
Perl version 5.24.0 documentation - Pod::Usage

Page 1http://perldoc.perl.org

NAME
Pod::Usage - print a usage message from embedded pod documentation

SYNOPSIS
 use Pod::Usage

 my $message_text = "This text precedes the usage message.";
 my $exit_status = 2; ## The exit status to use
 my $verbose_level = 0; ## The verbose level to use
 my $filehandle = *STDERR; ## The filehandle to write to

 pod2usage($message_text);

 pod2usage($exit_status);

 pod2usage({ -message => $message_text ,
 -exitval => $exit_status ,
 -verbose => $verbose_level,
 -output => $filehandle });

 pod2usage(-msg => $message_text ,
 -exitval => $exit_status ,
 -verbose => $verbose_level,
 -output => $filehandle);

 pod2usage(-verbose => 2,
 -noperldoc => 1);

 pod2usage(-verbose => 2,
 -perlcmd => $path_to_perl,
 -perldoc => $path_to_perldoc,
 -perldocopt => $perldoc_options);

ARGUMENTS
pod2usage should be given either a single argument, or a list of
 arguments corresponding to an
associative array (a "hash"). When a single
 argument is given, it should correspond to exactly one of
the following:

A string containing the text of a message to print before printing
 the usage message

A numeric value corresponding to the desired exit status

A reference to a hash

If more than one argument is given then the entire argument list is
 assumed to be a hash. If a hash is
supplied (either as a reference or
 as a list) it should contain one or more elements with the following

keys:

-message string

-msg string

The text of a message to print immediately prior to printing the
 program's usage message.

-exitval value

The desired exit status to pass to the exit() function.
 This should be an integer, or else the

Perl version 5.24.0 documentation - Pod::Usage

Page 2http://perldoc.perl.org

string "NOEXIT" to
 indicate that control should simply be returned without
 terminating the
invoking process.

-verbose value

The desired level of "verboseness" to use when printing the usage message.
 If the value is 0,
then only the "SYNOPSIS" section of the pod documentation
 is printed. If the value is 1, then
the "SYNOPSIS" section, along with any
 section entitled "OPTIONS", "ARGUMENTS", or
"OPTIONS AND ARGUMENTS" is
 printed. If the corresponding value is 2 or more then the
entire manpage is
 printed, using perldoc if available; otherwise Pod::Text is used for
 the
formatting. For better readability, the all-capital headings are
 downcased, e.g. SYNOPSIS =>
Synopsis.

The special verbosity level 99 requires to also specify the -sections
 parameter; then these
sections are extracted and printed.

-sections spec

There are two ways to specify the selection. Either a string (scalar) representing a selection
regexp for sections to be printed when -verbose
 is set to 99, e.g.

 "NAME|SYNOPSIS|DESCRIPTION|VERSION"

With the above regexp all content following (and including) any of the
 given =head1 headings
will be shown. It is possible to restrict the output to particular subsections only, e.g.:

 "DESCRIPTION/Algorithm"

This will output only the =head2 Algorithm heading and content within
 the =head1
DESCRIPTION section. The regexp binding is stronger than the
 section separator, such that
e.g.:

 "DESCRIPTION|OPTIONS|ENVIORNMENT/Caveats"

will print any =head2 Caveats section (only) within any of the three =head1 sections.

Alternatively, an array reference of section specifications can be used:

 pod2usage(-verbose => 99, -sections => [
 qw(DESCRIPTION DESCRIPTION/Introduction)]);

This will print only the content of =head1 DESCRIPTION and the =head2 Introduction
sections, but no other =head2, and no other =head1 either.

-output handle

A reference to a filehandle, or the pathname of a file to which the
 usage message should be
written. The default is *STDERR unless the
 exit value is less than 2 (in which case the default
is *STDOUT).

-input handle

A reference to a filehandle, or the pathname of a file from which the
 invoking script's pod
documentation should be read. It defaults to the
 file indicated by $0 ($PROGRAM_NAME for
users of English.pm).

If you are calling pod2usage() from a module and want to display
 that module's POD, you can
use this:

 use Pod::Find qw(pod_where);
 pod2usage(-input => pod_where({-inc => 1}, __PACKAGE__));

-pathlist string

A list of directory paths. If the input file does not exist, then it
 will be searched for in the given
directory list (in the order the
 directories appear in the list). It defaults to the list of directories

Perl version 5.24.0 documentation - Pod::Usage

Page 3http://perldoc.perl.org

implied by $ENV{PATH}. The list may be specified either by a reference
 to an array, or by a
string of directory paths which use the same path
 separator as $ENV{PATH} on your system
(e.g., : for Unix, ; for
 MSWin32 and DOS).

-noperldoc

By default, Pod::Usage will call perldoc when -verbose >= 2 is
 specified. This does not work
well e.g. if the script was packed
 with PAR. The -noperldoc option suppresses the external call
to perldoc and uses the simple text formatter (Pod::Text) to output the POD.

-perlcmd

By default, Pod::Usage will call perldoc when -verbose >= 2 is
 specified. In case of special or
unusual Perl installations,
 the -perlcmd option may be used to supply the path to a perl
executable
 which should run perldoc.

-perldoc path-to-perldoc

By default, Pod::Usage will call perldoc when -verbose >= 2 is
 specified. In case perldoc is not
installed where the perl interpreter
 thinks it is (see Config), the -perldoc option may be used to
supply
 the correct path to perldoc.

-perldocopt string

By default, Pod::Usage will call perldoc when -verbose >= 2 is specified.
 The -perldocopt
option may be used to supply options to perldoc. The
 string may contain several,
space-separated options.

Formatting base class
The default text formatter is Pod::Text. The base class for Pod::Usage can
 be defined by pre-setting
$Pod::Usage::Formatter before
 loading Pod::Usage, e.g.:

 BEGIN { $Pod::Usage::Formatter = 'Pod::Text::Termcap'; }
 use Pod::Usage qw(pod2usage);

Pod::Usage uses Pod::Simple's _handle_element_end() method to implement
 the section selection,
and in case of verbosity < 2 it down-cases the
 all-caps headings to first capital letter and rest
lowercase, and adds
 a colon/newline at the end of the headings, for better readability. Same for

verbosity = 99.

Pass-through options
The following options are passed through to the underlying text formatter.
 See the manual pages of
these modules for more information.

 alt code indent loose margin quotes sentence stderr utf8 width

DESCRIPTION
pod2usage will print a usage message for the invoking script (using
 its embedded pod
documentation) and then exit the script with the
 desired exit status. The usage message printed may
have any one of three
 levels of "verboseness": If the verbose level is 0, then only a synopsis
 is
printed. If the verbose level is 1, then the synopsis is printed
 along with a description (if present) of the
command line options and
 arguments. If the verbose level is 2, then the entire manual page is
 printed.

Unless they are explicitly specified, the default values for the exit
 status, verbose level, and output
stream to use are determined as
 follows:

If neither the exit status nor the verbose level is specified, then the
 default is to use an exit
status of 2 with a verbose level of 0.

If an exit status is specified but the verbose level is not, then the
 verbose level will default to 1
if the exit status is less than 2 and
 will default to 0 otherwise.

Perl version 5.24.0 documentation - Pod::Usage

Page 4http://perldoc.perl.org

If an exit status is not specified but verbose level is given, then
 the exit status will default to 2 if
the verbose level is 0 and will
 default to 1 otherwise.

If the exit status used is less than 2, then output is printed on STDOUT. Otherwise output is
printed on STDERR.

Although the above may seem a bit confusing at first, it generally does
 "the right thing" in most
situations. This determination of the default
 values to use is based upon the following typical Unix
conventions:

An exit status of 0 implies "success". For example, diff(1) exits
 with a status of 0 if the two
files have the same contents.

An exit status of 1 implies possibly abnormal, but non-defective, program
 termination. For
example, grep(1) exits with a status of 1 if
 it did not find a matching line for the given regular
expression.

An exit status of 2 or more implies a fatal error. For example, ls(1)
 exits with a status of 2 if
you specify an illegal (unknown) option on
 the command line.

Usage messages issued as a result of bad command-line syntax should go
 to STDERR.
However, usage messages issued due to an explicit request
 to print usage (like specifying
-help on the command line) should go
 to STDOUT, just in case the user wants to pipe the
output to a pager
 (such as more(1)).

If program usage has been explicitly requested by the user, it is often
 desirable to exit with a
status of 1 (as opposed to 0) after issuing
 the user-requested usage message. It is also
desirable to give a
 more verbose description of program usage in this case.

pod2usage doesn't force the above conventions upon you, but it will
 use them by default if you don't
expressly tell it to do otherwise. The
 ability of pod2usage() to accept a single number or a string
makes it
 convenient to use as an innocent looking error message handling function:

 use strict;
 use Pod::Usage;
 use Getopt::Long;

 ## Parse options
 my %opt;
 GetOptions(\%opt, "help|?", "man", "flag1") || pod2usage(2);
 pod2usage(1) if ($opt{help});
 pod2usage(-exitval => 0, -verbose => 2) if ($opt{man});

 ## Check for too many filenames
 pod2usage("$0: Too many files given.\n") if (@ARGV > 1);

Some user's however may feel that the above "economy of expression" is
 not particularly readable
nor consistent and may instead choose to do
 something more like the following:

 use strict;
 use Pod::Usage qw(pod2usage);
 use Getopt::Long qw(GetOptions);

 ## Parse options
 my %opt;
 GetOptions(\%opt, "help|?", "man", "flag1") ||
 pod2usage(-verbose => 0);

Perl version 5.24.0 documentation - Pod::Usage

Page 5http://perldoc.perl.org

 pod2usage(-verbose => 1) if ($opt{help});
 pod2usage(-verbose => 2) if ($opt{man});

 ## Check for too many filenames
 pod2usage(-verbose => 2, -message => "$0: Too many files given.\n")
 if (@ARGV > 1);

As with all things in Perl, there's more than one way to do it, and pod2usage() adheres to this
philosophy. If you are interested in
 seeing a number of different ways to invoke pod2usage (although
by no
 means exhaustive), please refer to EXAMPLES.

Scripts
The Pod::Usage distribution comes with a script pod2usage which offers
 a command line interface to
the functionality of Pod::Usage. See pod2usage.

EXAMPLES
Each of the following invocations of pod2usage() will print just the
 "SYNOPSIS" section to STDERR
and will exit with a status of 2:

 pod2usage();

 pod2usage(2);

 pod2usage(-verbose => 0);

 pod2usage(-exitval => 2);

 pod2usage({-exitval => 2, -output => *STDERR});

 pod2usage({-verbose => 0, -output => *STDERR});

 pod2usage(-exitval => 2, -verbose => 0);

 pod2usage(-exitval => 2, -verbose => 0, -output => *STDERR);

Each of the following invocations of pod2usage() will print a message
 of "Syntax error." (followed by
a newline) to STDERR, immediately
 followed by just the "SYNOPSIS" section (also printed to STDERR)
and
 will exit with a status of 2:

 pod2usage("Syntax error.");

 pod2usage(-message => "Syntax error.", -verbose => 0);

 pod2usage(-msg => "Syntax error.", -exitval => 2);

 pod2usage({-msg => "Syntax error.", -exitval => 2, -output =>
*STDERR});

 pod2usage({-msg => "Syntax error.", -verbose => 0, -output =>
*STDERR});

 pod2usage(-msg => "Syntax error.", -exitval => 2, -verbose => 0);

Perl version 5.24.0 documentation - Pod::Usage

Page 6http://perldoc.perl.org

 pod2usage(-message => "Syntax error.",
 -exitval => 2,
 -verbose => 0,
 -output => *STDERR);

Each of the following invocations of pod2usage() will print the
 "SYNOPSIS" section and any
"OPTIONS" and/or "ARGUMENTS" sections to STDOUT and will exit with a status of 1:

 pod2usage(1);

 pod2usage(-verbose => 1);

 pod2usage(-exitval => 1);

 pod2usage({-exitval => 1, -output => *STDOUT});

 pod2usage({-verbose => 1, -output => *STDOUT});

 pod2usage(-exitval => 1, -verbose => 1);

 pod2usage(-exitval => 1, -verbose => 1, -output => *STDOUT});

Each of the following invocations of pod2usage() will print the
 entire manual page to STDOUT and
will exit with a status of 1:

 pod2usage(-verbose => 2);

 pod2usage({-verbose => 2, -output => *STDOUT});

 pod2usage(-exitval => 1, -verbose => 2);

 pod2usage({-exitval => 1, -verbose => 2, -output => *STDOUT});

Recommended Use
Most scripts should print some type of usage message to STDERR when a
 command line syntax error
is detected. They should also provide an
 option (usually -H or -help) to print a (possibly more
verbose)
 usage message to STDOUT. Some scripts may even wish to go so far as to
 provide a means
of printing their complete documentation to STDOUT
 (perhaps by allowing a -man option). The
following complete example
 uses Pod::Usage in combination with Getopt::Long to do all of these

things:

 use strict;
 use Getopt::Long qw(GetOptions);
 use Pod::Usage qw(pod2usage);

 my $man = 0;
 my $help = 0;
 ## Parse options and print usage if there is a syntax error,
 ## or if usage was explicitly requested.
 GetOptions('help|?' => \$help, man => \$man) or pod2usage(2);
 pod2usage(1) if $help;
 pod2usage(-verbose => 2) if $man;

Perl version 5.24.0 documentation - Pod::Usage

Page 7http://perldoc.perl.org

 ## If no arguments were given, then allow STDIN to be used only
 ## if it's not connected to a terminal (otherwise print usage)
 pod2usage("$0: No files given.") if ((@ARGV == 0) && (-t STDIN));

 __END__

 =head1 NAME

 sample - Using GetOpt::Long and Pod::Usage

 =head1 SYNOPSIS

 sample [options] [file ...]

 Options:
 -help brief help message
 -man full documentation

 =head1 OPTIONS

 =over 4

 =item B<-help>

 Print a brief help message and exits.

 =item B<-man>

 Prints the manual page and exits.

 =back

 =head1 DESCRIPTION

 B<This program> will read the given input file(s) and do something
 useful with the contents thereof.

 =cut

CAVEATS
By default, pod2usage() will use $0 as the path to the pod input
 file. Unfortunately, not all systems on
which Perl runs will set $0
 properly (although if $0 isn't found, pod2usage() will search $ENV{PATH}
or else the list specified by the -pathlist option).
 If this is the case for your system, you may need
to explicitly specify
 the path to the pod docs for the invoking script using something
 similar to the
following:

 pod2usage(-exitval => 2, -input => "/path/to/your/pod/docs");

In the pathological case that a script is called via a relative path and the script itself changes the
current working directory
 (see "chdir" in perlfunc) before calling pod2usage, Pod::Usage will
 fail even

Perl version 5.24.0 documentation - Pod::Usage

Page 8http://perldoc.perl.org

on robust platforms. Don't do that. Or use FindBin to locate
 the script:

 use FindBin;
 pod2usage(-input => $FindBin::Bin . "/" . $FindBin::Script);

AUTHOR
Please report bugs using http://rt.cpan.org.

Marek Rouchal <marekr@cpan.org>

Brad Appleton <bradapp@enteract.com>

Based on code for Pod::Text::pod2text() written by
 Tom Christiansen <tchrist@mox.perl.com>

ACKNOWLEDGMENTS
rjbs for refactoring Pod::Usage to not use Pod::Parser any more.

Steven McDougall <swmcd@world.std.com> for his help and patience
 with re-writing this manpage.

SEE ALSO
Pod::Usage is now a standalone distribution, depending on Pod::Text which in turn depends on
Pod::Simple.

Pod::Perldoc, Getopt::Long, Pod::Find, FindBin, Pod::Text, Pod::Text::Termcap, Pod::Simple

