
Perl version 5.24.0 documentation - Data::Dumper

Page 1http://perldoc.perl.org

NAME
Data::Dumper - stringified perl data structures, suitable for both printing and eval

SYNOPSIS
 use Data::Dumper;

 # simple procedural interface
 print Dumper($foo, $bar);

 # extended usage with names
 print Data::Dumper->Dump([$foo, $bar], [qw(foo *ary)]);

 # configuration variables
 {
 local $Data::Dumper::Purity = 1;
 eval Data::Dumper->Dump([$foo, $bar], [qw(foo *ary)]);
 }

 # OO usage
 $d = Data::Dumper->new([$foo, $bar], [qw(foo *ary)]);
 ...
 print $d->Dump;
 ...
 $d->Purity(1)->Terse(1)->Deepcopy(1);
 eval $d->Dump;

DESCRIPTION
Given a list of scalars or reference variables, writes out their contents in
 perl syntax. The references
can also be objects. The content of each
 variable is output in a single Perl statement. Handles
self-referential
 structures correctly.

The return value can be evaled to get back an identical copy of the
 original reference structure.
(Please do consider the security implications
 of eval'ing code from untrusted sources!)

Any references that are the same as one of those passed in will be named $VARn (where n is a
numeric suffix), and other duplicate references
 to substructures within $VARn will be appropriately
labeled using arrow
 notation. You can specify names for individual values to be dumped if you
 use the
Dump() method, or you can change the default $VAR prefix to
 something else. See
$Data::Dumper::Varname and $Data::Dumper::Terse
 below.

The default output of self-referential structures can be evaled, but the
 nested references to $VARn
will be undefined, since a recursive
 structure cannot be constructed using one Perl statement. You
should set the Purity flag to 1 to get additional statements that will correctly fill in
 these references.
Moreover, if evaled when strictures are in effect,
 you need to ensure that any variables it accesses
are previously declared.

In the extended usage form, the references to be dumped can be given
 user-specified names. If a
name begins with a *, the output will
 describe the dereferenced type of the supplied reference for
hashes and
 arrays, and coderefs. Output of names will be avoided where possible if
 the Terse flag is
set.

In many cases, methods that are used to set the internal state of the
 object will return the object itself,
so method calls can be conveniently
 chained together.

Several styles of output are possible, all controlled by setting
 the Indent flag. See Configuration
Variables or Methods below
 for details.

Perl version 5.24.0 documentation - Data::Dumper

Page 2http://perldoc.perl.org

Methods
PACKAGE->new(ARRAYREF [, ARRAYREF])

Returns a newly created Data::Dumper object. The first argument is an
 anonymous array of
values to be dumped. The optional second argument is an
 anonymous array of names for the
values. The names need not have a leading $ sign, and must be comprised of alphanumeric
characters. You can begin
 a name with a * to specify that the dereferenced type must be
dumped
 instead of the reference itself, for ARRAY and HASH references.

The prefix specified by $Data::Dumper::Varname will be used with a
 numeric suffix if the
name for a value is undefined.

Data::Dumper will catalog all references encountered while dumping the
 values.
Cross-references (in the form of names of substructures in perl
 syntax) will be inserted at all
possible points, preserving any structural
 interdependencies in the original set of values.
Structure traversal is
 depth-first, and proceeds in order from the first supplied value to
 the last.

$OBJ->Dump or PACKAGE->Dump(ARRAYREF [, ARRAYREF])

Returns the stringified form of the values stored in the object (preserving
 the order in which
they were supplied to new), subject to the
 configuration options below. In a list context, it
returns a list
 of strings corresponding to the supplied values.

The second form, for convenience, simply calls the new method on its
 arguments before
dumping the object immediately.

$OBJ->Seen([HASHREF])

Queries or adds to the internal table of already encountered references.
 You must use Reset
to explicitly clear the table if needed. Such
 references are not dumped; instead, their names
are inserted wherever they
 are encountered subsequently. This is useful especially for
properly
 dumping subroutine references.

Expects an anonymous hash of name => value pairs. Same rules apply for names
 as in new.
If no argument is supplied, will return the "seen" list of
 name => value pairs, in a list context.
Otherwise, returns the object
 itself.

$OBJ->Values([ARRAYREF])

Queries or replaces the internal array of values that will be dumped. When
 called without
arguments, returns the values as a list. When called with a
 reference to an array of
replacement values, returns the object itself. When
 called with any other type of argument,
dies.

$OBJ->Names([ARRAYREF])

Queries or replaces the internal array of user supplied names for the values
 that will be
dumped. When called without arguments, returns the names. When
 called with an array of
replacement names, returns the object itself. If the
 number of replacement names exceeds the
number of values to be named, the
 excess names will not be used. If the number of
replacement names falls short
 of the number of values to be named, the list of replacement
names will be
 exhausted and remaining values will not be renamed. When
 called with any
other type of argument, dies.

$OBJ->Reset

Clears the internal table of "seen" references and returns the object
 itself.

Functions
Dumper(LIST)

Returns the stringified form of the values in the list, subject to the
 configuration options below.
The values will be named $VARn in the
 output, where n is a numeric suffix. Will return a list of
strings
 in a list context.

Perl version 5.24.0 documentation - Data::Dumper

Page 3http://perldoc.perl.org

Configuration Variables or Methods
Several configuration variables can be used to control the kind of output
 generated when using the
procedural interface. These variables are usually localized in a block so that other parts of the code
are not affected by
 the change.

These variables determine the default state of the object created by calling
 the new method, but
cannot be used to alter the state of the object
 thereafter. The equivalent method names should be
used instead to query
 or set the internal state of the object.

The method forms return the object itself when called with arguments,
 so that they can be chained
together nicely.

$Data::Dumper::Indent or $OBJ->Indent([NEWVAL])

Controls the style of indentation. It can be set to 0, 1, 2 or 3. Style 0
 spews output without any
newlines, indentation, or spaces between list
 items. It is the most compact format possible that
can still be called
 valid perl. Style 1 outputs a readable form with newlines but no fancy

indentation (each level in the structure is simply indented by a fixed
 amount of whitespace).
Style 2 (the default) outputs a very readable form
 which takes into account the length of hash
keys (so the hash value lines
 up). Style 3 is like style 2, but also annotates the elements of
arrays
 with their index (but the comment is on its own line, so array output
 consumes twice the
number of lines). Style 2 is the default.

$Data::Dumper::Trailingcomma or $OBJ->Trailingcomma([NEWVAL])

Controls whether a comma is added after the last element of an array or
 hash. Even when
true, no comma is added between the last element of an array
 or hash and a closing bracket
when they appear on the same line. The default
 is false.

$Data::Dumper::Purity or $OBJ->Purity([NEWVAL])

Controls the degree to which the output can be evaled to recreate the
 supplied reference
structures. Setting it to 1 will output additional perl
 statements that will correctly recreate
nested references. The default is
 0.

$Data::Dumper::Pad or $OBJ->Pad([NEWVAL])

Specifies the string that will be prefixed to every line of the output.
 Empty string by default.

$Data::Dumper::Varname or $OBJ->Varname([NEWVAL])

Contains the prefix to use for tagging variable names in the output. The
 default is "VAR".

$Data::Dumper::Useqq or $OBJ->Useqq([NEWVAL])

When set, enables the use of double quotes for representing string values.
 Whitespace other
than space will be represented as [\n\t\r], "unsafe"
 characters will be backslashed, and
unprintable characters will be output as
 quoted octal integers. The default is 0.

$Data::Dumper::Terse or $OBJ->Terse([NEWVAL])

When set, Data::Dumper will emit single, non-self-referential values as
 atoms/terms rather
than statements. This means that the $VARn names
 will be avoided where possible, but be
advised that such output may not
 always be parseable by eval.

$Data::Dumper::Freezer or $OBJ->Freezer([NEWVAL])

Can be set to a method name, or to an empty string to disable the feature.
 Data::Dumper will
invoke that method via the object before attempting to
 stringify it. This method can alter the
contents of the object (if, for
 instance, it contains data allocated from C), and even rebless it in
a
 different package. The client is responsible for making sure the specified
 method can be
called via the object, and that the object ends up containing
 only perl data types after the
method has been called. Defaults to an empty
 string.

If an object does not support the method specified (determined using
 UNIVERSAL::can()) then

Perl version 5.24.0 documentation - Data::Dumper

Page 4http://perldoc.perl.org

the call will be skipped. If the method dies a
 warning will be generated.

$Data::Dumper::Toaster or $OBJ->Toaster([NEWVAL])

Can be set to a method name, or to an empty string to disable the feature.
 Data::Dumper will
emit a method call for any objects that are to be dumped
 using the syntax bless(DATA,
CLASS)->METHOD(). Note that this means that
 the method specified will have to perform any
modifications required on the
 object (like creating new state within it, and/or reblessing it in a

different package) and then return it. The client is responsible for making
 sure the method can
be called via the object, and that it returns a valid
 object. Defaults to an empty string.

$Data::Dumper::Deepcopy or $OBJ->Deepcopy([NEWVAL])

Can be set to a boolean value to enable deep copies of structures.
 Cross-referencing will then
only be done when absolutely essential
 (i.e., to break reference cycles). Default is 0.

$Data::Dumper::Quotekeys or $OBJ->Quotekeys([NEWVAL])

Can be set to a boolean value to control whether hash keys are quoted.
 A defined false value
will avoid quoting hash keys when it looks like a simple
 string. Default is 1, which will always
enclose hash keys in quotes.

$Data::Dumper::Bless or $OBJ->Bless([NEWVAL])

Can be set to a string that specifies an alternative to the bless
 builtin operator used to create
objects. A function with the specified
 name should exist, and should accept the same
arguments as the builtin.
 Default is bless.

$Data::Dumper::Pair or $OBJ->Pair([NEWVAL])

Can be set to a string that specifies the separator between hash keys
 and values. To dump
nested hash, array and scalar values to JavaScript,
 use: $Data::Dumper::Pair = ' :
';. Implementing bless in JavaScript
 is left as an exercise for the reader.
 A function with the
specified name exists, and accepts the same arguments
 as the builtin.

Default is: => .

$Data::Dumper::Maxdepth or $OBJ->Maxdepth([NEWVAL])

Can be set to a positive integer that specifies the depth beyond which
 we don't venture into a
structure. Has no effect when Data::Dumper::Purity is set. (Useful in debugger when we
often don't
 want to see more than enough). Default is 0, which means there is
 no maximum
depth.

$Data::Dumper::Maxrecurse or $OBJ->Maxrecurse([NEWVAL])

Can be set to a positive integer that specifies the depth beyond which
 recursion into a
structure will throw an exception. This is intended
 as a security measure to prevent perl
running out of stack space when
 dumping an excessively deep structure. Can be set to 0 to
remove the
 limit. Default is 1000.

$Data::Dumper::Useperl or $OBJ->Useperl([NEWVAL])

Can be set to a boolean value which controls whether the pure Perl
 implementation of
Data::Dumper is used. The Data::Dumper module is
 a dual implementation, with almost
all functionality written in both
 pure Perl and also in XS ('C'). Since the XS version is much
faster, it
 will always be used if possible. This option lets you override the
 default behavior,
usually for testing purposes only. Default is 0, which
 means the XS implementation will be
used if possible.

$Data::Dumper::Sortkeys or $OBJ->Sortkeys([NEWVAL])

Can be set to a boolean value to control whether hash keys are dumped in
 sorted order. A
true value will cause the keys of all hashes to be
 dumped in Perl's default sort order. Can also
be set to a subroutine
 reference which will be called for each hash that is dumped. In this
 case
Data::Dumper will call the subroutine once for each hash,
 passing it the reference of the

Perl version 5.24.0 documentation - Data::Dumper

Page 5http://perldoc.perl.org

hash. The purpose of the subroutine is
 to return a reference to an array of the keys that will be
dumped, in
 the order that they should be dumped. Using this feature, you can
 control both the
order of the keys, and which keys are actually used. In
 other words, this subroutine acts as a
filter by which you can exclude
 certain keys from being dumped. Default is 0, which means
that hash keys
 are not sorted.

$Data::Dumper::Deparse or $OBJ->Deparse([NEWVAL])

Can be set to a boolean value to control whether code references are
 turned into perl source
code. If set to a true value, B::Deparse
 will be used to get the source of the code reference.
Using this option
 will force using the Perl implementation of the dumper, since the fast
 XSUB
implementation doesn't support it.

Caution : use this option only if you know that your coderefs will be
 properly reconstructed by
B::Deparse.

$Data::Dumper::Sparseseen or $OBJ->Sparseseen([NEWVAL])

By default, Data::Dumper builds up the "seen" hash of scalars that
 it has encountered during
serialization. This is very expensive.
 This seen hash is necessary to support and even just
detect circular
 references. It is exposed to the user via the Seen() call both
 for writing and
reading.

If you, as a user, do not need explicit access to the "seen" hash,
 then you can set the
Sparseseen option to allow Data::Dumper
 to eschew building the "seen" hash for scalars
that are known not
 to possess more than one reference. This speeds up serialization

considerably if you use the XS implementation.

Note: If you turn on Sparseseen, then you must not rely on the
 content of the seen hash
since its contents will be an
 implementation detail!

Exports
Dumper

EXAMPLES
Run these code snippets to get a quick feel for the behavior of this
 module. When you are through
with these examples, you may want to
 add or change the various configuration variables described
above,
 to see their behavior. (See the testsuite in the Data::Dumper
 distribution for more examples.)

 use Data::Dumper;

 package Foo;
 sub new {bless {'a' => 1, 'b' => sub { return "foo" }}, $_[0]};

 package Fuz; # a weird REF-REF-SCALAR object
 sub new {bless \($_ = \ 'fu\'z'), $_[0]};

 package main;
 $foo = Foo->new;
 $fuz = Fuz->new;
 $boo = [1, [], "abcd", *foo,
 {1 => 'a', 023 => 'b', 0x45 => 'c'},
 \\"p\q\'r", $foo, $fuz];

 ########
 # simple usage
 ########

 $bar = eval(Dumper($boo));

Perl version 5.24.0 documentation - Data::Dumper

Page 6http://perldoc.perl.org

 print($@) if $@;
 print Dumper($boo), Dumper($bar); # pretty print (no array indices)

 $Data::Dumper::Terse = 1; # don't output names where feasible
 $Data::Dumper::Indent = 0; # turn off all pretty print
 print Dumper($boo), "\n";

 $Data::Dumper::Indent = 1; # mild pretty print
 print Dumper($boo);

 $Data::Dumper::Indent = 3; # pretty print with array indices
 print Dumper($boo);

 $Data::Dumper::Useqq = 1; # print strings in double quotes
 print Dumper($boo);

 $Data::Dumper::Pair = " : "; # specify hash key/value separator
 print Dumper($boo);

 ########
 # recursive structures
 ########

 @c = ('c');
 $c = \@c;
 $b = {};
 $a = [1, $b, $c];
 $b->{a} = $a;
 $b->{b} = $a->[1];
 $b->{c} = $a->[2];
 print Data::Dumper->Dump([$a,$b,$c], [qw(a b c)]);

 $Data::Dumper::Purity = 1; # fill in the holes for eval
 print Data::Dumper->Dump([$a, $b], [qw(*a b)]); # print as @a
 print Data::Dumper->Dump([$b, $a], [qw(*b a)]); # print as %b

 $Data::Dumper::Deepcopy = 1; # avoid cross-refs
 print Data::Dumper->Dump([$b, $a], [qw(*b a)]);

 $Data::Dumper::Purity = 0; # avoid cross-refs
 print Data::Dumper->Dump([$b, $a], [qw(*b a)]);

 ########
 # deep structures
 ########

 $a = "pearl";
 $b = [$a];
 $c = { 'b' => $b };
 $d = [$c];
 $e = { 'd' => $d };
 $f = { 'e' => $e };

Perl version 5.24.0 documentation - Data::Dumper

Page 7http://perldoc.perl.org

 print Data::Dumper->Dump([$f], [qw(f)]);

 $Data::Dumper::Maxdepth = 3; # no deeper than 3 refs down
 print Data::Dumper->Dump([$f], [qw(f)]);

 ########
 # object-oriented usage
 ########

 $d = Data::Dumper->new([$a,$b], [qw(a b)]);
 $d->Seen({'*c' => $c}); # stash a ref without printing it
 $d->Indent(3);
 print $d->Dump;
 $d->Reset->Purity(0); # empty the seen cache
 print join "----\n", $d->Dump;

 ########
 # persistence
 ########

 package Foo;
 sub new { bless { state => 'awake' }, shift }
 sub Freeze {
 my $s = shift;
 print STDERR "preparing to sleep\n";
 $s->{state} = 'asleep';
 return bless $s, 'Foo::ZZZ';
 }

 package Foo::ZZZ;
 sub Thaw {
 my $s = shift;
 print STDERR "waking up\n";
 $s->{state} = 'awake';
 return bless $s, 'Foo';
 }

 package main;
 use Data::Dumper;
 $a = Foo->new;
 $b = Data::Dumper->new([$a], ['c']);
 $b->Freezer('Freeze');
 $b->Toaster('Thaw');
 $c = $b->Dump;
 print $c;
 $d = eval $c;
 print Data::Dumper->Dump([$d], ['d']);

 ########
 # symbol substitution (useful for recreating CODE refs)
 ########

 sub foo { print "foo speaking\n" }

Perl version 5.24.0 documentation - Data::Dumper

Page 8http://perldoc.perl.org

 *other = \&foo;
 $bar = [\&other];
 $d = Data::Dumper->new([\&other,$bar],['*other','bar']);
 $d->Seen({ '*foo' => \&foo });
 print $d->Dump;

 ########
 # sorting and filtering hash keys
 ########

 $Data::Dumper::Sortkeys = \&my_filter;
 my $foo = { map { (ord, "$_$_$_") } 'I'..'Q' };
 my $bar = { %$foo };
 my $baz = { reverse %$foo };
 print Dumper [$foo, $bar, $baz];

 sub my_filter {
 my ($hash) = @_;
 # return an array ref containing the hash keys to dump
 # in the order that you want them to be dumped
 return [
 # Sort the keys of %$foo in reverse numeric order
 $hash eq $foo ? (sort {$b <=> $a} keys %$hash) :
 # Only dump the odd number keys of %$bar
 $hash eq $bar ? (grep {$_ % 2} keys %$hash) :
 # Sort keys in default order for all other hashes
 (sort keys %$hash)
];
 }

BUGS
Due to limitations of Perl subroutine call semantics, you cannot pass an
 array or hash. Prepend it with
a \ to pass its reference instead. This
 will be remedied in time, now that Perl has subroutine
prototypes.
 For now, you need to use the extended usage form, and prepend the
 name with a * to
output it as a hash or array.

Data::Dumper cheats with CODE references. If a code reference is
 encountered in the structure
being processed (and if you haven't set
 the Deparse flag), an anonymous subroutine that
 contains
the string '"DUMMY"' will be inserted in its place, and a warning
 will be printed if Purity is set. You
can eval the result, but bear
 in mind that the anonymous sub that gets created is just a placeholder.

Someday, perl will have a switch to cache-on-demand the string
 representation of a compiled piece of
code, I hope. If you have prior
 knowledge of all the code refs that your data structures are likely
 to
have, you can use the Seen method to pre-seed the internal reference
 table and make the dumped
output point to them, instead. See EXAMPLES
 above.

The Deparse flag makes Dump() run slower, since the XSUB
 implementation does not support it.

SCALAR objects have the weirdest looking bless workaround.

Pure Perl version of Data::Dumper escapes UTF-8 strings correctly
 only in Perl 5.8.0 and later.

NOTE
Starting from Perl 5.8.1 different runs of Perl will have different
 ordering of hash keys. The change
was done for greater security,
 see "Algorithmic Complexity Attacks" in perlsec. This means that

different runs of Perl will have different Data::Dumper outputs if
 the data contains hashes. If you need
to have identical Data::Dumper
 outputs from different runs of Perl, use the environment variable

Perl version 5.24.0 documentation - Data::Dumper

Page 9http://perldoc.perl.org

PERL_HASH_SEED, see "PERL_HASH_SEED" in perlrun. Using this restores
 the old
(platform-specific) ordering: an even prettier solution might
 be to use the Sortkeys filter of
Data::Dumper.

AUTHOR
Gurusamy Sarathy gsar@activestate.com

Copyright (c) 1996-2014 Gurusamy Sarathy. All rights reserved.
 This program is free software; you
can redistribute it and/or
 modify it under the same terms as Perl itself.

VERSION
Version 2.160 (January 12 2016)

SEE ALSO
perl(1)

