
Perl version 5.22.0 documentation - perldiag

Page 1http://perldoc.perl.org

NAME
perldiag - various Perl diagnostics

DESCRIPTION
These messages are classified as follows (listed in increasing order of
 desperation):

 (W) A warning (optional).
 (D) A deprecation (enabled by default).
 (S) A severe warning (enabled by default).
 (F) A fatal error (trappable).
 (P) An internal error you should never see (trappable).
 (X) A very fatal error (nontrappable).
 (A) An alien error message (not generated by Perl).

The majority of messages from the first three classifications above
 (W, D & S) can be controlled using
the warnings pragma.

If a message can be controlled by the warnings pragma, its warning
 category is included with the
classification letter in the description
 below. E.g. (W closed) means a warning in the closed
category.

Optional warnings are enabled by using the warnings pragma or the -w
 and -W switches. Warnings
may be captured by setting $SIG{__WARN__}
 to a reference to a routine that will be called on each
warning instead
 of printing it. See perlvar.

Severe warnings are always enabled, unless they are explicitly disabled
 with the warnings pragma
or the -X switch.

Trappable errors may be trapped using the eval operator. See "eval" in perlfunc. In almost all cases,
warnings may be selectively
 disabled or promoted to fatal errors using the warnings pragma.
 See
warnings.

The messages are in alphabetical order, without regard to upper or
 lower-case. Some of these
messages are generic. Spots that vary are
 denoted with a %s or other printf-style escape. These
escapes are
 ignored by the alphabetical order, as are all characters other than
 letters. To look up your
message, just ignore anything that is not a
 letter.

accept() on closed socket %s

(W closed) You tried to do an accept on a closed socket. Did you forget
 to check the return
value of your socket() call? See "accept" in perlfunc.

Aliasing via reference is experimental

(S experimental::refaliasing) This warning is emitted if you use
 a reference constructor on the
left-hand side of an assignment to
 alias one variable to another. Simply suppress the warning
if you
 want to use the feature, but know that in doing so you are taking
 the risk of using an
experimental feature which may change or be
 removed in a future Perl version:

 no warnings "experimental::refaliasing";
 use feature "refaliasing";
 \$x = \$y;

Allocation too large: %x

(X) You can't allocate more than 64K on an MS-DOS machine.

'%c' allowed only after types %s in %s

(F) The modifiers '!', '<' and '>' are allowed in pack() or unpack() only
 after certain types. See
"pack" in perlfunc.

Perl version 5.22.0 documentation - perldiag

Page 2http://perldoc.perl.org

Ambiguous call resolved as CORE::%s(), qualify as such or use &

(W ambiguous) A subroutine you have declared has the same name as a Perl
 keyword, and
you have used the name without qualification for calling
 one or the other. Perl decided to call
the builtin because the
 subroutine is not imported.

To force interpretation as a subroutine call, either put an ampersand
 before the subroutine
name, or qualify the name with its package.
 Alternatively, you can import the subroutine (or
pretend that it's
 imported with the use subs pragma).

To silently interpret it as the Perl operator, use the CORE:: prefix
 on the operator (e.g.
CORE::log($x)) or declare the subroutine
 to be an object method (see "Subroutine
Attributes" in perlsub or attributes).

Ambiguous range in transliteration operator

(F) You wrote something like tr/a-z-0// which doesn't mean anything at
 all. To include a -
character in a transliteration, put it either
 first or last. (In the past, tr/a-z-0// was
synonymous with tr/a-y//, which was probably not what you would have expected.)

Ambiguous use of %s resolved as %s

(S ambiguous) You said something that may not be interpreted the way
 you thought. Normally
it's pretty easy to disambiguate it by supplying
 a missing quote, operator, parenthesis pair or
declaration.

Ambiguous use of -%s resolved as -&%s()

(S ambiguous) You wrote something like -foo, which might be the
 string "-foo", or a call to
the function foo, negated. If you meant
 the string, just write "-foo". If you meant the function
call,
 write -foo().

Ambiguous use of %c resolved as operator %c

(S ambiguous) %, &, and * are both infix operators (modulus,
 bitwise and, and multiplication)
and initial special characters
 (denoting hashes, subroutines and typeglobs), and you said
something
 like *foo * foo that might be interpreted as either of them. We
 assumed you
meant the infix operator, but please try to make it more
 clear -- in the example given, you
might write *foo * foo() if you
 really meant to multiply a glob by the result of calling a
function.

Ambiguous use of %c{%s} resolved to %c%s

(W ambiguous) You wrote something like @{foo}, which might be
 asking for the variable
@foo, or it might be calling a function
 named foo, and dereferencing it as an array reference. If
you wanted
 the variable, you can just write @foo. If you wanted to call the
 function, write
@{foo()} ... or you could just not have a variable
 and a function with the same name, and
save yourself a lot of trouble.

Ambiguous use of %c{%s[...]} resolved to %c%s[...]

Ambiguous use of %c{%s{...}} resolved to %c%s{...}

(W ambiguous) You wrote something like ${foo[2]} (where foo represents
 the name of a
Perl keyword), which might be looking for element number
 2 of the array named @foo, in
which case please write $foo[2], or you
 might have meant to pass an anonymous arrayref
to the function named
 foo, and then do a scalar deref on the value it returns. If you meant
 that,
write ${foo([2])}.

In regular expressions, the ${foo[2]} syntax is sometimes necessary
 to disambiguate
between array subscripts and character classes. /$length[2345]/, for instance, will be
interpreted as $length followed
 by the character class [2345]. If an array subscript is what
you
 want, you can avoid the warning by changing /${length[2345]}/ to the
 unsightly
/${\$length[2345]}/, by renaming your array to something
 that does not coincide with a
built-in keyword, or by simply turning
 off warnings with no warnings 'ambiguous';.

Perl version 5.22.0 documentation - perldiag

Page 3http://perldoc.perl.org

'|' and '<' may not both be specified on command line

(F) An error peculiar to VMS. Perl does its own command line
 redirection, and found that
STDIN was a pipe, and that you also tried to
 redirect STDIN using '<'. Only one STDIN stream
to a customer, please.

'|' and '>' may not both be specified on command line

(F) An error peculiar to VMS. Perl does its own command line
 redirection, and thinks you tried
to redirect stdout both to a file and
 into a pipe to another command. You need to choose one
or the other,
 though nothing's stopping you from piping into a program or Perl script
 which
'splits' output into two streams, such as

 open(OUT,">$ARGV[0]") or die "Can't write to $ARGV[0]: $!";
 while (<STDIN>) {
 print;
 print OUT;
 }
 close OUT;

Applying %s to %s will act on scalar(%s)

(W misc) The pattern match (//), substitution (s///), and
 transliteration (tr///) operators
work on scalar values. If you apply
 one of them to an array or a hash, it will convert the array
or hash to
 a scalar value (the length of an array, or the population info of a
 hash) and then
work on that scalar value. This is probably not what
 you meant to do. See "grep" in perlfunc
and "map" in perlfunc for
 alternatives.

Arg too short for msgsnd

(F) msgsnd() requires a string at least as long as sizeof(long).

Argument "%s" isn't numeric%s

(W numeric) The indicated string was fed as an argument to an operator
 that expected a
numeric value instead. If you're fortunate the message
 will identify which operator was so
unfortunate.

Note that for the Inf and NaN (infinity and not-a-number) the
 definition of "numeric" is
somewhat unusual: the strings themselves
 (like "Inf") are considered numeric, and anything
following them is
 considered non-numeric.

Argument list not closed for PerlIO layer "%s"

(W layer) When pushing a layer with arguments onto the Perl I/O
 system you forgot the) that
closes the argument list. (Layers
 take care of transforming data between external and internal

representations.) Perl stopped parsing the layer list at this
 point and did not attempt to push
this layer. If your program
 didn't explicitly request the failing operation, it may be the
 result of
the value of the environment variable PERLIO.

Argument "%s" treated as 0 in increment (++)

(W numeric) The indicated string was fed as an argument to the ++
 operator which expects
either a number or a string matching /^[a-zA-Z]*[0-9]*\z/. See "Auto-increment and
Auto-decrement" in perlop for details.

assertion botched: %s

(X) The malloc package that comes with Perl had an internal failure.

Assertion %s failed: file "%s", line %d

(X) A general assertion failed. The file in question must be examined.

Assigned value is not a reference

Perl version 5.22.0 documentation - perldiag

Page 4http://perldoc.perl.org

(F) You tried to assign something that was not a reference to an lvalue
 reference (e.g., \$x =
 $y). If you meant to make $x an alias to $y, use \$x = \$y.

Assigned value is not %s reference

(F) You tried to assign a reference to a reference constructor, but the
 two references were not
of the same type. You cannot alias a scalar to
 an array, or an array to a hash; the two types
must match.

 \$x = \@y; # error
 \@x = \%y; # error
 $y = [];
 \$x = $y; # error; did you mean \$y?

Assigning non-zero to $[is no longer possible

(F) When the "array_base" feature is disabled (e.g., under use v5.16;)
 the special variable
$[, which is deprecated, is now a fixed zero value.

Assignment to both a list and a scalar

(F) If you assign to a conditional operator, the 2nd and 3rd arguments
 must either both be
scalars or both be lists. Otherwise Perl won't
 know which context to supply to the right side.

<> at require-statement should be quotes

(F) You wrote require <file> when you should have written require 'file'.

Attempt to access disallowed key '%s' in a restricted hash

(F) The failing code has attempted to get or set a key which is not in
 the current set of allowed
keys of a restricted hash.

Attempt to bless into a freed package

(F) You wrote bless $foo with one argument after somehow causing
 the current package to
be freed. Perl cannot figure out what to
 do, so it throws up in hands in despair.

Attempt to bless into a reference

(F) The CLASSNAME argument to the bless() operator is expected to be
 the name of the
package to bless the resulting object into. You've
 supplied instead a reference to something:
perhaps you wrote

 bless $self, $proto;

when you intended

 bless $self, ref($proto) || $proto;

If you actually want to bless into the stringified version
 of the reference supplied, you need to
stringify it yourself, for
 example by:

 bless $self, "$proto";

Attempt to clear deleted array

(S debugging) An array was assigned to when it was being freed.
 Freed values are not
supposed to be visible to Perl code. This
 can also happen if XS code calls av_clear from a
custom magic
 callback on the array.

Attempt to delete disallowed key '%s' from a restricted hash

(F) The failing code attempted to delete from a restricted hash a key
 which is not in its key set.

Attempt to delete readonly key '%s' from a restricted hash

Perl version 5.22.0 documentation - perldiag

Page 5http://perldoc.perl.org

(F) The failing code attempted to delete a key whose value has been
 declared readonly from a
restricted hash.

Attempt to free non-arena SV: 0x%x

(S internal) All SV objects are supposed to be allocated from arenas
 that will be garbage
collected on exit. An SV was discovered to be
 outside any of those arenas.

Attempt to free nonexistent shared string '%s'%s

(S internal) Perl maintains a reference-counted internal table of
 strings to optimize the storage
and access of hash keys and other
 strings. This indicates someone tried to decrement the
reference count
 of a string that can no longer be found in the table.

Attempt to free temp prematurely: SV 0x%x

(S debugging) Mortalized values are supposed to be freed by the
 free_tmps() routine. This
indicates that something else is freeing the
 SV before the free_tmps() routine gets a chance,
which means that the
 free_tmps() routine will be freeing an unreferenced scalar when it does

try to free it.

Attempt to free unreferenced glob pointers

(S internal) The reference counts got screwed up on symbol aliases.

Attempt to free unreferenced scalar: SV 0x%x

(S internal) Perl went to decrement the reference count of a scalar to
 see if it would go to 0,
and discovered that it had already gone to 0
 earlier, and should have been freed, and in fact,
probably was freed.
 This could indicate that SvREFCNT_dec() was called too many times, or

that SvREFCNT_inc() was called too few times, or that the SV was
 mortalized when it
shouldn't have been, or that memory has been
 corrupted.

Attempt to pack pointer to temporary value

(W pack) You tried to pass a temporary value (like the result of a
 function, or a computed
expression) to the "p" pack() template. This
 means the result contains a pointer to a location
that could become
 invalid anytime, even before the end of the current statement. Use
 literals
or global values as arguments to the "p" pack() template to
 avoid this warning.

Attempt to reload %s aborted.

(F) You tried to load a file with use or require that failed to
 compile once already. Perl will
not try to compile this file again
 unless you delete its entry from %INC. See "require" in
perlfunc and "%INC" in perlvar.

Attempt to set length of freed array

(W misc) You tried to set the length of an array which has
 been freed. You can do this by
storing a reference to the
 scalar representing the last index of an array and later
 assigning
through that reference. For example

 $r = do {my @a; \$#a};
 $$r = 503

Attempt to use reference as lvalue in substr

(W substr) You supplied a reference as the first argument to substr()
 used as an lvalue, which
is pretty strange. Perhaps you forgot to
 dereference it first. See "substr" in perlfunc.

Attribute "locked" is deprecated

(D deprecated) You have used the attributes pragma to modify the
 "locked" attribute on a
code reference. The :locked attribute is
 obsolete, has had no effect since 5005 threads were
removed, and
 will be removed in a future release of Perl 5.

Perl version 5.22.0 documentation - perldiag

Page 6http://perldoc.perl.org

Attribute prototype(%s) discards earlier prototype attribute in same sub

(W misc) A sub was declared as sub foo : prototype(A) : prototype(B) {}, for
 example. Since
each sub can only have one prototype, the earlier
 declaration(s) are discarded while the last
one is applied.

Attribute "unique" is deprecated

(D deprecated) You have used the attributes pragma to modify
 the "unique" attribute on an
array, hash or scalar reference.
 The :unique attribute has had no effect since Perl 5.8.8, and

will be removed in a future release of Perl 5.

av_reify called on tied array

(S debugging) This indicates that something went wrong and Perl got very
 confused about @_
or @DB::args being tied.

Bad arg length for %s, is %u, should be %d

(F) You passed a buffer of the wrong size to one of msgctl(), semctl()
 or shmctl(). In C
parlance, the correct sizes are, respectively, sizeof(struct msqid_ds *), sizeof(struct semid_ds
*), and sizeof(struct shmid_ds *).

Bad evalled substitution pattern

(F) You've used the /e switch to evaluate the replacement for a
 substitution, but perl found a
syntax error in the code to evaluate,
 most likely an unexpected right brace '}'.

Bad filehandle: %s

(F) A symbol was passed to something wanting a filehandle, but the
 symbol has no filehandle
associated with it. Perhaps you didn't do an
 open(), or did it in another package.

Bad free() ignored

(S malloc) An internal routine called free() on something that had never
 been malloc()ed in the
first place. Mandatory, but can be disabled by
 setting environment variable PERL_BADFREE to
0.

This message can be seen quite often with DB_File on systems with "hard"
 dynamic linking,
like AIX and OS/2. It is a bug of Berkeley DB
 which is left unnoticed if DB uses forgiving
system malloc().

Bad hash

(P) One of the internal hash routines was passed a null HV pointer.

Badly placed ()'s

(A) You've accidentally run your script through csh instead
 of Perl. Check the #! line, or
manually feed your script into
 Perl yourself.

Bad name after %s

(F) You started to name a symbol by using a package prefix, and then
 didn't finish the symbol.
In particular, you can't interpolate outside
 of quotes, so

 $var = 'myvar';
 $sym = mypack::$var;

is not the same as

 $var = 'myvar';
 $sym = "mypack::$var";

Bad plugin affecting keyword '%s'

(F) An extension using the keyword plugin mechanism violated the
 plugin API.

Perl version 5.22.0 documentation - perldiag

Page 7http://perldoc.perl.org

Bad realloc() ignored

(S malloc) An internal routine called realloc() on something that
 had never been malloc()ed in
the first place. Mandatory, but can
 be disabled by setting the environment variable
PERL_BADFREE to 1.

Bad symbol for array

(P) An internal request asked to add an array entry to something that
 wasn't a symbol table
entry.

Bad symbol for dirhandle

(P) An internal request asked to add a dirhandle entry to something
 that wasn't a symbol table
entry.

Bad symbol for filehandle

(P) An internal request asked to add a filehandle entry to something
 that wasn't a symbol table
entry.

Bad symbol for hash

(P) An internal request asked to add a hash entry to something that
 wasn't a symbol table
entry.

Bad symbol for scalar

(P) An internal request asked to add a scalar entry to something that
 wasn't a symbol table
entry.

Bareword found in conditional

(W bareword) The compiler found a bareword where it expected a
 conditional, which often
indicates that an || or && was parsed as part
 of the last argument of the previous construct, for
example:

 open FOO || die;

It may also indicate a misspelled constant that has been interpreted as
 a bareword:

 use constant TYPO => 1;
 if (TYOP) { print "foo" }

The strict pragma is useful in avoiding such errors.

Bareword "%s" not allowed while "strict subs" in use

(F) With "strict subs" in use, a bareword is only allowed as a
 subroutine identifier, in curly
brackets or to the left of the "=>"
 symbol. Perhaps you need to predeclare a subroutine?

Bareword "%s" refers to nonexistent package

(W bareword) You used a qualified bareword of the form Foo::, but the
 compiler saw no
other uses of that namespace before that point. Perhaps
 you need to predeclare a package?

BEGIN failed--compilation aborted

(F) An untrapped exception was raised while executing a BEGIN
 subroutine. Compilation
stops immediately and the interpreter is
 exited.

BEGIN not safe after errors--compilation aborted

(F) Perl found a BEGIN {} subroutine (or a use directive, which
 implies a BEGIN {}) after
one or more compilation errors had already
 occurred. Since the intended environment for the
BEGIN {} could not
 be guaranteed (due to the errors), and since subsequent code likely

depends on its correct operation, Perl just gave up.

Perl version 5.22.0 documentation - perldiag

Page 8http://perldoc.perl.org

\%d better written as $%d

(W syntax) Outside of patterns, backreferences live on as variables.
 The use of backslashes is
grandfathered on the right-hand side of a
 substitution, but stylistically it's better to use the
variable form
 because other Perl programmers will expect it, and it works better if
 there are
more than 9 backreferences.

Binary number > 0b11111111111111111111111111111111 non-portable

(W portable) The binary number you specified is larger than 2**32-1
 (4294967295) and
therefore non-portable between systems. See perlport for more on portability concerns.

bind() on closed socket %s

(W closed) You tried to do a bind on a closed socket. Did you forget to
 check the return value
of your socket() call? See "bind" in perlfunc.

binmode() on closed filehandle %s

(W unopened) You tried binmode() on a filehandle that was never opened.
 Check your control
flow and number of arguments.

Bit vector size > 32 non-portable

(W portable) Using bit vector sizes larger than 32 is non-portable.

Bizarre copy of %s

(P) Perl detected an attempt to copy an internal value that is not
 copiable.

Bizarre SvTYPE [%d]

(P) When starting a new thread or returning values from a thread, Perl
 encountered an invalid
data type.

Both or neither range ends should be Unicode in regex; marked by <-- HERE in m/%s/

(W regexp) (only under use re 'strict' or within (?[...]))

In a bracketed character class in a regular expression pattern, you
 had a range which has
exactly one end of it specified using \N{}, and
 the other end is specified using a non-portable
mechanism. Perl treats
 the range as a Unicode range, that is, all the characters in it are

considered to be the Unicode characters, and which may be different code
 points on some
platforms Perl runs on. For example, [\N{U+06}-\x08]
 is treated as if you had instead said
[\N{U+06}-\N{U+08}], that is it
 matches the characters whose code points in Unicode are
6, 7, and 8.
 But that \x08 might indicate that you meant something different, so
 the warning
gets raised.

Buffer overflow in prime_env_iter: %s

(W internal) A warning peculiar to VMS. While Perl was preparing to
 iterate over %ENV, it
encountered a logical name or symbol definition
 which was too long, so it was truncated to the
string shown.

Callback called exit

(F) A subroutine invoked from an external package via call_sv()
 exited by calling exit.

%s() called too early to check prototype

(W prototype) You've called a function that has a prototype before the
 parser saw a definition
or declaration for it, and Perl could not check
 that the call conforms to the prototype. You need
to either add an
 early prototype declaration for the subroutine in question, or move the

subroutine definition ahead of the call to get proper prototype
 checking. Alternatively, if you
are certain that you're calling the
 function correctly, you may put an ampersand before the
name to avoid
 the warning. See perlsub.

Calling POSIX::%s() is deprecated

Perl version 5.22.0 documentation - perldiag

Page 9http://perldoc.perl.org

(D deprecated) You called a function whose use is deprecated. See
 the function's name in
POSIX for details.

Cannot chr %f

(F) You passed an invalid number (like an infinity or not-a-number) to chr.

Cannot compress %f in pack

(F) You tried compressing an infinity or not-a-number as an unsigned
 integer with BER, which
makes no sense.

Cannot compress integer in pack

(F) An argument to pack("w",...) was too large to compress.
 The BER compressed integer
format can only be used with positive
 integers, and you attempted to compress a very large
number (> 1e308).
 See "pack" in perlfunc.

Cannot compress negative numbers in pack

(F) An argument to pack("w",...) was negative. The BER compressed integer
 format can only
be used with positive integers. See "pack" in perlfunc.

Cannot convert a reference to %s to typeglob

(F) You manipulated Perl's symbol table directly, stored a reference
 in it, then tried to access
that symbol via conventional Perl syntax.
 The access triggers Perl to autovivify that typeglob,
but it there is
 no legal conversion from that type of reference to a typeglob.

Cannot copy to %s

(P) Perl detected an attempt to copy a value to an internal type that cannot
 be directly
assigned to.

Cannot find encoding "%s"

(S io) You tried to apply an encoding that did not exist to a filehandle,
 either with open() or
binmode().

Cannot pack %f with '%c'

(F) You tried converting an infinity or not-a-number to an integer,
 which makes no sense.

Cannot printf %f with '%c'

(F) You tried printing an infinity or not-a-number as a character (%c),
 which makes no sense.
Maybe you meant '%s', or just stringifying it?

Cannot set tied @DB::args

(F) caller tried to set @DB::args, but found it tied. Tying @DB::args
 is not supported.
(Before this error was added, it used to crash.)

Cannot tie unreifiable array

(P) You somehow managed to call tie on an array that does not
 keep a reference count on
its arguments and cannot be made to
 do so. Such arrays are not even supposed to be
accessible to
 Perl code, but are only used internally.

Can only compress unsigned integers in pack

(F) An argument to pack("w",...) was not an integer. The BER compressed
 integer format can
only be used with positive integers, and you attempted
 to compress something else. See
"pack" in perlfunc.

Can't bless non-reference value

(F) Only hard references may be blessed. This is how Perl "enforces"
 encapsulation of
objects. See perlobj.

Perl version 5.22.0 documentation - perldiag

Page 10http://perldoc.perl.org

Can't "break" in a loop topicalizer

(F) You called break, but you're in a foreach block rather than
 a given block. You probably
meant to use next or last.

Can't "break" outside a given block

(F) You called break, but you're not inside a given block.

Can't call method "%s" on an undefined value

(F) You used the syntax of a method call, but the slot filled by the
 object reference or package
name contains an undefined value. Something
 like this will reproduce the error:

 $BADREF = undef;
 process $BADREF 1,2,3;
 $BADREF->process(1,2,3);

Can't call method "%s" on unblessed reference

(F) A method call must know in what package it's supposed to run. It
 ordinarily finds this out
from the object reference you supply, but you
 didn't supply an object reference in this case. A
reference isn't an
 object reference until it has been blessed. See perlobj.

Can't call method "%s" without a package or object reference

(F) You used the syntax of a method call, but the slot filled by the
 object reference or package
name contains an expression that returns a
 defined value which is neither an object reference
nor a package name.
 Something like this will reproduce the error:

 $BADREF = 42;
 process $BADREF 1,2,3;
 $BADREF->process(1,2,3);

Can't call mro_isa_changed_in() on anonymous symbol table

(P) Perl got confused as to whether a hash was a plain hash or a
 symbol table hash when
trying to update @ISA caches.

Can't call mro_method_changed_in() on anonymous symbol table

(F) An XS module tried to call mro_method_changed_in on a hash that was
 not attached to
the symbol table.

Can't chdir to %s

(F) You called perl -x/foo/bar, but /foo/bar is not a directory
 that you can chdir to,
possibly because it doesn't exist.

Can't check filesystem of script "%s" for nosuid

(P) For some reason you can't check the filesystem of the script for
 nosuid.

Can't coerce %s to %s in %s

(F) Certain types of SVs, in particular real symbol table entries
 (typeglobs), can't be forced to
stop being what they are. So you can't
 say things like:

 *foo += 1;

You CAN say

 $foo = *foo;
 $foo += 1;

but then $foo no longer contains a glob.

Perl version 5.22.0 documentation - perldiag

Page 11http://perldoc.perl.org

Can't "continue" outside a when block

(F) You called continue, but you're not inside a when
 or default block.

Can't create pipe mailbox

(P) An error peculiar to VMS. The process is suffering from exhausted
 quotas or other
plumbing problems.

Can't declare %s in "%s"

(F) Only scalar, array, and hash variables may be declared as "my", "our" or
 "state" variables.
They must have ordinary identifiers as names.

Can't "default" outside a topicalizer

(F) You have used a default block that is neither inside a foreach loop nor a given block.
(Note that this error is
 issued on exit from the default block, so you won't get the
 error if you
use an explicit continue.)

Can't do inplace edit: %s is not a regular file

(S inplace) You tried to use the -i switch on a special file, such as
 a file in /dev, a FIFO or an
uneditable directory. The file was ignored.

Can't do inplace edit on %s: %s

(S inplace) The creation of the new file failed for the indicated
 reason.

Can't do inplace edit without backup

(F) You're on a system such as MS-DOS that gets confused if you try
 reading from a deleted
(but still opened) file. You have to say -i.bak, or some such.

Can't do inplace edit: %s would not be unique

(S inplace) Your filesystem does not support filenames longer than 14
 characters and Perl
was unable to create a unique filename during
 inplace editing with the -i switch. The file was
ignored.

Can't do %s("%s") on non-UTF-8 locale; resolved to "%s".

(W locale) You are 1) running under "use locale"; 2) the current
 locale is not a UTF-8 one;
3) you tried to do the designated case-change
 operation on the specified Unicode character;
and 4) the result of this
 operation would mix Unicode and locale rules, which likely conflict.

Mixing of different rule types is forbidden, so the operation was not
 done; instead the result is
the indicated value, which is the best
 available that uses entirely Unicode rules. That turns out
to almost
 always be the original character, unchanged.

It is generally a bad idea to mix non-UTF-8 locales and Unicode, and
 this issue is one of the
reasons why. This warning is raised when
 Unicode rules would normally cause the result of
this operation to
 contain a character that is in the range specified by the locale,
 0..255, and
hence is subject to the locale's rules, not Unicode's.

If you are using locale purely for its characteristics related to things
 like its numeric and time
formatting (and not LC_CTYPE), consider
 using a restricted form of the locale pragma (see
"The "use locale" pragma" in perllocale) like "use locale ':not_characters'".

Note that failed case-changing operations done as a result of
 case-insensitive /i regular
expression matching will show up in this
 warning as having the fc operation (as that is what
the regular
 expression engine calls behind the scenes.)

Can't do waitpid with flags

(F) This machine doesn't have either waitpid() or wait4(), so only
 waitpid() without flags is
emulated.

Can't emulate -%s on #! line

Perl version 5.22.0 documentation - perldiag

Page 12http://perldoc.perl.org

(F) The #! line specifies a switch that doesn't make sense at this
 point. For example, it'd be
kind of silly to put a -x on the #!
 line.

Can't %s %s-endian %ss on this platform

(F) Your platform's byte-order is neither big-endian nor little-endian,
 or it has a very strange
pointer size. Packing and unpacking big- or
 little-endian floating point values and pointers may
not be possible.
 See "pack" in perlfunc.

Can't exec "%s": %s

(W exec) A system(), exec(), or piped open call could not execute the
 named program for the
indicated reason. Typical reasons include: the
 permissions were wrong on the file, the file
wasn't found in $ENV{PATH}, the executable in question was compiled for another

architecture, or the #! line in a script points to an interpreter that
 can't be run for similar
reasons. (Or maybe your system doesn't support
 #! at all.)

Can't exec %s

(F) Perl was trying to execute the indicated program for you because
 that's what the #! line
said. If that's not what you wanted, you may
 need to mention "perl" on the #! line somewhere.

Can't execute %s

(F) You used the -S switch, but the copies of the script to execute
 found in the PATH did not
have correct permissions.

Can't find an opnumber for "%s"

(F) A string of a form CORE::word was given to prototype(), but there
 is no builtin with the
name word.

Can't find %s character property "%s"

(F) You used \p{} or \P{} but the character property by that name
 could not be found.
Maybe you misspelled the name of the property?
 See "Properties accessible through \p{} and
\P{}" in perluniprops
 for a complete list of available official properties.

Can't find label %s

(F) You said to goto a label that isn't mentioned anywhere that it's
 possible for us to go to. See
"goto" in perlfunc.

Can't find %s on PATH

(F) You used the -S switch, but the script to execute could not be
 found in the PATH.

Can't find %s on PATH, '.' not in PATH

(F) You used the -S switch, but the script to execute could not be
 found in the PATH, or at
least not with the correct permissions. The
 script exists in the current directory, but PATH
prohibits running it.

Can't find string terminator %s anywhere before EOF

(F) Perl strings can stretch over multiple lines. This message means
 that the closing delimiter
was omitted. Because bracketed quotes count
 nesting levels, the following is missing its final
parenthesis:

 print q(The character '(' starts a side comment.);

If you're getting this error from a here-document, you may have
 included unseen whitespace
before or after your closing tag or there
 may not be a linebreak after it. A good programmer's
editor will have
 a way to help you find these characters (or lack of characters). See perlop for
the full details on here-documents.

Can't find Unicode property definition "%s"

Perl version 5.22.0 documentation - perldiag

Page 13http://perldoc.perl.org

(F) You may have tried to use \p which means a Unicode
 property (for example \p{Lu}
matches all uppercase
 letters). If you did mean to use a Unicode property, see "Properties
accessible through \p{} and \P{}" in perluniprops
 for a complete list of available properties. If
you didn't
 mean to use a Unicode property, escape the \p, either by \\p (just the \p) or by
\Q\p (the rest of the string, or
 until \E).

Can't fork: %s

(F) A fatal error occurred while trying to fork while opening a
 pipeline.

Can't fork, trying again in 5 seconds

(W pipe) A fork in a piped open failed with EAGAIN and will be retried
 after five seconds.

Can't get filespec - stale stat buffer?

(S) A warning peculiar to VMS. This arises because of the difference
 between access checks
under VMS and under the Unix model Perl assumes.
 Under VMS, access checks are done by
filename, rather than by bits in
 the stat buffer, so that ACLs and other protections can be taken
into
 account. Unfortunately, Perl assumes that the stat buffer contains all
 the necessary
information, and passes it, instead of the filespec, to
 the access-checking routine. It will try to
retrieve the filespec using
 the device name and FID present in the stat buffer, but this works
only
 if you haven't made a subsequent call to the CRTL stat() routine,
 because the device
name is overwritten with each call. If this warning
 appears, the name lookup failed, and the
access-checking routine gave up
 and returned FALSE, just to be conservative. (Note: The
access-checking
 routine knows about the Perl stat operator and file tests, so you
 shouldn't
ever see this warning in response to a Perl command; it arises
 only if some internal code
takes stat buffers lightly.)

Can't get pipe mailbox device name

(P) An error peculiar to VMS. After creating a mailbox to act as a
 pipe, Perl can't retrieve its
name for later use.

Can't get SYSGEN parameter value for MAXBUF

(P) An error peculiar to VMS. Perl asked $GETSYI how big you want your
 mailbox buffers to
be, and didn't get an answer.

Can't "goto" into the middle of a foreach loop

(F) A "goto" statement was executed to jump into the middle of a foreach
 loop. You can't get
there from here. See "goto" in perlfunc.

Can't "goto" out of a pseudo block

(F) A "goto" statement was executed to jump out of what might look like
 a block, except that it
isn't a proper block. This usually occurs if
 you tried to jump out of a sort() block or subroutine,
which is a no-no.
 See "goto" in perlfunc.

Can't goto subroutine from an eval-%s

(F) The "goto subroutine" call can't be used to jump out of an eval
 "string" or block.

Can't goto subroutine from a sort sub (or similar callback)

(F) The "goto subroutine" call can't be used to jump out of the
 comparison sub for a sort(), or
from a similar callback (such
 as the reduce() function in List::Util).

Can't goto subroutine outside a subroutine

(F) The deeply magical "goto subroutine" call can only replace one
 subroutine call for another.
It can't manufacture one out of whole
 cloth. In general you should be calling it out of only an
AUTOLOAD
 routine anyway. See "goto" in perlfunc.

Can't ignore signal CHLD, forcing to default

Perl version 5.22.0 documentation - perldiag

Page 14http://perldoc.perl.org

(W signal) Perl has detected that it is being run with the SIGCHLD
 signal (sometimes known
as SIGCLD) disabled. Since disabling this
 signal will interfere with proper determination of exit
status of child
 processes, Perl has reset the signal to its default value. This
 situation typically
indicates that the parent program under which Perl
 may be running (e.g. cron) is being very
careless.

Can't kill a non-numeric process ID

(F) Process identifiers must be (signed) integers. It is a fatal error to
 attempt to kill() an
undefined, empty-string or otherwise non-numeric
 process identifier.

Can't "last" outside a loop block

(F) A "last" statement was executed to break out of the current block,
 except that there's this
itty bitty problem called there isn't a current
 block. Note that an "if" or "else" block doesn't
count as a "loopish"
 block, as doesn't a block given to sort(), map() or grep(). You can
 usually
double the curlies to get the same effect though, because the
 inner curlies will be considered
a block that loops once. See "last" in perlfunc.

Can't linearize anonymous symbol table

(F) Perl tried to calculate the method resolution order (MRO) of a
 package, but failed because
the package stash has no name.

Can't load '%s' for module %s

(F) The module you tried to load failed to load a dynamic extension.
 This may either mean that
you upgraded your version of perl to one
 that is incompatible with your old dynamic extensions
(which is known
 to happen between major versions of perl), or (more likely) that your
 dynamic
extension was built against an older version of the library
 that is installed on your system. You
may need to rebuild your old
 dynamic extensions.

Can't localize lexical variable %s

(F) You used local on a variable name that was previously declared as a
 lexical variable using
"my" or "state". This is not allowed. If you
 want to localize a package variable of the same
name, qualify it with
 the package name.

Can't localize through a reference

(F) You said something like local $$ref, which Perl can't currently
 handle, because when it
goes to restore the old value of whatever $ref
 pointed to after the scope of the local() is
finished, it can't be sure
 that $ref will still be a reference.

Can't locate %s

(F) You said to do (or require, or use) a file that couldn't be found.
 Perl looks for the file in
all the locations mentioned in @INC, unless
 the file name included the full path to the file.
Perhaps you need
 to set the PERL5LIB or PERL5OPT environment variable to say where the

extra library is, or maybe the script needs to add the library name
 to @INC. Or maybe you just
misspelled the name of the file. See "require" in perlfunc and lib.

Can't locate auto/%s.al in @INC

(F) A function (or method) was called in a package which allows
 autoload, but there is no
function to autoload. Most probable causes
 are a misprint in a function/method name or a
failure to AutoSplit
 the file, say, by doing make install.

Can't locate loadable object for module %s in @INC

(F) The module you loaded is trying to load an external library, like
 for example, foo.so or
bar.dll, but the DynaLoader module was
 unable to locate this library. See DynaLoader.

Can't locate object method "%s" via package "%s"

(F) You called a method correctly, and it correctly indicated a package
 functioning as a class,

Perl version 5.22.0 documentation - perldiag

Page 15http://perldoc.perl.org

but that package doesn't define that particular
 method, nor does any of its base classes. See
perlobj.

Can't locate object method "%s" via package "%s" (perhaps you forgot
 to load "%s"?)

(F) You called a method on a class that did not exist, and the method
 could not be found in
UNIVERSAL. This often means that a method
 requires a package that has not been loaded.

Can't locate package %s for @%s::ISA

(W syntax) The @ISA array contained the name of another package that
 doesn't seem to
exist.

Can't locate PerlIO%s

(F) You tried to use in open() a PerlIO layer that does not exist,
 e.g. open(FH, ">:nosuchlayer",
"somefile").

Can't make list assignment to %ENV on this system

(F) List assignment to %ENV is not supported on some systems, notably
 VMS.

Can't make loaded symbols global on this platform while loading %s

(S) A module passed the flag 0x01 to DynaLoader::dl_load_file() to request
 that symbols from
the stated file are made available globally within the
 process, but that functionality is not
available on this platform. Whilst
 the module likely will still work, this may prevent the perl
interpreter
 from loading other XS-based extensions which need to link directly to
 functions
defined in the C or XS code in the stated file.

Can't modify %s in %s

(F) You aren't allowed to assign to the item indicated, or otherwise try
 to change it, such as
with an auto-increment.

Can't modify nonexistent substring

(P) The internal routine that does assignment to a substr() was handed
 a NULL.

Can't modify non-lvalue subroutine call

(F) Subroutines meant to be used in lvalue context should be declared as
 such. See "Lvalue
subroutines" in perlsub.

Can't modify reference to %s in %s assignment

(F) Only a limited number of constructs can be used as the argument to a
 reference
constructor on the left-hand side of an assignment, and what
 you used was not one of them.
See "Assigning to References" in perlref.

Can't modify reference to localized parenthesized array in list
 assignment

(F) Assigning to \local(@array) or \(local @array) is not supported, as
 it is not clear
exactly what it should do. If you meant to make @array
 refer to some other array, use
\@array = \@other_array. If you want to
 make the elements of @array aliases of the
scalars referenced on the
 right-hand side, use \(@array) = @scalar_refs.

Can't modify reference to parenthesized hash in list assignment

(F) Assigning to \(%hash) is not supported. If you meant to make %hash
 refer to some other
hash, use \%hash = \%other_hash. If you want to
 make the elements of %hash into
aliases of the scalars referenced on the
 right-hand side, use a hash slice: \@hash{@keys} =
 @those_scalar_refs.

Can't msgrcv to read-only var

(F) The target of a msgrcv must be modifiable to be used as a receive
 buffer.

Perl version 5.22.0 documentation - perldiag

Page 16http://perldoc.perl.org

Can't "next" outside a loop block

(F) A "next" statement was executed to reiterate the current block, but
 there isn't a current
block. Note that an "if" or "else" block doesn't
 count as a "loopish" block, as doesn't a block
given to sort(), map() or
 grep(). You can usually double the curlies to get the same effect

though, because the inner curlies will be considered a block that loops
 once. See "next" in
perlfunc.

Can't open %s: %s

(S inplace) The implicit opening of a file through use of the <>
 filehandle, either implicitly
under the -n or -p command-line
 switches, or explicitly, failed for the indicated reason.
Usually
 this is because you don't have read permission for a file which
 you named on the
command line.

(F) You tried to call perl with the -e switch, but /dev/null (or
 your operating system's equivalent)
could not be opened.

Can't open a reference

(W io) You tried to open a scalar reference for reading or writing,
 using the 3-arg open()
syntax:

 open FH, '>', $ref;

but your version of perl is compiled without perlio, and this form of
 open is not supported.

Can't open bidirectional pipe

(W pipe) You tried to say open(CMD, "|cmd|"), which is not supported.
 You can try any of
several modules in the Perl library to do this, such
 as IPC::Open2. Alternately, direct the pipe's
output to a file using
 ">", and then read it in under a different file handle.

Can't open error file %s as stderr

(F) An error peculiar to VMS. Perl does its own command line
 redirection, and couldn't open
the file specified after '2>' or '2>>' on
 the command line for writing.

Can't open input file %s as stdin

(F) An error peculiar to VMS. Perl does its own command line
 redirection, and couldn't open
the file specified after '<' on the
 command line for reading.

Can't open output file %s as stdout

(F) An error peculiar to VMS. Perl does its own command line
 redirection, and couldn't open
the file specified after '>' or '>>' on
 the command line for writing.

Can't open output pipe (name: %s)

(P) An error peculiar to VMS. Perl does its own command line
 redirection, and couldn't open
the pipe into which to send data destined
 for stdout.

Can't open perl script "%s": %s

(F) The script you specified can't be opened for the indicated reason.

If you're debugging a script that uses #!, and normally relies on the
 shell's $PATH search, the
-S option causes perl to do that search, so
 you don't have to type the path or `which
$scriptname`.

Can't read CRTL environ

(S) A warning peculiar to VMS. Perl tried to read an element of %ENV
 from the CRTL's
internal environment array and discovered the array was
 missing. You need to figure out
where your CRTL misplaced its environ
 or define PERL_ENV_TABLES (see perlvms) so that
environ is not
 searched.

Perl version 5.22.0 documentation - perldiag

Page 17http://perldoc.perl.org

Can't "redo" outside a loop block

(F) A "redo" statement was executed to restart the current block, but
 there isn't a current
block. Note that an "if" or "else" block doesn't
 count as a "loopish" block, as doesn't a block
given to sort(), map()
 or grep(). You can usually double the curlies to get the same effect

though, because the inner curlies will be considered a block that
 loops once. See "redo" in
perlfunc.

Can't remove %s: %s, skipping file

(S inplace) You requested an inplace edit without creating a backup
 file. Perl was unable to
remove the original file to replace it with
 the modified file. The file was left unmodified.

Can't rename %s to %s: %s, skipping file

(S inplace) The rename done by the -i switch failed for some reason,
 probably because you
don't have write permission to the directory.

Can't reopen input pipe (name: %s) in binary mode

(P) An error peculiar to VMS. Perl thought stdin was a pipe, and tried
 to reopen it to accept
binary data. Alas, it failed.

Can't represent character for Ox%X on this platform

(F) There is a hard limit to how big a character code point can be due
 to the fundamental
properties of UTF-8, especially on EBCDIC
 platforms. The given code point exceeds that. The
only work-around is
 to not use such a large code point.

Can't reset %ENV on this system

(F) You called reset('E') or similar, which tried to reset
 all variables in the current package
beginning with "E". In
 the main package, that includes %ENV. Resetting %ENV is not

supported on some systems, notably VMS.

Can't resolve method "%s" overloading "%s" in package "%s"

(F)(P) Error resolving overloading specified by a method name (as
 opposed to a subroutine
reference): no such method callable via the
 package. If the method name is ???, this is an
internal error.

Can't return %s from lvalue subroutine

(F) Perl detected an attempt to return illegal lvalues (such as
 temporary or readonly values)
from a subroutine used as an lvalue. This
 is not allowed.

Can't return outside a subroutine

(F) The return statement was executed in mainline code, that is, where
 there was no
subroutine call to return out of. See perlsub.

Can't return %s to lvalue scalar context

(F) You tried to return a complete array or hash from an lvalue
 subroutine, but you called the
subroutine in a way that made Perl
 think you meant to return only one value. You probably
meant to
 write parentheses around the call to the subroutine, which tell
 Perl that the call
should be in list context.

Can't stat script "%s"

(P) For some reason you can't fstat() the script even though you have it
 open already. Bizarre.

Can't take log of %g

(F) For ordinary real numbers, you can't take the logarithm of a
 negative number or zero.
There's a Math::Complex package that comes
 standard with Perl, though, if you really want to
do that for the
 negative numbers.

Perl version 5.22.0 documentation - perldiag

Page 18http://perldoc.perl.org

Can't take sqrt of %g

(F) For ordinary real numbers, you can't take the square root of a
 negative number. There's a
Math::Complex package that comes standard
 with Perl, though, if you really want to do that.

Can't undef active subroutine

(F) You can't undefine a routine that's currently running. You can,
 however, redefine it while
it's running, and you can even undef the
 redefined subroutine while the old routine is running.
Go figure.

Can't upgrade %s (%d) to %d

(P) The internal sv_upgrade routine adds "members" to an SV, making it
 into a more
specialized kind of SV. The top several SV types are so
 specialized, however, that they
cannot be interconverted. This message
 indicates that such a conversion was attempted.

Can't use '%c' after -mname

(F) You tried to call perl with the -m switch, but you put something
 other than "=" after the
module name.

Can't use a hash as a reference

(F) You tried to use a hash as a reference, as in %foo->{"bar"} or %$ref->{"hello"}.
Versions of perl
 <= 5.22.0 used to allow this syntax, but shouldn't
 have. This was deprecated
in perl 5.6.1.

Can't use an array as a reference

(F) You tried to use an array as a reference, as in @foo->[23] or @$ref->[99]. Versions of
perl <= 5.22.0
 used to allow this syntax, but shouldn't have. This
 was deprecated in perl 5.6.1.

Can't use anonymous symbol table for method lookup

(F) The internal routine that does method lookup was handed a symbol
 table that doesn't have
a name. Symbol tables can become anonymous
 for example by undefining stashes: undef
%Some::Package::.

Can't use an undefined value as %s reference

(F) A value used as either a hard reference or a symbolic reference must
 be a defined value.
This helps to delurk some insidious errors.

Can't use bareword ("%s") as %s ref while "strict refs" in use

(F) Only hard references are allowed by "strict refs". Symbolic
 references are disallowed. See
perlref.

Can't use %! because Errno.pm is not available

(F) The first time the %! hash is used, perl automatically loads the
 Errno.pm module. The
Errno module is expected to tie the %! hash to
 provide symbolic names for $! errno values.

Can't use both '<' and '>' after type '%c' in %s

(F) A type cannot be forced to have both big-endian and little-endian
 byte-order at the same
time, so this combination of modifiers is not
 allowed. See "pack" in perlfunc.

Can't use 'defined(@array)' (Maybe you should just omit the defined()?)

(F) defined() is not useful on arrays because it
 checks for an undefined scalar value. If you
want to see if the
 array is empty, just use if (@array) { # not empty } for example.

Can't use 'defined(%hash)' (Maybe you should just omit the defined()?)

(F) defined() is not usually right on hashes.

Although defined %hash is false on a plain not-yet-used hash, it
 becomes true in several

Perl version 5.22.0 documentation - perldiag

Page 19http://perldoc.perl.org

non-obvious circumstances, including iterators,
 weak references, stash names, even
remaining true after undef %hash.
 These things make defined %hash fairly useless in
practice, so it now
 generates a fatal error.

If a check for non-empty is what you wanted then just put it in boolean
 context (see "Scalar
values" in perldata):

 if (%hash) {
 # not empty
 }

If you had defined %Foo::Bar::QUUX to check whether such a package
 variable exists
then that's never really been reliable, and isn't
 a good way to enquire about the features of a
package, or whether
 it's loaded, etc.

Can't use %s for loop variable

(P) The parser got confused when trying to parse a foreach loop.

Can't use global %s in "%s"

(F) You tried to declare a magical variable as a lexical variable. This
 is not allowed, because
the magic can be tied to only one location
 (namely the global variable) and it would be
incredibly confusing to
 have variables in your program that looked like magical variables but

weren't.

Can't use '%c' in a group with different byte-order in %s

(F) You attempted to force a different byte-order on a type
 that is already inside a group with a
byte-order modifier.
 For example you cannot force little-endianness on a type that
 is inside a
big-endian group.

Can't use "my %s" in sort comparison

(F) The global variables $a and $b are reserved for sort comparisons.
 You mentioned $a or $b
in the same line as the <=> or cmp operator,
 and the variable had earlier been declared as a
lexical variable.
 Either qualify the sort variable with the package name, or rename the
 lexical
variable.

Can't use %s ref as %s ref

(F) You've mixed up your reference types. You have to dereference a
 reference of the type
needed. You can use the ref() function to
 test the type of the reference, if need be.

Can't use string ("%s") as %s ref while "strict refs" in use

Can't use string ("%s"...) as %s ref while "strict refs" in use

(F) You've told Perl to dereference a string, something which use strict blocks to prevent it
happening accidentally. See "Symbolic references" in perlref. This can be triggered by an @ or
$
 in a double-quoted string immediately before interpolating a variable,
 for example in "user
@$twitter_id", which says to treat the contents
 of $twitter_id as an array reference;
use a \ to have a literal @
 symbol followed by the contents of $twitter_id: "user
\@$twitter_id".

Can't use subscript on %s

(F) The compiler tried to interpret a bracketed expression as a
 subscript. But to the left of the
brackets was an expression that
 didn't look like a hash or array reference, or anything else
subscriptable.

Can't use \%c to mean $%c in expression

(W syntax) In an ordinary expression, backslash is a unary operator that
 creates a reference
to its argument. The use of backslash to indicate a
 backreference to a matched substring is
valid only as part of a regular
 expression pattern. Trying to do this in ordinary Perl code

Perl version 5.22.0 documentation - perldiag

Page 20http://perldoc.perl.org

produces a
 value that prints out looking like SCALAR(0xdecaf). Use the $1 form
 instead.

Can't weaken a nonreference

(F) You attempted to weaken something that was not a reference. Only
 references can be
weakened.

Can't "when" outside a topicalizer

(F) You have used a when() block that is neither inside a foreach
 loop nor a given block.
(Note that this error is issued on exit
 from the when block, so you won't get the error if the
match fails,
 or if you use an explicit continue.)

Can't x= to read-only value

(F) You tried to repeat a constant value (often the undefined value)
 with an assignment
operator, which implies modifying the value itself.
 Perhaps you need to copy the value to a
temporary, and repeat that.

Character following "\c" must be printable ASCII

(F) In \cX, X must be a printable (non-control) ASCII character.

Note that ASCII characters that don't map to control characters are
 discouraged, and will
generate the warning (when enabled) "\c%c" is more clearly written simply as "%s".

Character in 'C' format wrapped in pack

(W pack) You said

 pack("C", $x)

where $x is either less than 0 or more than 255; the "C" format is
 only for encoding native
operating system characters (ASCII, EBCDIC,
 and so on) and not for Unicode characters, so
Perl behaved as if you meant

 pack("C", $x & 255)

If you actually want to pack Unicode codepoints, use the "U" format
 instead.

Character in 'c' format wrapped in pack

(W pack) You said

 pack("c", $x)

where $x is either less than -128 or more than 127; the "c" format
 is only for encoding native
operating system characters (ASCII, EBCDIC,
 and so on) and not for Unicode characters, so
Perl behaved as if you meant

 pack("c", $x & 255);

If you actually want to pack Unicode codepoints, use the "U" format
 instead.

Character in '%c' format wrapped in unpack

(W unpack) You tried something like

 unpack("H", "\x{2a1}")

where the format expects to process a byte (a character with a value
 below 256), but a higher
value was provided instead. Perl uses the
 value modulus 256 instead, as if you had provided:

 unpack("H", "\x{a1}")

Character in 'W' format wrapped in pack

(W pack) You said

Perl version 5.22.0 documentation - perldiag

Page 21http://perldoc.perl.org

 pack("U0W", $x)

where $x is either less than 0 or more than 255. However, U0-mode
 expects all values to fall
in the interval [0, 255], so Perl behaved
 as if you meant:

 pack("U0W", $x & 255)

Character(s) in '%c' format wrapped in pack

(W pack) You tried something like

 pack("u", "\x{1f3}b")

where the format expects to process a sequence of bytes (character with a
 value below 256),
but some of the characters had a higher value. Perl
 uses the character values modulus 256
instead, as if you had provided:

 pack("u", "\x{f3}b")

Character(s) in '%c' format wrapped in unpack

(W unpack) You tried something like

 unpack("s", "\x{1f3}b")

where the format expects to process a sequence of bytes (character with a
 value below 256),
but some of the characters had a higher value. Perl
 uses the character values modulus 256
instead, as if you had provided:

 unpack("s", "\x{f3}b")

charnames alias definitions may not contain a sequence of multiple spaces

(F) You defined a character name which had multiple space characters
 in a row. Change them
to single spaces. Usually these names are
 defined in the :alias import argument to use
charnames, but they
 could be defined by a translator installed into $^H{charnames}. See
"CUSTOM ALIASES" in charnames.

charnames alias definitions may not contain trailing white-space

(F) You defined a character name which ended in a space
 character. Remove the trailing
space(s). Usually these names are
 defined in the :alias import argument to use
charnames, but they
 could be defined by a translator installed into $^H{charnames}.
 See
"CUSTOM ALIASES" in charnames.

\C is deprecated in regex; marked by <-- HERE in m/%s/

(D deprecated, regexp) The \C character class is deprecated, and will
 become a compile-time
error in a future release of perl (tentatively
 v5.24). This construct allows you to match a single
byte of what makes
 up a multi-byte single UTF8 character, and breaks encapsulation. It is

currently also very buggy. If you really need to process the individual
 bytes, you probably want
to convert your string to one where each
 underlying byte is stored as a character, with
utf8::encode().

"\c%c" is more clearly written simply as "%s"

(W syntax) The \cX construct is intended to be a way to specify
 non-printable characters. You
used it for a printable one, which
 is better written as simply itself, perhaps preceded by a
backslash
 for non-word characters. Doing it the way you did is not portable
 between ASCII
and EBCDIC platforms.

Cloning substitution context is unimplemented

(F) Creating a new thread inside the s/// operator is not supported.

Perl version 5.22.0 documentation - perldiag

Page 22http://perldoc.perl.org

closedir() attempted on invalid dirhandle %s

(W io) The dirhandle you tried to close is either closed or not really
 a dirhandle. Check your
control flow.

close() on unopened filehandle %s

(W unopened) You tried to close a filehandle that was never opened.

Closure prototype called

(F) If a closure has attributes, the subroutine passed to an attribute
 handler is the prototype
that is cloned when a new closure is created.
 This subroutine cannot be called.

Code missing after '/'

(F) You had a (sub-)template that ends with a '/'. There must be
 another template code
following the slash. See "pack" in perlfunc.

Code point 0x%X is not Unicode, may not be portable

(S non_unicode) You had a code point above the Unicode maximum
 of U+10FFFF.

Perl allows strings to contain a superset of Unicode code points, up
 to the limit of what is
storable in an unsigned integer on your system,
 but these may not be accepted by other
languages/systems. At one time,
 it was legal in some standards to have code points up to
0x7FFF_FFFF,
 but not higher. Code points above 0xFFFF_FFFF require larger than a
 32 bit
word.

%s: Command not found

(A) You've accidentally run your script through csh or another shell
 instead of Perl. Check the
#! line, or manually feed your script into
 Perl yourself. The #! line at the top of your file could
look like

 #!/usr/bin/perl -w

Compilation failed in require

(F) Perl could not compile a file specified in a require statement.
 Perl uses this generic
message when none of the errors that it
 encountered were severe enough to halt compilation
immediately.

Complex regular subexpression recursion limit (%d) exceeded

(W regexp) The regular expression engine uses recursion in complex
 situations where
back-tracking is required. Recursion depth is limited
 to 32766, or perhaps less in architectures
where the stack cannot grow
 arbitrarily. ("Simple" and "medium" situations are handled
without
 recursion and are not subject to a limit.) Try shortening the string
 under examination;
looping in Perl code (e.g. with while) rather than
 in the regular expression engine; or
rewriting the regular expression so
 that it is simpler or backtracks less. (See perlfaq2 for
information
 on Mastering Regular Expressions.)

connect() on closed socket %s

(W closed) You tried to do a connect on a closed socket. Did you forget
 to check the return
value of your socket() call? See "connect" in perlfunc.

Constant(%s): Call to &{$^H{%s}} did not return a defined value

(F) The subroutine registered to handle constant overloading
 (see overload) or a custom
charnames handler (see "CUSTOM TRANSLATORS" in charnames) returned an undefined
value.

Constant(%s): $^H{%s} is not defined

(F) The parser found inconsistencies while attempting to define an
 overloaded constant.

Perl version 5.22.0 documentation - perldiag

Page 23http://perldoc.perl.org

Perhaps you forgot to load the corresponding overload pragma?

Constant is not %s reference

(F) A constant value (perhaps declared using the use constant pragma)
 is being
dereferenced, but it amounts to the wrong type of reference.
 The message indicates the type
of reference that was expected. This
 usually indicates a syntax error in dereferencing the
constant value.
 See "Constant Functions" in perlsub and constant.

Constants from lexical variables potentially modified elsewhere are
 deprecated

(D deprecated) You wrote something like

 my $var;
 $sub = sub () { $var };

but $var is referenced elsewhere and could be modified after the sub
 expression is evaluated.
Either it is explicitly modified elsewhere
 ($var = 3) or it is passed to a subroutine or to an
operator like printf or map, which may or may not modify the variable.

Traditionally, Perl has captured the value of the variable at that
 point and turned the
subroutine into a constant eligible for inlining.
 In those cases where the variable can be
modified elsewhere, this
 breaks the behavior of closures, in which the subroutine captures
 the
variable itself, rather than its value, so future changes to the
 variable are reflected in the
subroutine's return value.

This usage is deprecated, because the behavior is likely to change
 in a future version of Perl.

If you intended for the subroutine to be eligible for inlining, then
 make sure the variable is not
referenced elsewhere, possibly by
 copying it:

 my $var2 = $var;
 $sub = sub () { $var2 };

If you do want this subroutine to be a closure that reflects future
 changes to the variable that it
closes over, add an explicit return:

 my $var;
 $sub = sub () { return $var };

Constant subroutine %s redefined

(W redefine)(S) You redefined a subroutine which had previously
 been eligible for inlining. See
"Constant Functions" in perlsub
 for commentary and workarounds.

Constant subroutine %s undefined

(W misc) You undefined a subroutine which had previously been eligible
 for inlining. See
"Constant Functions" in perlsub for commentary and
 workarounds.

Constant(%s) unknown

(F) The parser found inconsistencies either while attempting
 to define an overloaded constant,
or when trying to find the
 character name specified in the \N{...} escape. Perhaps you

forgot to load the corresponding overload pragma?

:const is experimental

(S experimental::const_attr) The "const" attribute is experimental.
 If you want to use the
feature, disable the warning with no warnings
 'experimental::const_attr', but
know that in doing so you are taking
 the risk that your code may break in a future Perl version.

:const is not permitted on named subroutines

(F) The "const" attribute causes an anonymous subroutine to be run and
 its value captured at
the time that it is cloned. Named subroutines are
 not cloned like this, so the attribute does not

Perl version 5.22.0 documentation - perldiag

Page 24http://perldoc.perl.org

make sense on them.

Copy method did not return a reference

(F) The method which overloads "=" is buggy. See "Copy Constructor" in overload.

&CORE::%s cannot be called directly

(F) You tried to call a subroutine in the CORE:: namespace
 with &foo syntax or through a
reference. Some subroutines
 in this package cannot yet be called that way, but must be
 called
as barewords. Something like this will work:

 BEGIN { *shove = \&CORE::push; }
 shove @array, 1,2,3; # pushes on to @array

CORE::%s is not a keyword

(F) The CORE:: namespace is reserved for Perl keywords.

Corrupted regexp opcode %d > %d

(P) This is either an error in Perl, or, if you're using
 one, your custom regular expression
engine. If not the
 latter, report the problem through the perlbug utility.

corrupted regexp pointers

(P) The regular expression engine got confused by what the regular
 expression compiler gave
it.

corrupted regexp program

(P) The regular expression engine got passed a regexp program without a
 valid magic
number.

Corrupt malloc ptr 0x%x at 0x%x

(P) The malloc package that comes with Perl had an internal failure.

Count after length/code in unpack

(F) You had an unpack template indicating a counted-length string, but
 you have also
specified an explicit size for the string. See "pack" in perlfunc.

Deep recursion on anonymous subroutine

Deep recursion on subroutine "%s"

(W recursion) This subroutine has called itself (directly or indirectly)
 100 times more than it
has returned. This probably indicates an
 infinite recursion, unless you're writing strange
benchmark programs, in
 which case it indicates something else.

This threshold can be changed from 100, by recompiling the perl binary,
 setting the C
pre-processor macro PERL_SUB_DEPTH_WARN to the desired value.

(?(DEFINE)....) does not allow branches in regex; marked by <-- HERE in m/%s/

(F) You used something like (?(DEFINE)...|..) which is illegal. The
 most likely cause of
this error is that you left out a parenthesis inside
 of the part.

The <-- HERE shows whereabouts in the regular expression the problem was
 discovered.

%s defines neither package nor VERSION--version check failed

(F) You said something like "use Module 42" but in the Module file
 there are neither package
declarations nor a $VERSION.

delete argument is index/value array slice, use array slice

(F) You used index/value array slice syntax (%array[...]) as
 the argument to delete. You
probably meant @array[...] with
 an @ symbol instead.

Perl version 5.22.0 documentation - perldiag

Page 25http://perldoc.perl.org

delete argument is key/value hash slice, use hash slice

(F) You used key/value hash slice syntax (%hash{...}) as the argument to delete. You
probably meant @hash{...} with an @ symbol instead.

delete argument is not a HASH or ARRAY element or slice

(F) The argument to delete must be either a hash or array element,
 such as:

 $foo{$bar}
 $ref->{"susie"}[12]

or a hash or array slice, such as:

 @foo[$bar, $baz, $xyzzy]
 @{$ref->[12]}{"susie", "queue"}

Delimiter for here document is too long

(F) In a here document construct like <<FOO, the label FOO is too
 long for Perl to handle. You
have to be seriously twisted to write code
 that triggers this error.

Deprecated use of my() in false conditional

(D deprecated) You used a declaration similar to my $x if 0. There
 has been a
long-standing bug in Perl that causes a lexical variable
 not to be cleared at scope exit when its
declaration includes a false
 conditional. Some people have exploited this bug to achieve a
kind of
 static variable. Since we intend to fix this bug, we don't want people
 relying on this
behavior. You can achieve a similar static effect by
 declaring the variable in a separate block
outside the function, eg

 sub f { my $x if 0; return $x++ }

becomes

 { my $x; sub f { return $x++ } }

Beginning with perl 5.10.0, you can also use state variables to have
 lexicals that are
initialized only once (see feature):

 sub f { state $x; return $x++ }

DESTROY created new reference to dead object '%s'

(F) A DESTROY() method created a new reference to the object which is
 just being
DESTROYed. Perl is confused, and prefers to abort rather
 than to create a dangling
reference.

Did not produce a valid header

See Server error.

%s did not return a true value

(F) A required (or used) file must return a true value to indicate that
 it compiled correctly and
ran its initialization code correctly. It's
 traditional to end such a file with a "1;", though any true
value would
 do. See "require" in perlfunc.

(Did you mean &%s instead?)

(W misc) You probably referred to an imported subroutine &FOO as $FOO or
 some such.

(Did you mean "local" instead of "our"?)

(W misc) Remember that "our" does not localize the declared global
 variable. You have
declared it again in the same lexical scope, which
 seems superfluous.

Perl version 5.22.0 documentation - perldiag

Page 26http://perldoc.perl.org

(Did you mean $ or @ instead of %?)

(W) You probably said %hash{$key} when you meant $hash{$key} or
 @hash{@keys}. On the
other hand, maybe you just meant %hash and got
 carried away.

Died

(F) You passed die() an empty string (the equivalent of die "") or
 you called it with no args
and $@ was empty.

Document contains no data

See Server error.

%s does not define %s::VERSION--version check failed

(F) You said something like "use Module 42" but the Module did not
 define a $VERSION.

'/' does not take a repeat count

(F) You cannot put a repeat count of any kind right after the '/' code.
 See "pack" in perlfunc.

Don't know how to get file name

(P) PerlIO_getname, a perl internal I/O function specific to VMS, was
 somehow called on
another platform. This should not happen.

Don't know how to handle magic of type \%o

(P) The internal handling of magical variables has been cursed.

do_study: out of memory

(P) This should have been caught by safemalloc() instead.

(Do you need to predeclare %s?)

(S syntax) This is an educated guess made in conjunction with the message
 "%s found where
operator expected". It often means a subroutine or module
 name is being referenced that
hasn't been declared yet. This may be
 because of ordering problems in your file, or because
of a missing
 "sub", "package", "require", or "use" statement. If you're referencing
 something
that isn't defined yet, you don't actually have to define the
 subroutine or package before the
current location. You can use an empty
 "sub foo;" or "package FOO;" to enter a "forward"
declaration.

dump() better written as CORE::dump()

(W misc) You used the obsolescent dump() built-in function, without fully
 qualifying it as
CORE::dump(). Maybe it's a typo. See "dump" in perlfunc.

dump is not supported

(F) Your machine doesn't support dump/undump.

Duplicate free() ignored

(S malloc) An internal routine called free() on something that had
 already been freed.

Duplicate modifier '%c' after '%c' in %s

(W unpack) You have applied the same modifier more than once after a
 type in a pack
template. See "pack" in perlfunc.

each on reference is experimental

(S experimental::autoderef) each with a scalar argument is experimental
 and may change or
be removed in a future Perl version. If you want to
 take the risk of using this feature, simply
disable this warning:

 no warnings "experimental::autoderef";

Perl version 5.22.0 documentation - perldiag

Page 27http://perldoc.perl.org

elseif should be elsif

(S syntax) There is no keyword "elseif" in Perl because Larry thinks
 it's ugly. Your code will be
interpreted as an attempt to call a method
 named "elseif" for the class returned by the
following block. This is
 unlikely to be what you want.

Empty \%c{} in regex; marked by <-- HERE in m/%s/

(F) \p and \P are used to introduce a named Unicode property, as
 described in perlunicode
and perlre. You used \p or \P in
 a regular expression without specifying the property name.

entering effective %s failed

(F) While under the use filetest pragma, switching the real and
 effective uids or gids
failed.

%ENV is aliased to %s

(F) You're running under taint mode, and the %ENV variable has been
 aliased to another hash,
so it doesn't reflect anymore the state of the
 program's environment. This is potentially
insecure.

Error converting file specification %s

(F) An error peculiar to VMS. Because Perl may have to deal with file
 specifications in either
VMS or Unix syntax, it converts them to a
 single form when it must operate on them directly.
Either you've passed
 an invalid file specification to Perl, or you've found a case the
 conversion
routines don't handle. Drat.

Eval-group in insecure regular expression

(F) Perl detected tainted data when trying to compile a regular
 expression that contains the
(?{ ... }) zero-width assertion, which
 is unsafe. See "(?{ code })" in perlre, and perlsec.

Eval-group not allowed at runtime, use re 'eval' in regex m/%s/

(F) Perl tried to compile a regular expression containing the (?{ ... }) zero-width assertion
at run time, as it would when the
 pattern contains interpolated values. Since that is a security
risk,
 it is not allowed. If you insist, you may still do this by using the re 'eval' pragma or by
explicitly building the pattern from an
 interpolated string at run time and using that in an eval().
See "(?{ code })" in perlre.

Eval-group not allowed, use re 'eval' in regex m/%s/

(F) A regular expression contained the (?{ ... }) zero-width
 assertion, but that construct is
only allowed when the use re 'eval'
 pragma is in effect. See "(?{ code })" in perlre.

EVAL without pos change exceeded limit in regex; marked by <-- HERE in m/%s/

(F) You used a pattern that nested too many EVAL calls without consuming
 any text.
Restructure the pattern so that text is consumed.

The <-- HERE shows whereabouts in the regular expression the problem was
 discovered.

Excessively long <> operator

(F) The contents of a <> operator may not exceed the maximum size of a
 Perl identifier. If
you're just trying to glob a long list of
 filenames, try using the glob() operator, or put the
filenames into a
 variable and glob that.

exec? I'm not *that* kind of operating system

(F) The exec function is not implemented on some systems, e.g., Symbian
 OS. See perlport.

Execution of %s aborted due to compilation errors.

(F) The final summary message when a Perl compilation fails.

exists argument is not a HASH or ARRAY element or a subroutine

Perl version 5.22.0 documentation - perldiag

Page 28http://perldoc.perl.org

(F) The argument to exists must be a hash or array element or a
 subroutine with an
ampersand, such as:

 $foo{$bar}
 $ref->{"susie"}[12]
 &do_something

exists argument is not a subroutine name

(F) The argument to exists for exists &sub must be a subroutine name,
 and not a
subroutine call. exists &sub() will generate this error.

Exiting eval via %s

(W exiting) You are exiting an eval by unconventional means, such as a
 goto, or a loop control
statement.

Exiting format via %s

(W exiting) You are exiting a format by unconventional means, such as a
 goto, or a loop
control statement.

Exiting pseudo-block via %s

(W exiting) You are exiting a rather special block construct (like a
 sort block or subroutine) by
unconventional means, such as a goto, or a
 loop control statement. See "sort" in perlfunc.

Exiting subroutine via %s

(W exiting) You are exiting a subroutine by unconventional means, such
 as a goto, or a loop
control statement.

Exiting substitution via %s

(W exiting) You are exiting a substitution by unconventional means, such
 as a return, a goto,
or a loop control statement.

Expecting close bracket in regex; marked by <-- HERE in m/%s/

(F) You wrote something like

 (?13

to denote a capturing group of the form (?PARNO),
 but omitted the ")".

Expecting '(?flags:(?[...' in regex; marked by <-- HERE in m/%s/

(F) The (?[...]) extended character class regular expression construct
 only allows
character classes (including character class escapes like \d), operators, and parentheses.
The one exception is (?flags:...)
 containing at least one flag and exactly one (?[...])
construct.
 This allows a regular expression containing just (?[...]) to be
 interpolated. If you
see this error message, then you probably
 have some other (?...) construct inside your
character class. See "Extended Bracketed Character Classes" in perlrecharclass.

Experimental aliasing via reference not enabled

(F) To do aliasing via references, you must first enable the feature:

 no warnings "experimental::refaliasing";
 use feature "refaliasing";
 \$x = \$y;

Experimental subroutine signatures not enabled

(F) To use subroutine signatures, you must first enable them:

 no warnings "experimental::signatures";

Perl version 5.22.0 documentation - perldiag

Page 29http://perldoc.perl.org

 use feature "signatures";
 sub foo ($left, $right) { ... }

Experimental "%s" subs not enabled

(F) To use lexical subs, you must first enable them:

 no warnings 'experimental::lexical_subs';
 use feature 'lexical_subs';
 my sub foo { ... }

Explicit blessing to '' (assuming package main)

(W misc) You are blessing a reference to a zero length string. This has
 the effect of blessing
the reference into the package main. This is
 usually not what you want. Consider providing a
default target package,
 e.g. bless($ref, $p || 'MyPackage');

%s: Expression syntax

(A) You've accidentally run your script through csh instead of Perl.
 Check the #! line, or
manually feed your script into Perl yourself.

%s failed--call queue aborted

(F) An untrapped exception was raised while executing a UNITCHECK,
 CHECK, INIT, or END
subroutine. Processing of the remainder of the
 queue of such routines has been prematurely
ended.

False [] range "%s" in regex; marked by <-- HERE in m/%s/

(W regexp)(F) A character class range must start and end at a literal
 character, not another
character class like \d or [:alpha:]. The "-"
 in your false range is interpreted as a literal "-".
In a (?[...])
 construct, this is an error, rather than a warning. Consider quoting
 the "-", "\-".
The <-- HERE shows whereabouts in the regular expression
 the problem was discovered. See
perlre.

Fatal VMS error (status=%d) at %s, line %d

(P) An error peculiar to VMS. Something untoward happened in a VMS
 system service or RTL
routine; Perl's exit status should provide more
 details. The filename in "at %s" and the line
number in "line %d" tell
 you which section of the Perl source code is distressed.

fcntl is not implemented

(F) Your machine apparently doesn't implement fcntl(). What is this, a
 PDP-11 or something?

FETCHSIZE returned a negative value

(F) A tied array claimed to have a negative number of elements, which
 is not possible.

Field too wide in 'u' format in pack

(W pack) Each line in an uuencoded string starts with a length indicator
 which can't encode
values above 63. So there is no point in asking for
 a line length bigger than that. Perl will
behave as if you specified u63 as the format.

Filehandle %s opened only for input

(W io) You tried to write on a read-only filehandle. If you intended
 it to be a read-write
filehandle, you needed to open it with "+<" or
 "+>" or "+>>" instead of with "<" or nothing. If
you intended only to
 write the file, use ">" or ">>". See "open" in perlfunc.

Filehandle %s opened only for output

(W io) You tried to read from a filehandle opened only for writing, If
 you intended it to be a
read/write filehandle, you needed to open it
 with "+<" or "+>" or "+>>" instead of with ">". If

Perl version 5.22.0 documentation - perldiag

Page 30http://perldoc.perl.org

you intended only to
 read from the file, use "<". See "open" in perlfunc. Another possibility
 is
that you attempted to open filedescriptor 0 (also known as STDIN) for
 output (maybe you
closed STDIN earlier?).

Filehandle %s reopened as %s only for input

(W io) You opened for reading a filehandle that got the same filehandle id
 as STDOUT or
STDERR. This occurred because you closed STDOUT or STDERR
 previously.

Filehandle STDIN reopened as %s only for output

(W io) You opened for writing a filehandle that got the same filehandle id
 as STDIN. This
occurred because you closed STDIN previously.

Final $ should be \$ or $name

(F) You must now decide whether the final $ in a string was meant to be
 a literal dollar sign, or
was meant to introduce a variable name that
 happens to be missing. So you have to put either
the backslash or the
 name.

flock() on closed filehandle %s

(W closed) The filehandle you're attempting to flock() got itself closed
 some time before now.
Check your control flow. flock() operates on
 filehandles. Are you attempting to call flock() on a
dirhandle by the
 same name?

Format not terminated

(F) A format must be terminated by a line with a solitary dot. Perl got
 to the end of your file
without finding such a line.

Format %s redefined

(W redefine) You redefined a format. To suppress this warning, say

 {
	 no warnings 'redefine';
	 eval "format NAME =...";
 }

Found = in conditional, should be ==

(W syntax) You said

 if ($foo = 123)

when you meant

 if ($foo == 123)

(or something like that).

%s found where operator expected

(S syntax) The Perl lexer knows whether to expect a term or an operator.
 If it sees what it
knows to be a term when it was expecting to see an
 operator, it gives you this warning.
Usually it indicates that an
 operator or delimiter was omitted, such as a semicolon.

gdbm store returned %d, errno %d, key "%s"

(S) A warning from the GDBM_File extension that a store failed.

gethostent not implemented

(F) Your C library apparently doesn't implement gethostent(), probably
 because if it did, it'd
feel morally obligated to return every hostname
 on the Internet.

get%sname() on closed socket %s

Perl version 5.22.0 documentation - perldiag

Page 31http://perldoc.perl.org

(W closed) You tried to get a socket or peer socket name on a closed
 socket. Did you forget to
check the return value of your socket() call?

getpwnam returned invalid UIC %#o for user "%s"

(S) A warning peculiar to VMS. The call to sys$getuai underlying the getpwnam operator
returned an invalid UIC.

getsockopt() on closed socket %s

(W closed) You tried to get a socket option on a closed socket. Did you
 forget to check the
return value of your socket() call? See "getsockopt" in perlfunc.

given is experimental

(S experimental::smartmatch) given depends on smartmatch, which
 is experimental, so its
behavior may change or even be removed
 in any future release of perl. See the explanation
under "Experimental Details on given and when" in perlsyn.

Global symbol "%s" requires explicit package name (did you forget to
 declare "my %s"?)

(F) You've said "use strict" or "use strict vars", which indicates that all variables must either be
lexically scoped (using "my" or "state"), declared beforehand using "our", or explicitly qualified
to say which package the global variable is in (using "::").

glob failed (%s)

(S glob) Something went wrong with the external program(s) used
 for glob and <*.c>.
Usually, this means that you supplied a glob
 pattern that caused the external program to fail
and exit with a
 nonzero status. If the message indicates that the abnormal exit
 resulted in a
coredump, this may also mean that your csh (C shell)
 is broken. If so, you should change all of
the csh-related variables
 in config.sh: If you have tcsh, make the variables refer to it as
 if it
were csh (e.g. full_csh='/usr/bin/tcsh'); otherwise, make them
 all empty (except that
d_csh should be 'undef') so that Perl will
 think csh is missing. In either case, after editing
config.sh, run ./Configure -S and rebuild Perl.

Glob not terminated

(F) The lexer saw a left angle bracket in a place where it was expecting
 a term, so it's looking
for the corresponding right angle bracket, and
 not finding it. Chances are you left some
needed parentheses out
 earlier in the line, and you really meant a "less than".

gmtime(%f) failed

(W overflow) You called gmtime with a number that it could not handle:
 too large, too small,
or NaN. The returned value is undef.

gmtime(%f) too large

(W overflow) You called gmtime with a number that was larger than
 it can reliably handle and
gmtime probably returned the wrong
 date. This warning is also triggered with NaN (the
special
 not-a-number value).

gmtime(%f) too small

(W overflow) You called gmtime with a number that was smaller than
 it can reliably handle
and gmtime probably returned the wrong date.

Got an error from DosAllocMem

(P) An error peculiar to OS/2. Most probably you're using an obsolete
 version of Perl, and this
should not happen anyway.

goto must have label

(F) Unlike with "next" or "last", you're not allowed to goto an
 unspecified destination. See
"goto" in perlfunc.

Perl version 5.22.0 documentation - perldiag

Page 32http://perldoc.perl.org

Goto undefined subroutine%s

(F) You tried to call a subroutine with goto &sub syntax, but
 the indicated subroutine hasn't
been defined, or if it was, it
 has since been undefined.

Group name must start with a non-digit word character in regex; marked by <-- HERE in m/%s/

(F) Group names must follow the rules for perl identifiers, meaning
 they must start with a
non-digit word character. A common cause of
 this error is using (?&0) instead of (?0). See
perlre.

()-group starts with a count

(F) A ()-group started with a count. A count is supposed to follow
 something: a template
character or a ()-group. See "pack" in perlfunc.

%s had compilation errors.

(F) The final summary message when a perl -c fails.

Had to create %s unexpectedly

(S internal) A routine asked for a symbol from a symbol table that ought
 to have existed
already, but for some reason it didn't, and had to be
 created on an emergency basis to
prevent a core dump.

%s has too many errors

(F) The parser has given up trying to parse the program after 10 errors.
 Further error
messages would likely be uninformative.

Having more than one /%c regexp modifier is deprecated

(D deprecated, regexp) You used the indicated regular expression pattern
 modifier at least
twice in a string of modifiers. It is deprecated to
 do this with this particular modifier, to allow
future extensions to the
 Perl language.

Hexadecimal float: exponent overflow

(W overflow) The hexadecimal floating point has a larger exponent
 than the floating point
supports.

Hexadecimal float: exponent underflow

(W overflow) The hexadecimal floating point has a smaller exponent
 than the floating point
supports.

Hexadecimal float: internal error

(F) Something went horribly bad in hexadecimal float handling.

Hexadecimal float: mantissa overflow

(W overflow) The hexadecimal floating point literal had more bits in
 the mantissa (the part
between the 0x and the exponent, also known as
 the fraction or the significand) than the
floating point supports.

Hexadecimal float: precision loss

(W overflow) The hexadecimal floating point had internally more
 digits than could be output.
This can be caused by unsupported
 long double formats, or by 64-bit integers not being
available
 (needed to retrieve the digits under some configurations).

Hexadecimal float: unsupported long double format

(F) You have configured Perl to use long doubles but
 the internals of the long double format
are unknown;
 therefore the hexadecimal float output is impossible.

Hexadecimal number > 0xffffffff non-portable

Perl version 5.22.0 documentation - perldiag

Page 33http://perldoc.perl.org

(W portable) The hexadecimal number you specified is larger than 2**32-1
 (4294967295) and
therefore non-portable between systems. See perlport for more on portability concerns.

Identifier too long

(F) Perl limits identifiers (names for variables, functions, etc.) to
 about 250 characters for
simple names, and somewhat more for compound
 names (like $A::B). You've exceeded
Perl's limits. Future versions
 of Perl are likely to eliminate these arbitrary limitations.

Ignoring zero length \N{} in character class in regex; marked by <-- HERE in m/%s/

(W regexp) Named Unicode character escapes (\N{...}) may return a
 zero-length
sequence. When such an escape is used in a character
 class its behavior is not well defined.
Check that the correct
 escape has been used, and the correct charname handler is in scope.

Illegal binary digit %s

(F) You used a digit other than 0 or 1 in a binary number.

Illegal binary digit %s ignored

(W digit) You may have tried to use a digit other than 0 or 1 in a
 binary number. Interpretation
of the binary number stopped before the
 offending digit.

Illegal character after '_' in prototype for %s : %s

(W illegalproto) An illegal character was found in a prototype
 declaration. The '_' in a prototype
must be followed by a ';',
 indicating the rest of the parameters are optional, or one of '@'
 or
'%', since those two will accept 0 or more final parameters.

Illegal character \%o (carriage return)

(F) Perl normally treats carriage returns in the program text as it
 would any other whitespace,
which means you should never see this error
 when Perl was built using standard options. For
some reason, your
 version of Perl appears to have been built without this support. Talk
 to your
Perl administrator.

Illegal character in prototype for %s : %s

(W illegalproto) An illegal character was found in a prototype declaration.
 Legal characters in
prototypes are $, @, %, *, ;, [,], &, \, and +.
 Perhaps you were trying to write a subroutine
signature but didn't enable
 that feature first (use feature 'signatures'), so your
signature was
 instead interpreted as a bad prototype.

Illegal declaration of anonymous subroutine

(F) When using the sub keyword to construct an anonymous subroutine,
 you must always
specify a block of code. See perlsub.

Illegal declaration of subroutine %s

(F) A subroutine was not declared correctly. See perlsub.

Illegal division by zero

(F) You tried to divide a number by 0. Either something was wrong in
 your logic, or you need
to put a conditional in to guard against
 meaningless input.

Illegal hexadecimal digit %s ignored

(W digit) You may have tried to use a character other than 0 - 9 or
 A - F, a - f in a hexadecimal
number. Interpretation of the hexadecimal
 number stopped before the illegal character.

Illegal modulus zero

(F) You tried to divide a number by 0 to get the remainder. Most
 numbers don't take to this
kindly.

Perl version 5.22.0 documentation - perldiag

Page 34http://perldoc.perl.org

Illegal number of bits in vec

(F) The number of bits in vec() (the third argument) must be a power of
 two from 1 to 32 (or
64, if your platform supports that).

Illegal octal digit %s

(F) You used an 8 or 9 in an octal number.

Illegal octal digit %s ignored

(W digit) You may have tried to use an 8 or 9 in an octal number.
 Interpretation of the octal
number stopped before the 8 or 9.

Illegal pattern in regex; marked by <-- HERE in m/%s/

(F) You wrote something like

 (?+foo)

The "+" is valid only when followed by digits, indicating a
 capturing group. See (?PARNO).

Illegal suidscript

(F) The script run under suidperl was somehow illegal.

Illegal switch in PERL5OPT: -%c

(X) The PERL5OPT environment variable may only be used to set the
 following switches:
-[CDIMUdmtw].

Ill-formed CRTL environ value "%s"

(W internal) A warning peculiar to VMS. Perl tried to read the CRTL's
 internal environ array,
and encountered an element without the =
 delimiter used to separate keys from values. The
element is ignored.

Ill-formed message in prime_env_iter: |%s|

(W internal) A warning peculiar to VMS. Perl tried to read a logical
 name or CLI symbol
definition when preparing to iterate over %ENV, and
 didn't see the expected delimiter between
key and value, so the line was
 ignored.

(in cleanup) %s

(W misc) This prefix usually indicates that a DESTROY() method raised
 the indicated
exception. Since destructors are usually called by the
 system at arbitrary points during
execution, and often a vast number of
 times, the warning is issued only once for any number
of failures that
 would otherwise result in the same message being repeated.

Failure of user callbacks dispatched using the G_KEEPERR flag could
 also result in this
warning. See "G_KEEPERR" in perlcall.

Incomplete expression within '(?[])' in regex; marked by <-- HERE
 in m/%s/

(F) There was a syntax error within the (?[]). This can happen if the
 expression inside the
construct was completely empty, or if there are
 too many or few operands for the number of
operators. Perl is not smart
 enough to give you a more precise indication as to what is wrong.

Inconsistent hierarchy during C3 merge of class '%s': merging failed on parent '%s'

(F) The method resolution order (MRO) of the given class is not
 C3-consistent, and you have
enabled the C3 MRO for this class. See the C3
 documentation in mro for more information.

In EBCDIC the v-string components cannot exceed 2147483647

(F) An error peculiar to EBCDIC. Internally, v-strings are stored as
 Unicode code points, and
encoded in EBCDIC as UTF-EBCDIC. The UTF-EBCDIC
 encoding is limited to code points no
larger than 2147483647 (0x7FFFFFFF).

Perl version 5.22.0 documentation - perldiag

Page 35http://perldoc.perl.org

Infinite recursion in regex

(F) You used a pattern that references itself without consuming any input
 text. You should
check the pattern to ensure that recursive patterns
 either consume text or fail.

Initialization of state variables in list context currently forbidden

(F) Currently the implementation of "state" only permits the
 initialization of scalar variables in
scalar context. Re-write state ($a) = 42 as state $a = 42 to change from list to scalar
context. Constructions such as state (@a) = foo() will be
 supported in a future perl
release.

%%s[%s] in scalar context better written as $%s[%s]

(W syntax) In scalar context, you've used an array index/value slice
 (indicated by %) to select
a single element of an array. Generally
 it's better to ask for a scalar value (indicated by $). The
difference
 is that $foo[&bar] always behaves like a scalar, both in the value it
 returns and
when evaluating its argument, while %foo[&bar] provides
 a list context to its subscript,
which can do weird things if you're
 expecting only one subscript. When called in list context, it
also
 returns the index (what &bar returns) in addition to the value.

%%s{%s} in scalar context better written as $%s{%s}

(W syntax) In scalar context, you've used a hash key/value slice
 (indicated by %) to select a
single element of a hash. Generally it's
 better to ask for a scalar value (indicated by $). The
difference
 is that $foo{&bar} always behaves like a scalar, both in the value
 it returns and
when evaluating its argument, while @foo{&bar} and
 provides a list context to its subscript,
which can do weird things
 if you're expecting only one subscript. When called in list context,
 it
also returns the key in addition to the value.

Insecure dependency in %s

(F) You tried to do something that the tainting mechanism didn't like.
 The tainting mechanism
is turned on when you're running setuid or
 setgid, or when you specify -T to turn it on explicitly.
The
 tainting mechanism labels all data that's derived directly or indirectly
 from the user, who is
considered to be unworthy of your trust. If any
 such data is used in a "dangerous" operation,
you get this error. See perlsec for more information.

Insecure directory in %s

(F) You can't use system(), exec(), or a piped open in a setuid or
 setgid script if $ENV{PATH}
contains a directory that is writable by
 the world. Also, the PATH must not contain any relative
directory.
 See perlsec.

Insecure $ENV{%s} while running %s

(F) You can't use system(), exec(), or a piped open in a setuid or
 setgid script if any of
$ENV{PATH}, $ENV{IFS}, $ENV{CDPATH}, $ENV{ENV}, $ENV{BASH_ENV} or
$ENV{TERM} are derived from data
 supplied (or potentially supplied) by the user. The script
must set
 the path to a known value, using trustworthy data. See perlsec.

Insecure user-defined property %s

(F) Perl detected tainted data when trying to compile a regular
 expression that contains a call
to a user-defined character property
 function, i.e. \p{IsFoo} or \p{InFoo}.
 See
"User-Defined Character Properties" in perlunicode and perlsec.

Integer overflow in format string for %s

(F) The indexes and widths specified in the format string of printf()
 or sprintf() are too
large. The numbers must not overflow the size of
 integers for your architecture.

Integer overflow in %s number

(S overflow) The hexadecimal, octal or binary number you have specified
 either as a literal or
as an argument to hex() or oct() is too big for
 your architecture, and has been converted to a

Perl version 5.22.0 documentation - perldiag

Page 36http://perldoc.perl.org

floating point number.
 On a 32-bit architecture the largest hexadecimal, octal or binary number
representable without overflow is 0xFFFFFFFF, 037777777777, or

0b11111111111111111111111111111111 respectively. Note that Perl
 transparently promotes
all numbers to a floating point representation
 internally--subject to loss of precision errors in
subsequent
 operations.

Integer overflow in srand

(S overflow) The number you have passed to srand is too big to fit
 in your architecture's
integer representation. The number has been
 replaced with the largest integer supported
(0xFFFFFFFF on 32-bit
 architectures). This means you may be getting less randomness than

you expect, because different random seeds above the maximum will
 return the same
sequence of random numbers.

Integer overflow in version

Integer overflow in version %d

(W overflow) Some portion of a version initialization is too large for
 the size of integers for your
architecture. This is not a warning
 because there is no rational reason for a version to try and
use an
 element larger than typically 2**32. This is usually caused by trying
 to use some odd
mathematical operation as a version, like 100/9.

Internal disaster in regex; marked by <-- HERE in m/%s/

(P) Something went badly wrong in the regular expression parser.
 The <-- HERE shows
whereabouts in the regular expression the problem was
 discovered.

Internal inconsistency in tracking vforks

(S) A warning peculiar to VMS. Perl keeps track of the number of times
 you've called fork
and exec, to determine whether the current call
 to exec should affect the current script or a
subprocess (see "exec LIST" in perlvms). Somehow, this count has become scrambled, so

Perl is making a guess and treating this exec as a request to
 terminate the Perl script and
execute the specified command.

internal %<num>p might conflict with future printf extensions

(S internal) Perl's internal routine that handles printf and sprintf
 formatting follows a
slightly different set of rules when called from
 C or XS code. Specifically, formats consisting of
digits followed
 by "p" (e.g., "%7p") are reserved for future use. If you see this
 message, then
an XS module tried to call that routine with one such
 reserved format.

Internal urp in regex; marked by <-- HERE in m/%s/

(P) Something went badly awry in the regular expression parser. The <-- HERE shows
whereabouts in the regular expression the problem was
 discovered.

%s (...) interpreted as function

(W syntax) You've run afoul of the rule that says that any list operator
 followed by parentheses
turns into a function, with all the list
 operators arguments found inside the parentheses. See
"Terms and List Operators (Leftward)" in perlop.

In '(?...)', the '(' and '?' must be adjacent in regex;
 marked by <-- HERE in m/%s/

(F) The two-character sequence "(?" in this context in a regular
 expression pattern should be
an indivisible token, with nothing
 intervening between the "(" and the "?", but you separated
them
 with whitespace.

Invalid %s attribute: %s

(F) The indicated attribute for a subroutine or variable was not recognized
 by Perl or by a
user-supplied handler. See attributes.

Invalid %s attributes: %s

Perl version 5.22.0 documentation - perldiag

Page 37http://perldoc.perl.org

(F) The indicated attributes for a subroutine or variable were not
 recognized by Perl or by a
user-supplied handler. See attributes.

Invalid character in charnames alias definition; marked by <-- HERE in '%s

(F) You tried to create a custom alias for a character name, with
 the :alias option to use
charnames and the specified character in
 the indicated name isn't valid. See "CUSTOM
ALIASES" in charnames.

Invalid \0 character in %s for %s: %s\0%s

(W syscalls) Embedded \0 characters in pathnames or other system call
 arguments produce a
warning as of 5.20. The parts after the \0 were
 formerly ignored by system calls.

Invalid character in \N{...}; marked by <-- HERE in \N{%s}

(F) Only certain characters are valid for character names. The
 indicated one isn't. See
"CUSTOM ALIASES" in charnames.

Invalid conversion in %s: "%s"

(W printf) Perl does not understand the given format conversion. See "sprintf" in perlfunc.

Invalid escape in the specified encoding in regex; marked by <-- HERE in m/%s/

(W regexp)(F) The numeric escape (for example \xHH) of value < 256
 didn't correspond to a
single character through the conversion
 from the encoding specified by the encoding pragma.

The escape was replaced with REPLACEMENT CHARACTER (U+FFFD)
 instead, except
within (?[]), where it is a fatal error.
 The <-- HERE shows whereabouts in the regular
expression the
 escape was discovered.

Invalid hexadecimal number in \N{U+...}

Invalid hexadecimal number in \N{U+...} in regex; marked by <-- HERE in m/%s/

(F) The character constant represented by ... is not a valid hexadecimal
 number. Either it is
empty, or you tried to use a character other than
 0 - 9 or A - F, a - f in a hexadecimal number.

Invalid module name %s with -%c option: contains single ':'

(F) The module argument to perl's -m and -M command-line options
 cannot contain single
colons in the module name, but only in the
 arguments after "=". In other words,
-MFoo::Bar=:baz is ok, but -MFoo:Bar=baz is not.

Invalid mro name: '%s'

(F) You tried to mro::set_mro("classname", "foo") or use mro 'foo',
 where foo is
not a valid method resolution order (MRO). Currently,
 the only valid ones supported are dfs
and c3, unless you have loaded
 a module that is a MRO plugin. See mro and perlmroapi.

Invalid negative number (%s) in chr

(W utf8) You passed a negative number to chr. Negative numbers are
 not valid character
numbers, so it returns the Unicode replacement
 character (U+FFFD).

invalid option -D%c, use -D'' to see choices

(S debugging) Perl was called with invalid debugger flags. Call perl
 with the -D option with no
flags to see the list of acceptable values.
 See also "-Dletters" in perlrun.

Invalid quantifier in {,} in regex; marked by <-- HERE in m/%s/

(F) The pattern looks like a {min,max} quantifier, but the min or max
 could not be parsed as a
valid number - either it has leading zeroes,
 or it represents too big a number to cope with. The
<-- HERE shows
 where in the regular expression the problem was discovered. See perlre.

Invalid [] range "%s" in regex; marked by <-- HERE in m/%s/

(F) The range specified in a character class had a minimum character
 greater than the

Perl version 5.22.0 documentation - perldiag

Page 38http://perldoc.perl.org

maximum character. One possibility is that you forgot the {} from your ending \x{} - \x
without the curly braces can go only
 up to ff. The <-- HERE shows whereabouts in the
regular expression the
 problem was discovered. See perlre.

Invalid range "%s" in transliteration operator

(F) The range specified in the tr/// or y/// operator had a minimum
 character greater than the
maximum character. See perlop.

Invalid separator character %s in attribute list

(F) Something other than a colon or whitespace was seen between the
 elements of an
attribute list. If the previous attribute had a
 parenthesised parameter list, perhaps that list was
terminated too soon.
 See attributes.

Invalid separator character %s in PerlIO layer specification %s

(W layer) When pushing layers onto the Perl I/O system, something other
 than a colon or
whitespace was seen between the elements of a layer list.
 If the previous attribute had a
parenthesised parameter list, perhaps that
 list was terminated too soon.

Invalid strict version format (%s)

(F) A version number did not meet the "strict" criteria for versions.
 A "strict" version number is
a positive decimal number (integer or
 decimal-fraction) without exponentiation or else a
dotted-decimal
 v-string with a leading 'v' character and at least three components.
 The
parenthesized text indicates which criteria were not met.
 See the version module for more
details on allowed version formats.

Invalid type '%s' in %s

(F) The given character is not a valid pack or unpack type.
 See "pack" in perlfunc.

(W) The given character is not a valid pack or unpack type but used to be
 silently ignored.

Invalid version format (%s)

(F) A version number did not meet the "lax" criteria for versions.
 A "lax" version number is a
positive decimal number (integer or
 decimal-fraction) without exponentiation or else a
dotted-decimal
 v-string. If the v-string has fewer than three components, it
 must have a
leading 'v' character. Otherwise, the leading 'v' is
 optional. Both decimal and dotted-decimal
versions may have a
 trailing "alpha" component separated by an underscore character
 after a
fractional or dotted-decimal component. The parenthesized
 text indicates which criteria were
not met. See the version module
 for more details on allowed version formats.

Invalid version object

(F) The internal structure of the version object was invalid.
 Perhaps the internals were
modified directly in some way or
 an arbitrary reference was blessed into the "version" class.

In '(*VERB...)', the '(' and '*' must be adjacent in regex;
 marked by <-- HERE in m/%s/

(F) The two-character sequence "(*" in
 this context in a regular expression pattern should be
an
 indivisible token, with nothing intervening between the "("
 and the "*", but you separated
them.

ioctl is not implemented

(F) Your machine apparently doesn't implement ioctl(), which is pretty
 strange for a machine
that supports C.

ioctl() on unopened %s

(W unopened) You tried ioctl() on a filehandle that was never opened.
 Check your control flow
and number of arguments.

IO layers (like '%s') unavailable

Perl version 5.22.0 documentation - perldiag

Page 39http://perldoc.perl.org

(F) Your Perl has not been configured to have PerlIO, and therefore
 you cannot use IO layers.
To have PerlIO, Perl must be configured
 with 'useperlio'.

IO::Socket::atmark not implemented on this architecture

(F) Your machine doesn't implement the sockatmark() functionality,
 neither as a system call
nor an ioctl call (SIOCATMARK).

'%s' is an unknown bound type in regex; marked by <-- HERE in m/%s/

(F) You used \b{...} or \B{...} and the ... is not known to
 Perl. The current valid ones
are given in "\b{}, \b, \B{}, \B" in perlrebackslash.

"%s" is more clearly written simply as "%s" in regex; marked by <-- HERE in m/%s/

(W regexp) (only under use re 'strict' or within (?[...]))

You specified a character that has the given plainer way of writing it,
 and which is also
portable to platforms running with different character
 sets.

$* is no longer supported

(D deprecated, syntax) The special variable $*, deprecated in older
 perls, has been removed
as of 5.10.0 and is no longer supported. In
 previous versions of perl the use of $* enabled or
disabled multi-line
 matching within a string.

Instead of using $* you should use the /m (and maybe /s) regexp
 modifiers. You can enable
/m for a lexical scope (even a whole file)
 with use re '/m'. (In older versions: when $* was
set to a true value
 then all regular expressions behaved as if they were written using /m.)

$# is no longer supported

(D deprecated, syntax) The special variable $#, deprecated in older
 perls, has been removed
as of 5.10.0 and is no longer supported. You
 should use the printf/sprintf functions instead.

'%s' is not a code reference

(W overload) The second (fourth, sixth, ...) argument of
 overload::constant needs to be a code
reference. Either
 an anonymous subroutine, or a reference to a subroutine.

'%s' is not an overloadable type

(W overload) You tried to overload a constant type the overload package is
 unaware of.

-i used with no filenames on the command line, reading from STDIN

(S inplace) The -i option was passed on the command line, indicating
 that the script is
intended to edit files in place, but no files were
 given. This is usually a mistake, since editing
STDIN in place doesn't
 make sense, and can be confusing because it can make perl look like

it is hanging when it is really just trying to read from STDIN. You
 should either pass a filename
to edit, or remove -i from the command
 line. See perlrun for more details.

Junk on end of regexp in regex m/%s/

(P) The regular expression parser is confused.

keys on reference is experimental

(S experimental::autoderef) keys with a scalar argument is experimental
 and may change or
be removed in a future Perl version. If you want to
 take the risk of using this feature, simply
disable this warning:

 no warnings "experimental::autoderef";

Label not found for "last %s"

(F) You named a loop to break out of, but you're not currently in a loop
 of that name, not even
if you count where you were called from. See "last" in perlfunc.

Perl version 5.22.0 documentation - perldiag

Page 40http://perldoc.perl.org

Label not found for "next %s"

(F) You named a loop to continue, but you're not currently in a loop of
 that name, not even if
you count where you were called from. See "last" in perlfunc.

Label not found for "redo %s"

(F) You named a loop to restart, but you're not currently in a loop of
 that name, not even if you
count where you were called from. See "last" in perlfunc.

leaving effective %s failed

(F) While under the use filetest pragma, switching the real and
 effective uids or gids
failed.

length/code after end of string in unpack

(F) While unpacking, the string buffer was already used up when an unpack
 length/code
combination tried to obtain more data. This results in
 an undefined value for the length. See
"pack" in perlfunc.

length() used on %s (did you mean "scalar(%s)"?)

(W syntax) You used length() on either an array or a hash when you
 probably wanted a count
of the items.

Array size can be obtained by doing:

 scalar(@array);

The number of items in a hash can be obtained by doing:

 scalar(keys %hash);

Lexing code attempted to stuff non-Latin-1 character into Latin-1 input

(F) An extension is attempting to insert text into the current parse
 (using lex_stuff_pvn or
similar), but tried to insert a character that
 couldn't be part of the current input. This is an
inherent pitfall
 of the stuffing mechanism, and one of the reasons to avoid it. Where
 it is
necessary to stuff, stuffing only plain ASCII is recommended.

Lexing code internal error (%s)

(F) Lexing code supplied by an extension violated the lexer's API in a
 detectable way.

listen() on closed socket %s

(W closed) You tried to do a listen on a closed socket. Did you forget
 to check the return value
of your socket() call? See "listen" in perlfunc.

List form of piped open not implemented

(F) On some platforms, notably Windows, the three-or-more-arguments
 form of open does not
support pipes, such as open($pipe, '|-', @args).
 Use the two-argument
open($pipe, '|prog arg1 arg2...') form instead.

%s: loadable library and perl binaries are mismatched (got handshake key %p, needed %p)

(P) A dynamic loading library .so or .dll was being loaded into the
 process that was built
against a different build of perl than the
 said library was compiled against. Reinstalling the XS
module will
 likely fix this error.

Locale '%s' may not work well.%s

(W locale) You are using the named locale, which is a non-UTF-8 one, and
 which perl has
determined is not fully compatible with what it can
 handle. The second %s gives a reason.

By far the most common reason is that the locale has characters in it
 that are represented by
more than one byte. The only such locales that
 Perl can handle are the UTF-8 locales. Most

Perl version 5.22.0 documentation - perldiag

Page 41http://perldoc.perl.org

likely the specified locale
 is a non-UTF-8 one for an East Asian language such as Chinese or

Japanese. If the locale is a superset of ASCII, the ASCII portion of it
 may work in Perl.

Some essentially obsolete locales that aren't supersets of ASCII, mainly
 those in ISO 646 or
other 7-bit locales, such as ASMO 449, can also have
 problems, depending on what portions
of the ASCII character set get
 changed by the locale and are also used by the program.
 The
warning message lists the determinable conflicting characters.

Note that not all incompatibilities are found.

If this happens to you, there's not much you can do except switch to use a
 different locale or
use Encode to translate from the locale into
 UTF-8; if that's impracticable, you have been
warned that some things
 may break.

This message is output once each time a bad locale is switched into
 within the scope of use
locale, or on the first possibly-affected
 operation if the use locale inherits a bad one. It is
not raised
 for any operations from the POSIX module.

localtime(%f) failed

(W overflow) You called localtime with a number that it could not handle:
 too large, too
small, or NaN. The returned value is undef.

localtime(%f) too large

(W overflow) You called localtime with a number that was larger
 than it can reliably handle
and localtime probably returned the
 wrong date. This warning is also triggered with NaN
(the special
 not-a-number value).

localtime(%f) too small

(W overflow) You called localtime with a number that was smaller
 than it can reliably
handle and localtime probably returned the
 wrong date.

Lookbehind longer than %d not implemented in regex m/%s/

(F) There is currently a limit on the length of string which lookbehind can
 handle. This
restriction may be eased in a future release.

Lost precision when %s %f by 1

(W imprecision) The value you attempted to increment or decrement by one
 is too large for the
underlying floating point representation to store
 accurately, hence the target of ++ or -- is
unchanged. Perl issues this
 warning because it has already switched from integers to floating
point
 when values are too large for integers, and now even floating point is
 insufficient. You
may wish to switch to using Math::BigInt explicitly.

lstat() on filehandle%s

(W io) You tried to do an lstat on a filehandle. What did you mean
 by that? lstat() makes sense
only on filenames. (Perl did a fstat()
 instead on the filehandle.)

lvalue attribute %s already-defined subroutine

(W misc) Although attributes.pm allows this, turning the lvalue
 attribute on or off on a Perl
subroutine that is already defined
 does not always work properly. It may or may not do what
you
 want, depending on what code is inside the subroutine, with exact
 details subject to
change between Perl versions. Only do this
 if you really know what you are doing.

lvalue attribute ignored after the subroutine has been defined

(W misc) Using the :lvalue declarative syntax to make a Perl
 subroutine an lvalue
subroutine after it has been defined is
 not permitted. To make the subroutine an lvalue
subroutine,
 add the lvalue attribute to the definition, or put the sub
 foo :lvalue;
declaration before the definition.

See also attributes.pm.

Perl version 5.22.0 documentation - perldiag

Page 42http://perldoc.perl.org

Magical list constants are not supported

(F) You assigned a magical array to a stash element, and then tried
 to use the subroutine from
the same slot. You are asking Perl to do
 something it cannot do, details subject to change
between Perl versions.

Malformed integer in [] in pack

(F) Between the brackets enclosing a numeric repeat count only digits
 are permitted. See
"pack" in perlfunc.

Malformed integer in [] in unpack

(F) Between the brackets enclosing a numeric repeat count only digits
 are permitted. See
"pack" in perlfunc.

Malformed PERLLIB_PREFIX

(F) An error peculiar to OS/2. PERLLIB_PREFIX should be of the form

 prefix1;prefix2

or
 prefix1 prefix2

with nonempty prefix1 and prefix2. If prefix1 is indeed a prefix of
 a builtin library search
path, prefix2 is substituted. The error may
 appear if components are not found, or are too
long. See
 "PERLLIB_PREFIX" in perlos2.

Malformed prototype for %s: %s

(F) You tried to use a function with a malformed prototype. The
 syntax of function prototypes
is given a brief compile-time check for
 obvious errors like invalid characters. A more rigorous
check is run
 when the function is called.
 Perhaps the function's author was trying to write a
subroutine signature
 but didn't enable that feature first (use feature 'signatures'),
 so
the signature was instead interpreted as a bad prototype.

Malformed UTF-8 character (%s)

(S utf8)(F) Perl detected a string that didn't comply with UTF-8
 encoding rules, even though it
had the UTF8 flag on.

One possible cause is that you set the UTF8 flag yourself for data that
 you thought to be in
UTF-8 but it wasn't (it was for example legacy
 8-bit data). To guard against this, you can use
Encode::decode_utf8.

If you use the :encoding(UTF-8) PerlIO layer for input, invalid byte
 sequences are handled
gracefully, but if you use :utf8, the flag is
 set without validating the data, possibly resulting in
this error
 message.

See also "Handling Malformed Data" in Encode.

Malformed UTF-8 character immediately after '%s'

(F) You said use utf8, but the program file doesn't comply with UTF-8
 encoding rules. The
message prints out the properly encoded characters
 just before the first bad one. If utf8
warnings are enabled, a
 warning is generated that gives more details about the type of

malformation.

Malformed UTF-8 returned by \N{%s} immediately after '%s'

(F) The charnames handler returned malformed UTF-8.

Malformed UTF-8 string in '%c' format in unpack

(F) You tried to unpack something that didn't comply with UTF-8 encoding
 rules and perl was
unable to guess how to make more progress.

Malformed UTF-8 string in pack

Perl version 5.22.0 documentation - perldiag

Page 43http://perldoc.perl.org

(F) You tried to pack something that didn't comply with UTF-8 encoding
 rules and perl was
unable to guess how to make more progress.

Malformed UTF-8 string in unpack

(F) You tried to unpack something that didn't comply with UTF-8 encoding
 rules and perl was
unable to guess how to make more progress.

Malformed UTF-16 surrogate

(F) Perl thought it was reading UTF-16 encoded character data but while
 doing it Perl met a
malformed Unicode surrogate.

Mandatory parameter follows optional parameter

(F) In a subroutine signature, you wrote something like "$a = undef,
 $b", making an earlier
parameter optional and a later one mandatory.
 Parameters are filled from left to right, so it's
impossible for the
 caller to omit an earlier one and pass a later one. If you want to act
 as if the
parameters are filled from right to left, declare the rightmost
 optional and then shuffle the
parameters around in the subroutine's body.

Matched non-Unicode code point 0x%X against Unicode property; may
 not be portable

(S non_unicode) Perl allows strings to contain a superset of
 Unicode code points; each code
point may be as large as what is storable
 in an unsigned integer on your system, but these
may not be accepted by
 other languages/systems. This message occurs when you matched a
string
 containing such a code point against a regular expression pattern, and
 the code point
was matched against a Unicode property, \p{...} or \P{...}. Unicode properties are only
defined on Unicode code points,
 so the result of this match is undefined by Unicode, but Perl
(starting
 in v5.20) treats non-Unicode code points as if they were typical
 unassigned Unicode
ones, and matched this one accordingly. Whether a
 given property matches these code points
or not is specified in "Properties accessible through \p{} and \P{}" in perluniprops.

This message is suppressed (unless it has been made fatal) if it is
 immaterial to the results of
the match if the code point is Unicode or
 not. For example, the property
\p{ASCII_Hex_Digit} only can match
 the 22 characters [0-9A-Fa-f], so obviously all
other code points,
 Unicode or not, won't match it. (And \P{ASCII_Hex_Digit} will match

every code point except these 22.)

Getting this message indicates that the outcome of the match arguably
 should have been the
opposite of what actually happened. If you think
 that is the case, you may wish to make the
non_unicode warnings
 category fatal; if you agree with Perl's decision, you may wish to turn

off this category.

See "Beyond Unicode code points" in perlunicode for more information.

%s matches null string many times in regex; marked by <-- HERE in
 m/%s/

(W regexp) The pattern you've specified would be an infinite loop if the
 regular expression
engine didn't specifically check for that. The <-- HERE
 shows whereabouts in the regular
expression the problem was discovered.
 See perlre.

Maximal count of pending signals (%u) exceeded

(F) Perl aborted due to too high a number of signals pending. This
 usually indicates that your
operating system tried to deliver signals
 too fast (with a very high priority), starving the perl
process from
 resources it would need to reach a point where it can process signals
 safely.
(See "Deferred Signals (Safe Signals)" in perlipc.)

"%s" may clash with future reserved word

(W) This warning may be due to running a perl5 script through a perl4
 interpreter, especially if
the word that is being warned about is
 "use" or "my".

'%' may not be used in pack

Perl version 5.22.0 documentation - perldiag

Page 44http://perldoc.perl.org

(F) You can't pack a string by supplying a checksum, because the
 checksumming process
loses information, and you can't go the other way.
 See "unpack" in perlfunc.

Method for operation %s not found in package %s during blessing

(F) An attempt was made to specify an entry in an overloading table that
 doesn't resolve to a
valid subroutine. See overload.

Method %s not permitted

See Server error.

Might be a runaway multi-line %s string starting on line %d

(S) An advisory indicating that the previous error may have been caused
 by a missing
delimiter on a string or pattern, because it eventually
 ended earlier on the current line.

Misplaced _ in number

(W syntax) An underscore (underbar) in a numeric constant did not
 separate two digits.

Missing argument in %s

(W missing) You called a function with fewer arguments than other
 arguments you supplied
indicated would be needed.

Currently only emitted when a printf-type format required more
 arguments than were supplied,
but might be used in the future for
 other cases where we can statically determine that
arguments to
 functions are missing, e.g. for the "pack" in perlfunc function.

Missing argument to -%c

(F) The argument to the indicated command line switch must follow
 immediately after the
switch, without intervening spaces.

Missing braces on \N{}

Missing braces on \N{} in regex; marked by <-- HERE in m/%s/

(F) Wrong syntax of character name literal \N{charname} within
 double-quotish context. This
can also happen when there is a space
 (or comment) between the \N and the { in a regex
with the /x modifier.
 This modifier does not change the requirement that the brace
immediately
 follow the \N.

Missing braces on \o{}

(F) A \o must be followed immediately by a { in double-quotish context.

Missing comma after first argument to %s function

(F) While certain functions allow you to specify a filehandle or an
 "indirect object" before the
argument list, this ain't one of them.

Missing command in piped open

(W pipe) You used the open(FH, "| command") or open(FH, "command |")
construction, but the command was missing or
 blank.

Missing control char name in \c

(F) A double-quoted string ended with "\c", without the required control
 character name.

Missing ']' in prototype for %s : %s

(W illegalproto) A grouping was started with [but never closed with].

Missing name in "%s sub"

(F) The syntax for lexically scoped subroutines requires that
 they have a name with which they
can be found.

Perl version 5.22.0 documentation - perldiag

Page 45http://perldoc.perl.org

Missing $ on loop variable

(F) Apparently you've been programming in csh too much. Variables
 are always mentioned
with the $ in Perl, unlike in the shells, where it
 can vary from one line to the next.

(Missing operator before %s?)

(S syntax) This is an educated guess made in conjunction with the message
 "%s found where
operator expected". Often the missing operator is a comma.

Missing or undefined argument to require

(F) You tried to call require with no argument or with an undefined
 value as an argument.
Require expects either a package name or a
 file-specification as an argument. See "require"
in perlfunc.

Missing right brace on \%c{} in regex; marked by <-- HERE in m/%s/

(F) Missing right brace in \x{...}, \p{...}, \P{...}, or \N{...}.

Missing right brace on \N{}

Missing right brace on \N{} or unescaped left brace after \N

(F) \N has two meanings.

The traditional one has it followed by a name enclosed in braces,
 meaning the character (or
sequence of characters) given by that
 name. Thus \N{ASTERISK} is another way of writing *
, valid in both
 double-quoted strings and regular expression patterns. In patterns,
 it doesn't
have the meaning an unescaped * does.

Starting in Perl 5.12.0, \N also can have an additional meaning (only)
 in patterns, namely to
match a non-newline character. (This is short
 for [^\n], and like . but is not affected by the
/s regex modifier.)

This can lead to some ambiguities. When \N is not followed immediately
 by a left brace, Perl
assumes the [^\n] meaning. Also, if the braces
 form a valid quantifier such as \N{3} or
\N{5,}, Perl assumes that this
 means to match the given quantity of non-newlines (in these
examples,
 3; and 5 or more, respectively). In all other case, where there is a \N{ and a
matching }, Perl assumes that a character name is desired.

However, if there is no matching }, Perl doesn't know if it was
 mistakenly omitted, or if
[^\n]{ was desired, and raises this error.
 If you meant the former, add the right brace; if you
meant the latter,
 escape the brace with a backslash, like so: \N\{

Missing right curly or square bracket

(F) The lexer counted more opening curly or square brackets than closing
 ones. As a general
rule, you'll find it's missing near the place you
 were last editing.

(Missing semicolon on previous line?)

(S syntax) This is an educated guess made in conjunction with the message
 "%s found where
operator expected". Don't automatically put a semicolon on
 the previous line just because you
saw this message.

Modification of a read-only value attempted

(F) You tried, directly or indirectly, to change the value of a
 constant. You didn't, of course, try
"2 = 1", because the compiler
 catches that. But an easy way to do the same thing is:

 sub mod { $_[0] = 1 }
 mod(2);

Another way is to assign to a substr() that's off the end of the string.

Yet another way is to assign to a foreach loop VAR when VAR
 is aliased to a constant in the
look LIST:

Perl version 5.22.0 documentation - perldiag

Page 46http://perldoc.perl.org

 $x = 1;
 foreach my $n ($x, 2) {
 $n *= 2; # modifies the $x, but fails on attempt to
 } # modify the 2

Modification of non-creatable array value attempted, %s

(F) You tried to make an array value spring into existence, and the
 subscript was probably
negative, even counting from end of the array
 backwards.

Modification of non-creatable hash value attempted, %s

(P) You tried to make a hash value spring into existence, and it
 couldn't be created for some
peculiar reason.

Module name must be constant

(F) Only a bare module name is allowed as the first argument to a "use".

Module name required with -%c option

(F) The -M or -m options say that Perl should load some module, but
 you omitted the name of
the module. Consult perlrun for full details
 about -M and -m.

More than one argument to '%s' open

(F) The open function has been asked to open multiple files. This
 can happen if you are trying
to open a pipe to a command that takes a
 list of arguments, but have forgotten to specify a
piped open mode.
 See "open" in perlfunc for details.

mprotect for COW string %p %u failed with %d

(S) You compiled perl with -DPERL_DEBUG_READONLY_COW (see "Copy on Write" in
perlguts), but a shared string buffer
 could not be made read-only.

mprotect for %p %u failed with %d

(S) You compiled perl with -DPERL_DEBUG_READONLY_OPS (see perlhacktips),
 but an op
tree could not be made read-only.

mprotect RW for COW string %p %u failed with %d

(S) You compiled perl with -DPERL_DEBUG_READONLY_COW (see "Copy on Write" in
perlguts), but a read-only shared string
 buffer could not be made mutable.

mprotect RW for %p %u failed with %d

(S) You compiled perl with -DPERL_DEBUG_READONLY_OPS (see perlhacktips), but a
read-only op tree could not be made
 mutable before freeing the ops.

msg%s not implemented

(F) You don't have System V message IPC on your system.

Multidimensional syntax %s not supported

(W syntax) Multidimensional arrays aren't written like $foo[1,2,3].
 They're written like
$foo[1][2][3], as in C.

'/' must follow a numeric type in unpack

(F) You had an unpack template that contained a '/', but this did not
 follow some unpack
specification producing a numeric value.
 See "pack" in perlfunc.

"my sub" not yet implemented

(F) Lexically scoped subroutines are not yet implemented. Don't try
 that yet.

"my" subroutine %s can't be in a package

Perl version 5.22.0 documentation - perldiag

Page 47http://perldoc.perl.org

(F) Lexically scoped subroutines aren't in a package, so it doesn't make
 sense to try to declare
one with a package qualifier on the front.

"my %s" used in sort comparison

(W syntax) The package variables $a and $b are used for sort comparisons.
 You used $a or
$b in as an operand to the <=> or cmp operator inside a
 sort comparison block, and the
variable had earlier been declared as a
 lexical variable. Either qualify the sort variable with the
package
 name, or rename the lexical variable.

"my" variable %s can't be in a package

(F) Lexically scoped variables aren't in a package, so it doesn't make
 sense to try to declare
one with a package qualifier on the front. Use
 local() if you want to localize a package
variable.

Name "%s::%s" used only once: possible typo

(W once) Typographical errors often show up as unique variable
 names. If you had a good
reason for having a unique name, then
 just mention it again somehow to suppress the
message. The our
 declaration is also provided for this purpose.

NOTE: This warning detects package symbols that have been used
 only once. This means
lexical variables will never trigger this
 warning. It also means that all of the package variables
$c, @c,
 %c, as well as *c, &c, sub c{}, c(), and c (the filehandle or
 format) are considered the
same; if a program uses $c only once
 but also uses any of the others it will not trigger this
warning.
 Symbols beginning with an underscore and symbols using special
 identifiers (q.v.
perldata) are exempt from this warning.

Need exactly 3 octal digits in regex; marked by <-- HERE in m/%s/

(F) Within (?[]), all constants interpreted as octal need to be
 exactly 3 digits long. This
helps catch some ambiguities. If your
 constant is too short, add leading zeros, like

 (?[[\078]]) # Syntax error!
 (?[[\0078]]) # Works
 (?[[\007 8]]) # Clearer

The maximum number this construct can express is \777. If you
 need a larger one, you need
to use \o{} instead. If you meant
 two separate things, you need to separate them:

 (?[[\7776]]) # Syntax error!
 (?[[\o{7776}]]) # One meaning
 (?[[\777 6]]) # Another meaning
 (?[[\777 \006]]) # Still another

Negative '/' count in unpack

(F) The length count obtained from a length/code unpack operation was
 negative. See "pack"
in perlfunc.

Negative length

(F) You tried to do a read/write/send/recv operation with a buffer
 length that is less than 0.
This is difficult to imagine.

Negative offset to vec in lvalue context

(F) When vec is called in an lvalue context, the second argument must be
 greater than or
equal to zero.

Negative repeat count does nothing

(W numeric) You tried to execute the x repetition operator fewer than 0
 times, which doesn't
make sense.

Perl version 5.22.0 documentation - perldiag

Page 48http://perldoc.perl.org

Nested quantifiers in regex; marked by <-- HERE in m/%s/

(F) You can't quantify a quantifier without intervening parentheses.
 So things like ** or +* or ?*
are illegal. The <-- HERE shows
 whereabouts in the regular expression the problem was
discovered.

Note that the minimal matching quantifiers, *?, +?, and ?? appear to be nested quantifiers,
but aren't. See perlre.

%s never introduced

(S internal) The symbol in question was declared but somehow went out of
 scope before it
could possibly have been used.

next::method/next::can/maybe::next::method cannot find enclosing method

(F) next::method needs to be called within the context of a
 real method in a real package,
and it could not find such a context.
 See mro.

\N in a character class must be a named character: \N{...} in regex; marked by <-- HERE in m/%s/

(F) The new (as of Perl 5.12) meaning of \N as [^\n] is not valid in a
 bracketed character
class, for the same reason that . in a character
 class loses its specialness: it matches almost
everything, which is
 probably not what you want.

\N{} in inverted character class or as a range end-point is restricted to one character in regex; marked
by <-- HERE in m/%s/

(F) Named Unicode character escapes (\N{...}) may return a
 multi-character sequence.
Even though a character class is
 supposed to match just one character of input, perl will
match the
 whole thing correctly, except when the class is inverted ([^...]),
 or the escape is
the beginning or final end point of a range. The
 mathematically logical behavior for what
matches when inverting
 is very different from what people expect, so we have decided to

forbid it. Similarly unclear is what should be generated when the \N{...} is used as one of
the end points of the range, such as in

 [\x{41}-\N{ARABIC SEQUENCE YEH WITH HAMZA ABOVE WITH AE}]

What is meant here is unclear, as the \N{...} escape is a sequence
 of code points, so this
is made an error.

\N{NAME} must be resolved by the lexer in regex; marked by <-- HERE in m/%s/

(F) When compiling a regex pattern, an unresolved named character or
 sequence was
encountered. This can happen in any of several ways that
 bypass the lexer, such as using
single-quotish context, or an extra
 backslash in double-quotish:

 $re = '\N{SPACE}';	 # Wrong!
 $re = "\\N{SPACE}";	 # Wrong!
 /$re/;

Instead, use double-quotes with a single backslash:

 $re = "\N{SPACE}";	 # ok
 /$re/;

The lexer can be bypassed as well by creating the pattern from smaller
 components:

 $re = '\N';
 /${re}{SPACE}/;	 # Wrong!

It's not a good idea to split a construct in the middle like this, and
 it doesn't work here. Instead
use the solution above.

Finally, the message also can happen under the /x regex modifier when the \N is separated
by spaces from the {, in which case, remove the spaces.

Perl version 5.22.0 documentation - perldiag

Page 49http://perldoc.perl.org

 /\N {SPACE}/x;	 # Wrong!
 /\N{SPACE}/x;	 # ok

No %s allowed while running setuid

(F) Certain operations are deemed to be too insecure for a setuid or
 setgid script to even be
allowed to attempt. Generally speaking there
 will be another way to do what you want that is, if
not secure, at least
 securable. See perlsec.

NO-BREAK SPACE in a charnames alias definition is deprecated

(D deprecated) You defined a character name which contained a no-break
 space character.
Change it to a regular space. Usually these names are
 defined in the :alias import
argument to use charnames, but they
 could be defined by a translator installed into
$^H{charnames}. See "CUSTOM ALIASES" in charnames.

No code specified for -%c

(F) Perl's -e and -E command-line options require an argument. If
 you want to run an empty
program, pass the empty string as a separate
 argument or run a program consisting of a
single 0 or 1:

 perl -e ""
 perl -e0
 perl -e1

No comma allowed after %s

(F) A list operator that has a filehandle or "indirect object" is
 not allowed to have a comma
between that and the following arguments.
 Otherwise it'd be just another one of the
arguments.

One possible cause for this is that you expected to have imported
 a constant to your name
space with use or import while no such
 importing took place, it may for example be that your
operating
 system does not support that particular constant. Hopefully you did
 use an explicit
import list for the constants you expect to see;
 please see "use" in perlfunc and "import" in
perlfunc. While an
 explicit import list would probably have caught this error earlier
 it naturally
does not remedy the fact that your operating system
 still does not support that constant.
Maybe you have a typo in
 the constants of the symbol import list of use or import or in the

constant name at the line where this error was triggered?

No command into which to pipe on command line

(F) An error peculiar to VMS. Perl handles its own command line
 redirection, and found a '|' at
the end of the command line, so it
 doesn't know where you want to pipe the output from this
command.

No DB::DB routine defined

(F) The currently executing code was compiled with the -d switch, but
 for some reason the
current debugger (e.g. perl5db.pl or a Devel::
 module) didn't define a routine to be called at
the beginning of each
 statement.

No dbm on this machine

(P) This is counted as an internal error, because every machine should
 supply dbm
nowadays, because Perl comes with SDBM. See SDBM_File.

No DB::sub routine defined

(F) The currently executing code was compiled with the -d switch, but
 for some reason the
current debugger (e.g. perl5db.pl or a Devel::
 module) didn't define a DB::sub routine to be
called at the beginning
 of each ordinary subroutine call.

Perl version 5.22.0 documentation - perldiag

Page 50http://perldoc.perl.org

No directory specified for -I

(F) The -I command-line switch requires a directory name as part of the same argument. Use
-Ilib, for instance. -I lib won't work.

No error file after 2> or 2>> on command line

(F) An error peculiar to VMS. Perl handles its own command line
 redirection, and found a '2>'
or a '2>>' on the command line, but can't
 find the name of the file to which to write data
destined for stderr.

No group ending character '%c' found in template

(F) A pack or unpack template has an opening '(' or '[' without its
 matching counterpart. See
"pack" in perlfunc.

No input file after < on command line

(F) An error peculiar to VMS. Perl handles its own command line
 redirection, and found a '<'
on the command line, but can't find the
 name of the file from which to read data for stdin.

No next::method '%s' found for %s

(F) next::method found no further instances of this method name
 in the remaining
packages of the MRO of this class. If you don't want
 it throwing an exception, use
maybe::next::method
 or next::can. See mro.

Non-finite repeat count does nothing

(W numeric) You tried to execute the x repetition operator Inf (or -Inf) or NaN times, which
doesn't make sense.

Non-hex character in regex; marked by <-- HERE in m/%s/

(F) In a regular expression, there was a non-hexadecimal character where
 a hex one was
expected, like

 (?[[\xDG]])
 (?[[\x{DEKA}]])

Non-octal character in regex; marked by <-- HERE in m/%s/

(F) In a regular expression, there was a non-octal character where
 an octal one was expected,
like

 (?[[\o{1278}]])

Non-octal character '%c'. Resolved as "%s"

(W digit) In parsing an octal numeric constant, a character was
 unexpectedly encountered that
isn't octal. The resulting value
 is as indicated.

"no" not allowed in expression

(F) The "no" keyword is recognized and executed at compile time, and
 returns no useful value.
See perlmod.

Non-string passed as bitmask

(W misc) A number has been passed as a bitmask argument to select().
 Use the vec()
function to construct the file descriptor bitmasks for
 select. See "select" in perlfunc.

No output file after > on command line

(F) An error peculiar to VMS. Perl handles its own command line
 redirection, and found a lone
'>' at the end of the command line, so it
 doesn't know where you wanted to redirect stdout.

No output file after > or >> on command line

Perl version 5.22.0 documentation - perldiag

Page 51http://perldoc.perl.org

(F) An error peculiar to VMS. Perl handles its own command line
 redirection, and found a '>' or
a '>>' on the command line, but can't
 find the name of the file to which to write data destined
for stdout.

No package name allowed for variable %s in "our"

(F) Fully qualified variable names are not allowed in "our"
 declarations, because that doesn't
make much sense under existing
 rules. Such syntax is reserved for future extensions.

No Perl script found in input

(F) You called perl -x, but no line was found in the file beginning
 with #! and containing the
word "perl".

No setregid available

(F) Configure didn't find anything resembling the setregid() call for
 your system.

No setreuid available

(F) Configure didn't find anything resembling the setreuid() call for
 your system.

No such class %s

(F) You provided a class qualifier in a "my", "our" or "state"
 declaration, but this class doesn't
exist at this point in your program.

No such class field "%s" in variable %s of type %s

(F) You tried to access a key from a hash through the indicated typed
 variable but that key is
not allowed by the package of the same type.
 The indicated package has restricted the set of
allowed keys using the fields pragma.

No such hook: %s

(F) You specified a signal hook that was not recognized by Perl.
 Currently, Perl accepts
__DIE__ and __WARN__ as valid signal hooks.

No such pipe open

(P) An error peculiar to VMS. The internal routine my_pclose() tried to
 close a pipe which
hadn't been opened. This should have been caught
 earlier as an attempt to close an
unopened filehandle.

No such signal: SIG%s

(W signal) You specified a signal name as a subscript to %SIG that was
 not recognized. Say
kill -l in your shell to see the valid signal
 names on your system.

Not a CODE reference

(F) Perl was trying to evaluate a reference to a code value (that is, a
 subroutine), but found a
reference to something else instead. You can
 use the ref() function to find out what kind of ref
it really was. See
 also perlref.

Not a GLOB reference

(F) Perl was trying to evaluate a reference to a "typeglob" (that is, a
 symbol table entry that
looks like *foo), but found a reference to
 something else instead. You can use the ref()
function to find out what
 kind of ref it really was. See perlref.

Not a HASH reference

(F) Perl was trying to evaluate a reference to a hash value, but found a
 reference to something
else instead. You can use the ref() function to
 find out what kind of ref it really was. See perlref
.

Not an ARRAY reference

Perl version 5.22.0 documentation - perldiag

Page 52http://perldoc.perl.org

(F) Perl was trying to evaluate a reference to an array value, but found
 a reference to
something else instead. You can use the ref() function
 to find out what kind of ref it really was.
See perlref.

Not an unblessed ARRAY reference

(F) You passed a reference to a blessed array to push, shift or
 another array function.
These only accept unblessed array references
 or arrays beginning explicitly with @.

Not a SCALAR reference

(F) Perl was trying to evaluate a reference to a scalar value, but found
 a reference to
something else instead. You can use the ref() function
 to find out what kind of ref it really was.
See perlref.

Not a subroutine reference

(F) Perl was trying to evaluate a reference to a code value (that is, a
 subroutine), but found a
reference to something else instead. You can
 use the ref() function to find out what kind of ref
it really was. See
 also perlref.

Not a subroutine reference in overload table

(F) An attempt was made to specify an entry in an overloading table that
 doesn't somehow
point to a valid subroutine. See overload.

Not enough arguments for %s

(F) The function requires more arguments than you specified.

Not enough format arguments

(W syntax) A format specified more picture fields than the next line
 supplied. See perlform.

%s: not found

(A) You've accidentally run your script through the Bourne shell instead
 of Perl. Check the #!
line, or manually feed your script into Perl
 yourself.

(?[...]) not valid in locale in regex; marked by <-- HERE in m/%s/

(F) (?[...]) cannot be used within the scope of a use locale or with
 an /l regular
expression modifier, as that would require deferring
 to run-time the calculation of what it
should evaluate to, and it is
 regex compile-time only.

no UTC offset information; assuming local time is UTC

(S) A warning peculiar to VMS. Perl was unable to find the local
 timezone offset, so it's
assuming that local system time is equivalent
 to UTC. If it's not, define the logical name
SYS$TIMEZONE_DIFFERENTIAL to translate to the number of seconds which
 need to be
added to UTC to get local time.

NULL OP IN RUN

(S debugging) Some internal routine called run() with a null opcode
 pointer.

Null picture in formline

(F) The first argument to formline must be a valid format picture
 specification. It was found to
be empty, which probably means you
 supplied it an uninitialized value. See perlform.

Null realloc

(P) An attempt was made to realloc NULL.

NULL regexp argument

(P) The internal pattern matching routines blew it big time.

Perl version 5.22.0 documentation - perldiag

Page 53http://perldoc.perl.org

NULL regexp parameter

(P) The internal pattern matching routines are out of their gourd.

Number too long

(F) Perl limits the representation of decimal numbers in programs to
 about 250 characters.
You've exceeded that length. Future
 versions of Perl are likely to eliminate this arbitrary
limitation. In
 the meantime, try using scientific notation (e.g. "1e6" instead of
 "1_000_000").

Number with no digits

(F) Perl was looking for a number but found nothing that looked like
 a number. This happens,
for example with \o{}, with no number between
 the braces.

Octal number > 037777777777 non-portable

(W portable) The octal number you specified is larger than 2**32-1
 (4294967295) and
therefore non-portable between systems. See perlport for more on portability concerns.

Odd name/value argument for subroutine

(F) A subroutine using a slurpy hash parameter in its signature
 received an odd number of
arguments to populate the hash. It requires
 the arguments to be paired, with the same number
of keys as values.
 The caller of the subroutine is presumably at fault. Inconveniently,
 this error
will be reported at the location of the subroutine, not that
 of the caller.

Odd number of arguments for overload::constant

(W overload) The call to overload::constant contained an odd number of
 arguments. The
arguments should come in pairs.

Odd number of elements in anonymous hash

(W misc) You specified an odd number of elements to initialize a hash,
 which is odd, because
hashes come in key/value pairs.

Odd number of elements in hash assignment

(W misc) You specified an odd number of elements to initialize a hash,
 which is odd, because
hashes come in key/value pairs.

Offset outside string

(F)(W layer) You tried to do a read/write/send/recv/seek operation
 with an offset pointing
outside the buffer. This is difficult to
 imagine. The sole exceptions to this are that zero padding
will
 take place when going past the end of the string when either sysread()ing a file, or
when seeking past the end of a scalar opened
 for I/O (in anticipation of future reads and to
imitate the behavior
 with real files).

%s() on unopened %s

(W unopened) An I/O operation was attempted on a filehandle that was
 never initialized. You
need to do an open(), a sysopen(), or a socket()
 call, or call a constructor from the FileHandle
package.

-%s on unopened filehandle %s

(W unopened) You tried to invoke a file test operator on a filehandle
 that isn't open. Check
your control flow. See also "-X" in perlfunc.

oops: oopsAV

(S internal) An internal warning that the grammar is screwed up.

oops: oopsHV

(S internal) An internal warning that the grammar is screwed up.

Perl version 5.22.0 documentation - perldiag

Page 54http://perldoc.perl.org

Opening dirhandle %s also as a file

(D io, deprecated) You used open() to associate a filehandle to
 a symbol (glob or scalar) that
already holds a dirhandle.
 Although legal, this idiom might render your code confusing
 and is
deprecated.

Opening filehandle %s also as a directory

(D io, deprecated) You used opendir() to associate a dirhandle to
 a symbol (glob or scalar)
that already holds a filehandle.
 Although legal, this idiom might render your code confusing

and is deprecated.

Operand with no preceding operator in regex; marked by <-- HERE in
 m/%s/

(F) You wrote something like

 (?[\p{Digit} \p{Thai}])

There are two operands, but no operator giving how you want to combine
 them.

Operation "%s": no method found, %s

(F) An attempt was made to perform an overloaded operation for which no
 handler was
defined. While some handlers can be autogenerated in terms
 of other handlers, there is no
default handler for any operation, unless
 the fallback overloading key is specified to be
true. See overload.

Operation "%s" returns its argument for non-Unicode code point 0x%X

(S non_unicode) You performed an operation requiring Unicode rules
 on a code point that is
not in Unicode, so what it should do is not
 defined. Perl has chosen to have it do nothing, and
warn you.

If the operation shown is "ToFold", it means that case-insensitive
 matching in a regular
expression was done on the code point.

If you know what you are doing you can turn off this warning by no warnings
'non_unicode';.

Operation "%s" returns its argument for UTF-16 surrogate U+%X

(S surrogate) You performed an operation requiring Unicode
 rules on a Unicode surrogate.
Unicode frowns upon the use
 of surrogates for anything but storing strings in UTF-16, but

rules are (reluctantly) defined for the surrogates, and
 they are to do nothing for this operation.
Because the use of
 surrogates can be dangerous, Perl warns.

If the operation shown is "ToFold", it means that case-insensitive
 matching in a regular
expression was done on the code point.

If you know what you are doing you can turn off this warning by no warnings
'surrogate';.

Operator or semicolon missing before %s

(S ambiguous) You used a variable or subroutine call where the parser
 was expecting an
operator. The parser has assumed you really meant to
 use an operator, but this is highly likely
to be incorrect. For
 example, if you say "*foo *foo" it will be interpreted as if you said
 "*foo *
'foo'".

Optional parameter lacks default expression

(F) In a subroutine signature, you wrote something like "$a =", making a
 named optional
parameter without a default value. A nameless optional
 parameter is permitted to have no
default value, but a named one must
 have a specific default. You probably want "$a = undef".

"our" variable %s redeclared

(W misc) You seem to have already declared the same global once before
 in the current

Perl version 5.22.0 documentation - perldiag

Page 55http://perldoc.perl.org

lexical scope.

Out of memory!

(X) The malloc() function returned 0, indicating there was insufficient
 remaining memory (or
virtual memory) to satisfy the request. Perl has
 no option but to exit immediately.

At least in Unix you may be able to get past this by increasing your
 process datasize limits: in
csh/tcsh use limit and limit datasize n (where n is the number of kilobytes) to check

the current limits and change them, and in ksh/bash/zsh use ulimit -a
 and ulimit -d n,
respectively.

Out of memory during %s extend

(X) An attempt was made to extend an array, a list, or a string beyond
 the largest possible
memory allocation.

Out of memory during "large" request for %s

(F) The malloc() function returned 0, indicating there was insufficient
 remaining memory (or
virtual memory) to satisfy the request. However,
 the request was judged large enough
(compile-time default is 64K), so a
 possibility to shut down by trapping this error is granted.

Out of memory during request for %s

(X)(F) The malloc() function returned 0, indicating there was
 insufficient remaining memory (or
virtual memory) to satisfy the
 request.

The request was judged to be small, so the possibility to trap it
 depends on the way perl was
compiled. By default it is not trappable.
 However, if compiled for this, Perl may use the
contents of $^M as an
 emergency pool after die()ing with this message. In this case the error

is trappable once, and the error message will include the line and file
 where the failed request
happened.

Out of memory during ridiculously large request

(F) You can't allocate more than 2^31+"small amount" bytes. This error
 is most likely to be
caused by a typo in the Perl program. e.g., $arr[time] instead of $arr[$time].

Out of memory for yacc stack

(F) The yacc parser wanted to grow its stack so it could continue
 parsing, but realloc()
wouldn't give it more memory, virtual or
 otherwise.

'.' outside of string in pack

(F) The argument to a '.' in your template tried to move the working
 position to before the start
of the packed string being built.

'@' outside of string in unpack

(F) You had a template that specified an absolute position outside
 the string being unpacked.
See "pack" in perlfunc.

'@' outside of string with malformed UTF-8 in unpack

(F) You had a template that specified an absolute position outside
 the string being unpacked.
The string being unpacked was also invalid
 UTF-8. See "pack" in perlfunc.

overload arg '%s' is invalid

(W overload) The overload pragma was passed an argument it did not
 recognize. Did you
mistype an operator?

Overloaded dereference did not return a reference

(F) An object with an overloaded dereference operator was dereferenced,
 but the overloaded
operation did not return a reference. See overload.

Perl version 5.22.0 documentation - perldiag

Page 56http://perldoc.perl.org

Overloaded qr did not return a REGEXP

(F) An object with a qr overload was used as part of a match, but the
 overloaded operation
didn't return a compiled regexp. See overload.

%s package attribute may clash with future reserved word: %s

(W reserved) A lowercase attribute name was used that had a
 package-specific handler. That
name might have a meaning to Perl itself
 some day, even though it doesn't yet. Perhaps you
should use a
 mixed-case attribute name, instead. See attributes.

pack/unpack repeat count overflow

(F) You can't specify a repeat count so large that it overflows your
 signed integers. See "pack"
in perlfunc.

page overflow

(W io) A single call to write() produced more lines than can fit on a
 page. See perlform.

panic: %s

(P) An internal error.

panic: attempt to call %s in %s

(P) One of the file test operators entered a code branch that calls
 an ACL related-function, but
that function is not available on this
 platform. Earlier checks mean that it should not be
possible to
 enter this branch on this platform.

panic: child pseudo-process was never scheduled

(P) A child pseudo-process in the ithreads implementation on Windows
 was not scheduled
within the time period allowed and therefore was not
 able to initialize properly.

panic: ck_grep, type=%u

(P) Failed an internal consistency check trying to compile a grep.

panic: ck_split, type=%u

(P) Failed an internal consistency check trying to compile a split.

panic: corrupt saved stack index %ld

(P) The savestack was requested to restore more localized values than
 there are in the
savestack.

panic: del_backref

(P) Failed an internal consistency check while trying to reset a weak
 reference.

panic: die %s

(P) We popped the context stack to an eval context, and then discovered
 it wasn't an eval
context.

panic: do_subst

(P) The internal pp_subst() routine was called with invalid operational
 data.

panic: do_trans_%s

(P) The internal do_trans routines were called with invalid operational
 data.

panic: fold_constants JMPENV_PUSH returned %d

(P) While attempting folding constants an exception other than an eval
 failure was caught.

panic: frexp: %f

(P) The library function frexp() failed, making printf("%f") impossible.

Perl version 5.22.0 documentation - perldiag

Page 57http://perldoc.perl.org

panic: goto, type=%u, ix=%ld

(P) We popped the context stack to a context with the specified label,
 and then discovered it
wasn't a context we know how to do a goto in.

panic: gp_free failed to free glob pointer

(P) The internal routine used to clear a typeglob's entries tried
 repeatedly, but each time
something re-created entries in the glob.
 Most likely the glob contains an object with a
reference back to
 the glob and a destructor that adds a new object to the glob.

panic: INTERPCASEMOD, %s

(P) The lexer got into a bad state at a case modifier.

panic: INTERPCONCAT, %s

(P) The lexer got into a bad state parsing a string with brackets.

panic: kid popen errno read

(F) A forked child returned an incomprehensible message about its errno.

panic: last, type=%u

(P) We popped the context stack to a block context, and then discovered
 it wasn't a block
context.

panic: leave_scope clearsv

(P) A writable lexical variable became read-only somehow within the
 scope.

panic: leave_scope inconsistency %u

(P) The savestack probably got out of sync. At least, there was an
 invalid enum on the top of
it.

panic: magic_killbackrefs

(P) Failed an internal consistency check while trying to reset all weak
 references to an object.

panic: malloc, %s

(P) Something requested a negative number of bytes of malloc.

panic: memory wrap

(P) Something tried to allocate either more memory than possible or a
 negative amount.

panic: pad_alloc, %p!=%p

(P) The compiler got confused about which scratch pad it was allocating
 and freeing
temporaries and lexicals from.

panic: pad_free curpad, %p!=%p

(P) The compiler got confused about which scratch pad it was allocating
 and freeing
temporaries and lexicals from.

panic: pad_free po

(P) A zero scratch pad offset was detected internally. An attempt was
 made to free a target
that had not been allocated to begin with.

panic: pad_reset curpad, %p!=%p

(P) The compiler got confused about which scratch pad it was allocating
 and freeing
temporaries and lexicals from.

panic: pad_sv po

(P) A zero scratch pad offset was detected internally. Most likely
 an operator needed a target

Perl version 5.22.0 documentation - perldiag

Page 58http://perldoc.perl.org

but that target had not been allocated
 for whatever reason.

panic: pad_swipe curpad, %p!=%p

(P) The compiler got confused about which scratch pad it was allocating
 and freeing
temporaries and lexicals from.

panic: pad_swipe po

(P) An invalid scratch pad offset was detected internally.

panic: pp_iter, type=%u

(P) The foreach iterator got called in a non-loop context frame.

panic: pp_match%s

(P) The internal pp_match() routine was called with invalid operational
 data.

panic: pp_split, pm=%p, s=%p

(P) Something terrible went wrong in setting up for the split.

panic: realloc, %s

(P) Something requested a negative number of bytes of realloc.

panic: reference miscount on nsv in sv_replace() (%d != 1)

(P) The internal sv_replace() function was handed a new SV with a
 reference count other than
1.

panic: restartop in %s

(P) Some internal routine requested a goto (or something like it), and
 didn't supply the
destination.

panic: return, type=%u

(P) We popped the context stack to a subroutine or eval context, and
 then discovered it wasn't
a subroutine or eval context.

panic: scan_num, %s

(P) scan_num() got called on something that wasn't a number.

panic: Sequence (?{...}): no code block found in regex m/%s/

(P) While compiling a pattern that has embedded (?{}) or (??{}) code
 blocks, perl couldn't
locate the code block that should have already been
 seen and compiled by perl before control
passed to the regex compiler.

panic: strxfrm() gets absurd - a => %u, ab => %u

(P) The interpreter's sanity check of the C function strxfrm() failed.
 In your current locale the
returned transformation of the string "ab"
 is shorter than that of the string "a", which makes no
sense.

panic: sv_chop %s

(P) The sv_chop() routine was passed a position that is not within the
 scalar's string buffer.

panic: sv_insert, midend=%p, bigend=%p

(P) The sv_insert() routine was told to remove more string than there
 was string.

panic: top_env

(P) The compiler attempted to do a goto, or something weird like that.

panic: unimplemented op %s (#%d) called

Perl version 5.22.0 documentation - perldiag

Page 59http://perldoc.perl.org

(P) The compiler is screwed up and attempted to use an op that isn't
 permitted at run time.

panic: utf16_to_utf8: odd bytelen

(P) Something tried to call utf16_to_utf8 with an odd (as opposed
 to even) byte length.

panic: utf16_to_utf8_reversed: odd bytelen

(P) Something tried to call utf16_to_utf8_reversed with an odd (as opposed
 to even) byte
length.

panic: yylex, %s

(P) The lexer got into a bad state while processing a case modifier.

Parentheses missing around "%s" list

(W parenthesis) You said something like

 my $foo, $bar = @_;

when you meant

 my ($foo, $bar) = @_;

Remember that "my", "our", "local" and "state" bind tighter than comma.

Parsing code internal error (%s)

(F) Parsing code supplied by an extension violated the parser's API in
 a detectable way.

Passing malformed UTF-8 to "%s" is deprecated

(D deprecated, utf8) This message indicates a bug either in the Perl
 core or in XS code. Such
code was trying to find out if a character,
 allegedly stored internally encoded as UTF-8, was of
a given type, such
 as being punctuation or a digit. But the character was not encoded in
 legal
UTF-8. The %s is replaced by a string that can be used by
 knowledgeable people to determine
what the type being checked against
 was. If utf8 warnings are enabled, a further message is
raised,
 giving details of the malformation.

Pattern subroutine nesting without pos change exceeded limit in regex

(F) You used a pattern that uses too many nested subpattern calls without
 consuming any
text. Restructure the pattern so text is consumed before
 the nesting limit is exceeded.

-p destination: %s

(F) An error occurred during the implicit output invoked by the -p
 command-line switch. (This
output goes to STDOUT unless you've
 redirected it with select().)

Perl API version %s of %s does not match %s

(F) The XS module in question was compiled against a different incompatible
 version of Perl
than the one that has loaded the XS module.

Perl folding rules are not up-to-date for 0x%X; please use the perlbug
 utility to report; in regex;
marked by <-- HERE in m/%s/

(S regexp) You used a regular expression with case-insensitive matching,
 and there is a bug
in Perl in which the built-in regular expression
 folding rules are not accurate. This may lead to
incorrect results.
 Please report this as a bug using the perlbug utility.

PerlIO layer ':win32' is experimental

(S experimental::win32_perlio) The :win32 PerlIO layer is
 experimental. If you want to take
the risk of using this layer,
 simply disable this warning:

 no warnings "experimental::win32_perlio";

Perl version 5.22.0 documentation - perldiag

Page 60http://perldoc.perl.org

Perl_my_%s() not available

(F) Your platform has very uncommon byte-order and integer size,
 so it was not possible to
set up some or all fixed-width byte-order
 conversion functions. This is only a problem when
you're using the
 '<' or '>' modifiers in (un)pack templates. See "pack" in perlfunc.

Perl %s required (did you mean %s?)--this is only %s, stopped

(F) The code you are trying to run has asked for a newer version of
 Perl than you are running.
Perhaps use 5.10 was written instead
 of use 5.010 or use v5.10. Without the leading v,
the number is
 interpreted as a decimal, with every three digits after the
 decimal point
representing a part of the version number. So 5.10
 is equivalent to v5.100.

Perl %s required--this is only %s, stopped

(F) The module in question uses features of a version of Perl more
 recent than the currently
running version. How long has it been since
 you upgraded, anyway? See "require" in perlfunc.

PERL_SH_DIR too long

(F) An error peculiar to OS/2. PERL_SH_DIR is the directory to find the sh-shell in. See
"PERL_SH_DIR" in perlos2.

PERL_SIGNALS illegal: "%s"

(X) See "PERL_SIGNALS" in perlrun for legal values.

Perls since %s too modern--this is %s, stopped

(F) The code you are trying to run claims it will not run
 on the version of Perl you are using
because it is too new.
 Maybe the code needs to be updated, or maybe it is simply
 wrong and
the version check should just be removed.

perl: warning: Non hex character in '$ENV{PERL_HASH_SEED}', seed only partially set

(S) PERL_HASH_SEED should match /^\s*(?:0x)?[0-9a-fA-F]+\s*\z/ but it
 contained a non hex
character. This could mean you are not using the
 hash seed you think you are.

perl: warning: Setting locale failed.

(S) The whole warning message will look something like:

	 perl: warning: Setting locale failed.
	 perl: warning: Please check that your locale settings:
	 LC_ALL = "En_US",
	 LANG = (unset)
	 are supported and installed on your system.
	 perl: warning: Falling back to the standard locale ("C").

Exactly what were the failed locale settings varies. In the above the
 settings were that the
LC_ALL was "En_US" and the LANG had no value.
 This error means that Perl detected that
you and/or your operating
 system supplier and/or system administrator have set up the
so-called
 locale system but Perl could not use those settings. This was not
 dead serious,
fortunately: there is a "default locale" called "C" that
 Perl can and will use, and the script will
be run. Before you really
 fix the problem, however, you will get the same error message each

time you run Perl. How to really fix the problem can be found in perllocale section LOCALE
PROBLEMS.

perl: warning: strange setting in '$ENV{PERL_PERTURB_KEYS}': '%s'

(S) Perl was run with the environment variable PERL_PERTURB_KEYS defined
 but
containing an unexpected value. The legal values of this setting
 are as follows.

 Numeric | String | Result
 --------+---------------+---
 0 | NO | Disables key traversal randomization

Perl version 5.22.0 documentation - perldiag

Page 61http://perldoc.perl.org

 1 | RANDOM | Enables full key traversal randomization
 2 | DETERMINISTIC | Enables repeatable key traversal
 | | randomization

Both numeric and string values are accepted, but note that string values are
 case sensitive.
The default for this setting is "RANDOM" or 1.

pid %x not a child

(W exec) A warning peculiar to VMS. Waitpid() was asked to wait for a
 process which isn't a
subprocess of the current process. While this is
 fine from VMS' perspective, it's probably not
what you intended.

'P' must have an explicit size in unpack

(F) The unpack format P must have an explicit size, not "*".

pop on reference is experimental

(S experimental::autoderef) pop with a scalar argument is experimental
 and may change or be
removed in a future Perl version. If you want to
 take the risk of using this feature, simply
disable this warning:

 no warnings "experimental::autoderef";

POSIX class [:%s:] unknown in regex; marked by <-- HERE in m/%s/

(F) The class in the character class [: :] syntax is unknown. The <-- HERE
 shows whereabouts
in the regular expression the problem was discovered.
 Note that the POSIX character classes
do not have the is prefix
 the corresponding C interfaces have: in other words, it's
[[:print:]],
 not isprint. See perlre.

POSIX getpgrp can't take an argument

(F) Your system has POSIX getpgrp(), which takes no argument, unlike
 the BSD version,
which takes a pid.

POSIX syntax [%c %c] belongs inside character classes in regex; marked by <-- HERE in m/%s/

(W regexp) The character class constructs [: :], [= =], and [. .] go inside character classes, the
[] are part of the construct, for example:
 /[012[:alpha:]345]/. Note that [= =] and [. .] are not
currently
 implemented; they are simply placeholders for future extensions and
 will cause fatal
errors. The <-- HERE shows whereabouts in the regular
 expression the problem was
discovered. See perlre.

POSIX syntax [. .] is reserved for future extensions in regex; marked by <-- HERE in m/%s/

(F) Within regular expression character classes ([]) the syntax beginning
 with "[." and ending
with ".]" is reserved for future extensions. If you
 need to represent those character sequences
inside a regular expression
 character class, just quote the square brackets with the backslash:
"\[."
 and ".\]". The <-- HERE shows whereabouts in the regular expression the
 problem was
discovered. See perlre.

POSIX syntax [= =] is reserved for future extensions in regex; marked by <-- HERE in m/%s/

(F) Within regular expression character classes ([]) the syntax beginning
 with "[=" and ending
with "=]" is reserved for future extensions. If you
 need to represent those character sequences
inside a regular expression
 character class, just quote the square brackets with the backslash:
"\[="
 and "=\]". The <-- HERE shows whereabouts in the regular expression the
 problem was
discovered. See perlre.

Possible attempt to put comments in qw() list

(W qw) qw() lists contain items separated by whitespace; as with literal
 strings, comment
characters are not ignored, but are instead treated as
 literal data. (You may have used

Perl version 5.22.0 documentation - perldiag

Page 62http://perldoc.perl.org

different delimiters than the
 parentheses shown here; braces are also frequently used.)

You probably wrote something like this:

 @list = qw(
	 a # a comment
 b # another comment
);

when you should have written this:

 @list = qw(
	 a
 b
);

If you really want comments, build your list the
 old-fashioned way, with quotes and commas:

 @list = (
 'a', # a comment
 'b', # another comment
);

Possible attempt to separate words with commas

(W qw) qw() lists contain items separated by whitespace; therefore
 commas aren't needed to
separate the items. (You may have used
 different delimiters than the parentheses shown
here; braces are also
 frequently used.)

You probably wrote something like this:

 qw! a, b, c !;

which puts literal commas into some of the list items. Write it without
 commas if you don't want
them to appear in your data:

 qw! a b c !;

Possible memory corruption: %s overflowed 3rd argument

(F) An ioctl() or fcntl() returned more than Perl was bargaining for.
 Perl guesses a reasonable
buffer size, but puts a sentinel byte at the
 end of the buffer just in case. This sentinel byte got
clobbered, and
 Perl assumes that memory is now corrupted. See "ioctl" in perlfunc.

Possible precedence issue with control flow operator

(W syntax) There is a possible problem with the mixing of a control
 flow operator (e.g. return
) and a low-precedence operator like or. Consider:

 sub { return $a or $b; }

This is parsed as:

 sub { (return $a) or $b; }

Which is effectively just:

 sub { return $a; }

Either use parentheses or the high-precedence variant of the operator.

Note this may be also triggered for constructs like:

 sub { 1 if die; }

Perl version 5.22.0 documentation - perldiag

Page 63http://perldoc.perl.org

Possible precedence problem on bitwise %s operator

(W precedence) Your program uses a bitwise logical operator in conjunction
 with a numeric
comparison operator, like this :

 if ($x & $y == 0) { ... }

This expression is actually equivalent to $x & ($y == 0), due to the
 higher precedence of
==. This is probably not what you want. (If you
 really meant to write this, disable the warning,
or, better, put the
 parentheses explicitly and write $x & ($y == 0)).

Possible unintended interpolation of $\ in regex

(W ambiguous) You said something like m/$\/ in a regex.
 The regex m/foo$\s+bar/m
translates to: match the word 'foo', the output
 record separator (see "$\" in perlvar) and the
letter 's' (one time or more)
 followed by the word 'bar'.

If this is what you intended then you can silence the warning by using m/${\}/ (for example:
m/foo${\}s+bar/).

If instead you intended to match the word 'foo' at the end of the line
 followed by whitespace
and the word 'bar' on the next line then you can use m/$(?)\/ (for example:
m/foo$(?)\s+bar/).

Possible unintended interpolation of %s in string

(W ambiguous) You said something like '@foo' in a double-quoted string
 but there was no
array @foo in scope at the time. If you wanted a
 literal @foo, then write it as \@foo; otherwise
find out what happened
 to the array you apparently lost track of.

Postfix dereference is experimental

(S experimental::postderef) This warning is emitted if you use
 the experimental postfix
dereference syntax. Simply suppress the
 warning if you want to use the feature, but know that
in doing
 so you are taking the risk of using an experimental feature which
 may change or be
removed in a future Perl version:

 no warnings "experimental::postderef";
 use feature "postderef", "postderef_qq";
 $ref->$*;
 $aref->@*;
 $aref->@[@indices];
 ... etc ...

Precedence problem: open %s should be open(%s)

(S precedence) The old irregular construct

 open FOO || die;

is now misinterpreted as

 open(FOO || die);

because of the strict regularization of Perl 5's grammar into unary and
 list operators. (The old
open was a little of both.) You must put
 parentheses around the filehandle, or use the new "or"
operator instead
 of "||".

Premature end of script headers

See Server error.

printf() on closed filehandle %s

(W closed) The filehandle you're writing to got itself closed sometime
 before now. Check your
control flow.

Perl version 5.22.0 documentation - perldiag

Page 64http://perldoc.perl.org

print() on closed filehandle %s

(W closed) The filehandle you're printing on got itself closed sometime
 before now. Check
your control flow.

Process terminated by SIG%s

(W) This is a standard message issued by OS/2 applications, while *nix
 applications die in
silence. It is considered a feature of the OS/2
 port. One can easily disable this by appropriate
sighandlers, see "Signals" in perlipc. See also "Process terminated by SIGTERM/SIGINT"
 in
perlos2.

Property '%s' is unknown in regex; marked by <-- HERE in m/%s/

(F) The named property which you specified via \p or \P is not one
 known to Perl. Perhaps
you misspelled the name? See "Properties accessible through \p{} and \P{}" in perluniprops
 for
a complete list of available official
 properties. If it is a user-defined property
 it must have been
defined by the time the regular expression is
 compiled.

Prototype after '%c' for %s : %s

(W illegalproto) A character follows % or @ in a prototype. This is
 useless, since % and @
gobble the rest of the subroutine arguments.

Prototype mismatch: %s vs %s

(S prototype) The subroutine being declared or defined had previously been
 declared or
defined with a different function prototype.

Prototype not terminated

(F) You've omitted the closing parenthesis in a function prototype
 definition.

Prototype '%s' overridden by attribute 'prototype(%s)' in %s

(W prototype) A prototype was declared in both the parentheses after
 the sub name and via
the prototype attribute. The prototype in
 parentheses is useless, since it will be replaced by
the prototype
 from the attribute before it's ever used.

push on reference is experimental

(S experimental::autoderef) push with a scalar argument is experimental
 and may change or
be removed in a future Perl version. If you want to
 take the risk of using this feature, simply
disable this warning:

 no warnings "experimental::autoderef";

Quantifier follows nothing in regex; marked by <-- HERE in m/%s/

(F) You started a regular expression with a quantifier. Backslash it if
 you meant it literally. The
<-- HERE shows whereabouts in the regular
 expression the problem was discovered. See
perlre.

Quantifier in {,} bigger than %d in regex; marked by <-- HERE in m/%s/

(F) There is currently a limit to the size of the min and max values of
 the {min,max} construct.
The <-- HERE shows whereabouts in the regular
 expression the problem was discovered. See
perlre.

Quantifier {n,m} with n > m can't match in regex

Quantifier {n,m} with n > m can't match in regex; marked by <-- HERE in m/%s/

(W regexp) Minima should be less than or equal to maxima. If you really
 want your regexp to
match something 0 times, just put {0}.

Quantifier unexpected on zero-length expression in regex m/%s/

Perl version 5.22.0 documentation - perldiag

Page 65http://perldoc.perl.org

(W regexp) You applied a regular expression quantifier in a place where
 it makes no sense,
such as on a zero-width assertion. Try putting the
 quantifier inside the assertion instead. For
example, the way to match
 "abc" provided that it is followed by three repetitions of "xyz" is
/abc(?=(?:xyz){3})/, not /abc(?=xyz){3}/.

Range iterator outside integer range

(F) One (or both) of the numeric arguments to the range operator ".."
 are outside the range
which can be represented by integers internally.
 One possible workaround is to force Perl to
use magical string increment
 by prepending "0" to your numbers.

Ranges of ASCII printables should be some subset of "0-9", "A-Z", or
 "a-z" in regex; marked by <--
HERE in m/%s/

(W regexp) (only under use re 'strict' or within (?[...]))

Stricter rules help to find typos and other errors. Perhaps you didn't
 even intend a range here,
if the "-" was meant to be some other
 character, or should have been escaped (like "\-"). If
you did
 intend a range, the one that was used is not portable between ASCII and
 EBCDIC
platforms, and doesn't have an obvious meaning to a casual
 reader.

 [3-7] # OK; Obvious and portable
 [d-g] # OK; Obvious and portable
 [A-Y] # OK; Obvious and portable
 [A-z] # WRONG; Not portable; not clear what is meant
 [a-Z] # WRONG; Not portable; not clear what is meant
 [%-.] # WRONG; Not portable; not clear what is meant
 [\x41-Z] # WRONG; Not portable; not obvious to non-geek

(You can force portability by specifying a Unicode range, which means that
 the endpoints are
specified by \N{...}, but the meaning may
 still not be obvious.)
 The stricter rules require
that ranges that start or stop with an ASCII
 character that is not a control have all their
endpoints be the literal
 character, and not some escape sequence (like "\x41"), and the
ranges
 must be all digits, or all uppercase letters, or all lowercase letters.

Ranges of digits should be from the same group in regex; marked by <-- HERE in m/%s/

(W regexp) (only under use re 'strict' or within (?[...]))

Stricter rules help to find typos and other errors. You included a
 range, and at least one of the
end points is a decimal digit. Under the
 stricter rules, when this happens, both end points
should be digits in
 the same group of 10 consecutive digits.

readdir() attempted on invalid dirhandle %s

(W io) The dirhandle you're reading from is either closed or not really
 a dirhandle. Check your
control flow.

readline() on closed filehandle %s

(W closed) The filehandle you're reading from got itself closed sometime
 before now. Check
your control flow.

read() on closed filehandle %s

(W closed) You tried to read from a closed filehandle.

read() on unopened filehandle %s

(W unopened) You tried to read from a filehandle that was never opened.

Reallocation too large: %x

(F) You can't allocate more than 64K on an MS-DOS machine.

realloc() of freed memory ignored

Perl version 5.22.0 documentation - perldiag

Page 66http://perldoc.perl.org

(S malloc) An internal routine called realloc() on something that had
 already been freed.

Recompile perl with -DDEBUGGING to use -D switch

(S debugging) You can't use the -D option unless the code to produce
 the desired output is
compiled into Perl, which entails some overhead,
 which is why it's currently left out of your
copy.

Recursive call to Perl_load_module in PerlIO_find_layer

(P) It is currently not permitted to load modules when creating
 a filehandle inside an %INC
hook. This can happen with open my
 $fh, '<', \$scalar, which implicitly loads
PerlIO::scalar. Try
 loading PerlIO::scalar explicitly first.

Recursive inheritance detected in package '%s'

(F) While calculating the method resolution order (MRO) of a package, Perl
 believes it found
an infinite loop in the @ISA hierarchy. This is a
 crude check that bails out after 100 levels of
@ISA depth.

Redundant argument in %s

(W redundant) You called a function with more arguments than other
 arguments you supplied
indicated would be needed. Currently only
 emitted when a printf-type format required fewer
arguments than were
 supplied, but might be used in the future for e.g. "pack" in perlfunc.

refcnt_dec: fd %d%s

refcnt: fd %d%s

refcnt_inc: fd %d%s

(P) Perl's I/O implementation failed an internal consistency check. If
 you see this message,
something is very wrong.

Reference found where even-sized list expected

(W misc) You gave a single reference where Perl was expecting a list
 with an even number of
elements (for assignment to a hash). This
 usually means that you used the anon hash
constructor when you meant
 to use parens. In any case, a hash requires key/value pairs.

 %hash = { one => 1, two => 2, };	 # WRONG
 %hash = [qw/ an anon array /];	 # WRONG
 %hash = (one => 1, two => 2,);	 # right
 %hash = qw(one 1 two 2);			 # also fine

Reference is already weak

(W misc) You have attempted to weaken a reference that is already weak.
 Doing so has no
effect.

Reference to invalid group 0 in regex; marked by <-- HERE in m/%s/

(F) You used \g0 or similar in a regular expression. You may refer
 to capturing parentheses
only with strictly positive integers
 (normal backreferences) or with strictly negative integers
(relative
 backreferences). Using 0 does not make sense.

Reference to nonexistent group in regex; marked by <-- HERE in
 m/%s/

(F) You used something like \7 in your regular expression, but there are
 not at least seven
sets of capturing parentheses in the expression. If
 you wanted to have the character with
ordinal 7 inserted into the regular
 expression, prepend zeroes to make it three digits long:
\007

The <-- HERE shows whereabouts in the regular expression the problem was
 discovered.

Reference to nonexistent named group in regex; marked by <-- HERE
 in m/%s/

Perl version 5.22.0 documentation - perldiag

Page 67http://perldoc.perl.org

(F) You used something like \k'NAME' or \k<NAME> in your regular
 expression, but there is
no corresponding named capturing parentheses
 such as (?'NAME'...) or (?<NAME>...).
Check if the name has been
 spelled correctly both in the backreference and the declaration.

The <-- HERE shows whereabouts in the regular expression the problem was
 discovered.

Reference to nonexistent or unclosed group in regex; marked by <-- HERE in m/%s/

(F) You used something like \g{-7} in your regular expression, but there
 are not at least
seven sets of closed capturing parentheses in the
 expression before where the \g{-7} was
located.

The <-- HERE shows whereabouts in the regular expression the problem was
 discovered.

regexp memory corruption

(P) The regular expression engine got confused by what the regular
 expression compiler gave
it.

Regexp modifier "/%c" may appear a maximum of twice

Regexp modifier "%c" may appear a maximum of twice in regex; marked
 by <-- HERE in m/%s/

(F) The regular expression pattern had too many occurrences
 of the specified modifier.
Remove the extraneous ones.

Regexp modifier "%c" may not appear after the "-" in regex; marked by <-- HERE in m/%s/

(F) Turning off the given modifier has the side effect of turning on
 another one. Perl currently
doesn't allow this. Reword the regular
 expression to use the modifier you want to turn on (and
place it before
 the minus), instead of the one you want to turn off.

Regexp modifier "/%c" may not appear twice

Regexp modifier "%c" may not appear twice in regex; marked by <--
 HERE in m/%s/

(F) The regular expression pattern had too many occurrences
 of the specified modifier.
Remove the extraneous ones.

Regexp modifiers "/%c" and "/%c" are mutually exclusive

Regexp modifiers "%c" and "%c" are mutually exclusive in regex;
 marked by <-- HERE in m/%s/

(F) The regular expression pattern had more than one of these
 mutually exclusive modifiers.
Retain only the modifier that is
 supposed to be there.

Regexp out of space in regex m/%s/

(P) A "can't happen" error, because safemalloc() should have caught it
 earlier.

Repeated format line will never terminate (~~ and @#)

(F) Your format contains the ~~ repeat-until-blank sequence and a
 numeric field that will never
go blank so that the repetition never
 terminates. You might use ^# instead. See perlform.

Replacement list is longer than search list

(W misc) You have used a replacement list that is longer than the
 search list. So the additional
elements in the replacement list
 are meaningless.

'%s' resolved to '\o{%s}%d'

(W misc, regexp) You wrote something like \08, or \179 in a
 double-quotish string. All but the
last digit is treated as a single
 character, specified in octal. The last digit is the next character
in
 the string. To tell Perl that this is indeed what you want, you can use
 the \o{ } syntax, or
use exactly three digits to specify the octal
 for the character.

Reversed %s= operator

(W syntax) You wrote your assignment operator backwards. The = must
 always come last, to

Perl version 5.22.0 documentation - perldiag

Page 68http://perldoc.perl.org

avoid ambiguity with subsequent unary operators.

rewinddir() attempted on invalid dirhandle %s

(W io) The dirhandle you tried to do a rewinddir() on is either closed
 or not really a dirhandle.
Check your control flow.

Scalars leaked: %d

(S internal) Something went wrong in Perl's internal bookkeeping
 of scalars: not all scalar
variables were deallocated by the time
 Perl exited. What this usually indicates is a memory
leak, which
 is of course bad, especially if the Perl program is intended to be
 long-running.

Scalar value @%s[%s] better written as $%s[%s]

(W syntax) You've used an array slice (indicated by @) to select a
 single element of an array.
Generally it's better to ask for a scalar
 value (indicated by $). The difference is that
$foo[&bar] always
 behaves like a scalar, both when assigning to it and when evaluating its

argument, while @foo[&bar] behaves like a list when you assign to it,
 and provides a list
context to its subscript, which can do weird things
 if you're expecting only one subscript.

On the other hand, if you were actually hoping to treat the array
 element as a list, you need to
look into how references work, because
 Perl will not magically convert between scalars and
lists for you. See perlref.

Scalar value @%s{%s} better written as $%s{%s}

(W syntax) You've used a hash slice (indicated by @) to select a single
 element of a hash.
Generally it's better to ask for a scalar value
 (indicated by $). The difference is that
$foo{&bar} always behaves
 like a scalar, both when assigning to it and when evaluating its

argument, while @foo{&bar} behaves like a list when you assign to it,
 and provides a list
context to its subscript, which can do weird things
 if you're expecting only one subscript.

On the other hand, if you were actually hoping to treat the hash element
 as a list, you need to
look into how references work, because Perl will
 not magically convert between scalars and
lists for you. See perlref.

Search pattern not terminated

(F) The lexer couldn't find the final delimiter of a // or m{}
 construct. Remember that bracketing
delimiters count nesting level.
 Missing the leading $ from a variable $m may cause this error.

Note that since Perl 5.10.0 a // can also be the defined-or
 construct, not just the empty search
pattern. Therefore code written
 in Perl 5.10.0 or later that uses the // as the defined-or can be

misparsed by pre-5.10.0 Perls as a non-terminated search pattern.

seekdir() attempted on invalid dirhandle %s

(W io) The dirhandle you are doing a seekdir() on is either closed or not
 really a dirhandle.
Check your control flow.

%sseek() on unopened filehandle

(W unopened) You tried to use the seek() or sysseek() function on a
 filehandle that was either
never opened or has since been closed.

select not implemented

(F) This machine doesn't implement the select() system call.

Self-ties of arrays and hashes are not supported

(F) Self-ties are of arrays and hashes are not supported in
 the current implementation.

Semicolon seems to be missing

(W semicolon) A nearby syntax error was probably caused by a missing
 semicolon, or
possibly some other missing operator, such as a comma.

Perl version 5.22.0 documentation - perldiag

Page 69http://perldoc.perl.org

semi-panic: attempt to dup freed string

(S internal) The internal newSVsv() routine was called to duplicate a
 scalar that had previously
been marked as free.

sem%s not implemented

(F) You don't have System V semaphore IPC on your system.

send() on closed socket %s

(W closed) The socket you're sending to got itself closed sometime
 before now. Check your
control flow.

Sequence "\c{" invalid

(F) These three characters may not appear in sequence in a
 double-quotish context. This
message is raised only on non-ASCII
 platforms (a different error message is output on ASCII
ones). If you
 were intending to specify a control character with this sequence, you'll
 have to
use a different way to specify it.

Sequence (? incomplete in regex; marked by <-- HERE in m/%s/

(F) A regular expression ended with an incomplete extension (?. The <-- HERE shows
whereabouts in the regular expression the problem was
 discovered. See perlre.

Sequence (?%c...) not implemented in regex; marked by <-- HERE in
 m/%s/

(F) A proposed regular expression extension has the character reserved
 but has not yet been
written. The <-- HERE shows whereabouts in the
 regular expression the problem was
discovered. See perlre.

Sequence (?%s...) not recognized in regex; marked by <-- HERE in
 m/%s/

(F) You used a regular expression extension that doesn't make sense.
 The <-- HERE shows
whereabouts in the regular expression the problem was
 discovered. This may happen when
using the (?^...) construct to tell
 Perl to use the default regular expression modifiers, and
you
 redundantly specify a default modifier. For other
 causes, see perlre.

Sequence (?#... not terminated in regex m/%s/

(F) A regular expression comment must be terminated by a closing
 parenthesis. Embedded
parentheses aren't allowed. See perlre.

Sequence (?&... not terminated in regex; marked by <-- HERE in
 m/%s/

(F) A named reference of the form (?&...) was missing the final
 closing parenthesis after
the name. The <-- HERE shows whereabouts
 in the regular expression the problem was
discovered.

Sequence (?%c... not terminated in regex; marked by <-- HERE
 in m/%s/

(F) A named group of the form (?'...') or (?<...>) was missing the final
 closing quote or
angle bracket. The <-- HERE shows whereabouts in the
 regular expression the problem was
discovered.

Sequence (?(%c... not terminated in regex; marked by <-- HERE
 in m/%s/

(F) A named reference of the form (?('...')...) or (?(<...>)...) was
 missing the
final closing quote or angle bracket after the name. The <-- HERE shows whereabouts in the
regular expression the problem was
 discovered.

Sequence \%s... not terminated in regex; marked by <-- HERE in
 m/%s/

(F) The regular expression expects a mandatory argument following the escape
 sequence and
this has been omitted or incorrectly written.

Sequence (?{...}) not terminated with ')'

Perl version 5.22.0 documentation - perldiag

Page 70http://perldoc.perl.org

(F) The end of the perl code contained within the {...} must be
 followed immediately by a ')'.

Sequence ?P=... not terminated in regex; marked by <-- HERE in
 m/%s/

(F) A named reference of the form (?P=...) was missing the final
 closing parenthesis after
the name. The <-- HERE shows whereabouts
 in the regular expression the problem was
discovered.

Sequence (?R) not terminated in regex m/%s/

(F) An (?R) or (?0) sequence in a regular expression was missing the
 final parenthesis.

Server error (a.k.a. "500 Server error")

(A) This is the error message generally seen in a browser window
 when trying to run a CGI
program (including SSI) over the web. The
 actual error text varies widely from server to
server. The most
 frequently-seen variants are "500 Server error", "Method (something)
 not
permitted", "Document contains no data", "Premature end of script
 headers", and "Did not
produce a valid header".

This is a CGI error, not a Perl error.

You need to make sure your script is executable, is accessible by
 the user CGI is running the
script under (which is probably not the
 user account you tested it under), does not rely on any
environment
 variables (like PATH) from the user it isn't running under, and isn't
 in a location
where the CGI server can't find it, basically, more or
 less. Please see the following for more
information:

	 http://www.perl.org/CGI_MetaFAQ.html
	 http://www.htmlhelp.org/faq/cgifaq.html
	 http://www.w3.org/Security/Faq/

You should also look at perlfaq9.

setegid() not implemented

(F) You tried to assign to $), and your operating system doesn't
 support the setegid() system
call (or equivalent), or at least Configure
 didn't think so.

seteuid() not implemented

(F) You tried to assign to $>, and your operating system doesn't
 support the seteuid() system
call (or equivalent), or at least Configure
 didn't think so.

setpgrp can't take arguments

(F) Your system has the setpgrp() from BSD 4.2, which takes no
 arguments, unlike POSIX
setpgid(), which takes a process ID and process
 group ID.

setrgid() not implemented

(F) You tried to assign to $(, and your operating system doesn't
 support the setrgid() system
call (or equivalent), or at least Configure
 didn't think so.

setruid() not implemented

(F) You tried to assign to $<, and your operating system doesn't
 support the setruid() system
call (or equivalent), or at least Configure
 didn't think so.

setsockopt() on closed socket %s

(W closed) You tried to set a socket option on a closed socket. Did you
 forget to check the
return value of your socket() call? See "setsockopt" in perlfunc.

Setting ${^ENCODING} is deprecated

(D deprecated) You assigned a non-undef value to ${^ENCODING}.
 This is deprecated; see
"${^ENCODING}" in perlvar for details.

Perl version 5.22.0 documentation - perldiag

Page 71http://perldoc.perl.org

Setting $/ to a reference to %s as a form of slurp is deprecated, treating as undef

(D deprecated) You assigned a reference to a scalar to $/ where the
 referenced item is not a
positive integer. In older perls this appeared
 to work the same as setting it to undef but was
in fact internally
 different, less efficient and with very bad luck could have resulted in
 your file
being split by a stringified form of the reference.

In Perl 5.20.0 this was changed so that it would be exactly the same as
 setting $/ to undef,
with the exception that this warning would be
 thrown.

You are recommended to change your code to set $/ to undef explicitly
 if you wish to slurp
the file. In future versions of Perl assigning
 a reference to will throw a fatal error.

Setting $/ to %s reference is forbidden

(F) You tried to assign a reference to a non integer to $/. In older
 Perls this would have
behaved similarly to setting it to a reference to
 a positive integer, where the integer was the
address of the reference.
 As of Perl 5.20.0 this is a fatal error, to allow future versions of Perl

to use non-integer refs for more interesting purposes.

shift on reference is experimental

(S experimental::autoderef) shift with a scalar argument is experimental
 and may change or
be removed in a future Perl version. If you want to
 take the risk of using this feature, simply
disable this warning:

 no warnings "experimental::autoderef";

shm%s not implemented

(F) You don't have System V shared memory IPC on your system.

!=~ should be !~

(W syntax) The non-matching operator is !~, not !=~. !=~ will be
 interpreted as the != (numeric
not equal) and ~ (1's complement)
 operators: probably not what you intended.

/%s/ should probably be written as "%s"

(W syntax) You have used a pattern where Perl expected to find a string,
 as in the first
argument to join. Perl will treat the true or false
 result of matching the pattern against $_ as
the string, which is
 probably not what you had in mind.

shutdown() on closed socket %s

(W closed) You tried to do a shutdown on a closed socket. Seems a bit
 superfluous.

SIG%s handler "%s" not defined

(W signal) The signal handler named in %SIG doesn't, in fact, exist.
 Perhaps you put it into the
wrong package?

Slab leaked from cv %p

(S) If you see this message, then something is seriously wrong with the
 internal bookkeeping
of op trees. An op tree needed to be freed after
 a compilation error, but could not be found, so
it was leaked instead.

sleep(%u) too large

(W overflow) You called sleep with a number that was larger than
 it can reliably handle and
sleep probably slept for less time than
 requested.

Slurpy parameter not last

(F) In a subroutine signature, you put something after a slurpy (array or
 hash) parameter. The
slurpy parameter takes all the available arguments,
 so there can't be any left to fill later
parameters.

Perl version 5.22.0 documentation - perldiag

Page 72http://perldoc.perl.org

Smart matching a non-overloaded object breaks encapsulation

(F) You should not use the ~~ operator on an object that does not
 overload it: Perl refuses to
use the object's underlying structure
 for the smart match.

Smartmatch is experimental

(S experimental::smartmatch) This warning is emitted if you
 use the smartmatch (~~) operator.
This is currently an experimental
 feature, and its details are subject to change in future
releases of
 Perl. Particularly, its current behavior is noticed for being
 unnecessarily complex
and unintuitive, and is very likely to be
 overhauled.

sort is now a reserved word

(F) An ancient error message that almost nobody ever runs into anymore.
 But before sort was
a keyword, people sometimes used it as a filehandle.

Sort subroutine didn't return single value

(F) A sort comparison subroutine written in XS must return exactly one
 item. See "sort" in
perlfunc.

Source filters apply only to byte streams

(F) You tried to activate a source filter (usually by loading a
 source filter module) within a
string passed to eval. This is
 not permitted under the unicode_eval feature. Consider
using evalbytes instead. See feature.

splice() offset past end of array

(W misc) You attempted to specify an offset that was past the end of
 the array passed to
splice(). Splicing will instead commence at the
 end of the array, rather than past it. If this isn't
what you want,
 try explicitly pre-extending the array by assigning $#array = $offset.
 See
"splice" in perlfunc.

splice on reference is experimental

(S experimental::autoderef) splice with a scalar argument
 is experimental and may change
or be removed in a future
 Perl version. If you want to take the risk of using this
 feature, simply
disable this warning:

 no warnings "experimental::autoderef";

Split loop

(P) The split was looping infinitely. (Obviously, a split shouldn't
 iterate more times than there
are characters of input, which is what
 happened.) See "split" in perlfunc.

Statement unlikely to be reached

(W exec) You did an exec() with some statement after it other than a
 die(). This is almost
always an error, because exec() never returns
 unless there was a failure. You probably
wanted to use system()
 instead, which does return. To suppress this warning, put the exec() in
a block by itself.

"state" subroutine %s can't be in a package

(F) Lexically scoped subroutines aren't in a package, so it doesn't make
 sense to try to declare
one with a package qualifier on the front.

"state %s" used in sort comparison

(W syntax) The package variables $a and $b are used for sort comparisons.
 You used $a or
$b in as an operand to the <=> or cmp operator inside a
 sort comparison block, and the
variable had earlier been declared as a
 lexical variable. Either qualify the sort variable with the
package
 name, or rename the lexical variable.

Perl version 5.22.0 documentation - perldiag

Page 73http://perldoc.perl.org

"state" variable %s can't be in a package

(F) Lexically scoped variables aren't in a package, so it doesn't make
 sense to try to declare
one with a package qualifier on the front. Use
 local() if you want to localize a package
variable.

stat() on unopened filehandle %s

(W unopened) You tried to use the stat() function on a filehandle that
 was either never opened
or has since been closed.

Strings with code points over 0xFF may not be mapped into in-memory file handles

(W utf8) You tried to open a reference to a scalar for read or append
 where the scalar
contained code points over 0xFF. In-memory files
 model on-disk files and can only contain
bytes.

Stub found while resolving method "%s" overloading "%s" in package "%s"

(P) Overloading resolution over @ISA tree may be broken by importation
 stubs. Stubs should
never be implicitly created, but explicit calls to can may break this.

Subroutine "&%s" is not available

(W closure) During compilation, an inner named subroutine or eval is
 attempting to capture an
outer lexical subroutine that is not currently
 available. This can happen for one of two reasons.
First, the lexical
 subroutine may be declared in an outer anonymous subroutine that has
 not
yet been created. (Remember that named subs are created at compile
 time, while anonymous
subs are created at run-time.) For example,

 sub { my sub a {...} sub f { \&a } }

At the time that f is created, it can't capture the current "a" sub,
 since the anonymous
subroutine hasn't been created yet. Conversely, the
 following won't give a warning since the
anonymous subroutine has by now
 been created and is live:

 sub { my sub a {...} eval 'sub f { \&a }' }->();

The second situation is caused by an eval accessing a lexical subroutine
 that has gone out of
scope, for example,

 sub f {
	 my sub a {...}
	 sub { eval '\&a' }
 }
 f()->();

Here, when the '\&a' in the eval is being compiled, f() is not currently
 being executed, so its &a
is not available for capture.

"%s" subroutine &%s masks earlier declaration in same %s

(W misc) A "my" or "state" subroutine has been redeclared in the
 current scope or statement,
effectively eliminating all access to
 the previous instance. This is almost always a
typographical error.
 Note that the earlier subroutine will still exist until the end of
 the scope or
until all closure references to it are destroyed.

Subroutine %s redefined

(W redefine) You redefined a subroutine. To suppress this warning, say

 {
	 no warnings 'redefine';
	 eval "sub name { ... }";
 }

Perl version 5.22.0 documentation - perldiag

Page 74http://perldoc.perl.org

Subroutine "%s" will not stay shared

(W closure) An inner (nested) named subroutine is referencing a "my"
 subroutine defined in an
outer named subroutine.

When the inner subroutine is called, it will see the value of the outer
 subroutine's lexical
subroutine as it was before and during the *first*
 call to the outer subroutine; in this case, after
the first call to the
 outer subroutine is complete, the inner and outer subroutines will no
 longer
share a common value for the lexical subroutine. In other words,
 it will no longer be shared.
This will especially make a difference
 if the lexical subroutines accesses lexical variables
declared in its
 surrounding scope.

This problem can usually be solved by making the inner subroutine
 anonymous, using the sub
 {} syntax. When inner anonymous subs that
 reference lexical subroutines in outer
subroutines are created, they
 are automatically rebound to the current values of such lexical
subs.

Substitution loop

(P) The substitution was looping infinitely. (Obviously, a substitution
 shouldn't iterate more
times than there are characters of input, which
 is what happened.) See the discussion of
substitution in "Regexp Quote-Like Operators" in perlop.

Substitution pattern not terminated

(F) The lexer couldn't find the interior delimiter of an s/// or s{}{}
 construct. Remember that
bracketing delimiters count nesting level.
 Missing the leading $ from variable $s may cause
this error.

Substitution replacement not terminated

(F) The lexer couldn't find the final delimiter of an s/// or s{}{}
 construct. Remember that
bracketing delimiters count nesting level.
 Missing the leading $ from variable $s may cause
this error.

substr outside of string

(W substr)(F) You tried to reference a substr() that pointed outside of
 a string. That is, the
absolute value of the offset was larger than the
 length of the string. See "substr" in perlfunc.
This warning is fatal if
 substr is used in an lvalue context (as the left hand side of an

assignment or as a subroutine argument for example).

sv_upgrade from type %d down to type %d

(P) Perl tried to force the upgrade of an SV to a type which was actually
 inferior to its current
type.

SWASHNEW didn't return an HV ref

(P) Something went wrong internally when Perl was trying to look up
 Unicode characters.

Switch (?(condition)... contains too many branches in regex; marked by <-- HERE in m/%s/

(F) A (?(condition)if-clause|else-clause) construct can have at most
 two branches (the
if-clause and the else-clause). If you want one or
 both to contain alternation, such as using
this|that|other, enclose
 it in clustering parentheses:

 (?(condition)(?:this|that|other)|else-clause)

The <-- HERE shows whereabouts in the regular expression the problem
 was discovered. See
perlre.

Switch condition not recognized in regex; marked by <-- HERE in
 m/%s/

(F) The condition part of a (?(condition)if-clause|else-clause) construct
 is not known. The
condition must be one of the following:

Perl version 5.22.0 documentation - perldiag

Page 75http://perldoc.perl.org

 (1) (2) ... true if 1st, 2nd, etc., capture matched
 (<NAME>) ('NAME') true if named capture matched
 (?=...) (?<=...) true if subpattern matches
 (?!...) (?<!...) true if subpattern fails to match
 (?{ CODE }) true if code returns a true value
 (R) true if evaluating inside recursion
 (R1) (R2) ... true if directly inside capture group 1, 2, etc.
 (R&NAME) true if directly inside named capture
 (DEFINE) always false; for defining named subpatterns

The <-- HERE shows whereabouts in the regular expression the problem was
 discovered. See
perlre.

Switch (?(condition)... not terminated in regex; marked by <-- HERE in m/%s/

(F) You omitted to close a (?(condition)...) block somewhere
 in the pattern. Add a closing
parenthesis in the appropriate
 position. See perlre.

switching effective %s is not implemented

(F) While under the use filetest pragma, we cannot switch the real
 and effective uids or
gids.

syntax error

(F) Probably means you had a syntax error. Common reasons include:

 A keyword is misspelled.
 A semicolon is missing.
 A comma is missing.
 An opening or closing parenthesis is missing.
 An opening or closing brace is missing.
 A closing quote is missing.

Often there will be another error message associated with the syntax
 error giving more
information. (Sometimes it helps to turn on -w.)
 The error message itself often tells you where
it was in the line when
 it decided to give up. Sometimes the actual error is several tokens

before this, because Perl is good at understanding random input.
 Occasionally the line
number may be misleading, and once in a blue moon
 the only way to figure out what's
triggering the error is to call perl -c repeatedly, chopping away half the program each time
to see
 if the error went away. Sort of the cybernetic version of 20 questions.

syntax error at line %d: '%s' unexpected

(A) You've accidentally run your script through the Bourne shell instead
 of Perl. Check the #!
line, or manually feed your script into Perl
 yourself.

syntax error in file %s at line %d, next 2 tokens "%s"

(F) This error is likely to occur if you run a perl5 script through
 a perl4 interpreter, especially if
the next 2 tokens are "use strict"
 or "my $var" or "our $var".

Syntax error in (?[...]) in regex m/%s/

(F) Perl could not figure out what you meant inside this construct; this
 notifies you that it is
giving up trying.

%s syntax OK

(F) The final summary message when a perl -c succeeds.

sysread() on closed filehandle %s

(W closed) You tried to read from a closed filehandle.

Perl version 5.22.0 documentation - perldiag

Page 76http://perldoc.perl.org

sysread() on unopened filehandle %s

(W unopened) You tried to read from a filehandle that was never opened.

System V %s is not implemented on this machine

(F) You tried to do something with a function beginning with "sem",
 "shm", or "msg" but that
System V IPC is not implemented in your
 machine. In some machines the functionality can
exist but be
 unconfigured. Consult your system support.

syswrite() on closed filehandle %s

(W closed) The filehandle you're writing to got itself closed sometime
 before now. Check your
control flow.

-T and -B not implemented on filehandles

(F) Perl can't peek at the stdio buffer of filehandles when it doesn't
 know about your kind of
stdio. You'll have to use a filename instead.

Target of goto is too deeply nested

(F) You tried to use goto to reach a label that was too deeply nested
 for Perl to reach. Perl is
doing you a favor by refusing.

telldir() attempted on invalid dirhandle %s

(W io) The dirhandle you tried to telldir() is either closed or not really
 a dirhandle. Check your
control flow.

tell() on unopened filehandle

(W unopened) You tried to use the tell() function on a filehandle that
 was either never opened
or has since been closed.

That use of $[is unsupported

(F) Assignment to $[is now strictly circumscribed, and interpreted
 as a compiler directive.
You may say only one of

 $[= 0;
 $[= 1;
 ...
 local $[= 0;
 local $[= 1;
 ...

This is to prevent the problem of one module changing the array base out
 from under another
module inadvertently. See "$[" in perlvar and arybase.

The bitwise feature is experimental

(S experimental::bitwise) This warning is emitted if you use bitwise
 operators (& | ^ ~ &.
|. ^. ~.) with the "bitwise" feature enabled.
 Simply suppress the warning if you want to use
the feature, but know
 that in doing so you are taking the risk of using an experimental
 feature
which may change or be removed in a future Perl version:

 no warnings "experimental::bitwise";
 use feature "bitwise";
 $x |.= $y;

The crypt() function is unimplemented due to excessive paranoia.

(F) Configure couldn't find the crypt() function on your machine,
 probably because your vendor
didn't supply it, probably because they
 think the U.S. Government thinks it's a secret, or at
least that they
 will continue to pretend that it is. And if you quote me on that, I
 will deny it.

Perl version 5.22.0 documentation - perldiag

Page 77http://perldoc.perl.org

The %s function is unimplemented

(F) The function indicated isn't implemented on this architecture,
 according to the probings of
Configure.

The lexical_subs feature is experimental

(S experimental::lexical_subs) This warning is emitted if you
 declare a sub with my or state.
Simply suppress the warning
 if you want to use the feature, but know that in doing so you
 are
taking the risk of using an experimental feature which may
 change or be removed in a future
Perl version:

 no warnings "experimental::lexical_subs";
 use feature "lexical_subs";
 my sub foo { ... }

The regex_sets feature is experimental

(S experimental::regex_sets) This warning is emitted if you
 use the syntax (?[]) in a
regular expression.
 The details of this feature are subject to change.
 if you want to use it, but
know that in doing so you
 are taking the risk of using an experimental feature which may

change in a future Perl version, you can do this to silence the
 warning:

 no warnings "experimental::regex_sets";

The signatures feature is experimental

(S experimental::signatures) This warning is emitted if you unwrap a
 subroutine's arguments
using a signature. Simply suppress the warning
 if you want to use the feature, but know that in
doing so you are taking
 the risk of using an experimental feature which may change or be
removed
 in a future Perl version:

 no warnings "experimental::signatures";
 use feature "signatures";
 sub foo ($left, $right) { ... }

The stat preceding %s wasn't an lstat

(F) It makes no sense to test the current stat buffer for symbolic
 linkhood if the last stat that
wrote to the stat buffer already went
 past the symlink to get to the real file. Use an actual
filename
 instead.

The 'unique' attribute may only be applied to 'our' variables

(F) This attribute was never supported on my or sub declarations.

This Perl can't reset CRTL environ elements (%s)

This Perl can't set CRTL environ elements (%s=%s)

(W internal) Warnings peculiar to VMS. You tried to change or delete an
 element of the
CRTL's internal environ array, but your copy of Perl
 wasn't built with a CRTL that contained
the setenv() function. You'll
 need to rebuild Perl with a CRTL that does, or redefine
PERL_ENV_TABLES (see perlvms) so that the environ array isn't the
 target of the change to

%ENV which produced the warning.

This Perl has not been built with support for randomized hash key traversal but something called
Perl_hv_rand_set().

(F) Something has attempted to use an internal API call which
 depends on Perl being
compiled with the default support for randomized hash
 key traversal, but this Perl has been
compiled without it. You should
 report this warning to the relevant upstream party, or
recompile perl
 with default options.

times not implemented

Perl version 5.22.0 documentation - perldiag

Page 78http://perldoc.perl.org

(F) Your version of the C library apparently doesn't do times(). I
 suspect you're not running on
Unix.

"-T" is on the #! line, it must also be used on the command line

(X) The #! line (or local equivalent) in a Perl script contains
 the -T option (or the -t option), but
Perl was not invoked with -T in its command line. This is an error because, by the time
 Perl
discovers a -T in a script, it's too late to properly taint
 everything from the environment. So Perl
gives up.

If the Perl script is being executed as a command using the #!
 mechanism (or its local
equivalent), this error can usually be
 fixed by editing the #! line so that the -%c option is a part
of
 Perl's first argument: e.g. change perl -n -%c to perl -%c -n.

If the Perl script is being executed as perl scriptname, then the -%c option must appear
on the command line: perl -%c scriptname.

To%s: illegal mapping '%s'

(F) You tried to define a customized To-mapping for lc(), lcfirst,
 uc(), or ucfirst() (or their
string-inlined versions), but you
 specified an illegal mapping.
 See "User-Defined Character
Properties" in perlunicode.

Too deeply nested ()-groups

(F) Your template contains ()-groups with a ridiculously deep nesting level.

Too few args to syscall

(F) There has to be at least one argument to syscall() to specify the
 system call to call, silly
dilly.

Too few arguments for subroutine

(F) A subroutine using a signature received fewer arguments than required
 by the signature.
The caller of the subroutine is presumably at fault.
 Inconveniently, this error will be reported at
the location of the
 subroutine, not that of the caller.

Too late for "-%s" option

(X) The #! line (or local equivalent) in a Perl script contains the -M, -m or -C option.

In the case of -M and -m, this is an error because those options
 are not intended for use
inside scripts. Use the use pragma instead.

The -C option only works if it is specified on the command line as
 well (with the same
sequence of letters or numbers following). Either
 specify this option on the command line, or, if
your system supports
 it, make your script executable and run it directly instead of passing
 it to
perl.

Too late to run %s block

(W void) A CHECK or INIT block is being defined during run time proper,
 when the opportunity
to run them has already passed. Perhaps you are
 loading a file with require or do when you
should be using use
 instead. Or perhaps you should put the require or do inside a
 BEGIN
block.

Too many args to syscall

(F) Perl supports a maximum of only 14 args to syscall().

Too many arguments for %s

(F) The function requires fewer arguments than you specified.

Too many arguments for subroutine

(F) A subroutine using a signature received more arguments than required
 by the signature.
The caller of the subroutine is presumably at fault.
 Inconveniently, this error will be reported at

Perl version 5.22.0 documentation - perldiag

Page 79http://perldoc.perl.org

the location of the
 subroutine, not that of the caller.

Too many)'s

(A) You've accidentally run your script through csh instead of Perl.
 Check the #! line, or
manually feed your script into Perl yourself.

Too many ('s

(A) You've accidentally run your script through csh instead of Perl.
 Check the #! line, or
manually feed your script into Perl yourself.

Trailing \ in regex m/%s/

(F) The regular expression ends with an unbackslashed backslash.
 Backslash it. See perlre.

Transliteration pattern not terminated

(F) The lexer couldn't find the interior delimiter of a tr/// or tr[][]
 or y/// or y[][] construct. Missing
the leading $ from variables $tr or $y may cause this error.

Transliteration replacement not terminated

(F) The lexer couldn't find the final delimiter of a tr///, tr[][],
 y/// or y[][] construct.

'%s' trapped by operation mask

(F) You tried to use an operator from a Safe compartment in which it's
 disallowed. See Safe.

truncate not implemented

(F) Your machine doesn't implement a file truncation mechanism that
 Configure knows about.

Type of arg %d to &CORE::%s must be %s

(F) The subroutine in question in the CORE package requires its argument
 to be a hard
reference to data of the specified type. Overloading is
 ignored, so a reference to an object that
is not the specified type, but
 nonetheless has overloading to handle it, will still not be
accepted.

Type of arg %d to %s must be %s (not %s)

(F) This function requires the argument in that position to be of a
 certain type. Arrays must be
@NAME or @{EXPR}. Hashes must be
 %NAME or %{EXPR}. No implicit dereferencing is
allowed--use the
 {EXPR} forms as an explicit dereference. See perlref.

Type of argument to %s must be unblessed hashref or arrayref

(F) You called keys, values or each with a scalar argument that
 was not a reference to an
unblessed hash or array.

umask not implemented

(F) Your machine doesn't implement the umask function and you tried to
 use it to restrict
permissions for yourself (EXPR & 0700).

Unbalanced context: %d more PUSHes than POPs

(S internal) The exit code detected an internal inconsistency in how
 many execution contexts
were entered and left.

Unbalanced saves: %d more saves than restores

(S internal) The exit code detected an internal inconsistency in how
 many values were
temporarily localized.

Unbalanced scopes: %d more ENTERs than LEAVEs

(S internal) The exit code detected an internal inconsistency in how
 many blocks were entered
and left.

Perl version 5.22.0 documentation - perldiag

Page 80http://perldoc.perl.org

Unbalanced string table refcount: (%d) for "%s"

(S internal) On exit, Perl found some strings remaining in the shared
 string table used for copy
on write and for hash keys. The entries
 should have been freed, so this indicates a bug
somewhere.

Unbalanced tmps: %d more allocs than frees

(S internal) The exit code detected an internal inconsistency in how
 many mortal scalars were
allocated and freed.

Undefined format "%s" called

(F) The format indicated doesn't seem to exist. Perhaps it's really in
 another package? See
perlform.

Undefined sort subroutine "%s" called

(F) The sort comparison routine specified doesn't seem to exist.
 Perhaps it's in a different
package? See "sort" in perlfunc.

Undefined subroutine &%s called

(F) The subroutine indicated hasn't been defined, or if it was, it has
 since been undefined.

Undefined subroutine called

(F) The anonymous subroutine you're trying to call hasn't been defined,
 or if it was, it has
since been undefined.

Undefined subroutine in sort

(F) The sort comparison routine specified is declared but doesn't seem
 to have been defined
yet. See "sort" in perlfunc.

Undefined top format "%s" called

(F) The format indicated doesn't seem to exist. Perhaps it's really in
 another package? See
perlform.

Undefined value assigned to typeglob

(W misc) An undefined value was assigned to a typeglob, a la *foo = undef. This does
nothing. It's possible that you really mean undef *foo.

%s: Undefined variable

(A) You've accidentally run your script through csh instead of Perl.
 Check the #! line, or
manually feed your script into Perl yourself.

Unescaped left brace in regex is deprecated, passed through in regex;
 marked by <-- HERE in m/%s/

(D deprecated, regexp) You used a literal "{" character in a regular
 expression pattern. You
should change to use "\{" instead, because a
 future version of Perl (tentatively v5.26) will
consider this to be a
 syntax error. If the pattern delimiters are also braces, any matching
 right
brace ("}") should also be escaped to avoid confusing the parser,
 for example,

 qr{abc\{def\}ghi}

unexec of %s into %s failed!

(F) The unexec() routine failed for some reason. See your local FSF
 representative, who
probably put it there in the first place.

Unexpected binary operator '%c' with no preceding operand in regex;
 marked by <-- HERE in m/%s/

(F) You had something like this:

 (?[| \p{Digit}])

Perl version 5.22.0 documentation - perldiag

Page 81http://perldoc.perl.org

where the "|" is a binary operator with an operand on the right, but
 no operand on the left.

Unexpected character in regex; marked by <-- HERE in m/%s/

(F) You had something like this:

 (?[z])

Within (?[]), no literal characters are allowed unless they are
 within an inner pair of square
brackets, like

 (?[[z]])

Another possibility is that you forgot a backslash. Perl isn't smart
 enough to figure out what
you really meant.

Unexpected constant lvalue entersub entry via type/targ %d:%d

(P) When compiling a subroutine call in lvalue context, Perl failed an
 internal consistency
check. It encountered a malformed op tree.

Unexpected exit %u

(S) exit() was called or the script otherwise finished gracefully when PERL_EXIT_WARN was
set in PL_exit_flags.

Unexpected exit failure %d

(S) An uncaught die() was called when PERL_EXIT_WARN was set in PL_exit_flags.

Unexpected ')' in regex; marked by <-- HERE in m/%s/

(F) You had something like this:

 (?[(\p{Digit} +)])

The ")" is out-of-place. Something apparently was supposed to
 be combined with the digits,
or the "+" shouldn't be there, or
 something like that. Perl can't figure out what was intended.

Unexpected '(' with no preceding operator in regex; marked by <-- HERE in m/%s/

(F) You had something like this:

 (?[\p{Digit} (\p{Lao} + \p{Thai})])

There should be an operator before the "(", as there's
 no indication as to how the digits are
to be combined
 with the characters in the Lao and Thai scripts.

Unicode non-character U+%X is illegal for open interchange

(S nonchar) Certain codepoints, such as U+FFFE and U+FFFF, are
 defined by the Unicode
standard to be non-characters. Those
 are legal codepoints, but are reserved for internal use;
so,
 applications shouldn't attempt to exchange them. An application
 may not be expecting any
of these characters at all, and receiving
 them may lead to bugs. If you know what you are
doing you can
 turn off this warning by no warnings 'nonchar';.

This is not really a "severe" error, but it is supposed to be
 raised by default even if warnings
are not enabled, and currently
 the only way to do that in Perl is to mark it as serious.

Unicode surrogate U+%X is illegal in UTF-8

(S surrogate) You had a UTF-16 surrogate in a context where they are
 not considered
acceptable. These code points, between U+D800 and
 U+DFFF (inclusive), are used by
Unicode only for UTF-16. However, Perl
 internally allows all unsigned integer code points (up
to the size limit
 available on your platform), including surrogates. But these can cause

problems when being input or output, which is likely where this message
 came from. If you
really really know what you are doing you can turn
 off this warning by no warnings

Perl version 5.22.0 documentation - perldiag

Page 82http://perldoc.perl.org

'surrogate';.

Unknown charname '%s'

(F) The name you used inside \N{} is unknown to Perl. Check the
 spelling. You can say use
 charnames ":loose" to not have to be
 so precise about spaces, hyphens, and
capitalization on standard Unicode
 names. (Any custom aliases that have been created must
be specified
 exactly, regardless of whether :loose is used or not.) This error may
 also
happen if the \N{} is not in the scope of the corresponding use charnames.

Unknown error

(P) Perl was about to print an error message in $@, but the $@ variable
 did not exist, even after
an attempt to create it.

Unknown open() mode '%s'

(F) The second argument of 3-argument open() is not among the list
 of valid modes: <, >, >>,
+<, +>, +>>, -|, |-, <&, >&.

Unknown PerlIO layer "%s"

(W layer) An attempt was made to push an unknown layer onto the Perl I/O
 system. (Layers
take care of transforming data between external and
 internal representations.) Note that some
layers, such as mmap,
 are not supported in all environments. If your program didn't
 explicitly
request the failing operation, it may be the result of the
 value of the environment variable
PERLIO.

Unknown process %x sent message to prime_env_iter: %s

(P) An error peculiar to VMS. Perl was reading values for %ENV before
 iterating over it, and
someone else stuck a message in the stream of
 data Perl expected. Someone's very
confused, or perhaps trying to
 subvert Perl's population of %ENV for nefarious purposes.

Unknown regex modifier "%s"

(F) Alphanumerics immediately following the closing delimiter
 of a regular expression pattern
are interpreted by Perl as modifier
 flags for the regex. One of the ones you specified is invalid.
One way
 this can happen is if you didn't put in white space between the end of
 the regex and
a following alphanumeric operator:

 if ($a =~ /foo/and $bar == 3) { ... }

The "a" is a valid modifier flag, but the "n" is not, and raises
 this error. Likely what was
meant instead was:

 if ($a =~ /foo/ and $bar == 3) { ... }

Unknown "re" subpragma '%s' (known ones are: %s)

(W) You tried to use an unknown subpragma of the "re" pragma.

Unknown switch condition (?(...)) in regex; marked by <-- HERE in
 m/%s/

(F) The condition part of a (?(condition)if-clause|else-clause) construct
 is not known. The
condition must be one of the following:

 (1) (2) ... true if 1st, 2nd, etc., capture matched
 (<NAME>) ('NAME') true if named capture matched
 (?=...) (?<=...) true if subpattern matches
 (?!...) (?<!...) true if subpattern fails to match
 (?{ CODE }) true if code returns a true value
 (R) true if evaluating inside recursion
 (R1) (R2) ... true if directly inside capture group 1, 2, etc.
 (R&NAME) true if directly inside named capture

Perl version 5.22.0 documentation - perldiag

Page 83http://perldoc.perl.org

 (DEFINE) always false; for defining named subpatterns

The <-- HERE shows whereabouts in the regular expression the problem was
 discovered. See
perlre.

Unknown Unicode option letter '%c'

(F) You specified an unknown Unicode option. See perlrun documentation
 of the -C switch for
the list of known options.

Unknown Unicode option value %d

(F) You specified an unknown Unicode option. See perlrun documentation
 of the -C switch for
the list of known options.

Unknown verb pattern '%s' in regex; marked by <-- HERE in m/%s/

(F) You either made a typo or have incorrectly put a * quantifier
 after an open brace in your
pattern. Check the pattern and review perlre for details on legal verb patterns.

Unknown warnings category '%s'

(F) An error issued by the warnings pragma. You specified a warnings
 category that is
unknown to perl at this point.

Note that if you want to enable a warnings category registered by a
 module (e.g. use
warnings 'File::Find'), you must have loaded this
 module first.

Unmatched '[' in POSIX class in regex; marked by <-- HERE in m/%s/

(F) You had something like this:

 (?[[:digit:])

That should be written:

 (?[[:digit:]])

Unmatched '%c' in POSIX class in regex; marked by <-- HERE in
 m/%s/

(F) You had something like this:

 (?[[:alnum]])

There should be a second ":", like this:

 (?[[:alnum:]])

Unmatched [in regex; marked by <-- HERE in m/%s/

(F) The brackets around a character class must match. If you wish to
 include a closing bracket
in a character class, backslash it or put it
 first. The <-- HERE shows whereabouts in the
regular expression the
 problem was discovered. See perlre.

Unmatched (in regex; marked by <-- HERE in m/%s/

Unmatched) in regex; marked by <-- HERE in m/%s/

(F) Unbackslashed parentheses must always be balanced in regular
 expressions. If you're a vi
user, the % key is valuable for finding
 the matching parenthesis. The <-- HERE shows
whereabouts in the
 regular expression the problem was discovered. See perlre.

Unmatched right %s bracket

(F) The lexer counted more closing curly or square brackets than opening
 ones, so you're
probably missing a matching opening bracket. As a
 general rule, you'll find the missing one
(so to speak) near the place
 you were last editing.

Perl version 5.22.0 documentation - perldiag

Page 84http://perldoc.perl.org

Unquoted string "%s" may clash with future reserved word

(W reserved) You used a bareword that might someday be claimed as a
 reserved word. It's
best to put such a word in quotes, or capitalize it
 somehow, or insert an underbar into it. You
might also declare it as a
 subroutine.

Unrecognized character %s; marked by <-- HERE after %s near column
 %d

(F) The Perl parser has no idea what to do with the specified character
 in your Perl script (or
eval) near the specified column. Perhaps you
 tried to run a compressed script, a binary
program, or a directory as
 a Perl program.

Unrecognized escape \%c in character class in regex; marked by <-- HERE in m/%s/

(F) You used a backslash-character combination which is not
 recognized by Perl inside
character classes. This is a fatal
 error when the character class is used within (?[]).

Unrecognized escape \%c in character class passed through in regex; marked by <-- HERE in m/%s/

(W regexp) You used a backslash-character combination which is not
 recognized by Perl
inside character classes. The character was
 understood literally, but this may change in a
future version of Perl.
 The <-- HERE shows whereabouts in the regular expression the
 escape
was discovered.

Unrecognized escape \%c passed through

(W misc) You used a backslash-character combination which is not
 recognized by Perl. The
character was understood literally, but this may
 change in a future version of Perl.

Unrecognized escape \%s passed through in regex; marked by <-- HERE in m/%s/

(W regexp) You used a backslash-character combination which is not
 recognized by Perl. The
character(s) were understood literally, but
 this may change in a future version of Perl. The <--
HERE shows
 whereabouts in the regular expression the escape was discovered.

Unrecognized signal name "%s"

(F) You specified a signal name to the kill() function that was not
 recognized. Say kill -l in
your shell to see the valid signal names
 on your system.

Unrecognized switch: -%s (-h will show valid options)

(F) You specified an illegal option to Perl. Don't do that. (If you
 think you didn't do that, check
the #! line to see if it's supplying the
 bad switch on your behalf.)

unshift on reference is experimental

(S experimental::autoderef) unshift with a scalar argument
 is experimental and may change
or be removed in a future
 Perl version. If you want to take the risk of using this
 feature, simply
disable this warning:

 no warnings "experimental::autoderef";

Unsuccessful %s on filename containing newline

(W newline) A file operation was attempted on a filename, and that
 operation failed,
PROBABLY because the filename contained a newline,
 PROBABLY because you forgot to
chomp() it off. See "chomp" in perlfunc.

Unsupported directory function "%s" called

(F) Your machine doesn't support opendir() and readdir().

Unsupported function %s

(F) This machine doesn't implement the indicated function, apparently.
 At least, Configure
doesn't think so.

Perl version 5.22.0 documentation - perldiag

Page 85http://perldoc.perl.org

Unsupported function fork

(F) Your version of executable does not support forking.

Note that under some systems, like OS/2, there may be different flavors
 of Perl executables,
some of which may support fork, some not. Try
 changing the name you call Perl by to perl_,
perl__, and so on.

Unsupported script encoding %s

(F) Your program file begins with a Unicode Byte Order Mark (BOM) which
 declares it to be in
a Unicode encoding that Perl cannot read.

Unsupported socket function "%s" called

(F) Your machine doesn't support the Berkeley socket mechanism, or at
 least that's what
Configure thought.

Unterminated attribute list

(F) The lexer found something other than a simple identifier at the
 start of an attribute, and it
wasn't a semicolon or the start of a
 block. Perhaps you terminated the parameter list of the
previous
 attribute too soon. See attributes.

Unterminated attribute parameter in attribute list

(F) The lexer saw an opening (left) parenthesis character while parsing
 an attribute list, but the
matching closing (right) parenthesis
 character was not found. You may need to add (or
remove) a backslash
 character to get your parentheses to balance. See attributes.

Unterminated compressed integer

(F) An argument to unpack("w",...) was incompatible with the BER
 compressed integer format
and could not be converted to an integer.
 See "pack" in perlfunc.

Unterminated delimiter for here document

(F) This message occurs when a here document label has an initial
 quotation mark but the
final quotation mark is missing. Perhaps
 you wrote:

 <<"foo

instead of:

 <<"foo"

Unterminated \g... pattern in regex; marked by <-- HERE in m/%s/

Unterminated \g{...} pattern in regex; marked by <-- HERE in m/%s/

(F) In a regular expression, you had a \g that wasn't followed by a
 proper group reference. In
the case of \g{, the closing brace is
 missing; otherwise the \g must be followed by an
integer. Fix the
 pattern and retry.

Unterminated <> operator

(F) The lexer saw a left angle bracket in a place where it was expecting
 a term, so it's looking
for the corresponding right angle bracket, and
 not finding it. Chances are you left some
needed parentheses out
 earlier in the line, and you really meant a "less than".

Unterminated verb pattern argument in regex; marked by <-- HERE in
 m/%s/

(F) You used a pattern of the form (*VERB:ARG) but did not terminate
 the pattern with a).
Fix the pattern and retry.

Unterminated verb pattern in regex; marked by <-- HERE in m/%s/

(F) You used a pattern of the form (*VERB) but did not terminate
 the pattern with a). Fix the
pattern and retry.

Perl version 5.22.0 documentation - perldiag

Page 86http://perldoc.perl.org

untie attempted while %d inner references still exist

(W untie) A copy of the object returned from tie (or tied) was
 still valid when untie was
called.

Usage: POSIX::%s(%s)

(F) You called a POSIX function with incorrect arguments.
 See "FUNCTIONS" in POSIX for
more information.

Usage: Win32::%s(%s)

(F) You called a Win32 function with incorrect arguments.
 See Win32 for more information.

$[used in %s (did you mean $] ?)

(W syntax) You used $[in a comparison, such as:

 if ($[> 5.006) {
	 ...
 }

You probably meant to use $] instead. $[is the base for indexing
 arrays. $] is the Perl
version number in decimal.

Use "%s" instead of "%s"

(F) The second listed construct is no longer legal. Use the first one
 instead.

Useless assignment to a temporary

(W misc) You assigned to an lvalue subroutine, but what
 the subroutine returned was a
temporary scalar about to
 be discarded, so the assignment had no effect.

Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/

(W regexp) You have used an internal modifier such as (?-o) that has no
 meaning unless
removed from the entire regexp:

 if ($string =~ /(?-o)$pattern/o) { ... }

must be written as

 if ($string =~ /$pattern/) { ... }

The <-- HERE shows whereabouts in the regular expression the problem was
 discovered. See
perlre.

Useless localization of %s

(W syntax) The localization of lvalues such as local($x=10) is legal,
 but in fact the local()
currently has no effect. This may change at
 some point in the future, but in the meantime such
code is discouraged.

Useless (?%s) - use /%s modifier in regex; marked by <-- HERE in
 m/%s/

(W regexp) You have used an internal modifier such as (?o) that has no
 meaning unless
applied to the entire regexp:

 if ($string =~ /(?o)$pattern/) { ... }

must be written as

 if ($string =~ /$pattern/o) { ... }

The <-- HERE shows whereabouts in the regular expression the problem was
 discovered. See
perlre.

Perl version 5.22.0 documentation - perldiag

Page 87http://perldoc.perl.org

Useless use of attribute "const"

(W misc) The "const" attribute has no effect except
 on anonymous closure prototypes. You
applied it to
 a subroutine via attributes.pm. This is only useful
 inside an attribute handler for an
anonymous subroutine.

Useless use of /d modifier in transliteration operator

(W misc) You have used the /d modifier where the searchlist has the
 same length as the
replacelist. See perlop for more information
 about the /d modifier.

Useless use of \E

(W misc) You have a \E in a double-quotish string without a \U, \L or \Q preceding it.

Useless use of greediness modifier '%c' in regex; marked by <-- HERE in m/%s/

(W regexp) You specified something like these:

 qr/a{3}?/
 qr/b{1,1}+/

The "?" and "+" don't have any effect, as they modify whether to
 match more or fewer when
there is a choice, and by specifying to match
 exactly a given numer, there is no room left for a
choice.

Useless use of %s in void context

(W void) You did something without a side effect in a context that does
 nothing with the return
value, such as a statement that doesn't return a
 value from a block, or the left side of a scalar
comma operator. Very
 often this points not to stupidity on your part, but a failure of Perl
 to
parse your program the way you thought it would. For example, you'd
 get this if you mixed up
your C precedence with Python precedence and
 said

 $one, $two = 1, 2;

when you meant to say

 ($one, $two) = (1, 2);

Another common error is to use ordinary parentheses to construct a list
 reference when you
should be using square or curly brackets, for
 example, if you say

 $array = (1,2);

when you should have said

 $array = [1,2];

The square brackets explicitly turn a list value into a scalar value,
 while parentheses do not.
So when a parenthesized list is evaluated in
 a scalar context, the comma is treated like C's
comma operator, which
 throws away the left argument, which is not what you want. See
perlref for more on this.

This warning will not be issued for numerical constants equal to 0 or 1
 since they are often
used in statements like

 1 while sub_with_side_effects();

String constants that would normally evaluate to 0 or 1 are warned
 about.

Useless use of (?-p) in regex; marked by <-- HERE in m/%s/

(W regexp) The p modifier cannot be turned off once set. Trying to do
 so is futile.

Useless use of "re" pragma

Perl version 5.22.0 documentation - perldiag

Page 88http://perldoc.perl.org

(W) You did use re; without any arguments. That isn't very useful.

Useless use of sort in scalar context

(W void) You used sort in scalar context, as in :

 my $x = sort @y;

This is not very useful, and perl currently optimizes this away.

Useless use of %s with no values

(W syntax) You used the push() or unshift() function with no arguments
 apart from the array,
like push(@x) or unshift(@foo). That won't
 usually have any effect on the array, so is
completely useless. It's
 possible in principle that push(@tied_array) could have some effect
 if
the array is tied to a class which implements a PUSH method. If so,
 you can write it as
push(@tied_array,()) to avoid this warning.

"use" not allowed in expression

(F) The "use" keyword is recognized and executed at compile time, and
 returns no useful
value. See perlmod.

Use of assignment to $[is deprecated

(D deprecated) The $[variable (index of the first element in an array)
 is deprecated. See "$["
in perlvar.

Use of bare << to mean <<"" is deprecated

(D deprecated) You are now encouraged to use the explicitly quoted
 form if you wish to use
an empty line as the terminator of the
 here-document.

Use of \b{} for non-UTF-8 locale is wrong. Assuming a UTF-8 locale

(W locale) You are matching a regular expression using locale rules,
 and a Unicode boundary
is being matched, but the locale is not a Unicode
 one. This doesn't make sense. Perl will
continue, assuming a Unicode
 (UTF-8) locale, but the results could well be wrong except if the
locale
 happens to be ISO-8859-1 (Latin1) where this message is spurious and can
 be ignored.

Use of chdir('') or chdir(undef) as chdir() deprecated

(D deprecated) chdir() with no arguments is documented to change to
 $ENV{HOME} or
$ENV{LOGDIR}. chdir(undef) and chdir('') share this
 behavior, but that has been deprecated.
In future versions they
 will simply fail.

Be careful to check that what you pass to chdir() is defined and not
 blank, else you might find
yourself in your home directory.

Use of /c modifier is meaningless in s///

(W regexp) You used the /c modifier in a substitution. The /c
 modifier is not presently
meaningful in substitutions.

Use of /c modifier is meaningless without /g

(W regexp) You used the /c modifier with a regex operand, but didn't
 use the /g modifier.
Currently, /c is meaningful only when /g is
 used. (This may change in the future.)

Use of comma-less variable list is deprecated

(D deprecated) The values you give to a format should be
 separated by commas, not just
aligned on a line.

Use of each() on hash after insertion without resetting hash iterator results in undefined behavior

(S internal) The behavior of each() after insertion is undefined;
 it may skip items, or visit
items more than once. Consider using keys() instead of each().

Perl version 5.22.0 documentation - perldiag

Page 89http://perldoc.perl.org

Use of := for an empty attribute list is not allowed

(F) The construction my $x := 42 used to parse as equivalent to my $x : = 42 (applying
an empty attribute list to $x).
 This construct was deprecated in 5.12.0, and has now been
made a syntax
 error, so := can be reclaimed as a new operator in the future.

If you need an empty attribute list, for example in a code generator, add
 a space before the =.

Use of freed value in iteration

(F) Perhaps you modified the iterated array within the loop?
 This error is typically caused by
code like the following:

 @a = (3,4);
 @a = () for (1,2,@a);

You are not supposed to modify arrays while they are being iterated over.
 For speed and
efficiency reasons, Perl internally does not do full
 reference-counting of iterated items, hence
deleting such an item in the
 middle of an iteration causes Perl to see a freed value.

Use of *glob{FILEHANDLE} is deprecated

(D deprecated) You are now encouraged to use the shorter *glob{IO} form
 to access the
filehandle slot within a typeglob.

Use of /g modifier is meaningless in split

(W regexp) You used the /g modifier on the pattern for a split
 operator. Since split always
tries to match the pattern
 repeatedly, the /g has no effect.

Use of "goto" to jump into a construct is deprecated

(D deprecated) Using goto to jump from an outer scope into an inner
 scope is deprecated
and should be avoided.

Use of inherited AUTOLOAD for non-method %s() is deprecated

(D deprecated) As an (ahem) accidental feature, AUTOLOAD
 subroutines are looked up as
methods (using the @ISA hierarchy)
 even when the subroutines to be autoloaded were called
as plain
 functions (e.g. Foo::bar()), not as methods (e.g. Foo->bar() or $obj->bar()).

This bug will be rectified in future by using method lookup only for
 methods' AUTOLOADs.
However, there is a significant base of existing
 code that may be using the old behavior. So,
as an interim step, Perl
 currently issues an optional warning when non-methods use inherited
AUTOLOADs.

The simple rule is: Inheritance will not work when autoloading
 non-methods. The simple fix for
old code is: In any module that used
 to depend on inheriting AUTOLOAD for non-methods from
a base class
 named BaseClass, execute *AUTOLOAD = \&BaseClass::AUTOLOAD during
startup.

In code that currently says use AutoLoader; @ISA = qw(AutoLoader);
 you should
remove AutoLoader from @ISA and change use AutoLoader; to use AutoLoader
'AUTOLOAD';.

Use of %s in printf format not supported

(F) You attempted to use a feature of printf that is accessible from
 only C. This usually means
there's a better way to do it in Perl.

Use of %s is deprecated

(D deprecated) The construct indicated is no longer recommended for use,
 generally because
there's a better way to do it, and also because the
 old way has bad side effects.

Use of literal control characters in variable names is deprecated

Use of literal non-graphic characters in variable names is deprecated

Perl version 5.22.0 documentation - perldiag

Page 90http://perldoc.perl.org

(D deprecated) Using literal non-graphic (including control)
 characters in the source to refer to
the ^FOO variables, like $^X and ${^GLOBAL_PHASE} is now deprecated. (We use ^X and
^G here for
 legibility. They actually represent the non-printable control
 characters, code points
0x18 and 0x07, respectively; ^A would mean
 the control character whose code point is 0x01.)
This only affects
 code like $\cT, where \cT is a control in the source code; ${"\cT"} and
$^T remain valid. Things that are non-controls and also not graphic
 are NO-BREAK SPACE
and SOFT HYPHEN, which were previously only allowed
 for historical reasons.

Use of -l on filehandle%s

(W io) A filehandle represents an opened file, and when you opened the file
 it already went
past any symlink you are presumably trying to look for.
 The operation returned undef. Use a
filename instead.

Use of my $_ is experimental

(S experimental::lexical_topic) Lexical $_ is an experimental feature and
 its behavior may
change or even be removed in any future release of perl.
 See the explanation under "$_" in
perlvar.

Use of %s on a handle without * is deprecated

(D deprecated) You used tie, tied or untie on a scalar but that scalar
 happens to hold a
typeglob, which means its filehandle will be tied. If
 you mean to tie a handle, use an explicit *
as in tie *$handle.

This was a long-standing bug that was removed in Perl 5.16, as there was
 no way to tie the
scalar itself when it held a typeglob, and no way to
 untie a scalar that had had a typeglob
assigned to it. If you see this
 message, you must be using an older version.

Use of reference "%s" as array index

(W misc) You tried to use a reference as an array index; this probably
 isn't what you mean,
because references in numerical context tend
 to be huge numbers, and so usually indicates
programmer error.

If you really do mean it, explicitly numify your reference, like so: $array[0+$ref]. This
warning is not given for overloaded objects,
 however, because you can overload the
numification and stringification
 operators and then you presumably know what you are doing.

Use of state $_ is experimental

(S experimental::lexical_topic) Lexical $_ is an experimental feature and
 its behavior may
change or even be removed in any future release of perl.
 See the explanation under "$_" in
perlvar.

Use of tainted arguments in %s is deprecated

(W taint, deprecated) You have supplied system() or exec() with multiple
 arguments and
at least one of them is tainted. This used to be allowed
 but will become a fatal error in a future
version of perl. Untaint your
 arguments. See perlsec.

Use of uninitialized value%s

(W uninitialized) An undefined value was used as if it were already
 defined. It was interpreted
as a "" or a 0, but maybe it was a mistake.
 To suppress this warning assign a defined value to
your variables.

To help you figure out what was undefined, perl will try to tell you
 the name of the variable (if
any) that was undefined. In some cases
 it cannot do this, so it also tells you what operation
you used the
 undefined value in. Note, however, that perl optimizes your program
 and the
operation displayed in the warning may not necessarily appear
 literally in your program. For
example, "that $foo" is usually
 optimized into "that " . $foo, and the warning will
refer to the concatenation (.) operator, even though there is no . in
 your program.

Perl version 5.22.0 documentation - perldiag

Page 91http://perldoc.perl.org

"use re 'strict'" is experimental

(S experimental::re_strict) The things that are different when a regular
 expression pattern is
compiled under 'strict' are subject to change
 in future Perl releases in incompatible ways.
This means that a pattern
 that compiles today may not in a future Perl release. This warning is
to alert you to that risk.

Use \x{...} for more than two hex characters in regex; marked by <-- HERE in m/%s/

(F) In a regular expression, you said something like

 (?[[\xBEEF]])

Perl isn't sure if you meant this

 (?[[\x{BEEF}]])

or if you meant this

 (?[[\x{BE} E F]])

You need to add either braces or blanks to disambiguate.

Using just the first character returned by \N{} in character class in regex; marked by <-- HERE in
m/%s/

(W regexp) Named Unicode character escapes (\N{...}) may return
 a multi-character
sequence. Even though a character class is
 supposed to match just one character of input,
perl will match
 the whole thing correctly, except when the class is inverted
 ([^...]), or the
escape is the beginning or final end point of
 a range. For these, what should happen isn't clear
at all. In
 these circumstances, Perl discards all but the first character
 of the returned
sequence, which is not likely what you want.

Using /u for '%s' instead of /%s in regex; marked by <-- HERE in m/%s/

(W regexp) You used a Unicode boundary (\b{...} or \B{...}) in a
 portion of a regular
expression where the character set modifiers /a
 or /aa are in effect. These two modifiers
indicate an ASCII
 interpretation, and this doesn't make sense for a Unicode defintion.
 The
generated regular expression will compile so that the boundary uses
 all of Unicode. No other
portion of the regular expression is affected.

Using !~ with %s doesn't make sense

(F) Using the !~ operator with s///r, tr///r or y///r is
 currently reserved for future use,
as the exact behavior has not
 been decided. (Simply returning the boolean opposite of the

modified string is usually not particularly useful.)

UTF-16 surrogate U+%X

(S surrogate) You had a UTF-16 surrogate in a context where they are
 not considered
acceptable. These code points, between U+D800 and
 U+DFFF (inclusive), are used by
Unicode only for UTF-16. However, Perl
 internally allows all unsigned integer code points (up
to the size limit
 available on your platform), including surrogates. But these can cause

problems when being input or output, which is likely where this message
 came from. If you
really really know what you are doing you can turn
 off this warning by no warnings
'surrogate';.

Value of %s can be "0"; test with defined()

(W misc) In a conditional expression, you used <HANDLE>, <*> (glob), each(), or
readdir() as a boolean value. Each of these constructs
 can return a value of "0"; that would
make the conditional expression
 false, which is probably not what you intended. When using
these
 constructs in conditional expressions, test their values with the defined operator.

Value of CLI symbol "%s" too long

Perl version 5.22.0 documentation - perldiag

Page 92http://perldoc.perl.org

(W misc) A warning peculiar to VMS. Perl tried to read the value of an
 %ENV element from a
CLI symbol table, and found a resultant string
 longer than 1024 characters. The return value
has been truncated to
 1024 characters.

values on reference is experimental

(S experimental::autoderef) values with a scalar argument
 is experimental and may change
or be removed in a future
 Perl version. If you want to take the risk of using this
 feature, simply
disable this warning:

 no warnings "experimental::autoderef";

Variable "%s" is not available

(W closure) During compilation, an inner named subroutine or eval is
 attempting to capture an
outer lexical that is not currently available.
 This can happen for one of two reasons. First, the
outer lexical may be
 declared in an outer anonymous subroutine that has not yet been
created.
 (Remember that named subs are created at compile time, while anonymous
 subs are
created at run-time.) For example,

 sub { my $a; sub f { $a } }

At the time that f is created, it can't capture the current value of $a,
 since the anonymous
subroutine hasn't been created yet. Conversely,
 the following won't give a warning since the
anonymous subroutine has by
 now been created and is live:

 sub { my $a; eval 'sub f { $a }' }->();

The second situation is caused by an eval accessing a variable that has
 gone out of scope, for
example,

 sub f {
	 my $a;
	 sub { eval '$a' }
 }
 f()->();

Here, when the '$a' in the eval is being compiled, f() is not currently
 being executed, so its $a
is not available for capture.

Variable "%s" is not imported%s

(S misc) With "use strict" in effect, you referred to a global variable
 that you apparently thought
was imported from another module, because
 something else of the same name (usually a
subroutine) is exported by
 that module. It usually means you put the wrong funny character on
the
 front of your variable.

Variable length lookbehind not implemented in regex m/%s/

(F) Lookbehind is allowed only for subexpressions whose length is fixed and
 known at compile
time. For positive lookbehind, you can use the \K
 regex construct as a way to get the
equivalent functionality. See "(?<=pattern) \K" in perlre.

There are non-obvious Unicode rules under /i that can match variably,
 but which you might
not think could. For example, the substring "ss"
 can match the single character LATIN
SMALL LETTER SHARP S. There are
 other sequences of ASCII characters that can match
single ligature
 characters, such as LATIN SMALL LIGATURE FFI matching qr/ffi/i.

Starting in Perl v5.16, if you only care about ASCII matches, adding the /aa modifier to the
regex will exclude all these non-obvious matches,
 thus getting rid of this message. You can
also say use re qw(/aa)
 to apply /aa to all regular expressions compiled within its scope.

See re.

"%s" variable %s masks earlier declaration in same %s

Perl version 5.22.0 documentation - perldiag

Page 93http://perldoc.perl.org

(W misc) A "my", "our" or "state" variable has been redeclared in the
 current scope or
statement, effectively eliminating all access to the
 previous instance. This is almost always a
typographical error. Note
 that the earlier variable will still exist until the end of the scope
 or
until all closure references to it are destroyed.

Variable syntax

(A) You've accidentally run your script through csh instead
 of Perl. Check the #! line, or
manually feed your script into
 Perl yourself.

Variable "%s" will not stay shared

(W closure) An inner (nested) named subroutine is referencing a
 lexical variable defined in an
outer named subroutine.

When the inner subroutine is called, it will see the value of
 the outer subroutine's variable as it
was before and during the *first*
 call to the outer subroutine; in this case, after the first call to
the
 outer subroutine is complete, the inner and outer subroutines will no
 longer share a
common value for the variable. In other words, the
 variable will no longer be shared.

This problem can usually be solved by making the inner subroutine
 anonymous, using the sub
 {} syntax. When inner anonymous subs that
 reference variables in outer subroutines are
created, they
 are automatically rebound to the current values of such variables.

vector argument not supported with alpha versions

(S printf) The %vd (s)printf format does not support version objects
 with alpha parts.

Verb pattern '%s' has a mandatory argument in regex; marked by <-- HERE in m/%s/

(F) You used a verb pattern that requires an argument. Supply an
 argument or check that you
are using the right verb.

Verb pattern '%s' may not have an argument in regex; marked by <-- HERE in m/%s/

(F) You used a verb pattern that is not allowed an argument. Remove the argument or check
that you are using the right verb.

Version number must be a constant number

(P) The attempt to translate a use Module n.n LIST statement into
 its equivalent BEGIN
block found an internal inconsistency with
 the version number.

Version string '%s' contains invalid data; ignoring: '%s'

(W misc) The version string contains invalid characters at the end, which
 are being ignored.

Warning: something's wrong

(W) You passed warn() an empty string (the equivalent of warn "") or
 you called it with no
args and $@ was empty.

Warning: unable to close filehandle %s properly

(S) The implicit close() done by an open() got an error indication on
 the close(). This usually
indicates your file system ran out of disk
 space.

Warning: unable to close filehandle properly: %s

Warning: unable to close filehandle %s properly: %s

(S io) An error occurred when Perl implicitly closed a filehandle. This
 usually indicates your file
system ran out of disk space.

Warning: Use of "%s" without parentheses is ambiguous

(S ambiguous) You wrote a unary operator followed by something that
 looks like a binary
operator that could also have been interpreted as a
 term or unary operator. For instance, if
you know that the rand
 function has a default argument of 1.0, and you write

Perl version 5.22.0 documentation - perldiag

Page 94http://perldoc.perl.org

 rand + 5;

you may THINK you wrote the same thing as

 rand() + 5;

but in actual fact, you got

 rand(+5);

So put in parentheses to say what you really mean.

when is experimental

(S experimental::smartmatch) when depends on smartmatch, which is
 experimental.
Additionally, it has several special cases that may
 not be immediately obvious, and their
behavior may change or
 even be removed in any future release of perl. See the explanation

under "Experimental Details on given and when" in perlsyn.

Wide character in %s

(S utf8) Perl met a wide character (>255) when it wasn't expecting
 one. This warning is by
default on for I/O (like print). The easiest
 way to quiet this warning is simply to add the :utf8
layer to the
 output, e.g. binmode STDOUT, ':utf8'. Another way to turn off the
 warning is
to add no warnings 'utf8'; but that is often closer to
 cheating. In general, you are
supposed to explicitly mark the
 filehandle with an encoding, see open and "binmode" in
perlfunc.

Wide character (U+%X) in %s

(W locale) While in a single-byte locale (i.e., a non-UTF-8
 one), a multi-byte character was
encountered. Perl considers this
 character to be the specified Unicode code point. Combining
non-UTF-8
 locales and Unicode is dangerous. Almost certainly some characters
 will have two
different representations. For example, in the ISO 8859-7
 (Greek) locale, the code point 0xC3
represents a Capital Gamma. But so
 also does 0x393. This will make string comparisons
unreliable.

You likely need to figure out how this multi-byte character got mixed up
 with your single-byte
locale (or perhaps you thought you had a UTF-8
 locale, but Perl disagrees).

Within []-length '%c' not allowed

(F) The count in the (un)pack template may be replaced by [TEMPLATE]
 only if TEMPLATE
always matches the same amount of packed bytes that
 can be determined from the template
alone. This is not possible if
 it contains any of the codes @, /, U, u, w or a *-length. Redesign

the template.

write() on closed filehandle %s

(W closed) The filehandle you're writing to got itself closed sometime
 before now. Check your
control flow.

%s "\x%X" does not map to Unicode

(S utf8) When reading in different encodings, Perl tries to
 map everything into Unicode
characters. The bytes you read
 in are not legal in this encoding. For example

 utf8 "\xE4" does not map to Unicode

if you try to read in the a-diaereses Latin-1 as UTF-8.

'X' outside of string

(F) You had a (un)pack template that specified a relative position before
 the beginning of the
string being (un)packed. See "pack" in perlfunc.

Perl version 5.22.0 documentation - perldiag

Page 95http://perldoc.perl.org

'x' outside of string in unpack

(F) You had a pack template that specified a relative position after
 the end of the string being
unpacked. See "pack" in perlfunc.

YOU HAVEN'T DISABLED SET-ID SCRIPTS IN THE KERNEL YET!

(F) And you probably never will, because you probably don't have the
 sources to your kernel,
and your vendor probably doesn't give a rip
 about what you want. Your best bet is to put a
setuid C wrapper around
 your script.

You need to quote "%s"

(W syntax) You assigned a bareword as a signal handler name.
 Unfortunately, you already
have a subroutine of that name declared,
 which means that Perl 5 will try to call the subroutine
when the
 assignment is executed, which is probably not what you want. (If it IS
 what you want,
put an & in front.)

Your random numbers are not that random

(F) When trying to initialize the random seed for hashes, Perl could
 not get any randomness
out of your system. This usually indicates
 Something Very Wrong.

Zero length \N{} in regex; marked by <-- HERE in m/%s/

(F) Named Unicode character escapes (\N{...}) may return a zero-length
 sequence. Such
an escape was used in an extended character class, i.e. (?[...]), which is not permitted.
Check that the correct escape has
 been used, and the correct charnames handler is in scope.
The <-- HERE
 shows whereabouts in the regular expression the problem was discovered.

SEE ALSO
warnings, diagnostics.

