
Perl version 5.22.0 documentation - Math::BigInt::Calc

Page 1http://perldoc.perl.org

NAME
Math::BigInt::Calc - Pure Perl module to support Math::BigInt

SYNOPSIS
This library provides support for big integer calculations. It is not
 intended to be used by other
modules. Other modules which support the same
 API (see below) can also be used to support
Math::BigInt, like
 Math::BigInt::GMP and Math::BigInt::Pari.

DESCRIPTION
In this library, the numbers are represented in base B = 10**N, where N is
 the largest possible value
that does not cause overflow in the intermediate
 computations. The base B elements are stored in an
array, with the least
 significant element stored in array element zero. There are no leading zero

elements, except a single zero element when the number is zero.

For instance, if B = 10000, the number 1234567890 is represented internally
 as [3456, 7890, 12].

THE Math::BigInt API
In order to allow for multiple big integer libraries, Math::BigInt was
 rewritten to use a plug-in library for
core math routines. Any module which
 conforms to the API can be used by Math::BigInt by using this
in your program:

	 use Math::BigInt lib => 'libname';

'libname' is either the long name, like 'Math::BigInt::Pari', or only the short
 version, like 'Pari'.

General Notes
A library only needs to deal with unsigned big integers. Testing of input
 parameter validity is done by
the caller, so there is no need to worry about
 underflow (e.g., in _sub() and _dec()) nor about
division by zero (e.g.,
 in _div()) or similar cases.

For some methods, the first parameter can be modified. That includes the
 possibility that you return a
reference to a completely different object
 instead. Although keeping the reference and just changing
its contents is
 preferred over creating and returning a different reference.

Return values are always objects, strings, Perl scalars, or true/false for
 comparison routines.

API version 1
The following methods must be defined in order to support the use by
 Math::BigInt v1.70 or later.

API version

api_version()

Return API version as a Perl scalar, 1 for Math::BigInt v1.70, 2 for
 Math::BigInt v1.83.

Constructors

_new(STR)

Convert a string representing an unsigned decimal number to an object
 representing the same
number. The input is normalize, i.e., it matches ^(0|[1-9]\d*)$.

_zero()

Return an object representing the number zero.

_one()

Return an object representing the number one.

_two()

Return an object representing the number two.

Perl version 5.22.0 documentation - Math::BigInt::Calc

Page 2http://perldoc.perl.org

_ten()

Return an object representing the number ten.

_from_bin(STR)

Return an object given a string representing a binary number. The input has a
 '0b' prefix and
matches the regular expression ^0[bB](0|1[01]*)$.

_from_oct(STR)

Return an object given a string representing an octal number. The input has a
 '0' prefix and
matches the regular expression ^0[1-7]*$.

_from_hex(STR)

Return an object given a string representing a hexadecimal number. The input
 has a '0x' prefix
and matches the regular expression ^0x(0|[1-9a-fA-F][\da-fA-F]*)$.

Mathematical functions

Each of these methods may modify the first input argument, except _bgcd(),
 which shall not modify
any input argument, and _sub() which may modify the
 second input argument.

_add(OBJ1, OBJ2)

Returns the result of adding OBJ2 to OBJ1.

_mul(OBJ1, OBJ2)

Returns the result of multiplying OBJ2 and OBJ1.

_div(OBJ1, OBJ2)

Returns the result of dividing OBJ1 by OBJ2 and truncating the result to an
 integer.

_sub(OBJ1, OBJ2, FLAG)

_sub(OBJ1, OBJ2)

Returns the result of subtracting OBJ2 by OBJ1. If flag is false or omitted,
 OBJ1 might be
modified. If flag is true, OBJ2 might be modified.

_dec(OBJ)

Decrement OBJ by one.

_inc(OBJ)

Increment OBJ by one.

_mod(OBJ1, OBJ2)

Return OBJ1 modulo OBJ2, i.e., the remainder after dividing OBJ1 by OBJ2.

_sqrt(OBJ)

Return the square root of the object, truncated to integer.

_root(OBJ, N)

Return Nth root of the object, truncated to int. N is >= 3.

_fac(OBJ)

Return factorial of object (1*2*3*4*...).

_pow(OBJ1, OBJ2)

Return OBJ1 to the power of OBJ2. By convention, 0**0 = 1.

_modinv(OBJ1, OBJ2)

Perl version 5.22.0 documentation - Math::BigInt::Calc

Page 3http://perldoc.perl.org

Return modular multiplicative inverse, i.e., return OBJ3 so that

 (OBJ3 * OBJ1) % OBJ2 = 1 % OBJ2

The result is returned as two arguments. If the modular multiplicative
 inverse does not exist,
both arguments are undefined. Otherwise, the
 arguments are a number (object) and its sign
("+" or "-").

The output value, with its sign, must either be a positive value in the
 range 1,2,...,OBJ2-1 or
the same value subtracted OBJ2. For instance, if the
 input arguments are objects representing
the numbers 7 and 5, the method
 must either return an object representing the number 3 and
a "+" sign, since
 (3*7) % 5 = 1 % 5, or an object representing the number 2 and "-" sign,
 since
(-2*7) % 5 = 1 % 5.

_modpow(OBJ1, OBJ2, OBJ3)

Return modular exponentiation, (OBJ1 ** OBJ2) % OBJ3.

_rsft(OBJ, N, B)

Shift object N digits right in base B and return the resulting object. This is
 equivalent to
performing integer division by B**N and discarding the remainder,
 except that it might be
much faster, depending on how the number is represented
 internally.

For instance, if the object $obj represents the hexadecimal number 0xabcde,
 then
_rsft($obj, 2, 16) returns an object representing the number 0xabc. The
 "remainer",
0xde, is discarded and not returned.

_lsft(OBJ, N, B)

Shift the object N digits left in base B. This is equivalent to multiplying by
 B**N, except that it
might be much faster, depending on how the number is
 represented internally.

_log_int(OBJ, B)

Return integer log of OBJ to base BASE. This method has two output arguments,
 the
OBJECT and a STATUS. The STATUS is Perl scalar; it is 1 if OBJ is the exact
 result, 0 if the
result was truncted to give OBJ, and undef if it is unknown
 whether OBJ is the exact result.

_gcd(OBJ1, OBJ2)

Return the greatest common divisor of OBJ1 and OBJ2.

Bitwise operators

Each of these methods may modify the first input argument.

_and(OBJ1, OBJ2)

Return bitwise and. If necessary, the smallest number is padded with leading
 zeros.

_or(OBJ1, OBJ2)

Return bitwise or. If necessary, the smallest number is padded with leading
 zeros.

_xor(OBJ1, OBJ2)

Return bitwise exclusive or. If necessary, the smallest number is padded
 with leading zeros.

Boolean operators

_is_zero(OBJ)

Returns a true value if OBJ is zero, and false value otherwise.

_is_one(OBJ)

Returns a true value if OBJ is one, and false value otherwise.

_is_two(OBJ)

Perl version 5.22.0 documentation - Math::BigInt::Calc

Page 4http://perldoc.perl.org

Returns a true value if OBJ is two, and false value otherwise.

_is_ten(OBJ)

Returns a true value if OBJ is ten, and false value otherwise.

_is_even(OBJ)

Return a true value if OBJ is an even integer, and a false value otherwise.

_is_odd(OBJ)

Return a true value if OBJ is an even integer, and a false value otherwise.

_acmp(OBJ1, OBJ2)

Compare OBJ1 and OBJ2 and return -1, 0, or 1, if OBJ1 is less than, equal
 to, or larger than
OBJ2, respectively.

String conversion

_str(OBJ)

Return a string representing the object. The returned string should have no
 leading zeros, i.e.,
it should match ^(0|[1-9]\d*)$.

_as_bin(OBJ)

Return the binary string representation of the number. The string must have a
 '0b' prefix.

_as_oct(OBJ)

Return the octal string representation of the number. The string must have
 a '0x' prefix.

Note: This method was required from Math::BigInt version 1.78, but the required
 API version
number was not incremented, so there are older libraries that
 support API version 1, but do
not support _as_oct().

_as_hex(OBJ)

Return the hexadecimal string representation of the number. The string must
 have a '0x'
prefix.

Numeric conversion

_num(OBJ)

Given an object, return a Perl scalar number (int/float) representing this
 number.

Miscellaneous

_copy(OBJ)

Return a true copy of the object.

_len(OBJ)

Returns the number of the decimal digits in the number. The output is a
 Perl scalar.

_zeros(OBJ)

Return the number of trailing decimal zeros. The output is a Perl scalar.

_digit(OBJ, N)

Return the Nth digit as a Perl scalar. N is a Perl scalar, where zero refers to
 the rightmost
(least significant) digit, and negative values count from the
 left (most significant digit). If $obj
represents the number 123, then _digit($obj, 0) is 3 and _digit(123, -1) is 1.

_check(OBJ)

Return a true value if the object is OK, and a false value otherwise. This is a
 check routine to
test the internal state of the object for corruption.

Perl version 5.22.0 documentation - Math::BigInt::Calc

Page 5http://perldoc.perl.org

API version 2
The following methods are required for an API version of 2 or greater.

Constructors

_1ex(N)

Return an object representing the number 10**N where N >= 0 is a Perl
 scalar.

Mathematical functions

_nok(OBJ1, OBJ2)

Return the binomial coefficient OBJ1 over OBJ1.

Miscellaneous

_alen(OBJ)

Return the approximate number of decimal digits of the object. The
 output is one Perl scalar.
This estimate must be greater than or equal
 to what _len() returns.

API optional methods
The following methods are optional, and can be defined if the underlying lib
 has a fast way to do
them. If undefined, Math::BigInt will use pure Perl (hence
 slow) fallback routines to emulate these:

Signed bitwise operators.

Each of these methods may modify the first input argument.

_signed_or(OBJ1, OBJ2, SIGN1, SIGN2)

Return the signed bitwise or.

_signed_and(OBJ1, OBJ2, SIGN1, SIGN2)

Return the signed bitwise and.

_signed_xor(OBJ1, OBJ2, SIGN1, SIGN2)

Return the signed bitwise exclusive or.

WRAP YOUR OWN
If you want to port your own favourite c-lib for big numbers to the
 Math::BigInt interface, you can take
any of the already existing modules as
 a rough guideline. You should really wrap up the latest BigInt
and BigFloat
 testsuites with your module, and replace in them any of the following:

	 use Math::BigInt;

by this:

	 use Math::BigInt lib => 'yourlib';

This way you ensure that your library really works 100% within Math::BigInt.

BUGS
Please report any bugs or feature requests to bug-math-bigint at rt.cpan.org, or through
the web interface at https://rt.cpan.org/Ticket/Create.html?Queue=Math-BigInt
 (requires login).
 We
will be notified, and then you'll automatically be notified of progress on
 your bug as I make changes.

SUPPORT
You can find documentation for this module with the perldoc command.

 perldoc Math::BigInt::Calc

Perl version 5.22.0 documentation - Math::BigInt::Calc

Page 6http://perldoc.perl.org

You can also look for information at:

* RT: CPAN's request tracker

https://rt.cpan.org/Public/Dist/Display.html?Name=Math-BigInt

* AnnoCPAN: Annotated CPAN documentation

http://annocpan.org/dist/Math-BigInt

* CPAN Ratings

http://cpanratings.perl.org/dist/Math-BigInt

* Search CPAN

http://search.cpan.org/dist/Math-BigInt/

* CPAN Testers Matrix

http://matrix.cpantesters.org/?dist=Math-BigInt

* The Bignum mailing list

* Post to mailing list

bignum at lists.scsys.co.uk

* View mailing list

http://lists.scsys.co.uk/pipermail/bignum/

* Subscribe/Unsubscribe

http://lists.scsys.co.uk/cgi-bin/mailman/listinfo/bignum

LICENSE
This program is free software; you may redistribute it and/or modify it under
 the same terms as Perl
itself.

AUTHORS
Original math code by Mark Biggar, rewritten by Tels http://bloodgate.com/
 in late 2000.

Separated from BigInt and shaped API with the help of John Peacock.

Fixed, speed-up, streamlined and enhanced by Tels 2001 - 2007.

API documentation corrected and extended by Peter John Acklam, <pjacklam@online.no>

SEE ALSO
Math::BigInt, Math::BigFloat, Math::BigInt::GMP, Math::BigInt::FastCalc and Math::BigInt::Pari.

