
Perl version 5.22.0 documentation - perlebcdic

Page 1http://perldoc.perl.org

NAME
perlebcdic - Considerations for running Perl on EBCDIC platforms

DESCRIPTION
An exploration of some of the issues facing Perl programmers
 on EBCDIC based computers.

Portions of this document that are still incomplete are marked with XXX.

Early Perl versions worked on some EBCDIC machines, but the last known
 version that ran on
EBCDIC was v5.8.7, until v5.22, when the Perl core
 again works on z/OS. Theoretically, it could work
on OS/400 or Siemens'
 BS2000 (or their successors), but this is untested. In v5.22, not all
 the
modules found on CPAN but shipped with core Perl work on z/OS.

If you want to use Perl on a non-z/OS EBCDIC machine, please let us know
 by sending mail to
perlbug@perl.org

Writing Perl on an EBCDIC platform is really no different than writing
 on an ASCII one, but with
different underlying numbers, as we'll see
 shortly. You'll have to know something about those ASCII
platforms
 because the documentation is biased and will frequently use example
 numbers that don't
apply to EBCDIC. There are also very few CPAN
 modules that are written for EBCDIC and which
don't work on ASCII;
 instead the vast majority of CPAN modules are written for ASCII, and
 some may
happen to work on EBCDIC, while a few have been designed to
 portably work on both.

If your code just uses the 52 letters A-Z and a-z, plus SPACE, the
 digits 0-9, and the punctuation
characters that Perl uses, plus a few
 controls that are denoted by escape sequences like \n and \t,
then
 there's nothing special about using Perl, and your code may very well
 work on an ASCII machine
without change.

But if you write code that uses \005 to mean a TAB or \xC1 to mean
 an "A", or \xDF to mean a "ÿ"
(small "y" with a diaeresis),
 then your code may well work on your EBCDIC platform, but not on an

ASCII one. That's fine to do if no one will ever want to run your code
 on an ASCII platform; but the
bias in this document will be in writing
 code portable between EBCDIC and ASCII systems. Again, if
every
 character you care about is easily enterable from your keyboard, you
 don't have to know
anything about ASCII, but many keyboards don't easily
 allow you to directly enter, say, the character
\xDF, so you have to
 specify it indirectly, such as by using the "\xDF" escape sequence.
 In those
cases it's easiest to know something about the ASCII/Unicode
 character sets. If you know that the
small "ÿ" is U+00FF, then
 you can instead specify it as "\N{U+FF}", and have the computer

automatically translate it to \xDF on your platform, and leave it as \xFF on ASCII ones. Or you could
specify it by name, \N{LATIN
 SMALL LETTER Y WITH DIAERESIS and not have to know the
numbers.
 Either way works, but require familiarity with Unicode.

COMMON CHARACTER CODE SETS
ASCII

The American Standard Code for Information Interchange (ASCII or
 US-ASCII) is a set of
 integers
running from 0 to 127 (decimal) that have standardized
 interpretations by the computers which use
ASCII. For example, 65 means
 the letter "A".
 The range 0..127 can be covered by setting the bits in a
7-bit binary
 digit, hence the set is sometimes referred to as "7-bit ASCII".
 ASCII was described by the
American National Standards Institute
 document ANSI X3.4-1986. It was also described by ISO
646:1991
 (with localization for currency symbols). The full ASCII set is
 given in the table below as the
first 128 elements.
 Languages that
 can be written adequately with the characters in ASCII include

English, Hawaiian, Indonesian, Swahili and some Native American
 languages.

Most non-EBCDIC character sets are supersets of ASCII. That is the
 integers 0-127 mean what ASCII
says they mean. But integers 128 and
 above are specific to the character set.

Many of these fit entirely into 8 bits, using ASCII as 0-127, while
 specifying what 128-255 mean, and
not using anything above 255.
 Thus, these are single-byte (or octet if you prefer) character sets.
 One
important one (since Unicode is a superset of it) is the ISO 8859-1
 character set.

Perl version 5.22.0 documentation - perlebcdic

Page 2http://perldoc.perl.org

ISO 8859
The ISO 8859-$n are a collection of character code sets from the
 International Organization for
Standardization (ISO), each of which adds
 characters to the ASCII set that are typically found in
various
 languages, many of which are based on the Roman, or Latin, alphabet.
 Most are for
European languages, but there are also ones for Arabic,
 Greek, Hebrew, and Thai. There are good
references on the web about
 all these.

Latin 1 (ISO 8859-1)
A particular 8-bit extension to ASCII that includes grave and acute
 accented Latin characters.
Languages that can employ ISO 8859-1
 include all the languages covered by ASCII as well as
Afrikaans,
 Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian,
 Portuguese, Spanish,
and Swedish. Dutch is covered albeit without
 the ij ligature. French is covered too but without the oe
ligature.
 German can use ISO 8859-1 but must do so without German-style
 quotation marks. This set
is based on Western European extensions
 to ASCII and is commonly encountered in world wide web
work.
 In IBM character code set identification terminology, ISO 8859-1 is
 also known as CCSID 819
(or sometimes 0819 or even 00819).

EBCDIC
The Extended Binary Coded Decimal Interchange Code refers to a
 large collection of single- and
multi-byte coded character sets that are
 quite different from ASCII and ISO 8859-1, and are all slightly
different from each other; they typically run on host computers. The
 EBCDIC encodings derive from
8-bit byte extensions of Hollerith punched
 card encodings, which long predate ASCII. The layout on
the
 cards was such that high bits were set for the upper and lower case
 alphabetic
 characters [a-z]
and [A-Z], but there were gaps within each Latin
 alphabet range, visible in the table below. These
gaps can
 cause complications.

Some IBM EBCDIC character sets may be known by character code set
 identification numbers
(CCSID numbers) or code page numbers.

Perl can be compiled on platforms that run any of three commonly used EBCDIC
 character sets,
listed below.

The 13 variant characters

Among IBM EBCDIC character code sets there are 13 characters that
 are often mapped to different
integer values. Those characters
 are known as the 13 "variant" characters and are:

 \ [] { } ^ ~ ! # | $ @ `

When Perl is compiled for a platform, it looks at all of these characters to
 guess which EBCDIC
character set the platform uses, and adapts itself
 accordingly to that platform. If the platform uses a
character set that is not
 one of the three Perl knows about, Perl will either fail to compile, or

mistakenly and silently choose one of the three.

EBCDIC code sets recognized by Perl

0037 Character code set ID 0037 is a mapping of the ASCII plus Latin-1
 characters (i.e. ISO
8859-1) to an EBCDIC set. 0037 is used
 in North American English locales on the OS/400
operating system
 that runs on AS/400 computers. CCSID 0037 differs from ISO 8859-1
 in 236
places; in other words they agree on only 20 code point values.

1047 Character code set ID 1047 is also a mapping of the ASCII plus
 Latin-1 characters (i.e. ISO
8859-1) to an EBCDIC set. 1047 is
 used under Unix System Services for OS/390 or z/OS, and
OpenEdition
 for VM/ESA. CCSID 1047 differs from CCSID 0037 in eight places,
 and from ISO
8859-1 in 236.

POSIX-BC

The EBCDIC code page in use on Siemens' BS2000 system is distinct from
 1047 and 0037. It
is identified below as the POSIX-BC set.
 Like 0037 and 1047, it is the same as ISO 8859-1 in

Perl version 5.22.0 documentation - perlebcdic

Page 3http://perldoc.perl.org

20 code point
 values.

Unicode code points versus EBCDIC code points
In Unicode terminology a code point is the number assigned to a
 character: for example, in EBCDIC
the character "A" is usually assigned
 the number 193. In Unicode, the character "A" is assigned the
number 65.
 All the code points in ASCII and Latin-1 (ISO 8859-1) have the same
 meaning in Unicode.
All three of the recognized EBCDIC code sets have
 256 code points, and in each code set, all 256
code points are mapped to
 equivalent Latin1 code points. Obviously, "A" will map to "A", "B" =>
 "B",
"%" => "%", etc., for all printable characters in Latin1 and these
 code pages.

It also turns out that EBCDIC has nearly precise equivalents for the
 ASCII/Latin1 C0 controls and the
DELETE control. (The C0 controls are
 those whose ASCII code points are 0..0x1F; things like TAB,
ACK, BEL,
 etc.) A mapping is set up between these ASCII/EBCDIC controls. There
 isn't such a
precise mapping between the C1 controls on ASCII platforms
 and the remaining EBCDIC controls.
What has been done is to map these
 controls, mostly arbitrarily, to some otherwise unmatched
character in
 the other character set. Most of these are very very rarely used
 nowadays in EBCDIC
anyway, and their names have been dropped, without
 much complaint. For example the EO (Eight
Ones) EBCDIC control
 (consisting of eight one bits = 0xFF) is mapped to the C1 APC control
 (0x9F),
and you can't use the name "EO".

The EBCDIC controls provide three possible line terminator characters,
 CR (0x0D), LF (0x25), and NL
(0x15). On ASCII platforms, the symbols
 "NL" and "LF" refer to the same character, but in strict
EBCDIC
 terminology they are different ones. The EBCDIC NL is mapped to the C1
 control called
"NEL" ("Next Line"; here's a case where the mapping makes
 quite a bit of sense, and hence isn't just
arbitrary). On some EBCDIC
 platforms, this NL or NEL is the typical line terminator. This is true
 of
z/OS and BS2000. In these platforms, the C compilers will swap the
 LF and NEL code points, so that
"\n" is 0x15, and refers to NL. Perl
 does that too; you can see it in the code chart below.
 This makes
things generally "just work" without you even having to be
 aware that there is a swap.

Unicode and UTF
UTF stands for "Unicode Transformation Format".
 UTF-8 is an encoding of Unicode into a sequence
of 8-bit byte chunks, based on
 ASCII and Latin-1.
 The length of a sequence required to represent a
Unicode code point
 depends on the ordinal number of that code point,
 with larger numbers requiring
more bytes.
 UTF-EBCDIC is like UTF-8, but based on EBCDIC.
 They are enough alike that often,
casual usage will conflate the two
 terms, and use "UTF-8" to mean both the UTF-8 found on ASCII
platforms,
 and the UTF-EBCDIC found on EBCDIC ones.

You may see the term "invariant" character or code point.
 This simply means that the character has
the same numeric
 value and representation when encoded in UTF-8 (or UTF-EBCDIC) as when
 not.
(Note that this is a very different concept from The 13 variant characters mentioned above. Careful
prose will use the term "UTF-8
 invariant" instead of just "invariant", but most often you'll see just

"invariant".) For example, the ordinal value of "A" is 193 in most
 EBCDIC code pages, and also is 193
when encoded in UTF-EBCDIC. All
 UTF-8 (or UTF-EBCDIC) variant code points occupy at least two
bytes when
 encoded in UTF-8 (or UTF-EBCDIC); by definition, the UTF-8 (or
 UTF-EBCDIC) invariant
code points are exactly one byte whether encoded
 in UTF-8 (or UTF-EBCDIC), or not. (By now you
see why people typically
 just say "UTF-8" when they also mean "UTF-EBCDIC". For the rest of this

document, we'll mostly be casual about it too.)
 In ASCII UTF-8, the code points corresponding to the
lowest 128
 ordinal numbers (0 - 127: the ASCII characters) are invariant.
 In UTF-EBCDIC, there are
160 invariant characters.
 (If you care, the EBCDIC invariants are those characters
 which have ASCII
equivalents, plus those that correspond to
 the C1 controls (128 - 159 on ASCII platforms).)

A string encoded in UTF-EBCDIC may be longer (but never shorter) than
 one encoded in UTF-8. Perl
extends UTF-8 so that it can encode code
 points above the Unicode maximum of U+10FFFF. It
extends UTF-EBCDIC as
 well, but due to the inherent limitations in UTF-EBCDIC, the maximum
 code
point expressible is U+7FFF_FFFF, even if the word size is more
 than 32 bits.

UTF-EBCDIC is defined by Unicode Technical Report #16.
 It is defined based on CCSID 1047, not
allowing for the differences for
 other code pages. This allows for easy interchange of text between

Perl version 5.22.0 documentation - perlebcdic

Page 4http://perldoc.perl.org

computers running different code pages, but makes it unusable, without
 adaptation, for Perl on those
other code pages.

The reason for this unusability is that a fundamental assumption of Perl
 is that the characters it cares
about for parsing and lexical analysis
 are the same whether or not the text is in UTF-8. For example,
Perl
 expects the character "[" to have the same representation, no matter
 if the string containing it
(or program text) is UTF-8 encoded or not.
 To ensure this, Perl adapts UTF-EBCDIC to the particular
code page so
 that all characters it expects to be UTF-8 invariant are in fact UTF-8
 invariant. This
means that text generated on a computer running one
 version of Perl's UTF-EBCDIC has to be
translated to be intelligible to
 a computer running another.

Using Encode
Starting from Perl 5.8 you can use the standard module Encode
 to translate from EBCDIC to Latin-1
code points.
 Encode knows about more EBCDIC character sets than Perl can currently
 be compiled
to run on.

 use Encode 'from_to';

 my %ebcdic = (176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc');

 # $a is in EBCDIC code points
 from_to($a, $ebcdic{ord '^'}, 'latin1');
 # $a is ISO 8859-1 code points

and from Latin-1 code points to EBCDIC code points

 use Encode 'from_to';

 my %ebcdic = (176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc');

 # $a is ISO 8859-1 code points
 from_to($a, 'latin1', $ebcdic{ord '^'});
 # $a is in EBCDIC code points

For doing I/O it is suggested that you use the autotranslating features
 of PerlIO, see perluniintro.

Since version 5.8 Perl uses the PerlIO I/O library. This enables
 you to use different encodings per IO
channel. For example you may use

 use Encode;
 open($f, ">:encoding(ascii)", "test.ascii");
 print $f "Hello World!\n";
 open($f, ">:encoding(cp37)", "test.ebcdic");
 print $f "Hello World!\n";
 open($f, ">:encoding(latin1)", "test.latin1");
 print $f "Hello World!\n";
 open($f, ">:encoding(utf8)", "test.utf8");
 print $f "Hello World!\n";

to get four files containing "Hello World!\n" in ASCII, CP 0037 EBCDIC,
 ISO 8859-1 (Latin-1) (in this
example identical to ASCII since only ASCII
 characters were printed), and
 UTF-EBCDIC (in this
example identical to normal EBCDIC since only characters
 that don't differ between EBCDIC and
UTF-EBCDIC were printed). See the
 documentation of Encode::PerlIO for details.

As the PerlIO layer uses raw IO (bytes) internally, all this totally
 ignores things like the type of your
filesystem (ASCII or EBCDIC).

Perl version 5.22.0 documentation - perlebcdic

Page 5http://perldoc.perl.org

SINGLE OCTET TABLES
The following tables list the ASCII and Latin 1 ordered sets including
 the subsets: C0 controls (0..31),
ASCII graphics (32..7e), delete (7f),
 C1 controls (80..9f), and Latin-1 (a.k.a. ISO 8859-1) (a0..ff). In the
table names of the Latin 1
 extensions to ASCII have been labelled with character names roughly

corresponding to The Unicode Standard, Version 6.1 albeit with
 substitutions such as s/LATIN//
and s/VULGAR// in all cases; s/CAPITAL LETTER// in some cases; and s/SMALL LETTER
([A-Z])/\l$1/ in some other
 cases. Controls are listed using their Unicode 6.2 abbreviations.
 The
differences between the 0037 and 1047 sets are
 flagged with **. The differences between the 1047
and POSIX-BC sets
 are flagged with ##. All ord() numbers listed are decimal. If you
 would rather
see this table listing octal values, then run the table
 (that is, the pod source text of this document,
since this recipe may not
 work with a pod2_other_format translation) through:

recipe 0

 perl -ne 'if(/(.{29})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
 -e '{printf("%s%-5.03o%-5.03o%-5.03o%.03o\n",$1,$2,$3,$4,$5)}' \
 perlebcdic.pod

If you want to retain the UTF-x code points then in script form you
 might want to write:

recipe 1

 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
 while (<FH>) {
 if (/(.{29})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)
 \s+(\d+)\.?(\d*)/x)
 {
 if ($7 ne '' && $9 ne '') {
 printf(
 "%s%-5.03o%-5.03o%-5.03o%-5.03o%-3o.%-5o%-3o.%.03o\n",
 $1,$2,$3,$4,$5,$6,$7,$8,$9);
 }
 elsif ($7 ne '') {
 printf("%s%-5.03o%-5.03o%-5.03o%-5.03o%-3o.%-5o%.03o\n",
 $1,$2,$3,$4,$5,$6,$7,$8);
 }
 else {
 printf("%s%-5.03o%-5.03o%-5.03o%-5.03o%-5.03o%.03o\n",
 $1,$2,$3,$4,$5,$6,$8);
 }
 }
 }

If you would rather see this table listing hexadecimal values then
 run the table through:

recipe 2

 perl -ne 'if(/(.{29})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
 -e '{printf("%s%-5.02X%-5.02X%-5.02X%.02X\n",$1,$2,$3,$4,$5)}' \
 perlebcdic.pod

Or, in order to retain the UTF-x code points in hexadecimal:

recipe 3

 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
 while (<FH>) {

Perl version 5.22.0 documentation - perlebcdic

Page 6http://perldoc.perl.org

 if (/(.{29})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)
 \s+(\d+)\.?(\d*)/x)
 {
 if ($7 ne '' && $9 ne '') {
 printf(
 "%s%-5.02X%-5.02X%-5.02X%-5.02X%-2X.%-6.02X%02X.%02X\n",
 $1,$2,$3,$4,$5,$6,$7,$8,$9);
 }
 elsif ($7 ne '') {
 printf("%s%-5.02X%-5.02X%-5.02X%-5.02X%-2X.%-6.02X%02X\n",
 $1,$2,$3,$4,$5,$6,$7,$8);
 }
 else {
 printf("%s%-5.02X%-5.02X%-5.02X%-5.02X%-5.02X%02X\n",
 $1,$2,$3,$4,$5,$6,$8);
 }
 }
 }

 ISO
 8859-1 POS- CCSID
 CCSID CCSID CCSID IX- 1047
 chr 0819 0037 1047 BC UTF-8 UTF-EBCDIC

 <NUL> 0 0 0 0 0 0
 <SOH> 1 1 1 1 1 1
 <STX> 2 2 2 2 2 2
 <ETX> 3 3 3 3 3 3
 <EOT> 4 55 55 55 4 55
 <ENQ> 5 45 45 45 5 45
 <ACK> 6 46 46 46 6 46
 <BEL> 7 47 47 47 7 47
 <BS> 8 22 22 22 8 22
 <HT> 9 5 5 5 9 5
 <LF> 10 37 21 21 10 21 **
 <VT> 11 11 11 11 11 11
 <FF> 12 12 12 12 12 12
 <CR> 13 13 13 13 13 13
 <SO> 14 14 14 14 14 14
 <SI> 15 15 15 15 15 15
 <DLE> 16 16 16 16 16 16
 <DC1> 17 17 17 17 17 17
 <DC2> 18 18 18 18 18 18
 <DC3> 19 19 19 19 19 19
 <DC4> 20 60 60 60 20 60
 <NAK> 21 61 61 61 21 61
 <SYN> 22 50 50 50 22 50
 <ETB> 23 38 38 38 23 38
 <CAN> 24 24 24 24 24 24
 <EOM> 25 25 25 25 25 25
 <SUB> 26 63 63 63 26 63
 <ESC> 27 39 39 39 27 39
 <FS> 28 28 28 28 28 28
 <GS> 29 29 29 29 29 29
 <RS> 30 30 30 30 30 30
 <US> 31 31 31 31 31 31

Perl version 5.22.0 documentation - perlebcdic

Page 7http://perldoc.perl.org

 <SPACE> 32 64 64 64 32 64
 ! 33 90 90 90 33 90
 " 34 127 127 127 34 127
 # 35 123 123 123 35 123
 $ 36 91 91 91 36 91
 % 37 108 108 108 37 108
 & 38 80 80 80 38 80
 ' 39 125 125 125 39 125
 (40 77 77 77 40 77
) 41 93 93 93 41 93
 * 42 92 92 92 42 92
 + 43 78 78 78 43 78
 , 44 107 107 107 44 107
 - 45 96 96 96 45 96
 . 46 75 75 75 46 75
 / 47 97 97 97 47 97
 0 48 240 240 240 48 240
 1 49 241 241 241 49 241
 2 50 242 242 242 50 242
 3 51 243 243 243 51 243
 4 52 244 244 244 52 244
 5 53 245 245 245 53 245
 6 54 246 246 246 54 246
 7 55 247 247 247 55 247
 8 56 248 248 248 56 248
 9 57 249 249 249 57 249
 : 58 122 122 122 58 122
 ; 59 94 94 94 59 94
 < 60 76 76 76 60 76
 = 61 126 126 126 61 126
 > 62 110 110 110 62 110
 ? 63 111 111 111 63 111
 @ 64 124 124 124 64 124
 A 65 193 193 193 65 193
 B 66 194 194 194 66 194
 C 67 195 195 195 67 195
 D 68 196 196 196 68 196
 E 69 197 197 197 69 197
 F 70 198 198 198 70 198
 G 71 199 199 199 71 199
 H 72 200 200 200 72 200
 I 73 201 201 201 73 201
 J 74 209 209 209 74 209
 K 75 210 210 210 75 210
 L 76 211 211 211 76 211
 M 77 212 212 212 77 212
 N 78 213 213 213 78 213
 O 79 214 214 214 79 214
 P 80 215 215 215 80 215
 Q 81 216 216 216 81 216
 R 82 217 217 217 82 217
 S 83 226 226 226 83 226
 T 84 227 227 227 84 227
 U 85 228 228 228 85 228
 V 86 229 229 229 86 229
 W 87 230 230 230 87 230

Perl version 5.22.0 documentation - perlebcdic

Page 8http://perldoc.perl.org

 X 88 231 231 231 88 231
 Y 89 232 232 232 89 232
 Z 90 233 233 233 90 233
 [91 186 173 187 91 173 ** ##
 \ 92 224 224 188 92 224 ##
] 93 187 189 189 93 189 **
 ^ 94 176 95 106 94 95 ** ##
 _ 95 109 109 109 95 109
 ` 96 121 121 74 96 121 ##
 a 97 129 129 129 97 129
 b 98 130 130 130 98 130
 c 99 131 131 131 99 131
 d 100 132 132 132 100 132
 e 101 133 133 133 101 133
 f 102 134 134 134 102 134
 g 103 135 135 135 103 135
 h 104 136 136 136 104 136
 i 105 137 137 137 105 137
 j 106 145 145 145 106 145
 k 107 146 146 146 107 146
 l 108 147 147 147 108 147
 m 109 148 148 148 109 148
 n 110 149 149 149 110 149
 o 111 150 150 150 111 150
 p 112 151 151 151 112 151
 q 113 152 152 152 113 152
 r 114 153 153 153 114 153
 s 115 162 162 162 115 162
 t 116 163 163 163 116 163
 u 117 164 164 164 117 164
 v 118 165 165 165 118 165
 w 119 166 166 166 119 166
 x 120 167 167 167 120 167
 y 121 168 168 168 121 168
 z 122 169 169 169 122 169
 { 123 192 192 251 123 192 ##
 | 124 79 79 79 124 79
 } 125 208 208 253 125 208 ##
 ~ 126 161 161 255 126 161 ##
 127 7 7 7 127 7
 <PAD> 128 32 32 32 194.128 32
 <HOP> 129 33 33 33 194.129 33
 <BPH> 130 34 34 34 194.130 34
 <NBH> 131 35 35 35 194.131 35
 <IND> 132 36 36 36 194.132 36
 <NEL> 133 21 37 37 194.133 37 **
 <SSA> 134 6 6 6 194.134 6
 <ESA> 135 23 23 23 194.135 23
 <HTS> 136 40 40 40 194.136 40
 <HTJ> 137 41 41 41 194.137 41
 <VTS> 138 42 42 42 194.138 42
 <PLD> 139 43 43 43 194.139 43
 <PLU> 140 44 44 44 194.140 44
 <RI> 141 9 9 9 194.141 9
 <SS2> 142 10 10 10 194.142 10
 <SS3> 143 27 27 27 194.143 27

Perl version 5.22.0 documentation - perlebcdic

Page 9http://perldoc.perl.org

 <DCS> 144 48 48 48 194.144 48
 <PU1> 145 49 49 49 194.145 49
 <PU2> 146 26 26 26 194.146 26
 <STS> 147 51 51 51 194.147 51
 <CCH> 148 52 52 52 194.148 52
 <MW> 149 53 53 53 194.149 53
 <SPA> 150 54 54 54 194.150 54
 <EPA> 151 8 8 8 194.151 8
 <SOS> 152 56 56 56 194.152 56
 <SGC> 153 57 57 57 194.153 57
 <SCI> 154 58 58 58 194.154 58
 <CSI> 155 59 59 59 194.155 59
 <ST> 156 4 4 4 194.156 4
 <OSC> 157 20 20 20 194.157 20
 <PM> 158 62 62 62 194.158 62
 <APC> 159 255 255 95 194.159 255 ##
 <NON-BREAKING SPACE> 160 65 65 65 194.160 128.65
 <INVERTED "!" > 161 170 170 170 194.161 128.66
 <CENT SIGN> 162 74 74 176 194.162 128.67 ##
 <POUND SIGN> 163 177 177 177 194.163 128.68
 <CURRENCY SIGN> 164 159 159 159 194.164 128.69
 <YEN SIGN> 165 178 178 178 194.165 128.70
 <BROKEN BAR> 166 106 106 208 194.166 128.71 ##
 <SECTION SIGN> 167 181 181 181 194.167 128.72
 <DIAERESIS> 168 189 187 121 194.168 128.73 ** ##
 <COPYRIGHT SIGN> 169 180 180 180 194.169 128.74
 <FEMININE ORDINAL> 170 154 154 154 194.170 128.81
 <LEFT POINTING GUILLEMET> 171 138 138 138 194.171 128.82
 <NOT SIGN> 172 95 176 186 194.172 128.83 ** ##
 <SOFT HYPHEN> 173 202 202 202 194.173 128.84
 <REGISTERED TRADE MARK> 174 175 175 175 194.174 128.85
 <MACRON> 175 188 188 161 194.175 128.86 ##
 <DEGREE SIGN> 176 144 144 144 194.176 128.87
 <PLUS-OR-MINUS SIGN> 177 143 143 143 194.177 128.88
 <SUPERSCRIPT TWO> 178 234 234 234 194.178 128.89
 <SUPERSCRIPT THREE> 179 250 250 250 194.179 128.98
 <ACUTE ACCENT> 180 190 190 190 194.180 128.99
 <MICRO SIGN> 181 160 160 160 194.181 128.100
 <PARAGRAPH SIGN> 182 182 182 182 194.182 128.101
 <MIDDLE DOT> 183 179 179 179 194.183 128.102
 <CEDILLA> 184 157 157 157 194.184 128.103
 <SUPERSCRIPT ONE> 185 218 218 218 194.185 128.104
 <MASC. ORDINAL INDICATOR> 186 155 155 155 194.186 128.105
 <RIGHT POINTING GUILLEMET> 187 139 139 139 194.187 128.106
 <FRACTION ONE QUARTER> 188 183 183 183 194.188 128.112
 <FRACTION ONE HALF> 189 184 184 184 194.189 128.113
 <FRACTION THREE QUARTERS> 190 185 185 185 194.190 128.114
 <INVERTED QUESTION MARK> 191 171 171 171 194.191 128.115
 <A WITH GRAVE> 192 100 100 100 195.128 138.65
 <A WITH ACUTE> 193 101 101 101 195.129 138.66
 <A WITH CIRCUMFLEX> 194 98 98 98 195.130 138.67
 <A WITH TILDE> 195 102 102 102 195.131 138.68
 <A WITH DIAERESIS> 196 99 99 99 195.132 138.69
 <A WITH RING ABOVE> 197 103 103 103 195.133 138.70
 <CAPITAL LIGATURE AE> 198 158 158 158 195.134 138.71
 <C WITH CEDILLA> 199 104 104 104 195.135 138.72

Perl version 5.22.0 documentation - perlebcdic

Page 10http://perldoc.perl.org

 <E WITH GRAVE> 200 116 116 116 195.136 138.73
 <E WITH ACUTE> 201 113 113 113 195.137 138.74
 <E WITH CIRCUMFLEX> 202 114 114 114 195.138 138.81
 <E WITH DIAERESIS> 203 115 115 115 195.139 138.82
 <I WITH GRAVE> 204 120 120 120 195.140 138.83
 <I WITH ACUTE> 205 117 117 117 195.141 138.84
 <I WITH CIRCUMFLEX> 206 118 118 118 195.142 138.85
 <I WITH DIAERESIS> 207 119 119 119 195.143 138.86
 <CAPITAL LETTER ETH> 208 172 172 172 195.144 138.87
 <N WITH TILDE> 209 105 105 105 195.145 138.88
 <O WITH GRAVE> 210 237 237 237 195.146 138.89
 <O WITH ACUTE> 211 238 238 238 195.147 138.98
 <O WITH CIRCUMFLEX> 212 235 235 235 195.148 138.99
 <O WITH TILDE> 213 239 239 239 195.149 138.100
 <O WITH DIAERESIS> 214 236 236 236 195.150 138.101
 <MULTIPLICATION SIGN> 215 191 191 191 195.151 138.102
 <O WITH STROKE> 216 128 128 128 195.152 138.103
 <U WITH GRAVE> 217 253 253 224 195.153 138.104 ##
 <U WITH ACUTE> 218 254 254 254 195.154 138.105
 <U WITH CIRCUMFLEX> 219 251 251 221 195.155 138.106 ##
 <U WITH DIAERESIS> 220 252 252 252 195.156 138.112
 <Y WITH ACUTE> 221 173 186 173 195.157 138.113 ** ##
 <CAPITAL LETTER THORN> 222 174 174 174 195.158 138.114
 <SMALL LETTER SHARP S> 223 89 89 89 195.159 138.115
 <a WITH GRAVE> 224 68 68 68 195.160 139.65
 <a WITH ACUTE> 225 69 69 69 195.161 139.66
 <a WITH CIRCUMFLEX> 226 66 66 66 195.162 139.67
 <a WITH TILDE> 227 70 70 70 195.163 139.68
 <a WITH DIAERESIS> 228 67 67 67 195.164 139.69
 <a WITH RING ABOVE> 229 71 71 71 195.165 139.70
 <SMALL LIGATURE ae> 230 156 156 156 195.166 139.71
 <c WITH CEDILLA> 231 72 72 72 195.167 139.72
 <e WITH GRAVE> 232 84 84 84 195.168 139.73
 <e WITH ACUTE> 233 81 81 81 195.169 139.74
 <e WITH CIRCUMFLEX> 234 82 82 82 195.170 139.81
 <e WITH DIAERESIS> 235 83 83 83 195.171 139.82
 <i WITH GRAVE> 236 88 88 88 195.172 139.83
 <i WITH ACUTE> 237 85 85 85 195.173 139.84
 <i WITH CIRCUMFLEX> 238 86 86 86 195.174 139.85
 <i WITH DIAERESIS> 239 87 87 87 195.175 139.86
 <SMALL LETTER eth> 240 140 140 140 195.176 139.87
 <n WITH TILDE> 241 73 73 73 195.177 139.88
 <o WITH GRAVE> 242 205 205 205 195.178 139.89
 <o WITH ACUTE> 243 206 206 206 195.179 139.98
 <o WITH CIRCUMFLEX> 244 203 203 203 195.180 139.99
 <o WITH TILDE> 245 207 207 207 195.181 139.100
 <o WITH DIAERESIS> 246 204 204 204 195.182 139.101
 <DIVISION SIGN> 247 225 225 225 195.183 139.102
 <o WITH STROKE> 248 112 112 112 195.184 139.103
 <u WITH GRAVE> 249 221 221 192 195.185 139.104 ##
 <u WITH ACUTE> 250 222 222 222 195.186 139.105
 <u WITH CIRCUMFLEX> 251 219 219 219 195.187 139.106
 <u WITH DIAERESIS> 252 220 220 220 195.188 139.112
 <y WITH ACUTE> 253 141 141 141 195.189 139.113
 <SMALL LETTER thorn> 254 142 142 142 195.190 139.114
 <y WITH DIAERESIS> 255 223 223 223 195.191 139.115

Perl version 5.22.0 documentation - perlebcdic

Page 11http://perldoc.perl.org

If you would rather see the above table in CCSID 0037 order rather than
 ASCII + Latin-1 order then
run the table through:

recipe 4

 perl \
 -ne 'if(/.{29}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}/)'\
 -e '{push(@l,$_)}' \
 -e 'END{print map{$_->[0]}' \
 -e ' sort{$a->[1] <=> $b->[1]}' \
 -e ' map{[$_,substr($_,34,3)]}@l;}' perlebcdic.pod

If you would rather see it in CCSID 1047 order then change the number
 34 in the last line to 39, like
this:

recipe 5

 perl \
 -ne 'if(/.{29}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}/)'\
 -e '{push(@l,$_)}' \
 -e 'END{print map{$_->[0]}' \
 -e ' sort{$a->[1] <=> $b->[1]}' \
 -e ' map{[$_,substr($_,39,3)]}@l;}' perlebcdic.pod

If you would rather see it in POSIX-BC order then change the number
 34 in the last line to 44, like
this:

recipe 6

 perl \
 -ne 'if(/.{29}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}\s{2,4}\d{1,3}/)'\
 -e '{push(@l,$_)}' \
 -e 'END{print map{$_->[0]}' \
 -e ' sort{$a->[1] <=> $b->[1]}' \
 -e ' map{[$_,substr($_,44,3)]}@l;}' perlebcdic.pod

Table in hex, sorted in 1047 order
Since this document was first written, the convention has become more
 and more to use hexadecimal
notation for code points. To do this with
 the recipes and to also sort is a multi-step process, so here,
for
 convenience, is the table from above, re-sorted to be in Code Page 1047
 order, and using hex
notation.

 ISO
 8859-1 POS- CCSID
 CCSID CCSID CCSID IX- 1047
 chr 0819 0037 1047 BC UTF-8 UTF-EBCDIC

 <NUL> 00 00 00 00 00 00
 <SOH> 01 01 01 01 01 01
 <STX> 02 02 02 02 02 02
 <ETX> 03 03 03 03 03 03
 <ST> 9C 04 04 04 C2.9C 04
 <HT> 09 05 05 05 09 05
 <SSA> 86 06 06 06 C2.86 06
 7F 07 07 07 7F 07
 <EPA> 97 08 08 08 C2.97 08
 <RI> 8D 09 09 09 C2.8D 09

Perl version 5.22.0 documentation - perlebcdic

Page 12http://perldoc.perl.org

 <SS2> 8E 0A 0A 0A C2.8E 0A
 <VT> 0B 0B 0B 0B 0B 0B
 <FF> 0C 0C 0C 0C 0C 0C
 <CR> 0D 0D 0D 0D 0D 0D
 <SO> 0E 0E 0E 0E 0E 0E
 <SI> 0F 0F 0F 0F 0F 0F
 <DLE> 10 10 10 10 10 10
 <DC1> 11 11 11 11 11 11
 <DC2> 12 12 12 12 12 12
 <DC3> 13 13 13 13 13 13
 <OSC> 9D 14 14 14 C2.9D 14
 <LF> 0A 25 15 15 0A 15 **
 <BS> 08 16 16 16 08 16
 <ESA> 87 17 17 17 C2.87 17
 <CAN> 18 18 18 18 18 18
 <EOM> 19 19 19 19 19 19
 <PU2> 92 1A 1A 1A C2.92 1A
 <SS3> 8F 1B 1B 1B C2.8F 1B
 <FS> 1C 1C 1C 1C 1C 1C
 <GS> 1D 1D 1D 1D 1D 1D
 <RS> 1E 1E 1E 1E 1E 1E
 <US> 1F 1F 1F 1F 1F 1F
 <PAD> 80 20 20 20 C2.80 20
 <HOP> 81 21 21 21 C2.81 21
 <BPH> 82 22 22 22 C2.82 22
 <NBH> 83 23 23 23 C2.83 23
 <IND> 84 24 24 24 C2.84 24
 <NEL> 85 15 25 25 C2.85 25 **
 <ETB> 17 26 26 26 17 26
 <ESC> 1B 27 27 27 1B 27
 <HTS> 88 28 28 28 C2.88 28
 <HTJ> 89 29 29 29 C2.89 29
 <VTS> 8A 2A 2A 2A C2.8A 2A
 <PLD> 8B 2B 2B 2B C2.8B 2B
 <PLU> 8C 2C 2C 2C C2.8C 2C
 <ENQ> 05 2D 2D 2D 05 2D
 <ACK> 06 2E 2E 2E 06 2E
 <BEL> 07 2F 2F 2F 07 2F
 <DCS> 90 30 30 30 C2.90 30
 <PU1> 91 31 31 31 C2.91 31
 <SYN> 16 32 32 32 16 32
 <STS> 93 33 33 33 C2.93 33
 <CCH> 94 34 34 34 C2.94 34
 <MW> 95 35 35 35 C2.95 35
 <SPA> 96 36 36 36 C2.96 36
 <EOT> 04 37 37 37 04 37
 <SOS> 98 38 38 38 C2.98 38
 <SGC> 99 39 39 39 C2.99 39
 <SCI> 9A 3A 3A 3A C2.9A 3A
 <CSI> 9B 3B 3B 3B C2.9B 3B
 <DC4> 14 3C 3C 3C 14 3C
 <NAK> 15 3D 3D 3D 15 3D
 <PM> 9E 3E 3E 3E C2.9E 3E
 <SUB> 1A 3F 3F 3F 1A 3F
 <SPACE> 20 40 40 40 20 40
 <NON-BREAKING SPACE> A0 41 41 41 C2.A0 80.41

Perl version 5.22.0 documentation - perlebcdic

Page 13http://perldoc.perl.org

 <a WITH CIRCUMFLEX> E2 42 42 42 C3.A2 8B.43
 <a WITH DIAERESIS> E4 43 43 43 C3.A4 8B.45
 <a WITH GRAVE> E0 44 44 44 C3.A0 8B.41
 <a WITH ACUTE> E1 45 45 45 C3.A1 8B.42
 <a WITH TILDE> E3 46 46 46 C3.A3 8B.44
 <a WITH RING ABOVE> E5 47 47 47 C3.A5 8B.46
 <c WITH CEDILLA> E7 48 48 48 C3.A7 8B.48
 <n WITH TILDE> F1 49 49 49 C3.B1 8B.58
 <CENT SIGN> A2 4A 4A B0 C2.A2 80.43 ##
 . 2E 4B 4B 4B 2E 4B
 < 3C 4C 4C 4C 3C 4C
 (28 4D 4D 4D 28 4D
 + 2B 4E 4E 4E 2B 4E
 | 7C 4F 4F 4F 7C 4F
 & 26 50 50 50 26 50
 <e WITH ACUTE> E9 51 51 51 C3.A9 8B.4A
 <e WITH CIRCUMFLEX> EA 52 52 52 C3.AA 8B.51
 <e WITH DIAERESIS> EB 53 53 53 C3.AB 8B.52
 <e WITH GRAVE> E8 54 54 54 C3.A8 8B.49
 <i WITH ACUTE> ED 55 55 55 C3.AD 8B.54
 <i WITH CIRCUMFLEX> EE 56 56 56 C3.AE 8B.55
 <i WITH DIAERESIS> EF 57 57 57 C3.AF 8B.56
 <i WITH GRAVE> EC 58 58 58 C3.AC 8B.53
 <SMALL LETTER SHARP S> DF 59 59 59 C3.9F 8A.73
 ! 21 5A 5A 5A 21 5A
 $ 24 5B 5B 5B 24 5B
 * 2A 5C 5C 5C 2A 5C
) 29 5D 5D 5D 29 5D
 ; 3B 5E 5E 5E 3B 5E
 ^ 5E B0 5F 6A 5E 5F ** ##
 - 2D 60 60 60 2D 60
 / 2F 61 61 61 2F 61
 <A WITH CIRCUMFLEX> C2 62 62 62 C3.82 8A.43
 <A WITH DIAERESIS> C4 63 63 63 C3.84 8A.45
 <A WITH GRAVE> C0 64 64 64 C3.80 8A.41
 <A WITH ACUTE> C1 65 65 65 C3.81 8A.42
 <A WITH TILDE> C3 66 66 66 C3.83 8A.44
 <A WITH RING ABOVE> C5 67 67 67 C3.85 8A.46
 <C WITH CEDILLA> C7 68 68 68 C3.87 8A.48
 <N WITH TILDE> D1 69 69 69 C3.91 8A.58
 <BROKEN BAR> A6 6A 6A D0 C2.A6 80.47 ##
 , 2C 6B 6B 6B 2C 6B
 % 25 6C 6C 6C 25 6C
 _ 5F 6D 6D 6D 5F 6D
 > 3E 6E 6E 6E 3E 6E
 ? 3F 6F 6F 6F 3F 6F
 <o WITH STROKE> F8 70 70 70 C3.B8 8B.67
 <E WITH ACUTE> C9 71 71 71 C3.89 8A.4A
 <E WITH CIRCUMFLEX> CA 72 72 72 C3.8A 8A.51
 <E WITH DIAERESIS> CB 73 73 73 C3.8B 8A.52
 <E WITH GRAVE> C8 74 74 74 C3.88 8A.49
 <I WITH ACUTE> CD 75 75 75 C3.8D 8A.54
 <I WITH CIRCUMFLEX> CE 76 76 76 C3.8E 8A.55
 <I WITH DIAERESIS> CF 77 77 77 C3.8F 8A.56
 <I WITH GRAVE> CC 78 78 78 C3.8C 8A.53
 ` 60 79 79 4A 60 79 ##

Perl version 5.22.0 documentation - perlebcdic

Page 14http://perldoc.perl.org

 : 3A 7A 7A 7A 3A 7A
 # 23 7B 7B 7B 23 7B
 @ 40 7C 7C 7C 40 7C
 ' 27 7D 7D 7D 27 7D
 = 3D 7E 7E 7E 3D 7E
 " 22 7F 7F 7F 22 7F
 <O WITH STROKE> D8 80 80 80 C3.98 8A.67
 a 61 81 81 81 61 81
 b 62 82 82 82 62 82
 c 63 83 83 83 63 83
 d 64 84 84 84 64 84
 e 65 85 85 85 65 85
 f 66 86 86 86 66 86
 g 67 87 87 87 67 87
 h 68 88 88 88 68 88
 i 69 89 89 89 69 89
 <LEFT POINTING GUILLEMET> AB 8A 8A 8A C2.AB 80.52
 <RIGHT POINTING GUILLEMET> BB 8B 8B 8B C2.BB 80.6A
 <SMALL LETTER eth> F0 8C 8C 8C C3.B0 8B.57
 <y WITH ACUTE> FD 8D 8D 8D C3.BD 8B.71
 <SMALL LETTER thorn> FE 8E 8E 8E C3.BE 8B.72
 <PLUS-OR-MINUS SIGN> B1 8F 8F 8F C2.B1 80.58
 <DEGREE SIGN> B0 90 90 90 C2.B0 80.57
 j 6A 91 91 91 6A 91
 k 6B 92 92 92 6B 92
 l 6C 93 93 93 6C 93
 m 6D 94 94 94 6D 94
 n 6E 95 95 95 6E 95
 o 6F 96 96 96 6F 96
 p 70 97 97 97 70 97
 q 71 98 98 98 71 98
 r 72 99 99 99 72 99
 <FEMININE ORDINAL> AA 9A 9A 9A C2.AA 80.51
 <MASC. ORDINAL INDICATOR> BA 9B 9B 9B C2.BA 80.69
 <SMALL LIGATURE ae> E6 9C 9C 9C C3.A6 8B.47
 <CEDILLA> B8 9D 9D 9D C2.B8 80.67
 <CAPITAL LIGATURE AE> C6 9E 9E 9E C3.86 8A.47
 <CURRENCY SIGN> A4 9F 9F 9F C2.A4 80.45
 <MICRO SIGN> B5 A0 A0 A0 C2.B5 80.64
 ~ 7E A1 A1 FF 7E A1 ##
 s 73 A2 A2 A2 73 A2
 t 74 A3 A3 A3 74 A3
 u 75 A4 A4 A4 75 A4
 v 76 A5 A5 A5 76 A5
 w 77 A6 A6 A6 77 A6
 x 78 A7 A7 A7 78 A7
 y 79 A8 A8 A8 79 A8
 z 7A A9 A9 A9 7A A9
 <INVERTED "!" > A1 AA AA AA C2.A1 80.42
 <INVERTED QUESTION MARK> BF AB AB AB C2.BF 80.73
 <CAPITAL LETTER ETH> D0 AC AC AC C3.90 8A.57
 [5B BA AD BB 5B AD ** ##
 <CAPITAL LETTER THORN> DE AE AE AE C3.9E 8A.72
 <REGISTERED TRADE MARK> AE AF AF AF C2.AE 80.55
 <NOT SIGN> AC 5F B0 BA C2.AC 80.53 ** ##
 <POUND SIGN> A3 B1 B1 B1 C2.A3 80.44

Perl version 5.22.0 documentation - perlebcdic

Page 15http://perldoc.perl.org

 <YEN SIGN> A5 B2 B2 B2 C2.A5 80.46
 <MIDDLE DOT> B7 B3 B3 B3 C2.B7 80.66
 <COPYRIGHT SIGN> A9 B4 B4 B4 C2.A9 80.4A
 <SECTION SIGN> A7 B5 B5 B5 C2.A7 80.48
 <PARAGRAPH SIGN> B6 B6 B6 B6 C2.B6 80.65
 <FRACTION ONE QUARTER> BC B7 B7 B7 C2.BC 80.70
 <FRACTION ONE HALF> BD B8 B8 B8 C2.BD 80.71
 <FRACTION THREE QUARTERS> BE B9 B9 B9 C2.BE 80.72
 <Y WITH ACUTE> DD AD BA AD C3.9D 8A.71 ** ##
 <DIAERESIS> A8 BD BB 79 C2.A8 80.49 ** ##
 <MACRON> AF BC BC A1 C2.AF 80.56 ##
] 5D BB BD BD 5D BD **
 <ACUTE ACCENT> B4 BE BE BE C2.B4 80.63
 <MULTIPLICATION SIGN> D7 BF BF BF C3.97 8A.66
 { 7B C0 C0 FB 7B C0 ##
 A 41 C1 C1 C1 41 C1
 B 42 C2 C2 C2 42 C2
 C 43 C3 C3 C3 43 C3
 D 44 C4 C4 C4 44 C4
 E 45 C5 C5 C5 45 C5
 F 46 C6 C6 C6 46 C6
 G 47 C7 C7 C7 47 C7
 H 48 C8 C8 C8 48 C8
 I 49 C9 C9 C9 49 C9
 <SOFT HYPHEN> AD CA CA CA C2.AD 80.54
 <o WITH CIRCUMFLEX> F4 CB CB CB C3.B4 8B.63
 <o WITH DIAERESIS> F6 CC CC CC C3.B6 8B.65
 <o WITH GRAVE> F2 CD CD CD C3.B2 8B.59
 <o WITH ACUTE> F3 CE CE CE C3.B3 8B.62
 <o WITH TILDE> F5 CF CF CF C3.B5 8B.64
 } 7D D0 D0 FD 7D D0 ##
 J 4A D1 D1 D1 4A D1
 K 4B D2 D2 D2 4B D2
 L 4C D3 D3 D3 4C D3
 M 4D D4 D4 D4 4D D4
 N 4E D5 D5 D5 4E D5
 O 4F D6 D6 D6 4F D6
 P 50 D7 D7 D7 50 D7
 Q 51 D8 D8 D8 51 D8
 R 52 D9 D9 D9 52 D9
 <SUPERSCRIPT ONE> B9 DA DA DA C2.B9 80.68
 <u WITH CIRCUMFLEX> FB DB DB DB C3.BB 8B.6A
 <u WITH DIAERESIS> FC DC DC DC C3.BC 8B.70
 <u WITH GRAVE> F9 DD DD C0 C3.B9 8B.68 ##
 <u WITH ACUTE> FA DE DE DE C3.BA 8B.69
 <y WITH DIAERESIS> FF DF DF DF C3.BF 8B.73
 \ 5C E0 E0 BC 5C E0 ##
 <DIVISION SIGN> F7 E1 E1 E1 C3.B7 8B.66
 S 53 E2 E2 E2 53 E2
 T 54 E3 E3 E3 54 E3
 U 55 E4 E4 E4 55 E4
 V 56 E5 E5 E5 56 E5
 W 57 E6 E6 E6 57 E6
 X 58 E7 E7 E7 58 E7
 Y 59 E8 E8 E8 59 E8
 Z 5A E9 E9 E9 5A E9

Perl version 5.22.0 documentation - perlebcdic

Page 16http://perldoc.perl.org

 <SUPERSCRIPT TWO> B2 EA EA EA C2.B2 80.59
 <O WITH CIRCUMFLEX> D4 EB EB EB C3.94 8A.63
 <O WITH DIAERESIS> D6 EC EC EC C3.96 8A.65
 <O WITH GRAVE> D2 ED ED ED C3.92 8A.59
 <O WITH ACUTE> D3 EE EE EE C3.93 8A.62
 <O WITH TILDE> D5 EF EF EF C3.95 8A.64
 0 30 F0 F0 F0 30 F0
 1 31 F1 F1 F1 31 F1
 2 32 F2 F2 F2 32 F2
 3 33 F3 F3 F3 33 F3
 4 34 F4 F4 F4 34 F4
 5 35 F5 F5 F5 35 F5
 6 36 F6 F6 F6 36 F6
 7 37 F7 F7 F7 37 F7
 8 38 F8 F8 F8 38 F8
 9 39 F9 F9 F9 39 F9
 <SUPERSCRIPT THREE> B3 FA FA FA C2.B3 80.62
 <U WITH CIRCUMFLEX> DB FB FB DD C3.9B 8A.6A ##
 <U WITH DIAERESIS> DC FC FC FC C3.9C 8A.70
 <U WITH GRAVE> D9 FD FD E0 C3.99 8A.68 ##
 <U WITH ACUTE> DA FE FE FE C3.9A 8A.69
 <APC> 9F FF FF 5F C2.9F FF ##

IDENTIFYING CHARACTER CODE SETS
It is possible to determine which character set you are operating under.
 But first you need to be really
really sure you need to do this. Your
 code will be simpler and probably just as portable if you don't
have
 to test the character set and do different things, depending. There are
 actually only very few
circumstances where it's not easy to write
 straight-line code portable to all character sets. See
"Unicode and EBCDIC" in perluniintro for how to portably specify
 characters.

But there are some cases where you may want to know which character set
 you are running under.
One possible example is doing sorting in inner loops where performance is critical.

To determine if you are running under ASCII or EBCDIC, you can use the
 return value of ord() or
chr() to test one or more character
 values. For example:

 $is_ascii = "A" eq chr(65);
 $is_ebcdic = "A" eq chr(193);
 $is_ascii = ord("A") == 65;
 $is_ebcdic = ord("A") == 193;

There's even less need to distinguish between EBCDIC code pages, but to
 do so try looking at one or
more of the characters that differ between
 them.

 $is_ascii = ord('[') == 91;
 $is_ebcdic_37 = ord('[') == 186;
 $is_ebcdic_1047 = ord('[') == 173;
 $is_ebcdic_POSIX_BC = ord('[') == 187;

However, it would be unwise to write tests such as:

 $is_ascii = "\r" ne chr(13); # WRONG
 $is_ascii = "\n" ne chr(10); # ILL ADVISED

Obviously the first of these will fail to distinguish most ASCII
 platforms from either a CCSID 0037, a
1047, or a POSIX-BC EBCDIC
 platform since "\r" eq chr(13) under all of those coded character

Perl version 5.22.0 documentation - perlebcdic

Page 17http://perldoc.perl.org

sets. But note too that because "\n" is chr(13) and "\r" is chr(10) on old Macintosh (which is
an ASCII platform) the second $is_ascii test will lead to trouble there.

To determine whether or not perl was built under an EBCDIC
 code page you can use the Config
module like so:

 use Config;
 $is_ebcdic = $Config{'ebcdic'} eq 'define';

CONVERSIONS
utf8::unicode_to_native() and utf8::native_to_unicode()

These functions take an input numeric code point in one encoding and
 return what its equivalent
value is in the other.

See utf8.

tr///
In order to convert a string of characters from one character set to
 another a simple list of numbers,
such as in the right columns in the
 above table, along with Perl's tr/// operator is all that is needed.

The data in the table are in ASCII/Latin1 order, hence the EBCDIC columns
 provide easy-to-use
ASCII/Latin1 to EBCDIC operations that are also easily
 reversed.

For example, to convert ASCII/Latin1 to code page 037 take the output of the
 second numbers
column from the output of recipe 2 (modified to add "\" characters), and use it in tr/// like so:

 $cp_037 =
 '\x00\x01\x02\x03\x37\x2D\x2E\x2F\x16\x05\x25\x0B\x0C\x0D\x0E\x0F' .
 '\x10\x11\x12\x13\x3C\x3D\x32\x26\x18\x19\x3F\x27\x1C\x1D\x1E\x1F' .
 '\x40\x5A\x7F\x7B\x5B\x6C\x50\x7D\x4D\x5D\x5C\x4E\x6B\x60\x4B\x61' .
 '\xF0\xF1\xF2\xF3\xF4\xF5\xF6\xF7\xF8\xF9\x7A\x5E\x4C\x7E\x6E\x6F' .
 '\x7C\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xD1\xD2\xD3\xD4\xD5\xD6' .
 '\xD7\xD8\xD9\xE2\xE3\xE4\xE5\xE6\xE7\xE8\xE9\xBA\xE0\xBB\xB0\x6D' .
 '\x79\x81\x82\x83\x84\x85\x86\x87\x88\x89\x91\x92\x93\x94\x95\x96' .
 '\x97\x98\x99\xA2\xA3\xA4\xA5\xA6\xA7\xA8\xA9\xC0\x4F\xD0\xA1\x07' .
 '\x20\x21\x22\x23\x24\x15\x06\x17\x28\x29\x2A\x2B\x2C\x09\x0A\x1B' .
 '\x30\x31\x1A\x33\x34\x35\x36\x08\x38\x39\x3A\x3B\x04\x14\x3E\xFF' .
 '\x41\xAA\x4A\xB1\x9F\xB2\x6A\xB5\xBD\xB4\x9A\x8A\x5F\xCA\xAF\xBC' .
 '\x90\x8F\xEA\xFA\xBE\xA0\xB6\xB3\x9D\xDA\x9B\x8B\xB7\xB8\xB9\xAB' .
 '\x64\x65\x62\x66\x63\x67\x9E\x68\x74\x71\x72\x73\x78\x75\x76\x77' .
 '\xAC\x69\xED\xEE\xEB\xEF\xEC\xBF\x80\xFD\xFE\xFB\xFC\xAD\xAE\x59' .
 '\x44\x45\x42\x46\x43\x47\x9C\x48\x54\x51\x52\x53\x58\x55\x56\x57' .
 '\x8C\x49\xCD\xCE\xCB\xCF\xCC\xE1\x70\xDD\xDE\xDB\xDC\x8D\x8E\xDF';

 my $ebcdic_string = $ascii_string;
 eval '$ebcdic_string =~ tr/\000-\377/' . $cp_037 . '/';

To convert from EBCDIC 037 to ASCII just reverse the order of the tr///
 arguments like so:

 my $ascii_string = $ebcdic_string;
 eval '$ascii_string =~ tr/' . $cp_037 . '/\000-\377/';

Similarly one could take the output of the third numbers column from recipe 2
 to obtain a $cp_1047
table. The fourth numbers column of the output from
 recipe 2 could provide a $cp_posix_bc table
suitable for transcoding as
 well.

If you wanted to see the inverse tables, you would first have to sort on the
 desired numbers column

Perl version 5.22.0 documentation - perlebcdic

Page 18http://perldoc.perl.org

as in recipes 4, 5 or 6, then take the output of the
 first numbers column.

iconv
XPG operability often implies the presence of an iconv utility
 available from the shell or from the C
library. Consult your system's
 documentation for information on iconv.

On OS/390 or z/OS see the iconv(1) manpage. One way to invoke the iconv
 shell utility from within
perl would be to:

 # OS/390 or z/OS example
 $ascii_data = `echo '$ebcdic_data'| iconv -f IBM-1047 -t ISO8859-1`

or the inverse map:

 # OS/390 or z/OS example
 $ebcdic_data = `echo '$ascii_data'| iconv -f ISO8859-1 -t IBM-1047`

For other Perl-based conversion options see the Convert::* modules on CPAN.

C RTL
The OS/390 and z/OS C run-time libraries provide _atoe() and _etoa() functions.

OPERATOR DIFFERENCES
The .. range operator treats certain character ranges with
 care on EBCDIC platforms. For example
the following array
 will have twenty six elements on either an EBCDIC platform
 or an ASCII platform:

 @alphabet = ('A'..'Z'); # $#alphabet == 25

The bitwise operators such as & ^ | may return different results
 when operating on string or character
data in a Perl program running
 on an EBCDIC platform than when run on an ASCII platform. Here is

an example adapted from the one in perlop:

 # EBCDIC-based examples
 print "j p \n" ^ " a h"; # prints "JAPH\n"
 print "JA" | " ph\n"; # prints "japh\n"
 print "JAPH\nJunk" & "\277\277\277\277\277"; # prints "japh\n";
 print 'p N$' ^ " E<H\n"; # prints "Perl\n";

An interesting property of the 32 C0 control characters
 in the ASCII table is that they can "literally" be
constructed
 as control characters in Perl, e.g. (chr(0) eq \c@)> (chr(1) eq \cA)>, and so on. Perl
on EBCDIC platforms has been
 ported to take \c@ to chr(0) and \cA to chr(1), etc. as well, but
the
 characters that result depend on which code page you are
 using. The table below uses the
standard acronyms for the controls.
 The POSIX-BC and 1047 sets are
 identical throughout this range
and differ from the 0037 set at only
 one spot (21 decimal). Note that the line terminator character
 may
be generated by \cJ on ASCII platforms but by \cU on 1047 or POSIX-BC
 platforms and cannot be
generated as a "\c.letter." control character on
 0037 platforms. Note also that \c\ cannot be
the final element in a string
 or regex, as it will absorb the terminator. But \c\X is a FILE
 SEPARATOR
concatenated with X for all X.
 The outlier \c? on ASCII, which yields a non-C0 control DEL,
 yields the
outlier control APC on EBCDIC, the one that isn't in the
 block of contiguous controls. Note that a
subtlety of this is that \c? on ASCII platforms is an ASCII character, while it isn't
 equivalent to any
ASCII character in EBCDIC platforms.

 chr ord 8859-1 0037 1047 && POSIX-BC

 \c@ 0 <NUL> <NUL> <NUL>
 \cA 1 <SOH> <SOH> <SOH>
 \cB 2 <STX> <STX> <STX>

Perl version 5.22.0 documentation - perlebcdic

Page 19http://perldoc.perl.org

 \cC 3 <ETX> <ETX> <ETX>
 \cD 4 <EOT> <ST> <ST>
 \cE 5 <ENQ> <HT> <HT>
 \cF 6 <ACK> <SSA> <SSA>
 \cG 7 <BEL>
 \cH 8 <BS> <EPA> <EPA>
 \cI 9 <HT> <RI> <RI>
 \cJ 10 <LF> <SS2> <SS2>
 \cK 11 <VT> <VT> <VT>
 \cL 12 <FF> <FF> <FF>
 \cM 13 <CR> <CR> <CR>
 \cN 14 <SO> <SO> <SO>
 \cO 15 <SI> <SI> <SI>
 \cP 16 <DLE> <DLE> <DLE>
 \cQ 17 <DC1> <DC1> <DC1>
 \cR 18 <DC2> <DC2> <DC2>
 \cS 19 <DC3> <DC3> <DC3>
 \cT 20 <DC4> <OSC> <OSC>
 \cU 21 <NAK> <NEL> <LF> **
 \cV 22 <SYN> <BS> <BS>
 \cW 23 <ETB> <ESA> <ESA>
 \cX 24 <CAN> <CAN> <CAN>
 \cY 25 <EOM> <EOM> <EOM>
 \cZ 26 <SUB> <PU2> <PU2>
 \c[27 <ESC> <SS3> <SS3>
 \c\X 28 <FS>X <FS>X <FS>X
 \c] 29 <GS> <GS> <GS>
 \c^ 30 <RS> <RS> <RS>
 \c_ 31 <US> <US> <US>
 \c? * <APC> <APC>

* Note: \c? maps to ordinal 127 (DEL) on ASCII platforms, but
 since ordinal 127 is a not a control
character on EBCDIC machines, \c? instead maps on them to APC, which is 255 in 0037 and 1047,

and 95 in POSIX-BC.

FUNCTION DIFFERENCES
chr()

chr() must be given an EBCDIC code number argument to yield a desired
 character
return value on an EBCDIC platform. For example:

 $CAPITAL_LETTER_A = chr(193);

The largest code point that is representable in UTF-EBCDIC is
 U+7FFF_FFFF. If you
do chr() on a larger value, a runtime error
 (similar to division by 0) will happen.

ord()

ord() will return EBCDIC code number values on an EBCDIC platform.
 For example:

 $the_number_193 = ord("A");

pack()

The "c" and "C" templates for pack() are dependent upon character set
 encoding.
Examples of usage on EBCDIC include:

 $foo = pack("CCCC",193,194,195,196);
 # $foo eq "ABCD"
 $foo = pack("C4",193,194,195,196);

Perl version 5.22.0 documentation - perlebcdic

Page 20http://perldoc.perl.org

 # same thing

 $foo = pack("ccxxcc",193,194,195,196);
 # $foo eq "AB\0\0CD"

The "U" template has been ported to mean "Unicode" on all platforms so
 that

 pack("U", 65) eq 'A'

is true on all platforms. If you want native code points for the low
 256, use the "W"
template. This means that the equivalences

 pack("W", ord($character)) eq $character
 unpack("W", $character) == ord $character

will hold.

The largest code point that is representable in UTF-EBCDIC is
 U+7FFF_FFFF. If you
try to pack a larger value into a character, a
 runtime error (similar to division by 0) will
happen.

print()

One must be careful with scalars and strings that are passed to
 print that contain
ASCII encodings. One common place
 for this to occur is in the output of the MIME type
header for
 CGI script writing. For example, many Perl programming guides

recommend something similar to:

 print "Content-type:\ttext/html\015\012\015\012";
 # this may be wrong on EBCDIC

You can instead write

 print "Content-type:\ttext/html\r\n\r\n"; # OK for DGW et al

and have it work portably.

That is because the translation from EBCDIC to ASCII is done
 by the web server in
this case. Consult your web server's documentation for
 further details.

printf()

The formats that can convert characters to numbers and vice versa
 will be different
from their ASCII counterparts when executed
 on an EBCDIC platform. Examples
include:

 printf("%c%c%c",193,194,195); # prints ABC

sort()

EBCDIC sort results may differ from ASCII sort results especially for
 mixed case
strings. This is discussed in more detail below.

sprintf()

See the discussion of printf() above. An example of the use
 of sprintf would be:

 $CAPITAL_LETTER_A = sprintf("%c",193);

unpack()

See the discussion of pack() above.

Note that it is possible to write portable code for these by specifying
 things in Unicode numbers, and
using a conversion function:

Perl version 5.22.0 documentation - perlebcdic

Page 21http://perldoc.perl.org

 printf("%c",utf8::unicode_to_native(65)); # prints A on all
 # platforms
 print utf8::native_to_unicode(ord("A")); # Likewise, prints 65

See "Unicode and EBCDIC" in perluniintro and CONVERSIONS
 for other options.

REGULAR EXPRESSION DIFFERENCES
You can write your regular expressions just like someone on an ASCII
 platform would do. But keep in
mind that using octal or hex notation to
 specify a particular code point will give you the character that
the
 EBCDIC code page natively maps to it. (This is also true of all
 double-quoted strings.) If you want
to write portably, just use the \N{U+...} notation everywhere where you would have used \x{...}
,
 and don't use octal notation at all.

Starting in Perl v5.22, this applies to ranges in bracketed character
 classes. If you say, for example,
qr/[\N{U+20}-\N{U+7F}]/, it means
 the characters \N{U+20}, \N{U+21}, ..., \N{U+7F}. This
range
 is all the printable characters that the ASCII character set contains.

Prior to v5.22, you couldn't specify any ranges portably, except
 (starting in Perl v5.5.3) all subsets of
the [A-Z] and [a-z]
 ranges are specially coded to not pick up gap characters. For example,

characters such as "ô" (o WITH CIRCUMFLEX) that lie between
 "I" and "J" would not be matched by
the regular expression range /[H-K]/. But if either of the range end points is explicitly numeric
 (and
neither is specified by \N{U+...}), the gap characters are
 matched:

 /[\x89-\x91]/

will match \x8e, even though \x89 is "i" and \x91 is "j",
 and \x8e is a gap character, from the
alphabetic viewpoint.

Another construct to be wary of is the inappropriate use of hex (unless
 you use \N{U+...}) or
 octal
constants in regular expressions. Consider the following
 set of subs:

 sub is_c0 {
 my $char = substr(shift,0,1);
 $char =~ /[\000-\037]/;
 }

 sub is_print_ascii {
 my $char = substr(shift,0,1);
 $char =~ /[\040-\176]/;
 }

 sub is_delete {
 my $char = substr(shift,0,1);
 $char eq "\177";
 }

 sub is_c1 {
 my $char = substr(shift,0,1);
 $char =~ /[\200-\237]/;
 }

 sub is_latin_1 { # But not ASCII; not C1
 my $char = substr(shift,0,1);
 $char =~ /[\240-\377]/;
 }

Perl version 5.22.0 documentation - perlebcdic

Page 22http://perldoc.perl.org

These are valid only on ASCII platforms. Starting in Perl v5.22, simply
 changing the octal constants to
equivalent \N{U+...} values makes
 them portable:

 sub is_c0 {
 my $char = substr(shift,0,1);
 $char =~ /[\N{U+00}-\N{U+1F}]/;
 }

 sub is_print_ascii {
 my $char = substr(shift,0,1);
 $char =~ /[\N{U+20}-\N{U+7E}]/;
 }

 sub is_delete {
 my $char = substr(shift,0,1);
 $char eq "\N{U+7F}";
 }

 sub is_c1 {
 my $char = substr(shift,0,1);
 $char =~ /[\N{U+80}-\N{U+9F}]/;
 }

 sub is_latin_1 { # But not ASCII; not C1
 my $char = substr(shift,0,1);
 $char =~ /[\N{U+A0}-\N{U+FF}]/;
 }

And here are some alternative portable ways to write them:

 sub Is_c0 {
 my $char = substr(shift,0,1);
 return $char =~ /[[:cntrl:]]/a && ! Is_delete($char);

 # Alternatively:
 # return $char =~ /[[:cntrl:]]/
 # && $char =~ /[[:ascii:]]/
 # && ! Is_delete($char);
 }

 sub Is_print_ascii {
 my $char = substr(shift,0,1);

 return $char =~ /[[:print:]]/a;

 # Alternatively:
 # return $char =~ /[[:print:]]/ && $char =~ /[[:ascii:]]/;

 # Or
 # return $char
 # =~ /[!"\#\$%&'()*+,\-.\/0-9:;<=>?\@A-Z[\\\]^_`a-z{|}~]/;
 }

Perl version 5.22.0 documentation - perlebcdic

Page 23http://perldoc.perl.org

 sub Is_delete {
 my $char = substr(shift,0,1);
 return utf8::native_to_unicode(ord $char) == 0x7F;
 }

 sub Is_c1 {
 use feature 'unicode_strings';
 my $char = substr(shift,0,1);
 return $char =~ /[[:cntrl:]]/ && $char !~ /[[:ascii:]]/;
 }

 sub Is_latin_1 { # But not ASCII; not C1
 use feature 'unicode_strings';
 my $char = substr(shift,0,1);
 return ord($char) < 256
 && $char !~ /[[:ascii:]]/
 && $char !~ /[[:cntrl:]]/;
 }

Another way to write Is_latin_1() would be
 to use the characters in the range explicitly:

 sub Is_latin_1 {
 my $char = substr(shift,0,1);
 $char =~
/[Â Â¡Â¢Â£Â¤Â¥Â¦Â§Â¨Â©ÂªÂ«Â¬Â-Â®Â¯Â°Â±Â²Â³Â´ÂµÂ¶Â·Â¸Â¹ÂºÂ»Â¼Â½Â¾Â¿Ã€Ã•Ã‚ÃƒÃ
„Ã…Ã†Ã‡ÃˆÃ‰ÃŠÃ‹ÃŒÃ•ÃŽÃ•]

[Ã•Ã‘Ã’Ã“Ã”Ã•Ã–Ã—Ã˜Ã™ÃšÃ›ÃœÃ•ÃžÃŸÃ Ã¡Ã¢Ã£Ã¤Ã¥Ã¦Ã§Ã¨Ã©ÃªÃ«Ã¬Ã-Ã®Ã¯Ã°Ã±Ã²Ã³Ã´
ÃµÃ¶Ã·Ã¸Ã¹ÃºÃ»Ã¼Ã½Ã¾Ã¿]/x;
 }

Although that form may run into trouble in network transit (due to the
 presence of 8 bit characters) or
on non ISO-Latin character sets. But
 it does allow Is_c1 to be rewritten so it works on Perls that
don't
 have 'unicode_strings' (earlier than v5.14):

 sub Is_latin_1 { # But not ASCII; not C1
 my $char = substr(shift,0,1);
 return ord($char) < 256
 && $char !~ /[[:ascii:]]/
 && ! Is_latin1($char);
 }

SOCKETS
Most socket programming assumes ASCII character encodings in network
 byte order. Exceptions can
include CGI script writing under a
 host web server where the server may take care of translation for
you.
 Most host web servers convert EBCDIC data to ISO-8859-1 or Unicode on
 output.

SORTING
One big difference between ASCII-based character sets and EBCDIC ones
 are the relative positions
of the characters when sorted in native
 order. Of most concern are the upper- and lowercase letters,
the
 digits, and the underscore ("_"). On ASCII platforms the native sort
 order has the digits come
before the uppercase letters which come before
 the underscore which comes before the lowercase
letters. On EBCDIC, the
 underscore comes first, then the lowercase letters, then the uppercase
 ones,
and the digits last. If sorted on an ASCII-based platform, the
 two-letter abbreviation for a physician
comes before the two letter
 abbreviation for drive; that is:

Perl version 5.22.0 documentation - perlebcdic

Page 24http://perldoc.perl.org

 @sorted = sort(qw(Dr. dr.)); # @sorted holds ('Dr.','dr.') on ASCII,
 # but ('dr.','Dr.') on EBCDIC

The property of lowercase before uppercase letters in EBCDIC is
 even carried to the Latin 1 EBCDIC
pages such as 0037 and 1047.
 An example would be that "Ë" (E WITH DIAERESIS, 203) comes

before "ë" (e WITH DIAERESIS, 235) on an ASCII platform, but
 the latter (83) comes before the
former (115) on an EBCDIC platform.
 (Astute readers will note that the uppercase version of "ß"
SMALL LETTER SHARP S is simply "SS" and that the upper case versions
 of "ÿ" (small y WITH
DIAERESIS) and "µ" (MICRO SIGN)
 are not in the 0..255 range but are in Unicode, in a Unicode
enabled
 Perl).

The sort order will cause differences between results obtained on
 ASCII platforms versus EBCDIC
platforms. What follows are some suggestions
 on how to deal with these differences.

Ignore ASCII vs. EBCDIC sort differences.
This is the least computationally expensive strategy. It may require
 some user education.

Use a sort helper function
This is completely general, but the most computationally expensive
 strategy. Choose one or the other
character set and transform to that
 for every sort comparision. Here's a complete example that
transforms
 to ASCII sort order:

 sub native_to_uni($) {
 my $string = shift;

 # Saves time on an ASCII platform
 return $string if ord 'A' == 65;

 my $output = "";
 for my $i (0 .. length($string) - 1) {
 $output
 .= chr(utf8::native_to_unicode(ord(substr($string, $i, 1))));
 }

 # Preserve utf8ness of input onto the output, even if it didn't need
 # to be utf8
 utf8::upgrade($output) if utf8::is_utf8($string);

 return $output;
 }

 sub ascii_order { # Sort helper
 return native_to_uni($a) cmp native_to_uni($b);
 }

 sort ascii_order @list;

MONO CASE then sort data (for non-digits, non-underscore)
If you don't care about where digits and underscore sort to, you can do
 something like this

 sub case_insensitive_order { # Sort helper
 return lc($a) cmp lc($b)
 }

Perl version 5.22.0 documentation - perlebcdic

Page 25http://perldoc.perl.org

 sort case_insensitive_order @list;

If performance is an issue, and you don't care if the output is in the
 same case as the input, Use
tr/// to transform to the case most
 employed within the data. If the data are primarily UPPERCASE

non-Latin1, then apply tr/[a-z]/[A-Z]/, and then sort(). If the
 data are primarily lowercase non
Latin1 then apply tr/[A-Z]/[a-z]/
 before sorting. If the data are primarily UPPERCASE and
include Latin-1
 characters then apply:

 tr/[a-z]/[A-Z]/;

tr/[Ã Ã¡Ã¢Ã£Ã¤Ã¥Ã¦Ã§Ã¨Ã©ÃªÃ«Ã¬Ã-Ã®Ã¯Ã°Ã±Ã²Ã³Ã´ÃµÃ¶Ã¸Ã¹ÃºÃ»Ã¼Ã½Ã¾]/[Ã€Ã•Ã‚Ãƒ
Ã„Ã…Ã†Ã‡ÃˆÃ‰ÃŠÃ‹ÃŒÃ•ÃŽÃ•Ã•Ã‘Ã’Ã“Ã”Ã•Ã–Ã˜Ã™ÃšÃ›ÃœÃ•Ãž/;
 s/ÃŸ/SS/g;

then sort(). If you have a choice, it's better to lowercase things
 to avoid the problems of the two
Latin-1 characters whose uppercase is
 outside Latin-1: "ÿ" (small y WITH DIAERESIS) and "µ"
 (
MICRO SIGN). If you do need to upppercase, you can; with a
 Unicode-enabled Perl, do:

 tr/Ã¿/\x{178}/;
 tr/Âµ/\x{39C}/;

Perform sorting on one type of platform only.
This strategy can employ a network connection. As such
 it would be computationally expensive.

TRANSFORMATION FORMATS
There are a variety of ways of transforming data with an intra character set
 mapping that serve a
variety of purposes. Sorting was discussed in the
 previous section and a few of the other more
popular mapping techniques are
 discussed next.

URL decoding and encoding
Note that some URLs have hexadecimal ASCII code points in them in an
 attempt to overcome
character or protocol limitation issues. For example
 the tilde character is not on every keyboard hence
a URL of the form:

 http://www.pvhp.com/~pvhp/

may also be expressed as either of:

 http://www.pvhp.com/%7Epvhp/

 http://www.pvhp.com/%7epvhp/

where 7E is the hexadecimal ASCII code point for "~". Here is an example
 of decoding such a URL in
any EBCDIC code page:

 $url = 'http://www.pvhp.com/%7Epvhp/';
 $url =~ s/%([0-9a-fA-F]{2})/
 pack("c",utf8::unicode_to_native(hex($1)))/xge;

Conversely, here is a partial solution for the task of encoding such
 a URL in any EBCDIC code page:

 $url = 'http://www.pvhp.com/~pvhp/';
 # The following regular expression does not address the
 # mappings for: ('.' => '%2E', '/' => '%2F', ':' => '%3A')
 $url =~ s/([\t "#%&\(\),;<=>\?\@\[\\\]^`{|}~])/

Perl version 5.22.0 documentation - perlebcdic

Page 26http://perldoc.perl.org

 sprintf("%%%02X",utf8::native_to_unicode(ord($1)))/xge;

where a more complete solution would split the URL into components
 and apply a full s/// substitution
only to the appropriate parts.

uu encoding and decoding
The u template to pack() or unpack() will render EBCDIC data in
 EBCDIC characters equivalent to
their ASCII counterparts. For example,
 the following will print "Yes indeed\n" on either an ASCII or
EBCDIC
 computer:

 $all_byte_chrs = '';
 for (0..255) { $all_byte_chrs .= chr($_); }
 $uuencode_byte_chrs = pack('u', $all_byte_chrs);
 ($uu = <<'ENDOFHEREDOC') =~ s/^\s*//gm;
 M``$"`P0%!@<("0H+#`T.#Q`1$A,4%187&!D:&QP='A\@(2(C)"4F)R@I*BLL
 M+2XO,#$R,S0U-C<X.3H[/#T^/T!!0D-$149'2$E*2TQ-3D]045)35%565UA9
 M6EM<75Y?8&%B8V1E9F=H:6IK;&UN;W!Q<G-T=79W>'EZ>WQ]?G^`@8*#A(6&
 MAXB)BHN,C8Z/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GJ*FJJZRMKJ^PL;*S
 MM+6VM[BYNKN\O;Z_P,'"P\3%QL?(R<K+S,W.S]#1TM/4U=;7V-G:V]S=WM_@
 ?X>+CY.7FY^CIZNOL[>[O\/'R_3U]O?X^?K[_/W^_P``
 ENDOFHEREDOC
 if ($uuencode_byte_chrs eq $uu) {
 print "Yes ";
 }
 $uudecode_byte_chrs = unpack('u', $uuencode_byte_chrs);
 if ($uudecode_byte_chrs eq $all_byte_chrs) {
 print "indeed\n";
 }

Here is a very spartan uudecoder that will work on EBCDIC:

 #!/usr/local/bin/perl
 $_ = <> until ($mode,$file) = /^begin\s*(\d*)\s*(\S*)/;
 open(OUT, "> $file") if $file ne "";
 while(<>) {
 last if /^end/;
 next if /[a-z]/;
 next unless int((((utf8::native_to_unicode(ord()) - 32) & 077)
 + 2) / 3)
 == int(length() / 4);
 print OUT unpack("u", $_);
 }
 close(OUT);
 chmod oct($mode), $file;

Quoted-Printable encoding and decoding
On ASCII-encoded platforms it is possible to strip characters outside of
 the printable set using:

 # This QP encoder works on ASCII only
 $qp_string =~ s/([=\x00-\x1F\x80-\xFF])/
 sprintf("=%02X",ord($1))/xge;

Starting in Perl v5.22, this is trivially changeable to work portably on
 both ASCII and EBCDIC
platforms.

 # This QP encoder works on both ASCII and EBCDIC

Perl version 5.22.0 documentation - perlebcdic

Page 27http://perldoc.perl.org

 $qp_string =~ s/([=\N{U+00}-\N{U+1F}\N{U+80}-\N{U+FF}])/
 sprintf("=%02X",ord($1))/xge;

For earlier Perls, a QP encoder that works on both ASCII and EBCDIC
 platforms would look
somewhat like the following:

 $delete = utf8::unicode_to_native(ord("\x7F"));
 $qp_string =~
 s/([^[:print:]$delete])/
 sprintf("=%02X",utf8::native_to_unicode(ord($1)))/xage;

(although in production code the substitutions might be done
 in the EBCDIC branch with the function
call and separately in the
 ASCII branch without the expense of the identity map; in Perl v5.22, the

identity map is optimized out so there is no expense, but the
 alternative above is simpler and is also
available in v5.22).

Such QP strings can be decoded with:

 # This QP decoder is limited to ASCII only
 $string =~ s/=([[:xdigit:][[:xdigit:])/chr hex $1/ge;
 $string =~ s/=[\n\r]+$//;

Whereas a QP decoder that works on both ASCII and EBCDIC platforms
 would look somewhat like
the following:

 $string =~ s/=([[:xdigit:][:xdigit:]])/
 chr utf8::native_to_unicode(hex $1)/xge;
 $string =~ s/=[\n\r]+$//;

Caesarean ciphers
The practice of shifting an alphabet one or more characters for encipherment
 dates back thousands of
years and was explicitly detailed by Gaius Julius
 Caesar in his Gallic Wars text. A single alphabet
shift is sometimes
 referred to as a rotation and the shift amount is given as a number $n after
 the
string 'rot' or "rot$n". Rot0 and rot26 would designate identity maps
 on the 26-letter English version of
the Latin alphabet. Rot13 has the
 interesting property that alternate subsequent invocations are
identity maps
 (thus rot13 is its own non-trivial inverse in the group of 26 alphabet
 rotations). Hence
the following is a rot13 encoder and decoder that will
 work on ASCII and EBCDIC platforms:

 #!/usr/local/bin/perl

 while(<>){
 tr/n-za-mN-ZA-M/a-zA-Z/;
 print;
 }

In one-liner form:

 perl -ne 'tr/n-za-mN-ZA-M/a-zA-Z/;print'

Hashing order and checksums
Perl deliberately randomizes hash order for security purposes on both
 ASCII and EBCDIC platforms.

EBCDIC checksums will differ for the same file translated into ASCII
 and vice versa.

Perl version 5.22.0 documentation - perlebcdic

Page 28http://perldoc.perl.org

I18N AND L10N
Internationalization (I18N) and localization (L10N) are supported at least
 in principle even on EBCDIC
platforms. The details are system-dependent
 and discussed under the OS ISSUES section below.

MULTI-OCTET CHARACTER SETS
Perl works with UTF-EBCDIC, a multi-byte encoding. In Perls earlier
 than v5.22, there may be various
bugs in this regard.

Legacy multi byte EBCDIC code pages XXX.

OS ISSUES
There may be a few system-dependent issues
 of concern to EBCDIC Perl programmers.

OS/400
PASE

The PASE environment is a runtime environment for OS/400 that can run
 executables
built for PowerPC AIX in OS/400; see perlos400. PASE
 is ASCII-based, not
EBCDIC-based as the ILE.

IFS access

XXX.

OS/390, z/OS
Perl runs under Unix Systems Services or USS.

sigaction

SA_SIGINFO can have segmentation faults.

chcp

chcp is supported as a shell utility for displaying and changing
 one's code page. See
also chcp(1).

dataset access

For sequential data set access try:

 my @ds_records = `cat //DSNAME`;

or:

 my @ds_records = `cat //'HLQ.DSNAME'`;

See also the OS390::Stdio module on CPAN.

iconv

iconv is supported as both a shell utility and a C RTL routine.
 See also the iconv(1)
and iconv(3) manual pages.

locales

Locales are supported. There may be glitches when a locale is another
 EBCDIC code
page which has some of the code-page variant characters in other
 positions.

There aren't currently any real UTF-8 locales, even though some locale
 names contain
the string "UTF-8".

See perllocale for information on locales. The L10N files
 are in /usr/nls/locale.
$Config{d_setlocale} is 'define' on
 OS/390 or z/OS.

Perl version 5.22.0 documentation - perlebcdic

Page 29http://perldoc.perl.org

POSIX-BC?
XXX.

BUGS
The cmp (and hence sort) operators do not necessarily give the
 correct results when both
operands are UTF-EBCDIC encoded strings and
 there is a mixture of ASCII and/or control
characters, along with other
 characters.

Ranges containing \N{...} in the tr/// (and y///)
 transliteration operators are treated
differently than the equivalent
 ranges in regular expression pattersn. They should, but don't,
cause
 the values in the ranges to all be treated as Unicode code points, and
 not native ones. (
"Version 8 Regular Expressions" in perlre gives
 details as to how it should work.)

Not all shells will allow multiple -e string arguments to perl to
 be concatenated together
properly as recipes in this document
 0, 2, 4, 5, and 6 might
 seem to imply.

There are some bugs in the pack/unpack "U0" template

There are a significant number of test failures in the CPAN modules
 shipped with Perl v5.22.
These are only in modules not primarily
 maintained by Perl 5 porters. Some of these are
failures in the tests
 only: they don't realize that it is proper to get different results on
 EBCDIC
platforms. And some of the failures are real bugs. If you
 compile and do a make test on
Perl, all tests on the /cpan
 directory are skipped.

In particular, the extensions Unicode::Collate and Unicode::Normalize are not supported under
EBCDIC; likewise for the
 (now deprecated) encoding pragma.

Encode partially works.

In earlier versions, when byte and character data were concatenated,
 the new string was
sometimes created by
 decoding the byte strings as ISO 8859-1 (Latin-1), even if the
 old
Unicode string used EBCDIC.

SEE ALSO
perllocale, perlfunc, perlunicode, utf8.

REFERENCES
http://anubis.dkuug.dk/i18n/charmaps

http://www.unicode.org/

http://www.unicode.org/unicode/reports/tr16/

http://www.wps.com/projects/codes/ ASCII: American Standard Code for Information Infiltration
Tom Jennings,
 September 1999.

The Unicode Standard, Version 3.0 The Unicode Consortium, Lisa Moore ed.,
 ISBN 0-201-61633-5,
Addison Wesley Developers Press, February 2000.

CDRA: IBM - Character Data Representation Architecture -
 Reference and Registry, IBM
SC09-2190-00, December 1996.

"Demystifying Character Sets", Andrea Vine, Multilingual Computing
 & Technology, #26 Vol. 10 Issue
4, August/September 1999;
 ISSN 1523-0309; Multilingual Computing Inc. Sandpoint ID, USA.

Codes, Ciphers, and Other Cryptic and Clandestine Communication
 Fred B. Wrixon, ISBN
1-57912-040-7, Black Dog & Leventhal Publishers,
 1998.

http://www.bobbemer.com/P-BIT.HTM IBM - EBCDIC and the P-bit; The biggest Computer Goof
Ever Robert Bemer.

Perl version 5.22.0 documentation - perlebcdic

Page 30http://perldoc.perl.org

HISTORY
15 April 2001: added UTF-8 and UTF-EBCDIC to main table, pvhp.

AUTHOR
Peter Prymmer pvhp@best.com wrote this in 1999 and 2000
 with CCSID 0819 and 0037 help from
Chris Leach and
 André Pirard A.Pirard@ulg.ac.be as well as POSIX-BC
 help from Thomas Dorner
Thomas.Dorner@start.de.
 Thanks also to Vickie Cooper, Philip Newton, William Raffloer, and
 Joe
Smith. Trademarks, registered trademarks, service marks and
 registered service marks used in this
document are the property of
 their respective owners.

Now maintained by Perl5 Porters.

