_Filter:: prefix.

2. The module must have both a Store and a Fetch method. If only one is
 present, or neither
are present, a fatal error will be thrown.

The second form allows the filter to hold state information using a
 closure, thus:

 package DBM_Filter::encoding ;

 use strict;
 use warnings;

 sub Filter
 {
 my @params = @_ ;

 ...
 return {
 Store => sub { $_ = $encoding->encode($_) },
 Fetch => sub { $_ = $encoding->decode($_) }
 } ;
 }

 1;

In this instance the "Store" and "Fetch" methods are encapsulated inside a
 "Filter" method.

Filters Included
A number of canned filers are provided with this module. They cover a
 number of the main areas that
filters are needed when interfacing with
 DBM files. They also act as templates for your own filters.

The filter included are:

* utf8

This module will ensure that all data written to the DBM will be encoded
 in UTF-8.

This module needs the Encode module.

* encode

Allows you to choose the character encoding will be store in the DBM file.

* compress

This filter will compress all data before it is written to the database
 and uncompressed it on
reading.

This module needs Compress::Zlib.

* int32

This module is used when interoperating with a C/C++ application that
 uses a C int as either
the key and/or value in the DBM file.

Perl version 5.18.0 documentation - DBM_Filter

Page 5http://perldoc.perl.org

* null

This module ensures that all data written to the DBM file is null
 terminated. This is useful
when you have a perl script that needs
 to interoperate with a DBM file that a C program also
uses. A fairly
 common issue is for the C application to include the terminating null
 in a string
when it writes to the DBM file. This filter will ensure that
 all data written to the DBM file can
be read by the C application.

NOTES
Maintain Round Trip Integrity

When writing a DBM filter it is very important to ensure that it is
 possible to retrieve all data that you
have written when the DBM filter
 is in place. In practice, this means that whatever transformation is

applied to the data in the Store method, the exact inverse operation
 should be applied in the Fetch
method.

If you don't provide an exact inverse transformation, you will find that
 code like this will not behave as
you expect.

 while (my ($k, $v) = each %hash)
 {
 ...
 }

Depending on the transformation, you will find that one or more of the
 following will happen

1 The loop will never terminate.

2 Too few records will be retrieved.

3 Too many will be retrieved.

4 The loop will do the right thing for a while, but it will unexpectedly fail.

Don't mix filtered & non-filtered data in the same database file.
This is just a restatement of the previous section. Unless you are
 completely certain you know what
you are doing, avoid mixing filtered &
 non-filtered data.

EXAMPLE
Say you need to interoperate with a legacy C application that stores
 keys as C ints and the values
and null terminated UTF-8 strings. Here
 is how you would set that up

 my $db = tie %hash, 'SDBM_File', ...

 $db->Filter_Key_Push('int32') ;

 $db->Filter_Value_Push('utf8');
 $db->Filter_Value_Push('null');

SEE ALSO
<DB_File>, GDBM_File, NDBM_File, ODBM_File, SDBM_File, perldbmfilter

AUTHOR
Paul Marquess <pmqs@cpan.org>

