
Perl version 5.22.0 documentation - TAP::Harness

Page 1http://perldoc.perl.org

NAME
TAP::Harness - Run test scripts with statistics

VERSION
Version 3.35

DESCRIPTION
This is a simple test harness which allows tests to be run and results
 automatically aggregated and
output to STDOUT.

SYNOPSIS
 use TAP::Harness;
 my $harness = TAP::Harness->new(\%args);
 $harness->runtests(@tests);

METHODS
Class Methods
new

 my %args = (
 verbosity => 1,
 lib => ['lib', 'blib/lib', 'blib/arch'],
)
 my $harness = TAP::Harness->new(\%args);

The constructor returns a new TAP::Harness object. It accepts an
 optional hashref whose allowed
keys are:

* verbosity

Set the verbosity level:

 1 verbose Print individual test results to STDOUT.
 0 normal
 -1 quiet Suppress some test output (mostly failures
 while tests are running).
 -2 really quiet Suppress everything but the tests summary.
 -3 silent Suppress everything.

* timer

Append run time for each test to output. Uses Time::HiRes if
 available.

* failures

Show test failures (this is a no-op if verbose is selected).

* comments

Show test comments (this is a no-op if verbose is selected).

* show_count

Update the running test count during testing.

* normalize

Set to a true value to normalize the TAP that is emitted in verbose modes.

* lib

Accepts a scalar value or array ref of scalar values indicating which
 paths to allowed libraries

Perl version 5.22.0 documentation - TAP::Harness

Page 2http://perldoc.perl.org

should be included if Perl tests are
 executed. Naturally, this only makes sense in the context
of tests
 written in Perl.

* switches

Accepts a scalar value or array ref of scalar values indicating which
 switches should be
included if Perl tests are executed. Naturally, this
 only makes sense in the context of tests
written in Perl.

* test_args

A reference to an @INC style array of arguments to be passed to each
 test program.

 test_args => ['foo', 'bar'],

if you want to pass different arguments to each test then you should
 pass a hash of arrays,
keyed by the alias for each test:

 test_args => {
 my_test => ['foo', 'bar'],
 other_test => ['baz'],
 }

* color

Attempt to produce color output.

* exec

Typically, Perl tests are run through this. However, anything which
 spits out TAP is fine. You
can use this argument to specify the name of
 the program (and optional switches) to run your
tests with:

 exec => ['/usr/bin/ruby', '-w']

You can also pass a subroutine reference in order to determine and
 return the proper program
to run based on a given test script. The
 subroutine reference should expect the TAP::Harness
object itself as the
 first argument, and the file name as the second argument. It should
 return
an array reference containing the command to be run and including
 the test file name. It can
also simply return undef, in which case
 TAP::Harness will fall back on executing the test
script in Perl:

 exec => sub {
 my ($harness, $test_file) = @_;

 # Let Perl tests run.
 return undef if $test_file =~ /[.]t$/;
 return [qw(/usr/bin/ruby -w), $test_file]
 if $test_file =~ /[.]rb$/;
 }

If the subroutine returns a scalar with a newline or a filehandle, it
 will be interpreted as raw
TAP or as a TAP stream, respectively.

* merge

If merge is true the harness will create parsers that merge STDOUT
 and STDERR together
for any processes they start.

* sources

NEW to 3.18.

If set, sources must be a hashref containing the names of the TAP::Parser::SourceHandlers
to load and/or configure. The values are a
 hash of configuration that will be accessible to the

Perl version 5.22.0 documentation - TAP::Harness

Page 3http://perldoc.perl.org

source handlers via "config_for" in TAP::Parser::Source.

For example:

 sources => {
 Perl => { exec => '/path/to/custom/perl' },
 File => { extensions => ['.tap', '.txt'] },
 MyCustom => { some => 'config' },
 }

The sources parameter affects how source, tap and exec parameters
 are handled.

For more details, see the sources parameter in "new" in TAP::Parser, TAP::Parser::Source,
and TAP::Parser::IteratorFactory.

* aggregator_class

The name of the class to use to aggregate test results. The default is TAP::Parser::Aggregator
.

* version

NEW to 3.22.

Assume this TAP version for TAP::Parser instead of default TAP
 version 12.

* formatter_class

The name of the class to use to format output. The default is TAP::Formatter::Console, or
TAP::Formatter::File if the output
 isn't a TTY.

* multiplexer_class

The name of the class to use to multiplex tests during parallel testing.
 The default is
TAP::Parser::Multiplexer.

* parser_class

The name of the class to use to parse TAP. The default is TAP::Parser.

* scheduler_class

The name of the class to use to schedule test execution. The default is
TAP::Parser::Scheduler.

* formatter

If set formatter must be an object that is capable of formatting the
 TAP output. See
TAP::Formatter::Console for an example.

* errors

If parse errors are found in the TAP output, a note of this will be
 made in the summary report.
To see all of the parse errors, set this
 argument to true:

 errors => 1

* directives

If set to a true value, only test results with directives will be
 displayed. This overrides other
settings such as verbose or failures.

* ignore_exit

If set to a true value instruct TAP::Parser to ignore exit and wait
 status from test scripts.

* jobs

The maximum number of parallel tests to run at any time. Which tests
 can be run in parallel is
controlled by rules. The default is to
 run only one test at a time.

Perl version 5.22.0 documentation - TAP::Harness

Page 4http://perldoc.perl.org

* rules

A reference to a hash of rules that control which tests may be executed in
 parallel. If no rules
are declared and CPAN::Meta::YAML is available, TAP::Harness attempts to load rules from
a YAML file specified by the rulesfile parameter. If no rules file exists, the default is for all

tests to be eligible to be run in parallel.

Here some simple examples. For the full details of the data structure
 and the related glob-style
pattern matching, see "Rules data structure" in TAP::Parser::Scheduler.

 # Run all tests in sequence, except those starting with "p"
 $harness->rules({
 par => 't/p*.t'
 });

 # Equivalent YAML file

 par: t/p*.t

 # Run all tests in parallel, except those starting with "p"
 $harness->rules({
 seq => [
 { seq => 't/p*.t' },
 { par => '**' },
],
 });

 # Equivalent YAML file

 seq:
 - seq: t/p*.t
 - par: **

 # Run some startup tests in sequence, then some parallel tests
than some
 # teardown tests in sequence.
 $harness->rules({
 seq => [
 { seq => 't/startup/*.t' },
 { par => ['t/a/*.t','t/b/*.t','t/c/*.t'], }
 { seq => 't/shutdown/*.t' },
],

 });

 # Equivalent YAML file

 seq:
 - seq: t/startup/*.t
 - par:
 - t/a/*.t
 - t/b/*.t
 - t/c/*.t
 - seq: t/shutdown/*.t

This is an experimental feature and the interface may change.

* rulesfiles

Perl version 5.22.0 documentation - TAP::Harness

Page 5http://perldoc.perl.org

This specifies where to find a YAML file of test scheduling rules. If not
 provided, it looks for a
default file to use. It first checks for a file given
 in the HARNESS_RULESFILE environment
variable, then it checks for testrules.yml and then t/testrules.yml.

* stdout

A filehandle for catching standard output.

* trap

Attempt to print summary information if run is interrupted by
 SIGINT (Ctrl-C).

Any keys for which the value is undef will be ignored.

Instance Methods
runtests

 $harness->runtests(@tests);

Accepts an array of @tests to be run. This should generally be the
 names of test files, but this is not
required. Each element in @tests
 will be passed to TAP::Parser::new() as a source. See
TAP::Parser for more information.

It is possible to provide aliases that will be displayed in place of the
 test name by supplying the test as
a reference to an array containing [$test, $alias]:

 $harness->runtests(['t/foo.t', 'Foo Once'],
 ['t/foo.t', 'Foo Twice']);

Normally it is an error to attempt to run the same test twice. Aliases
 allow you to overcome this
limitation by giving each run of the test a
 unique name.

Tests will be run in the order found.

If the environment variable PERL_TEST_HARNESS_DUMP_TAP is defined it
 should name a directory
into which a copy of the raw TAP for each test
 will be written. TAP is written to files named for each
test.
 Subdirectories will be created as needed.

Returns a TAP::Parser::Aggregator containing the test results.

summary

 $harness->summary($aggregator);

Output the summary for a TAP::Parser::Aggregator.

aggregate_tests

 $harness->aggregate_tests($aggregate, @tests);

Run the named tests and display a summary of result. Tests will be run
 in the order found.

Test results will be added to the supplied TAP::Parser::Aggregator. aggregate_tests may be
called multiple times to run several sets of
 tests. Multiple Test::Harness instances may be used to
pass results
 to a single aggregator so that different parts of a complex test suite
 may be run using
different TAP::Harness settings. This is useful, for
 example, in the case where some tests should
run in parallel but others
 are unsuitable for parallel execution.

 my $formatter = TAP::Formatter::Console->new;
 my $ser_harness = TAP::Harness->new({ formatter => $formatter });
 my $par_harness = TAP::Harness->new(
 { formatter => $formatter,

Perl version 5.22.0 documentation - TAP::Harness

Page 6http://perldoc.perl.org

 jobs => 9
 }
);
 my $aggregator = TAP::Parser::Aggregator->new;

 $aggregator->start();
 $ser_harness->aggregate_tests($aggregator, @ser_tests);
 $par_harness->aggregate_tests($aggregator, @par_tests);
 $aggregator->stop();
 $formatter->summary($aggregator);

Note that for simpler testing requirements it will often be possible to
 replace the above code with a
single call to runtests.

Each element of the @tests array is either:

* the source name of a test to run

* a reference to a [source name, display name] array

In the case of a perl test suite, typically source names are simply the file
 names of the test scripts to
run.

When you supply a separate display name it becomes possible to run a
 test more than once; the
display name is effectively the alias by which
 the test is known inside the harness. The harness
doesn't care if it
 runs the same test more than once when each invocation uses a
 different name.

make_scheduler

Called by the harness when it needs to create a TAP::Parser::Scheduler. Override in a subclass to
provide an
 alternative scheduler. make_scheduler is passed the list of tests
 that was passed to
aggregate_tests.

jobs

Gets or sets the number of concurrent test runs the harness is
 handling. By default, this value is 1 --
for parallel testing, this
 should be set higher.

make_parser

Make a new parser and display formatter session. Typically used and/or
 overridden in subclasses.

 my ($parser, $session) = $harness->make_parser;

finish_parser

Terminate use of a parser. Typically used and/or overridden in
 subclasses. The parser isn't destroyed
as a result of this.

CONFIGURING
TAP::Harness is designed to be easy to configure.

Plugins
TAP::Parser plugins let you change the way TAP is input to and output
 from the parser.

TAP::Parser::SourceHandlers handle TAP input. You can configure them
 and load custom handlers
using the sources parameter to new.

TAP::Formatters handle TAP output. You can load custom formatters by
 using the
formatter_class parameter to new. To configure a formatter,
 you currently need to instantiate it
outside of TAP::Harness and pass it in
 with the formatter parameter to new. This may be
addressed by adding
 a formatters parameter to new in the future.

Perl version 5.22.0 documentation - TAP::Harness

Page 7http://perldoc.perl.org

Module::Build
Module::Build version 0.30 supports TAP::Harness.

To load TAP::Harness plugins, you'll need to use the tap_harness_args
 parameter to new,
typically from your Build.PL. For example:

 Module::Build->new(
 module_name => 'MyApp',
 test_file_exts => [qw(.t .tap .txt)],
 use_tap_harness => 1,
 tap_harness_args => {
 sources => {
 MyCustom => {},
 File => {
 extensions => ['.tap', '.txt'],
 },
 },
 formatter_class => 'TAP::Formatter::HTML',
 },
 build_requires => {
 'Module::Build' => '0.30',
 'TAP::Harness' => '3.18',
 },
)->create_build_script;

See new

ExtUtils::MakeMaker
ExtUtils::MakeMaker does not support TAP::Harness out-of-the-box.

prove
prove supports TAP::Harness plugins, and has a plugin system of its
 own. See "FORMATTERS" in
prove, "SOURCE HANDLERS" in prove and App::Prove
 for more details.

WRITING PLUGINS
If you can't configure TAP::Harness to do what you want, and you can't find
 an existing plugin,
consider writing one.

The two primary use cases supported by TAP::Harness for plugins are input
 and output:

Customize how TAP gets into the parser

To do this, you can either extend an existing TAP::Parser::SourceHandler,
 or write your own. It's a
pretty simple API, and they can be loaded and
 configured using the sources parameter to new.

Customize how TAP results are output from the parser

To do this, you can either extend an existing TAP::Formatter, or write your
 own. Writing formatters
are a bit more involved than writing a SourceHandler, as you'll need to understand the
TAP::Parser API. A
 good place to start is by understanding how aggregate_tests works.

Custom formatters can be loaded configured using the formatter_class
 parameter to new.

SUBCLASSING
If you can't configure TAP::Harness to do exactly what you want, and writing
 a plugin isn't an
option, consider extending it. It is designed to be (mostly)
 easy to subclass, though the cases when
sub-classing is necessary should be few
 and far between.

Perl version 5.22.0 documentation - TAP::Harness

Page 8http://perldoc.perl.org

Methods
The following methods are ones you may wish to override if you want to
 subclass TAP::Harness.

new

runtests

summary

REPLACING
If you like the prove utility and TAP::Parser but you want your
 own harness, all you need to do is
write one and provide new and runtests methods. Then you can use the prove utility like so:

 prove --harness My::Test::Harness

Note that while prove accepts a list of tests (or things to be
 tested), new has a fairly rich set of
arguments. You'll probably want
 to read over this code carefully to see how all of them are being
used.

SEE ALSO
Test::Harness

