
Perl version 5.24.0 documentation - perlfaq1

Page 1http://perldoc.perl.org

NAME
perlfaq1 - General Questions About Perl

VERSION
version 5.021010

DESCRIPTION
This section of the FAQ answers very general, high-level questions
 about Perl.

What is Perl?
Perl is a high-level programming language with an eclectic heritage
 written by Larry Wall and a cast of
thousands.

Perl's process, file, and text manipulation facilities make it
 particularly well-suited for tasks involving
quick prototyping, system
 utilities, software tools, system management tasks, database access,

graphical programming, networking, and web programming.

Perl derives from the ubiquitous C programming language and to a
 lesser extent from sed, awk, the
Unix shell, and many other tools
 and languages.

These strengths make it especially popular with web developers
 and system administrators.
Mathematicians, geneticists, journalists,
 managers and many other people also use Perl.

Who supports Perl? Who develops it? Why is it free?
The original culture of the pre-populist Internet and the deeply-held
 beliefs of Perl's author, Larry Wall,
gave rise to the free and open
 distribution policy of Perl. Perl is supported by its users. The
 core, the
standard Perl library, the optional modules, and the
 documentation you're reading now were all written
by volunteers.

The core development team (known as the Perl Porters)
 are a group of highly altruistic individuals
committed to
 producing better software for free than you could hope to purchase for
 money. You may
snoop on pending developments via the archives
 or read the faq,
 or you can subscribe to the mailing
list by sending
 perl5-porters-subscribe@perl.org a subscription request
 (an empty message with no
subject is fine).

While the GNU project includes Perl in its distributions, there's no
 such thing as "GNU Perl". Perl is
not produced nor maintained by the
 Free Software Foundation. Perl's licensing terms are also more
open
 than GNU software's tend to be.

You can get commercial support of Perl if you wish, although for most
 users the informal support will
more than suffice. See the answer to
 "Where can I buy a commercial version of Perl?" for more
information.

Which version of Perl should I use?
(contributed by brian d foy)

There is often a matter of opinion and taste, and there isn't any one
 answer that fits everyone. In
general, you want to use either the current
 stable release, or the stable release immediately prior to
that one.
 Currently, those are perl5.18.x and perl5.16.x, respectively.

Beyond that, you have to consider several things and decide which is best
 for you.

If things aren't broken, upgrading perl may break them (or at least issue
 new warnings).

The latest versions of perl have more bug fixes.

The Perl community is geared toward supporting the most recent releases,
 so you'll have an
easier time finding help for those.

Versions prior to perl5.004 had serious security problems with buffer
 overflows, and in some

Perl version 5.24.0 documentation - perlfaq1

Page 2http://perldoc.perl.org

cases have CERT advisories (for instance, http://www.cert.org/advisories/CA-1997-17.html).

The latest versions are probably the least deployed and widely tested, so
 you may want to
wait a few months after their release and see what
 problems others have if you are risk
averse.

The immediate, previous releases (i.e. perl5.14.x) are usually maintained
 for a while, although
not at the same level as the current releases.

No one is actively supporting Perl 4. Ten years ago it was a dead
 camel carcass (according to
this document). Now it's barely a skeleton
 as its whitewashed bones have fractured or eroded.

The current leading implementation of Perl 6, Rakudo, released a "useful,
 usable, 'early
adopter'" distribution of Perl 6 (called Rakudo Star) in July of
 2010. Please see
http://rakudo.org/ for more information.

There are really two tracks of perl development: a maintenance version
 and an experimental
version. The maintenance versions are stable, and
 have an even number as the minor release
(i.e. perl5.18.x, where 18 is the
 minor release). The experimental versions may include
features that
 don't make it into the stable versions, and have an odd number as the
 minor
release (i.e. perl5.19.x, where 19 is the minor release).

What are Perl 4, Perl 5, or Perl 6?
In short, Perl 4 is the parent to both Perl 5 and Perl 6. Perl 5 is the older
 sibling, and though they are
different languages, someone who knows one will
 spot many similarities in the other.

The number after Perl (i.e. the 5 after Perl 5) is the major release
 of the perl interpreter as well as the
version of the language. Each
 major version has significant differences that earlier versions cannot

support.

The current major release of Perl is Perl 5, first released in
 1994. It can run scripts from the previous
major release, Perl 4
 (March 1991), but has significant differences.

Perl 6 is a reinvention of Perl, it is a language in the same lineage but
 not compatible. The two are
complementary, not mutually exclusive. Perl 6 is
 not meant to replace Perl 5, and vice versa. See
What is Perl 6? below
 to find out more.

See perlhist for a history of Perl revisions.

What is Perl 6?
Perl 6 was originally described as the community's rewrite of Perl 5.
 Development started in 2002;
syntax and design work continue to this day.
 As the language has evolved, it has become clear that it
is a separate
 language, incompatible with Perl 5 but in the same language family.

Contrary to popular belief, Perl 6 and Perl 5 peacefully coexist with one
 another. Perl 6 has proven to
be a fascinating source of ideas for those
 using Perl 5 (the Moose object system is a well-known
example). There is
 overlap in the communities, and this overlap fosters the tradition of sharing
 and
borrowing that have been instrumental to Perl's success. The current
 leading implementation of Perl 6
is Rakudo, and you can learn more about
 it at http://rakudo.org.

If you want to learn more about Perl 6, or have a desire to help in
 the crusade to make Perl a better
place then read the Perl 6 developers
 page at http://www.perl6.org/ and get involved.

"We're really serious about reinventing everything that needs reinventing."
 --Larry Wall

How stable is Perl?
Production releases, which incorporate bug fixes and new functionality,
 are widely tested before
release. Since the 5.000 release, we have
 averaged about one production release per year.

The Perl development team occasionally make changes to the
 internal core of the language, but all

Perl version 5.24.0 documentation - perlfaq1

Page 3http://perldoc.perl.org

possible efforts are made toward
 backward compatibility.

How often are new versions of Perl released?
Recently, the plan has been to release a new version of Perl roughly every
 April, but getting the
release right is more important than sticking rigidly to
 a calendar date, so the release date is
somewhat flexible. The historical
 release dates can be viewed at
http://www.cpan.org/src/README.html.

Even numbered minor versions (5.14, 5.16, 5.18) are production versions, and
 odd numbered minor
versions (5.15, 5.17, 5.19) are development versions. Unless
 you want to try out an experimental
feature, you probably never want to install
 a development version of Perl.

The Perl development team are called Perl 5 Porters, and their
 organization is described at
http://perldoc.perl.org/perlpolicy.html.
 The organizational rules really just boil down to one: Larry is
always
 right, even when he was wrong.

Is Perl difficult to learn?
No, Perl is easy to start learning --and easy to keep learning. It looks
 like most programming
languages you're likely to have experience
 with, so if you've ever written a C program, an awk script,
a shell
 script, or even a BASIC program, you're already partway there.

Most tasks only require a small subset of the Perl language. One of
 the guiding mottos for Perl
development is "there's more than one way
 to do it" (TMTOWTDI, sometimes pronounced "tim
toady"). Perl's
 learning curve is therefore shallow (easy to learn) and long (there's
 a whole lot you can
do if you really want).

Finally, because Perl is frequently (but not always, and certainly not by
 definition) an interpreted
language, you can write your programs and test
 them without an intermediate compilation step,
allowing you to experiment
 and test/debug quickly and easily. This ease of experimentation flattens

the learning curve even more.

Things that make Perl easier to learn: Unix experience, almost any kind
 of programming experience,
an understanding of regular expressions, and
 the ability to understand other people's code. If there's
something you
 need to do, then it's probably already been done, and a working example is
 usually
available for free. Don't forget Perl modules, either.
 They're discussed in Part 3 of this FAQ, along
with CPAN, which is
 discussed in Part 2.

How does Perl compare with other languages like Java, Python, REXX, Scheme, or Tcl?
Perl can be used for almost any coding problem, even ones which require
 integrating specialist C
code for extra speed. As with any tool it can
 be used well or badly. Perl has many strengths, and a
few weaknesses,
 precisely which areas are good and bad is often a personal choice.

When choosing a language you should also be influenced by the resources, testing culture
 and
community which surrounds it.

For comparisons to a specific language it is often best to create
 a small project in both languages and
compare the results, make sure
 to use all the resources of each language,
 as a language is far more
than just it's syntax.

Can I do [task] in Perl?
Perl is flexible and extensible enough for you to use on virtually any
 task, from one-line file-processing
tasks to large, elaborate systems.

For many people, Perl serves as a great replacement for shell scripting.
 For others, it serves as a
convenient, high-level replacement for most of
 what they'd program in low-level languages like C or
C++. It's ultimately
 up to you (and possibly your management) which tasks you'll use Perl
 for and
which you won't.

If you have a library that provides an API, you can make any component
 of it available as just another

Perl version 5.24.0 documentation - perlfaq1

Page 4http://perldoc.perl.org

Perl function or variable using a Perl
 extension written in C or C++ and dynamically linked into your
main
 perl interpreter. You can also go the other direction, and write your
 main program in C or C++,
and then link in some Perl code on the fly,
 to create a powerful application. See perlembed.

That said, there will always be small, focused, special-purpose
 languages dedicated to a specific
problem domain that are simply more
 convenient for certain kinds of problems. Perl tries to be all
things
 to all people, but nothing special to anyone. Examples of specialized
 languages that come to
mind include prolog and matlab.

When shouldn't I program in Perl?
One good reason is when you already have an existing
 application written in another language that's
all done (and done
 well), or you have an application language specifically designed for a
 certain task
(e.g. prolog, make).

If you find that you need to speed up a specific part of a Perl
 application (not something you often
need) you may want to use C,
 but you can access this from your Perl code with perlxs.

What's the difference between "perl" and "Perl"?
"Perl" is the name of the language. Only the "P" is capitalized.
 The name of the interpreter (the
program which runs the Perl script)
 is "perl" with a lowercase "p".

You may or may not choose to follow this usage. But never write "PERL",
 because perl is not an
acronym.

What is a JAPH?
(contributed by brian d foy)

JAPH stands for "Just another Perl hacker,", which Randal Schwartz used
 to sign email and usenet
messages starting in the late 1980s. He
 previously used the phrase with many subjects ("Just another
x hacker,"),
 so to distinguish his JAPH, he started to write them as Perl programs:

 print "Just another Perl hacker,";

Other people picked up on this and started to write clever or obfuscated
 programs to produce the
same output, spinning things quickly out of
 control while still providing hours of amusement for their
creators and
 readers.

CPAN has several JAPH programs at http://www.cpan.org/misc/japh.

How can I convince others to use Perl?
(contributed by brian d foy)

Appeal to their self interest! If Perl is new (and thus scary) to them,
 find something that Perl can do to
solve one of their problems. That
 might mean that Perl either saves them something (time,
headaches, money)
 or gives them something (flexibility, power, testability).

In general, the benefit of a language is closely related to the skill of
 the people using that language. If
you or your team can be faster,
 better, and stronger through Perl, you'll deliver more value.
Remember,
 people often respond better to what they get out of it. If you run
 into resistance, figure out
what those people get out of the other
 choice and how Perl might satisfy that requirement.

You don't have to worry about finding or paying for Perl; it's freely
 available and several popular
operating systems come with Perl. Community
 support in places such as Perlmonks (
http://www.perlmonks.com)
 and the various Perl mailing lists (http://lists.perl.org) means that
 you
can usually get quick answers to your problems.

Finally, keep in mind that Perl might not be the right tool for every
 job. You're a much better advocate
if your claims are reasonable and
 grounded in reality. Dogmatically advocating anything tends to
make
 people discount your message. Be honest about possible disadvantages
 to your choice of Perl

Perl version 5.24.0 documentation - perlfaq1

Page 5http://perldoc.perl.org

since any choice has trade-offs.

You might find these links useful:

* http://www.perl.org/about.html

* http://perltraining.com.au/whyperl.html

AUTHOR AND COPYRIGHT
Copyright (c) 1997-2010 Tom Christiansen, Nathan Torkington, and
 other authors as noted. All rights
reserved.

This documentation is free; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Irrespective of its distribution, all code examples here are in the public
 domain. You are permitted and
encouraged to use this code and any
 derivatives thereof in your own programs for fun or for profit as
you
 see fit. A simple comment in the code giving credit to the FAQ would
 be courteous but is not
required.

