
Perl version 5.22.0 documentation - ExtUtils::MakeMaker::Tutorial

Page 1http://perldoc.perl.org

NAME
ExtUtils::MakeMaker::Tutorial - Writing a module with MakeMaker

SYNOPSIS
 use ExtUtils::MakeMaker;

 WriteMakefile(
 NAME => 'Your::Module',
 VERSION_FROM => 'lib/Your/Module.pm'
);

DESCRIPTION
This is a short tutorial on writing a simple module with MakeMaker.
 It's really not that hard.

The Mantra
MakeMaker modules are installed using this simple mantra

 perl Makefile.PL
 make
 make test
 make install

There are lots more commands and options, but the above will do it.

The Layout
The basic files in a module look something like this.

 Makefile.PL
 MANIFEST
 lib/Your/Module.pm

That's all that's strictly necessary. There's additional files you might
 want:

 lib/Your/Other/Module.pm
 t/some_test.t
 t/some_other_test.t
 Changes
 README
 INSTALL
 MANIFEST.SKIP
 bin/some_program

Makefile.PL

When you run Makefile.PL, it makes a Makefile. That's the whole point of
 MakeMaker. The
Makefile.PL is a simple program which loads
 ExtUtils::MakeMaker and runs the
WriteMakefile() function to generate a
 Makefile.

Here's an example of what you need for a simple module:

 use ExtUtils::MakeMaker;

 WriteMakefile(
 NAME => 'Your::Module',
 VERSION_FROM => 'lib/Your/Module.pm'
);

Perl version 5.22.0 documentation - ExtUtils::MakeMaker::Tutorial

Page 2http://perldoc.perl.org

NAME is the top-level namespace of your module. VERSION_FROM is the file
 which contains
the $VERSION variable for the entire distribution. Typically
 this is the same as your top-level
module.

MANIFEST

A simple listing of all the files in your distribution.

 Makefile.PL
 MANIFEST
 lib/Your/Module.pm

File paths in a MANIFEST always use Unix conventions (ie. /) even if you're
 not on Unix.

You can write this by hand or generate it with 'make manifest'.

See ExtUtils::Manifest for more details.

lib/

This is the directory where the .pm and .pod files you wish to have
 installed go. They are laid
out according to namespace. So Foo::Bar
 is lib/Foo/Bar.pm.

t/

Tests for your modules go here. Each test filename ends with a .t.
 So t/foo.t/ 'make test' will
run these tests. The directory is flat,
 you cannot, for example, have t/foo/bar.t run by 'make
test'.

Tests are run from the top level of your distribution. So inside a test
 you would refer to ./lib to
enter the lib directory, for example.

Changes

A log of changes you've made to this module. The layout is free-form.
 Here's an example:

 1.01 Fri Apr 11 00:21:25 PDT 2003
 - thing() does some stuff now
 - fixed the wiggy bug in withit()

 1.00 Mon Apr 7 00:57:15 PDT 2003
 - "Rain of Frogs" now supported

README

A short description of your module, what it does, why someone would use it
 and its limitations.
CPAN automatically pulls your README file out of
 the archive and makes it available to
CPAN users, it is the first thing
 they will read to decide if your module is right for them.

INSTALL

Instructions on how to install your module along with any dependencies.
 Suggested
information to include here:

 any extra modules required for use
 the minimum version of Perl required
 if only works on certain operating systems

MANIFEST.SKIP

A file full of regular expressions to exclude when using 'make
 manifest' to generate the
MANIFEST. These regular expressions
 are checked against each file path found in the
distribution (so
 you're matching against "t/foo.t" not "foo.t").

Here's a sample:

 ~$ # ignore emacs and vim backup files

Perl version 5.22.0 documentation - ExtUtils::MakeMaker::Tutorial

Page 3http://perldoc.perl.org

 .bak$ # ignore manual backups
 \# # ignore CVS old revision files and emacs temp files

Since # can be used for comments, # must be escaped.

MakeMaker comes with a default MANIFEST.SKIP to avoid things like
 version control
directories and backup files. Specifying your own
 will override this default.

bin/

SEE ALSO
perlmodstyle gives stylistic help writing a module.

perlnewmod gives more information about how to write a module.

There are modules to help you through the process of writing a module: ExtUtils::ModuleMaker,
Module::Install, PAR

