
Perl version 5.24.0 documentation - Scalar::Util

Page 1http://perldoc.perl.org

NAME
Scalar::Util - A selection of general-utility scalar subroutines

SYNOPSIS
 use Scalar::Util qw(blessed dualvar isdual readonly refaddr reftype
 tainted weaken isweak isvstring looks_like_number
 set_prototype);
 # and other useful utils appearing below

DESCRIPTION
Scalar::Util contains a selection of subroutines that people have expressed
 would be nice to
have in the perl core, but the usage would not really be high
 enough to warrant the use of a keyword,
and the size so small such that being
 individual extensions would be wasteful.

By default Scalar::Util does not export any subroutines.

FUNCTIONS FOR REFERENCES
The following functions all perform some useful activity on reference values.

blessed
 my $pkg = blessed($ref);

If $ref is a blessed reference the name of the package that it is blessed
 into is returned. Otherwise
undef is returned.

 $scalar = "foo";
 $class = blessed $scalar; # undef

 $ref = [];
 $class = blessed $ref; # undef

 $obj = bless [], "Foo";
 $class = blessed $obj; # "Foo"

Take care when using this function simply as a truth test (such as in if(blessed $ref)...)
because the package name "0" is defined yet false.

refaddr
 my $addr = refaddr($ref);

If $ref is reference the internal memory address of the referenced value is
 returned as a plain
integer. Otherwise undef is returned.

 $addr = refaddr "string"; # undef
 $addr = refaddr \$var; # eg 12345678
 $addr = refaddr []; # eg 23456784

 $obj = bless {}, "Foo";
 $addr = refaddr $obj; # eg 88123488

reftype
 my $type = reftype($ref);

Perl version 5.24.0 documentation - Scalar::Util

Page 2http://perldoc.perl.org

If $ref is a reference the basic Perl type of the variable referenced is
 returned as a plain string (such
as ARRAY or HASH). Otherwise undef
 is returned.

 $type = reftype "string"; # undef
 $type = reftype \$var; # SCALAR
 $type = reftype []; # ARRAY

 $obj = bless {}, "Foo";
 $type = reftype $obj; # HASH

weaken
 weaken($ref);

The lvalue $ref will be turned into a weak reference. This means that it
 will not hold a reference
count on the object it references. Also when the
 reference count on that object reaches zero, the
reference will be set to
 undef. This function mutates the lvalue passed as its argument and returns no

value.

This is useful for keeping copies of references, but you don't want to prevent
 the object being
DESTROY-ed at its usual time.

 {
 my $var;
 $ref = \$var;
 weaken($ref); # Make $ref a weak reference
 }
 # $ref is now undef

Note that if you take a copy of a scalar with a weakened reference, the copy
 will be a strong
reference.

 my $var;
 my $foo = \$var;
 weaken($foo); # Make $foo a weak reference
 my $bar = $foo; # $bar is now a strong reference

This may be less obvious in other situations, such as grep(), for instance
 when grepping through a
list of weakened references to objects that may have
 been destroyed already:

 @object = grep { defined } @object;

This will indeed remove all references to destroyed objects, but the remaining
 references to objects
will be strong, causing the remaining objects to never be
 destroyed because there is now always a
strong reference to them in the @object
 array.

unweaken
 unweaken($ref);

Since version 1.36.

The lvalue REF will be turned from a weak reference back into a normal
 (strong) reference again. This
function mutates the lvalue passed as its
 argument and returns no value. This undoes the action
performed by weaken.

This function is slightly neater and more convenient than the
 otherwise-equivalent code

Perl version 5.24.0 documentation - Scalar::Util

Page 3http://perldoc.perl.org

 my $tmp = $REF;
 undef $REF;
 $REF = $tmp;

(because in particular, simply assigning a weak reference back to itself does
 not work to unweaken it;
$REF = $REF does not work).

isweak
 my $weak = isweak($ref);

Returns true if $ref is a weak reference.

 $ref = \$foo;
 $weak = isweak($ref); # false
 weaken($ref);
 $weak = isweak($ref); # true

NOTE: Copying a weak reference creates a normal, strong, reference.

 $copy = $ref;
 $weak = isweak($copy); # false

OTHER FUNCTIONS
dualvar

 my $var = dualvar($num, $string);

Returns a scalar that has the value $num in a numeric context and the value $string in a string
context.

 $foo = dualvar 10, "Hello";
 $num = $foo + 2; # 12
 $str = $foo . " world"; # Hello world

isdual
 my $dual = isdual($var);

Since version 1.26.

If $var is a scalar that has both numeric and string values, the result is
 true.

 $foo = dualvar 86, "Nix";
 $dual = isdual($foo); # true

Note that a scalar can be made to have both string and numeric content through
 numeric operations:

 $foo = "10";
 $dual = isdual($foo); # false
 $bar = $foo + 0;
 $dual = isdual($foo); # true

Note that although $! appears to be dual-valued variable, it is actually
 implemented using a tied
scalar:

 $! = 1;

Perl version 5.24.0 documentation - Scalar::Util

Page 4http://perldoc.perl.org

 print("$!\n"); # "Operation not permitted"
 $dual = isdual($!); # false

You can capture its numeric and string content using:

 $err = dualvar $!, $!;
 $dual = isdual($err); # true

isvstring
 my $vstring = isvstring($var);

If $var is a scalar which was coded as a vstring the result is true.

 $vs = v49.46.48;
 $fmt = isvstring($vs) ? "%vd" : "%s"; #true
 printf($fmt,$vs);

looks_like_number
 my $isnum = looks_like_number($var);

Returns true if perl thinks $var is a number. See "looks_like_number" in perlapi.

openhandle
 my $fh = openhandle($fh);

Returns $fh itself if $fh may be used as a filehandle and is open, or is
 is a tied handle. Otherwise
undef is returned.

 $fh = openhandle(*STDIN); # *STDIN
 $fh = openhandle(*STDIN); # *STDIN
 $fh = openhandle(*NOTOPEN); # undef
 $fh = openhandle("scalar"); # undef

readonly
 my $ro = readonly($var);

Returns true if $var is readonly.

 sub foo { readonly($_[0]) }

 $readonly = foo($bar); # false
 $readonly = foo(0); # true

set_prototype
 my $code = set_prototype($code, $prototype);

Sets the prototype of the function given by the $code reference, or deletes
 it if $prototype is
undef. Returns the $code reference itself.

 set_prototype \&foo, '$$';

Perl version 5.24.0 documentation - Scalar::Util

Page 5http://perldoc.perl.org

tainted
 my $t = tainted($var);

Return true if $var is tainted.

 $taint = tainted("constant"); # false
 $taint = tainted($ENV{PWD}); # true if running under -T

DIAGNOSTICS
Module use may give one of the following errors during import.

Weak references are not implemented in the version of perl

The version of perl that you are using does not implement weak references, to
 use isweak or
weaken you will need to use a newer release of perl.

Vstrings are not implemented in the version of perl

The version of perl that you are using does not implement Vstrings, to use isvstring you will
need to use a newer release of perl.

NAME is only available with the XS version of Scalar::Util

Scalar::Util contains both perl and C implementations of many of its
 functions so that
those without access to a C compiler may still use it.
 However some of the functions are only
available when a C compiler was
 available to compile the XS version of the extension.

At present that list is: weaken, isweak, dualvar, isvstring, set_prototype

KNOWN BUGS
There is a bug in perl5.6.0 with UV's that are >= 1<<31. This will
 show up as tests 8 and 9 of dualvar.t
failing

SEE ALSO
List::Util

COPYRIGHT
Copyright (c) 1997-2007 Graham Barr <gbarr@pobox.com>. All rights reserved.
 This program is free
software; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Additionally weaken and isweak which are

Copyright (c) 1999 Tuomas J. Lukka <lukka@iki.fi>. All rights reserved.
 This program is free software;
you can redistribute it and/or modify it
 under the same terms as perl itself.

Copyright (C) 2004, 2008 Matthijs van Duin. All rights reserved.
 Copyright (C) 2014 cPanel Inc. All
rights reserved.
 This program is free software; you can redistribute it and/or modify
 it under the same
terms as Perl itself.

