
Perl version 5.24.0 documentation - Memoize::Expire

Page 1http://perldoc.perl.org

NAME
Memoize::Expire - Plug-in module for automatic expiration of memoized values

SYNOPSIS
 use Memoize;
 use Memoize::Expire;
 tie my %cache => 'Memoize::Expire',
	 	 LIFETIME => $lifetime, # In seconds
		 NUM_USES => $n_uses;

 memoize 'function', SCALAR_CACHE => [HASH => \%cache];

DESCRIPTION
Memoize::Expire is a plug-in module for Memoize. It allows the cached
 values for memoized functions
to expire automatically. This manual
 assumes you are already familiar with the Memoize module. If
not, you
 should study that manual carefully first, paying particular attention
 to the HASH feature.

Memoize::Expire is a layer of software that you can insert in between
 Memoize itself and whatever
underlying package implements the cache.
 The layer presents a hash variable whose values expire
whenever they
 get too old, have been used too often, or both. You tell Memoize to
 use this forgetful
hash as its cache instead of the default, which is
 an ordinary hash.

To specify a real-time timeout, supply the LIFETIME option with a
 numeric value. Cached data will
expire after this many seconds, and
 will be looked up afresh when it expires. When a data item is
looked
 up afresh, its lifetime is reset.

If you specify NUM_USES with an argument of n, then each cached
 data item will be discarded and
looked up afresh after the nth time
 you access it. When a data item is looked up afresh, its number of

uses is reset.

If you specify both arguments, data will be discarded from the cache
 when either expiration condition
holds.

Memoize::Expire uses a real hash internally to store the cached data.
 You can use the HASH option to
Memoize::Expire to supply a tied
 hash in place of the ordinary hash that Memoize::Expire will
normally
 use. You can use this feature to add Memoize::Expire as a layer in
 between a persistent disk
hash and Memoize. If you do this, you get a
 persistent disk cache whose entries expire automatically.
For
 example:

 # Memoize
 # |
 # Memoize::Expire enforces data expiration policy
 # |
 # DB_File implements persistence of data in a disk file
 # |
 # Disk file

 use Memoize;
 use Memoize::Expire;
 use DB_File;

 # Set up persistence
 tie my %disk_cache => 'DB_File', $filename, O_CREAT|O_RDWR, 0666];

 # Set up expiration policy, supplying persistent hash as a target
 tie my %cache => 'Memoize::Expire',

Perl version 5.24.0 documentation - Memoize::Expire

Page 2http://perldoc.perl.org

	 	 LIFETIME => $lifetime, # In seconds
		 NUM_USES => $n_uses,
 HASH => \%disk_cache;

 # Set up memoization, supplying expiring persistent hash for cache
 memoize 'function', SCALAR_CACHE => [HASH => \%cache];

INTERFACE
There is nothing special about Memoize::Expire. It is just an
 example. If you don't like the policy that it
implements, you are
 free to write your own expiration policy module that implements
 whatever policy
you desire. Here is how to do that. Let us suppose
 that your module will be named MyExpirePolicy.

Short summary: You need to create a package that defines four methods:

TIEHASH

Construct and return cache object.

EXISTS

Given a function argument, is the corresponding function value in the
 cache, and if so, is it
fresh enough to use?

FETCH

Given a function argument, look up the corresponding function value in
 the cache and return
it.

STORE

Given a function argument and the corresponding function value, store
 them into the cache.

CLEAR

(Optional.) Flush the cache completely.

The user who wants the memoization cache to be expired according to
 your policy will say so by
writing

 tie my %cache => 'MyExpirePolicy', args...;
 memoize 'function', SCALAR_CACHE => [HASH => \%cache];

This will invoke MyExpirePolicy->TIEHASH(args).
 MyExpirePolicy::TIEHASH should do
whatever is appropriate to set up
 the cache, and it should return the cache object to the caller.

For example, MyExpirePolicy::TIEHASH might create an object that
 contains a regular Perl hash
(which it will to store the cached
 values) and some extra information about the arguments and how
old the
 data is and things like that. Let us call this object `C'.

When Memoize needs to check to see if an entry is in the cache
 already, it will invoke
C->EXISTS(key). key is the normalized
 function argument. MyExpirePolicy::EXISTS should return
0 if the key
 is not in the cache, or if it has expired, and 1 if an unexpired value
 is in the cache. It
should not return undef, because there is a
 bug in some versions of Perl that will cause a spurious
FETCH if the
 EXISTS method returns undef.

If your EXISTS function returns true, Memoize will try to fetch the
 cached value by invoking
C->FETCH(key). MyExpirePolicy::FETCH should
 return the cached value. Otherwise, Memoize will
call the memoized
 function to compute the appropriate value, and will store it into the
 cache by calling
C->STORE(key, value).

Here is a very brief example of a policy module that expires each
 cache item after ten seconds.

Perl version 5.24.0 documentation - Memoize::Expire

Page 3http://perldoc.perl.org

	 package Memoize::TenSecondExpire;

	 sub TIEHASH {
	 my ($package, %args) = @_;
 my $cache = $args{HASH} || {};
	 bless $cache => $package;
	 }

	 sub EXISTS {
	 my ($cache, $key) = @_;
	 if (exists $cache->{$key} &&
 $cache->{$key}{EXPIRE_TIME} > time) {
	 return 1
	 } else {
	 return 0; # Do NOT return `undef' here.
	 }
	 }

	 sub FETCH {
	 my ($cache, $key) = @_;
	 return $cache->{$key}{VALUE};
	 }

	 sub STORE {
	 my ($cache, $key, $newvalue) = @_;
	 $cache->{$key}{VALUE} = $newvalue;
	 $cache->{$key}{EXPIRE_TIME} = time + 10;
	 }

To use this expiration policy, the user would say

	 use Memoize;
 tie my %cache10sec => 'Memoize::TenSecondExpire';
	 memoize 'function', SCALAR_CACHE => [HASH => \%cache10sec];

Memoize would then call function whenever a cached value was
 entirely absent or was older than
ten seconds.

You should always support a HASH argument to TIEHASH that ties
 the underlying cache so that the
user can specify that the cache is
 also persistent or that it has some other interesting semantics. The

example above demonstrates how to do this, as does Memoize::Expire.

Another sample module, Memoize::Saves, is available in a separate
 distribution on CPAN. It
implements a policy that allows you to
 specify that certain function values would always be looked up
afresh.
 See the documentation for details.

ALTERNATIVES
Brent Powers has a Memoize::ExpireLRU module that was designed to
 work with Memoize and
provides expiration of least-recently-used data.
 The cache is held at a fixed number of entries, and
when new data
 comes in, the least-recently used data is expired. See
http://search.cpan.org/search?mode=module&query=ExpireLRU.

Joshua Chamas's Tie::Cache module may be useful as an expiration
 manager. (If you try this, let me
know how it works out.)

If you develop any useful expiration managers that you think should be
 distributed with Memoize,

Perl version 5.24.0 documentation - Memoize::Expire

Page 4http://perldoc.perl.org

please let me know.

CAVEATS
This module is experimental, and may contain bugs. Please report bugs
 to the address below.

Number-of-uses is stored as a 16-bit unsigned integer, so can't exceed
 65535.

Because of clock granularity, expiration times may occur up to one
 second sooner than you expect.
For example, suppose you store a value
 with a lifetime of ten seconds, and you store it at
12:00:00.998 on a
 certain day. Memoize will look at the clock and see 12:00:00. Then
 9.01 seconds
later, at 12:00:10.008 you try to read it back. Memoize
 will look at the clock and see 12:00:10 and
conclude that the value
 has expired. This will probably not occur if you have Time::HiRes installed.

AUTHOR
Mark-Jason Dominus (mjd-perl-memoize+@plover.com)

Mike Cariaso provided valuable insight into the best way to solve this
 problem.

SEE ALSO
perl(1)

The Memoize man page.

http://www.plover.com/~mjd/perl/Memoize/ (for news and updates)

I maintain a mailing list on which I occasionally announce new
 versions of Memoize. The list is for
announcements only, not
 discussion. To join, send an empty message to

mjd-perl-memoize-request@Plover.com.

