
Perl version 5.22.0 documentation - perldelta

Page 1http://perldoc.perl.org

NAME
perldelta - what is new for perl v5.22.0

DESCRIPTION
This document describes differences between the 5.20.0 release and the 5.22.0
 release.

If you are upgrading from an earlier release such as 5.18.0, first read perl5200delta, which describes
differences between 5.18.0 and 5.20.0.

Core Enhancements
New bitwise operators

A new experimental facility has been added that makes the four standard
 bitwise operators (& | ^ ~
) treat their operands consistently as
 numbers, and introduces four new dotted operators (&. |. ^.
~.) that
 treat their operands consistently as strings. The same applies to the
 assignment variants (&=
 |= ^= &.= |.= ^.=).

To use this, enable the "bitwise" feature and disable the
 "experimental::bitwise" warnings category.
See "Bitwise String Operators" in perlop for details. [perl #123466].

New double-diamond operator
<<>> is like <> but uses three-argument open to open
 each file in @ARGV. This means that each
element of @ARGV will be treated
 as an actual file name, and "|foo" won't be treated as a pipe open.

New \b boundaries in regular expressions
qr/\b{gcb}/

gcb stands for Grapheme Cluster Boundary. It is a Unicode property
 that finds the boundary between
sequences of characters that look like a
 single character to a native speaker of a language. Perl has
long had
 the ability to deal with these through the \X regular escape
 sequence. Now, there is an
alternative way of handling these. See "\b{}, \b, \B{}, \B" in perlrebackslash for details.

qr/\b{wb}/

wb stands for Word Boundary. It is a Unicode property
 that finds the boundary between words. This is
similar to the plain \b (without braces) but is more suitable for natural language
 processing. It knows,
for example, that apostrophes can occur in the
 middle of words. See "\b{}, \b, \B{}, \B" in
perlrebackslash for details.

qr/\b{sb}/

sb stands for Sentence Boundary. It is a Unicode property
 to aid in parsing natural language
sentences.
 See "\b{}, \b, \B{}, \B" in perlrebackslash for details.

Non-Capturing Regular Expression Flag
Regular expressions now support a /n flag that disables capturing
 and filling in $1, $2, etc inside of
groups:

 "hello" =~ /(hi|hello)/n; # $1 is not set

This is equivalent to putting ?: at the beginning of every capturing group.

See "n" in perlre for more information.

use re 'strict'
This applies stricter syntax rules to regular expression patterns
 compiled within its scope. This will
hopefully alert you to typos and
 other unintentional behavior that backwards-compatibility issues
prevent
 us from reporting in normal regular expression compilations. Because the
 behavior of this is
subject to change in future Perl releases as we gain
 experience, using this pragma will raise a
warning of category experimental::re_strict.
 See 'strict' in re.

Perl version 5.22.0 documentation - perldelta

Page 2http://perldoc.perl.org

Unicode 7.0 (with correction) is now supported
For details on what is in this release, see http://www.unicode.org/versions/Unicode7.0.0/.
 The version
of Unicode 7.0 that comes with Perl includes
 a correction dealing with glyph shaping in Arabic
 (see
http://www.unicode.org/errata/#current_errata).

use locale can restrict which locale categories are affected
It is now possible to pass a parameter to use locale to specify
 a subset of locale categories to be
locale-aware, with the remaining
 ones unaffected. See "The "use locale" pragma" in perllocale for
details.

Perl now supports POSIX 2008 locale currency additions
On platforms that are able to handle POSIX.1-2008, the
 hash returned by POSIX::localeconv()

includes the international currency fields added by that version of the
 POSIX standard. These are
int_n_cs_precedes, int_n_sep_by_space, int_n_sign_posn, int_p_cs_precedes,
int_p_sep_by_space,
 and int_p_sign_posn.

Better heuristics on older platforms for determining locale UTF-8ness
On platforms that implement neither the C99 standard nor the POSIX 2001
 standard, determining if
the current locale is UTF-8 or not depends on
 heuristics. These are improved in this release.

Aliasing via reference
Variables and subroutines can now be aliased by assigning to a reference:

 \$c = \$d;
 \&x = \&y;

Aliasing can also be accomplished
 by using a backslash before a foreach iterator variable; this is

perhaps the most useful idiom this feature provides:

 foreach \%hash (@array_of_hash_refs) { ... }

This feature is experimental and must be enabled via use feature
 'refaliasing'. It will warn
unless the experimental::refaliasing
 warnings category is disabled.

See "Assigning to References" in perlref

prototype with no arguments
prototype() with no arguments now infers $_. [perl #123514].

New :const subroutine attribute
The const attribute can be applied to an anonymous subroutine. It
 causes the new sub to be
executed immediately whenever one is created
 (i.e. when the sub expression is evaluated). Its value
is captured
 and used to create a new constant subroutine that is returned. This
 feature is
experimental. See "Constant Functions" in perlsub.

fileno now works on directory handles
When the relevant support is available in the operating system, the fileno builtin now works on
directory handles, yielding the
 underlying file descriptor in the same way as for filehandles. On

operating systems without such support, fileno on a directory handle
 continues to return the
undefined value, as before, but also sets $! to
 indicate that the operation is not supported.

Currently, this uses either a dd_fd member in the OS DIR
 structure, or a dirfd(3) function as
specified by POSIX.1-2008.

Perl version 5.22.0 documentation - perldelta

Page 3http://perldoc.perl.org

List form of pipe open implemented for Win32
The list form of pipe:

 open my $fh, "-|", "program", @arguments;

is now implemented on Win32. It has the same limitations as system
 LIST on Win32, since the
Win32 API doesn't accept program arguments
 as a list.

Assignment to list repetition
(...) x ... can now be used within a list that is assigned to, as long
 as the left-hand side is a
valid lvalue. This allows (undef,undef,$foo)
 = that_function() to be written as
((undef)x2, $foo) = that_function().

Infinity and NaN (not-a-number) handling improved
Floating point values are able to hold the special values infinity, negative
 infinity, and NaN
(not-a-number). Now we more robustly recognize and
 propagate the value in computations, and on
output normalize them to the strings Inf, -Inf, and NaN.

See also the POSIX enhancements.

Floating point parsing has been improved
Parsing and printing of floating point values has been improved.

As a completely new feature, hexadecimal floating point literals
 (like 0x1.23p-4) are now supported,
and they can be output with printf "%a". See "Scalar value constructors" in perldata for more

details.

Packing infinity or not-a-number into a character is now fatal
Before, when trying to pack infinity or not-a-number into a
 (signed) character, Perl would warn, and
assumed you tried to
 pack 0xFF; if you gave it as an argument to chr, U+FFFD was returned.

But now, all such actions (pack, chr, and print '%c')
 result in a fatal error.

Experimental C Backtrace API
Perl now supports (via a C level API) retrieving
 the C level backtrace (similar to what symbolic
debuggers like gdb do).

The backtrace returns the stack trace of the C call frames,
 with the symbol names (function names),
the object names (like "perl"),
 and if it can, also the source code locations (file:line).

The supported platforms are Linux and OS X (some *BSD might work at
 least partly, but they have
not yet been tested).

The feature needs to be enabled with Configure -Dusecbacktrace.

See "C backtrace" in perlhacktips for more information.

Security
Perl is now compiled with -fstack-protector-strong if available

Perl has been compiled with the anti-stack-smashing option -fstack-protector since 5.10.1. Now
Perl uses the newer variant
 called -fstack-protector-strong, if available.

The Safe module could allow outside packages to be replaced
Critical bugfix: outside packages could be replaced. Safe has
 been patched to 2.38 to address this.

Perl is now always compiled with -D_FORTIFY_SOURCE=2 if available
The 'code hardening' option called _FORTIFY_SOURCE, available in
 gcc 4.*, is now always used for
compiling Perl, if available.

Perl version 5.22.0 documentation - perldelta

Page 4http://perldoc.perl.org

Note that this isn't necessarily a huge step since in many platforms
 the step had already been taken
several years ago: many Linux
 distributions (like Fedora) have been using this option for Perl,
 and OS
X has enforced the same for many years.

Incompatible Changes
Subroutine signatures moved before attributes

The experimental sub signatures feature, as introduced in 5.20, parsed
 signatures after attributes. In
this release, following feedback from users
 of the experimental feature, the positioning has been
moved such that
 signatures occur after the subroutine name (if any) and before the attribute
 list (if
any).

& and \& prototypes accepts only subs
The & prototype character now accepts only anonymous subs (sub
 {...}), things beginning with \&
, or an explicit undef. Formerly
 it erroneously also allowed references to arrays, hashes, and lists.
[perl #4539]. [perl #123062]. [perl #123062].

In addition, the \& prototype was allowing subroutine calls, whereas
 now it only allows subroutines:
&foo is still permitted as an argument,
 while &foo() and foo() no longer are. [perl #77860].

use encoding is now lexical
The encoding pragma's effect is now limited to lexical scope. This
 pragma is deprecated, but in the
meantime, it could adversely affect
 unrelated modules that are included in the same program; this
change
 fixes that.

List slices returning empty lists
List slices now return an empty list only if the original list was empty
 (or if there are no indices).
Formerly, a list slice would return an empty
 list if all indices fell outside the original list; now it returns a
list
 of undef values in that case. [perl #114498].

\N{} with a sequence of multiple spaces is now a fatal error
E.g. \N{TOO MANY SPACES} or \N{TRAILING SPACE }.
 This has been deprecated since v5.18.

use UNIVERSAL '...' is now a fatal error
Importing functions from UNIVERSAL has been deprecated since v5.12, and
 is now a fatal error. use
UNIVERSAL without any arguments is still
 allowed.

In double-quotish \cX, X must now be a printable ASCII character
In prior releases, failure to do this raised a deprecation warning.

Splitting the tokens (? and (* in regular expressions is now a fatal compilation error.
These had been deprecated since v5.18.

qr/foo/x now ignores all Unicode pattern white space
The /x regular expression modifier allows the pattern to contain
 white space and comments (both of
which are ignored) for improved
 readability. Until now, not all the white space characters that Unicode
designates for this purpose were handled. The additional ones now
 recognized are:

 U+0085 NEXT LINE
 U+200E LEFT-TO-RIGHT MARK
 U+200F RIGHT-TO-LEFT MARK
 U+2028 LINE SEPARATOR
 U+2029 PARAGRAPH SEPARATOR

The use of these characters with /x outside bracketed character
 classes and when not preceded by a
backslash has raised a deprecation
 warning since v5.18. Now they will be ignored.

Perl version 5.22.0 documentation - perldelta

Page 5http://perldoc.perl.org

Comment lines within (?[]) are now ended only by a \n
(?[]) is an experimental feature, introduced in v5.18. It operates
 as if /x is always enabled. But
there was a difference: comment
 lines (following a # character) were terminated by anything matching
\R which includes all vertical whitespace, such as form feeds. For
 consistency, this is now changed to
match what terminates comment lines
 outside (?[]), namely a \n (even if escaped), which is the

same as what terminates a heredoc string and formats.

(?[...]) operators now follow standard Perl precedence
This experimental feature allows set operations in regular expression patterns.
 Prior to this, the
intersection operator had the same precedence as the other
 binary operators. Now it has higher
precedence. This could lead to different
 outcomes than existing code expects (though the
documentation has always noted
 that this change might happen, recommending fully parenthesizing
the
 expressions). See "Extended Bracketed Character Classes" in perlrecharclass.

Omitting % and @ on hash and array names is no longer permitted
Really old Perl let you omit the @ on array names and the % on hash
 names in some spots. This has
issued a deprecation warning since Perl
 5.000, and is no longer permitted.

"$!" text is now in English outside the scope of use locale
Previously, the text, unlike almost everything else, always came out
 based on the current underlying
locale of the program. (Also affected
 on some systems is "$^E".) For programs that are unprepared
to
 handle locale differences, this can cause garbage text to be displayed.
 It's better to display text that
is translatable via some tool than
 garbage text which is much harder to figure out.

"$!" text will be returned in UTF-8 when appropriate
The stringification of $! and $^E will have the UTF-8 flag set
 when the text is actually non-ASCII
UTF-8. This will enable programs
 that are set up to be locale-aware to properly output messages in
the
 user's native language. Code that needs to continue the 5.20 and
 earlier behavior can do the
stringification within the scopes of both use bytes and use locale ":messages". Within these
two
 scopes, no other Perl operations will
 be affected by locale; only $! and $^E stringification. The
bytes pragma causes the UTF-8 flag to not be set, just as in previous
 Perl releases. This resolves
[perl #112208].

Support for ?PATTERN? without explicit operator has been removed
The m?PATTERN? construct, which allows matching a regex only once,
 previously had an alternative
form that was written directly with a question
 mark delimiter, omitting the explicit m operator. This
usage has produced
 a deprecation warning since 5.14.0. It is now a syntax error, so that the
 question
mark can be available for use in new operators.

defined(@array) and defined(%hash) are now fatal errors
These have been deprecated since v5.6.1 and have raised deprecation
 warnings since v5.16.

Using a hash or an array as a reference are now fatal errors
For example, %foo->{"bar"} now causes a fatal compilation
 error. These have been deprecated
since before v5.8, and have raised
 deprecation warnings since then.

Changes to the * prototype
The * character in a subroutine's prototype used to allow barewords to take
 precedence over most,
but not all, subroutine names. It was never
 consistent and exhibited buggy behavior.

Now it has been changed, so subroutines always take precedence over barewords,
 which brings it
into conformity with similarly prototyped built-in functions:

 sub splat(*) { ... }
 sub foo { ... }
 splat(foo); # now always splat(foo())

Perl version 5.22.0 documentation - perldelta

Page 6http://perldoc.perl.org

 splat(bar); # still splat('bar') as before
 close(foo); # close(foo())
 close(bar); # close('bar')

Deprecations
Setting ${^ENCODING} to anything but undef

This variable allows Perl scripts to be written in an encoding other than
 ASCII or UTF-8. However, it
affects all modules globally, leading
 to wrong answers and segmentation faults. New scripts should be
written
 in UTF-8; old scripts should be converted to UTF-8, which is easily done
 with the piconv utility.

Use of non-graphic characters in single-character variable names
The syntax for single-character variable names is more lenient than
 for longer variable names,
allowing the one-character name to be a
 punctuation character or even invisible (a non-graphic). Perl
v5.20
 deprecated the ASCII-range controls as such a name. Now, all
 non-graphic characters that
formerly were allowed are deprecated.
 The practical effect of this occurs only when not under use

utf8, and affects just the C1 controls (code points 0x80 through
 0xFF), NO-BREAK SPACE, and
SOFT HYPHEN.

Inlining of sub () { $var } with observable side-effects
In many cases Perl makes sub () { $var } into an inlinable constant
 subroutine, capturing the
value of $var at the time the sub expression
 is evaluated. This can break the closure behavior in
those cases where $var is subsequently modified, since the subroutine won't return the
 changed
value. (Note that this all only applies to anonymous subroutines
 with an empty prototype (sub ()).)

This usage is now deprecated in those cases where the variable could be
 modified elsewhere. Perl
detects those cases and emits a deprecation
 warning. Such code will likely change in the future and
stop producing a
 constant.

If your variable is only modified in the place where it is declared, then
 Perl will continue to make the
sub inlinable with no warnings.

 sub make_constant {
 my $var = shift;
 return sub () { $var }; # fine
 }

 sub make_constant_deprecated {
 my $var;
 $var = shift;
 return sub () { $var }; # deprecated
 }

 sub make_constant_deprecated2 {
 my $var = shift;
 log_that_value($var); # could modify $var
 return sub () { $var }; # deprecated
 }

In the second example above, detecting that $var is assigned to only once
 is too hard to detect. That
it happens in a spot other than the my
 declaration is enough for Perl to find it suspicious.

This deprecation warning happens only for a simple variable for the body of
 the sub. (A BEGIN block
or use statement inside the sub is ignored,
 because it does not become part of the sub's body.) For
more complex
 cases, such as sub () { do_something() if 0; $var } the behavior has

changed such that inlining does not happen if the variable is modifiable
 elsewhere. Such cases

Perl version 5.22.0 documentation - perldelta

Page 7http://perldoc.perl.org

should be rare.

Use of multiple /x regexp modifiers
It is now deprecated to say something like any of the following:

 qr/foo/xx;
 /(?xax:foo)/;
 use re qw(/amxx);

That is, now x should only occur once in any string of contiguous
 regular expression pattern
modifiers. We do not believe there are any
 occurrences of this in all of CPAN. This is in preparation
for a future
 Perl release having /xx permit white-space for readability in
 bracketed character classes
(those enclosed in square brackets: [...]).

Using a NO-BREAK space in a character alias for \N{...} is now deprecated
This non-graphic character is essentially indistinguishable from a
 regular space, and so should not be
allowed. See "CUSTOM ALIASES" in charnames.

A literal "{" should now be escaped in a pattern
If you want a literal left curly bracket (also called a left brace) in a
 regular expression pattern, you
should now escape it by either
 preceding it with a backslash ("\{") or enclosing it within square

brackets "[{]", or by using \Q; otherwise a deprecation warning
 will be raised. This was first
announced as forthcoming in the v5.16
 release; it will allow future extensions to the language to
happen.

Making all warnings fatal is discouraged
The documentation for fatal warnings notes that use warnings FATAL => 'all' is discouraged,
and provides stronger
 language about the risks of fatal warnings in general.

Performance Enhancements
If a method or class name is known at compile time, a hash is precomputed
 to speed up
run-time method lookup. Also, compound method names like SUPER::new are parsed at
compile time, to save having to parse them at
 run time.

Array and hash lookups (especially nested ones) that use only constants
 or simple variables
as keys, are now considerably faster. See Internal Changes for more details.

(...)x1, ("constant")x0 and ($scalar)x0 are now optimised in list
 context. If the
right-hand argument is a constant 1, the repetition
 operator disappears. If the right-hand
argument is a constant 0, the whole
 expression is optimised to the empty list, so long as the
left-hand
 argument is a simple scalar or constant. (That is, (foo())x0 is not
 subject to this
optimisation.)

substr assignment is now optimised into 4-argument substr at the end
 of a subroutine (or
as the argument to return). Previously, this
 optimisation only happened in void context.

In "\L...", "\Q...", etc., the extra "stringify" op is now optimised
 away, making these just
as fast as lcfirst, quotemeta, etc.

Assignment to an empty list is now sometimes faster. In particular, it
 never calls FETCH on tied
arguments on the right-hand side, whereas it
 used to sometimes.

There is a performance improvement of up to 20% when length is applied to
 a non-magical,
non-tied string, and either use bytes is in scope or the
 string doesn't use UTF-8 internally.

On most perl builds with 64-bit integers, memory usage for non-magical,
 non-tied scalars
containing only a floating point value has been reduced
 by between 8 and 32 bytes,
depending on OS.

Perl version 5.22.0 documentation - perldelta

Page 8http://perldoc.perl.org

In @array = split, the assignment can be optimized away, so that split
 writes directly to
the array. This optimisation was happening only for
 package arrays other than @_, and only
sometimes. Now this
 optimisation happens almost all the time.

join is now subject to constant folding. So for example join "-", "a", "b" is converted
at compile-time to "a-b".
 Moreover, join with a scalar or constant for the separator and a

single-item list to join is simplified to a stringification, and the
 separator doesn't even get
evaluated.

qq(@array) is implemented using two ops: a stringify op and a join op.
 If the qq contains
nothing but a single array, the stringification is
 optimized away.

our $var and our($s,@a,%h) in void context are no longer evaluated at
 run time. Even a
whole sequence of our $foo; statements will simply be
 skipped over. The same applies to
state variables.

Many internal functions have been refactored to improve performance and reduce
 their
memory footprints. [perl #121436] [perl #121906] [perl #121969]

-T and -B filetests will return sooner when an empty file is detected. [perl #121489]

Hash lookups where the key is a constant are faster.

Subroutines with an empty prototype and a body containing just undef are now
 eligible for
inlining. [perl #122728]

Subroutines in packages no longer need to be stored in typeglobs:
 declaring a subroutine will
now put a simple sub reference directly in the
 stash if possible, saving memory. The typeglob
still notionally exists,
 so accessing it will cause the stash entry to be upgraded to a typeglob
 (
i.e. this is just an internal implementation detail).
 This optimization does not currently apply to
XSUBs or exported
 subroutines, and method calls will undo it, since they cache things in

typeglobs. [perl #120441]

The functions utf8::native_to_unicode() and utf8::unicode_to_native()
 (see
utf8) are now optimized out on ASCII platforms. There is now not even
 a minimal performance
hit in writing code portable between ASCII and EBCDIC
 platforms.

Win32 Perl uses 8 KB less of per-process memory than before for every perl
 process,
because some data is now memory mapped from disk and shared
 between processes from
the same perl binary.

Modules and Pragmata
Updated Modules and Pragmata

Many of the libraries distributed with perl have been upgraded since v5.20.0.
 For a complete list of
changes, run:

 corelist --diff 5.20.0 5.22.0

You can substitute your favorite version in place of 5.20.0, too.

Some notable changes include:

Archive::Tar has been upgraded to version 2.04.

Tests can now be run in parallel.

attributes has been upgraded to version 0.27.

The usage of memEQs in the XS has been corrected. [perl #122701]

Avoid reading beyond the end of a buffer. [perl #122629]

Perl version 5.22.0 documentation - perldelta

Page 9http://perldoc.perl.org

B has been upgraded to version 1.58.

It provides a new B::safename function, based on the existing B::GV->SAFENAME, that
converts \cOPEN to ^OPEN.

Nulled COPs are now of class B::COP, rather than B::OP.

B::REGEXP objects now provide a qr_anoncv method for accessing the
 implicit CV
associated with qr// things containing code blocks, and a compflags method that returns
the pertinent flags originating from the qr//blahblah op.

B::PMOP now provides a pmregexp method returning a B::REGEXP object.
 Two new
classes, B::PADNAME and B::PADNAMELIST, have been introduced.

A bug where, after an ithread creation or psuedofork, special/immortal SVs in
 the child
ithread/psuedoprocess did not have the correct class of B::SPECIAL, has been fixed.
 The id
and outid PADLIST methods have been added.

B::Concise has been upgraded to version 0.996.

Null ops that are part of the execution chain are now given sequence
 numbers.

Private flags for nulled ops are now dumped with mnemonics as they would be
 for the
non-nulled counterparts.

B::Deparse has been upgraded to version 1.35.

It now deparses +sub : attr { ... } correctly at the start of a
 statement. Without the
initial +, sub would be a statement label.

BEGIN blocks are now emitted in the right place most of the time, but
 the change unfortunately
introduced a regression, in that BEGIN blocks
 occurring just before the end of the enclosing
block may appear below it
 instead.

B::Deparse no longer puts erroneous local here and there, such as for LIST = tr/a//d
. [perl #119815]

Adjacent use statements are no longer accidentally nested if one
 contains a do block. [perl
#115066]

Parenthesised arrays in lists passed to \ are now correctly deparsed
 with parentheses (e.g.,
\(@a, (@b), @c) now retains the parentheses
 around @b), thus preserving the flattening
behavior of referenced
 parenthesised arrays. Formerly, it only worked for one array: \(@a).

local our is now deparsed correctly, with the our included.

for($foo; !$bar; $baz) {...} was deparsed without the ! (or not).
 This has been
fixed.

Core keywords that conflict with lexical subroutines are now deparsed with
 the CORE:: prefix.

foreach state $x (...) {...} now deparses correctly with state and
 not my.

our @array = split(...) now deparses correctly with our in those
 cases where the
assignment is optimized away.

It now deparses our(LIST) and typed lexical (my Dog $spot) correctly.

Deparse $#_ as that instead of as $#{_}. [perl #123947]

BEGIN blocks at the end of the enclosing scope are now deparsed in the
 right place. [perl
#77452]

BEGIN blocks were sometimes deparsed as __ANON__, but are now always called
 BEGIN.

Lexical subroutines are now fully deparsed. [perl #116553]

Anything =~ y///r with /r no longer omits the left-hand operand.

The op trees that make up regexp code blocks are now deparsed for real.
 Formerly, the
original string that made up the regular expression was used.
 That caused problems with
qr/(?{<<heredoc})/ and multiline code blocks,
 which were deparsed incorrectly. [perl
#123217] [perl #115256]

Perl version 5.22.0 documentation - perldelta

Page 10http://perldoc.perl.org

$; at the end of a statement no longer loses its semicolon.
 [perl #123357]

Some cases of subroutine declarations stored in the stash in shorthand form
 were being
omitted.

Non-ASCII characters are now consistently escaped in strings, instead of
 some of the time.
(There are still outstanding problems with regular
 expressions and identifiers that have not
been fixed.)

When prototype sub calls are deparsed with & (e.g., under the -P
 option), scalar is now
added where appropriate, to force the scalar
 context implied by the prototype.

require(foo()), do(foo()), goto(foo()) and similar constructs with
 loop controls are
now deparsed correctly. The outer parentheses are not
 optional.

Whitespace is no longer escaped in regular expressions, because it was
 getting erroneously
escaped within (?x:...) sections.

sub foo { foo() } is now deparsed with those mandatory parentheses.

/@array/ is now deparsed as a regular expression, and not just @array.

/@{-}/, /@{+}/ and $#{1} are now deparsed with the braces, which
 are mandatory in
these cases.

In deparsing feature bundles, B::Deparse was emitting no feature; first
 instead of no
feature ':all';. This has been fixed.

chdir FH is now deparsed without quotation marks.

\my @a is now deparsed without parentheses. (Parenthese would flatten
 the array.)

system and exec followed by a block are now deparsed correctly.
 Formerly there was an
erroneous do before the block.

use constant QR => qr/.../flags followed by "" =~ QR is no longer
 without the
flags.

Deparsing BEGIN { undef &foo } with the -w switch enabled started to
 emit 'uninitialized'
warnings in Perl 5.14. This has been fixed.

Deparsing calls to subs with a (;+) prototype resulted in an infinite
 loop. The (;$) (_) and
(;_) prototypes were given the wrong
 precedence, causing foo($a<$b) to be deparsed
without the parentheses.

Deparse now provides a defined state sub in inner subs.

B::Op_private has been added.

B::Op_private provides detailed information about the flags used in the op_private field of
perl opcodes.

bigint, bignum, bigrat have been upgraded to version 0.39.

Document in CAVEATS that using strings as numbers won't always invoke
 the big number
overloading, and how to invoke it. [rt.perl.org #123064]

Carp has been upgraded to version 1.36.

Carp::Heavy now ignores version mismatches with Carp if Carp is newer
 than 1.12, since
Carp::Heavy's guts were merged into Carp at that
 point. [perl #121574]

Carp now handles non-ASCII platforms better.

Off-by-one error fix for Perl < 5.14.

constant has been upgraded to version 1.33.

It now accepts fully-qualified constant names, allowing constants to be defined
 in packages
other than the caller.

CPAN has been upgraded to version 2.11.

Perl version 5.22.0 documentation - perldelta

Page 11http://perldoc.perl.org

Add support for Cwd::getdcwd() and introduce workaround for a misbehavior
 seen on
Strawberry Perl 5.20.1.

Fix chdir() after building dependencies bug.

Introduce experimental support for plugins/hooks.

Integrate the App::Cpan sources.

Do not check recursion on optional dependencies.

Sanity check META.yml to contain a hash. [cpan #95271]

CPAN::Meta::Requirements has been upgraded to version 2.132.

Works around limitations in version::vpp detecting v-string magic and adds
 support for
forthcoming ExtUtils::MakeMaker bootstrap version.pm for
 Perls older than 5.10.0.

Data::Dumper has been upgraded to version 2.158.

Fixes CVE-2014-4330 by adding a configuration variable/option to limit
 recursion when
dumping deep data structures.

Changes to resolve Coverity issues.
 XS dumps incorrectly stored the name of code references
stored in a
 GLOB. [perl #122070]

DynaLoader has been upgraded to version 1.32.

Remove dl_nonlazy global if unused in Dynaloader. [perl #122926]

Encode has been upgraded to version 2.72.

piconv now has better error handling when the encoding name is nonexistent,
 and a build
breakage when upgrading Encode in perl-5.8.2 and earlier has
 been fixed.

Building in C++ mode on Windows now works.

Errno has been upgraded to version 1.23.

Add -P to the preprocessor command-line on GCC 5. GCC added extra
 line directives,
breaking parsing of error code definitions. [rt.perl.org
 #123784]

experimental has been upgraded to version 0.013.

Hardcodes features for Perls older than 5.15.7.

ExtUtils::CBuilder has been upgraded to version 0.280221.

Fixes a regression on Android. [perl #122675]

ExtUtils::Manifest has been upgraded to version 1.70.

Fixes a bug with maniread()'s handling of quoted filenames and improves manifind() to
follow symlinks. [perl #122415]

ExtUtils::ParseXS has been upgraded to version 3.28.

Only declare file unused if we actually define it.
 Improve generated RETVAL code
generation to avoid repeated
 references to ST(0). [perl #123278]
 Broaden and document the
/OBJ$/ to /REF$/ typemap optimization
 for the DESTROY method. [perl #123418]

Fcntl has been upgraded to version 1.13.

Add support for the Linux pipe buffer size fcntl() commands.

File::Find has been upgraded to version 1.29.

find() and finddepth() will now warn if passed inappropriate or
 misspelled options.

File::Glob has been upgraded to version 1.24.

Avoid SvIV() expanding to call get_sv() three times in a few
 places. [perl #123606]

Perl version 5.22.0 documentation - perldelta

Page 12http://perldoc.perl.org

HTTP::Tiny has been upgraded to version 0.054.

keep_alive is now fork-safe and thread-safe.

IO has been upgraded to version 1.35.

The XS implementation has been fixed for the sake of older Perls.

IO::Socket has been upgraded to version 1.38.

Document the limitations of the connected() method. [perl #123096]

IO::Socket::IP has been upgraded to version 0.37.

A better fix for subclassing connect(). [cpan #95983] [cpan #97050]

Implements Timeout for connect(). [cpan #92075]

The libnet collection of modules has been upgraded to version 3.05.

Support for IPv6 and SSL to Net::FTP, Net::NNTP, Net::POP3 and Net::SMTP.

Improvements in Net::SMTP authentication.

Locale::Codes has been upgraded to version 3.34.

Fixed a bug in the scripts used to extract data from spreadsheets that
 prevented the SHP
currency code from being found. [cpan #94229]

New codes have been added.

Math::BigInt has been upgraded to version 1.9997.

Synchronize POD changes from the CPAN release. Math::BigFloat->blog(x) would
sometimes return blog(2*x) when
 the accuracy was greater than 70 digits.
 The result of
Math::BigFloat->bdiv() in list context now
 satisfies x = quotient * divisor +
remainder.

Correct handling of subclasses. [cpan #96254] [cpan #96329]

Module::Metadata has been upgraded to version 1.000026.

Support installations on older perls with an ExtUtils::MakeMaker earlier
 than 6.63_03

overload has been upgraded to version 1.26.

A redundant ref $sub check has been removed.

The PathTools module collection has been upgraded to version 3.56.

A warning from the gcc compiler is now avoided when building the XS.

Don't turn leading // into / on Cygwin. [perl #122635]

perl5db.pl has been upgraded to version 1.49.

The debugger would cause an assertion failure. [perl #124127]

fork() in the debugger under tmux will now create a new window for
 the forked process.
[perl #121333]

The debugger now saves the current working directory on startup and
 restores it when you
restart your program with R or rerun. [perl #121509]

PerlIO::scalar has been upgraded to version 0.22.

Reading from a position well past the end of the scalar now correctly
 returns end of file. [perl
#123443]

Seeking to a negative position still fails, but no longer leaves the
 file position set to a negation
location.

eof() on a PerlIO::scalar handle now properly returns true when
 the file position is past
the 2GB mark on 32-bit systems.

Perl version 5.22.0 documentation - perldelta

Page 13http://perldoc.perl.org

Attempting to write at file positions impossible for the platform now
 fail early rather than
wrapping at 4GB.

Pod::Perldoc has been upgraded to version 3.25.

Filehandles opened for reading or writing now have :encoding(UTF-8) set. [cpan #98019]

POSIX has been upgraded to version 1.53.

The C99 math functions and constants (for example acosh, isinf, isnan, round, trunc;
M_E, M_SQRT2, M_PI) have been added.

POSIX::tmpnam() now produces a deprecation warning. [perl #122005]

Safe has been upgraded to version 2.39.

reval was not propagating void context properly.

Scalar-List-Utils has been upgraded to version 1.41.

A new module, Sub::Util, has been added, containing functions related to
 CODE refs,
including subname (inspired by Sub::Identity) and set_subname
 (copied and renamed
from Sub::Name).
 The use of GetMagic in List::Util::reduce() has also been fixed.
[cpan #63211]

SDBM_File has been upgraded to version 1.13.

Simplified the build process. [perl #123413]

Time::Piece has been upgraded to version 1.29.

When pretty printing negative Time::Seconds, the "minus" is no longer lost.

Unicode::Collate has been upgraded to version 1.12.

Version 0.67's improved discontiguous contractions is invalidated by default
 and is supported
as a parameter long_contraction.

Unicode::Normalize has been upgraded to version 1.18.

The XSUB implementation has been removed in favor of pure Perl.

Unicode::UCD has been upgraded to version 0.61.

A new function property_values()
 has been added to return a given property's possible values.

A new function charprop()
 has been added to return the value of a given property for a given
code
 point.

A new function charprops_all()
 has been added to return the values of all Unicode properties
for a
 given code point.

A bug has been fixed so that propaliases()
 returns the correct short and long names for the
Perl extensions where
 it was incorrect.

A bug has been fixed so that prop_value_aliases()
 returns undef instead of a wrong result for
properties that are Perl
 extensions.

This module now works on EBCDIC platforms.

utf8 has been upgraded to version 1.17

A mismatch between the documentation and the code in utf8::downgrade()
 was fixed in
favor of the documentation. The optional second argument
 is now correctly treated as a perl
boolean (true/false semantics) and
 not as an integer.

version has been upgraded to version 0.9909.

Numerous changes. See the Changes file in the CPAN distribution for
 details.

Win32 has been upgraded to version 0.51.

Perl version 5.22.0 documentation - perldelta

Page 14http://perldoc.perl.org

GetOSName() now supports Windows 8.1, and building in C++ mode now works.

Win32API::File has been upgraded to version 0.1202

Building in C++ mode now works.

XSLoader has been upgraded to version 0.20.

Allow XSLoader to load modules from a different namespace.
 [perl #122455]

Removed Modules and Pragmata
The following modules (and associated modules) have been removed from the core
 perl distribution:

CGI

Module::Build

Documentation
New Documentation
perlunicook

This document, by Tom Christiansen, provides examples of handling Unicode in
 Perl.

Changes to Existing Documentation
perlaix

A note on long doubles has been added.

perlapi

Note that SvSetSV doesn't do set magic.

sv_usepvn_flags - fix documentation to mention the use of Newx instead of malloc.

[perl #121869]

Clarify where NUL may be embedded or is required to terminate a string.

Some documentation that was previously missing due to formatting errors is
 now included.

Entries are now organized into groups rather than by the file where they
 are found.

Alphabetical sorting of entries is now done consistently (automatically
 by the POD generator)
to make entries easier to find when scanning.

perldata

The syntax of single-character variable names has been brought
 up-to-date and more fully
explained.

Hexadecimal floating point numbers are described, as are infinity and
 NaN.

perlebcdic

This document has been significantly updated in the light of recent
 improvements to EBCDIC
support.

perlfilter

Added a LIMITATIONS section.

perlfunc

Mention that study() is currently a no-op.

Calling delete or exists on array values is now described as "strongly
 discouraged" rather
than "deprecated".

Perl version 5.22.0 documentation - perldelta

Page 15http://perldoc.perl.org

Improve documentation of our.

-l now notes that it will return false if symlinks aren't supported by the
 file system. [perl
#121523]

Note that exec LIST and system LIST may fall back to the shell on
 Win32. Only the
indirect-object syntax exec PROGRAM LIST and system PROGRAM LIST will reliably avoid
using the shell.

This has also been noted in perlport.

[perl #122046]

perlguts

The OOK example has been updated to account for COW changes and a change in the

storage of the offset.

Details on C level symbols and libperl.t added.

Information on Unicode handling has been added

Information on EBCDIC handling has been added

perlhack

A note has been added about running on platforms with non-ASCII
 character sets

A note has been added about performance testing

perlhacktips

Documentation has been added illustrating the perils of assuming that
 there is no change to
the contents of static memory pointed to by the
 return values of Perl's wrappers for C library
functions.

Replacements for tmpfile, atoi, strtol, and strtoul are now
 recommended.

Updated documentation for the test.valgrind make target. [perl #121431]

Information is given about writing test files portably to non-ASCII
 platforms.

A note has been added about how to get a C language stack backtrace.

perlhpux

Note that the message "Redeclaration of "sendpath" with a different
 storage class specifier" is
harmless.

perllocale

Updated for the enhancements in v5.22, along with some clarifications.

perlmodstyle

Instead of pointing to the module list, we are now pointing to PrePAN.

perlop

Updated for the enhancements in v5.22, along with some clarifications.

perlpodspec

The specification of the pod language is changing so that the default
 encoding of pods that
aren't in UTF-8 (unless otherwise indicated) is
 CP1252 instead of ISO 8859-1 (Latin1).

perlpolicy

We now have a code of conduct for the p5p mailing list, as documented
 in "STANDARDS OF
CONDUCT" in perlpolicy.

Perl version 5.22.0 documentation - perldelta

Page 16http://perldoc.perl.org

The conditions for marking an experimental feature as non-experimental are now
 set out.

Clarification has been made as to what sorts of changes are permissible in
 maintenance
releases.

perlport

Out-of-date VMS-specific information has been fixed and/or simplified.

Notes about EBCDIC have been added.

perlre

The description of the /x modifier has been clarified to note that
 comments cannot be
continued onto the next line by escaping them; and
 there is now a list of all the characters that
are considered whitespace
 by this modifier.

The new /n modifier is described.

A note has been added on how to make bracketed character class ranges
 portable to
non-ASCII machines.

perlrebackslash

Added documentation of \b{sb}, \b{wb}, \b{gcb}, and \b{g}.

perlrecharclass

Clarifications have been added to "Character Ranges" in perlrecharclass
 to the effect [A-Z],
[a-z], [0-9] and
 any subranges thereof in regular expression bracketed character classes

are guaranteed to match exactly what a naive English speaker would
 expect them to match,
even on platforms (such as EBCDIC) where perl
 has to do extra work to accomplish this.

The documentation of Bracketed Character Classes has been expanded to cover the

improvements in qr/[\N{named sequence}]/ (see under Selected Bug Fixes).

perlref

A new section has been added Assigning to References

perlsec

Comments added on algorithmic complexity and tied hashes.

perlsyn

An ambiguity in the documentation of the ... statement has been corrected. [perl #122661]

The empty conditional in for and while is now documented
 in perlsyn.

perlunicode

This has had extensive revisions to bring it up-to-date with current
 Unicode support and to
make it more readable. Notable is that Unicode
 7.0 changed what it should do with
non-characters. Perl retains the old
 way of handling for reasons of backward compatibility.
See "Noncharacter code points" in perlunicode.

perluniintro

Advice for how to make sure your strings and regular expression patterns are
 interpreted as
Unicode has been updated.

perlvar

$] is no longer listed as being deprecated. Instead, discussion has
 been added on the
advantages and disadvantages of using it versus $^V.

${^ENCODING} is now marked as deprecated.

Perl version 5.22.0 documentation - perldelta

Page 17http://perldoc.perl.org

The entry for %^H has been clarified to indicate it can only handle
 simple values.

perlvms

Out-of-date and/or incorrect material has been removed.

Updated documentation on environment and shell interaction in VMS.

perlxs

Added a discussion of locale issues in XS code.

Diagnostics
The following additions or changes have been made to diagnostic output,
 including warnings and fatal
error messages. For the complete list of
 diagnostic messages, see perldiag.

New Diagnostics
New Errors

Bad symbol for scalar

(P) An internal request asked to add a scalar entry to something that
 wasn't a symbol table
entry.

Can't use a hash as a reference

(F) You tried to use a hash as a reference, as in %foo->{"bar"} or %$ref->{"hello"}.
Versions of perl <= 5.6.1
 used to allow this syntax, but shouldn't have.

Can't use an array as a reference

(F) You tried to use an array as a reference, as in @foo->[23] or @$ref->[99]. Versions of
perl <= 5.6.1 used to
 allow this syntax, but shouldn't have.

Can't use 'defined(@array)' (Maybe you should just omit the defined()?)

(F) defined() is not useful on arrays because it
 checks for an undefined scalar value. If you
want to see if the
 array is empty, just use if (@array) { # not empty } for example.

Can't use 'defined(%hash)' (Maybe you should just omit the defined()?)

(F) defined() is not usually right on hashes.

Although defined %hash is false on a plain not-yet-used hash, it
 becomes true in several
non-obvious circumstances, including iterators,
 weak references, stash names, even
remaining true after undef %hash.
 These things make defined %hash fairly useless in
practice, so it now
 generates a fatal error.

If a check for non-empty is what you wanted then just put it in boolean
 context (see "Scalar
values" in perldata):

 if (%hash) {
 # not empty
 }

If you had defined %Foo::Bar::QUUX to check whether such a package
 variable exists
then that's never really been reliable, and isn't
 a good way to enquire about the features of a
package, or whether
 it's loaded, etc.

Cannot chr %f

(F) You passed an invalid number (like an infinity or not-a-number) to chr.

Cannot compress %f in pack

(F) You tried converting an infinity or not-a-number to an unsigned
 character, which makes no
sense.

Perl version 5.22.0 documentation - perldelta

Page 18http://perldoc.perl.org

Cannot pack %f with '%c'

(F) You tried converting an infinity or not-a-number to a character,
 which makes no sense.

Cannot print %f with '%c'

(F) You tried printing an infinity or not-a-number as a character (%c),
 which makes no sense.
Maybe you meant '%s', or just stringifying it?

charnames alias definitions may not contain a sequence of multiple spaces

(F) You defined a character name which had multiple space
 characters in a row. Change them
to single spaces. Usually these
 names are defined in the :alias import argument to use
charnames, but
 they could be defined by a translator installed into $^H{charnames}.
 See
"CUSTOM ALIASES" in charnames.

charnames alias definitions may not contain trailing white-space

(F) You defined a character name which ended in a space
 character. Remove the trailing
space(s). Usually these names are
 defined in the :alias import argument to use
charnames, but they
 could be defined by a translator installed into $^H{charnames}.
 See
"CUSTOM ALIASES" in charnames.

:const is not permitted on named subroutines

(F) The const attribute causes an anonymous subroutine to be run and
 its value captured at
the time that it is cloned. Named subroutines are
 not cloned like this, so the attribute does not
make sense on them.

Hexadecimal float: internal error

(F) Something went horribly bad in hexadecimal float handling.

Hexadecimal float: unsupported long double format

(F) You have configured Perl to use long doubles but
 the internals of the long double format
are unknown,
 therefore the hexadecimal float output is impossible.

Illegal suidscript

(F) The script run under suidperl was somehow illegal.

In '(?...)', the '(' and '?' must be adjacent in regex; marked by <-- HERE in m/%s/

(F) The two-character sequence "(?" in
 this context in a regular expression pattern should be
an
 indivisible token, with nothing intervening between the "("
 and the "?", but you separated
them.

In '(*VERB...)', the '(' and '*' must be adjacent in regex; marked by <-- HERE in m/%s/

(F) The two-character sequence "(*" in
 this context in a regular expression pattern should be
an
 indivisible token, with nothing intervening between the "("
 and the "*", but you separated
them.

Invalid quantifier in {,} in regex; marked by <-- HERE in m/%s/

(F) The pattern looks like a {min,max} quantifier, but the min or max could not
 be parsed as a
valid number: either it has leading zeroes, or it represents
 too big a number to cope with. The
<-- HERE shows where in the regular
 expression the problem was discovered. See perlre.

'%s' is an unknown bound type in regex

(F) You used \b{...} or \B{...} and the ... is not known to
 Perl. The current valid ones
are given in "\b{}, \b, \B{}, \B" in perlrebackslash.

Missing or undefined argument to require

(F) You tried to call require with no argument or with an undefined
 value as an argument.
require expects either a package name or a
 file-specification as an argument. See "require"

Perl version 5.22.0 documentation - perldelta

Page 19http://perldoc.perl.org

in perlfunc.

Formerly, require with no argument or undef warned about a Null filename.

New Warnings

\C is deprecated in regex

(D deprecated) The /\C/ character class was deprecated in v5.20, and
 now emits a warning.
It is intended that it will become an error in v5.24.
 This character class matches a single byte
even if it appears within a
 multi-byte character, breaks encapsulation, and can corrupt UTF-8

strings.

"%s" is more clearly written simply as "%s" in regex; marked by <-- HERE in m/%s/

(W regexp) (only under use re 'strict' or within (?[...]))

You specified a character that has the given plainer way of writing it,
 and which is also
portable to platforms running with different character
 sets.

Argument "%s" treated as 0 in increment (++)

(W numeric) The indicated string was fed as an argument to the ++ operator
 which expects
either a number or a string matching /^[a-zA-Z]*[0-9]*\z/.
 See "Auto-increment and
Auto-decrement" in perlop for details.

Both or neither range ends should be Unicode in regex; marked by <-- HERE in m/%s/

(W regexp) (only under use re 'strict' or within (?[...]))

In a bracketed character class in a regular expression pattern, you
 had a range which has
exactly one end of it specified using \N{}, and
 the other end is specified using a non-portable
mechanism. Perl treats
 the range as a Unicode range, that is, all the characters in it are

considered to be the Unicode characters, and which may be different code
 points on some
platforms Perl runs on. For example, [\N{U+06}-\x08]
 is treated as if you had instead said
[\N{U+06}-\N{U+08}], that is it
 matches the characters whose code points in Unicode are
6, 7, and 8.
 But that \x08 might indicate that you meant something different, so
 the warning
gets raised.

Can't do %s("%s") on non-UTF-8 locale; resolved to "%s".

(W locale) You are 1) running under "use locale"; 2) the current
 locale is not a UTF-8 one;
3) you tried to do the designated case-change
 operation on the specified Unicode character;
and 4) the result of this
 operation would mix Unicode and locale rules, which likely conflict.

The warnings category locale is new.

:const is experimental

(S experimental::const_attr) The const attribute is experimental.
 If you want to use the
feature, disable the warning with no warnings
 'experimental::const_attr', but
know that in doing so you are taking
 the risk that your code may break in a future Perl version.

gmtime(%f) failed

(W overflow) You called gmtime with a number that it could not handle:
 too large, too small,
or NaN. The returned value is undef.

Hexadecimal float: exponent overflow

(W overflow) The hexadecimal floating point has larger exponent
 than the floating point
supports.

Hexadecimal float: exponent underflow

(W overflow) The hexadecimal floating point has smaller exponent
 than the floating point
supports.

Hexadecimal float: mantissa overflow

Perl version 5.22.0 documentation - perldelta

Page 20http://perldoc.perl.org

(W overflow) The hexadecimal floating point literal had more bits in
 the mantissa (the part
between the 0x and the exponent, also known as
 the fraction or the significand) than the
floating point supports.

Hexadecimal float: precision loss

(W overflow) The hexadecimal floating point had internally more
 digits than could be output.
This can be caused by unsupported
 long double formats, or by 64-bit integers not being
available
 (needed to retrieve the digits under some configurations).

Locale '%s' may not work well.%s

(W locale) You are using the named locale, which is a non-UTF-8 one, and
 which perl has
determined is not fully compatible with what it can
 handle. The second %s gives a reason.

The warnings category locale is new.

localtime(%f) failed

(W overflow) You called localtime with a number that it could not handle:
 too large, too
small, or NaN. The returned value is undef.

Negative repeat count does nothing

(W numeric) You tried to execute the x repetition operator fewer than 0
 times, which doesn't
make sense.

NO-BREAK SPACE in a charnames alias definition is deprecated

(D deprecated) You defined a character name which contained a no-break
 space character.
Change it to a regular space. Usually these names are
 defined in the :alias import
argument to use charnames, but they
 could be defined by a translator installed into
$^H{charnames}. See "CUSTOM ALIASES" in charnames.

Non-finite repeat count does nothing

(W numeric) You tried to execute the x repetition operator Inf (or -Inf) or NaN times, which
doesn't make sense.

PerlIO layer ':win32' is experimental

(S experimental::win32_perlio) The :win32 PerlIO layer is
 experimental. If you want to take
the risk of using this layer,
 simply disable this warning:

 no warnings "experimental::win32_perlio";

Ranges of ASCII printables should be some subset of "0-9", "A-Z", or "a-z" in regex; marked
by <-- HERE in m/%s/

(W regexp) (only under use re 'strict' or within (?[...]))

Stricter rules help to find typos and other errors. Perhaps you didn't
 even intend a range here,
if the "-" was meant to be some other
 character, or should have been escaped (like "\-"). If
you did
 intend a range, the one that was used is not portable between ASCII and
 EBCDIC
platforms, and doesn't have an obvious meaning to a casual
 reader.

 [3-7] # OK; Obvious and portable
 [d-g] # OK; Obvious and portable
 [A-Y] # OK; Obvious and portable
 [A-z] # WRONG; Not portable; not clear what is meant
 [a-Z] # WRONG; Not portable; not clear what is meant
 [%-.] # WRONG; Not portable; not clear what is meant
 [\x41-Z] # WRONG; Not portable; not obvious to non-geek

(You can force portability by specifying a Unicode range, which means that
 the endpoints are
specified by \N{...}, but the meaning may
 still not be obvious.)
 The stricter rules require

Perl version 5.22.0 documentation - perldelta

Page 21http://perldoc.perl.org

that ranges that start or stop with an ASCII
 character that is not a control have all their
endpoints be a literal
 character, and not some escape sequence (like "\x41"), and the
ranges
 must be all digits, or all uppercase letters, or all lowercase letters.

Ranges of digits should be from the same group in regex; marked by <-- HERE in m/%s/

(W regexp) (only under use re 'strict' or within (?[...]))

Stricter rules help to find typos and other errors. You included a
 range, and at least one of the
end points is a decimal digit. Under the
 stricter rules, when this happens, both end points
should be digits in
 the same group of 10 consecutive digits.

Redundant argument in %s

(W redundant) You called a function with more arguments than were
 needed, as indicated by
information within other arguments you supplied
 (e.g. a printf format). Currently only emitted
when a printf-type format
 required fewer arguments than were supplied, but might be used in
the
 future for e.g. "pack" in perlfunc.

The warnings category redundant is new. See also [perl #121025].

Replacement list is longer than search list

This is not a new diagnostic, but in earlier releases was accidentally
 not displayed if the
transliteration contained wide characters. This is
 now fixed, so that you may see this
diagnostic in places where you
 previously didn't (but should have).

Use of \b{} for non-UTF-8 locale is wrong. Assuming a UTF-8 locale

(W locale) You are matching a regular expression using locale rules,
 and a Unicode boundary
is being matched, but the locale is not a Unicode
 one. This doesn't make sense. Perl will
continue, assuming a Unicode
 (UTF-8) locale, but the results could well be wrong except if the
locale
 happens to be ISO-8859-1 (Latin1) where this message is spurious and can
 be ignored.

The warnings category locale is new.

Using /u for '%s' instead of /%s in regex; marked by <-- HERE in m/%s/

(W regexp) You used a Unicode boundary (\b{...} or \B{...}) in a
 portion of a regular
expression where the character set modifiers /a
 or /aa are in effect. These two modifiers
indicate an ASCII
 interpretation, and this doesn't make sense for a Unicode definition.
 The
generated regular expression will compile so that the boundary uses
 all of Unicode. No other
portion of the regular expression is affected.

The bitwise feature is experimental

(S experimental::bitwise) This warning is emitted if you use bitwise
 operators (& | ^ ~ &.
|. ^. ~.) with the "bitwise" feature enabled.
 Simply suppress the warning if you want to use
the feature, but know
 that in doing so you are taking the risk of using an experimental
 feature
which may change or be removed in a future Perl version:

 no warnings "experimental::bitwise";
 use feature "bitwise";
 $x |.= $y;

Unescaped left brace in regex is deprecated, passed through in regex; marked by <-- HERE in
m/%s/

(D deprecated, regexp) You used a literal "{" character in a regular
 expression pattern. You
should change to use "\{" instead, because a future
 version of Perl (tentatively v5.26) will
consider this to be a syntax error. If
 the pattern delimiters are also braces, any matching right
brace
 ("}") should also be escaped to avoid confusing the parser, for
 example,

 qr{abc\{def\}ghi}

Perl version 5.22.0 documentation - perldelta

Page 22http://perldoc.perl.org

Use of literal non-graphic characters in variable names is deprecated

(D deprecated) Using literal non-graphic (including control)
 characters in the source to refer to
the ^FOO variables, like $^X and ${^GLOBAL_PHASE} is now deprecated.

Useless use of attribute "const"

(W misc) The const attribute has no effect except
 on anonymous closure prototypes. You
applied it to
 a subroutine via attributes.pm. This is only useful
 inside an attribute handler for an
anonymous subroutine.

Useless use of /d modifier in transliteration operator

This is not a new diagnostic, but in earlier releases was accidentally
 not displayed if the
transliteration contained wide characters. This is
 now fixed, so that you may see this
diagnostic in places where you
 previously didn't (but should have).

"use re 'strict'" is experimental

(S experimental::re_strict) The things that are different when a regular
 expression pattern is
compiled under 'strict' are subject to change
 in future Perl releases in incompatible ways;
there are also proposals
 to change how to enable strict checking instead of using this
subpragma.
 This means that a pattern that compiles today may not in a future Perl
 release.
This warning is to alert you to that risk.

Warning: unable to close filehandle properly: %s

Warning: unable to close filehandle %s properly: %s

(S io) Previously, perl silently ignored any errors when doing an implicit
 close of a filehandle,
i.e. where the reference count of the filehandle
 reached zero and the user's code hadn't
already called close(); e.g.

 {
 open my $fh, '>', $file or die "open: '$file': $!\n";
 print $fh, $data or die;
 } # implicit close here

In a situation such as disk full, due to buffering, the error may only be
 detected during the final
close, so not checking the result of the close is
 dangerous.

So perl now warns in such situations.

Wide character (U+%X) in %s

(W locale) While in a single-byte locale (i.e., a non-UTF-8
 one), a multi-byte character was
encountered. Perl considers this
 character to be the specified Unicode code point. Combining
non-UTF-8
 locales and Unicode is dangerous. Almost certainly some characters
 will have two
different representations. For example, in the ISO 8859-7
 (Greek) locale, the code point 0xC3
represents a Capital Gamma. But so
 also does 0x393. This will make string comparisons
unreliable.

You likely need to figure out how this multi-byte character got mixed up
 with your single-byte
locale (or perhaps you thought you had a UTF-8
 locale, but Perl disagrees).

The warnings category locale is new.

Changes to Existing Diagnostics
<> should be quotes

This warning has been changed to <> at require-statement should be quotes
 to make the
issue more identifiable.

Argument "%s" isn't numeric%s

The perldiag entry for this warning has added this clarifying note:

Perl version 5.22.0 documentation - perldelta

Page 23http://perldoc.perl.org

 Note that for the Inf and NaN (infinity and not-a-number) the
 definition of "numeric" is somewhat unusual: the strings themselves
 (like "Inf") are considered numeric, and anything following them is
 considered non-numeric.

Global symbol "%s" requires explicit package name

This message has had '(did you forget to declare "my %s"?)' appended to it, to
 make it more
helpful to new Perl programmers. [perl #121638]

'"my" variable &foo::bar can't be in a package' has been reworded to say
 'subroutine' instead
of 'variable'.

\N{} in character class restricted to one character in regex; marked by <-- HERE in m/%s/

This message has had character class changed to inverted character
 class or as a range
end-point is to reflect improvements in qr/[\N{named sequence}]/ (see under Selected
Bug Fixes).

panic: frexp

This message has had ': %f' appended to it, to show what the offending
 floating point number
is.

Possible precedence problem on bitwise %c operator reworded as Possible precedence
problem on bitwise %s operator.

Unsuccessful %s on filename containing newline

This warning is now only produced when the newline is at the end of
 the filename.

"Variable %s will not stay shared" has been changed to say "Subroutine"
 when it is actually a
lexical sub that will not stay shared.

Variable length lookbehind not implemented in regex m/%s/

The perldiag entry for this warning has had information about Unicode
 behavior added.

Diagnostic Removals
"Ambiguous use of -foo resolved as -&foo()"

There is actually no ambiguity here, and this impedes the use of negated
 constants; e.g.,
-Inf.

"Constant is not a FOO reference"

Compile-time checking of constant dereferencing (e.g., my_constant->())
 has been
removed, since it was not taking overloading into account. [perl #69456] [perl #122607]

Utility Changes
find2perl, s2p and a2p removal

The x2p/ directory has been removed from the Perl core.

This removes find2perl, s2p and a2p. They have all been released to CPAN as
 separate
distributions (App::find2perl, App::s2p, App::a2p).

h2ph
h2ph now handles hexadecimal constants in the compiler's predefined
 macro definitions, as
visible in $Config{cppsymbols}. [perl #123784].

encguess
No longer depends on non-core modules.

Perl version 5.22.0 documentation - perldelta

Page 24http://perldoc.perl.org

Configuration and Compilation
Configure now checks for lrintl(), lroundl(), llrintl(), and llroundl().

Configure with -Dmksymlinks should now be faster. [perl #122002].

The pthreads and cl libraries will be linked by default if present.
 This allows XS modules
that require threading to work on non-threaded
 perls. Note that you must still pass
-Dusethreads if you want a
 threaded perl.

For long doubles (to get more precision and range for floating point numbers)
 one can now
use the GCC quadmath library which implements the quadruple
 precision floating point
numbers on x86 and IA-64 platforms. See INSTALL for details.

MurmurHash64A and MurmurHash64B can now be configured as the internal hash
 function.

make test.valgrind now supports parallel testing.

For example:

 TEST_JOBS=9 make test.valgrind

See "valgrind" in perlhacktips for more information.

[perl #121431]

The MAD (Misc Attribute Decoration) build option has been removed

This was an unmaintained attempt at preserving
 the Perl parse tree more faithfully so that
automatic conversion of
 Perl 5 to Perl 6 would have been easier.

This build-time configuration option had been unmaintained for years,
 and had probably
seriously diverged on both Perl 5 and Perl 6 sides.

A new compilation flag, -DPERL_OP_PARENT is available. For details,
 see the discussion
below at Internal Changes.

Pathtools no longer tries to load XS on miniperl. This speeds up building perl
 slightly.

Testing
t/porting/re_context.t has been added to test that utf8 and its
 dependencies only use the
subset of the $1..$n capture vars that Perl_save_re_context() is hard-coded to
localize, because that function
 has no efficient way of determining at runtime what vars to
localize.

Tests for performance issues have been added in the file t/perf/taint.t.

Some regular expression tests are written in such a way that they will
 run very slowly if certain
optimizations break. These tests have been
 moved into new files, t/re/speed.t and
t/re/speed_thr.t,
 and are run with a watchdog().

test.pl now allows plan skip_all => $reason, to make it
 more compatible with
Test::More.

A new test script, op/infnan.t, has been added to test if infinity and NaN are
 working correctly.
See Infinity and NaN (not-a-number) handling improved.

Platform Support
Regained Platforms

IRIX and Tru64 platforms are working again.

Some make test failures remain: [perl #123977]
 and [perl #125298]
 for IRIX; [perl #124212],
[cpan #99605], and [cpan #104836 for Tru64.

z/OS running EBCDIC Code Page 1047

Perl version 5.22.0 documentation - perldelta

Page 25http://perldoc.perl.org

Core perl now works on this EBCDIC platform. Earlier perls also worked, but,
 even though
support wasn't officially withdrawn, recent perls would not compile
 and run well. Perl 5.20
would work, but had many bugs which have now been
 fixed. Many CPAN modules that ship
with Perl still fail tests, including Pod::Simple. However the version of Pod::Simple
currently on CPAN should work;
 it was fixed too late to include in Perl 5.22. Work is under way
to fix many
 of the still-broken CPAN modules, which likely will be installed on CPAN when

completed, so that you may not have to wait until Perl 5.24 to get a working
 version.

Discontinued Platforms
NeXTSTEP/OPENSTEP

NeXTSTEP was a proprietary operating system bundled with NeXT's
 workstations in the early
to mid 90s; OPENSTEP was an API specification
 that provided a NeXTSTEP-like environment
on a non-NeXTSTEP system. Both
 are now long dead, so support for building Perl on them
has been removed.

Platform-Specific Notes
EBCDIC

Special handling is required of the perl interpreter on EBCDIC platforms
 to get qr/[i-j]/ to
match only "i" and "j", since there are 7
 characters between the
 code points for "i" and
"j". This special handling had only been
 invoked when both ends of the range are literals.
Now it is also
 invoked if any of the \N{...} forms for specifying a character by
 name or
Unicode code point is used instead of a literal. See "Character Ranges" in perlrecharclass.

HP-UX

The archname now distinguishes use64bitint from use64bitall.

Android

Build support has been improved for cross-compiling in general and for
 Android in particular.

VMS

When spawning a subprocess without waiting, the return value is now
 the correct PID.

Fix a prototype so linking doesn't fail under the VMS C++ compiler.

finite, finitel, and isfinite detection has been added to configure.com,
environment handling has had some minor changes, and
 a fix for legacy feature
checking status.

Win32

miniperl.exe is now built with -fno-strict-aliasing, allowing 64-bit
 builds to
complete on GCC 4.8. [perl #123976]

nmake minitest now works on Win32. Due to dependency issues you
 need to build
nmake test-prep first, and a small number of the
 tests fail. [perl #123394]

Perl can now be built in C++ mode on Windows by setting the makefile macro
USE_CPLUSPLUS to the value "define".

The list form of piped open has been implemented for Win32. Note: unlike system
LIST this does not fall back to the shell. [perl #121159]

New DebugSymbols and DebugFull configuration options added to
 Windows
makefiles.

Previously, compiling XS modules (including CPAN ones) using Visual C++ for
 Win64
resulted in around a dozen warnings per file from hv_func.h. These
 warnings have
been silenced.

Perl version 5.22.0 documentation - perldelta

Page 26http://perldoc.perl.org

Support for building without PerlIO has been removed from the Windows
 makefiles.
Non-PerlIO builds were all but deprecated in Perl 5.18.0 and are
 already not supported
by Configure on POSIX systems.

Between 2 and 6 milliseconds and seven I/O calls have been saved per attempt
 to
open a perl module for each path in @INC.

Intel C builds are now always built with C99 mode on.

%I64d is now being used instead of %lld for MinGW.

In the experimental :win32 layer, a crash in open was fixed. Also
 opening /dev/null
(which works under Win32 Perl's default :unix
 layer) was implemented for :win32.
[perl #122224]

A new makefile option, USE_LONG_DOUBLE, has been added to the Windows
 dmake
makefile for gcc builds only. Set this to "define" if you want perl to
 use long doubles to
give more accuracy and range for floating point numbers.

OpenBSD

On OpenBSD, Perl will now default to using the system malloc due to the
 security features it
provides. Perl's own malloc wrapper has been in use
 since v5.14 due to performance reasons,
but the OpenBSD project believes
 the tradeoff is worth it and would prefer that users who
need the speed
 specifically ask for it.

[perl #122000].

Solaris

We now look for the Sun Studio compiler in both /opt/solstudio* and /opt/solarisstudio*.

Builds on Solaris 10 with -Dusedtrace would fail early since make
 didn't follow
implied dependencies to build perldtrace.h. Added an
 explicit dependency to
depend. [perl #120120]

C99 options have been cleaned up; hints look for solstudio
 as well as SUNWspro;
and support for native setenv has been added.

Internal Changes
Experimental support has been added to allow ops in the optree to locate
 their parent, if any.
This is enabled by the non-default build option -DPERL_OP_PARENT. It is envisaged that this
will eventually become
 enabled by default, so XS code which directly accesses the
op_sibling
 field of ops should be updated to be future-proofed.

On PERL_OP_PARENT builds, the op_sibling field has been renamed op_sibparent and
a new flag, op_moresib, added. On the last op in a
 sibling chain, op_moresib is false and
op_sibparent points to the
 parent (if any) rather than being NULL.

To make existing code work transparently whether using PERL_OP_PARENT
 or not, a number
of new macros and functions have been added that should
 be used, rather than directly
manipulating op_sibling.

For the case of just reading op_sibling to determine the next sibling,
 two new macros have
been added. A simple scan through a sibling chain
 like this:

 for (; kid->op_sibling; kid = kid->op_sibling) { ... }

should now be written as:

 for (; OpHAS_SIBLING(kid); kid = OpSIBLING(kid)) { ... }

For altering optrees, a general-purpose function op_sibling_splice()
 has been added,
which allows for manipulation of a chain of sibling ops.
 By analogy with the Perl function

Perl version 5.22.0 documentation - perldelta

Page 27http://perldoc.perl.org

splice(), it allows you to cut out
 zero or more ops from a sibling chain and replace them
with zero or more
 new ops. It transparently handles all the updating of sibling, parent,
 op_last
pointers etc.

If you need to manipulate ops at a lower level, then three new macros, OpMORESIB_set,
OpLASTSIB_set and OpMAYBESIB_set are intended to
 be a low-level portable way to set
op_sibling / op_sibparent while
 also updating op_moresib. The first sets the sibling
pointer to a new
 sibling, the second makes the op the last sibling, and the third
 conditionally
does the first or second action. Note that unlike op_sibling_splice() these macros won't
maintain consistency in the
 parent at the same time (e.g. by updating op_first and
op_last where
 appropriate).

A C-level Perl_op_parent() function and a Perl-level B::OP::parent()
 method have
been added. The C function only exists under PERL_OP_PARENT builds (using it is build-time
error on vanilla
 perls). B::OP::parent() exists always, but on a vanilla build it
 always
returns NULL. Under PERL_OP_PARENT, they return the parent
 of the current op, if any. The
variable $B::OP::does_parent allows you
 to determine whether B supports retrieving an
op's parent.

PERL_OP_PARENT was introduced in 5.21.2, but the interface was
 changed considerably in
5.21.11. If you updated your code before the
 5.21.11 changes, it may require further revision.
The main changes after
 5.21.2 were:

The OP_SIBLING and OP_HAS_SIBLING macros have been renamed OpSIBLING
and OpHAS_SIBLING for consistency with other
 op-manipulating macros.

The op_lastsib field has been renamed op_moresib, and its meaning
 inverted.

The macro OpSIBLING_set has been removed, and has been superseded by
OpMORESIB_set et al.

The op_sibling_splice() function now accepts a null parent argument
 where
the splicing doesn't affect the first or last ops in the sibling
 chain

Macros have been created to allow XS code to better manipulate the POSIX locale
 category
LC_NUMERIC. See "Locale-related functions and macros" in perlapi.

The previous atoi et al replacement function, grok_atou, has now been
 superseded by
grok_atoUV. See perlclib for details.

A new function, Perl_sv_get_backrefs(), has been added which allows you
 retrieve the
weak references, if any, which point at an SV.

The screaminstr() function has been removed. Although marked as
 public API, it was
undocumented and had no usage in CPAN modules. Calling
 it has been fatal since 5.17.0.

The newDEFSVOP(), block_start(), block_end() and intro_my()
 functions have
been added to the API.

The internal convert function in op.c has been renamed op_convert_list and added to
the API.

The sv_magic() function no longer forbids "ext" magic on read-only
 values. After all, perl
can't know whether the custom magic will modify
 the SV or not. [perl #123103].

Accessing "CvPADLIST" in perlapi on an XSUB is now forbidden.

The CvPADLIST field has been reused for a different internal purpose
 for XSUBs. So in
particular, you can no longer rely on it being NULL as a
 test of whether a CV is an XSUB. Use
CvISXSUB() instead.

SVs of type SVt_NV are now sometimes bodiless when the build
 configuration and platform
allow it: specifically, when sizeof(NV) <=
 sizeof(IV). "Bodiless" means that the NV

Perl version 5.22.0 documentation - perldelta

Page 28http://perldoc.perl.org

value is stored directly in
 the head of an SV, without requiring a separate body to be allocated.
This
 trick has already been used for IVs since 5.9.2 (though in the case of
 IVs, it is always
used, regardless of platform and build configuration).

The $DB::single, $DB::signal and $DB::trace variables now have set- and
 get-magic
that stores their values as IVs, and those IVs are used when
 testing their values in
pp_dbstate(). This prevents perl from
 recursing infinitely if an overloaded object is
assigned to any of those
 variables. [perl #122445].

Perl_tmps_grow(), which is marked as public API but is undocumented, has
 been
removed from the public API. This change does not affect XS code that
 uses the
EXTEND_MORTAL macro to pre-extend the mortal stack.

Perl's internals no longer sets or uses the SVs_PADMY flag. SvPADMY() now returns a true
value for anything not marked PADTMP
 and SVs_PADMY is now defined as 0.

The macros SETsv and SETsvUN have been removed. They were no longer used
 in the core
since commit 6f1401dc2a five years ago, and have not been
 found present on CPAN.

The SvFAKE bit (unused on HVs) got informally reserved by
 David Mitchell for future work on
vtables.

The sv_catpvn_flags() function accepts SV_CATBYTES and SV_CATUTF8
 flags, which
specify whether the appended string is bytes or UTF-8,
 respectively. (These flags have in fact
been present since 5.16.0, but
 were formerly not regarded as part of the API.)

A new opcode class, METHOP, has been introduced. It holds
 information used at runtime to
improve the performance
 of class/object method calls.

OP_METHOD and OP_METHOD_NAMED have changed from being UNOP/SVOP to being METHOP
.

cv_name() is a new API function that can be passed a CV or GV. It
 returns an SV containing
the name of the subroutine, for use in
 diagnostics.

[perl #116735] [perl #120441]

cv_set_call_checker_flags() is a new API function that works like
cv_set_call_checker(), except that it allows the caller to specify
 whether the call
checker requires a full GV for reporting the subroutine's
 name, or whether it could be passed a
CV instead. Whatever value is
 passed will be acceptable to cv_name().
cv_set_call_checker()
 guarantees there will be a GV, but it may have to create one on
the fly,
 which is inefficient. [perl #116735]

CvGV (which is not part of the API) is now a more complex macro, which may
 call a function
and reify a GV. For those cases where it has been used as a
 boolean, CvHASGV has been
added, which will return true for CVs that
 notionally have GVs, but without reifying the GV.
CvGV also returns a GV
 now for lexical subs. [perl #120441]

The "sync_locale" in perlapi function has been added to the public API.
 Changing the
program's locale should be avoided by XS code. Nevertheless,
 certain non-Perl libraries called
from XS need to do so, such as Gtk.
 When this happens, Perl needs to be told that the locale
has
 changed. Use this function to do so, before returning to Perl.

The defines and labels for the flags in the op_private field of OPs are now
 auto-generated
from data in regen/op_private. The noticeable effect of this
 is that some of the flag output of
Concise might differ slightly, and the
 flag output of perl -Dx may differ considerably (they
both use the same set
 of labels now). Also, debugging builds now have a new assertion in
op_free() to ensure that the op doesn't have any unrecognized flags set in op_private.

The deprecated variable PL_sv_objcount has been removed.

Perl version 5.22.0 documentation - perldelta

Page 29http://perldoc.perl.org

Perl now tries to keep the locale category LC_NUMERIC set to "C"
 except around operations
that need it to be set to the program's
 underlying locale. This protects the many XS modules
that cannot cope
 with the decimal radix character not being a dot. Prior to this
 release, Perl
initialized this category to "C", but a call to POSIX::setlocale() would change it. Now
such a call will change the
 underlying locale of the LC_NUMERIC category for the program, but
the
 locale exposed to XS code will remain "C". There are new macros
 to manipulate the
LC_NUMERIC locale, including STORE_LC_NUMERIC_SET_TO_NEEDED and
STORE_LC_NUMERIC_FORCE_TO_UNDERLYING.
 See "Locale-related functions and macros"
in perlapi.

A new macro isUTF8_CHAR has been written which
 efficiently determines if the string given
by its parameters begins
 with a well-formed UTF-8 encoded character.

The following private API functions had their context parameter removed: Perl_cast_ulong
, Perl_cast_i32, Perl_cast_iv, Perl_cast_uv, Perl_cv_const_sv,
Perl_mg_find, Perl_mg_findext, Perl_mg_magical, Perl_mini_mktime,
Perl_my_dirfd, Perl_sv_backoff, Perl_utf8_hop.

Note that the prefix-less versions of those functions that are part of the
 public API, such as
cast_i32(), remain unaffected.

The PADNAME and PADNAMELIST types are now separate types, and no
 longer simply aliases
for SV and AV. [perl #123223].

Pad names are now always UTF-8. The PadnameUTF8 macro always returns
 true. Previously,
this was effectively the case already, but any support
 for two different internal representations
of pad names has now been
 removed.

A new op class, UNOP_AUX, has been added. This is a subclass of UNOP with an op_aux field
added, which points to an array of unions
 of UV, SV* etc. It is intended for where an op needs
to store more data
 than a simple op_sv or whatever. Currently the only op of this type is
OP_MULTIDEREF (see next item).

A new op has been added, OP_MULTIDEREF, which performs one or more
 nested array and
hash lookups where the key is a constant or simple
 variable. For example the expression
$a[0]{$k}[$i], which previously
 involved ten rv2Xv, Xelem, gvsv and const ops is now
performed
 by a single multideref op. It can also handle local, exists and delete. A
non-simple index expression, such as [$i+1] is still done
 using aelem/helem, and
single-level array lookup with a small constant
 index is still done using aelemfast.

Selected Bug Fixes
close now sets $!

When an I/O error occurs, the fact that there has been an error is recorded
 in the handle.
close returns false for such a handle. Previously, the
 value of $! would be untouched by
close, so the common convention of
 writing close $fh or die $! did not work reliably.
Now the handle
 records the value of $!, too, and close restores it.

no re now can turn off everything that use re enables

Previously, running no re would turn off only a few things. Now it
 can turn off all the enabled
things. For example, the only way to
 stop debugging, once enabled, was to exit the enclosing
block; that is
 now fixed.

pack("D", $x) and pack("F", $x) now zero the padding on x86 long
 double builds.
Under some build options on GCC 4.8 and later, they used
 to either overwrite the
zero-initialized padding, or bypass the
 initialized buffer entirely. This caused op/pack.t to fail.
[perl #123971]

Extending an array cloned from a parent thread could result in "Modification of
 a read-only
value attempted" errors when attempting to modify the new elements. [perl #124127]

Perl version 5.22.0 documentation - perldelta

Page 30http://perldoc.perl.org

An assertion failure and subsequent crash with *x=<y> has been fixed. [perl #123790]

A possible crashing/looping bug related to compiling lexical subs has been
 fixed. [perl
#124099]

UTF-8 now works correctly in function names, in unquoted HERE-document
 terminators, and
in variable names used as array indexes. [perl #124113]

Repeated global pattern matches in scalar context on large tainted strings were
 exponentially
slow depending on the current match position in the string. [perl #123202]

Various crashes due to the parser getting confused by syntax errors have been
 fixed. [perl
#123801] [perl #123802] [perl #123955] [perl #123995]

split in the scope of lexical $_ has been fixed not to fail assertions. [perl #123763]

my $x : attr syntax inside various list operators no longer fails
 assertions. [perl #123817]

An @ sign in quotes followed by a non-ASCII digit (which is not a valid
 identifier) would cause
the parser to crash, instead of simply trying the @ as literal. This has been fixed. [perl
#123963]

*bar::=*foo::=*glob_with_hash has been crashing since Perl 5.14, but no
 longer
does. [perl #123847]

foreach in scalar context was not pushing an item on to the stack, resulting
 in bugs. (print
 4, scalar do { foreach(@x){} } + 1 would print 5.)
 It has been fixed to return
undef. [perl #124004]

Several cases of data used to store environment variable contents in core C
 code being
potentially overwritten before being used have been fixed. [perl #123748]

Some patterns starting with /.*..../ matched against long strings have
 been slow since
v5.8, and some of the form /.*..../i have been slow
 since v5.18. They are now all fast
again. [perl #123743].

The original visible value of $/ is now preserved when it is set to
 an invalid value. Previously if
you set $/ to a reference to an
 array, for example, perl would produce a runtime error and not
set PL_rs, but Perl code that checked $/ would see the array
 reference. [perl #123218].

In a regular expression pattern, a POSIX class, like [:ascii:], must
 be inside a bracketed
character class, like qr/[[:ascii:]]/. A
 warning is issued when something looking like a
POSIX class is not
 inside a bracketed class. That warning wasn't getting generated when
 the
POSIX class was negated: [:^ascii:]. This is now fixed.

Perl 5.14.0 introduced a bug whereby eval { LABEL: } would crash. This
 has been fixed.
[perl #123652].

Various crashes due to the parser getting confused by syntax errors have
 been fixed. [perl
#123617]. [perl #123737]. [perl #123753]. [perl #123677].

Code like /$a[/ used to read the next line of input and treat it as
 though it came immediately
after the opening bracket. Some invalid code
 consequently would parse and run, but some
code caused crashes, so this is
 now disallowed. [perl #123712].

Fix argument underflow for pack. [perl #123874].

Fix handling of non-strict \x{}. Now \x{} is equivalent to \x{0}
 instead of faulting.

stat -t is now no longer treated as stackable, just like -t stat. [perl #123816].

The following no longer causes a SEGV: qr{x+(y(?0))*}.

Perl version 5.22.0 documentation - perldelta

Page 31http://perldoc.perl.org

Fixed infinite loop in parsing backrefs in regexp patterns.

Several minor bug fixes in behavior of Infinity and NaN, including
 warnings when stringifying
Infinity-like or NaN-like strings. For example,
 "NaNcy" doesn't numify to NaN anymore.

A bug in regular expression patterns that could lead to segfaults and
 other crashes has been
fixed. This occurred only in patterns compiled
 with /i while taking into account the current
POSIX locale (which usually
 means they have to be compiled within the scope of use
locale),
 and there must be a string of at least 128 consecutive bytes to match. [perl
#123539].

s///g now works on very long strings (where there are more than 2
 billion iterations) instead
of dying with 'Substitution loop'. [perl #103260]. [perl #123071].

gmtime no longer crashes with not-a-number values. [perl #123495].

\() (a reference to an empty list), and y/// with lexical $_ in
 scope, could both do a bad
write past the end of the stack. They have
 both been fixed to extend the stack first.

prototype() with no arguments used to read the previous item on the
 stack, so print
"foo", prototype() would print foo's prototype.
 It has been fixed to infer $_ instead. [perl
#123514].

Some cases of lexical state subs declared inside predeclared subs could
 crash, for example
when evalling a string including the name of an outer
 variable, but no longer do.

Some cases of nested lexical state subs inside anonymous subs could cause
 'Bizarre copy'
errors or possibly even crashes.

When trying to emit warnings, perl's default debugger (perl5db.pl) was
 sometimes giving
'Undefined subroutine &DB::db_warn called' instead. This
 bug, which started to occur in Perl
5.18, has been fixed. [perl #123553].

Certain syntax errors in substitutions, such as s/${<>{})//, would
 crash, and had done so
since Perl 5.10. (In some cases the crash did not
 start happening till 5.16.) The crash has, of
course, been fixed. [perl #123542].

Fix a couple of string grow size calculation overflows; in particular,
 a repeat expression like 33
 x ~3 could cause a large buffer
 overflow since the new output buffer size was not correctly
handled by SvGROW(). An expression like this now properly produces a memory wrap
 panic.
[perl #123554].

formline("@...", "a"); would crash. The FF_CHECKNL case in pp_formline() didn't
set the pointer used to mark the chop position,
 which led to the FF_MORE case crashing with a
segmentation fault.
 This has been fixed. [perl #123538].

A possible buffer overrun and crash when parsing a literal pattern during
 regular expression
compilation has been fixed. [perl #123604].

fchmod() and futimes() now set $! when they fail due to being
 passed a closed file
handle. [perl #122703].

op_free() and scalarvoid() no longer crash due to a stack overflow
 when freeing a
deeply recursive op tree. [perl #108276].

In Perl 5.20.0, $^N accidentally had the internal UTF-8 flag turned off
 if accessed from a code
block within a regular expression, effectively
 UTF-8-encoding the value. This has been fixed.
[perl #123135].

A failed semctl call no longer overwrites existing items on the stack,
 which means that
(semctl(-1,0,0,0))[0] no longer gives an
 "uninitialized" warning.

Perl version 5.22.0 documentation - perldelta

Page 32http://perldoc.perl.org

else{foo()} with no space before foo is now better at assigning the
 right line number to
that statement. [perl #122695].

Sometimes the assignment in @array = split gets optimised so that split
 itself writes
directly to the array. This caused a bug, preventing this
 assignment from being used in lvalue
context. So (@a=split//,"foo")=bar() was an error. (This bug probably goes back to

Perl 3, when the optimisation was added.) It has now been fixed. [perl #123057].

When an argument list fails the checks specified by a subroutine
 signature (which is still an
experimental feature), the resulting error
 messages now give the file and line number of the
caller, not of the
 called subroutine. [perl #121374].

The flip-flop operators (.. and ... in scalar context) used to maintain
 a separate state for
each recursion level (the number of times the
 enclosing sub was called recursively), contrary
to the documentation. Now
 each closure has one internal state for each flip-flop. [perl
#122829].

The flip-flop operator (.. in scalar context) would return the same
 scalar each time, unless the
containing subroutine was called recursively.
 Now it always returns a new scalar. [perl
#122829].

use, no, statement labels, special blocks (BEGIN) and pod are now
 permitted as the first thing
in a map or grep block, the block after print or say (or other functions) returning a handle,
and within ${...}, @{...}, etc. [perl #122782].

The repetition operator x now propagates lvalue context to its left-hand
 argument when used
in contexts like foreach. That allows for(($#that_array)x2) { ... } to work as
expected if the loop modifies $_.

(...) x ... in scalar context used to corrupt the stack if one operand
 was an object with
"x" overloading, causing erratic behavior. [perl #121827].

Assignment to a lexical scalar is often optimised away; for example in my $x; $x = $y +
$z, the assign operator is optimised away and the add
 operator writes its result directly to $x.
Various bugs related to
 this optimisation have been fixed. Certain operators on the right-hand

side would sometimes fail to assign the value at all or assign the wrong
 value, or would call
STORE twice or not at all on tied variables. The
 operators affected were $foo++, $foo--,
and -$foo under use
 integer, chomp, chr and setpgrp.

List assignments were sometimes buggy if the same scalar ended up on both
 sides of the
assignment due to use of tied, values or each. The
 result would be the wrong value getting
assigned.

setpgrp($nonzero) (with one argument) was accidentally changed in 5.16
 to mean
setpgrp(0). This has been fixed.

__SUB__ could return the wrong value or even corrupt memory under the
 debugger (the -d
switch) and in subs containing eval $string.

When sub () { $var } becomes inlinable, it now returns a different
 scalar each time, just
as a non-inlinable sub would, though Perl still
 optimises the copy away in cases where it
would make no observable
 difference.

my sub f () { $var } and sub () : attr { $var } are no longer
 eligible for
inlining. The former would crash; the latter would just
 throw the attributes away. An exception
is made for the little-known :method attribute, which does nothing much.

Inlining of subs with an empty prototype is now more consistent than
 before. Previously, a sub
with multiple statements, of which all but the last
 were optimised away, would be inlinable only
if it were an anonymous sub
 containing a string eval or state declaration or closing over an

outer lexical variable (or any anonymous sub under the debugger). Now any
 sub that gets

Perl version 5.22.0 documentation - perldelta

Page 33http://perldoc.perl.org

folded to a single constant after statements have been
 optimised away is eligible for inlining.
This applies to things like sub
 () { jabber() if DEBUG; 42 }.

Some subroutines with an explicit return were being made inlinable,
 contrary to the
documentation, Now return always prevents inlining.

On some systems, such as VMS, crypt can return a non-ASCII string. If a
 scalar assigned to
had contained a UTF-8 string previously, then crypt
 would not turn off the UTF-8 flag, thus
corrupting the return value. This
 would happen with $lexical = crypt

crypt no longer calls FETCH twice on a tied first argument.

An unterminated here-doc on the last line of a quote-like operator
 (qq[${ <<END }], /(?{
<<END })/) no longer causes a double free. It
 started doing so in 5.18.

index() and rindex() no longer crash when used on strings over 2GB in
 size. [perl
#121562].

A small, previously intentional, memory leak in PERL_SYS_INIT/PERL_SYS_INIT3 on Win32
builds was fixed. This might
 affect embedders who repeatedly create and destroy perl engines
within
 the same process.

POSIX::localeconv() now returns the data for the program's underlying
 locale even when
called from outside the scope of use locale.

POSIX::localeconv() now works properly on platforms which don't have LC_NUMERIC
and/or LC_MONETARY, or for which Perl has been compiled
 to disregard either or both of these
locale categories. In such
 circumstances, there are now no entries for the corresponding
values in
 the hash returned by localeconv().

POSIX::localeconv() now marks appropriately the values it returns as
 UTF-8 or not.
Previously they were always returned as bytes, even if
 they were supposed to be encoded as
UTF-8.

On Microsoft Windows, within the scope of use locale, the following
 POSIX character
classes gave results for many locales that did not
 conform to the POSIX standard:
[[:alnum:]], [[:alpha:]], [[:blank:]], [[:digit:]], [[:graph:]],
[[:lower:]], [[:print:]], [[:punct:]], [[:upper:]], [[:word:]],
 and
[[:xdigit:]].
 This was because the underlying Microsoft implementation does not
 follow
the standard. Perl now takes special precautions to correct for
 this.

Many issues have been detected by Coverity and
 fixed.

system() and friends should now work properly on more Android builds.

Due to an oversight, the value specified through -Dtargetsh to Configure
 would end up
being ignored by some of the build process. This caused perls
 cross-compiled for Android to
end up with defective versions of system(), exec() and backticks: the commands would
end up looking for /bin/sh
 instead of /system/bin/sh, and so would fail for the vast
majority
 of devices, leaving $! as ENOENT.

qr(...\(...\)...), qr[...\[...\]...],
 and qr{...\{...\}...}
 now work.
Previously it was impossible to escape these three
 left-characters with a backslash within a
regular expression pattern
 where otherwise they would be considered metacharacters, and
the pattern
 opening delimiter was the character, and the closing delimiter was its
 mirror
character.

s///e on tainted UTF-8 strings corrupted pos(). This bug,
 introduced in 5.20, is now fixed.
[perl #122148].

A non-word boundary in a regular expression (\B) did not always
 match the end of the string;
in particular q{} =~ /\B/ did not
 match. This bug, introduced in perl 5.14, is now fixed. [perl

Perl version 5.22.0 documentation - perldelta

Page 34http://perldoc.perl.org

#122090].

" P" =~ /(?=.*P)P/ should match, but did not. This is now fixed. [perl #122171].

Failing to compile use Foo in an eval could leave a spurious BEGIN subroutine definition,
which would produce a "Subroutine
 BEGIN redefined" warning on the next use of use, or
other BEGIN
 block. [perl #122107].

method { BLOCK } ARGS syntax now correctly parses the arguments if they
 begin with an
opening brace. [perl #46947].

External libraries and Perl may have different ideas of what the locale is.
 This is problematic
when parsing version strings if the locale's numeric
 separator has been changed. Version
parsing has been patched to ensure
 it handles the locales correctly. [perl #121930].

A bug has been fixed where zero-length assertions and code blocks inside of a
 regex could
cause pos to see an incorrect value. [perl #122460].

Dereferencing of constants now works correctly for typeglob constants. Previously
 the glob
was stringified and its name looked up. Now the glob itself is used. [perl #69456]

When parsing a sigil ($ @ % &) followed by braces,
 the parser no
 longer tries to guess whether
it is a block or a hash constructor (causing a
 syntax error when it guesses the latter), since it
can only be a block.

undef $reference now frees the referent immediately, instead of hanging on
 to it until the
next statement. [perl #122556]

Various cases where the name of a sub is used (autoload, overloading, error
 messages) used
to crash for lexical subs, but have been fixed.

Bareword lookup now tries to avoid vivifying packages if it turns out the
 bareword is not going
to be a subroutine name.

Compilation of anonymous constants (e.g., sub () { 3 }) no longer deletes
 any subroutine
named __ANON__ in the current package. Not only was *__ANON__{CODE} cleared, but
there was a memory leak, too. This bug goes
 back to Perl 5.8.0.

Stub declarations like sub f; and sub f (); no longer wipe out constants
 of the same
name declared by use constant. This bug was introduced in Perl
 5.10.0.

qr/[\N{named sequence}]/ now works properly in many instances.

Some names
 known to \N{...} refer to a sequence of multiple characters, instead of the

usual single character. Bracketed character classes generally only match
 single characters,
but now special handling has been added so that they can
 match named sequences, but not if
the class is inverted or the sequence is
 specified as the beginning or end of a range. In these
cases, the only
 behavior change from before is a slight rewording of the fatal error message

given when this class is part of a ?[...]) construct. When the [...]
 stands alone, the
same non-fatal warning as before is raised, and only the
 first character in the sequence is
used, again just as before.

Tainted constants evaluated at compile time no longer cause unrelated
 statements to become
tainted. [perl #122669]

open $$fh, ..., which vivifies a handle with a name like "main::_GEN_0", was not
giving the handle the right reference count, so
 a double free could happen.

When deciding that a bareword was a method name, the parser would get confused
 if an our
sub with the same name existed, and look up the method in the
 package of the our sub,
instead of the package of the invocant.

Perl version 5.22.0 documentation - perldelta

Page 35http://perldoc.perl.org

The parser no longer gets confused by \U= within a double-quoted string. It
 used to produce a
syntax error, but now compiles it correctly. [perl #80368]

It has always been the intention for the -B and -T file test operators to
 treat UTF-8 encoded
files as text. (perlfunc has
 been updated to say this.) Previously, it was possible for some files
to be
 considered UTF-8 that actually weren't valid UTF-8. This is now fixed. The
 operators
now work on EBCDIC platforms as well.

Under some conditions warning messages raised during regular expression pattern

compilation were being output more than once. This has now been fixed.

Perl 5.20.0 introduced a regression in which a UTF-8 encoded regular
 expression pattern that
contains a single ASCII lowercase letter did not
 match its uppercase counterpart. That has
been fixed in both 5.20.1 and
 5.22.0. [perl #122655]

Constant folding could incorrectly suppress warnings if lexical warnings
 (use warnings or
no warnings) were not in effect and $^W were
 false at compile time and true at run time.

Loading Unicode tables during a regular expression match could cause assertion
 failures
under debugging builds if the previous match used the very same
 regular expression. [perl
#122747]

Thread cloning used to work incorrectly for lexical subs, possibly causing
 crashes or double
frees on exit.

Since Perl 5.14.0, deleting $SomePackage::{__ANON__} and then undefining an

anonymous subroutine could corrupt things internally, resulting in Devel::Peek crashing or
B.pm giving nonsensical data. This has been
 fixed.

(caller $n)[3] now reports names of lexical subs, instead of
 treating them as
"(unknown)".

sort subname LIST now supports using a lexical sub as the comparison
 routine.

Aliasing (e.g., via *x = *y) could confuse list assignments that mention the
 two names for
the same variable on either side, causing wrong values to be
 assigned. [perl #15667]

Long here-doc terminators could cause a bad read on short lines of input. This
 has been fixed.
It is doubtful that any crash could have occurred. This bug
 goes back to when here-docs were
introduced in Perl 3.000 twenty-five years
 ago.

An optimization in split to treat split /^/ like split /^/m had the
 unfortunate
side-effect of also treating split /\A/ like split /^/m,
 which it should not. This has been
fixed. (Note, however, that split /^x/
 does not behave like split /^x/m, which is also
considered to be a bug and
 will be fixed in a future version.) [perl #122761]

The little-known my Class $var syntax (see fields and attributes)
 could get confused in the
scope of use utf8 if Class were a constant
 whose value contained Latin-1 characters.

Locking and unlocking values via Hash::Util or Internals::SvREADONLY
 no longer has any
effect on values that were read-only to begin with.
 Previously, unlocking such values could
result in crashes, hangs or
 other erratic behavior.

Some unterminated (?(...)...) constructs in regular expressions would
 either crash or
give erroneous error messages. /(?(1)/ is one such
 example.

pack "w", $tied no longer calls FETCH twice.

List assignments like ($x, $z) = (1, $y) now work correctly if $x and $y have been
aliased by foreach.

Some patterns including code blocks with syntax errors, such as / (?{(^{})/, would hang

Perl version 5.22.0 documentation - perldelta

Page 36http://perldoc.perl.org

or fail assertions on debugging builds. Now
 they produce errors.

An assertion failure when parsing sort with debugging enabled has been
 fixed. [perl
#122771].

*a = *b; @a = split //, $b[1] could do a bad read and produce junk
 results.

In () = @array = split, the () = at the beginning no longer confuses
 the optimizer into
assuming a limit of 1.

Fatal warnings no longer prevent the output of syntax errors. [perl #122966].

Fixed a NaN double-to-long-double conversion error on VMS. For quiet NaNs
 (and only on
Itanium, not Alpha) negative infinity instead of NaN was
 produced.

Fixed the issue that caused make distclean to incorrectly leave some
 files behind. [perl
#122820].

AIX now sets the length in getsockopt correctly. [perl #120835]. [cpan #91183]. [cpan
#85570].

The optimization phase of a regexp compilation could run "forever" and
 exhaust all memory
under certain circumstances; now fixed. [perl #122283].

The test script t/op/crypt.t now uses the SHA-256 algorithm if the
 default one is disabled,
rather than giving failures. [perl #121591].

Fixed an off-by-one error when setting the size of a shared array. [perl #122950].

Fixed a bug that could cause perl to enter an infinite loop during
 compilation. In particular, a
while(1) within a sublist, e.g.

 sub foo { () = ($a, my $b, ($c, do { while(1) {} })) }

The bug was introduced in 5.20.0 [perl #122995].

On Win32, if a variable was local-ized in a pseudo-process that later
 forked, restoring the
original value in the child pseudo-process caused
 memory corruption and a crash in the child
pseudo-process (and therefore the
 OS process). [perl #40565].

Calling write on a format with a ^** field could produce a panic
 in sv_chop() if there were
insufficient arguments or if the variable
 used to fill the field was empty. [perl #123245].

Non-ASCII lexical sub names now appear without trailing junk when they
 appear in error
messages.

The \@ subroutine prototype no longer flattens parenthesized arrays
 (taking a reference to
each element), but takes a reference to the array
 itself. [perl #47363].

A block containing nothing except a C-style for loop could corrupt the
 stack, causing lists
outside the block to lose elements or have elements
 overwritten. This could happen with map
{ for(...){...} } ... and with
 lists containing do { for(...){...} }. [perl
#123286].

scalar() now propagates lvalue context, so that for(scalar($#foo)) { ... } can
modify $#foo through $_.

qr/@array(?{block})/ no longer dies with "Bizarre copy of ARRAY". [perl #123344].

eval '$variable' in nested named subroutines would sometimes look up a
 global
variable even with a lexical variable in scope.

In perl 5.20.0, sort CORE::fake where 'fake' is anything other than a
 keyword, started

Perl version 5.22.0 documentation - perldelta

Page 37http://perldoc.perl.org

chopping off the last 6 characters and treating the result
 as a sort sub name. The previous
behavior of treating CORE::fake as a
 sort sub name has been restored. [perl #123410].

Outside of use utf8, a single-character Latin-1 lexical variable is
 disallowed. The error
message for it, "Can't use global $foo...", was
 giving garbage instead of the variable name.

readline on a nonexistent handle was causing ${^LAST_FH} to produce a
 reference to an
undefined scalar (or fail an assertion). Now ${^LAST_FH} ends up undefined.

(...) x ... in void context now applies scalar context to the left-hand
 argument, instead of
the context the current sub was called in. [perl #123020].

Known Problems
pack-ing a NaN on a perl compiled with Visual C 6 does not behave properly,
 leading to a test
failure in t/op/infnan.t. [perl 125203]

A goal is for Perl to be able to be recompiled to work reasonably well on any
 Unicode version.
In Perl 5.22, though, the earliest such version is Unicode
 5.1 (current is 7.0).

EBCDIC platforms

The cmp (and hence sort) operators do not necessarily give the
 correct results when
both operands are UTF-EBCDIC encoded strings and
 there is a mixture of ASCII
and/or control characters, along with other
 characters.

Ranges containing \N{...} in the tr/// (and y///)
 transliteration operators are
treated differently than the equivalent
 ranges in regular expression patterns. They
should, but don't, cause
 the values in the ranges to all be treated as Unicode code
points, and
 not native ones. ("Version 8 Regular Expressions" in perlre gives
 details as
to how it should work.)

Encode and encoding are mostly broken.

Many CPAN modules that are shipped with core show failing tests.

pack/unpack with "U0" format may not work properly.

The following modules are known to have test failures with this version of
 Perl. In many cases,
patches have been submitted, so there will hopefully be
 new releases soon:

B::Generate version 1.50

B::Utils version 0.25

Coro version 6.42

Dancer version 1.3130

Data::Alias version 1.18

Data::Dump::Streamer version 2.38

Data::Util version 0.63

Devel::Spy version 0.07

invoker version 0.34

Lexical::Var version 0.009

LWP::ConsoleLogger version 0.000018

Mason version 2.22

Perl version 5.22.0 documentation - perldelta

Page 38http://perldoc.perl.org

NgxQueue version 0.02

Padre version 1.00

Parse::Keyword 0.08

Obituary
Brian McCauley died on May 8, 2015. He was a frequent poster to Usenet, Perl
 Monks, and other Perl
forums, and made several CPAN contributions under the
 nick NOBULL, including to the Perl FAQ. He
attended almost every
 YAPC::Europe, and indeed, helped organise YAPC::Europe 2006 and the QA

Hackathon 2009. His wit and his delight in intricate systems were
 particularly apparent in his love of
board games; many Perl mongers will
 have fond memories of playing Fluxx and other games with
Brian. He will be
 missed.

Acknowledgements
Perl 5.22.0 represents approximately 12 months of development since Perl 5.20.0
 and contains
approximately 590,000 lines of changes across 2,400 files from 94
 authors.

Excluding auto-generated files, documentation and release tools, there were
 approximately 370,000
lines of changes to 1,500 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community
 of users and developers.
The following people are known to have contributed the
 improvements that became Perl 5.22.0:

Aaron Crane, Abhijit Menon-Sen, Abigail, Alberto SimÃµes, Alex Solovey, Alex
 Vandiver, Alexandr
Ciornii, Alexandre (Midnite) Jousset, Andreas KÃ¶nig,
 Andreas Voegele, Andrew Fresh, Andy
Dougherty, Anthony Heading, Aristotle
 Pagaltzis, brian d foy, Brian Fraser, Chad Granum, Chris
'BinGOs' Williams,
 Craig A. Berry, Dagfinn Ilmari MannsÃ¥ker, Daniel Dragan, Darin McBride, Dave

Rolsky, David Golden, David Mitchell, David Wheeler, Dmitri Tikhonov, Doug
 Bell, E. Choroba, Ed J,
Eric Herman, Father Chrysostomos, George Greer, Glenn
 D. Golden, Graham Knop, H.Merijn Brand,
Herbert Breunung, Hugo van der Sanden,
 James E Keenan, James McCoy, James Raspass, Jan
Dubois, Jarkko Hietaniemi,
 Jasmine Ngan, Jerry D. Hedden, Jim Cromie, John Goodyear, kafka,
Karen
 Etheridge, Karl Williamson, Kent Fredric, kmx, Lajos Veres, Leon Timmermans,
 Lukas Mai,
Mathieu Arnold, Matthew Horsfall, Max Maischein, Michael Bunk,
 Nicholas Clark, Niels Thykier, Niko
Tyni, Norman Koch, Olivier MenguÃ©, Peter
 John Acklam, Peter Martini, Petr PÃ-saÅ™, Philippe
Bruhat (BooK), Pierre
 Bogossian, Rafael Garcia-Suarez, Randy Stauner, Reini Urban, Ricardo
Signes,
 Rob Hoelz, Rostislav Skudnov, Sawyer X, Shirakata Kentaro, Shlomi Fish,
 Sisyphus, Slaven
Rezic, Smylers, Steffen MÃ¼ller, Steve Hay, Sullivan Beck,
 syber, Tadeusz SoÅ›nierz, Thomas
Sibley, Todd Rinaldo, Tony Cook, Vincent Pit,
 Vladimir Marek, Yaroslav Kuzmin, Yves Orton, Ã†var
ArnfjÃ¶rÃ° Bjarmason.

The list above is almost certainly incomplete as it is automatically generated
 from version control
history. In particular, it does not include the names of
 the (very much appreciated) contributors who
reported issues to the Perl bug
 tracker.

Many of the changes included in this version originated in the CPAN modules
 included in Perl's core.
We're grateful to the entire CPAN community for
 helping Perl to flourish.

For a more complete list of all of Perl's historical contributors, please see
 the AUTHORS file in the
Perl source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently
 posted to the
comp.lang.perl.misc newsgroup and the perl bug database at https://rt.perl.org/. There may also be
information at http://www.perl.org/, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program
 included with your
release. Be sure to trim your bug down to a tiny but
 sufficient test case. Your bug report, along with
the output of perl -V,
 will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

Perl version 5.22.0 documentation - perldelta

Page 39http://perldoc.perl.org

If the bug you are reporting has security implications, which make it
 inappropriate to send to a publicly
archived mailing list, then please send it
 to perl5-security-report@perl.org. This points to a closed
subscription
 unarchived mailing list, which includes all the core committers, who will be
 able to help
assess the impact of issues, figure out a resolution, and help
 co-ordinate the release of patches to
mitigate or fix the problem across all
 platforms on which Perl is supported. Please only use this
address for
 security issues in the Perl core, not for modules independently distributed on
 CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on
 what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

