
Perl version 5.22.0 documentation - perl5160delta

Page 1http://perldoc.perl.org

NAME
perl5160delta - what is new for perl v5.16.0

DESCRIPTION
This document describes differences between the 5.14.0 release and
 the 5.16.0 release.

If you are upgrading from an earlier release such as 5.12.0, first read perl5140delta, which describes
differences between 5.12.0 and
 5.14.0.

Some bug fixes in this release have been backported to later
 releases of 5.14.x. Those are indicated
with the 5.14.x version in
 parentheses.

Notice
With the release of Perl 5.16.0, the 5.12.x series of releases is now out of
 its support period. There
may be future 5.12.x releases, but only in the
 event of a critical security issue. Users of Perl 5.12 or
earlier should
 consider upgrading to a more recent release of Perl.

This policy is described in greater detail in perlpolicy.

Core Enhancements
use VERSION

As of this release, version declarations like use v5.16 now disable
 all features before enabling the
new feature bundle. This means that
 the following holds true:

 use 5.016;
 # only 5.16 features enabled here
 use 5.014;
 # only 5.14 features enabled here (not 5.16)

use v5.12 and higher continue to enable strict, but explicit use
 strict and no strict now
override the version declaration, even
 when they come first:

 no strict;
 use 5.012;
 # no strict here

There is a new ":default" feature bundle that represents the set of
 features enabled before any version
declaration or use feature has
 been seen. Version declarations below 5.10 now enable the
":default"
 feature set. This does not actually change the behavior of use
 v5.8, because features
added to the ":default" set are those that were
 traditionally enabled by default, before they could be
turned off.

no feature now resets to the default feature set. To disable all
 features (which is likely to be a
pretty special-purpose request, since
 it presumably won't match any named set of semantics) you can
now write no feature ':all'.

$[is now disabled under use v5.16. It is part of the default
 feature set and can be turned on or off
explicitly with use feature
 'array_base'.

__SUB__
The new __SUB__ token, available under the current_sub feature
 (see feature) or use v5.16,
returns a reference to the current
 subroutine, making it easier to write recursive closures.

New and Improved Built-ins
More consistent eval

The eval operator sometimes treats a string argument as a sequence of
 characters and sometimes
as a sequence of bytes, depending on the
 internal encoding. The internal encoding is not supposed to

Perl version 5.22.0 documentation - perl5160delta

Page 2http://perldoc.perl.org

make any
 difference, but there is code that relies on this inconsistency.

The new unicode_eval and evalbytes features (enabled under use
 5.16.0) resolve this. The
unicode_eval feature causes eval
 $string to treat the string always as Unicode. The
evalbytes
 features provides a function, itself called evalbytes, which
 evaluates its argument
always as a string of bytes.

These features also fix oddities with source filters leaking to outer
 dynamic scopes.

See feature for more detail.

substr lvalue revamp

When substr is called in lvalue or potential lvalue context with two
 or three arguments, a special
lvalue scalar is returned that modifies
 the original string (the first argument) when assigned to.

Previously, the offsets (the second and third arguments) passed to substr would be converted
immediately to match the string, negative
 offsets being translated to positive and offsets beyond the
end of the
 string being truncated.

Now, the offsets are recorded without modification in the special
 lvalue scalar that is returned, and the
original string is not even
 looked at by substr itself, but only when the returned lvalue is
 read or
modified.

These changes result in an incompatible change:

If the original string changes length after the call to substr but
 before assignment to its return value,
negative offsets will remember
 their position from the end of the string, affecting code like this:

 my $string = "string";
 my $lvalue = \substr $string, -4, 2;
 print $$lvalue, "\n"; # prints "ri"
 $string = "bailing twine";
 print $$lvalue, "\n"; # prints "wi"; used to print "il"

The same thing happens with an omitted third argument. The returned
 lvalue will always extend to the
end of the string, even if the string
 becomes longer.

Since this change also allowed many bugs to be fixed (see The substr operator), and since the
behavior
 of negative offsets has never been specified, the
 change was deemed acceptable.

Return value of tied

The value returned by tied on a tied variable is now the actual
 scalar that holds the object to which
the variable is tied. This
 lets ties be weakened with Scalar::Util::weaken(tied

$tied_variable).

Unicode Support
Supports (almost) Unicode 6.1

Besides the addition of whole new scripts, and new characters in
 existing scripts, this new version of
Unicode, as always, makes some
 changes to existing characters. One change that may trip up some

applications is that the General Category of two characters in the
 Latin-1 range, PILCROW SIGN and
SECTION SIGN, has been changed from
 Other_Symbol to Other_Punctuation. The same change has
been made for
 a character in each of Tibetan, Ethiopic, and Aegean.
 The code points
U+3248..U+324F (CIRCLED NUMBER TEN ON BLACK SQUARE
 through CIRCLED NUMBER
EIGHTY ON BLACK SQUARE) have had their General
 Category changed from Other_Symbol to
Other_Numeric. The Line Break
 property has changes for Hebrew and Japanese; and because of

other changes in 6.1, the Perl regular expression construct \X now
 works differently for some
characters in Thai and Lao.

New aliases (synonyms) have been defined for many property values;
 these, along with the

Perl version 5.22.0 documentation - perl5160delta

Page 3http://perldoc.perl.org

previously existing ones, are all cross-indexed in perluniprops.

The return value of charnames::viacode() is affected by other
 changes:

 Code point Old Name New Name
 U+000A LINE FEED (LF) LINE FEED
 U+000C FORM FEED (FF) FORM FEED
 U+000D CARRIAGE RETURN (CR) CARRIAGE RETURN
 U+0085 NEXT LINE (NEL) NEXT LINE
 U+008E SINGLE-SHIFT 2 SINGLE-SHIFT-2
 U+008F SINGLE-SHIFT 3 SINGLE-SHIFT-3
 U+0091 PRIVATE USE 1 PRIVATE USE-1
 U+0092 PRIVATE USE 2 PRIVATE USE-2
 U+2118 SCRIPT CAPITAL P WEIERSTRASS ELLIPTIC FUNCTION

Perl will accept any of these names as input, but charnames::viacode() now returns the new
name of each pair. The
 change for U+2118 is considered by Unicode to be a correction, that is
 the
original name was a mistake (but again, it will remain forever valid
 to use it to refer to U+2118). But
most of these changes are the
 fallout of the mistake Unicode 6.0 made in naming a character used in

Japanese cell phones to be "BELL", which conflicts with the longstanding
 industry use of (and
Unicode's recommendation to use) that name
 to mean the ASCII control character at U+0007.
Therefore, that name
 has been deprecated in Perl since v5.14, and any use of it will raise a
 warning
message (unless turned off). The name "ALERT" is now the
 preferred name for this code point, with
"BEL" an acceptable short
 form. The name for the new cell phone character, at code point U+1F514,

remains undefined in this version of Perl (hence we don't implement quite all of Unicode 6.1), but
starting in v5.18, BELL will mean
 this character, and not U+0007.

Unicode has taken steps to make sure that this sort of mistake does not
 happen again. The Standard
now includes all generally accepted
 names and abbreviations for control characters, whereas
previously it
 didn't (though there were recommended names for most of them, which Perl
 used). This
means that most of those recommended names are now
 officially in the Standard. Unicode did not
recommend names for the
 four code points listed above between U+008E and U+008F, and in

standardizing them Unicode subtly changed the names that Perl had
 previously given them, by
replacing the final blank in each name by a
 hyphen. Unicode also officially accepts names that Perl
had deprecated,
 such as FILE SEPARATOR. Now the only deprecated name is BELL.
 Finally, Perl
now uses the new official names instead of the old
 (now considered obsolete) names for the first four
code points in the
 list above (the ones which have the parentheses in them).

Now that the names have been placed in the Unicode standard, these kinds
 of changes should not
happen again, though corrections, such as to
 U+2118, are still possible.

Unicode also added some name abbreviations, which Perl now accepts:
 SP for SPACE;
 TAB for
CHARACTER TABULATION;
 NEW LINE, END OF LINE, NL, and EOL for LINE FEED;

LOCKING-SHIFT ONE for SHIFT OUT;
 LOCKING-SHIFT ZERO for SHIFT IN;
 and ZWNBSP for
ZERO WIDTH NO-BREAK SPACE.

More details on this version of Unicode are provided in http://www.unicode.org/versions/Unicode6.1.0/
.

use charnames is no longer needed for \N{name}

When \N{name} is encountered, the charnames module is now
 automatically loaded when needed
as if the :full and :short
 options had been specified. See charnames for more information.

\N{...} can now have Unicode loose name matching

This is described in the charnames item in Updated Modules and Pragmata below.

Perl version 5.22.0 documentation - perl5160delta

Page 4http://perldoc.perl.org

Unicode Symbol Names

Perl now has proper support for Unicode in symbol names. It used to be
 that *{$foo} would ignore
the internal UTF8 flag and use the bytes of
 the underlying representation to look up the symbol. That
meant that *{"\x{100}"} and *{"\xc4\x80"} would return the same thing. All
 these parts of Perl
have been fixed to account for Unicode:

Method names (including those passed to use overload)

Typeglob names (including names of variables, subroutines, and filehandles)

Package names

goto

Symbolic dereferencing

Second argument to bless() and tie()

Return value of ref()

Subroutine prototypes

Attributes

Various warnings and error messages that mention variable names or values,
 methods, etc.

In addition, a parsing bug has been fixed that prevented *{Ã©} from
 implicitly quoting the name, but
instead interpreted it as *{+Ã©}, which
 would cause a strict violation.

*{"*a::b"} automatically strips off the * if it is followed by an ASCII
 letter. That has been extended
to all Unicode identifier characters.

One-character non-ASCII non-punctuation variables (like $Ã©) are now
 subject to "Used only once"
warnings. They used to be exempt, as they
 were treated as punctuation variables.

Also, single-character Unicode punctuation variables (like $â€°) are now
 supported [perl #69032].

Improved ability to mix locales and Unicode, including UTF-8 locales

An optional parameter has been added to use locale

 use locale ':not_characters';

which tells Perl to use all but the LC_CTYPE and LC_COLLATE
 portions of the current locale. Instead,
the character set is assumed
 to be Unicode. This lets locales and Unicode be seamlessly mixed,

including the increasingly frequent UTF-8 locales. When using this
 hybrid form of locales, the
:locale layer to the open pragma can
 be used to interface with the file system, and there are CPAN
modules
 available for ARGV and environment variable conversions.

Full details are in perllocale.

New function fc and corresponding escape sequence \F for Unicode foldcase

Unicode foldcase is an extension to lowercase that gives better results
 when comparing two strings
case-insensitively. It has long been used
 internally in regular expression /i matching. Now it is
available
 explicitly through the new fc function call (enabled by "use feature 'fc'", or use
v5.16, or explicitly callable via CORE::fc) or through the new \F sequence in double-quotish

strings.

Full details are in "fc" in perlfunc.

Perl version 5.22.0 documentation - perl5160delta

Page 5http://perldoc.perl.org

The Unicode Script_Extensions property is now supported.

New in Unicode 6.0, this is an improved Script property. Details
 are in "Scripts" in perlunicode.

XS Changes
Improved typemaps for Some Builtin Types

Most XS authors will know there is a longstanding bug in the
 OUTPUT typemap for T_AVREF (AV*),
T_HVREF (HV*), T_CVREF (CV*),
 and T_SVREF (SVREF or \$foo) that requires manually
decrementing
 the reference count of the return value instead of the typemap taking
 care of this. For
backwards-compatibility, this cannot be changed in the
 default typemaps. But we now provide
additional typemaps T_AVREF_REFCOUNT_FIXED, etc. that do not exhibit this bug. Using
 them in
your extension is as simple as having one line in your TYPEMAP section:

 HV*	 T_HVREF_REFCOUNT_FIXED

is_utf8_char()

The XS-callable function is_utf8_char(), when presented with
 malformed UTF-8 input, can read
up to 12 bytes beyond the end of the
 string. This cannot be fixed without changing its API, and so its

use is now deprecated. Use is_utf8_char_buf() (described just below)
 instead.

Added is_utf8_char_buf()

This function is designed to replace the deprecated is_utf8_char()
 function. It includes an extra
parameter to make sure it doesn't read
 past the end of the input buffer.

Other is_utf8_foo() functions, as well as utf8_to_foo(), etc.

Most other XS-callable functions that take UTF-8 encoded input
 implicitly assume that the UTF-8 is
valid (not malformed) with respect to
 buffer length. Do not do things such as change a character's
case or
 see if it is alphanumeric without first being sure that it is valid
 UTF-8. This can be safely done
for a whole string by using one of the
 functions is_utf8_string(), is_utf8_string_loc(),
and is_utf8_string_loclen().

New Pad API

Many new functions have been added to the API for manipulating lexical
 pads. See "Pad Data
Structures" in perlapi for more information.

Changes to Special Variables
$$ can be assigned to

$$ was made read-only in Perl 5.8.0. But only sometimes: local $$
 would make it writable again.
Some CPAN modules were using local $$ or
 XS code to bypass the read-only check, so there is
no reason to keep $$
 read-only. (This change also allowed a bug to be fixed while maintaining

backward compatibility.)

$^X converted to an absolute path on FreeBSD, OS X and Solaris

$^X is now converted to an absolute path on OS X, FreeBSD (without
 needing /proc mounted) and
Solaris 10 and 11. This augments the
 previous approach of using /proc on Linux, FreeBSD, and
NetBSD
 (in all cases, where mounted).

This makes relocatable perl installations more useful on these platforms.
 (See "Relocatable @INC" in
INSTALL)

Debugger Changes
Features inside the debugger

The current Perl's feature bundle is now enabled for commands entered
 in the interactive debugger.

Perl version 5.22.0 documentation - perl5160delta

Page 6http://perldoc.perl.org

New option for the debugger's t command

The t command in the debugger, which toggles tracing mode, now
 accepts a numeric argument that
determines how many levels of subroutine
 calls to trace.

enable and disable

The debugger now has disable and enable commands for disabling
 existing breakpoints and
re-enabling them. See perldebug.

Breakpoints with file names

The debugger's "b" command for setting breakpoints now lets a line
 number be prefixed with a file
name. See "b [file]:[line] [condition]" in perldebug.

The CORE Namespace
The CORE:: prefix

The CORE:: prefix can now be used on keywords enabled by feature.pm, even outside the scope of
use feature.

Subroutines in the CORE namespace

Many Perl keywords are now available as subroutines in the CORE namespace.
 This lets them be
aliased:

 BEGIN { *entangle = \&CORE::tie }
 entangle $variable, $package, @args;

And for prototypes to be bypassed:

 sub mytie(\[%$*@]$@) {
	 my ($ref, $pack, @args) = @_;
	 ... do something ...
	 goto &CORE::tie;
 }

Some of these cannot be called through references or via &foo syntax,
 but must be called as
barewords.

See CORE for details.

Other Changes
Anonymous handles

Automatically generated file handles are now named __ANONIO__ when the
 variable name cannot
be determined, rather than $__ANONIO__.

Autoloaded sort Subroutines

Custom sort subroutines can now be autoloaded [perl #30661]:

 sub AUTOLOAD { ... }
 @sorted = sort foo @list; # uses AUTOLOAD

continue no longer requires the "switch" feature

The continue keyword has two meanings. It can introduce a continue
 block after a loop, or it can
exit the current when block. Up to now,
 the latter meaning was valid only with the "switch" feature
enabled, and
 was a syntax error otherwise. Since the main purpose of feature.pm is to
 avoid conflicts
with user-defined subroutines, there is no reason for continue to depend on it.

Perl version 5.22.0 documentation - perl5160delta

Page 7http://perldoc.perl.org

DTrace probes for interpreter phase change

The phase-change probes will fire when the interpreter's phase
 changes, which tracks the
${^GLOBAL_PHASE} variable. arg0 is
 the new phase name; arg1 is the old one. This is useful for
limiting your instrumentation to one or more of: compile time,
 run time, or destruct time.

__FILE__() Syntax

The __FILE__, __LINE__ and __PACKAGE__ tokens can now be written
 with an empty pair of
parentheses after them. This makes them parse the
 same way as time, fork and other built-in
functions.

The \$ prototype accepts any scalar lvalue

The \$ and \[$] subroutine prototypes now accept any scalar lvalue
 argument. Previously they
accepted only scalars beginning with $ and
 hash and array elements. This change makes them
consistent with the way
 the built-in read and recv functions (among others) parse their
 arguments.
This means that one can override the built-in functions with
 custom subroutines that parse their
arguments the same way.

_ in subroutine prototypes

The _ character in subroutine prototypes is now allowed before @ or %.

Security
Use is_utf8_char_buf() and not is_utf8_char()

The latter function is now deprecated because its API is insufficient to
 guarantee that it doesn't read
(up to 12 bytes in the worst case) beyond
 the end of its input string. See is_utf8_char_buf().

Malformed UTF-8 input could cause attempts to read beyond the end of the buffer
Two new XS-accessible functions, utf8_to_uvchr_buf() and utf8_to_uvuni_buf() are now
available to prevent this, and the Perl
 core has been converted to use them.
 See Internal Changes.

File::Glob::bsd_glob() memory error with GLOB_ALTDIRFUNC (CVE-2011-2728).
Calling File::Glob::bsd_glob with the unsupported flag
 GLOB_ALTDIRFUNC would cause an
access violation / segfault. A Perl
 program that accepts a flags value from an external source could
expose
 itself to denial of service or arbitrary code execution attacks. There
 are no known exploits in
the wild. The problem has been corrected by
 explicitly disabling all unsupported flags and setting
unused function
 pointers to null. Bug reported by ClÃ©ment Lecigne. (5.14.2)

Privileges are now set correctly when assigning to $(
A hypothetical bug (probably unexploitable in practice) because the
 incorrect setting of the effective
group ID while setting $(has been
 fixed. The bug would have affected only systems that have
setresgid()
 but not setregid(), but no such systems are known to exist.

Deprecations
Don't read the Unicode data base files in lib/unicore

It is now deprecated to directly read the Unicode data base files.
 These are stored in the lib/unicore
directory. Instead, you should
 use the new functions in Unicode::UCD. These provide a stable API,

and give complete information.

Perl may at some point in the future change or remove these files. The
 file which applications were
most likely to have used is lib/unicore/ToDigit.pl. "prop_invmap()" in Unicode::UCD can be used to
 get
at its data instead.

XS functions is_utf8_char(), utf8_to_uvchr() and
 utf8_to_uvuni()
This function is deprecated because it could read beyond the end of the
 input string. Use the new
is_utf8_char_buf(), utf8_to_uvchr_buf() and utf8_to_uvuni_buf() instead.

Perl version 5.22.0 documentation - perl5160delta

Page 8http://perldoc.perl.org

Future Deprecations
This section serves as a notice of features that are likely to be
 removed or deprecated in the next
release of
 perl (5.18.0). If your code depends on these features, you should
 contact the Perl 5 Porters
via the mailing list or perlbug to
 explain your use case and inform the deprecation process.

Core Modules
These modules may be marked as deprecated from the core. This only
 means that they will no longer
be installed by default with the core
 distribution, but will remain available on the CPAN.

CPANPLUS

Filter::Simple

PerlIO::mmap

Pod::LaTeX

Pod::Parser

SelfLoader

Text::Soundex

Thread.pm

Platforms with no supporting programmers
These platforms will probably have their
 special build support removed during the
 5.17.0 development
series.

BeOS

djgpp

dgux

EPOC

MPE/iX

Rhapsody

UTS

VM/ESA

Other Future Deprecations
Swapping of $< and $>

For more information about this future deprecation, see the relevant RT ticket.

sfio, stdio

Perl supports being built without PerlIO proper, using a stdio or sfio
 wrapper instead. A perl
build like this will not support IO layers and
 thus Unicode IO, making it rather handicapped.

PerlIO supports a stdio layer if stdio use is desired, and similarly a
 sfio layer could be
produced.

Unescaped literal "{" in regular expressions.

Starting with v5.20, it is planned to require a literal "{" to be
 escaped, for example by
preceding it with a backslash. In v5.18, a
 deprecated warning message will be emitted for all
such uses. This affects only patterns that are to match a literal "{". Other
 uses of this
character, such as part of a quantifier or sequence as in
 those below, are completely

Perl version 5.22.0 documentation - perl5160delta

Page 9http://perldoc.perl.org

unaffected: /foo{3,5}/
 /\p{Alphabetic}/
 /\N{DIGIT ZERO}

Removing this will permit extensions to Perl's pattern syntax and better
 error checking for
existing syntax. See "Quantifiers" in perlre for an
 example.

Revamping "\Q" semantics in double-quotish strings when combined with other escapes.

There are several bugs and inconsistencies involving combinations
 of \Q and escapes like \x,
\L, etc., within a \Q...\E pair.
 These need to be fixed, and doing so will necessarily change
current
 behavior. The changes have not yet been settled.

Incompatible Changes
Special blocks called in void context

Special blocks (BEGIN, CHECK, INIT, UNITCHECK, END) are now
 called in void context. This avoids
wasteful copying of the result of the
 last statement [perl #108794].

The overloading pragma and regexp objects
With no overloading, regular expression objects returned by qr// are
 now stringified as
"Regexp=REGEXP(0xbe600d)" instead of the regular
 expression itself [perl #108780].

Two XS typemap Entries removed
Two presumably unused XS typemap entries have been removed from the
 core typemap:
T_DATAUNIT and T_CALLBACK. If you are, against all odds,
 a user of these, please see the
instructions on how to restore them
 in perlxstypemap.

Unicode 6.1 has incompatibilities with Unicode 6.0
These are detailed in Supports (almost) Unicode 6.1 above.
 You can compile this version of Perl to
use Unicode 6.0. See "Hacking Perl to work on earlier Unicode versions (for very serious hackers
only)" in perlunicode.

Borland compiler
All support for the Borland compiler has been dropped. The code had not
 worked for a long time
anyway.

Certain deprecated Unicode properties are no longer supported by default
Perl should never have exposed certain Unicode properties that are used
 by Unicode internally and
not meant to be publicly available. Use of
 these has generated deprecated warning messages since
Perl 5.12. The
 removed properties are Other_Alphabetic,
 Other_Default_Ignorable_Code_Point,
Other_Grapheme_Extend,
 Other_ID_Continue, Other_ID_Start, Other_Lowercase, Other_Math, and

Other_Uppercase.

Perl may be recompiled to include any or all of them; instructions are
 given in "Unicode character
properties that are NOT accepted by Perl" in perluniprops.

Dereferencing IO thingies as typeglobs
The *{...} operator, when passed a reference to an IO thingy (as in *{*STDIN{IO}}), creates a
new typeglob containing just that IO object.
 Previously, it would stringify as an empty string, but some
operators would
 treat it as undefined, producing an "uninitialized" warning.
 Now it stringifies as
__ANONIO__ [perl #96326].

User-defined case-changing operations
This feature was deprecated in Perl 5.14, and has now been removed.
 The CPAN module
Unicode::Casing provides better functionality without
 the drawbacks that this feature had, as are
detailed in the 5.14
 documentation:
http://perldoc.perl.org/5.14.0/perlunicode.html#User-Defined-Case-Mappings-%28for

Perl version 5.22.0 documentation - perl5160delta

Page 10http://perldoc.perl.org

-serious-hackers-only%29XSUBs are now 'static'
XSUB C functions are now 'static', that is, they are not visible from
 outside the compilation unit. Users
can use the new XS_EXTERNAL(name)
 and XS_INTERNAL(name) macros to pick the desired
linking behavior.
 The ordinary XS(name) declaration for XSUBs will continue to declare
 non-'static'
XSUBs for compatibility, but the XS compiler, ExtUtils::ParseXS (xsubpp) will emit 'static' XSUBs by
default. ExtUtils::ParseXS's behavior can be reconfigured from XS using the
EXPORT_XSUB_SYMBOLS keyword. See perlxs for details.

Weakening read-only references
Weakening read-only references is no longer permitted. It should never
 have worked anyway, and
could sometimes result in crashes.

Tying scalars that hold typeglobs
Attempting to tie a scalar after a typeglob was assigned to it would
 instead tie the handle in the
typeglob's IO slot. This meant that it was
 impossible to tie the scalar itself. Similar problems affected
tied and untie: tied $scalar would return false on a tied scalar if the last
 thing returned was a
typeglob, and untie $scalar on such a tied scalar
 would do nothing.

We fixed this problem before Perl 5.14.0, but it caused problems with some
 CPAN modules, so we
put in a deprecation cycle instead.

Now the deprecation has been removed and this bug has been fixed. So tie $scalar will always
tie the scalar, not the handle it holds. To tie
 the handle, use tie *$scalar (with an explicit
asterisk). The same
 applies to tied *$scalar and untie *$scalar.

IPC::Open3 no longer provides xfork(), xclose_on_exec()
 and xpipe_anon()
All three functions were private, undocumented, and unexported. They do
 not appear to be used by
any code on CPAN. Two have been inlined and one
 deleted entirely.

$$ no longer caches PID
Previously, if one called fork(3) from C, Perl's
 notion of $$ could go out of sync with what getpid()
returns. By always
 fetching the value of $$ via getpid(), this potential bug is eliminated.
 Code that
depends on the caching behavior will break. As described in Core Enhancements, $$ is now writable,
but it will be reset during a
 fork.

$$ and getppid() no longer emulate POSIX semantics under LinuxThreads
The POSIX emulation of $$ and getppid() under the obsolete
 LinuxThreads implementation has
been removed.
 This only impacts users of Linux 2.4 and
 users of Debian GNU/kFreeBSD up to and
including 6.0, not the vast
 majority of Linux installations that use NPTL threads.

This means that getppid(), like $$, is now always guaranteed to
 return the OS's idea of the current
state of the process, not perl's
 cached version of it.

See the documentation for $$ for details.

$<, $>, $(and $) are no longer cached
Similarly to the changes to $$ and getppid(), the internal
 caching of $<, $>, $(and $) has been
removed.

When we cached these values our idea of what they were would drift out
 of sync with reality if
someone (e.g., someone embedding perl) called sete?[ug]id() without updating PL_e?[ug]id.
Having to deal with
 this complexity wasn't worth it given how cheap the gete?[ug]id()
 system call
is.

This change will break a handful of CPAN modules that use the XS-level PL_uid, PL_gid, PL_euid
or PL_egid variables.

The fix for those breakages is to use PerlProc_gete?[ug]id() to
 retrieve them (e.g.,

Perl version 5.22.0 documentation - perl5160delta

Page 11http://perldoc.perl.org

PerlProc_getuid()), and not to assign to PL_e?[ug]id if you change the UID/GID/EUID/EGID.
There is no longer
 any need to do so since perl will always retrieve the up-to-date
 version of those
values from the OS.

Which Non-ASCII characters get quoted by quotemeta and \Q has changed
This is unlikely to result in a real problem, as Perl does not attach
 special meaning to any non-ASCII
character, so it is currently
 irrelevant which are quoted or not. This change fixes bug [perl #77654]
and
 brings Perl's behavior more into line with Unicode's recommendations.
 See "quotemeta" in
perlfunc.

Performance Enhancements
Improved performance for Unicode properties in regular expressions

Matching a code point against a Unicode property is now done via a
 binary search instead of
linear. This means for example that the worst
 case for a 1000 item property is 10 probes
instead of 1000. This
 inefficiency has been compensated for in the past by permanently
storing
 in a hash the results of a given probe plus the results for the adjacent
 64 code points,
under the theory that near-by code points are likely to
 be searched for. A separate hash was
used for each mention of a Unicode
 property in each regular expression. Thus,
qr/\p{foo}abc\p{foo}/
 would generate two hashes. Any probes in one instance would
be unknown
 to the other, and the hashes could expand separately to be quite large
 if the
regular expression were used on many different widely-separated
 code points.
 Now, however,
there is just one hash shared by all instances of a given
 property. This means that if \p{foo}
is matched against "A" in one
 regular expression in a thread, the result will be known
immediately to
 all regular expressions, and the relentless march of using up memory is
 slowed
considerably.

Version declarations with the use keyword (e.g., use 5.012) are now
 faster, as they enable
features without loading feature.pm.

local $_ is faster now, as it no longer iterates through magic that it
 is not going to copy
anyway.

Perl 5.12.0 sped up the destruction of objects whose classes define
 empty DESTROY methods
(to prevent autoloading), by simply not
 calling such empty methods. This release takes this
optimization a
 step further, by not calling any DESTROY method that begins with a return
statement. This can be useful for destructors that are only
 used for debugging:

 use constant DEBUG => 1;
 sub DESTROY { return unless DEBUG; ... }

Constant-folding will reduce the first statement to return; if DEBUG
 is set to 0, triggering
this optimization.

Assigning to a variable that holds a typeglob or copy-on-write scalar
 is now much faster.
Previously the typeglob would be stringified or
 the copy-on-write scalar would be copied
before being clobbered.

Assignment to substr in void context is now more than twice its
 previous speed. Instead of
creating and returning a special lvalue
 scalar that is then assigned to, substr modifies the
original string
 itself.

substr no longer calculates a value to return when called in void
 context.

Due to changes in File::Glob, Perl's glob function and its <...> equivalent are now much
faster. The splitting of the pattern
 into words has been rewritten in C, resulting in speed-ups of
20% for
 some cases.

This does not affect glob on VMS, as it does not use File::Glob.

The short-circuiting operators &&, ||, and //, when chained
 (such as $a || $b || $c), are

Perl version 5.22.0 documentation - perl5160delta

Page 12http://perldoc.perl.org

now considerably faster to short-circuit,
 due to reduced optree traversal.

The implementation of s///r makes one fewer copy of the scalar's value.

Recursive calls to lvalue subroutines in lvalue scalar context use less
 memory.

Modules and Pragmata
Deprecated Modules

Version::Requirements

Version::Requirements is now DEPRECATED, use CPAN::Meta::Requirements,
 which is a
drop-in replacement. It will be deleted from perl.git blead
 in v5.17.0.

New Modules and Pragmata
arybase -- this new module implements the $[variable.

PerlIO::mmap 0.010 has been added to the Perl core.

The mmap PerlIO layer is no longer implemented by perl itself, but has
 been moved out into
the new PerlIO::mmap module.

Updated Modules and Pragmata
This is only an overview of selected module updates. For a complete list of
 updates, run:

 $ corelist --diff 5.14.0 5.16.0

You can substitute your favorite version in place of 5.14.0, too.

Archive::Extract has been upgraded from version 0.48 to 0.58.

Includes a fix for FreeBSD to only use unzip if it is located in /usr/local/bin, as
FreeBSD 9.0 will ship with a limited unzip in /usr/bin.

Archive::Tar has been upgraded from version 1.76 to 1.82.

Adjustments to handle files >8gb (>0777777777777 octal) and a feature
 to return the
MD5SUM of files in the archive.

base has been upgraded from version 2.16 to 2.18.

base no longer sets a module's $VERSION to "-1" when a module it
 loads does not define a
$VERSION. This change has been made because
 "-1" is not a valid version number under the
new "lax" criteria used
 internally by UNIVERSAL::VERSION. (See version for more on "lax"

version criteria.)

base no longer internally skips loading modules it has already loaded
 and instead relies on
require to inspect %INC. This fixes a bug
 when base is used with code that clear %INC to
force a module to
 be reloaded.

Carp has been upgraded from version 1.20 to 1.26.

It now includes last read filehandle info and puts a dot after the file
 and line number, just like
errors from die [perl #106538].

charnames has been updated from version 1.18 to 1.30.

charnames can now be invoked with a new option, :loose,
 which is like the existing :full
option, but enables Unicode loose
 name matching. Details are in "LOOSE MATCHES" in
charnames.

B::Deparse has been upgraded from version 1.03 to 1.14. This fixes
 numerous deparsing
bugs.

CGI has been upgraded from version 3.52 to 3.59.

Perl version 5.22.0 documentation - perl5160delta

Page 13http://perldoc.perl.org

It uses the public and documented FCGI.pm API in CGI::Fast. CGI::Fast was
 using an FCGI
API that was deprecated and removed from documentation
 more than ten years ago. Usage
of this deprecated API with FCGI >=
 0.70 or FCGI <= 0.73 introduces a security issue.
https://rt.cpan.org/Public/Bug/Display.html?id=68380
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-2766

Things that may break your code:

url() was fixed to return PATH_INFO when it is explicitly requested
 with either the path=>1
or path_info=>1 flag.

If your code is running under mod_rewrite (or compatible) and you are
 calling self_url() or
you are calling url() and passing path_info=>1, these methods will actually be returning
PATH_INFO now, as you have explicitly requested or self_url()
 has requested on your
behalf.

The PATH_INFO has been omitted in such URLs since the issue was
 introduced in the 3.12
release in December, 2005.

This bug is so old your application may have come to depend on it or
 workaround it. Check for
application before upgrading to this release.

Examples of affected method calls:

 $q->url(-absolute => 1, -query => 1, -path_info => 1);
 $q->url(-path=>1);
 $q->url(-full=>1,-path=>1);
 $q->url(-rewrite=>1,-path=>1);
 $q->self_url();

We no longer read from STDIN when the Content-Length is not set,
 preventing requests with
no Content-Length from sometimes freezing.
 This is consistent with the CGI RFC 3875, and is
also consistent with
 CGI::Simple. However, the old behavior may have been expected by
some
 command-line uses of CGI.pm.

In addition, the DELETE HTTP verb is now supported.

Compress::Zlib has been upgraded from version 2.035 to 2.048.

IO::Compress::Zip and IO::Uncompress::Unzip now have support for LZMA
 (method 14).
There is a fix for a CRC issue in IO::Compress::Unzip and
 it supports Streamed Stored
context now. And fixed a Zip64 issue in
 IO::Compress::Zip when the content size was exactly
0xFFFFFFFF.

Digest::SHA has been upgraded from version 5.61 to 5.71.

Added BITS mode to the addfile method and shasum. This makes
 partial-byte inputs possible
via files/STDIN and lets shasum check
 all 8074 NIST Msg vectors, where previously special
programming was
 required to do this.

Encode has been upgraded from version 2.42 to 2.44.

Missing aliases added, a deep recursion error fixed and various
 documentation updates.

Addressed 'decode_xs n-byte heap-overflow' security bug in Unicode.xs
 (CVE-2011-2939).
(5.14.2)

ExtUtils::CBuilder updated from version 0.280203 to 0.280206.

The new version appends CFLAGS and LDFLAGS to their Config.pm
 counterparts.

ExtUtils::ParseXS has been upgraded from version 2.2210 to 3.16.

Much of ExtUtils::ParseXS, the module behind the XS compiler xsubpp,
 was rewritten and
cleaned up. It has been made somewhat more extensible
 and now finally uses strictures.

The typemap logic has been moved into a separate module, ExtUtils::Typemaps. See New
Modules and Pragmata, above.

Perl version 5.22.0 documentation - perl5160delta

Page 14http://perldoc.perl.org

For a complete set of changes, please see the ExtUtils::ParseXS
 changelog, available on the
CPAN.

File::Glob has been upgraded from version 1.12 to 1.17.

On Windows, tilde (~) expansion now checks the USERPROFILE environment
 variable, after
checking HOME.

It has a new :bsd_glob export tag, intended to replace :glob. Like :glob it overrides glob
with a function that does not split the glob
 pattern into words, but, unlike :glob, it iterates
properly in scalar
 context, instead of returning the last file.

There are other changes affecting Perl's own glob operator (which uses
 File::Glob internally,
except on VMS). See Performance Enhancements
 and Selected Bug Fixes.

FindBin updated from version 1.50 to 1.51.

It no longer returns a wrong result if a script of the same name as the
 current one exists in the
path and is executable.

HTTP::Tiny has been upgraded from version 0.012 to 0.017.

Added support for using $ENV{http_proxy} to set the default proxy host.

Adds additional shorthand methods for all common HTTP verbs,
 a post_form() method for
POST-ing x-www-form-urlencoded data and
 a www_form_urlencode() utility method.

IO has been upgraded from version 1.25_04 to 1.25_06, and IO::Handle
 from version 1.31 to
1.33.

Together, these upgrades fix a problem with IO::Handle's getline and getlines methods.
When these methods are called on the special ARGV
 handle, the next file is automatically
opened, as happens with the built-in <> and readline functions. But, unlike the built-ins,
these
 methods were not respecting the caller's use of the open pragma and
 applying the
appropriate I/O layers to the newly-opened file
 [rt.cpan.org #66474].

IPC::Cmd has been upgraded from version 0.70 to 0.76.

Capturing of command output (both STDOUT and STDERR) is now supported
 using
IPC::Open3 on MSWin32 without requiring IPC::Run.

IPC::Open3 has been upgraded from version 1.09 to 1.12.

Fixes a bug which prevented use of open3 on Windows when *STDIN, *STDOUT or *STDERR
had been localized.

Fixes a bug which prevented duplicating numeric file descriptors on Windows.

open3 with "-" for the program name works once more. This was broken in
 version 1.06 (and
hence in Perl 5.14.0) [perl #95748].

Locale::Codes has been upgraded from version 3.16 to 3.21.

Added Language Extension codes (langext) and Language Variation codes (langvar)
 as
defined in the IANA language registry.

Added language codes from ISO 639-5

Added language/script codes from the IANA language subtag registry

Fixed an uninitialized value warning [rt.cpan.org #67438].

Fixed the return value for the all_XXX_codes and all_XXX_names functions
 [rt.cpan.org
#69100].

Reorganized modules to move Locale::MODULE to Locale::Codes::MODULE to allow
 for
cleaner future additions. The original four modules (Locale::Language,
 Locale::Currency,
Locale::Country, Locale::Script) will continue to work, but
 all new sets of codes will be added
in the Locale::Codes namespace.

Perl version 5.22.0 documentation - perl5160delta

Page 15http://perldoc.perl.org

The code2XXX, XXX2code, all_XXX_codes, and all_XXX_names functions now
 support
retired codes. All codesets may be specified by a constant or
 by their name now. Previously,
they were specified only by a constant.

The alias_code function exists for backward compatibility. It has been
 replaced by
rename_country_code. The alias_code function will be
 removed some time after September,
2013.

All work is now done in the central module (Locale::Codes). Previously,
 some was still done in
the wrapper modules (Locale::Codes::*). Added
 Language Family codes (langfam) as defined
in ISO 639-5.

Math::BigFloat has been upgraded from version 1.993 to 1.997.

The numify method has been corrected to return a normalized Perl number
 (the result of 0 +
 $thing), instead of a string [rt.cpan.org #66732].

Math::BigInt has been upgraded from version 1.994 to 1.998.

It provides a new bsgn method that complements the babs method.

It fixes the internal objectify function's handling of "foreign objects"
 so they are converted
to the appropriate class (Math::BigInt or
 Math::BigFloat).

Math::BigRat has been upgraded from version 0.2602 to 0.2603.

int() on a Math::BigRat object containing -1/2 now creates a
 Math::BigInt containing 0,
rather than -0. Math::BigInt does not even
 support negative zero, so the resulting object was
actually malformed
 [perl #95530].

Math::Complex has been upgraded from version 1.56 to 1.59
 and Math::Trig from version 1.2
to 1.22.

Fixes include: correct copy constructor usage; fix polarwise formatting with
 numeric format
specifier; and more stable great_circle_direction algorithm.

Module::CoreList has been upgraded from version 2.51 to 2.66.

The corelist utility now understands the -r option for displaying
 Perl release dates and the
--diff option to print the set of modlib
 changes between two perl distributions.

Module::Metadata has been upgraded from version 1.000004 to 1.000009.

Adds provides method to generate a CPAN META provides data structure
 correctly; use of
package_versions_from_directory is discouraged.

ODBM_File has been upgraded from version 1.10 to 1.12.

The XS code is now compiled with PERL_NO_GET_CONTEXT, which will aid
 performance
under ithreads.

open has been upgraded from version 1.08 to 1.10.

It no longer turns off layers on standard handles when invoked without the
 ":std" directive.
Similarly, when invoked with the ":std" directive, it
 now clears layers on STDERR before
applying the new ones, and not just on
 STDIN and STDOUT [perl #92728].

overload has been upgraded from version 1.13 to 1.18.

overload::Overloaded no longer calls can on the class, but uses
 another means to
determine whether the object has overloading. It was
 never correct for it to call can, as
overloading does not respect
 AUTOLOAD. So classes that autoload methods and implement
can no longer
 have to account for overloading [perl #40333].

A warning is now produced for invalid arguments. See New Diagnostics.

PerlIO::scalar has been upgraded from version 0.11 to 0.14.

(This is the module that implements open $fh, '>', \$scalar.)

Perl version 5.22.0 documentation - perl5160delta

Page 16http://perldoc.perl.org

It fixes a problem with open my $fh, ">", \$scalar not working if $scalar is a
copy-on-write scalar. (5.14.2)

It also fixes a hang that occurs with readline or <$fh> if a
 typeglob has been assigned to
$scalar [perl #92258].

It no longer assumes during seek that $scalar is a string internally.
 If it didn't crash, it was
close to doing so [perl #92706]. Also, the
 internal print routine no longer assumes that the
position set by seek
 is valid, but extends the string to that position, filling the intervening
 bytes
(between the old length and the seek position) with nulls
 [perl #78980].

Printing to an in-memory handle now works if the $scalar holds a reference,
 stringifying the
reference before modifying it. References used to be
 treated as empty strings.

Printing to an in-memory handle no longer crashes if the $scalar happens to
 hold a number
internally, but no string buffer.

Printing to an in-memory handle no longer creates scalars that confuse
 the regular expression
engine [perl #108398].

Pod::Functions has been upgraded from version 1.04 to 1.05.

Functions.pm is now generated at perl build time from annotations in perlfunc.pod. This will
ensure that Pod::Functions and perlfunc
 remain in synchronisation.

Pod::Html has been upgraded from version 1.11 to 1.1502.

This is an extensive rewrite of Pod::Html to use Pod::Simple under
 the hood. The output has
changed significantly.

Pod::Perldoc has been upgraded from version 3.15_03 to 3.17.

It corrects the search paths on VMS [perl #90640]. (5.14.1)

The -v option now fetches the right section for $0.

This upgrade has numerous significant fixes. Consult its changelog on
 the CPAN for more
information.

POSIX has been upgraded from version 1.24 to 1.30.

POSIX no longer uses AutoLoader. Any code which was relying on this
 implementation detail
was buggy, and may fail because of this change.
 The module's Perl code has been
considerably simplified, roughly halving
 the number of lines, with no change in functionality.
The XS code has
 been refactored to reduce the size of the shared object by about 12%,
 with
no change in functionality. More POSIX functions now have tests.

sigsuspend and pause now run signal handlers before returning, as the
 whole point of
these two functions is to wait until a signal has
 arrived, and then return after it has been
triggered. Delayed, or
 "safe", signals were preventing that from happening, possibly resulting
in
 race conditions [perl #107216].

POSIX::sleep is now a direct call into the underlying OS sleep
 function, instead of being a
Perl wrapper on CORE::sleep. POSIX::dup2 now returns the correct value on Win32 (i.e.,
the file
 descriptor). POSIX::SigSet sigsuspend and sigpending and POSIX::pause
now dispatch safe signals immediately before returning to
 their caller.

POSIX::Termios::setattr now defaults the third argument to TCSANOW,
 instead of 0. On
most platforms TCSANOW is defined to be 0, but on some
 0 is not a valid parameter, which
caused a call with defaults to fail.

Socket has been upgraded from version 1.94 to 2.001.

It has new functions and constants for handling IPv6 sockets:

 pack_ipv6_mreq
 unpack_ipv6_mreq
 IPV6_ADD_MEMBERSHIP

Perl version 5.22.0 documentation - perl5160delta

Page 17http://perldoc.perl.org

 IPV6_DROP_MEMBERSHIP
 IPV6_MTU
 IPV6_MTU_DISCOVER
 IPV6_MULTICAST_HOPS
 IPV6_MULTICAST_IF
 IPV6_MULTICAST_LOOP
 IPV6_UNICAST_HOPS
 IPV6_V6ONLY

Storable has been upgraded from version 2.27 to 2.34.

It no longer turns copy-on-write scalars into read-only scalars when
 freezing and thawing.

Sys::Syslog has been upgraded from version 0.27 to 0.29.

This upgrade closes many outstanding bugs.

Term::ANSIColor has been upgraded from version 3.00 to 3.01.

Only interpret an initial array reference as a list of colors, not any initial
 reference, allowing the
colored function to work properly on objects with
 stringification defined.

Term::ReadLine has been upgraded from version 1.07 to 1.09.

Term::ReadLine now supports any event loop, including unpublished ones and
 simple
IO::Select, loops without the need to rewrite existing code for
 any particular framework [perl
#108470].

threads::shared has been upgraded from version 1.37 to 1.40.

Destructors on shared objects used to be ignored sometimes if the objects
 were referenced
only by shared data structures. This has been mostly
 fixed, but destructors may still be
ignored if the objects still exist at
 global destruction time [perl #98204].

Unicode::Collate has been upgraded from version 0.73 to 0.89.

Updated to CLDR 1.9.1

Locales updated to CLDR 2.0: mk, mt, nb, nn, ro, ru, sk, sr, sv, uk,
 zh__pinyin, zh__stroke

Newly supported locales: bn, fa, ml, mr, or, pa, sa, si, si__dictionary,
 sr_Latn, sv__reformed,
ta, te, th, ur, wae.

Tailored compatibility ideographs as well as unified ideographs for the
 locales: ja, ko,
zh__big5han, zh__gb2312han, zh__pinyin, zh__stroke.

Locale/*.pl files are now searched for in @INC.

Unicode::Normalize has been upgraded from version 1.10 to 1.14.

Fixes for the removal of unicore/CompositionExclusions.txt from core.

Unicode::UCD has been upgraded from version 0.32 to 0.43.

This adds four new functions: prop_aliases() and prop_value_aliases(), which are
used to find all Unicode-approved
 synonyms for property names, or to convert from one name
to another; prop_invlist which returns all code points matching a given
 Unicode binary
property; and prop_invmap which returns the complete
 specification of a given Unicode
property.

Win32API::File has been upgraded from version 0.1101 to 0.1200.

Added SetStdHandle and GetStdHandle functions

Removed Modules and Pragmata
As promised in Perl 5.14.0's release notes, the following modules have
 been removed from the core
distribution, and if needed should be installed
 from CPAN instead.

Perl version 5.22.0 documentation - perl5160delta

Page 18http://perldoc.perl.org

Devel::DProf has been removed from the Perl core. Prior version was
 20110228.00.

Shell has been removed from the Perl core. Prior version was 0.72_01.

Several old perl4-style libraries which have been deprecated with 5.14
 are now removed:

 abbrev.pl assert.pl bigfloat.pl bigint.pl bigrat.pl cacheout.pl
 complete.pl ctime.pl dotsh.pl exceptions.pl fastcwd.pl flush.pl
 getcwd.pl getopt.pl getopts.pl hostname.pl importenv.pl
 lib/find{,depth}.pl look.pl newgetopt.pl open2.pl open3.pl
 pwd.pl shellwords.pl stat.pl tainted.pl termcap.pl timelocal.pl

They can be found on CPAN as Perl4::CoreLibs.

Documentation
New Documentation
perldtrace

perldtrace describes Perl's DTrace support, listing the provided probes
 and gives examples of their
use.

perlexperiment

This document is intended to provide a list of experimental features in
 Perl. It is still a work in
progress.

perlootut

This a new OO tutorial. It focuses on basic OO concepts, and then recommends
 that readers choose
an OO framework from CPAN.

perlxstypemap

The new manual describes the XS typemapping mechanism in unprecedented
 detail and combines
new documentation with information extracted from perlxs and the previously unofficial list of all core
typemaps.

Changes to Existing Documentation
perlapi

The HV API has long accepted negative lengths to show that the key is
 in UTF8. This is now
documented.

The boolSV() macro is now documented.

perlfunc

dbmopen treats a 0 mode as a special case, that prevents a nonexistent
 file from being
created. This has been the case since Perl 5.000, but was
 never documented anywhere. Now
the perlfunc entry mentions it
 [perl #90064].

As an accident of history, open $fh, '<:', ... applies the default
 layers for the platform
(:raw on Unix, :crlf on Windows), ignoring
 whatever is declared by open.pm. This seems
such a useful feature
 it has been documented in perlfunc and open.

The entry for split has been rewritten. It is now far clearer than
 before.

perlguts

A new section, Autoloading with XSUBs,
 has been added, which explains the two APIs for
accessing the name of the
 autoloaded sub.

Some function descriptions in perlguts were confusing, as it was
 not clear whether they
referred to the function above or below the
 description. This has been clarified [perl #91790].

Perl version 5.22.0 documentation - perl5160delta

Page 19http://perldoc.perl.org

perlobj

This document has been rewritten from scratch, and its coverage of various OO
 concepts has
been expanded.

perlop

Documentation of the smartmatch operator has been reworked and moved from
 perlsyn to
perlop where it belongs.

It has also been corrected for the case of undef on the left-hand
 side. The list of different
smart match behaviors had an item in the
 wrong place.

Documentation of the ellipsis statement (...) has been reworked and
 moved from perlop to
perlsyn.

The explanation of bitwise operators has been expanded to explain how they
 work on Unicode
strings (5.14.1).

More examples for m//g have been added (5.14.1).

The <<\FOO here-doc syntax has been documented (5.14.1).

perlpragma

There is now a standard convention for naming keys in the %^H,
 documented under Key
naming.

perlsec/Laundering and Detecting Tainted Data

The example function for checking for taintedness contained a subtle
 error. $@ needs to be
localized to prevent its changing this
 global's value outside the function. The preferred method
to check for
 this remains "tainted" in Scalar::Util.

perllol

perllol has been expanded with examples using the new push $scalar
 syntax introduced in
Perl 5.14.0 (5.14.1).

perlmod

perlmod now states explicitly that some types of explicit symbol table
 manipulation are not
supported. This codifies what was effectively already
 the case [perl #78074].

perlpodstyle

The tips on which formatting codes to use have been corrected and greatly
 expanded.

There are now a couple of example one-liners for previewing POD files after
 they have been
edited.

perlre

The (*COMMIT) directive is now listed in the right section
 (Verbs without an argument).

perlrun

perlrun has undergone a significant clean-up. Most notably, the -0x... form of the -0 flag has
been clarified, and the final section
 on environment variables has been corrected and
expanded (5.14.1).

perlsub

The ($;) prototype syntax, which has existed for rather a long time, is now
 documented in
perlsub. It lets a unary function have the same
 precedence as a list operator.

Perl version 5.22.0 documentation - perl5160delta

Page 20http://perldoc.perl.org

perltie

The required syntax for tying handles has been documented.

perlvar

The documentation for $! has been corrected and clarified.
 It used to state that $! could be
undef, which is not the case. It was
 also unclear whether system calls set C's errno or Perl's
$!
 [perl #91614].

Documentation for $$ has been amended with additional
 cautions regarding changing the
process ID.

Other Changes

perlxs was extended with documentation on inline typemaps.

perlref has a new Circular References
 section explaining how circularities may not be freed
and how to solve that
 with weak references.

Parts of perlapi were clarified, and Perl equivalents of some C
 functions have been added as
an additional mode of exposition.

A few parts of perlre and perlrecharclass were clarified.

Removed Documentation
Old OO Documentation

The old OO tutorials, perltoot, perltooc, and perlboot, have been
 removed. The perlbot (bag of object
tricks) document has been removed
 as well.

Development Deltas

The perldelta files for development releases are no longer packaged with
 perl. These can still be
found in the perl source code repository.

Diagnostics
The following additions or changes have been made to diagnostic output,
 including warnings and fatal
error messages. For the complete list of
 diagnostic messages, see perldiag.

New Diagnostics
New Errors

Cannot set tied @DB::args

This error occurs when caller tries to set @DB::args but finds it
 tied. Before this error was
added, it used to crash instead.

Cannot tie unreifiable array

This error is part of a safety check that the tie operator does before
 tying a special array like
@_. You should never see this message.

&CORE::%s cannot be called directly

This occurs when a subroutine in the CORE:: namespace is called
 with &foo syntax or
through a reference. Some subroutines
 in this package cannot yet be called that way, but
must be
 called as barewords. See Subroutines in the CORE namespace, above.

Source filters apply only to byte streams

This new error occurs when you try to activate a source filter (usually by
 loading a source filter
module) within a string passed to eval under the unicode_eval feature.

Perl version 5.22.0 documentation - perl5160delta

Page 21http://perldoc.perl.org

New Warnings

defined(@array) is deprecated

The long-deprecated defined(@array) now also warns for package variables.
 Previously it
issued a warning for lexical variables only.

length() used on %s

This new warning occurs when length is used on an array or hash, instead
 of
scalar(@array) or scalar(keys %hash).

lvalue attribute %s already-defined subroutine

attributes.pm now emits this warning when the :lvalue
 attribute is applied to a Perl subroutine
that has already been defined, as
 doing so can have unexpected side-effects.

overload arg '%s' is invalid

This warning, in the "overload" category, is produced when the overload
 pragma is given an
argument it doesn't recognize, presumably a mistyped
 operator.

$[used in %s (did you mean $] ?)

This new warning exists to catch the mistaken use of $[in version
 checks. $], not $[,
contains the version number.

Useless assignment to a temporary

Assigning to a temporary scalar returned
 from an lvalue subroutine now produces this
 warning
[perl #31946].

Useless use of \E

\E does nothing unless preceded by \Q, \L or \U.

Removed Errors
"sort is now a reserved word"

This error used to occur when sort was called without arguments,
 followed by ; or). (E.g.,
sort; would die, but {sort} was
 OK.) This error message was added in Perl 3 to catch
code like close(sort) which would no longer work. More than two decades later,
 this
message is no longer appropriate. Now sort without arguments is
 always allowed, and
returns an empty list, as it did in those cases
 where it was already allowed [perl #90030].

Changes to Existing Diagnostics
The "Applying pattern match..." or similar warning produced when an
 array or hash is on the
left-hand side of the =~ operator now
 mentions the name of the variable.

The "Attempt to free non-existent shared string" has had the spelling
 of "non-existent"
corrected to "nonexistent". It was already listed
 with the correct spelling in perldiag.

The error messages for using default and when outside a
 topicalizer have been
standardized to match the messages for continue
 and loop controls. They now read 'Can't
"default" outside a
 topicalizer' and 'Can't "when" outside a topicalizer'. They both used
 to be
'Can't use when() outside a topicalizer' [perl #91514].

The message, "Code point 0x%X is not Unicode, no properties match it;
 all inverse properties
do" has been changed to "Code point 0x%X is not
 Unicode, all \p{} matches fail; all \P{}
matches succeed".

Redefinition warnings for constant subroutines used to be mandatory,
 even occurring under
no warnings. Now they respect the warnings
 pragma.

The "glob failed" warning message is now suppressible via no warnings
 [perl #111656].

Perl version 5.22.0 documentation - perl5160delta

Page 22http://perldoc.perl.org

The Invalid version format
 error message now says "negative version number" within the
parentheses,
 rather than "non-numeric data", for negative numbers.

The two warnings Possible attempt to put comments in qw() list
 and Possible attempt to
separate words with commas
 are no longer mutually exclusive: the same qw construct may
produce
 both.

The uninitialized warning for y///r when $_ is implicit and
 undefined now mentions the
variable name, just like the non-/r variation
 of the operator.

The 'Use of "foo" without parentheses is ambiguous' warning has been
 extended to apply also
to user-defined subroutines with a (;$)
 prototype, and not just to built-in functions.

Warnings that mention the names of lexical (my) variables with
 Unicode characters in them
now respect the presence or absence of the :utf8 layer on the output handle, instead of
outputting UTF8
 regardless. Also, the correct names are included in the strings passed
 to
$SIG{__WARN__} handlers, rather than the raw UTF8 bytes.

Utility Changes
h2ph

h2ph used to generate code of the form

 unless(defined(&FOO)) {
 sub FOO () {42;}
 }

But the subroutine is a compile-time declaration, and is hence unaffected
 by the condition. It
has now been corrected to emit a string eval
 around the subroutine [perl #99368].

splain

splain no longer emits backtraces with the first line number repeated.

This:

 Uncaught exception from user code:
 Cannot fwiddle the fwuddle at -e line 1.
 at -e line 1
 main::baz() called at -e line 1
 main::bar() called at -e line 1
 main::foo() called at -e line 1

has become this:

 Uncaught exception from user code:
 Cannot fwiddle the fwuddle at -e line 1.
 main::baz() called at -e line 1
 main::bar() called at -e line 1
 main::foo() called at -e line 1

Some error messages consist of multiple lines that are listed as separate
 entries in perldiag.
splain has been taught to find the separate
 entries in these cases, instead of simply failing to
find the message.

zipdetails

This is a new utility, included as part of an IO::Compress::Base upgrade.

zipdetails displays information about the internal record structure
 of the zip file. It is not
concerned with displaying any details of
 the compressed data stored in the zip file.

Perl version 5.22.0 documentation - perl5160delta

Page 23http://perldoc.perl.org

Configuration and Compilation
regexp.h has been modified for compatibility with GCC's -Werror
 option, as used by some
projects that include perl's header files (5.14.1).

USE_LOCALE{,_COLLATE,_CTYPE,_NUMERIC} have been added the output of perl -V
 as
they have affect the behavior of the interpreter binary (albeit
 in only a small area).

The code and tests for IPC::Open2 have been moved from ext/IPC-Open2
 into ext/IPC-Open3
, as IPC::Open2::open2() is implemented as a thin
 wrapper around
IPC::Open3::_open3(), and hence is very tightly coupled to
 it.

The magic types and magic vtables are now generated from data in a new script
regen/mg_vtable.pl, instead of being maintained by hand. As different
 EBCDIC variants can't
agree on the code point for '~', the character to code
 point conversion is done at build time by
generate_uudmap to a new generated
 header mg_data.h. PL_vtbl_bm and PL_vtbl_fm
are now defined by the
 pre-processor as PL_vtbl_regexp, instead of being distinct C
variables. PL_vtbl_sig has been removed.

Building with -DPERL_GLOBAL_STRUCT works again. This configuration is not
 generally used.

Perl configured with MAD now correctly frees MADPROP structures when
 OPs are freed.
MADPROPs are now allocated with PerlMemShared_malloc()

makedef.pl has been refactored. This should have no noticeable affect on
 any of the platforms
that use it as part of their build (AIX, VMS, Win32).

useperlio can no longer be disabled.

The file global.sym is no longer needed, and has been removed. It
 contained a list of all
exported functions, one of the files generated by regen/embed.pl from data in embed.fnc and
regen/opcodes. The code
 has been refactored so that the only user of global.sym, makedef.pl,
now reads embed.fnc and regen/opcodes directly, removing the need to
 store the list of
exported functions in an intermediate file.

As global.sym was never installed, this change should not be visible
 outside the build process.

pod/buildtoc, used by the build process to build perltoc, has been
 refactored and simplified. It
now contains only code to build perltoc;
 the code to regenerate Makefiles has been moved to
Porting/pod_rules.pl.
 It's a bug if this change has any material effect on the build process.

pod/roffitall is now built by pod/buildtoc, instead of being
 shipped with the distribution. Its list of
manpages is now generated
 (and therefore current). See also RT #103202 for an unresolved
related
 issue.

The man page for XS::Typemap is no longer installed. XS::Typemap
 is a test module which
is not installed, hence installing its
 documentation makes no sense.

The -Dusesitecustomize and -Duserelocatableinc options now work
 together properly.

Platform Support
Platform-Specific Notes
Cygwin

Since version 1.7, Cygwin supports native UTF-8 paths. If Perl is built
 under that environment,
directory and filenames will be UTF-8 encoded.

Cygwin does not initialize all original Win32 environment variables. See README.cygwin for a
discussion of the newly-added Cygwin::sync_winenv() function [perl #110190] and for

further links.

Perl version 5.22.0 documentation - perl5160delta

Page 24http://perldoc.perl.org

HP-UX

HP-UX PA-RISC/64 now supports gcc-4.x

A fix to correct the socketsize now makes the test suite pass on HP-UX
 PA-RISC for 64bitall
builds. (5.14.2)

VMS

Remove unnecessary includes, fix miscellaneous compiler warnings and
 close some unclosed
comments on vms/vms.c.

Remove sockadapt layer from the VMS build.

Explicit support for VMS versions before v7.0 and DEC C versions
 before v6.0 has been
removed.

Since Perl 5.10.1, the home-grown stat wrapper has been unable to
 distinguish between a
directory name containing an underscore and an
 otherwise-identical filename containing a dot
in the same position
 (e.g., t/test_pl as a directory and t/test.pl as a file). This problem
 has been
corrected.

The build on VMS now permits names of the resulting symbols in C code for
 Perl longer than
31 characters. Symbols like
Perl__it_was_the_best_of_times_it_was_the_worst_of_times can now be

created freely without causing the VMS linker to seize up.

GNU/Hurd

Numerous build and test failures on GNU/Hurd have been resolved with hints
 for building
DBM modules, detection of the library search path, and enabling
 of large file support.

OpenVOS

Perl is now built with dynamic linking on OpenVOS, the minimum supported
 version of which
is now Release 17.1.0.

SunOS

The CC workshop C++ compiler is now detected and used on systems that ship
 without cc.

Internal Changes
The compiled representation of formats is now stored via the mg_ptr of
 their
PERL_MAGIC_fm. Previously it was stored in the string buffer,
 beyond SvLEN(), the regular
end of the string. SvCOMPILED() and SvCOMPILED_{on,off}() now exist solely for
compatibility for XS code.
 The first is always 0, the other two now no-ops. (5.14.1)

Some global variables have been marked const, members in the interpreter
 structure have
been re-ordered, and the opcodes have been re-ordered. The
 op OP_AELEMFAST has been
split into OP_AELEMFAST and OP_AELEMFAST_LEX.

When empting a hash of its elements (e.g., via undef(%h), or %h=()), HvARRAY
 field is no
longer temporarily zeroed. Any destructors called on the freed
 elements see the remaining
elements. Thus, %h=() becomes more like delete $h{$_} for keys %h.

Boyer-Moore compiled scalars are now PVMGs, and the Boyer-Moore tables are now
 stored
via the mg_ptr of their PERL_MAGIC_bm.
 Previously they were PVGVs, with the tables stored
in
 the string buffer, beyond SvLEN(). This eliminates
 the last place where the core stores
data beyond SvLEN().

Simplified logic in Perl_sv_magic() introduces a small change of
 behavior for error cases
involving unknown magic types. Previously, if Perl_sv_magic() was passed a magic type
unknown to it, it would

1. Croak "Modification of a read-only value attempted" if read only

Perl version 5.22.0 documentation - perl5160delta

Page 25http://perldoc.perl.org

2. Return without error if the SV happened to already have this magic

3. otherwise croak "Don't know how to handle magic of type \\%o"

Now it will always croak "Don't know how to handle magic of type \\%o", even
 on read-only
values, or SVs which already have the unknown magic type.

The experimental fetch_cop_label function has been renamed to cop_fetch_label.

The cop_store_label function has been added to the API, but is
 experimental.

embedvar.h has been simplified, and one level of macro indirection for
 PL_* variables has
been removed for the default (non-multiplicity)
 configuration. PERLVAR*() macros now directly
expand their arguments to
 tokens such as PL_defgv, instead of expanding to PL_Idefgv,
with embedvar.h defining a macro to map PL_Idefgv to PL_defgv. XS code
 which has
unwarranted chumminess with the implementation may need updating.

An API has been added to explicitly choose whether to export XSUB
 symbols. More detail can
be found in the comments for commit e64345f8.

The is_gv_magical_sv function has been eliminated and merged with
gv_fetchpvn_flags. It used to be called to determine whether a GV
 should be autovivified
in rvalue context. Now it has been replaced with a
 new GV_ADDMG flag (not part of the API).

The returned code point from the function utf8n_to_uvuni()
 when the input is malformed
UTF-8, malformations are allowed, and utf8 warnings are off is now the Unicode
REPLACEMENT CHARACTER
 whenever the malformation is such that no well-defined code
point can be
 computed. Previously the returned value was essentially garbage. The
 only
malformations that have well-defined values are a zero-length
 string (0 is the return), and
overlong UTF-8 sequences.

Padlists are now marked AvREAL; i.e., reference-counted. They have
 always been
reference-counted, but were not marked real, because pad.c
 did its own clean-up, instead of
using the usual clean-up code in sv.c.
 That caused problems in thread cloning, so now the
AvREAL flag is on,
 but is turned off in pad.c right before the padlist is freed (after pad.c has
done its custom freeing of the pads).

All C files that make up the Perl core have been converted to UTF-8.

These new functions have been added as part of the work on Unicode symbols:

 HvNAMELEN
 HvNAMEUTF8
 HvENAMELEN
 HvENAMEUTF8
 gv_init_pv
 gv_init_pvn
 gv_init_pvsv
 gv_fetchmeth_pv
 gv_fetchmeth_pvn
 gv_fetchmeth_sv
 gv_fetchmeth_pv_autoload
 gv_fetchmeth_pvn_autoload
 gv_fetchmeth_sv_autoload
 gv_fetchmethod_pv_flags
 gv_fetchmethod_pvn_flags
 gv_fetchmethod_sv_flags
 gv_autoload_pv
 gv_autoload_pvn

Perl version 5.22.0 documentation - perl5160delta

Page 26http://perldoc.perl.org

 gv_autoload_sv
 newGVgen_flags
 sv_derived_from_pv
 sv_derived_from_pvn
 sv_derived_from_sv
 sv_does_pv
 sv_does_pvn
 sv_does_sv
 whichsig_pv
 whichsig_pvn
 whichsig_sv
 newCONSTSUB_flags

The gv_fetchmethod_*_flags functions, like gv_fetchmethod_flags, are
 experimental and may
change in a future release.

The following functions were added. These are not part of the API:

 GvNAMEUTF8
 GvENAMELEN
 GvENAME_HEK
 CopSTASH_flags
 CopSTASH_flags_set
 PmopSTASH_flags
 PmopSTASH_flags_set
 sv_sethek
 HEKfARG

There is also a HEKf macro corresponding to SVf, for
 interpolating HEKs in formatted strings.

sv_catpvn_flags takes a couple of new internal-only flags, SV_CATBYTES and
SV_CATUTF8, which tell it whether the char array to
 be concatenated is UTF8. This allows for
more efficient concatenation than
 creating temporary SVs to pass to sv_catsv.

For XS AUTOLOAD subs, $AUTOLOAD is set once more, as it was in 5.6.0. This
 is in
addition to setting SvPVX(cv), for compatibility with 5.8 to 5.14.
 See "Autoloading with
XSUBs" in perlguts.

Perl now checks whether the array (the linearized isa) returned by a MRO
 plugin begins with
the name of the class itself, for which the array was
 created, instead of assuming that it does.
This prevents the first element
 from being skipped during method lookup. It also means that
mro::get_linear_isa may return an array with one more element than the
 MRO plugin
provided [perl #94306].

PL_curstash is now reference-counted.

There are now feature bundle hints in PL_hints ($^H) that version
 declarations use, to avoid
having to load feature.pm. One setting of
 the hint bits indicates a "custom" feature bundle,
which means that the
 entries in %^H still apply. feature.pm uses that.

The HINT_FEATURE_MASK macro is defined in perl.h along with other
 hints. Other macros for
setting and testing features and bundles are in
 the new feature.h. FEATURE_IS_ENABLED
(which has moved to feature.h) is no longer used throughout the codebase, but more specific

macros, e.g., FEATURE_SAY_IS_ENABLED, that are defined in feature.h.

lib/feature.pm is now a generated file, created by the new regen/feature.pl script, which also
generates feature.h.

Tied arrays are now always AvREAL. If @_ or DB::args is tied, it
 is reified first, to make sure
this is always the case.

Perl version 5.22.0 documentation - perl5160delta

Page 27http://perldoc.perl.org

Two new functions utf8_to_uvchr_buf() and utf8_to_uvuni_buf() have
 been
added. These are the same as utf8_to_uvchr and utf8_to_uvuni (which are now
deprecated), but take an extra parameter
 that is used to guard against reading beyond the
end of the input
 string.
 See "utf8_to_uvchr_buf" in perlapi and "utf8_to_uvuni_buf" in perlapi.

The regular expression engine now does TRIE case insensitive matches
 under Unicode. This
may change the output of use re 'debug';,
 and will speed up various things.

There is a new wrap_op_checker() function, which provides a thread-safe
 alternative to
writing to PL_check directly.

Selected Bug Fixes
Array and hash

A bug has been fixed that would cause a "Use of freed value in iteration"
 error if the next two
hash elements that would be iterated over are
 deleted [perl #85026]. (5.14.1)

Deleting the current hash iterator (the hash element that would be returned
 by the next call to
each) in void context used not to free it
 [perl #85026].

Deletion of methods via delete $Class::{method} syntax used to update
 method caches
if called in void context, but not scalar or list context.

When hash elements are deleted in void context, the internal hash entry is
 now freed before
the value is freed, to prevent destructors called by that
 latter freeing from seeing the hash in
an inconsistent state. It was
 possible to cause double-frees if the destructor freed the hash
itself
 [perl #100340].

A keys optimization in Perl 5.12.0 to make it faster on empty hashes
 caused each not to
reset the iterator if called after the last element
 was deleted.

Freeing deeply nested hashes no longer crashes [perl #44225].

It is possible from XS code to create hashes with elements that have no
 values. The hash
element and slice operators used to crash
 when handling these in lvalue context. They now

produce a "Modification of non-creatable hash value attempted" error
 message.

If list assignment to a hash or array triggered destructors that freed the
 hash or array itself, a
crash would ensue. This is no longer the case
 [perl #107440].

It used to be possible to free the typeglob of a localized array or hash
 (e.g., local @{"x"};
 delete $::{x}), resulting in a crash on scope exit.

Some core bugs affecting Hash::Util have been fixed: locking a hash
 element that is a glob
copy no longer causes the next assignment to it to
 corrupt the glob (5.14.2), and unlocking a
hash element that holds a
 copy-on-write scalar no longer causes modifications to that scalar
to
 modify other scalars that were sharing the same string buffer.

C API fixes
The newHVhv XS function now works on tied hashes, instead of crashing or
 returning an
empty hash.

The SvIsCOW C macro now returns false for read-only copies of typeglobs,
 such as those
created by:

 $hash{elem} = *foo;
 Hash::Util::lock_value %hash, 'elem';

It used to return true.

The SvPVutf8 C function no longer tries to modify its argument,
 resulting in errors [perl
#108994].

Perl version 5.22.0 documentation - perl5160delta

Page 28http://perldoc.perl.org

SvPVutf8 now works properly with magical variables.

SvPVbyte now works properly non-PVs.

When presented with malformed UTF-8 input, the XS-callable functions is_utf8_string(),
is_utf8_string_loc(), and is_utf8_string_loclen() could read beyond the end of
the input
 string by up to 12 bytes. This no longer happens. [perl #32080].
 However, currently,
is_utf8_char() still has this defect, see is_utf8_char() above.

The C-level pregcomp function could become confused about whether the
 pattern was in
UTF8 if the pattern was an overloaded, tied, or otherwise
 magical scalar [perl #101940].

Compile-time hints
Tying %^H no longer causes perl to crash or ignore the contents of %^H when entering a
compilation scope [perl #106282].

eval $string and require used not to
 localize %^H during compilation if it
 was empty at
the time the eval call itself was compiled. This could
 lead to scary side effects, like use re
"/m" enabling other flags that
 the surrounding code was trying to enable for its caller [perl
#68750].

eval $string and require no longer localize hints ($^H and %^H)
 at run time, but only
during compilation of the $string or required file.
 This makes BEGIN { $^H{foo}=7 }
equivalent to BEGIN { eval '$^H{foo}=7' } [perl #70151].

Creating a BEGIN block from XS code (via newXS or newATTRSUB) would,
 on completion,
make the hints of the current compiling code the current
 hints. This could cause warnings to
occur in a non-warning scope.

Copy-on-write scalars
Copy-on-write or shared hash key scalars
 were introduced in 5.8.0, but most Perl code
 did not
encounter them (they were used mostly internally). Perl
 5.10.0 extended them, such that assigning
__PACKAGE__ or a
 hash key to a scalar would make it copy-on-write. Several parts
 of Perl were not
updated to account for them, but have now been fixed.

utf8::decode had a nasty bug that would modify copy-on-write scalars'
 string buffers in
place (i.e., skipping the copy). This could result in
 hashes having two elements with the same
key [perl #91834]. (5.14.2)

Lvalue subroutines were not allowing COW scalars to be returned. This was
 fixed for lvalue
scalar context in Perl 5.12.3 and 5.14.0, but list context
 was not fixed until this release.

Elements of restricted hashes (see the fields pragma) containing
 copy-on-write values couldn't
be deleted, nor could such hashes be cleared
 (%hash = ()). (5.14.2)

Localizing a tied variable used to make it read-only if it contained a
 copy-on-write string.
(5.14.2)

Assigning a copy-on-write string to a stash
 element no longer causes a double free.
Regardless of this change, the
 results of such assignments are still undefined.

Assigning a copy-on-write string to a tied variable no longer stops that
 variable from being tied
if it happens to be a PVMG or PVLV internally.

Doing a substitution on a tied variable returning a copy-on-write
 scalar used to cause an
assertion failure or an "Attempt to free
 nonexistent shared string" warning.

This one is a regression from 5.12: In 5.14.0, the bitwise assignment
 operators |=, ^= and &=
started leaving the left-hand side
 undefined if it happened to be a copy-on-write string [perl
#108480].

Perl version 5.22.0 documentation - perl5160delta

Page 29http://perldoc.perl.org

Storable, Devel::Peek and PerlIO::scalar had similar problems.
 See Updated Modules and
Pragmata, above.

The debugger
dumpvar.pl, and therefore the x command in the debugger, have been
 fixed to handle objects
blessed into classes whose names contain "=". The
 contents of such objects used not to be
dumped [perl #101814].

The "R" command for restarting a debugger session has been fixed to work on
 Windows, or
any other system lacking a POSIX::_SC_OPEN_MAX constant
 [perl #87740].

The #line 42 foo directive used not to update the arrays of lines used
 by the debugger if it
occurred in a string eval. This was partially fixed
 in 5.14, but it worked only for a single #line
 42 foo in each eval. Now
 it works for multiple.

When subroutine calls are intercepted by the debugger, the name of the
 subroutine or a
reference to it is stored in $DB::sub, for the debugger
 to access. Sometimes (such as $foo
= *bar; undef *bar; &$foo) $DB::sub would be set to a name that could not be used
to find the
 subroutine, and so the debugger's attempt to call it would fail. Now the
 check to see
whether a reference is needed is more robust, so those
 problems should not happen anymore
[rt.cpan.org #69862].

Every subroutine has a filename associated with it that the debugger uses.
 The one
associated with constant subroutines used to be misallocated when
 cloned under threads.
Consequently, debugging threaded applications could
 result in memory corruption [perl
#96126].

Dereferencing operators
defined(${"..."}), defined(*{"..."}), etc., used to
 return true for most, but not all
built-in variables, if
 they had not been used yet. This bug affected ${^GLOBAL_PHASE} and
${^UTF8CACHE}, among others. It also used to return false if the
 package name was given
as well (${"::!"}) [perl #97978, #97492].

Perl 5.10.0 introduced a similar bug: defined(*{"foo"}) where "foo"
 represents the name
of a built-in global variable used to return false if
 the variable had never been used before, but
only on the first call.
 This, too, has been fixed.

Since 5.6.0, *{ ... } has been inconsistent in how it treats undefined
 values. It would die in
strict mode or lvalue context for most undefined
 values, but would be treated as the empty
string (with a warning) for the
 specific scalar return by undef() (&PL_sv_undef internally).
This
 has been corrected. undef() is now treated like other undefined
 scalars, as in Perl
5.005.

Filehandle, last-accessed
Perl has an internal variable that stores the last filehandle to be
 accessed. It is used by $. and by
tell and eof without
 arguments.

It used to be possible to set this internal variable to a glob copy and
 then modify that glob copy
to be something other than a glob, and still
 have the last-accessed filehandle associated with
the variable after
 assigning a glob to it again:

 my $foo = *STDOUT; # $foo is a glob copy
 <$foo>; # $foo is now the last-accessed handle
 $foo = 3; # no longer a glob
 $foo = *STDERR; # still the last-accessed handle

Now the $foo = 3 assignment unsets that internal variable, so there
 is no last-accessed
filehandle, just as if <$foo> had never
 happened.

This also prevents some unrelated handle from becoming the last-accessed
 handle if $foo

Perl version 5.22.0 documentation - perl5160delta

Page 30http://perldoc.perl.org

falls out of scope and the same internal SV gets used for
 another handle [perl #97988].

A regression in 5.14 caused these statements not to set that internal
 variable:

 my $fh = *STDOUT;
 tell $fh;
 eof $fh;
 seek $fh, 0,0;
 tell *$fh;
 eof *$fh;
 seek *$fh, 0,0;
 readline *$fh;

This is now fixed, but tell *{ *$fh } still has the problem, and it
 is not clear how to fix it
[perl #106536].

Filetests and stat
The term "filetests" refers to the operators that consist of a hyphen
 followed by a single letter: -r, -x,
-M, etc. The term "stacked"
 when applied to filetests means followed by another filetest operator

sharing the same operand, as in -r -x -w $fooo.

stat produces more consistent warnings. It no longer warns for "_"
 [perl #71002] and no
longer skips the warning at times for other unopened
 handles. It no longer warns about an
unopened handle when the operating
 system's fstat function fails.

stat would sometimes return negative numbers for large inode numbers,
 because it was
using the wrong internal C type. [perl #84590]

lstat is documented to fall back to stat (with a warning) when given
 a filehandle. When
passed an IO reference, it was actually doing the
 equivalent of stat _ and ignoring the
handle.

-T _ with no preceding stat used to produce a
 confusing "uninitialized" warning, even
though there
 is no visible uninitialized value to speak of.

-T, -B, -l and -t now work
 when stacked with other filetest operators
 [perl #77388].

In 5.14.0, filetest ops (-r, -x, etc.) started calling FETCH on a
 tied argument belonging to the
previous argument to a list operator, if
 called with a bareword argument or no argument at all.
This has been
 fixed, so push @foo, $tied, -r no longer calls FETCH on $tied.

In Perl 5.6, -l followed by anything other than a bareword would treat
 its argument as a file
name. That was changed in 5.8 for glob references
 (*foo), but not for globs themselves (
*foo). -l started
 returning undef for glob references without setting the last
 stat buffer that
the "_" handle uses, but only if warnings
 were turned on. With warnings off, it was the same as
5.6.
 In other words, it was simply buggy and inconsistent. Now the 5.6
 behavior has been
restored.

-l followed by a bareword no longer "eats" the previous argument to
 the list operator in
whose argument list it resides. Hence, print "bar", -l foo now actually prints "bar",
because -l
 on longer eats it.

Perl keeps several internal variables to keep track of the last stat
 buffer, from which
file(handle) it originated, what type it was, and
 whether the last stat succeeded.

There were various cases where these could get out of synch, resulting in
 inconsistent or
erratic behavior in edge cases (every mention of -T
 applies to -B as well):

-T HANDLE, even though it does a stat, was not resetting the last
 stat type, so an
lstat _ following it would merrily return the wrong
 results. Also, it was not setting the
success status.

Perl version 5.22.0 documentation - perl5160delta

Page 31http://perldoc.perl.org

Freeing the handle last used by stat or a filetest could result in -T _ using an
unrelated handle.

stat with an IO reference would not reset the stat type or record the
 filehandle for -T
 _ to use.

Fatal warnings could cause the stat buffer not to be reset
 for a filetest operator on an
unopened filehandle or -l on any handle.
 Fatal warnings also stopped -T from setting
$!.

When the last stat was on an unreadable file, -T _ is supposed to
 return undef,
leaving the last stat buffer unchanged. But it was
 setting the stat type, causing lstat
_ to stop working.

-T FILENAME was not resetting the internal stat buffers for
 unreadable files.

These have all been fixed.

Formats
Several edge cases have been fixed with formats and formline;
 in particular, where the
format itself is potentially variable (such as
 with ties and overloading), and where the format
and data differ in their
 encoding. In both these cases, it used to possible for the output to be

corrupted [perl #91032].

formline no longer converts its argument into a string in-place. So
 passing a reference to
formline no longer destroys the reference
 [perl #79532].

Assignment to $^A (the format output accumulator) now recalculates
 the number of lines
output.

given and when
given was not scoping its implicit $_ properly, resulting in memory
 leaks or "Variable is not
available" warnings [perl #94682].

given was not calling set-magic on the implicit lexical $_ that it
 uses. This meant, for
example, that pos would be remembered from one
 execution of the same given block to the
next, even if the input were a
 different variable [perl #84526].

when blocks are now capable of returning variables declared inside the
 enclosing given
block [perl #93548].

The glob operator
On OSes other than VMS, Perl's glob operator (and the <...> form)
 use File::Glob
underneath. File::Glob splits the pattern into words,
 before feeding each word to its bsd_glob
function.

There were several inconsistencies in the way the split was done. Now
 quotation marks (' and
") are always treated as shell-style word delimiters
 (that allow whitespace as part of a word)
and backslashes are always
 preserved, unless they exist to escape quotation marks. Before,
those
 would only sometimes be the case, depending on whether the pattern
 contained
whitespace. Also, escaped whitespace at the end of the pattern
 is no longer stripped [perl
#40470].

CORE::glob now works as a way to call the default globbing function. It
 used to respect
overrides, despite the CORE:: prefix.

Under miniperl (used to configure modules when perl itself is built), glob now clears %ENV
before calling csh, since the latter croaks on some
 systems if it does not like the contents of
the LS_COLORS environment
 variable [perl #98662].

Perl version 5.22.0 documentation - perl5160delta

Page 32http://perldoc.perl.org

Lvalue subroutines
Explicit return now returns the actual argument passed to return, instead
 of copying it [perl
#72724, #72706].

Lvalue subroutines used to enforce lvalue syntax (i.e., whatever can go on
 the left-hand side
of =) for the last statement and the arguments to
 return. Since lvalue subroutines are not
always called in lvalue context,
 this restriction has been lifted.

Lvalue subroutines are less restrictive about what values can be returned.
 It used to croak on
values returned by shift and delete and from
 other subroutines, but no longer does so
[perl #71172].

Empty lvalue subroutines (sub :lvalue {}) used to return @_ in list
 context. All subroutines
used to do this, but regular subs were fixed in
 Perl 5.8.2. Now lvalue subroutines have been
likewise fixed.

Autovivification now works on values returned from lvalue subroutines
 [perl #7946], as does
returning keys in lvalue context.

Lvalue subroutines used to copy their return values in rvalue context. Not
 only was this a
waste of CPU cycles, but it also caused bugs. A ($)
 prototype would cause an lvalue sub to
copy its return value [perl #51408],
 and while(lvalue_sub() =~ m/.../g) { ... }
would loop endlessly
 [perl #78680].

When called in potential lvalue context
 (e.g., subroutine arguments or a list
 passed to for),
lvalue subroutines used to copy
 any read-only value that was returned. E.g., sub :lvalue
{ $] }
 would not return $], but a copy of it.

When called in potential lvalue context, an lvalue subroutine returning
 arrays or hashes used
to bind the arrays or hashes to scalar variables,
 resulting in bugs. This was fixed in 5.14.0 if an
array were the first
 thing returned from the subroutine (but not for $scalar, @array or

hashes being returned). Now a more general fix has been applied
 [perl #23790].

Method calls whose arguments were all surrounded with my() or our()
 (as in
$object->method(my($a,$b))) used to force lvalue context on
 the subroutine. This would
prevent lvalue methods from returning certain
 values.

Lvalue sub calls that are not determined to be such at compile time
 (&$name or &{"name"})
are no longer exempt from strict refs if they
 occur in the last statement of an lvalue subroutine
[perl #102486].

Sub calls whose subs are not visible at compile time, if
 they occurred in the last statement of
an lvalue subroutine,
 would reject non-lvalue subroutines and die with "Can't modify
non-lvalue
 subroutine call" [perl #102486].

Non-lvalue sub calls whose subs are visible at compile time exhibited
 the opposite bug. If the
call occurred in the last statement of an lvalue
 subroutine, there would be no error when the
lvalue sub was called in
 lvalue context. Perl would blindly assign to the temporary value
returned
 by the non-lvalue subroutine.

AUTOLOAD routines used to take precedence over the actual sub being
 called (i.e., when
autoloading wasn't needed), for sub calls in lvalue or
 potential lvalue context, if the subroutine
was not visible at compile
 time.

Applying the :lvalue attribute to an XSUB or to an aliased subroutine
 stub with sub foo
:lvalue; syntax stopped working in Perl 5.12.
 This has been fixed.

Applying the :lvalue attribute to subroutine that is already defined does
 not work properly, as
the attribute changes the way the sub is compiled.
 Hence, Perl 5.12 began warning when an
attempt is made to apply the
 attribute to an already defined sub. In such cases, the attribute is

discarded.

Perl version 5.22.0 documentation - perl5160delta

Page 33http://perldoc.perl.org

But the change in 5.12 missed the case where custom attributes are also
 present: that case
still silently and ineffectively applied the attribute.
 That omission has now been corrected. sub
 foo :lvalue :Whatever (when foo is already defined) now warns about the :lvalue
attribute, and does
 not apply it.

A bug affecting lvalue context propagation through nested lvalue subroutine
 calls has been
fixed. Previously, returning a value in nested rvalue
 context would be treated as lvalue context
by the inner subroutine call,
 resulting in some values (such as read-only values) being
rejected.

Overloading
Arithmetic assignment ($left += $right) involving overloaded objects
 that rely on the
'nomethod' override no longer segfault when the left
 operand is not overloaded.

Errors that occur when methods cannot be found during overloading now
 mention the correct
package name, as they did in 5.8.x, instead of
 erroneously mentioning the "overload"
package, as they have since 5.10.0.

Undefining %overload:: no longer causes a crash.

Prototypes of built-in keywords
The prototype function no longer dies for the __FILE__, __LINE__
 and __PACKAGE__
directives. It now returns an empty-string prototype
 for them, because they are syntactically
indistinguishable from nullary
 functions like time.

prototype now returns undef for all overridable infix operators,
 such as eq, which are not
callable in any way resembling functions.
 It used to return incorrect prototypes for some and
die for others
 [perl #94984].

The prototypes of several built-in functions--getprotobynumber, lock, not and select
--have been corrected, or at least are now closer to
 reality than before.

Regular expressions
/[[:ascii:]]/ and /[[:blank:]]/ now use locale rules under use locale when the
platform supports that. Previously, they used
 the platform's native character set.

m/[[:ascii:]]/i and /\p{ASCII}/i now match identically (when not
 under a differing
locale). This fixes a regression introduced in 5.14
 in which the first expression could match
characters outside of ASCII,
 such as the KELVIN SIGN.

/.*/g would sometimes refuse to match at the end of a string that ends
 with "\n". This has
been fixed [perl #109206].

Starting with 5.12.0, Perl used to get its internal bookkeeping muddled up
 after assigning ${
qr// } to a hash element and locking it with Hash::Util. This could result in double frees,
crashes, or erratic
 behavior.

The new (in 5.14.0) regular expression modifier /a when repeated like /aa forbids the
characters outside the ASCII range that match
 characters inside that range from matching
under /i. This did not
 work under some circumstances, all involving alternation, such as:

 "\N{KELVIN SIGN}" =~ /k|foo/iaa;

succeeded inappropriately. This is now fixed.

5.14.0 introduced some memory leaks in regular expression character
 classes such as
[\w\s], which have now been fixed. (5.14.1)

An edge case in regular expression matching could potentially loop.
 This happened only under
/i in bracketed character classes that have
 characters with multi-character folds, and the

Perl version 5.22.0 documentation - perl5160delta

Page 34http://perldoc.perl.org

target string to match
 against includes the first portion of the fold, followed by another

character that has a multi-character fold that begins with the remaining
 portion of the fold, plus
some more.

 "s\N{U+DF}" =~ /[\x{DF}foo]/i

is one such case. \xDF folds to "ss". (5.14.1)

A few characters in regular expression pattern matches did not
 match correctly in some
circumstances, all involving /i. The
 affected characters are:
 COMBINING GREEK
YPOGEGRAMMENI,
 GREEK CAPITAL LETTER IOTA,
 GREEK CAPITAL LETTER
UPSILON,
 GREEK PROSGEGRAMMENI,
 GREEK SMALL LETTER IOTA WITH DIALYTIKA
AND OXIA,
 GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS,
 GREEK SMALL
LETTER UPSILON WITH DIALYTIKA AND OXIA,
 GREEK SMALL LETTER UPSILON WITH
DIALYTIKA AND TONOS,
 LATIN SMALL LETTER LONG S,
 LATIN SMALL LIGATURE
LONG S T,
 and
 LATIN SMALL LIGATURE ST.

A memory leak regression in regular expression compilation
 under threading has been fixed.

A regression introduced in 5.14.0 has
 been fixed. This involved an inverted
 bracketed
character class in a regular expression that consisted solely
 of a Unicode property. That
property wasn't getting inverted outside the
 Latin1 range.

Three problematic Unicode characters now work better in regex pattern matching under /i.

In the past, three Unicode characters:
 LATIN SMALL LETTER SHARP S,
 GREEK SMALL
LETTER IOTA WITH DIALYTIKA AND TONOS,
 and
 GREEK SMALL LETTER UPSILON
WITH DIALYTIKA AND TONOS,
 along with the sequences that they fold to
 (including "ss" for
LATIN SMALL LETTER SHARP S),
 did not properly match under /i. 5.14.0 fixed some of
these cases,
 but introduced others, including a panic when one of the characters or

sequences was used in the (?(DEFINE) regular expression predicate.
 The known bugs that
were introduced in 5.14 have now been fixed; as well
 as some other edge cases that have
never worked until now. These all
 involve using the characters and sequences outside
bracketed character
 classes under /i. This closes [perl #98546].

There remain known problems when using certain characters with
 multi-character folds inside
bracketed character classes, including such
 constructs as qr/[\N{LATIN SMALL LETTER
SHARP}a-z]/i. These
 remaining bugs are addressed in [perl #89774].

RT #78266: The regex engine has been leaking memory when accessing
 named captures
that weren't matched as part of a regex ever since 5.10
 when they were introduced; e.g., this
would consume over a hundred MB of
 memory:

 for (1..10_000_000) {
 if ("foo" =~ /(foo|(?<capture>bar))?/) {
 my $capture = $+{capture}
 }
 }
 system "ps -o rss $$"'

In 5.14, /[[:lower:]]/i and /[[:upper:]]/i no longer matched the
 opposite case. This
has been fixed [perl #101970].

A regular expression match with an overloaded object on the right-hand side
 would sometimes
stringify the object too many times.

A regression has been fixed that was introduced in 5.14, in /i
 regular expression matching, in
which a match improperly fails if the
 pattern is in UTF-8, the target string is not, and a Latin-1
character
 precedes a character in the string that should match the pattern.
 [perl #101710]

In case-insensitive regular expression pattern matching, no longer on
 UTF-8 encoded strings

Perl version 5.22.0 documentation - perl5160delta

Page 35http://perldoc.perl.org

does the scan for the start of match look only at
 the first possible position. This caused
matches such as "f\x{FB00}" =~ /ff/i to fail.

The regexp optimizer no longer crashes on debugging builds when merging
 fixed-string nodes
with inconvenient contents.

A panic involving the combination of the regular expression modifiers /aa and the \b escape
sequence introduced in 5.14.0 has been
 fixed [perl #95964]. (5.14.2)

The combination of the regular expression modifiers /aa and the \b
 and \B escape
sequences did not work properly on UTF-8 encoded
 strings. All non-ASCII characters under
/aa should be treated as
 non-word characters, but what was happening was that Unicode
rules were
 used to determine wordness/non-wordness for non-ASCII characters. This
 is now
fixed [perl #95968].

(?foo: ...) no longer loses passed in character set.

The trie optimization used to have problems with alternations containing
 an empty (?:),
causing "x" =~ /\A(?>(?:(?:)A|B|C?x))\z/ not to
 match, whereas it should [perl
#111842].

Use of lexical (my) variables in code blocks embedded in regular
 expressions will no longer
result in memory corruption or crashes.

Nevertheless, these code blocks are still experimental, as there are still
 problems with the
wrong variables being closed over (in loops for instance)
 and with abnormal exiting (e.g., die)
causing memory corruption.

The \h, \H, \v and \V regular expression metacharacters used to
 cause a panic error
message when trying to match at the end of the
 string [perl #96354].

The abbreviations for four C1 control characters MW PM, RI, and ST were previously
unrecognized by \N{}, vianame(), and
 string_vianame().

Mentioning a variable named "&" other than $& (i.e., @& or %&) no
 longer stops $& from
working. The same applies to variables named "'"
 and "`" [perl #24237].

Creating a UNIVERSAL::AUTOLOAD sub no longer stops %+, %- and %! from working some
of the time [perl #105024].

Smartmatching
~~ now correctly handles the precedence of Any~~Object, and is not tricked
 by an overloaded
object on the left-hand side.

In Perl 5.14.0, $tainted ~~ @array stopped working properly. Sometimes
 it would
erroneously fail (when $tainted contained a string that occurs
 in the array after the first
element) or erroneously succeed (when undef occurred after the first element) [perl #93590].

The sort operator
sort was not treating sub {} and sub {()} as equivalent when
 such a sub was provided
as the comparison routine. It used to croak on sub {()}.

sort now works once more with custom sort routines that are XSUBs. It
 stopped working in
5.10.0.

sort with a constant for a custom sort routine, although it produces
 unsorted results, no
longer crashes. It started crashing in 5.10.0.

Warnings emitted by sort when a custom comparison routine returns a
 non-numeric value
now contain "in sort" and show the line number of the sort operator, rather than the last line
of the comparison routine. The
 warnings also now occur only if warnings are enabled in the

Perl version 5.22.0 documentation - perl5160delta

Page 36http://perldoc.perl.org

scope where sort occurs. Previously the warnings would occur if enabled in the
 comparison
routine's scope.

sort { $a <=> $b }, which is optimized internally, now produces
 "uninitialized" warnings
for NaNs (not-a-number values), since <=>
 returns undef for those. This brings it in line with
sort { 1; $a <=> $b } and other more complex cases, which are not
 optimized [perl
#94390].

The substr operator
Tied (and otherwise magical) variables are no longer exempt from the
 "Attempt to use
reference as lvalue in substr" warning.

That warning now occurs when the returned lvalue is assigned to, not
 when substr itself is
called. This makes a difference only if the
 return value of substr is referenced and later
assigned to.

Passing a substring of a read-only value or a typeglob to a function
 (potential lvalue context)
no longer causes an immediate "Can't coerce"
 or "Modification of a read-only value" error.
That error occurs only if the passed value is assigned to.

The same thing happens with the "substr outside of string" error. If
 the lvalue is only read
from, not written to, it is now just a warning, as
 with rvalue substr.

substr assignments no longer call FETCH twice if the first argument
 is a tied variable, just
once.

Support for embedded nulls
Some parts of Perl did not work correctly with nulls (chr 0) embedded in
 strings. That meant that, for
instance, $m = "a\0b"; foo->$m would
 call the "a" method, instead of the actual method name
contained in $m.
 These parts of perl have been fixed to support nulls:

Method names

Typeglob names (including filehandle and subroutine names)

Package names, including the return value of ref()

Typeglob elements (*foo{"THING\0stuff"})

Signal names

Various warnings and error messages that mention variable names or values,
 methods, etc.

One side effect of these changes is that blessing into "\0" no longer
 causes ref() to return false.

Threading bugs
Typeglobs returned from threads are no longer cloned if the parent thread
 already has a glob
with the same name. This means that returned
 subroutines will now assign to the right
package variables [perl #107366].

Some cases of threads crashing due to memory allocation during cloning have
 been fixed
[perl #90006].

Thread joining would sometimes emit "Attempt to free unreferenced scalar"
 warnings if
caller had been used from the DB package before thread
 creation [perl #98092].

Locking a subroutine (via lock &sub) is no longer a compile-time error
 for regular subs. For
lvalue subroutines, it no longer tries to return the
 sub as a scalar, resulting in strange side
effects like ref \$_
 returning "CODE" in some instances.

lock &sub is now a run-time error if threads::shared is loaded (a
 no-op otherwise), but that
may be rectified in a future version.

Perl version 5.22.0 documentation - perl5160delta

Page 37http://perldoc.perl.org

Tied variables
Various cases in which FETCH was being ignored or called too many times
 have been fixed:

PerlIO::get_layers [perl #97956]

$tied =~ y/a/b/, chop $tied and chomp $tied when $tied holds a
 reference.

When calling local $_ [perl #105912]

Four-argument select

A tied buffer passed to sysread

$tied .= <>

Three-argument open, the third being a tied file handle
 (as in open $fh, ">&",
$tied)

sort with a reference to a tied glob for the comparison routine.

.. and ... in list context [perl #53554].

${$tied}, @{$tied}, %{$tied} and *{$tied} where the tied
 variable returns a
string (&{} was unaffected)

defined ${ $tied_variable }

Various functions that take a filehandle argument in rvalue context
 (close, readline
, etc.) [perl #97482]

Some cases of dereferencing a complex expression, such as ${ (), $tied } = 1,
used to call FETCH multiple times, but now call
 it once.

$tied->method where $tied returns a package name--even resulting in
 a failure to
call the method, due to memory corruption

Assignments like *$tied = \&{"..."} and *glob = $tied

chdir, chmod, chown, utime, truncate, stat, lstat and
 the filetest ops (-r, -x,
etc.)

caller sets @DB::args to the subroutine arguments when called from
 the DB package. It
used to crash when doing so if @DB::args happened to
 be tied. Now it croaks instead.

Tying an element of %ENV or %^H and then deleting that element would
 result in a call to the
tie object's DELETE method, even though tying the
 element itself is supposed to be equivalent
to tying a scalar (the element
 is, of course, a scalar) [perl #67490].

When Perl autovivifies an element of a tied array or hash (which entails
 calling STORE with a
new reference), it now calls FETCH immediately after
 the STORE, instead of assuming that
FETCH would have returned the same
 reference. This can make it easier to implement tied
objects [perl #35865, #43011].

Four-argument select no longer produces its "Non-string passed as
 bitmask" warning on
tied or tainted variables that are strings.

Localizing a tied scalar that returns a typeglob no longer stops it from
 being tied till the end of
the scope.

Attempting to goto out of a tied handle method used to cause memory
 corruption or crashes.
Now it produces an error message instead
 [perl #8611].

A bug has been fixed that occurs when a tied variable is used as a
 subroutine reference: if the

Perl version 5.22.0 documentation - perl5160delta

Page 38http://perldoc.perl.org

last thing assigned to or returned from the
 variable was a reference or typeglob, the \&$tied
could either crash or
 return the wrong subroutine. The reference case is a regression
introduced
 in Perl 5.10.0. For typeglobs, it has probably never worked till now.

Version objects and vstrings
The bitwise complement operator (and possibly other operators, too) when
 passed a vstring
would leave vstring magic attached to the return value,
 even though the string had changed.
This meant that version->new(~v1.2.3) would create a version looking like "v1.2.3"
 even
though the string passed to version->new was actually
 "\376\375\374". This also caused
B::Deparse to deparse ~v1.2.3
 incorrectly, without the ~ [perl #29070].

Assigning a vstring to a magic (e.g., tied, $!) variable and then
 assigning something else used
to blow away all magic. This meant that
 tied variables would come undone, $! would stop
getting updated on
 failed system calls, $| would stop setting autoflush, and other
 mischief
would take place. This has been fixed.

version->new("version") and printf "%vd", "version" no longer
 crash [perl
#102586].

Version comparisons, such as those that happen implicitly with use
 v5.43, no longer cause
locale settings to change [perl #105784].

Version objects no longer cause memory leaks in boolean context
 [perl #109762].

Warnings, redefinition
Subroutines from the autouse namespace are once more exempt from
 redefinition warnings.
This used to work in 5.005, but was broken in
 5.6 for most subroutines. For subs created via
XS that redefine
 subroutines from the autouse package, this stopped working in 5.10.

New XSUBs now produce redefinition warnings if they overwrite existing
 subs, as they did in
5.8.x. (The autouse logic was reversed in
 5.10-14. Only subroutines from the autouse
namespace would warn
 when clobbered.)

newCONSTSUB used to use compile-time warning hints, instead of
 run-time hints. The
following code should never produce a redefinition
 warning, but it used to, if newCONSTSUB
redefined an existing
 subroutine:

 use warnings;
 BEGIN {
 no warnings;
 some_XS_function_that_calls_new_CONSTSUB();
 }

Redefinition warnings for constant subroutines are on by default (what
 are known as severe
warnings in perldiag). This occurred only
 when it was a glob assignment or declaration of a
Perl subroutine that
 caused the warning. If the creation of XSUBs triggered the warning, it
 was
not a default warning. This has been corrected.

The internal check to see whether a redefinition warning should occur
 used to emit
"uninitialized" warnings in cases like this:

 use warnings "uninitialized";
 use constant {u => undef, v => undef};
 sub foo(){u}
 sub foo(){v}

Warnings, "Uninitialized"
Various functions that take a filehandle argument in rvalue context
 (close, readline, etc.)
used to warn twice for an undefined handle
 [perl #97482].

Perl version 5.22.0 documentation - perl5160delta

Page 39http://perldoc.perl.org

dbmopen now only warns once, rather than three times, if the mode
 argument is undef [perl
#90064].

The += operator does not usually warn when the left-hand side is undef, but it was doing so
for tied variables. This has been fixed
 [perl #44895].

A bug fix in Perl 5.14 introduced a new bug, causing "uninitialized"
 warnings to report the
wrong variable if the operator in question had
 two operands and one was %{...} or @{...}.
This has been fixed
 [perl #103766].

.. and ... in list context now mention the name of the variable in
 "uninitialized" warnings for
string (as opposed to numeric) ranges.

Weak references
Weakening the first argument to an automatically-invoked DESTROY method
 could result in
erroneous "DESTROY created new reference" errors or
 crashes. Now it is an error to weaken
a read-only reference.

Weak references to lexical hashes going out of scope were not going stale
 (becoming
undefined), but continued to point to the hash.

Weak references to lexical variables going out of scope are now broken
 before any magical
methods (e.g., DESTROY on a tie object) are called.
 This prevents such methods from
modifying the variable that will be seen
 the next time the scope is entered.

Creating a weak reference to an @ISA array or accessing the array index
 ($#ISA) could
result in confused internal bookkeeping for elements
 later added to the @ISA array. For
instance, creating a weak
 reference to the element itself could push that weak reference on to
@ISA;
 and elements added after use of $#ISA would be ignored by method lookup
 [perl
#85670].

Other notable fixes
quotemeta now quotes consistently the same non-ASCII characters under use feature
'unicode_strings', regardless of whether the string is
 encoded in UTF-8 or not, hence
fixing the last vestiges (we hope) of the
 notorious "The "Unicode Bug"" in perlunicode. [perl
#77654].

Which of these code points is quoted has changed, based on Unicode's
 recommendations.
See "quotemeta" in perlfunc for details.

study is now a no-op, presumably fixing all outstanding bugs related to
 study causing regex
matches to behave incorrectly!

When one writes open foo || die, which used to work in Perl 4, a
 "Precedence problem"
warning is produced. This warning used erroneously to
 apply to fully-qualified bareword
handle names not followed by ||. This
 has been corrected.

After package aliasing (*foo:: = *bar::), select with 0 or 1 argument
 would sometimes
return a name that could not be used to refer to the
 filehandle, or sometimes it would return
undef even when a filehandle
 was selected. Now it returns a typeglob reference in such
cases.

PerlIO::get_layers no longer ignores some arguments that it thinks are
 numeric, while
treating others as filehandle names. It is now consistent
 for flat scalars (i.e., not references).

Unrecognized switches on #! line

If a switch, such as -x, that cannot occur on the #! line is used
 there, perl dies with "Can't
emulate...".

It used to produce the same message for switches that perl did not
 recognize at all, whether
on the command line or the #! line.

Perl version 5.22.0 documentation - perl5160delta

Page 40http://perldoc.perl.org

Now it produces the "Unrecognized switch" error message [perl #104288].

system now temporarily blocks the SIGCHLD signal handler, to prevent the
 signal handler
from stealing the exit status [perl #105700].

The %n formatting code for printf and sprintf, which causes the number
 of characters to
be assigned to the next argument, now actually
 assigns the number of characters, instead of
the number of bytes.

It also works now with special lvalue functions like substr and with
 nonexistent hash and
array elements [perl #3471, #103492].

Perl skips copying values returned from a subroutine, for the sake of
 speed, if doing so would
make no observable difference. Because of faulty
 logic, this would happen with the
 result of
delete, shift or splice, even if the result was
 referenced elsewhere. It also did so with
tied variables about to be freed
 [perl #91844, #95548].

utf8::decode now refuses to modify read-only scalars [perl #91850].

Freeing $_ inside a grep or map block, a code block embedded in a
 regular expression, or an
@INC filter (a subroutine returned by a
 subroutine in @INC) used to result in double frees or
crashes
 [perl #91880, #92254, #92256].

eval returns undef in scalar context or an empty list in list
 context when there is a run-time
error. When eval was passed a
 string in list context and a syntax error occurred, it used to
return a
 list containing a single undefined element. Now it returns an empty
 list in list context
for all errors [perl #80630].

goto &func no longer crashes, but produces an error message, when
 the unwinding of the
current subroutine's scope fires a destructor that
 undefines the subroutine being "goneto" [perl
#99850].

Perl now holds an extra reference count on the package that code is
 currently compiling in.
This means that the following code no longer
 crashes [perl #101486]:

 package Foo;
 BEGIN {*Foo:: = *Bar::}
 sub foo;

The x repetition operator no longer crashes on 64-bit builds with large
 repeat counts [perl
#94560].

Calling require on an implicit $_ when *CORE::GLOBAL::require has
 been overridden
does not segfault anymore, and $_ is now passed to the
 overriding subroutine [perl #78260].

use and require are no longer affected by the I/O layers active in
 the caller's scope
(enabled by open.pm) [perl #96008].

our $::Ã©; $Ã© (which is invalid) no longer produces the "Compilation
 error at
lib/utf8_heavy.pl..." error message, which it started emitting in
 5.10.0 [perl #99984].

On 64-bit systems, read() now understands large string offsets beyond
 the 32-bit range.

Errors that occur when processing subroutine attributes no longer cause the
 subroutine's op
tree to leak.

Passing the same constant subroutine to both index and formline no
 longer causes one or
the other to fail [perl #89218]. (5.14.1)

List assignment to lexical variables declared with attributes in the same
 statement (my
($x,@y) : blimp = (72,94)) stopped working in Perl 5.8.0.
 It has now been fixed.

Perl version 5.22.0 documentation - perl5160delta

Page 41http://perldoc.perl.org

Perl 5.10.0 introduced some faulty logic that made "U*" in the middle of
 a pack template
equivalent to "U0" if the input string was empty. This has
 been fixed [perl #90160]. (5.14.2)

Destructors on objects were not called during global destruction on objects
 that were not
referenced by any scalars. This could happen if an array
 element were blessed (e.g., bless
\$a[0]) or if a closure referenced a
 blessed variable (bless \my @a; sub foo { @a }).

Now there is an extra pass during global destruction to fire destructors on
 any objects that
might be left after the usual passes that check for
 objects referenced by scalars [perl #36347].

Fixed a case where it was possible that a freed buffer may have been read
 from when parsing
a here document [perl #90128]. (5.14.1)

each(ARRAY) is now wrapped in defined(...), like each(HASH),
 inside a while
condition [perl #90888].

A problem with context propagation when a do block is an argument to return has been
fixed. It used to cause undef to be returned in
 certain cases of a return inside an if block
which itself is followed by
 another return.

Calling index with a tainted constant no longer causes constants in
 subsequently compiled
code to become tainted [perl #64804].

Infinite loops like 1 while 1 used to stop strict 'subs' mode from
 working for the rest
of the block.

For list assignments like ($a,$b) = ($b,$a), Perl has to make a copy of
 the items on the
right-hand side before assignment them to the left. For
 efficiency's sake, it assigns the values
on the right straight to the items
 on the left if no one variable is mentioned on both sides, as in
($a,$b) =
 ($c,$d). The logic for determining when it can cheat was faulty, in that && and
|| on the right-hand side could fool it. So ($a,$b) =
 $some_true_value && ($b,$a)
would end up assigning the value of $b to
 both scalars.

Perl no longer tries to apply lvalue context to the string in ("string", $variable) ||= 1
(which used to be an error). Since the
 left-hand side of ||= is evaluated in scalar context,
that's a scalar
 comma operator, which gives all but the last item void context. There is
 no such
thing as void lvalue context, so it was a mistake for Perl to try
 to force it [perl #96942].

caller no longer leaks memory when called from the DB package if @DB::args was
assigned to after the first call to caller. Carp
 was triggering this bug [perl #97010]. (5.14.2)

close and similar filehandle functions, when called on built-in global
 variables (like $+), used
to die if the variable happened to hold the
 undefined value, instead of producing the usual
"Use of uninitialized
 value" warning.

When autovivified file handles were introduced in Perl 5.6.0, readline
 was inadvertently
made to autovivify when called as readline($foo) (but
 not as <$foo>). It has now been
fixed never to autovivify.

Calling an undefined anonymous subroutine (e.g., what $x holds after undef &{$x =
sub{}}) used to cause a "Not a CODE reference" error, which
 has been corrected to
"Undefined subroutine called" [perl #71154].

Causing @DB::args to be freed between uses of caller no longer
 results in a crash [perl
#93320].

setpgrp($foo) used to be equivalent to ($foo, setpgrp), because setpgrp was
ignoring its argument if there was just one. Now it is
 equivalent to setpgrp($foo,0).

shmread was not setting the scalar flags correctly when reading from
 shared memory,
causing the existing cached numeric representation in the
 scalar to persist [perl #98480].

Perl version 5.22.0 documentation - perl5160delta

Page 42http://perldoc.perl.org

++ and -- now work on copies of globs, instead of dying.

splice() doesn't warn when truncating

You can now limit the size of an array using splice(@a,MAX_LEN) without
 worrying about
warnings.

$$ is no longer tainted. Since this value comes directly from getpid(), it is always safe.

The parser no longer leaks a filehandle if STDIN was closed before parsing
 started [perl
#37033].

die; with a non-reference, non-string, or magical (e.g., tainted)
 value in $@ now properly
propagates that value [perl #111654].

Known Problems
On Solaris, we have two kinds of failure.

If make is Sun's make, we get an error about a badly formed macro
 assignment in the
Makefile. That happens when ./Configure tries to
 make depends. Configure then exits 0, but
further make-ing fails.

If make is gmake, Configure completes, then we get errors related
 to /usr/include/stdbool.h

On Win32, a number of tests hang unless STDERR is redirected. The cause of
 this is still
under investigation.

When building as root with a umask that prevents files from being
 other-readable, t/op/filetest.t
will fail. This is a test bug, not a
 bug in perl's behavior.

Configuring with a recent gcc and link-time-optimization, such as Configure
-Doptimize='-O2 -flto' fails
 because the optimizer optimizes away some of Configure's
tests. A
 workaround is to omit the -flto flag when running Configure, but add
 it back in while
actually building, something like

 sh Configure -Doptimize=-O2
 make OPTIMIZE='-O2 -flto'

The following CPAN modules have test failures with perl 5.16. Patches have
 been submitted
for all of these, so hopefully there will be new releases
 soon:

Date::Pcalc version 6.1

Module::CPANTS::Analyse version 0.85

This fails due to problems in Module::Find 0.10 and File::MMagic
 1.27.

PerlIO::Util version 0.72

Acknowledgements
Perl 5.16.0 represents approximately 12 months of development since Perl
 5.14.0 and contains
approximately 590,000 lines of changes across 2,500
 files from 139 authors.

Perl continues to flourish into its third decade thanks to a vibrant
 community of users and developers.
The following people are known to
 have contributed the improvements that became Perl 5.16.0:

Aaron Crane, Abhijit Menon-Sen, Abigail, Alan Haggai Alavi, Alberto
 SimÃµes, Alexandr Ciornii,
Andreas KÃ¶nig, Andy Dougherty, Aristotle
 Pagaltzis, Bo Johansson, Bo Lindbergh, Breno G. de
Oliveira, brian d
 foy, Brian Fraser, Brian Greenfield, Carl Hayter, Chas. Owens,
 Chia-liang Kao, Chip
Salzenberg, Chris 'BinGOs' Williams, Christian
 Hansen, Christopher J. Madsen, chromatic, Claes
Jacobsson, Claudio
 Ramirez, Craig A. Berry, Damian Conway, Daniel Kahn Gillmor, Darin
 McBride,
Dave Rolsky, David Cantrell, David Golden, David Leadbeater,
 David Mitchell, Dee Newcum, Dennis
Kaarsemaker, Dominic Hargreaves,
 Douglas Christopher Wilson, Eric Brine, Father Chrysostomos,

Perl version 5.22.0 documentation - perl5160delta

Page 43http://perldoc.perl.org

Florian
 Ragwitz, Frederic Briere, George Greer, Gerard Goossen, Gisle Aas,
 H.Merijn Brand, Hojung
Youn, Ian Goodacre, James E Keenan, Jan Dubois,
 Jerry D. Hedden, Jesse Luehrs, Jesse Vincent,
Jilles Tjoelker, Jim
 Cromie, Jim Meyering, Joel Berger, Johan Vromans, Johannes Plunien, John

Hawkinson, John P. Linderman, John Peacock, Joshua ben Jore, Juerd
 Waalboer, Karl Williamson,
Karthik Rajagopalan, Keith Thompson, Kevin J.
 Woolley, Kevin Ryde, Laurent Dami, Leo Lapworth,
Leon Brocard, Leon
 Timmermans, Louis Strous, Lukas Mai, Marc Green, Marcel GrÃ¼nauer, Mark
 A.
Stratman, Mark Dootson, Mark Jason Dominus, Martin Hasch, Matthew
 Horsfall, Max Maischein,
Michael G Schwern, Michael Witten, Mike
 Sheldrake, Moritz Lenz, Nicholas Clark, Niko Tyni, Nuno
Carvalho, Pau
 Amma, Paul Evans, Paul Green, Paul Johnson, Perlover, Peter John Acklam,
 Peter
Martini, Peter Scott, Phil Monsen, Pino Toscano, Rafael
 Garcia-Suarez, Rainer Tammer, Reini Urban,
Ricardo Signes, Robin Barker,
 Rodolfo Carvalho, Salvador FandiÃ±o, Sam Kimbrel, Samuel Thibault,
Shawn
 M Moore, Shigeya Suzuki, Shirakata Kentaro, Shlomi Fish, Sisyphus,
 Slaven Rezic, Spiros
Denaxas, Steffen MÃ¼ller, Steffen Schwigon, Stephen
 Bennett, Stephen Oberholtzer, Stevan Little,
Steve Hay, Steve Peters,
 Thomas Sibley, Thorsten Glaser, Timothe Litt, Todd Rinaldo, Tom

Christiansen, Tom Hukins, Tony Cook, Vadim Konovalov, Vincent Pit,
 Vladimir Timofeev, Walt
Mankowski, Yves Orton, Zefram, ZsbÃ¡n Ambrus,
 Ã†var ArnfjÃ¶rÃ° Bjarmason.

The list above is almost certainly incomplete as it is automatically
 generated from version control
history. In particular, it does not
 include the names of the (very much appreciated) contributors who

reported issues to the Perl bug tracker.

Many of the changes included in this version originated in the CPAN
 modules included in Perl's core.
We're grateful to the entire CPAN
 community for helping Perl to flourish.

For a more complete list of all of Perl's historical contributors,
 please see the AUTHORS file in the
Perl source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles
 recently posted to the
comp.lang.perl.misc newsgroup and the perl
 bug database at http://rt.perl.org/perlbug/. There may
also be
 information at http://www.perl.org/, the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug
 program included with your
release. Be sure to trim your bug down
 to a tiny but sufficient test case. Your bug report, along with
the
 output of perl -V, will be sent off to perlbug@perl.org to be
 analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it
 inappropriate to send to a publicly
archived mailing list, then please
 send it to perl5-security-report@perl.org. This points to a closed

subscription unarchived mailing list, which includes all core
 committers, who will be able to help
assess the impact of issues, figure
 out a resolution, and help co-ordinate the release of patches to

mitigate or fix the problem across all platforms on which Perl is
 supported. Please use this address
only for security issues in the Perl
 core, not for modules independently distributed on CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details
 on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

