
Perl version 5.18.1 documentation - diagnostics

Page 1http://perldoc.perl.org

NAME
diagnostics, splain - produce verbose warning diagnostics

SYNOPSIS
Using the diagnostics pragma:

    use diagnostics;
    use diagnostics -verbose;

    enable  diagnostics;
    disable diagnostics;

Using the splain standalone filter program:

    perl program 2>diag.out
    splain [-v] [-p] diag.out

Using diagnostics to get stack traces from a misbehaving script:

    perl -Mdiagnostics=-traceonly my_script.pl

DESCRIPTION
The diagnostics Pragma

This module extends the terse diagnostics normally emitted by both the
 perl compiler and the perl 
interpreter (from running perl with a -w switch or use warnings), augmenting them with the more

explicative and endearing descriptions found in perldiag. Like the
 other pragmata, it affects the 
compilation phase of your program rather
 than merely the execution phase.

To use in your program as a pragma, merely invoke

    use diagnostics;

at the start (or near the start) of your program. (Note that this does enable perl's -w flag.) Your whole

compilation will then be subject(ed :-) to the enhanced diagnostics.
 These still go out STDERR.

Due to the interaction between runtime and compiletime issues,
 and because it's probably not a very 
good idea anyway,
 you may not use no diagnostics to turn them off at compiletime.
 However, you
may control their behaviour at runtime using the disable() and enable() methods to turn them off and 
on respectively.

The -verbose flag first prints out the perldiag introduction before
 any other diagnostics. The 
$diagnostics::PRETTY variable can generate nicer
 escape sequences for pagers.

Warnings dispatched from perl itself (or more accurately, those that match
 descriptions found in 
perldiag) are only displayed once (no duplicate
 descriptions). User code generated warnings a la 
warn() are unaffected,
 allowing duplicate user messages to be displayed.

This module also adds a stack trace to the error message when perl dies.
 This is useful for 
pinpointing what
 caused the death. The -traceonly (or
 just -t) flag turns off the explanations of 
warning messages leaving just
 the stack traces. So if your script is dieing, run it again with

  perl -Mdiagnostics=-traceonly my_bad_script

to see the call stack at the time of death. By supplying the -warntrace
 (or just -w) flag, any warnings 
emitted will also come with a stack
 trace.



Perl version 5.18.1 documentation - diagnostics

Page 2http://perldoc.perl.org

The splain Program
While apparently a whole nuther program, splain is actually nothing
 more than a link to the 
(executable) diagnostics.pm module, as well as
 a link to the diagnostics.pod documentation. The -v 
flag is like
 the use diagnostics -verbose directive.
 The -p flag is like the
 $diagnostics::PRETTY
variable. Since you're post-processing with splain, there's no sense in being able to enable() or 
disable() processing.

Output from splain is directed to STDOUT, unlike the pragma.

EXAMPLES
The following file is certain to trigger a few errors at both
 runtime and compiletime:

    use diagnostics;
    print NOWHERE "nothing\n";
    print STDERR "\n\tThis message should be unadorned.\n";
    warn "\tThis is a user warning";
    print "\nDIAGNOSTIC TESTER: Please enter a <CR> here: ";
    my $a, $b = scalar <STDIN>;
    print "\n";
    print $x/$y;

If you prefer to run your program first and look at its problem
 afterwards, do this:

    perl -w test.pl 2>test.out
    ./splain < test.out

Note that this is not in general possible in shells of more dubious heritage, as the theoretical

    (perl -w test.pl >/dev/tty) >& test.out
    ./splain < test.out

Because you just moved the existing stdout to somewhere else.

If you don't want to modify your source code, but still have on-the-fly
 warnings, do this:

    exec 3>&1; perl -w test.pl 2>&1 1>&3 3>&- | splain 1>&2 3>&-

Nifty, eh?

If you want to control warnings on the fly, do something like this.
 Make sure you do the use first, or 
you won't be able to get
 at the enable() or disable() methods.

    use diagnostics; # checks entire compilation phase
	 print "\ntime for 1st bogus diags: SQUAWKINGS\n";
	 print BOGUS1 'nada';
	 print "done with 1st bogus\n";

    disable diagnostics; # only turns off runtime warnings
	 print "\ntime for 2nd bogus: (squelched)\n";
	 print BOGUS2 'nada';
	 print "done with 2nd bogus\n";

    enable diagnostics; # turns back on runtime warnings
	 print "\ntime for 3rd bogus: SQUAWKINGS\n";
	 print BOGUS3 'nada';
	 print "done with 3rd bogus\n";



Perl version 5.18.1 documentation - diagnostics

Page 3http://perldoc.perl.org

    disable diagnostics;
	 print "\ntime for 4th bogus: (squelched)\n";
	 print BOGUS4 'nada';
	 print "done with 4th bogus\n";

INTERNALS
Diagnostic messages derive from the perldiag.pod file when available at
 runtime. Otherwise, they may
be embedded in the file itself when the
 splain package is built. See the Makefile for details.

If an extant $SIG{__WARN__} handler is discovered, it will continue
 to be honored, but only after the 
diagnostics::splainthis() function (the module's $SIG{__WARN__} interceptor) has had its way with 
your
 warnings.

There is a $diagnostics::DEBUG variable you may set if you're desperately
 curious what sorts of 
things are being intercepted.

    BEGIN { $diagnostics::DEBUG = 1 }

BUGS
Not being able to say "no diagnostics" is annoying, but may not be
 insurmountable.

The -pretty directive is called too late to affect matters.
 You have to do this instead, and before you
load the module.

    BEGIN { $diagnostics::PRETTY = 1 }

I could start up faster by delaying compilation until it should be
 needed, but this gets a "panic: 
top_level" when using the pragma form
 in Perl 5.001e.

While it's true that this documentation is somewhat subserious, if you use
 a program named splain, 
you should expect a bit of whimsy.

AUTHOR
Tom Christiansen <tchrist@mox.perl.com>, 25 June 1995.


