
Perl version 5.18.1 documentation - open

Page 1http://perldoc.perl.org

NAME
open - perl pragma to set default PerlIO layers for input and output

SYNOPSIS
 use open IN => ":crlf", OUT => ":bytes";
 use open OUT => ':utf8';
 use open IO => ":encoding(iso-8859-7)";

 use open IO => ':locale';

 use open ':encoding(utf8)';
 use open ':locale';
 use open ':encoding(iso-8859-7)';

 use open ':std';

DESCRIPTION
Full-fledged support for I/O layers is now implemented provided
 Perl is configured to use PerlIO as its
IO system (which is now the
 default).

The open pragma serves as one of the interfaces to declare default
 "layers" (also known as
"disciplines") for all I/O. Any two-argument
 open(), readpipe() (aka qx//) and similar operators found
within the
 lexical scope of this pragma will use the declared defaults.
 Even three-argument opens may
be affected by this pragma
 when they don't specify IO layers in MODE.

With the IN subpragma you can declare the default layers
 of input streams, and with the OUT
subpragma you can declare
 the default layers of output streams. With the IO subpragma
 you can
control both input and output streams simultaneously.

If you have a legacy encoding, you can use the :encoding(...) tag.

If you want to set your encoding layers based on your
 locale environment variables, you can use the
:locale tag.
 For example:

 $ENV{LANG} = 'ru_RU.KOI8-R';
 # the :locale will probe the locale environment variables like LANG
 use open OUT => ':locale';
 open(O, ">koi8");
 print O chr(0x430); # Unicode CYRILLIC SMALL LETTER A = KOI8-R 0xc1
 close O;
 open(I, "<koi8");
 printf "%#x\n", ord(<I>), "\n"; # this should print 0xc1
 close I;

These are equivalent

 use open ':encoding(utf8)';
 use open IO => ':encoding(utf8)';

as are these

 use open ':locale';
 use open IO => ':locale';

and these

Perl version 5.18.1 documentation - open

Page 2http://perldoc.perl.org

 use open ':encoding(iso-8859-7)';
 use open IO => ':encoding(iso-8859-7)';

The matching of encoding names is loose: case does not matter, and
 many encodings have several
aliases. See Encode::Supported for
 details and the list of supported locales.

When open() is given an explicit list of layers (with the three-arg
 syntax), they override the list
declared using this pragma. open() can
 also be given a single colon (:) for a layer name, to override
this pragma
 and use the default (:raw on Unix, :crlf on Windows).

The :std subpragma on its own has no effect, but if combined with
 the :utf8 or :encoding
subpragmas, it converts the standard
 filehandles (STDIN, STDOUT, STDERR) to comply with
encoding selected
 for input/output handles. For example, if both input and out are
 chosen to be
:encoding(utf8), a :std will mean that STDIN, STDOUT,
 and STDERR are also in
:encoding(utf8). On the other hand, if only
 output is chosen to be in :encoding(koi8r), a
:std will cause
 only the STDOUT and STDERR to be in koi8r. The :locale subpragma
 implicitly
turns on :std.

The logic of :locale is described in full in encoding,
 but in short it is first trying
nl_langinfo(CODESET) and then
 guessing from the LC_ALL and LANG locale environment variables.

Directory handles may also support PerlIO layers in the future.

NONPERLIO FUNCTIONALITY
If Perl is not built to use PerlIO as its IO system then only the two
 pseudo-layers :bytes and :crlf
are available.

The :bytes layer corresponds to "binary mode" and the :crlf
 layer corresponds to "text mode" on
platforms that distinguish
 between the two modes when opening files (which is many DOS-like

platforms, including Windows). These two layers are no-ops on
 platforms where binmode() is a no-op,
but perform their functions
 everywhere if PerlIO is enabled.

IMPLEMENTATION DETAILS
There is a class method in PerlIO::Layer find which is
 implemented as XS code. It is called by
import to validate the
 layers:

 PerlIO::Layer::->find("perlio")

The return value (if defined) is a Perl object, of class PerlIO::Layer which is created by the C code
in perlio.c. As
 yet there is nothing useful you can do with the object at the perl
 level.

SEE ALSO
"binmode" in perlfunc, "open" in perlfunc, perlunicode, PerlIO, encoding

