
Perl version 5.22.0 documentation - feature

Page 1http://perldoc.perl.org

NAME
feature - Perl pragma to enable new features

SYNOPSIS
 use feature qw(say switch);
 given ($foo) {
 when (1) { say "\$foo == 1" }
 when ([2,3]) { say "\$foo == 2 || \$foo == 3" }
 when (/^a[bc]d$/) { say "\$foo eq 'abd' || \$foo eq 'acd'" }
 when ($_ > 100) { say "\$foo > 100" }
 default { say "None of the above" }
 }

 use feature ':5.10'; # loads all features available in perl 5.10

 use v5.10; # implicitly loads :5.10 feature bundle

DESCRIPTION
It is usually impossible to add new syntax to Perl without breaking
 some existing programs. This
pragma provides a way to minimize that
 risk. New syntactic constructs, or new semantic meanings to
older
 constructs, can be enabled by use feature 'foo', and will be parsed
 only when the
appropriate feature pragma is in scope. (Nevertheless, the CORE:: prefix provides access to all Perl
keywords, regardless of this
 pragma.)

Lexical effect
Like other pragmas (use strict, for example), features have a lexical
 effect. use feature
qw(foo) will only make the feature "foo" available
 from that point to the end of the enclosing block.

 {
 use feature 'say';
 say "say is available here";
 }
 print "But not here.\n";

no feature
Features can also be turned off by using no feature "foo". This too
 has lexical effect.

 use feature 'say';
 say "say is available here";
 {
 no feature 'say';
 print "But not here.\n";
 }
 say "Yet it is here.";

no feature with no features specified will reset to the default group. To
 disable all features (an
unusual request!) use no feature ':all'.

AVAILABLE FEATURES
The 'say' feature

use feature 'say' tells the compiler to enable the Perl 6 style say function.

See "say" in perlfunc for details.

Perl version 5.22.0 documentation - feature

Page 2http://perldoc.perl.org

This feature is available starting with Perl 5.10.

The 'state' feature
use feature 'state' tells the compiler to enable state
 variables.

See "Persistent Private Variables" in perlsub for details.

This feature is available starting with Perl 5.10.

The 'switch' feature
WARNING: Because the smartmatch operator is
 experimental, Perl will warn when you use this
feature, unless you have
 explicitly disabled the warning:

 no warnings "experimental::smartmatch";

use feature 'switch' tells the compiler to enable the Perl 6
 given/when construct.

See "Switch Statements" in perlsyn for details.

This feature is available starting with Perl 5.10.

The 'unicode_strings' feature
use feature 'unicode_strings' tells the compiler to use Unicode rules
 in all string operations
executed within its scope (unless they are also
 within the scope of either use locale or use bytes
). The same applies
 to all regular expressions compiled within the scope, even if executed outside
 it.
It does not change the internal representation of strings, but only how
 they are interpreted.

no feature 'unicode_strings' tells the compiler to use the traditional
 Perl rules wherein the
native character set rules is used unless it is
 clear to Perl that Unicode is desired. This can lead to
some surprises
 when the behavior suddenly changes. (See "The "Unicode Bug"" in perlunicode for
details.) For this reason, if you are
 potentially using Unicode in your program, the use feature
'unicode_strings' subpragma is strongly recommended.

This feature is available starting with Perl 5.12; was almost fully
 implemented in Perl 5.14; and
extended in Perl 5.16 to cover quotemeta.

The 'unicode_eval' and 'evalbytes' features
Under the unicode_eval feature, Perl's eval function, when passed a
 string, will evaluate it as a
string of characters, ignoring any use utf8 declarations. use utf8 exists to declare the encoding
of
 the script, which only makes sense for a stream of bytes, not a string of
 characters. Source filters
are forbidden, as they also really only make
 sense on strings of bytes. Any attempt to activate a
source filter will
 result in an error.

The evalbytes feature enables the evalbytes keyword, which evaluates
 the argument passed to
it as a string of bytes. It dies if the string
 contains any characters outside the 8-bit range. Source filters
work
 within evalbytes: they apply to the contents of the string being
 evaluated.

Together, these two features are intended to replace the historical eval
 function, which has (at least)
two bugs in it, that cannot easily be fixed
 without breaking existing programs:

eval behaves differently depending on the internal encoding of the
 string, sometimes treating
its argument as a string of bytes, and sometimes
 as a string of characters.

Source filters activated within eval leak out into whichever file
 scope is currently being
compiled. To give an example with the CPAN module Semi::Semicolons:

 BEGIN { eval "use Semi::Semicolons; # not filtered here " }
 # filtered here!

evalbytes fixes that to work the way one would expect:

Perl version 5.22.0 documentation - feature

Page 3http://perldoc.perl.org

 use feature "evalbytes";
 BEGIN { evalbytes "use Semi::Semicolons; # filtered " }
 # not filtered

These two features are available starting with Perl 5.16.

The 'current_sub' feature
This provides the __SUB__ token that returns a reference to the current
 subroutine or undef outside
of a subroutine.

This feature is available starting with Perl 5.16.

The 'array_base' feature
This feature supports the legacy $[variable. See "$[" in perlvar and arybase. It is on by default but
disabled under use v5.16 (see IMPLICIT LOADING, below).

This feature is available under this name starting with Perl 5.16. In
 previous versions, it was simply on
all the time, and this pragma knew
 nothing about it.

The 'fc' feature
use feature 'fc' tells the compiler to enable the fc function,
 which implements Unicode
casefolding.

See "fc" in perlfunc for details.

This feature is available from Perl 5.16 onwards.

The 'lexical_subs' feature
WARNING: This feature is still experimental and the implementation may
 change in future versions of
Perl. For this reason, Perl will
 warn when you use the feature, unless you have explicitly disabled the

warning:

 no warnings "experimental::lexical_subs";

This enables declaration of subroutines via my sub foo, state sub foo
 and our sub foo
syntax. See "Lexical Subroutines" in perlsub for details.

This feature is available from Perl 5.18 onwards.

The 'postderef' and 'postderef_qq' features
WARNING: This feature is still experimental and the implementation may
 change in future versions of
Perl. For this reason, Perl will
 warn when you use the feature, unless you have explicitly disabled the

warning:

 no warnings "experimental::postderef";

The 'postderef' feature allows the use of postfix dereference syntax. For example, it will make the

following two statements equivalent:

 my @x = @{ $h->{a} };
 my @x = $h->{a}->@*;

The 'postderef_qq' feature extends this, for array and scalar dereference, to
 working inside of
double-quotish interpolations.

This feature is available from Perl 5.20 onwards.

Perl version 5.22.0 documentation - feature

Page 4http://perldoc.perl.org

The 'signatures' feature
WARNING: This feature is still experimental and the implementation may
 change in future versions of
Perl. For this reason, Perl will
 warn when you use the feature, unless you have explicitly disabled the

warning:

 no warnings "experimental::signatures";

This enables unpacking of subroutine arguments into lexical variables
 by syntax such as

 sub foo ($left, $right) {
	 return $left + $right;
 }

See "Signatures" in perlsub for details.

This feature is available from Perl 5.20 onwards.

The 'refaliasing' feature
WARNING: This feature is still experimental and the implementation may
 change in future versions of
Perl. For this reason, Perl will
 warn when you use the feature, unless you have explicitly disabled the

warning:

 no warnings "experimental::refaliasing";

This enables aliasing via assignment to references:

 \$a = \$b; # $a and $b now point to the same scalar
 \@a = \@b; # to the same array
 \%a = \%b;
 \&a = \&b;
 foreach \%hash (@array_of_hash_refs) {
 ...
 }

See "Assigning to References" in perlref for details.

This feature is available from Perl 5.22 onwards.

The 'bitwise' feature
WARNING: This feature is still experimental and the implementation may
 change in future versions of
Perl. For this reason, Perl will
 warn when you use the feature, unless you have explicitly disabled the

warning:

 no warnings "experimental::bitwise";

This makes the four standard bitwise operators (& | ^ ~) treat their
 operands consistently as
numbers, and introduces four new dotted operators
 (&. |. ^. ~.) that treat their operands
consistently as strings. The
 same applies to the assignment variants (&= |= ^= &.= |.= ^.=).

See "Bitwise String Operators" in perlop for details.

This feature is available from Perl 5.22 onwards.

FEATURE BUNDLES
It's possible to load multiple features together, using
 a feature bundle. The name of a feature bundle
is prefixed with
 a colon, to distinguish it from an actual feature.

Perl version 5.22.0 documentation - feature

Page 5http://perldoc.perl.org

 use feature ":5.10";

The following feature bundles are available:

 bundle features included
 --------- -----------------
 :default array_base

 :5.10 say state switch array_base

 :5.12 say state switch unicode_strings array_base

 :5.14 say state switch unicode_strings array_base

 :5.16 say state switch unicode_strings
 unicode_eval evalbytes current_sub fc

 :5.18 say state switch unicode_strings
 unicode_eval evalbytes current_sub fc

 :5.20 say state switch unicode_strings
 unicode_eval evalbytes current_sub fc

 :5.22 say state switch unicode_strings
 unicode_eval evalbytes current_sub fc

The :default bundle represents the feature set that is enabled before
 any use feature or no
feature declaration.

Specifying sub-versions such as the 0 in 5.14.0 in feature bundles has
 no effect. Feature bundles
are guaranteed to be the same for all sub-versions.

 use feature ":5.14.0"; # same as ":5.14"
 use feature ":5.14.1"; # same as ":5.14"

IMPLICIT LOADING
Instead of loading feature bundles by name, it is easier to let Perl do
 implicit loading of a feature
bundle for you.

There are two ways to load the feature pragma implicitly:

By using the -E switch on the Perl command-line instead of -e.
 That will enable the feature
bundle for that version of Perl in the
 main compilation unit (that is, the one-liner that follows -E
).

By explicitly requiring a minimum Perl version number for your program, with
 the use
VERSION construct. That is,

 use v5.10.0;

will do an implicit

 no feature ':all';
 use feature ':5.10';

and so on. Note how the trailing sub-version
 is automatically stripped from the
 version.

Perl version 5.22.0 documentation - feature

Page 6http://perldoc.perl.org

But to avoid portability warnings (see "use" in perlfunc), you may prefer:

 use 5.010;

with the same effect.

If the required version is older than Perl 5.10, the ":default" feature
 bundle is automatically
loaded instead.

