
Perl version 5.18.1 documentation - Test::More

Page 1http://perldoc.perl.org

NAME
Test::More - yet another framework for writing test scripts

SYNOPSIS
 use Test::More tests => 23;
 # or
 use Test::More skip_all => $reason;
 # or
 use Test::More; # see done_testing()

 BEGIN { use_ok('Some::Module'); }
 require_ok('Some::Module');

 # Various ways to say "ok"
 ok($got eq $expected, $test_name);

 is ($got, $expected, $test_name);
 isnt($got, $expected, $test_name);

 # Rather than print STDERR "# here's what went wrong\n"
 diag("here's what went wrong");

 like ($got, qr/expected/, $test_name);
 unlike($got, qr/expected/, $test_name);

 cmp_ok($got, '==', $expected, $test_name);

 is_deeply($got_complex_structure, $expected_complex_structure,
$test_name);

 SKIP: {
 skip $why, $how_many unless $have_some_feature;

 ok(foo(), $test_name);
 is(foo(42), 23, $test_name);
 };

 TODO: {
 local $TODO = $why;

 ok(foo(), $test_name);
 is(foo(42), 23, $test_name);
 };

 can_ok($module, @methods);
 isa_ok($object, $class);

 pass($test_name);
 fail($test_name);

 BAIL_OUT($why);

Perl version 5.18.1 documentation - Test::More

Page 2http://perldoc.perl.org

 # UNIMPLEMENTED!!!
 my @status = Test::More::status;

DESCRIPTION
STOP! If you're just getting started writing tests, have a look at Test::Simple first. This is a drop in
replacement for Test::Simple
 which you can switch to once you get the hang of basic testing.

The purpose of this module is to provide a wide range of testing
 utilities. Various ways to say "ok" with
better diagnostics,
 facilities to skip tests, test future features and compare complicated
 data
structures. While you can do almost anything with a simple ok() function, it doesn't provide good
diagnostic output.

I love it when a plan comes together
Before anything else, you need a testing plan. This basically declares
 how many tests your script is
going to run to protect against premature
 failure.

The preferred way to do this is to declare a plan when you use Test::More.

 use Test::More tests => 23;

There are cases when you will not know beforehand how many tests your
 script is going to run. In this
case, you can declare your tests at
 the end.

 use Test::More;

 ... run your tests ...

 done_testing($number_of_tests_run);

Sometimes you really don't know how many tests were run, or it's too
 difficult to calculate. In which
case you can leave off
 $number_of_tests_run.

In some cases, you'll want to completely skip an entire testing script.

 use Test::More skip_all => $skip_reason;

Your script will declare a skip with the reason why you skipped and
 exit immediately with a zero
(success). See Test::Harness for
 details.

If you want to control what functions Test::More will export, you
 have to use the 'import' option. For
example, to import everything
 but 'fail', you'd do:

 use Test::More tests => 23, import => ['!fail'];

Alternatively, you can use the plan() function. Useful for when you
 have to calculate the number of
tests.

 use Test::More;
 plan tests => keys %Stuff * 3;

or for deciding between running the tests at all:

 use Test::More;
 if($^O eq 'MacOS') {
 plan skip_all => 'Test irrelevant on MacOS';
 }

Perl version 5.18.1 documentation - Test::More

Page 3http://perldoc.perl.org

 else {
 plan tests => 42;
 }

done_testing

 done_testing();
 done_testing($number_of_tests);

If you don't know how many tests you're going to run, you can issue
 the plan when you're
done running tests.

$number_of_tests is the same as plan(), it's the number of tests you
 expected to run. You can
omit this, in which case the number of tests
 you ran doesn't matter, just the fact that your tests
ran to
 conclusion.

This is safer than and replaces the "no_plan" plan.

Test names
By convention, each test is assigned a number in order. This is
 largely done automatically for you.
However, it's often very useful to
 assign a name to each test. Which would you rather see:

 ok 4
 not ok 5
 ok 6

or

 ok 4 - basic multi-variable
 not ok 5 - simple exponential
 ok 6 - force == mass * acceleration

The later gives you some idea of what failed. It also makes it easier
 to find the test in your script,
simply search for "simple
 exponential".

All test functions take a name argument. It's optional, but highly
 suggested that you use it.

I'm ok, you're not ok.
The basic purpose of this module is to print out either "ok #" or "not
 ok #" depending on if a given test
succeeded or failed. Everything
 else is just gravy.

All of the following print "ok" or "not ok" depending on if the test
 succeeded or failed. They all also
return true or false,
 respectively.

ok

 ok($got eq $expected, $test_name);

This simply evaluates any expression ($got eq $expected is just a
 simple example) and
uses that to determine if the test succeeded or
 failed. A true expression passes, a false one
fails. Very simple.

For example:

 ok($exp{9} == 81, 'simple exponential');
 ok(Film->can('db_Main'), 'set_db()');
 ok($p->tests == 4, 'saw tests');
 ok(!grep !defined $_, @items, 'items populated');

(Mnemonic: "This is ok.")

Perl version 5.18.1 documentation - Test::More

Page 4http://perldoc.perl.org

$test_name is a very short description of the test that will be printed
 out. It makes it very easy
to find a test in your script when it fails
 and gives others an idea of your intentions. $test_name
is optional,
 but we very strongly encourage its use.

Should an ok() fail, it will produce some diagnostics:

 not ok 18 - sufficient mucus
 # Failed test 'sufficient mucus'
 # in foo.t at line 42.

This is the same as Test::Simple's ok() routine.

is

isnt

 is ($got, $expected, $test_name);
 isnt($got, $expected, $test_name);

Similar to ok(), is() and isnt() compare their two arguments
 with eq and ne respectively and
use the result of that to
 determine if the test succeeded or failed. So these:

 # Is the ultimate answer 42?
 is(ultimate_answer(), 42, "Meaning of Life");

 # $foo isn't empty
 isnt($foo, '', "Got some foo");

are similar to these:

 ok(ultimate_answer() eq 42, "Meaning of Life");
 ok($foo ne '', "Got some foo");

undef will only ever match undef. So you can test a value
 agains undef like this:

 is($not_defined, undef, "undefined as expected");

(Mnemonic: "This is that." "This isn't that.")

So why use these? They produce better diagnostics on failure. ok()
 cannot know what you are
testing for (beyond the name), but is() and
 isnt() know what the test was and why it failed. For
example this
 test:

 my $foo = 'waffle'; my $bar = 'yarblokos';
 is($foo, $bar, 'Is foo the same as bar?');

Will produce something like this:

 not ok 17 - Is foo the same as bar?
 # Failed test 'Is foo the same as bar?'
 # in foo.t at line 139.
 # got: 'waffle'
 # expected: 'yarblokos'

So you can figure out what went wrong without rerunning the test.

You are encouraged to use is() and isnt() over ok() where possible,
 however do not be
tempted to use them to find out if something is
 true or false!

 # XXX BAD!
 is(exists $brooklyn{tree}, 1, 'A tree grows in Brooklyn');

This does not check if exists $brooklyn{tree} is true, it checks if
 it returns 1. Very
different. Similar caveats exist for false and 0.
 In these cases, use ok().

Perl version 5.18.1 documentation - Test::More

Page 5http://perldoc.perl.org

 ok(exists $brooklyn{tree}, 'A tree grows in Brooklyn');

A simple call to isnt() usually does not provide a strong test but there
 are cases when you
cannot say much more about a value than that it is
 different from some other value:

 new_ok $obj, "Foo";

 my $clone = $obj->clone;
 isa_ok $obj, "Foo", "Foo->clone";

 isnt $obj, $clone, "clone() produces a different object";

For those grammatical pedants out there, there's an isn't()
 function which is an alias of
isnt().

like

 like($got, qr/expected/, $test_name);

Similar to ok(), like() matches $got against the regex qr/expected/.

So this:

 like($got, qr/expected/, 'this is like that');

is similar to:

 ok($got =~ /expected/, 'this is like that');

(Mnemonic "This is like that".)

The second argument is a regular expression. It may be given as a
 regex reference (i.e. qr//
) or (for better compatibility with older
 perls) as a string that looks like a regex (alternative
delimiters are
 currently not supported):

 like($got, '/expected/', 'this is like that');

Regex options may be placed on the end ('/expected/i').

Its advantages over ok() are similar to that of is() and isnt(). Better
 diagnostics on failure.

unlike

 unlike($got, qr/expected/, $test_name);

Works exactly as like(), only it checks if $got does not match the
 given pattern.

cmp_ok

 cmp_ok($got, $op, $expected, $test_name);

Halfway between ok() and is() lies cmp_ok(). This allows you to
 compare two arguments using
any binary perl operator.

 # ok($got eq $expected);
 cmp_ok($got, 'eq', $expected, 'this eq that');

 # ok($got == $expected);
 cmp_ok($got, '==', $expected, 'this == that');

 # ok($got && $expected);
 cmp_ok($got, '&&', $expected, 'this && that');
 ...etc...

Perl version 5.18.1 documentation - Test::More

Page 6http://perldoc.perl.org

Its advantage over ok() is when the test fails you'll know what $got
 and $expected were:

 not ok 1
 # Failed test in foo.t at line 12.
 # '23'
 # &&
 # undef

It's also useful in those cases where you are comparing numbers and
 is()'s use of eq will
interfere:

 cmp_ok($big_hairy_number, '==', $another_big_hairy_number);

It's especially useful when comparing greater-than or smaller-than relation between values:

 cmp_ok($some_value, '<=', $upper_limit);

can_ok

 can_ok($module, @methods);
 can_ok($object, @methods);

Checks to make sure the $module or $object can do these @methods
 (works with functions,
too).

 can_ok('Foo', qw(this that whatever));

is almost exactly like saying:

 ok(Foo->can('this') &&
 Foo->can('that') &&
 Foo->can('whatever')
);

only without all the typing and with a better interface. Handy for
 quickly testing an interface.

No matter how many @methods you check, a single can_ok() call counts
 as one test. If you
desire otherwise, use:

 foreach my $meth (@methods) {
 can_ok('Foo', $meth);
 }

isa_ok

 isa_ok($object, $class, $object_name);
 isa_ok($subclass, $class, $object_name);
 isa_ok($ref, $type, $ref_name);

Checks to see if the given $object->isa($class). Also checks to make
 sure the object
was defined in the first place. Handy for this sort
 of thing:

 my $obj = Some::Module->new;
 isa_ok($obj, 'Some::Module');

where you'd otherwise have to write

 my $obj = Some::Module->new;
 ok(defined $obj && $obj->isa('Some::Module'));

to safeguard against your test script blowing up.

You can also test a class, to make sure that it has the right ancestor:

Perl version 5.18.1 documentation - Test::More

Page 7http://perldoc.perl.org

 isa_ok('Vole', 'Rodent');

It works on references, too:

 isa_ok($array_ref, 'ARRAY');

The diagnostics of this test normally just refer to 'the object'. If
 you'd like them to be more
specific, you can supply an $object_name
 (for example 'Test customer').

new_ok

 my $obj = new_ok($class);
 my $obj = new_ok($class => \@args);
 my $obj = new_ok($class => \@args, $object_name);

A convenience function which combines creating an object and calling
 isa_ok() on that object.

It is basically equivalent to:

 my $obj = $class->new(@args);
 isa_ok $obj, $class, $object_name;

If @args is not given, an empty list will be used.

This function only works on new() and it assumes new() will return
 just a single object which
isa $class.

subtest

 subtest $name => \&code;

subtest() runs the &code as its own little test with its own plan and
 its own result. The main
test counts this as a single test using the
 result of the whole subtest to determine if its ok or
not ok.

For example...

 use Test::More tests => 3;

 pass("First test");

 subtest 'An example subtest' => sub {
 plan tests => 2;

 pass("This is a subtest");
 pass("So is this");
 };

 pass("Third test");

This would produce.

 1..3
 ok 1 - First test
 1..2
 ok 1 - This is a subtest
 ok 2 - So is this
 ok 2 - An example subtest
 ok 3 - Third test

A subtest may call "skip_all". No tests will be run, but the subtest is
 considered a skip.

 subtest 'skippy' => sub {

Perl version 5.18.1 documentation - Test::More

Page 8http://perldoc.perl.org

 plan skip_all => 'cuz I said so';
 pass('this test will never be run');
 };

Returns true if the subtest passed, false otherwise.

Due to how subtests work, you may omit a plan if you desire. This adds an
 implicit
done_testing() to the end of your subtest. The following two
 subtests are equivalent:

 subtest 'subtest with implicit done_testing()', sub {
 ok 1, 'subtests with an implicit done testing should work';
 ok 1, '... and support more than one test';
 ok 1, '... no matter how many tests are run';
 };

 subtest 'subtest with explicit done_testing()', sub {
 ok 1, 'subtests with an explicit done testing should work';
 ok 1, '... and support more than one test';
 ok 1, '... no matter how many tests are run';
 done_testing();
 };

pass

fail

 pass($test_name);
 fail($test_name);

Sometimes you just want to say that the tests have passed. Usually
 the case is you've got
some complicated condition that is difficult to
 wedge into an ok(). In this case, you can simply
use pass() (to
 declare the test ok) or fail (for not ok). They are synonyms for
 ok(1) and ok(0).

Use these very, very, very sparingly.

Module tests
You usually want to test if the module you're testing loads ok, rather
 than just vomiting if its load fails.
For such purposes we have use_ok and require_ok.

use_ok

 BEGIN { use_ok($module); }
 BEGIN { use_ok($module, @imports); }

These simply use the given $module and test to make sure the load
 happened ok. It's
recommended that you run use_ok() inside a BEGIN
 block so its functions are exported at
compile-time and prototypes are
 properly honored.

If @imports are given, they are passed through to the use. So this:

 BEGIN { use_ok('Some::Module', qw(foo bar)) }

is like doing this:

 use Some::Module qw(foo bar);

Version numbers can be checked like so:

 # Just like "use Some::Module 1.02"
 BEGIN { use_ok('Some::Module', 1.02) }

Don't try to do this:

Perl version 5.18.1 documentation - Test::More

Page 9http://perldoc.perl.org

 BEGIN {
 use_ok('Some::Module');

 ...some code that depends on the use...
 ...happening at compile time...
 }

because the notion of "compile-time" is relative. Instead, you want:

 BEGIN { use_ok('Some::Module') }
 BEGIN { ...some code that depends on the use... }

If you want the equivalent of use Foo (), use a module but not
 import anything, use
require_ok.

 BEGIN { require_ok "Foo" }

require_ok

 require_ok($module);
 require_ok($file);

Like use_ok(), except it requires the $module or $file.

Complex data structures
Not everything is a simple eq check or regex. There are times you
 need to see if two data structures
are equivalent. For these
 instances Test::More provides a handful of useful functions.

NOTE I'm not quite sure what will happen with filehandles.

is_deeply

 is_deeply($got, $expected, $test_name);

Similar to is(), except that if $got and $expected are references, it
 does a deep comparison
walking each data structure to see if they are
 equivalent. If the two structures are different, it
will display the
 place where they start differing.

is_deeply() compares the dereferenced values of references, the
 references themselves
(except for their type) are ignored. This means
 aspects such as blessing and ties are not
considered "different".

is_deeply() currently has very limited handling of function reference
 and globs. It merely
checks if they have the same referent. This may
 improve in the future.

Test::Differences and Test::Deep provide more in-depth functionality
 along these lines.

Diagnostics
If you pick the right test function, you'll usually get a good idea of
 what went wrong when it failed. But
sometimes it doesn't work out
 that way. So here we have ways for you to write your own diagnostic

messages which are safer than just print STDERR.

diag

 diag(@diagnostic_message);

Prints a diagnostic message which is guaranteed not to interfere with
 test output. Like print
@diagnostic_message is simply concatenated
 together.

Returns false, so as to preserve failure.

Handy for this sort of thing:

 ok(grep(/foo/, @users), "There's a foo user") or

Perl version 5.18.1 documentation - Test::More

Page 10http://perldoc.perl.org

 diag("Since there's no foo, check that /etc/bar is set up
right");

which would produce:

 not ok 42 - There's a foo user
 # Failed test 'There's a foo user'
 # in foo.t at line 52.
 # Since there's no foo, check that /etc/bar is set up right.

You might remember ok() or diag() with the mnemonic open() or
 die().

NOTE The exact formatting of the diagnostic output is still
 changing, but it is guaranteed that
whatever you throw at it it won't
 interfere with the test.

note

 note(@diagnostic_message);

Like diag(), except the message will not be seen when the test is run
 in a harness. It will only
be visible in the verbose TAP stream.

Handy for putting in notes which might be useful for debugging, but
 don't indicate a problem.

 note("Tempfile is $tempfile");

explain

 my @dump = explain @diagnostic_message;

Will dump the contents of any references in a human readable format.
 Usually you want to
pass this into note or diag.

Handy for things like...

 is_deeply($have, $want) || diag explain $have;

or

 note explain \%args;
 Some::Class->method(%args);

Conditional tests
Sometimes running a test under certain conditions will cause the
 test script to die. A certain function
or method isn't implemented
 (such as fork() on MacOS), some resource isn't available (like a net
connection) or a module isn't available. In these cases it's
 necessary to skip tests, or declare that they
are supposed to fail
 but will work in the future (a todo test).

For more details on the mechanics of skip and todo tests see Test::Harness.

The way Test::More handles this is with a named block. Basically, a
 block of tests which can be
skipped over or made todo. It's best if I
 just show you...

SKIP: BLOCK

 SKIP: {
 skip $why, $how_many if $condition;

 ...normal testing code goes here...
 }

This declares a block of tests that might be skipped, $how_many tests
 there are, $why and
under what $condition to skip them. An example is
 the easiest way to illustrate:

Perl version 5.18.1 documentation - Test::More

Page 11http://perldoc.perl.org

 SKIP: {
 eval { require HTML::Lint };

 skip "HTML::Lint not installed", 2 if $@;

 my $lint = new HTML::Lint;
 isa_ok($lint, "HTML::Lint");

 $lint->parse($html);
 is($lint->errors, 0, "No errors found in HTML");
 }

If the user does not have HTML::Lint installed, the whole block of
 code won't be run at all.
Test::More will output special ok's
 which Test::Harness interprets as skipped, but passing,
tests.

It's important that $how_many accurately reflects the number of tests
 in the SKIP block so the
of tests run will match up with your plan.
 If your plan is no_plan $how_many is optional and
will default to 1.

It's perfectly safe to nest SKIP blocks. Each SKIP block must have
 the label SKIP, or
Test::More can't work its magic.

You don't skip tests which are failing because there's a bug in your
 program, or for which you
don't yet have code written. For that you
 use TODO. Read on.

TODO: BLOCK

 TODO: {
 local $TODO = $why if $condition;

 ...normal testing code goes here...
 }

Declares a block of tests you expect to fail and $why. Perhaps it's
 because you haven't fixed a
bug or haven't finished a new feature:

 TODO: {
 local $TODO = "URI::Geller not finished";

 my $card = "Eight of clubs";
 is(URI::Geller->your_card, $card, 'Is THIS your card?');

 my $spoon;
 URI::Geller->bend_spoon;
 is($spoon, 'bent', "Spoon bending, that's original");
 }

With a todo block, the tests inside are expected to fail. Test::More
 will run the tests normally,
but print out special flags indicating
 they are "todo". Test::Harness will interpret failures as
being ok.
 Should anything succeed, it will report it as an unexpected success.
 You then know
the thing you had todo is done and can remove the
 TODO flag.

The nice part about todo tests, as opposed to simply commenting out a
 block of tests, is it's
like having a programmatic todo list. You know
 how much work is left to be done, you're aware
of what bugs there are,
 and you'll know immediately when they're fixed.

Once a todo test starts succeeding, simply move it outside the block.
 When the block is
empty, delete it.

todo_skip

Perl version 5.18.1 documentation - Test::More

Page 12http://perldoc.perl.org

 TODO: {
 todo_skip $why, $how_many if $condition;

 ...normal testing code...
 }

With todo tests, it's best to have the tests actually run. That way
 you'll know when they start
passing. Sometimes this isn't possible.
 Often a failing test will cause the whole program to die
or hang, even
 inside an eval BLOCK with and using alarm. In these extreme
 cases you
have no choice but to skip over the broken tests entirely.

The syntax and behavior is similar to a SKIP: BLOCK except the
 tests will be marked as
failing but todo. Test::Harness will
 interpret them as passing.

When do I use SKIP vs. TODO?

If it's something the user might not be able to do, use SKIP.
 This includes optional
modules that aren't installed, running under
 an OS that doesn't have some feature (like fork()
or symlinks), or maybe
 you need an Internet connection and one isn't available.

If it's something the programmer hasn't done yet, use TODO. This
 is for any code you
haven't written yet, or bugs you have yet to fix,
 but want to put tests in your testing script
(always a good idea).

Test control
BAIL_OUT

 BAIL_OUT($reason);

Indicates to the harness that things are going so badly all testing
 should terminate. This
includes the running of any additional test scripts.

This is typically used when testing cannot continue such as a critical
 module failing to compile
or a necessary external utility not being
 available such as a database connection failing.

The test will exit with 255.

For even better control look at Test::Most.

Discouraged comparison functions
The use of the following functions is discouraged as they are not
 actually testing functions and
produce no diagnostics to help figure
 out what went wrong. They were written before is_deeply()
existed
 because I couldn't figure out how to display a useful diff of two
 arbitrary data structures.

These functions are usually used inside an ok().

 ok(eq_array(\@got, \@expected));

is_deeply() can do that better and with diagnostics.

 is_deeply(\@got, \@expected);

They may be deprecated in future versions.

eq_array

 my $is_eq = eq_array(\@got, \@expected);

Checks if two arrays are equivalent. This is a deep check, so
 multi-level structures are
handled correctly.

eq_hash

Perl version 5.18.1 documentation - Test::More

Page 13http://perldoc.perl.org

 my $is_eq = eq_hash(\%got, \%expected);

Determines if the two hashes contain the same keys and values. This
 is a deep check.

eq_set

 my $is_eq = eq_set(\@got, \@expected);

Similar to eq_array(), except the order of the elements is not
 important. This is a deep check,
but the irrelevancy of order only
 applies to the top level.

 ok(eq_set(\@got, \@expected));

Is better written:

 is_deeply([sort @got], [sort @expected]);

NOTE By historical accident, this is not a true set comparison.
 While the order of elements
does not matter, duplicate elements do.

NOTE eq_set() does not know how to deal with references at the top
 level. The following is an
example of a comparison which might not work:

 eq_set([\1, \2], [\2, \1]);

Test::Deep contains much better set comparison functions.

Extending and Embedding Test::More
Sometimes the Test::More interface isn't quite enough. Fortunately,
 Test::More is built on top of
Test::Builder which provides a single,
 unified backend for any test library to use. This means two test

libraries which both use Test::Builder can be used together in the
 same program.

If you simply want to do a little tweaking of how the tests behave,
 you can access the underlying
Test::Builder object like so:

builder

 my $test_builder = Test::More->builder;

Returns the Test::Builder object underlying Test::More for you to play
 with.

EXIT CODES
If all your tests passed, Test::Builder will exit with zero (which is
 normal). If anything failed it will exit
with how many failed. If
 you run less (or more) tests than you planned, the missing (or extras)
 will be
considered failures. If no tests were ever run Test::Builder
 will throw a warning and exit with 255. If
the test died, even after
 having successfully completed all its tests, it will still be
 considered a failure
and will exit with 255.

So the exit codes are...

 0 all tests successful
 255 test died or all passed but wrong # of tests run
 any other number how many failed (including missing or extras)

If you fail more than 254 tests, it will be reported as 254.

NOTE This behavior may go away in future versions.

CAVEATS and NOTES
Backwards compatibility

Test::More works with Perls as old as 5.6.0.

Perl version 5.18.1 documentation - Test::More

Page 14http://perldoc.perl.org

utf8 / "Wide character in print"

If you use utf8 or other non-ASCII characters with Test::More you
 might get a "Wide character
in print" warning. Using binmode
 STDOUT, ":utf8" will not fix it. Test::Builder (which
powers
 Test::More) duplicates STDOUT and STDERR. So any changes to them,
 including
changing their output disciplines, will not be seem by
 Test::More.

The work around is to change the filehandles used by Test::Builder
 directly.

 my $builder = Test::More->builder;
 binmode $builder->output, ":utf8";
 binmode $builder->failure_output, ":utf8";
 binmode $builder->todo_output, ":utf8";

Overloaded objects

String overloaded objects are compared as strings (or in cmp_ok()'s
 case, strings or numbers
as appropriate to the comparison op). This
 prevents Test::More from piercing an object's
interface allowing
 better blackbox testing. So if a function starts returning overloaded
 objects
instead of bare strings your tests won't notice the
 difference. This is good.

However, it does mean that functions like is_deeply() cannot be used to
 test the internals of
string overloaded objects. In this case I would
 suggest Test::Deep which contains more
flexible testing functions for
 complex data structures.

Threads

Test::More will only be aware of threads if "use threads" has been done before Test::More is
loaded. This is ok:

 use threads;
 use Test::More;

This may cause problems:

 use Test::More
 use threads;

5.8.1 and above are supported. Anything below that has too many bugs.

HISTORY
This is a case of convergent evolution with Joshua Pritikin's Test
 module. I was largely unaware of its
existence when I'd first
 written my own ok() routines. This module exists because I can't
 figure out
how to easily wedge test names into Test's interface (along
 with a few other problems).

The goal here is to have a testing utility that's simple to learn,
 quick to use and difficult to trip yourself
up with while still
 providing more flexibility than the existing Test.pm. As such, the
 names of the most
common routines are kept tiny, special cases and
 magic side-effects are kept to a minimum.
WYSIWYG.

SEE ALSO
Test::Simple if all this confuses you and you just want to write
 some tests. You can upgrade to
Test::More later (it's forward
 compatible).

Test::Harness is the test runner and output interpreter for Perl.
 It's the thing that powers make test
and where the prove utility
 comes from.

Test::Legacy tests written with Test.pm, the original testing
 module, do not play well with other testing
libraries. Test::Legacy
 emulates the Test.pm interface and does play well with others.

Test::Differences for more ways to test complex data structures.
 And it plays well with Test::More.

Test::Class is like xUnit but more perlish.

Perl version 5.18.1 documentation - Test::More

Page 15http://perldoc.perl.org

Test::Deep gives you more powerful complex data structure testing.

Test::Inline shows the idea of embedded testing.

Bundle::Test installs a whole bunch of useful test modules.

AUTHORS
Michael G Schwern <schwern@pobox.com> with much inspiration
 from Joshua Pritikin's Test module
and lots of help from Barrie
 Slaymaker, Tony Bowden, blackstar.co.uk, chromatic, Fergal Daly and
 the
perl-qa gang.

BUGS
See http://rt.cpan.org to report and view bugs.

SOURCE
The source code repository for Test::More can be found at http://github.com/schwern/test-more/.

COPYRIGHT
Copyright 2001-2008 by Michael G Schwern <schwern@pobox.com>.

This program is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

See http://www.perl.com/perl/misc/Artistic.html

