
Perl version 5.22.0 documentation - perl5216delta

Page 1http://perldoc.perl.org

NAME
perl5216delta - what is new for perl v5.21.6

DESCRIPTION
This document describes differences between the 5.21.5 release and the 5.21.6
 release.

If you are upgrading from an earlier release such as 5.21.4, first read perl5215delta, which describes
differences between 5.21.4 and 5.21.5.

Core Enhancements
List form of pipe open implemented for Win32

The list form of pipe:

 open my $fh, "-|", "program", @arguments;

is now implemented on Win32. It has the same limitations as system
 LIST on Win32, since the
Win32 API doesn't accept program arguments
 as a list.

Assignment to list repetition
(...) x ... can now be used within a list that is assigned to, as long
 as the left-hand side is a
valid lvalue. This allows (undef,undef,$foo)
 = that_function() to be written as
((undef)x2, $foo) = that_function().

close now sets $!
When an I/O error occurs, the fact that there has been an error is recorded
 in the handle. close
returns false for such a handle. Previously, the
 value of $! would be untouched by close, so the
common convention of
 writing close $fh or die $! did not work reliably. Now the handle

records the value of $!, too, and close restores it.

Deprecations
Use of non-graphic characters in single-character variable names

The syntax for single-character variable names is more lenient than
 for longer variable names,
allowing the one-character name to be a
 punctuation character or even invisible (a non-graphic). Perl
v5.20
 deprecated the ASCII-range controls as such a name. Now, all
 non-graphic characters that
formerly were allowed are deprecated.
 The practical effect of this occurs only when not under "use

utf8", and affects just the C1 controls (code points 0x80 through
 0xFF), NO-BREAK SPACE, and
SOFT HYPHEN.

Inlining of sub () { $var } with observable side-effects
In many cases Perl makes sub () { $var } into an inlinable constant
 subroutine, capturing the value of
$var at the time the sub expression
 is evaluated. This can break the closure behaviour in those cases
where
 $var is subsequently modified. The subroutine won't return the new value.

This usage is now deprecated in those cases where the variable could be
 modified elsewhere. Perl
detects those cases and emits a deprecation
 warning. Such code will likely change in the future and
stop producing a
 constant.

If your variable is only modified in the place where it is declared, then
 Perl will continue to make the
sub inlinable with no warnings.

 sub make_constant {
 my $var = shift;
 return sub () { $var }; # fine
 }

 sub make_constant_deprecated {

Perl version 5.22.0 documentation - perl5216delta

Page 2http://perldoc.perl.org

 my $var;
 $var = shift;
 return sub () { $var }; # deprecated
 }

 sub make_constant_deprecated2 {
 my $var = shift;
 log_that_value($var); # could modify $var
 return sub () { $var }; # deprecated
 }

In the second example above, detecting that $var is assigned to only once
 is too hard to detect. That
it happens in a spot other than the my
 declaration is enough for Perl to find it suspicious.

This deprecation warning happens only for a simple variable for the body of
 the sub. (A BEGIN block
or use statement inside the sub is ignored,
 because it does not become part of the sub's body.) For
more complex
 cases, such as sub () { do_something() if 0; $var } the behaviour has

changed such that inlining does not happen if the variable is modifiable
 elsewhere. Such cases
should be rare.

Performance Enhancements
(...)x1, ("constant")x0 and ($scalar)x0 are now optimised in list
 context. If the
right-hand argument is a constant 1, the repetition
 operator disappears. If the right-hand
argument is a constant 0, the whole
 expressions is optimised to the empty list, so long as the
left-hand
 argument is a simple scalar or constant. (foo())x0 is not optimised.

substr assignment is now optimised into 4-argument substr at the end
 of a subroutine (or
as the argument to return). Previously, this
 optimisation only happened in void context.

Assignment to lexical variables is often optimised away. For instance, in $lexical = chr
$foo, the chr operator writes directly to the lexical
 variable instead of returning a value that
gets copied. This optimisation
 has been extended to split, x and vec on the right-hand side.
It
 has also been made to work with state variable initialization.

In "\L...", "\Q...", etc., the extra "stringify" op is now optimised away,
 making these just as fast
as lcfirst, quotemeta, etc.

Assignment to an empty list is now sometimes faster. In particular, it
 never calls FETCH on tied
arguments on the right-hand side, whereas it
 used to sometimes.

Modules and Pragmata
Updated Modules and Pragmata

B has been upgraded from version 1.52 to 1.53.

B::Concise has been upgraded from version 0.994 to 0.995.

B::Deparse has been upgraded from version 1.29 to 1.30.

It now deparses +sub : attr { ... } correctly at the start of a
 statement. Without the
initial +, sub would be a statement label.

BEGIN blocks are now emitted in the right place most of the time, but
 the change unfortunately
introduced a regression, in that BEGIN blocks
 occurring just before the end of the enclosing
block may appear below it
 instead. So this change may need to be reverted if it cannot be
fixed
 before Perl 5.22. [perl #77452]

B::Deparse no longer puts erroneous local here and there, such as for LIST = tr/a//d.
[perl #119815]

Adjacent use statements are no longer accidentally nested if one
 contains a do block. [perl

Perl version 5.22.0 documentation - perl5216delta

Page 3http://perldoc.perl.org

#115066]B::Op_private has been upgraded from version 5.021005 to 5.021006.

It now includes a hash named %ops_using, list all op types that use a
 particular private flag.

CPAN::Meta has been upgraded from version 2.142690 to 2.143240.

CPAN::Meta::Requirements has been upgraded from version 2.128 to 2.130.

Devel::Peek has been upgraded from version 1.18 to 1.19.

Digest::SHA has been upgraded from version 5.92 to 5.93.

DynaLoader has been upgraded from version 1.27 to 1.28.

Encode has been upgraded from version 2.62 to 2.64.

experimental has been upgraded from version 0.012 to 0.013.

Exporter has been upgraded from version 5.71 to 5.72.

ExtUtils::MakeMaker has been upgraded from version 6.98 to 7.02.

ExtUtils::Manifest has been upgraded from version 1.68 to 1.69.

ExtUtils::ParseXS has been upgraded from version 3.25 to 3.26.

HTTP::Tiny has been upgraded from version 0.050 to 0.051.

I18N::Langinfo has been upgraded from version 0.11 to 0.12.

IO::Socket has been upgraded from version 1.37 to 1.38.

Document the limitations of the connected() method. [perl #123096]

locale has been upgraded from version 1.04 to 1.05.

Module::CoreList has been upgraded from version 5.20141020 to 5.20141120.

overload has been upgraded from version 1.23 to 1.24.

PerlIO::encoding has been upgraded from version 0.19 to 0.20.

PerlIO::scalar has been upgraded from version 0.19 to 0.20.

POSIX has been upgraded from version 1.45 to 1.46.

re has been upgraded from version 0.27 to 0.28.

Test::Harness has been upgraded from version 3.33 to 3.34.

Test::Simple has been upgraded from version 1.001008 to 1.301001_075.

Unicode::UCD has been upgraded from version 0.58 to 0.59.

warnings has been upgraded from version 1.28 to 1.29.

XSLoader has been upgraded from version 0.18 to 0.19.

Documentation
Changes to Existing Documentation
perldata/Identifier parsing

The syntax of single-character variable names has been brought
 up-to-date and more fully
explained.

Perl version 5.22.0 documentation - perl5216delta

Page 4http://perldoc.perl.org

Diagnostics
The following additions or changes have been made to diagnostic output,
 including warnings and fatal
error messages. For the complete list of
 diagnostic messages, see perldiag.

New Diagnostics
New Warnings

Use of literal non-graphic characters in variable names is deprecated

A new locale warning category has been created, with the following warning
 messages
currently in it:

Locale '%s' may not work well.%s

Can't do %s("%s") on non-UTF-8 locale; resolved to "%s".

Warning: unable to close filehandle %s properly: %s

The following two warnings for tr/// used to be skipped if the
 transliteration contained wide
characters, but now they occur regardless of
 whether there are wide characters or not:

Useless use of /d modifier in transliteration operator

Replacement list is longer than search list

Changes to Existing Diagnostics
Quantifier unexpected on zero-length expression in regex m/%s/.

This message has had the "<-- HERE" marker removed, as it was always
 placed at the end of
the regular expression, regardless of where the
 problem actually occurred. [perl #122680]

Setting $/ to a reference to %s as a form of slurp is deprecated, treating as undef

This warning is now a default warning, like other deprecation warnings.

Configuration and Compilation
Configure with -Dmksymlinks should now be faster. [perl #122002]

As well as the gzip and bzip2 tarballs, this release has been made available as an xz utils
compressed tarball.

Platform Support
Platform-Specific Notes
Win32

In the experimental :win32 layer, a crash in open was fixed. Also
 opening /dev/null,
which works the Win32 Perl's normal :unix layer, was
 implemented for :win32. [perl
#122224]

A new makefile option, USE_LONG_DOUBLE, has been added to the Windows
 dmake makefile
for gcc builds only. Set this to "define" if you want perl to
 use long doubles to give more
accuracy and range for floating point numbers.

Internal Changes
screaminstr has been removed. Although marked as public API, it is
 undocumented and
has no usage in modern perl versions on CPAN Grep. Calling it
 has been fatal since 5.17.0.

newDEFSVOP, block_start, block_end and intro_my have been added
 to the API.

The internal convert function in op.c has been renamed op_convert_list and added to
the API.

sv_magic no longer forbids "ext" magic on read-only values. After all,
 perl can't know

Perl version 5.22.0 documentation - perl5216delta

Page 5http://perldoc.perl.org

whether the custom magic will modify the SV or not.
 [perl #123103]

Starting in 5.21.6, accessing "CvPADLIST" in perlapi in an XSUB is forbidden.
 CvPADLIST
has be reused for a different internal purpose for XSUBs. Guard all
 CvPADLIST expressions
with CvISXSUB() if your code doesn't already block
 XSUB CV*s from going through optree
CV* expecting code.

Selected Bug Fixes
fchmod() and futimes() now set $! when they fail due to being
 passed a closed file handle.
[perl #122703]

Perl now comes with a corrected Unicode 7.0 for the erratum issued on
 October 21, 2014 (see
http://www.unicode.org/errata/#current_errata),
 dealing with glyph shaping in Arabic.

op_free() no longer crashes due to a stack overflow when freeing a
 deeply recursive op tree.
[perl #108276]

scalarvoid() would crash due to a stack overflow when processing a
 deeply recursive op tree.
[perl #108276]

In Perl 5.20.0, $^N accidentally had the internal UTF8 flag turned off
 if accessed from a code
block within a regular expression, effectively
 UTF8-encoding the value. This has been fixed.
[perl #123135]

A failed semctl call no longer overwrites existing items on the stack,
 causing
(semctl(-1,0,0,0))[0] to give an "uninitialized" warning.

else{foo()} with no space before foo is now better at assigning the
 right line number to
that statement. [perl #122695]

Sometimes the assignment in @array = split gets optimised and split
 itself writes
directly to the array. This caused a bug, preventing this
 assignment from being used in lvalue
context. So (@a=split//,"foo")=bar() was an error. (This bug probably goes back to

Perl 3, when the optimisation was added.) This optimisation, and the bug,
 started to happen in
more cases in 5.21.5. It has now been fixed.
 [perl #123057]

When argument lists that fail the checks installed by subroutine
 signatures, the resulting error
messages now give the file and line number
 of the caller, not of the called subroutine. [perl
#121374]

Flip-flop operators (.. and ... in scalar context) used to maintain
 a separate state for each
recursion level (the number of times the
 enclosing sub was called recursively), contrary to the
documentation. Now
 each closure has one internal state for each flip-flop. [perl #122829]

use, no, statement labels, special blocks (BEGIN) and pod are now
 permitted as the first thing
in a map or grep block, the block after print or say (or other functions) returning a handle,
and within ${...}, @{...}, etc. [perl #122782]

The repetition operator x now propagates lvalue context to its left-hand
 argument when used
in contexts like foreach. That allows for(($#that_array)x2) { ... } to work as
expected if the loop modifies
 $_.

(...) x ... in scalar context used to corrupt the stack if one operand
 were an object with
"x" overloading, causing erratic behaviour.
 [perl #121827]

Assignment to a lexical scalar is often optimised away (as mentioned under Performance
Enhancements). Various bugs related to this optimisation
 have been fixed. Certain operators
on the right-hand side would sometimes
 fail to assign the value at all or assign the wrong
value, or would call
 STORE twice or not at all on tied variables. The operators affected were
$foo++, $foo--, and -$foo under use integer, chomp, chr
 and setpgrp.

Perl version 5.22.0 documentation - perl5216delta

Page 6http://perldoc.perl.org

List assignments were sometimes buggy if the same scalar ended up on both
 sides of the
assignment due to used of tied, values or each. The
 result would be the wrong value
getting assigned.

setpgrp($nonzero) (with one argument) was accidentally changed in 5.16
 to mean
setpgrp(0). This has been fixed.

__SUB__ could return the wrong value or even corrupt memory under the
 debugger (the -d
switch) and in subs containing eval $string.

When sub () { $var } becomes inlinable, it now returns a different
 scalar each time, just
as a non-inlinable sub would, though Perl still
 optimises the copy away in cases where it
would make no observable
 difference.

my sub f () { $var } and sub () : attr { $var } are no longer
 eligible for
inlining. The former would crash; the latter would just
 throw the attributes away. An exception
is made for the little-known
 ":method" attribute, which does nothing much.

Inlining of subs with an empty prototype is now more consistent than
 before. Previously, a sub
with multiple statements, all but the last
 optimised away, would be inlinable only if it were an
anonymous sub
 containing a string eval or state declaration or closing over an
 outer lexical
variable (or any anonymous sub under the debugger). Now any
 sub that gets folded to a
single constant after statements have been
 optimised away is eligible for inlining. This applies
to things like sub
 () { jabber() if DEBUG; 42 }.

Some subroutines with an explicit return were being made inlinable,
 contrary to the
documentation, Now return always prevents inlining.

On some systems, such as VMS, crypt can return a non-ASCII string. If a
 scalar assigned to
had contained a UTF8 string previously, then crypt
 would not turn off the UTF8 flag, thus
corrupting the return value. This
 would happen with $lexical = crypt

crypt no longer calls FETCH twice on a tied first argument.

An unterminated here-doc on the last line of a quote-like operator
 (qq[${ <<END }], /(?{
<<END })/) no longer causes a double free. It
 started doing so in 5.18.

Fixed two assertion failures introduced into -DPERL_OP_PARENT
 builds. [perl #108276]

Known Problems
Builds on FreeBSD 10.x currently fail when compiling POSIX. A workaround is
 to specify
-Ui_fenv when running Configure.

Errata From Previous Releases
Due to a mistake in the string-copying logic, copying the value of a state
 variable could instead
steal the value and undefine the variable. This
 bug, introduced in 5.20, would happen mostly
for long strings (1250 chars
 or more), but could happen for any strings under builds with
copy-on-write
 disabled. [perl #123029]

This bug was actually fixed in 5.21.5, but it was not until after that
 release that this bug, and
the fact that it had been fixed, were
 discovered.

If a named sub tries to access a scalar declared in an outer anonymous sub,
 the variable is
not available, so the named sub gets its own undefined
 scalar. In 5.10, attempts to take a
reference to the variable
 (\$that_variable) began returning a reference to a copy of it

instead. This was accidentally fixed in 5.21.4, but the bug and its fix
 were not noticed till now.

Acknowledgements
Perl 5.21.6 represents approximately 4 weeks of development since Perl 5.21.5
 and contains
approximately 60,000 lines of changes across 920 files from 25
 authors.

Perl version 5.22.0 documentation - perl5216delta

Page 7http://perldoc.perl.org

Excluding auto-generated files, documentation and release tools, there were
 approximately 48,000
lines of changes to 630 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community
 of users and developers.
The following people are known to have contributed the
 improvements that became Perl 5.21.6:

Aaron Crane, Abigail, Andrew Fresh, Andy Dougherty, Brian Fraser, Chad Granum,
 Chris 'BinGOs'
Williams, Craig A. Berry, Daniel Dragan, David Mitchell, Doug
 Bell, Father Chrysostomos, Glenn D.
Golden, James E Keenan, Jarkko Hietaniemi,
 Jim Cromie, Karen Etheridge, Karl Williamson, Lukas
Mai, Ricardo Signes, Shlomi
 Fish, Slaven Rezic, Steve Hay, Tony Cook, Yaroslav Kuzmin.

The list above is almost certainly incomplete as it is automatically generated
 from version control
history. In particular, it does not include the names of
 the (very much appreciated) contributors who
reported issues to the Perl bug
 tracker.

Many of the changes included in this version originated in the CPAN modules
 included in Perl's core.
We're grateful to the entire CPAN community for
 helping Perl to flourish.

For a more complete list of all of Perl's historical contributors, please see
 the AUTHORS file in the
Perl source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently
 posted to the
comp.lang.perl.misc newsgroup and the perl bug database at
 https://rt.perl.org/ . There may also be
information at
 http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program
 included with your
release. Be sure to trim your bug down to a tiny but
 sufficient test case. Your bug report, along with
the output of perl -V,
 will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it
 inappropriate to send to a publicly
archived mailing list, then please send it
 to perl5-security-report@perl.org. This points to a closed
subscription
 unarchived mailing list, which includes all the core committers, who will be
 able to help
assess the impact of issues, figure out a resolution, and help
 co-ordinate the release of patches to
mitigate or fix the problem across all
 platforms on which Perl is supported. Please only use this
address for
 security issues in the Perl core, not for modules independently distributed on
 CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on
 what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

