
Perl version 5.22.0 documentation - perlfaq5

Page 1http://perldoc.perl.org

NAME
perlfaq5 - Files and Formats

VERSION
version 5.021009

DESCRIPTION
This section deals with I/O and the "f" issues: filehandles, flushing,
 formats, and footers.

How do I flush/unbuffer an output filehandle? Why must I do this?
(contributed by brian d foy)

You might like to read Mark Jason Dominus's "Suffering From Buffering"
 at
http://perl.plover.com/FAQs/Buffering.html .

Perl normally buffers output so it doesn't make a system call for every
 bit of output. By saving up
output, it makes fewer expensive system calls.
 For instance, in this little bit of code, you want to print
a dot to the
 screen for every line you process to watch the progress of your program.
 Instead of
seeing a dot for every line, Perl buffers the output and you
 have a long wait before you see a row of
50 dots all at once:

 # long wait, then row of dots all at once
 while(<>) {
 print ".";
 print "\n" unless ++$count % 50;

 #... expensive line processing operations
 }

To get around this, you have to unbuffer the output filehandle, in this
 case, STDOUT. You can set the
special variable $| to a true value
 (mnemonic: making your filehandles "piping hot"):

 $|++;

 # dot shown immediately
 while(<>) {
 print ".";
 print "\n" unless ++$count % 50;

 #... expensive line processing operations
 }

The $| is one of the per-filehandle special variables, so each
 filehandle has its own copy of its value.
If you want to merge
 standard output and standard error for instance, you have to unbuffer
 each
(although STDERR might be unbuffered by default):

 {
 my $previous_default = select(STDOUT); # save previous default
 $|++; # autoflush STDOUT
 select(STDERR);
 $|++; # autoflush STDERR, to be
sure
 select($previous_default); # restore previous default
 }

Perl version 5.22.0 documentation - perlfaq5

Page 2http://perldoc.perl.org

 # now should alternate . and +
 while(1) {
 sleep 1;
 print STDOUT ".";
 print STDERR "+";
 print STDOUT "\n" unless ++$count % 25;
 }

Besides the $| special variable, you can use binmode to give
 your filehandle a :unix layer, which is
unbuffered:

 binmode(STDOUT, ":unix");

 while(1) {
 sleep 1;
 print ".";
 print "\n" unless ++$count % 50;
 }

For more information on output layers, see the entries for binmode
 and open in perlfunc, and the
PerlIO module documentation.

If you are using IO::Handle or one of its subclasses, you can
 call the autoflush method to change
the settings of the
 filehandle:

 use IO::Handle;
 open my($io_fh), ">", "output.txt";
 $io_fh->autoflush(1);

The IO::Handle objects also have a flush method. You can flush
 the buffer any time you want
without auto-buffering

 $io_fh->flush;

How do I change, delete, or insert a line in a file, or append to the beginning of a file?
(contributed by brian d foy)

The basic idea of inserting, changing, or deleting a line from a text
 file involves reading and printing
the file to the point you want to
 make the change, making the change, then reading and printing the
rest
 of the file. Perl doesn't provide random access to lines (especially
 since the record input
separator, $/, is mutable), although modules
 such as Tie::File can fake it.

A Perl program to do these tasks takes the basic form of opening a
 file, printing its lines, then closing
the file:

 open my $in, '<', $file or die "Can't read old file: $!";
 open my $out, '>', "$file.new" or die "Can't write new file: $!";

 while(<$in>) {
 print $out $_;
 }

 close $out;

Within that basic form, add the parts that you need to insert, change,
 or delete lines.

Perl version 5.22.0 documentation - perlfaq5

Page 3http://perldoc.perl.org

To prepend lines to the beginning, print those lines before you enter
 the loop that prints the existing
lines.

 open my $in, '<', $file or die "Can't read old file: $!";
 open my $out, '>', "$file.new" or die "Can't write new file: $!";

 print $out "# Add this line to the top\n"; # <--- HERE'S THE MAGIC

 while(<$in>) {
 print $out $_;
 }

 close $out;

To change existing lines, insert the code to modify the lines inside
 the while loop. In this case, the
code finds all lowercased
 versions of "perl" and uppercases them. The happens for every line, so
 be
sure that you're supposed to do that on every line!

 open my $in, '<', $file or die "Can't read old file: $!";
 open my $out, '>', "$file.new" or die "Can't write new file: $!";

 print $out "# Add this line to the top\n";

 while(<$in>) {
 s/\b(perl)\b/Perl/g;
 print $out $_;
 }

 close $out;

To change only a particular line, the input line number, $., is
 useful. First read and print the lines up
to the one you want to
 change. Next, read the single line you want to change, change it, and
 print it.
After that, read the rest of the lines and print those:

 while(<$in>) { # print the lines before the change
 print $out $_;
 last if $. == 4; # line number before change
 }

 my $line = <$in>;
 $line =~ s/\b(perl)\b/Perl/g;
 print $out $line;

 while(<$in>) { # print the rest of the lines
 print $out $_;
 }

To skip lines, use the looping controls. The next in this example
 skips comment lines, and the last
stops all processing once it
 encounters either __END__ or __DATA__.

 while(<$in>) {
 next if /^\s+#/; # skip comment lines
 last if /^__(END|DATA)__$/; # stop at end of code marker
 print $out $_;

Perl version 5.22.0 documentation - perlfaq5

Page 4http://perldoc.perl.org

 }

Do the same sort of thing to delete a particular line by using next
 to skip the lines you don't want to
show up in the output. This
 example skips every fifth line:

 while(<$in>) {
 next unless $. % 5;
 print $out $_;
 }

If, for some odd reason, you really want to see the whole file at once
 rather than processing
line-by-line, you can slurp it in (as long as
 you can fit the whole thing in memory!):

 open my $in, '<', $file or die "Can't read old file: $!"
 open my $out, '>', "$file.new" or die "Can't write new file: $!";

 my $content = do { local $/; <$in> }; # slurp!

 # do your magic here

 print $out $content;

Modules such as Path::Tiny and Tie::File can help with that
 too. If you can, however, avoid reading
the entire file at once. Perl
 won't give that memory back to the operating system until the process

finishes.

You can also use Perl one-liners to modify a file in-place. The
 following changes all 'Fred' to 'Barney'
in inFile.txt, overwriting
 the file with the new contents. With the -p switch, Perl wraps a while loop
around the code you specify with -e, and -i turns
 on in-place editing. The current line is in $_. With
-p, Perl
 automatically prints the value of $_ at the end of the loop. See perlrun for more details.

 perl -pi -e 's/Fred/Barney/' inFile.txt

To make a backup of inFile.txt, give -i a file extension to add:

 perl -pi.bak -e 's/Fred/Barney/' inFile.txt

To change only the fifth line, you can add a test checking $., the
 input line number, then only perform
the operation when the test
 passes:

 perl -pi -e 's/Fred/Barney/ if $. == 5' inFile.txt

To add lines before a certain line, you can add a line (or lines!)
 before Perl prints $_:

 perl -pi -e 'print "Put before third line\n" if $. == 3' inFile.txt

You can even add a line to the beginning of a file, since the current
 line prints at the end of the loop:

 perl -pi -e 'print "Put before first line\n" if $. == 1' inFile.txt

To insert a line after one already in the file, use the -n switch.
 It's just like -p except that it doesn't
print $_ at the end of
 the loop, so you have to do that yourself. In this case, print $_
 first, then print
the line that you want to add.

 perl -ni -e 'print; print "Put after fifth line\n" if $. == 5'

Perl version 5.22.0 documentation - perlfaq5

Page 5http://perldoc.perl.org

inFile.txtTo delete lines, only print the ones that you want.

 perl -ni -e 'print if /d/' inFile.txt

How do I count the number of lines in a file?
(contributed by brian d foy)

Conceptually, the easiest way to count the lines in a file is to
 simply read them and count them:

 my $count = 0;
 while(<$fh>) { $count++; }

You don't really have to count them yourself, though, since Perl
 already does that with the $.
variable, which is the current line
 number from the last filehandle read:

 1 while(<$fh>);
 my $count = $.;

If you want to use $., you can reduce it to a simple one-liner,
 like one of these:

 % perl -lne '} print $.; {' file

 % perl -lne 'END { print $. }' file

Those can be rather inefficient though. If they aren't fast enough for
 you, you might just read chunks
of data and count the number of
 newlines:

 my $lines = 0;
 open my($fh), '<:raw', $filename or die "Can't open $filename: $!";
 while(sysread $fh, $buffer, 4096) {
 $lines += ($buffer =~ tr/\n//);
 }
 close $fh;

However, that doesn't work if the line ending isn't a newline. You
 might change that tr/// to a s///
so you can count the number of
 times the input record separator, $/, shows up:

 my $lines = 0;
 open my($fh), '<:raw', $filename or die "Can't open $filename: $!";
 while(sysread $fh, $buffer, 4096) {
 $lines += ($buffer =~ s|$/||g;);
 }
 close $fh;

If you don't mind shelling out, the wc command is usually the
 fastest, even with the extra interprocess
overhead. Ensure that you
 have an untainted filename though:

 #!perl -T

 $ENV{PATH} = undef;

 my $lines;
 if($filename =~ /^([0-9a-z_.]+)\z/) {
 $lines = `/usr/bin/wc -l $1`
 chomp $lines;

Perl version 5.22.0 documentation - perlfaq5

Page 6http://perldoc.perl.org

 }

How do I delete the last N lines from a file?
(contributed by brian d foy)

The easiest conceptual solution is to count the lines in the
 file then start at the beginning and print the
number of lines
 (minus the last N) to a new file.

Most often, the real question is how you can delete the last N lines
 without making more than one
pass over the file, or how to do it
 without a lot of copying. The easy concept is the hard reality when

you might have millions of lines in your file.

One trick is to use File::ReadBackwards, which starts at the end of
 the file. That module provides an
object that wraps the real filehandle
 to make it easy for you to move around the file. Once you get to
the
 spot you need, you can get the actual filehandle and work with it as
 normal. In this case, you get
the file position at the end of the last
 line you want to keep and truncate the file to that point:

 use File::ReadBackwards;

 my $filename = 'test.txt';
 my $Lines_to_truncate = 2;

 my $bw = File::ReadBackwards->new($filename)
 or die "Could not read backwards in [$filename]: $!";

 my $lines_from_end = 0;
 until($bw->eof or $lines_from_end == $Lines_to_truncate) {
 print "Got: ", $bw->readline;
 $lines_from_end++;
 }

 truncate($filename, $bw->tell);

The File::ReadBackwards module also has the advantage of setting
 the input record separator to a
regular expression.

You can also use the Tie::File module which lets you access
 the lines through a tied array. You can
use normal array operations
 to modify your file, including setting the last index and using splice.

How can I use Perl's -i option from within a program?
-i sets the value of Perl's $^I variable, which in turn affects
 the behavior of <>; see perlrun for more
details. By
 modifying the appropriate variables directly, you can get the same
 behavior within a larger
program. For example:

 # ...
 {
 local($^I, @ARGV) = ('.orig', glob("*.c"));
 while (<>) {
 if ($. == 1) {
 print "This line should appear at the top of each file\n";
 }
 s/\b(p)earl\b/${1}erl/i; # Correct typos, preserving
case
 print;
 close ARGV if eof; # Reset $.
 }

Perl version 5.22.0 documentation - perlfaq5

Page 7http://perldoc.perl.org

 }
 # $^I and @ARGV return to their old values here

This block modifies all the .c files in the current directory,
 leaving a backup of the original data from
each file in a new .c.orig file.

How can I copy a file?
(contributed by brian d foy)

Use the File::Copy module. It comes with Perl and can do a
 true copy across file systems, and it does
its magic in
 a portable fashion.

 use File::Copy;

 copy($original, $new_copy) or die "Copy failed: $!";

If you can't use File::Copy, you'll have to do the work yourself:
 open the original file, open the
destination file, then print
 to the destination file as you read the original. You also have to
 remember
to copy the permissions, owner, and group to the new file.

How do I make a temporary file name?
If you don't need to know the name of the file, you can use open()
 with undef in place of the file
name. In Perl 5.8 or later, the open() function creates an anonymous temporary file:

 open my $tmp, '+>', undef or die $!;

Otherwise, you can use the File::Temp module.

 use File::Temp qw/ tempfile tempdir /;

 my $dir = tempdir(CLEANUP => 1);
 ($fh, $filename) = tempfile(DIR => $dir);

 # or if you don't need to know the filename

 my $fh = tempfile(DIR => $dir);

The File::Temp has been a standard module since Perl 5.6.1. If you
 don't have a modern enough Perl
installed, use the new_tmpfile
 class method from the IO::File module to get a filehandle opened for

reading and writing. Use it if you don't need to know the file's name:

 use IO::File;
 my $fh = IO::File->new_tmpfile()
 or die "Unable to make new temporary file: $!";

If you're committed to creating a temporary file by hand, use the
 process ID and/or the current
time-value. If you need to have many
 temporary files in one process, use a counter:

 BEGIN {
 use Fcntl;
 use File::Spec;
 my $temp_dir = File::Spec->tmpdir();
 my $file_base = sprintf "%d-%d-0000", $$, time;
 my $base_name = File::Spec->catfile($temp_dir, $file_base);

Perl version 5.22.0 documentation - perlfaq5

Page 8http://perldoc.perl.org

 sub temp_file {
 my $fh;
 my $count = 0;
 until(defined(fileno($fh)) || $count++ > 100) {
 $base_name =~ s/-(\d+)$/"-" . (1 + $1)/e;
 # O_EXCL is required for security reasons.
 sysopen $fh, $base_name, O_WRONLY|O_EXCL|O_CREAT;
 }

 if(defined fileno($fh)) {
 return ($fh, $base_name);
 }
 else {
 return ();
 }
 }
 }

How can I manipulate fixed-record-length files?
The most efficient way is using pack() and unpack(). This is faster than using substr() when taking
many, many strings. It is
 slower for just a few.

Here is a sample chunk of code to break up and put back together again
 some fixed-format input
lines, in this case from the output of a normal,
 Berkeley-style ps:

 # sample input line:
 # 15158 p5 T 0:00 perl /home/tchrist/scripts/now-what
 my $PS_T = 'A6 A4 A7 A5 A*';
 open my $ps, '-|', 'ps';
 print scalar <$ps>;
 my @fields = qw(pid tt stat time command);
 while (<$ps>) {
 my %process;
 @process{@fields} = unpack($PS_T, $_);
 for my $field (@fields) {
 print "$field: <$process{$field}>\n";
 }
 print 'line=', pack($PS_T, @process{@fields}), "\n";
 }

We've used a hash slice in order to easily handle the fields of each row.
 Storing the keys in an array
makes it easy to operate on them as a
 group or loop over them with for. It also avoids polluting the
program
 with global variables and using symbolic references.

How can I make a filehandle local to a subroutine? How do I pass filehandles between
subroutines? How do I make an array of filehandles?

As of perl5.6, open() autovivifies file and directory handles
 as references if you pass it an uninitialized
scalar variable.
 You can then pass these references just like any other scalar,
 and use them in the
place of named handles.

 open my $fh, $file_name;

 open local $fh, $file_name;

 print $fh "Hello World!\n";

Perl version 5.22.0 documentation - perlfaq5

Page 9http://perldoc.perl.org

 process_file($fh);

If you like, you can store these filehandles in an array or a hash.
 If you access them directly, they
aren't simple scalars and you
 need to give print a little help by placing the filehandle
 reference in
braces. Perl can only figure it out on its own when
 the filehandle reference is a simple scalar.

 my @fhs = ($fh1, $fh2, $fh3);

 for($i = 0; $i <= $#fhs; $i++) {
 print {$fhs[$i]} "just another Perl answer, \n";
 }

Before perl5.6, you had to deal with various typeglob idioms
 which you may see in older code.

 open FILE, "> $filename";
 process_typeglob(*FILE);
 process_reference(*FILE);

 sub process_typeglob { local *FH = shift; print FH "Typeglob!" }
 sub process_reference { local $fh = shift; print $fh "Reference!" }

If you want to create many anonymous handles, you should
 check out the Symbol or IO::Handle
modules.

How can I use a filehandle indirectly?
An indirect filehandle is the use of something other than a symbol
 in a place that a filehandle is
expected. Here are ways
 to get indirect filehandles:

 $fh = SOME_FH; # bareword is strict-subs hostile
 $fh = "SOME_FH"; # strict-refs hostile; same package only
 $fh = *SOME_FH; # typeglob
 $fh = *SOME_FH; # ref to typeglob (bless-able)
 $fh = *SOME_FH{IO}; # blessed IO::Handle from *SOME_FH typeglob

Or, you can use the new method from one of the IO::* modules to
 create an anonymous filehandle
and store that in a scalar variable.

 use IO::Handle; # 5.004 or higher
 my $fh = IO::Handle->new();

Then use any of those as you would a normal filehandle. Anywhere that
 Perl is expecting a filehandle,
an indirect filehandle may be used
 instead. An indirect filehandle is just a scalar variable that contains
a filehandle. Functions like print, open, seek, or
 the <FH> diamond operator will accept either a
named filehandle
 or a scalar variable containing one:

 ($ifh, $ofh, $efh) = (*STDIN, *STDOUT, *STDERR);
 print $ofh "Type it: ";
 my $got = <$ifh>
 print $efh "What was that: $got";

If you're passing a filehandle to a function, you can write
 the function in two ways:

 sub accept_fh {
 my $fh = shift;
 print $fh "Sending to indirect filehandle\n";

Perl version 5.22.0 documentation - perlfaq5

Page 10http://perldoc.perl.org

 }

Or it can localize a typeglob and use the filehandle directly:

 sub accept_fh {
 local *FH = shift;
 print FH "Sending to localized filehandle\n";
 }

Both styles work with either objects or typeglobs of real filehandles.
 (They might also work with strings
under some circumstances, but this
 is risky.)

 accept_fh(*STDOUT);
 accept_fh($handle);

In the examples above, we assigned the filehandle to a scalar variable
 before using it. That is
because only simple scalar variables, not
 expressions or subscripts of hashes or arrays, can be used
with
 built-ins like print, printf, or the diamond operator. Using
 something other than a simple
scalar variable as a filehandle is
 illegal and won't even compile:

 my @fd = (*STDIN, *STDOUT, *STDERR);
 print $fd[1] "Type it: "; # WRONG
 my $got = <$fd[0]> # WRONG
 print $fd[2] "What was that: $got"; # WRONG

With print and printf, you get around this by using a block and
 an expression where you would
place the filehandle:

 print { $fd[1] } "funny stuff\n";
 printf { $fd[1] } "Pity the poor %x.\n", 3_735_928_559;
 # Pity the poor deadbeef.

That block is a proper block like any other, so you can put more
 complicated code there. This sends
the message out to one of two places:

 my $ok = -x "/bin/cat";
 print { $ok ? $fd[1] : $fd[2] } "cat stat $ok\n";
 print { $fd[1+ ($ok || 0)] } "cat stat $ok\n";

This approach of treating print and printf like object methods
 calls doesn't work for the diamond
operator. That's because it's a
 real operator, not just a function with a comma-less argument.
Assuming
 you've been storing typeglobs in your structure as we did above, you
 can use the built-in
function named readline to read a record just
 as <> does. Given the initialization shown above for
@fd, this
 would work, but only because readline() requires a typeglob. It doesn't
 work with objects or
strings, which might be a bug we haven't fixed yet.

 $got = readline($fd[0]);

Let it be noted that the flakiness of indirect filehandles is not
 related to whether they're strings,
typeglobs, objects, or anything else.
 It's the syntax of the fundamental operators. Playing the object

game doesn't help you at all here.

How can I set up a footer format to be used with write()?
There's no builtin way to do this, but perlform has a couple of
 techniques to make it possible for the
intrepid hacker.

Perl version 5.22.0 documentation - perlfaq5

Page 11http://perldoc.perl.org

How can I write() into a string?
(contributed by brian d foy)

If you want to write into a string, you just have to <open> a
 filehandle to a string, which Perl has
been able to do since Perl 5.6:

 open FH, '>', \my $string;
 write(FH);

Since you want to be a good programmer, you probably want to use a lexical
 filehandle, even though
formats are designed to work with bareword filehandles
 since the default format names take the
filehandle name. However, you can
 control this with some Perl special per-filehandle variables: $^,
which
 names the top-of-page format, and $~ which shows the line format. You have
 to change the
default filehandle to set these variables:

 open my($fh), '>', \my $string;

 { # set per-filehandle variables
 my $old_fh = select($fh);
 $~ = 'ANIMAL';
 $^ = 'ANIMAL_TOP';
 select($old_fh);
 }

 format ANIMAL_TOP =
 ID Type Name
 .

 format ANIMAL =
 @## @<<< @<<<<<<<<<<<<<<
 $id, $type, $name
 .

Although write can work with lexical or package variables, whatever variables
 you use have to scope
in the format. That most likely means you'll want to
 localize some package variables:

 {
 local($id, $type, $name) = qw(12 cat Buster);
 write($fh);
 }

 print $string;

There are also some tricks that you can play with formline and the
 accumulator variable $^A, but
you lose a lot of the value of formats
 since formline won't handle paging and so on. You end up
reimplementing
 formats when you use them.

How can I open a filehandle to a string?
(contributed by Peter J. Holzer, hjp-usenet2@hjp.at)

Since Perl 5.8.0 a file handle referring to a string can be created by
 calling open with a reference to
that string instead of the filename.
 This file handle can then be used to read from or write to the string:

 open(my $fh, '>', \$string) or die "Could not open string for writing";
 print $fh "foo\n";

Perl version 5.22.0 documentation - perlfaq5

Page 12http://perldoc.perl.org

 print $fh "bar\n"; # $string now contains "foo\nbar\n"

 open(my $fh, '<', \$string) or die "Could not open string for reading";
 my $x = <$fh>; # $x now contains "foo\n"

With older versions of Perl, the IO::String module provides similar
 functionality.

How can I output my numbers with commas added?
(contributed by brian d foy and Benjamin Goldberg)

You can use Number::Format to separate places in a number.
 It handles locale information for those
of you who want to insert
 full stops instead (or anything else that they want to use,
 really).

This subroutine will add commas to your number:

 sub commify {
 local $_ = shift;
 1 while s/^([-+]?\d+)(\d{3})/$1,$2/;
 return $_;
 }

This regex from Benjamin Goldberg will add commas to numbers:

 s/(^[-+]?\d+?(?=(?>(?:\d{3})+)(?!\d))|\G\d{3}(?=\d))/$1,/g;

It is easier to see with comments:

 s/(
 ^[-+]? # beginning of number.
 \d+? # first digits before first comma
 (?= # followed by, (but not included in the match) :
 (?>(?:\d{3})+) # some positive multiple of three digits.
 (?!\d) # an *exact* multiple, not x * 3 + 1 or
whatever.
)
 | # or:
 \G\d{3} # after the last group, get three digits
 (?=\d) # but they have to have more digits after them.
)/$1,/xg;

How can I translate tildes (~) in a filename?
Use the <> (glob()) operator, documented in perlfunc.
 Versions of Perl older than 5.6 require that
you have a shell
 installed that groks tildes. Later versions of Perl have this feature
 built in. The
File::KGlob module (available from CPAN) gives more
 portable glob functionality.

Within Perl, you may use this directly:

 $filename =~ s{
 ^ ~ # find a leading tilde
 (# save this in $1
 [^/] # a non-slash character
 * # repeated 0 or more times (0 means me)
)
 }{
 $1
 ? (getpwnam($1))[7]

Perl version 5.22.0 documentation - perlfaq5

Page 13http://perldoc.perl.org

 : ($ENV{HOME} || $ENV{LOGDIR})
 }ex;

How come when I open a file read-write it wipes it out?
Because you're using something like this, which truncates the file then gives you read-write access:

 open my $fh, '+>', '/path/name'; # WRONG (almost always)

Whoops. You should instead use this, which will fail if the file
 doesn't exist:

 open my $fh, '+<', '/path/name'; # open for update

Using ">" always clobbers or creates. Using "<" never does
 either. The "+" doesn't change this.

Here are examples of many kinds of file opens. Those using sysopen
 all assume that you've pulled
in the constants from Fcntl:

 use Fcntl;

To open file for reading:

 open my $fh, '<', $path or die $!;
 sysopen my $fh, $path, O_RDONLY or die $!;

To open file for writing, create new file if needed or else truncate old file:

 open my $fh, '>', $path or die $!;
 sysopen my $fh, $path, O_WRONLY|O_TRUNC|O_CREAT or die $!;
 sysopen my $fh, $path, O_WRONLY|O_TRUNC|O_CREAT, 0666 or die $!;

To open file for writing, create new file, file must not exist:

 sysopen my $fh, $path, O_WRONLY|O_EXCL|O_CREAT or die $!;
 sysopen my $fh, $path, O_WRONLY|O_EXCL|O_CREAT, 0666 or die $!;

To open file for appending, create if necessary:

 open my $fh, '>>' $path or die $!;
 sysopen my $fh, $path, O_WRONLY|O_APPEND|O_CREAT or die $!;
 sysopen my $fh, $path, O_WRONLY|O_APPEND|O_CREAT, 0666 or die $!;

To open file for appending, file must exist:

 sysopen my $fh, $path, O_WRONLY|O_APPEND or die $!;

To open file for update, file must exist:

 open my $fh, '+<', $path or die $!;
 sysopen my $fh, $path, O_RDWR or die $!;

To open file for update, create file if necessary:

 sysopen my $fh, $path, O_RDWR|O_CREAT or die $!;
 sysopen my $fh, $path, O_RDWR|O_CREAT, 0666 or die $!;

To open file for update, file must not exist:

Perl version 5.22.0 documentation - perlfaq5

Page 14http://perldoc.perl.org

 sysopen my $fh, $path, O_RDWR|O_EXCL|O_CREAT or die $!;
 sysopen my $fh, $path, O_RDWR|O_EXCL|O_CREAT, 0666 or die $!;

To open a file without blocking, creating if necessary:

 sysopen my $fh, '/foo/somefile', O_WRONLY|O_NDELAY|O_CREAT
 or die "can't open /foo/somefile: $!":

Be warned that neither creation nor deletion of files is guaranteed to
 be an atomic operation over
NFS. That is, two processes might both
 successfully create or unlink the same file! Therefore
O_EXCL
 isn't as exclusive as you might wish.

See also perlopentut.

Why do I sometimes get an "Argument list too long" when I use <*>?
The <> operator performs a globbing operation (see above).
 In Perl versions earlier than v5.6.0, the
internal glob() operator forks
 csh(1) to do the actual glob expansion, but
 csh can't handle more than
127 items and so gives the error message Argument list too long. People who installed tcsh
as csh won't
 have this problem, but their users may be surprised by it.

To get around this, either upgrade to Perl v5.6.0 or later, do the glob
 yourself with readdir() and
patterns, or use a module like File::Glob,
 one that doesn't use the shell to do globbing.

How can I open a file with a leading ">" or trailing blanks?
(contributed by Brian McCauley)

The special two-argument form of Perl's open() function ignores
 trailing blanks in filenames and infers
the mode from certain leading
 characters (or a trailing "|"). In older versions of Perl this was the
 only
version of open() and so it is prevalent in old code and books.

Unless you have a particular reason to use the two-argument form you
 should use the three-argument
form of open() which does not treat any
 characters in the filename as special.

 open my $fh, "<", " file "; # filename is " file "
 open my $fh, ">", ">file"; # filename is ">file"

How can I reliably rename a file?
If your operating system supports a proper mv(1) utility or its
 functional equivalent, this works:

 rename($old, $new) or system("mv", $old, $new);

It may be more portable to use the File::Copy module instead.
 You just copy to the new file to the new
name (checking return
 values), then delete the old one. This isn't really the same
 semantically as a
rename(), which preserves meta-information like
 permissions, timestamps, inode info, etc.

How can I lock a file?
Perl's builtin flock() function (see perlfunc for details) will call
 flock(2) if that exists, fcntl(2) if it doesn't
(on perl version 5.004 and
 later), and lockf(3) if neither of the two previous system calls exists.
 On
some systems, it may even use a different form of native locking.
 Here are some gotchas with Perl's
flock():

1 Produces a fatal error if none of the three system calls (or their
 close equivalent) exists.

2 lockf(3) does not provide shared locking, and requires that the
 filehandle be open for writing
(or appending, or read/writing).

3 Some versions of flock() can't lock files over a network (e.g. on NFS file
 systems), so you'd
need to force the use of fcntl(2) when you build Perl.
 But even this is dubious at best. See the

Perl version 5.22.0 documentation - perlfaq5

Page 15http://perldoc.perl.org

flock entry of perlfunc
 and the INSTALL file in the source distribution for information on

building Perl to do this.

Two potentially non-obvious but traditional flock semantics are that
 it waits indefinitely until the
lock is granted, and that its locks are merely advisory. Such discretionary locks are more
flexible, but
 offer fewer guarantees. This means that files locked with flock() may
 be modified
by programs that do not also use flock(). Cars that stop
 for red lights get on well with each
other, but not with cars that don't
 stop for red lights. See the perlport manpage, your port's
specific
 documentation, or your system-specific local manpages for details. It's
 best to assume
traditional behavior if you're writing portable programs.
 (If you're not, you should as always
feel perfectly free to write
 for your own system's idiosyncrasies (sometimes called "features").

Slavish adherence to portability concerns shouldn't get in the way of
 your getting your job
done.)

For more information on file locking, see also "File Locking" in perlopentut if you have it (new
for 5.6).

Why can't I just open(FH, ">file.lock")?
A common bit of code NOT TO USE is this:

 sleep(3) while -e 'file.lock'; # PLEASE DO NOT USE
 open my $lock, '>', 'file.lock'; # THIS BROKEN CODE

This is a classic race condition: you take two steps to do something
 which must be done in one.
That's why computer hardware provides an
 atomic test-and-set instruction. In theory, this "ought" to
work:

 sysopen my $fh, "file.lock", O_WRONLY|O_EXCL|O_CREAT
 or die "can't open file.lock: $!";

except that lamentably, file creation (and deletion) is not atomic
 over NFS, so this won't work (at least,
not every time) over the net.
 Various schemes involving link() have been suggested, but
 these tend to
involve busy-wait, which is also less than desirable.

I still don't get locking. I just want to increment the number in the file. How can I do this?
Didn't anyone ever tell you web-page hit counters were useless?
 They don't count number of hits,
they're a waste of time, and they serve
 only to stroke the writer's vanity. It's better to pick a random
number;
 they're more realistic.

Anyway, this is what you can do if you can't help yourself.

 use Fcntl qw(:DEFAULT :flock);
 sysopen my $fh, "numfile", O_RDWR|O_CREAT or die "can't open numfile:
$!";
 flock $fh, LOCK_EX or die "can't flock numfile:
$!";
 my $num = <$fh> || 0;
 seek $fh, 0, 0 or die "can't rewind numfile:
 $!";
 truncate $fh, 0 or die "can't truncate
numfile: $!";
 (print $fh $num+1, "\n") or die "can't write numfile:
$!";
 close $fh or die "can't close numfile:
$!";

Here's a much better web-page hit counter:

Perl version 5.22.0 documentation - perlfaq5

Page 16http://perldoc.perl.org

 $hits = int((time() - 850_000_000) / rand(1_000));

If the count doesn't impress your friends, then the code might. :-)

All I want to do is append a small amount of text to the end of a file. Do I still have to use
locking?

If you are on a system that correctly implements flock and you use
 the example appending code
from "perldoc -f flock" everything will be
 OK even if the OS you are on doesn't implement append
mode correctly
 (if such a system exists). So if you are happy to restrict yourself to
 OSs that implement
flock (and that's not really much of a
 restriction) then that is what you should do.

If you know you are only going to use a system that does correctly
 implement appending (i.e. not
Win32) then you can omit the seek
 from the code in the previous answer.

If you know you are only writing code to run on an OS and filesystem
 that does implement append
mode correctly (a local filesystem on a
 modern Unix for example), and you keep the file in
block-buffered mode
 and you write less than one buffer-full of output between each manual
 flushing of
the buffer then each bufferload is almost guaranteed to be
 written to the end of the file in one chunk
without getting
 intermingled with anyone else's output. You can also use the syswrite function
which is simply a wrapper around your system's write(2) system call.

There is still a small theoretical chance that a signal will interrupt
 the system-level write() operation
before completion. There is also
 a possibility that some STDIO implementations may call multiple
system
 level write()s even if the buffer was empty to start. There may be
 some systems where this
probability is reduced to zero, and this is
 not a concern when using :perlio instead of your system's
STDIO.

How do I randomly update a binary file?
If you're just trying to patch a binary, in many cases something as
 simple as this works:

 perl -i -pe 's{window manager}{window mangler}g' /usr/bin/emacs

However, if you have fixed sized records, then you might do something more
 like this:

 my $RECSIZE = 220; # size of record, in bytes
 my $recno = 37; # which record to update
 open my $fh, '+<', 'somewhere' or die "can't update somewhere: $!";
 seek $fh, $recno * $RECSIZE, 0;
 read $fh, $record, $RECSIZE == $RECSIZE or die "can't read record
$recno: $!";
 # munge the record
 seek $fh, -$RECSIZE, 1;
 print $fh $record;
 close $fh;

Locking and error checking are left as an exercise for the reader.
 Don't forget them or you'll be quite
sorry.

How do I get a file's timestamp in perl?
If you want to retrieve the time at which the file was last read,
 written, or had its meta-data (owner,
etc) changed, you use the -A, -M, or -C file test operations as documented in perlfunc.
 These retrieve
the age of the file (measured against the start-time of
 your program) in days as a floating point
number. Some platforms may
 not have all of these times. See perlport for details. To retrieve
 the
"raw" time in seconds since the epoch, you would call the stat
 function, then use localtime(),
gmtime(), or POSIX::strftime() to convert this into human-readable form.

Here's an example:

Perl version 5.22.0 documentation - perlfaq5

Page 17http://perldoc.perl.org

 my $write_secs = (stat($file))[9];
 printf "file %s updated at %s\n", $file,
 scalar localtime($write_secs);

If you prefer something more legible, use the File::stat module
 (part of the standard distribution in
version 5.004 and later):

 # error checking left as an exercise for reader.
 use File::stat;
 use Time::localtime;
 my $date_string = ctime(stat($file)->mtime);
 print "file $file updated at $date_string\n";

The POSIX::strftime() approach has the benefit of being,
 in theory, independent of the current locale.
See perllocale
 for details.

How do I set a file's timestamp in perl?
You use the utime() function documented in "utime" in perlfunc.
 By way of example, here's a little
program that copies the
 read and write times from its first argument to all the rest
 of them.

 if (@ARGV < 2) {
 die "usage: cptimes timestamp_file other_files ...\n";
 }
 my $timestamp = shift;
 my($atime, $mtime) = (stat($timestamp))[8,9];
 utime $atime, $mtime, @ARGV;

Error checking is, as usual, left as an exercise for the reader.

The perldoc for utime also has an example that has the same
 effect as touch(1) on files that already
exist.

Certain file systems have a limited ability to store the times
 on a file at the expected level of precision.
For example, the
 FAT and HPFS filesystem are unable to create dates on files with
 a finer granularity
than two seconds. This is a limitation of
 the filesystems, not of utime().

How do I print to more than one file at once?
To connect one filehandle to several output filehandles,
 you can use the IO::Tee or
Tie::FileHandle::Multiplex modules.

If you only have to do this once, you can print individually
 to each filehandle.

 for my $fh ($fh1, $fh2, $fh3) { print $fh "whatever\n" }

How can I read in an entire file all at once?
The customary Perl approach for processing all the lines in a file is to
 do so one line at a time:

 open my $input, '<', $file or die "can't open $file: $!";
 while (<$input>) {
 chomp;
 # do something with $_
 }
 close $input or die "can't close $file: $!";

This is tremendously more efficient than reading the entire file into
 memory as an array of lines and
then processing it one element at a time,
 which is often--if not almost always--the wrong approach.

Perl version 5.22.0 documentation - perlfaq5

Page 18http://perldoc.perl.org

Whenever
 you see someone do this:

 my @lines = <INPUT>;

You should think long and hard about why you need everything loaded at
 once. It's just not a scalable
solution.

If you "mmap" the file with the File::Map module from
 CPAN, you can virtually load the entire file into a
string without actually storing it in memory:

 use File::Map qw(map_file);

 map_file my $string, $filename;

Once mapped, you can treat $string as you would any other string.
 Since you don't necessarily
have to load the data, mmap-ing can be
 very fast and may not increase your memory footprint.

You might also find it more
 fun to use the standard Tie::File module, or the DB_File module's
$DB_RECNO bindings, which allow you to tie an array to a file so that
 accessing an element of the
array actually accesses the corresponding
 line in the file.

If you want to load the entire file, you can use the Path::Tiny
 module to do it in one simple and
efficient step:

 use Path::Tiny;

 my $all_of_it = path($filename)->slurp; # entire file in scalar
 my @all_lines = path($filename)->lines; # one line per element

Or you can read the entire file contents into a scalar like this:

 my $var;
 {
 local $/;
 open my $fh, '<', $file or die "can't open $file: $!";
 $var = <$fh>;
 }

That temporarily undefs your record separator, and will automatically
 close the file at block exit. If the
file is already open, just use this:

 my $var = do { local $/; <$fh> };

You can also use a localized @ARGV to eliminate the open:

 my $var = do { local(@ARGV, $/) = $file; <> };

For ordinary files you can also use the read function.

 read($fh, $var, -s $fh);

That third argument tests the byte size of the data on the $fh filehandle
 and reads that many bytes
into the buffer $var.

Perl version 5.22.0 documentation - perlfaq5

Page 19http://perldoc.perl.org

How can I read in a file by paragraphs?
Use the $/ variable (see perlvar for details). You can either
 set it to "" to eliminate empty paragraphs
("abc\n\n\n\ndef",
 for instance, gets treated as two paragraphs and not three), or "\n\n" to
accept empty paragraphs.

Note that a blank line must have no blanks in it. Thus "fred\n \nstuff\n\n" is one paragraph,
but "fred\n\nstuff\n\n" is two.

How can I read a single character from a file? From the keyboard?
You can use the builtin getc() function for most filehandles, but
 it won't (easily) work on a terminal
device. For STDIN, either use
 the Term::ReadKey module from CPAN or use the sample code in
"getc" in perlfunc.

If your system supports the portable operating system programming
 interface (POSIX), you can use
the following code, which you'll note
 turns off echo processing as well.

 #!/usr/bin/perl -w
 use strict;
 $| = 1;
 for (1..4) {
 print "gimme: ";
 my $got = getone();
 print "--> $got\n";
 }
 exit;

 BEGIN {
 use POSIX qw(:termios_h);

 my ($term, $oterm, $echo, $noecho, $fd_stdin);

 my $fd_stdin = fileno(STDIN);

 $term = POSIX::Termios->new();
 $term->getattr($fd_stdin);
 $oterm = $term->getlflag();

 $echo = ECHO | ECHOK | ICANON;
 $noecho = $oterm & ~$echo;

 sub cbreak {
 $term->setlflag($noecho);
 $term->setcc(VTIME, 1);
 $term->setattr($fd_stdin, TCSANOW);
 }

 sub cooked {
 $term->setlflag($oterm);
 $term->setcc(VTIME, 0);
 $term->setattr($fd_stdin, TCSANOW);
 }

 sub getone {
 my $key = '';

Perl version 5.22.0 documentation - perlfaq5

Page 20http://perldoc.perl.org

 cbreak();
 sysread(STDIN, $key, 1);
 cooked();
 return $key;
 }
 }

 END { cooked() }

The Term::ReadKey module from CPAN may be easier to use. Recent versions
 include also support
for non-portable systems as well.

 use Term::ReadKey;
 open my $tty, '<', '/dev/tty';
 print "Gimme a char: ";
 ReadMode "raw";
 my $key = ReadKey 0, $tty;
 ReadMode "normal";
 printf "\nYou said %s, char number %03d\n",
 $key, ord $key;

How can I tell whether there's a character waiting on a filehandle?
The very first thing you should do is look into getting the Term::ReadKey
 extension from CPAN. As
we mentioned earlier, it now even has limited
 support for non-portable (read: not open systems,
closed, proprietary,
 not POSIX, not Unix, etc.) systems.

You should also check out the Frequently Asked Questions list in
 comp.unix.* for things like this: the
answer is essentially the same.
 It's very system-dependent. Here's one solution that works on BSD

systems:

 sub key_ready {
 my($rin, $nfd);
 vec($rin, fileno(STDIN), 1) = 1;
 return $nfd = select($rin,undef,undef,0);
 }

If you want to find out how many characters are waiting, there's
 also the FIONREAD ioctl call to be
looked at. The h2ph tool that
 comes with Perl tries to convert C include files to Perl code, which
 can
be required. FIONREAD ends up defined as a function in the sys/ioctl.ph file:

 require 'sys/ioctl.ph';

 $size = pack("L", 0);
 ioctl(FH, FIONREAD(), $size) or die "Couldn't call ioctl: $!\n";
 $size = unpack("L", $size);

If h2ph wasn't installed or doesn't work for you, you can grep the include files by hand:

 % grep FIONREAD /usr/include/*/*
 /usr/include/asm/ioctls.h:#define FIONREAD 0x541B

Or write a small C program using the editor of champions:

 % cat > fionread.c
 #include <sys/ioctl.h>

Perl version 5.22.0 documentation - perlfaq5

Page 21http://perldoc.perl.org

 main() {
 printf("%#08x\n", FIONREAD);
 }
 ^D
 % cc -o fionread fionread.c
 % ./fionread
 0x4004667f

And then hard-code it, leaving porting as an exercise to your successor.

 $FIONREAD = 0x4004667f; # XXX: opsys dependent

 $size = pack("L", 0);
 ioctl(FH, $FIONREAD, $size) or die "Couldn't call ioctl: $!\n";
 $size = unpack("L", $size);

FIONREAD requires a filehandle connected to a stream, meaning that sockets,
 pipes, and tty devices
work, but not files.

How do I do a tail -f in perl?
First try

 seek($gw_fh, 0, 1);

The statement seek($gw_fh, 0, 1) doesn't change the current position,
 but it does clear the
end-of-file condition on the handle, so that the
 next <$gw_fh> makes Perl try again to read
something.

If that doesn't work (it relies on features of your stdio implementation),
 then you need something more
like this:

 for (;;) {
 for ($curpos = tell($gw_fh); <$gw_fh>; $curpos =tell($gw_fh)) {
 # search for some stuff and put it into files
 }
 # sleep for a while
 seek($gw_fh, $curpos, 0); # seek to where we had been
 }

If this still doesn't work, look into the clearerr method
 from IO::Handle, which resets the error and
end-of-file states
 on the handle.

There's also a File::Tail module from CPAN.

How do I dup() a filehandle in Perl?
If you check "open" in perlfunc, you'll see that several of the ways
 to call open() should do the trick.
For example:

 open my $log, '>>', '/foo/logfile';
 open STDERR, '>&', $log;

Or even with a literal numeric descriptor:

 my $fd = $ENV{MHCONTEXTFD};
 open $mhcontext, "<&=$fd"; # like fdopen(3S)

Perl version 5.22.0 documentation - perlfaq5

Page 22http://perldoc.perl.org

Note that "<&STDIN" makes a copy, but "<&=STDIN" makes
 an alias. That means if you close an
aliased handle, all
 aliases become inaccessible. This is not true with
 a copied one.

Error checking, as always, has been left as an exercise for the reader.

How do I close a file descriptor by number?
If, for some reason, you have a file descriptor instead of a
 filehandle (perhaps you used
POSIX::open), you can use the close() function from the POSIX module:

 use POSIX ();

 POSIX::close($fd);

This should rarely be necessary, as the Perl close() function is to be
 used for things that Perl
opened itself, even if it was a dup of a
 numeric descriptor as with MHCONTEXT above. But if you really
have
 to, you may be able to do this:

 require 'sys/syscall.ph';
 my $rc = syscall(SYS_close(), $fd + 0); # must force numeric
 die "can't sysclose $fd: $!" unless $rc == -1;

Or, just use the fdopen(3S) feature of open():

 {
 open my $fh, "<&=$fd" or die "Cannot reopen fd=$fd: $!";
 close $fh;
 }

Why can't I use "C:\temp\foo" in DOS paths? Why doesn't `C:\temp\foo.exe` work?
Whoops! You just put a tab and a formfeed into that filename!
 Remember that within double quoted
strings ("like\this"), the
 backslash is an escape character. The full list of these is in "Quote and
Quote-like Operators" in perlop. Unsurprisingly, you don't
 have a file called "c:(tab)emp(formfeed)oo"
or
 "c:(tab)emp(formfeed)oo.exe" on your legacy DOS filesystem.

Either single-quote your strings, or (preferably) use forward slashes.
 Since all DOS and Windows
versions since something like MS-DOS 2.0 or so
 have treated / and \ the same in a path, you might
as well use the
 one that doesn't clash with Perl--or the POSIX shell, ANSI C and C++,
 awk, Tcl, Java,
or Python, just to mention a few. POSIX paths
 are more portable, too.

Why doesn't glob("*.*") get all the files?
Because even on non-Unix ports, Perl's glob function follows standard
 Unix globbing semantics. You'll
need glob("*") to get all (non-hidden)
 files. This makes glob() portable even to legacy systems.
Your
 port may include proprietary globbing functions as well. Check its
 documentation for details.

Why does Perl let me delete read-only files? Why does -i clobber protected files? Isn't this a
bug in Perl?

This is elaborately and painstakingly described in the file-dir-perms article in the "Far More Than You
Ever Wanted To
 Know" collection in http://www.cpan.org/misc/olddoc/FMTEYEWTK.tgz .

The executive summary: learn how your filesystem works. The
 permissions on a file say what can
happen to the data in that file.
 The permissions on a directory say what can happen to the list of
 files
in that directory. If you delete a file, you're removing its
 name from the directory (so the operation
depends on the permissions
 of the directory, not of the file). If you try to write to the file,
 the
permissions of the file govern whether you're allowed to.

Perl version 5.22.0 documentation - perlfaq5

Page 23http://perldoc.perl.org

How do I select a random line from a file?
Short of loading the file into a database or pre-indexing the lines in
 the file, there are a couple of
things that you can do.

Here's a reservoir-sampling algorithm from the Camel Book:

 srand;
 rand($.) < 1 && ($line = $_) while <>;

This has a significant advantage in space over reading the whole file
 in. You can find a proof of this
method in The Art of Computer
 Programming, Volume 2, Section 3.4.2, by Donald E. Knuth.

You can use the File::Random module which provides a function
 for that algorithm:

 use File::Random qw/random_line/;
 my $line = random_line($filename);

Another way is to use the Tie::File module, which treats the entire
 file as an array. Simply access a
random array element.

Why do I get weird spaces when I print an array of lines?
(contributed by brian d foy)

If you are seeing spaces between the elements of your array when
 you print the array, you are
probably interpolating the array in
 double quotes:

 my @animals = qw(camel llama alpaca vicuna);
 print "animals are: @animals\n";

It's the double quotes, not the print, doing this. Whenever you
 interpolate an array in a double quote
context, Perl joins the
 elements with spaces (or whatever is in $", which is a space by
 default):

 animals are: camel llama alpaca vicuna

This is different than printing the array without the interpolation:

 my @animals = qw(camel llama alpaca vicuna);
 print "animals are: ", @animals, "\n";

Now the output doesn't have the spaces between the elements because
 the elements of @animals
simply become part of the list to print:

 animals are: camelllamaalpacavicuna

You might notice this when each of the elements of @array end with
 a newline. You expect to print
one element per line, but notice that
 every line after the first is indented:

 this is a line
 this is another line
 this is the third line

That extra space comes from the interpolation of the array. If you
 don't want to put anything between
your array elements, don't use the
 array in double quotes. You can send it to print without them:

 print @lines;

Perl version 5.22.0 documentation - perlfaq5

Page 24http://perldoc.perl.org

How do I traverse a directory tree?
(contributed by brian d foy)

The File::Find module, which comes with Perl, does all of the hard
 work to traverse a directory
structure. It comes with Perl. You simply
 call the find subroutine with a callback subroutine and the

directories you want to traverse:

 use File::Find;

 find(\&wanted, @directories);

 sub wanted {
 # full path in $File::Find::name
 # just filename in $_
 ... do whatever you want to do ...
 }

The File::Find::Closures, which you can download from CPAN, provides
 many ready-to-use
subroutines that you can use with File::Find.

The File::Finder, which you can download from CPAN, can help you
 create the callback subroutine
using something closer to the syntax of
 the find command-line utility:

 use File::Find;
 use File::Finder;

 my $deep_dirs = File::Finder->depth->type('d')->ls->exec('rmdir','{}');

 find($deep_dirs->as_options, @places);

The File::Find::Rule module, which you can download from CPAN, has
 a similar interface, but does
the traversal for you too:

 use File::Find::Rule;

 my @files = File::Find::Rule->file()
 ->name('*.pm')
 ->in(@INC);

How do I delete a directory tree?
(contributed by brian d foy)

If you have an empty directory, you can use Perl's built-in rmdir.
 If the directory is not empty (so, no
files or subdirectories), you
 either have to empty it yourself (a lot of work) or use a module to
 help you.

The File::Path module, which comes with Perl, has a remove_tree
 which can take care of all of the
hard work for you:

 use File::Path qw(remove_tree);

 remove_tree(@directories);

The File::Path module also has a legacy interface to the older rmtree subroutine.

Perl version 5.22.0 documentation - perlfaq5

Page 25http://perldoc.perl.org

How do I copy an entire directory?
(contributed by Shlomi Fish)

To do the equivalent of cp -R (i.e. copy an entire directory tree
 recursively) in portable Perl, you'll
either need to write something yourself
 or find a good CPAN module such as File::Copy::Recursive.

AUTHOR AND COPYRIGHT
Copyright (c) 1997-2010 Tom Christiansen, Nathan Torkington, and
 other authors as noted. All rights
reserved.

This documentation is free; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Irrespective of its distribution, all code examples here are in the public
 domain. You are permitted and
encouraged to use this code and any
 derivatives thereof in your own programs for fun or for profit as
you
 see fit. A simple comment in the code giving credit to the FAQ would
 be courteous but is not
required.

