
Perl version 5.18.1 documentation - version

Page 1http://perldoc.perl.org

NAME
version - Perl extension for Version Objects

SYNOPSIS
 # Parsing version strings (decimal or dotted-decimal)

 use version 0.77; # get latest bug-fixes and API
 $ver = version->parse($string)

 # Declaring a dotted-decimal $VERSION (keep on one line!)

 use version; our $VERSION = version->declare("v1.2.3"); # formal
 use version; our $VERSION = qv("v1.2.3"); # shorthand
 use version; our $VERSION = qv("v1.2_3"); # alpha

 # Declaring an old-style decimal $VERSION (use quotes!)

 our $VERSION = "1.0203"; #
recommended
 use version; our $VERSION = version->parse("1.0203"); # formal
 use version; our $VERSION = version->parse("1.02_03"); # alpha

 # Comparing mixed version styles (decimals, dotted-decimals, objects)

 if (version->parse($v1) == version->parse($v2)) {
 # do stuff
 }

 # Sorting mixed version styles

 @ordered = sort { version->parse($a) <=> version->parse($b) } @list;

DESCRIPTION
Version objects were added to Perl in 5.10. This module implements version
 objects for older version
of Perl and provides the version object API for all
 versions of Perl. All previous releases before 0.74
are deprecated and should
 not be used due to incompatible API changes. Version 0.77 introduces the
new
 'parse' and 'declare' methods to standardize usage. You are strongly urged to
 set 0.77 as a
minimum in your code, e.g.

 use version 0.77; # even for Perl v.5.10.0

TYPES OF VERSION OBJECTS
There are two different types of version objects, corresponding to the two
 different styles of versions
in use:

Decimal Versions

The classic floating-point number $VERSION. The advantage to this style is
 that you don't need to
do anything special, just type a number into your
 source file. Quoting is recommended, as it
ensures that trailing zeroes
 ("1.50") are preserved in any warnings or other output.

Dotted Decimal Versions

The more modern form of version assignment, with 3 (or potentially more)
 integers separated by

Perl version 5.18.1 documentation - version

Page 2http://perldoc.perl.org

decimal points (e.g. v1.2.3). This is the form that
 Perl itself has used since 5.6.0 was released.
The leading 'v' is now
 strongly recommended for clarity, and will throw a warning in a future

release if omitted. A leading 'v' character is required to pass the is_strict() test.

DECLARING VERSIONS
If you have a module that uses a decimal $VERSION (floating point), and you
 do not intend to ever
change that, this module is not for you. There is
 nothing that version.pm gains you over a simple
$VERSION assignment:

 our $VERSION = "1.02";

Since Perl v5.10.0 includes the version.pm comparison logic anyways,
 you don't need to do anything
at all.

How to convert a module from decimal to dotted-decimal
If you have used a decimal $VERSION in the past and wish to switch to a
 dotted-decimal $VERSION,
then you need to make a one-time conversion to
 the new format.

Important Note: you must ensure that your new $VERSION is numerically
 greater than your current
decimal $VERSION; this is not always obvious. First,
 convert your old decimal version (e.g. 1.02) to a
normalized dotted-decimal
 form:

 $ perl -Mversion -e 'print version->parse("1.02")->normal'
 v1.20.0

Then increment any of the dotted-decimal components (v1.20.1 or v1.21.0).

How to declare() a dotted-decimal version
 use version; our $VERSION = version->declare("v1.2.3");

The declare() method always creates dotted-decimal version objects. When
 used in a module, you
must put it on the same line as "use version" to
 ensure that $VERSION is read correctly by PAUSE
and installer tools. You
 should also add 'version' to the 'configure_requires' section of your
 module
metadata file. See instructions in ExtUtils::MakeMaker or Module::Build for details.

Important Note: Even if you pass in what looks like a decimal number
 ("1.2"), a dotted-decimal will
be created ("v1.200.0"). To avoid confusion
 or unintentional errors on older Perls, follow these
guidelines:

Always use a dotted-decimal with (at least) three components

Always use a leading-v

Always quote the version

If you really insist on using version.pm with an ordinary decimal version,
 use parse() instead of
declare. See the PARSING AND COMPARING VERSIONS
 for details.

See also version::Internals for more on version number conversion,
 quoting, calculated version
numbers and declaring developer or "alpha" version
 numbers.

PARSING AND COMPARING VERSIONS
If you need to compare version numbers, but can't be sure whether they are
 expressed as numbers,
strings, v-strings or version objects, then you should
 use version.pm to parse them all into objects for
comparison.

Perl version 5.18.1 documentation - version

Page 3http://perldoc.perl.org

How to parse() a version
The parse() method takes in anything that might be a version and returns
 a corresponding version
object, doing any necessary conversion along the way.

Dotted-decimal: bare v-strings (v1.2.3) and strings with more than one
 decimal point and a leading
'v' ("v1.2.3"); NOTE you can technically use a
 v-string or strings with a leading-v and only one
decimal point (v1.2 or
 "v1.2"), but you will confuse both yourself and others.

Decimal: regular decimal numbers (literal or in a string)

Some examples:

 $variable version->parse($variable)
 --------- -------------------------
 1.23 v1.230.0
 "1.23" v1.230.0
 v1.23 v1.23.0
 "v1.23" v1.23.0
 "1.2.3" v1.2.3
 "v1.2.3" v1.2.3

See version::Internals for more on version number conversion.

How to check for a legal version string
If you do not want to actually create a full blown version object, but
 would still like to verify that a given
string meets the criteria to
 be parsed as a version, there are two helper functions that can be

employed directly:

is_lax()

The lax criteria corresponds to what is currently allowed by the
 version parser. All of the
following formats are acceptable
 for dotted-decimal formats strings:

 v1.2
 1.2345.6
 v1.23_4
 1.2345
 1.2345_01

is_strict()

If you want to limit yourself to a much more narrow definition of what
 a version string
constitutes, is_strict() is limited to version
 strings like the following list:

 v1.234.5
 2.3456

See version::Internals for details of the regular expressions
 that define the legal version string forms,
as well as how to use
 those regular expressions in your own code if is_lax() and is_strict()
are not sufficient for your needs.

How to compare version objects
Version objects overload the cmp and <=> operators. Perl
 automatically generates all of the other
comparison operators based on those
 two so all the normal logical comparisons will work.

 if (version->parse($v1) == version->parse($v2)) {
 # do stuff
 }

Perl version 5.18.1 documentation - version

Page 4http://perldoc.perl.org

If a version object is compared against a non-version object, the non-object
 term will be converted to
a version object using parse(). This may give
 surprising results:

 $v1 = version->parse("v0.95.0");
 $bool = $v1 < 0.96; # FALSE since 0.96 is v0.960.0

Always comparing to a version object will help avoid surprises:

 $bool = $v1 < version->parse("v0.96.0"); # TRUE

Note that "alpha" version objects (where the version string contains
 a trailing underscore segment)
compare as less than the equivalent
 version without an underscore:

 $bool = version->parse("1.23_45") < version->parse("1.2345"); # TRUE

See version::Internals for more details on "alpha" versions.

OBJECT METHODS
is_alpha()

True if and only if the version object was created with a underscore, e.g.

 version->parse('1.002_03')->is_alpha; # TRUE
 version->declare('1.2.3_4')->is_alpha; # TRUE

is_qv()
True only if the version object is a dotted-decimal version, e.g.

 version->parse('v1.2.0')->is_qv; # TRUE
 version->declare('v1.2')->is_qv; # TRUE
 qv('1.2')->is_qv; # TRUE
 version->parse('1.2')->is_qv; # FALSE

normal()
Returns a string with a standard 'normalized' dotted-decimal form with a
 leading-v and at least 3
components.

 version->declare('v1.2')->normal; # v1.2.0
 version->parse('1.2')->normal; # v1.200.0

numify()
Returns a value representing the object in a pure decimal form without
 trailing zeroes.

 version->declare('v1.2')->numify; # 1.002
 version->parse('1.2')->numify; # 1.2

stringify()
Returns a string that is as close to the original representation as possible.
 If the original
representation was a numeric literal, it will be returned the
 way perl would normally represent it in a
string. This method is used whenever
 a version object is interpolated into a string.

 version->declare('v1.2')->stringify; # v1.2
 version->parse('1.200')->stringify; # 1.200
 version->parse(1.02_30)->stringify; # 1.023

Perl version 5.18.1 documentation - version

Page 5http://perldoc.perl.org

EXPORTED FUNCTIONS
qv()

This function is no longer recommended for use, but is maintained for
 compatibility with existing code.
If you do not want to have it exported
 to your namespace, use this form:

 use version 0.77 ();

is_lax()
(Not exported by default)

This function takes a scalar argument and returns a boolean value indicating
 whether the argument
meets the "lax" rules for a version number. Leading and
 trailing spaces are not allowed.

is_strict()
(Not exported by default)

This function takes a scalar argument and returns a boolean value indicating
 whether the argument
meets the "strict" rules for a version number. Leading
 and trailing spaces are not allowed.

AUTHOR
John Peacock <jpeacock@cpan.org>

SEE ALSO
version::Internals.

perl.

