
Perl version 5.24.0 documentation - perl5180delta

Page 1http://perldoc.perl.org

NAME
perl5180delta - what is new for perl v5.18.0

DESCRIPTION
This document describes differences between the v5.16.0 release and the v5.18.0
 release.

If you are upgrading from an earlier release such as v5.14.0, first read perl5160delta, which describes
differences between v5.14.0 and v5.16.0.

Core Enhancements
New mechanism for experimental features

Newly-added experimental features will now require this incantation:

 no warnings "experimental::feature_name";
 use feature "feature_name"; # would warn without the prev line

There is a new warnings category, called "experimental", containing
 warnings that the feature pragma
emits when enabling experimental
 features.

Newly-added experimental features will also be given special warning IDs,
 which consist of
"experimental::" followed by the name of the feature. (The
 plan is to extend this mechanism eventually
to all warnings, to allow them
 to be enabled or disabled individually, and not just by category.)

By saying

 no warnings "experimental::feature_name";

you are taking responsibility for any breakage that future changes to, or
 removal of, the feature may
cause.

Since some features (like ~~ or my $_) now emit experimental warnings,
 and you may want to
disable them in code that is also run on perls that do not
 recognize these warning categories,
consider using the if pragma like this:

 no if $] >= 5.018, warnings => "experimental::feature_name";

Existing experimental features may begin emitting these warnings, too. Please
 consult perlexperiment
for information on which features are considered
 experimental.

Hash overhaul
Changes to the implementation of hashes in perl v5.18.0 will be one of the most
 visible changes to
the behavior of existing code.

By default, two distinct hash variables with identical keys and values may now
 provide their contents
in a different order where it was previously identical.

When encountering these changes, the key to cleaning up from them is to accept
 that hashes are
unordered collections and to act accordingly.

Hash randomization

The seed used by Perl's hash function is now random. This means that the
 order which keys/values
will be returned from functions like keys(), values(), and each() will differ from run to run.

This change was introduced to make Perl's hashes more robust to algorithmic
 complexity attacks, and
also because we discovered that it exposes hash
 ordering dependency bugs and makes them easier
to track down.

Toolchain maintainers might want to invest in additional infrastructure to
 test for things like this.

Perl version 5.24.0 documentation - perl5180delta

Page 2http://perldoc.perl.org

Running tests several times in a row and then
 comparing results will make it easier to spot hash order
dependencies in
 code. Authors are strongly encouraged not to expose the key order of
 Perl's hashes
to insecure audiences.

Further, every hash has its own iteration order, which should make it much
 more difficult to determine
what the current hash seed is.

New hash functions

Perl v5.18 includes support for multiple hash functions, and changed
 the default (to
ONE_AT_A_TIME_HARD), you can choose a different
 algorithm by defining a symbol at compile
time. For a current list,
 consult the INSTALL document. Note that as of Perl v5.18 we can
 only
recommend use of the default or SIPHASH. All the others are
 known to have security issues and are
for research purposes only.

PERL_HASH_SEED environment variable now takes a hex value

PERL_HASH_SEED no longer accepts an integer as a parameter;
 instead the value is expected to be a
binary value encoded in a hex
 string, such as "0xf5867c55039dc724". This is to make the

infrastructure support hash seeds of arbitrary lengths, which might
 exceed that of an integer.
(SipHash uses a 16 byte seed.)

PERL_PERTURB_KEYS environment variable added

The PERL_PERTURB_KEYS environment variable allows one to control the level of
 randomization
applied to keys and friends.

When PERL_PERTURB_KEYS is 0, perl will not randomize the key order at all. The
 chance that keys
changes due to an insert will be the same as in previous
 perls, basically only when the bucket size is
changed.

When PERL_PERTURB_KEYS is 1, perl will randomize keys in a non-repeatable
 way. The chance that
keys changes due to an insert will be very high. This
 is the most secure and default mode.

When PERL_PERTURB_KEYS is 2, perl will randomize keys in a repeatable way.
 Repeated runs of the
same program should produce the same output every time.

PERL_HASH_SEED implies a non-default PERL_PERTURB_KEYS setting. Setting
PERL_HASH_SEED=0 (exactly one 0) implies PERL_PERTURB_KEYS=0 (hash key
 randomization
disabled); setting PERL_HASH_SEED to any other value implies PERL_PERTURB_KEYS=2
(deterministic and repeatable hash key randomization).
 Specifying PERL_PERTURB_KEYS explicitly to
a different level overrides this
 behavior.

Hash::Util::hash_seed() now returns a string

Hash::Util::hash_seed() now returns a string instead of an integer. This
 is to make the infrastructure
support hash seeds of arbitrary lengths
 which might exceed that of an integer. (SipHash uses a 16
byte seed.)

Output of PERL_HASH_SEED_DEBUG has been changed

The environment variable PERL_HASH_SEED_DEBUG now makes perl show both the
 hash function
perl was built with, and the seed, in hex, in use for that
 process. Code parsing this output, should it
exist, must change to accommodate
 the new format. Example of the new format:

 $ PERL_HASH_SEED_DEBUG=1 ./perl -e1
 HASH_FUNCTION = MURMUR3 HASH_SEED = 0x1476bb9f

Upgrade to Unicode 6.2
Perl now supports Unicode 6.2. A list of changes from Unicode
 6.1 is at
http://www.unicode.org/versions/Unicode6.2.0.

Perl version 5.24.0 documentation - perl5180delta

Page 3http://perldoc.perl.org

Character name aliases may now include non-Latin1-range characters
It is possible to define your own names for characters for use in \N{...}, charnames::vianame()
, etc. These names can now be
 comprised of characters from the whole Unicode range. This allows
for
 names to be in your native language, and not just English. Certain
 restrictions apply to the
characters that may be used (you can't define
 a name that has punctuation in it, for example). See
"CUSTOM ALIASES" in charnames.

New DTrace probes
The following new DTrace probes have been added:

op-entry

loading-file

loaded-file

${^LAST_FH}
This new variable provides access to the filehandle that was last read.
 This is the handle used by $.
and by tell and eof without
 arguments.

Regular Expression Set Operations
This is an experimental feature to allow matching against the union,
 intersection, etc., of sets of code
points, similar to Unicode::Regex::Set. It can also be used to extend /x processing
 to [bracketed]
character classes, and as a replacement of user-defined
 properties, allowing more complex
expressions than they do. See "Extended Bracketed Character Classes" in perlrecharclass.

Lexical subroutines
This new feature is still considered experimental. To enable it:

 use 5.018;
 no warnings "experimental::lexical_subs";
 use feature "lexical_subs";

You can now declare subroutines with state sub foo, my sub foo, and our sub foo. (state
sub requires that the "state" feature be
 enabled, unless you write it as CORE::state sub foo.)

state sub creates a subroutine visible within the lexical scope in which
 it is declared. The
subroutine is shared between calls to the outer sub.

my sub declares a lexical subroutine that is created each time the
 enclosing block is entered. state
 sub is generally slightly faster than my sub.

our sub declares a lexical alias to the package subroutine of the same
 name.

For more information, see "Lexical Subroutines" in perlsub.

Computed Labels
The loop controls next, last and redo, and the special dump
 operator, now allow arbitrary
expressions to be used to compute labels at run
 time. Previously, any argument that was not a
constant was treated as the
 empty string.

More CORE:: subs
Several more built-in functions have been added as subroutines to the
 CORE:: namespace - namely,
those non-overridable keywords that can be
 implemented without custom parsers: defined, delete
, exists, glob, pos, prototype, scalar, split, study, and undef.

As some of these have prototypes, prototype('CORE::...') has been
 changed to not make a
distinction between overridable and non-overridable
 keywords. This is to make

Perl version 5.24.0 documentation - perl5180delta

Page 4http://perldoc.perl.org

prototype('CORE::pos') consistent with prototype(&CORE::pos).

kill with negative signal names
kill has always allowed a negative signal number, which kills the
 process group instead of a single
process. It has also allowed signal
 names. But it did not behave consistently, because negative signal
names
 were treated as 0. Now negative signals names like -INT are supported
 and treated the same
way as -2 [perl #112990].

Security
See also: hash overhaul

Some of the changes in the hash overhaul were made to
 enhance security. Please read that section.

Storable security warning in documentation
The documentation for Storable now includes a section which warns readers
 of the danger of
accepting Storable documents from untrusted sources. The
 short version is that deserializing certain
types of data can lead to loading
 modules and other code execution. This is documented behavior
and wanted
 behavior, but this opens an attack vector for malicious entities.

Locale::Maketext allowed code injection via a malicious template
If users could provide a translation string to Locale::Maketext, this could be
 used to invoke arbitrary
Perl subroutines available in the current process.

This has been fixed, but it is still possible to invoke any method provided by Locale::Maketext
itself or a subclass that you are using. One of these
 methods in turn will invoke the Perl core's
sprintf subroutine.

In summary, allowing users to provide translation strings without auditing
 them is a bad idea.

This vulnerability is documented in CVE-2012-6329.

Avoid calling memset with a negative count
Poorly written perl code that allows an attacker to specify the count to perl's x string repeat operator
can already cause a memory exhaustion
 denial-of-service attack. A flaw in versions of perl before
v5.15.5 can escalate
 that into a heap buffer overrun; coupled with versions of glibc before 2.16, it

possibly allows the execution of arbitrary code.

The flaw addressed to this commit has been assigned identifier CVE-2012-5195
 and was researched
by Tim Brown.

Incompatible Changes
See also: hash overhaul

Some of the changes in the hash overhaul are not fully
 compatible with previous versions of perl.
Please read that section.

An unknown character name in \N{...} is now a syntax error
Previously, it warned, and the Unicode REPLACEMENT CHARACTER was
 substituted. Unicode now
recommends that this situation be a syntax
 error. Also, the previous behavior led to some confusing
warnings and
 behaviors, and since the REPLACEMENT CHARACTER has no use other than as
 a
stand-in for some unknown character, any code that has this problem is
 buggy.

Formerly deprecated characters in \N{} character name aliases are now errors.
Since v5.12.0, it has been deprecated to use certain characters in
 user-defined \N{...} character
names. These now cause a syntax
 error. For example, it is now an error to begin a name with a digit,

such as in

 my $undraftable = "\N{4F}"; # Syntax error!

Perl version 5.24.0 documentation - perl5180delta

Page 5http://perldoc.perl.org

or to have commas anywhere in the name. See "CUSTOM ALIASES" in charnames.

\N{BELL} now refers to U+1F514 instead of U+0007
Unicode 6.0 reused the name "BELL" for a different code point than it
 traditionally had meant. Since
Perl v5.14, use of this name still
 referred to U+0007, but would raise a deprecation warning. Now,
"BELL"
 refers to U+1F514, and the name for U+0007 is "ALERT". All the
 functions in charnames have
been correspondingly updated.

New Restrictions in Multi-Character Case-Insensitive Matching in Regular Expression
Bracketed Character Classes

Unicode has now withdrawn their previous recommendation for regular
 expressions to automatically
handle cases where a single character can
 match multiple characters case-insensitively, for example,
the letter
 LATIN SMALL LETTER SHARP S and the sequence ss. This is because
 it turns out to be
impracticable to do this correctly in all
 circumstances. Because Perl has tried to do this as best it can,
it
 will continue to do so. (We are considering an option to turn it off.)
 However, a new restriction is
being added on such matches when they
 occur in [bracketed] character classes. People were
specifying
 things such as /[\0-\xff]/i, and being surprised that it matches the
 two character
sequence ss (since LATIN SMALL LETTER SHARP S occurs in
 this range). This behavior is also
inconsistent with using a
 property instead of a range: \p{Block=Latin1} also includes LATIN

SMALL LETTER SHARP S, but /[\p{Block=Latin1}]/i does not match ss.
 The new rule is that
for there to be a multi-character case-insensitive
 match within a bracketed character class, the
character must be
 explicitly listed, and not as an end point of a range. This more
 closely obeys the
Principle of Least Astonishment. See "Bracketed Character Classes" in perlrecharclass. Note that a
bug [perl
 #89774], now fixed as part of this change, prevented the previous
 behavior from working
fully.

Explicit rules for variable names and identifiers
Due to an oversight, single character variable names in v5.16 were
 completely unrestricted. This
opened the door to several kinds of
 insanity. As of v5.18, these now follow the rules of other
identifiers,
 in addition to accepting characters that match the \p{POSIX_Punct}
 property.

There is no longer any difference in the parsing of identifiers
 specified by using braces versus without
braces. For instance, perl
 used to allow ${foo:bar} (with a single colon) but not $foo:bar.
 Now
that both are handled by a single code path, they are both treated
 the same way: both are forbidden.
Note that this change is about the
 range of permissible literal identifiers, not other expressions.

Vertical tabs are now whitespace
No one could recall why \s didn't match \cK, the vertical tab.
 Now it does. Given the extreme rarity of
that character, very little
 breakage is expected. That said, here's what it means:

\s in a regex now matches a vertical tab in all circumstances.

Literal vertical tabs in a regex literal are ignored when the /x
 modifier is used.

Leading vertical tabs, alone or mixed with other whitespace, are now
 ignored when interpreting a
string as a number. For example:

 $dec = " \cK \t 123";
 $hex = " \cK \t 0xF";

 say 0 + $dec; # was 0 with warning, now 123
 say int $dec; # was 0, now 123
 say oct $hex; # was 0, now 15

/(?{})/ and /(??{})/ have been heavily reworked
The implementation of this feature has been almost completely rewritten.
 Although its main intent is to
fix bugs, some behaviors, especially
 related to the scope of lexical variables, will have changed. This

Perl version 5.24.0 documentation - perl5180delta

Page 6http://perldoc.perl.org

is
 described more fully in the Selected Bug Fixes section.

Stricter parsing of substitution replacement
It is no longer possible to abuse the way the parser parses s///e like
 this:

 %_=(_,"Just another ");
 $_="Perl hacker,\n";
 s//_}->{_/e;print

given now aliases the global $_
Instead of assigning to an implicit lexical $_, given now makes the
 global $_ an alias for its
argument, just like foreach. However, it
 still uses lexical $_ if there is lexical $_ in scope (again, just
like foreach) [perl #114020].

The smartmatch family of features are now experimental
Smart match, added in v5.10.0 and significantly revised in v5.10.1, has been
 a regular point of
complaint. Although there are a number of ways in which
 it is useful, it has also proven problematic
and confusing for both users and
 implementors of Perl. There have been a number of proposals on
how to best
 address the problem. It is clear that smartmatch is almost certainly either
 going to change
or go away in the future. Relying on its current behavior
 is not recommended.

Warnings will now be issued when the parser sees ~~, given, or when.
 To disable these warnings,
you can add this line to the appropriate scope:

 no if $] >= 5.018, warnings => "experimental::smartmatch";

Consider, though, replacing the use of these features, as they may change
 behavior again before
becoming stable.

Lexical $_ is now experimental
Since it was introduced in Perl v5.10, it has caused much confusion with no
 obvious solution:

Various modules (e.g., List::Util) expect callback routines to use the
 global $_. use
List::Util 'first'; my $_; first { $_ == 1 } @list
 does not work as one
would expect.

A my $_ declaration earlier in the same file can cause confusing closure
 warnings.

The "_" subroutine prototype character allows called subroutines to access
 your lexical $_, so
it is not really private after all.

Nevertheless, subroutines with a "(@)" prototype and methods cannot access
 the caller's
lexical $_, unless they are written in XS.

But even XS routines cannot access a lexical $_ declared, not in the
 calling subroutine, but in
an outer scope, iff that subroutine happened not
 to mention $_ or use any operators that
default to $_.

It is our hope that lexical $_ can be rehabilitated, but this may
 cause changes in its behavior. Please
use it with caution until it
 becomes stable.

readline() with $/ = \N now reads N characters, not N bytes
Previously, when reading from a stream with I/O layers such as encoding, the readline() function,
otherwise known as the <>
 operator, would read N bytes from the top-most layer. [perl #79960]

Now, N characters are read instead.

There is no change in behaviour when reading from streams with no
 extra layers, since bytes map
exactly to characters.

Perl version 5.24.0 documentation - perl5180delta

Page 7http://perldoc.perl.org

Overridden glob is now passed one argument
glob overrides used to be passed a magical undocumented second argument
 that identified the
caller. Nothing on CPAN was using this, and it got in
 the way of a bug fix, so it was removed. If you
really need to identify
 the caller, see Devel::Callsite on CPAN.

Here doc parsing
The body of a here document inside a quote-like operator now always begins
 on the line after the
"<<foo" marker. Previously, it was documented to
 begin on the line following the containing quote-like
operator, but that
 was only sometimes the case [perl #114040].

Alphanumeric operators must now be separated from the closing
 delimiter of regular
expressions

You may no longer write something like:

 m/a/and 1

Instead you must write

 m/a/ and 1

with whitespace separating the operator from the closing delimiter of
 the regular expression. Not
having whitespace has resulted in a
 deprecation warning since Perl v5.14.0.

qw(...) can no longer be used as parentheses
qw lists used to fool the parser into thinking they were always
 surrounded by parentheses. This
permitted some surprising constructions
 such as foreach $x qw(a b c) {...}, which should
really be written foreach $x (qw(a b c)) {...}. These would sometimes get the lexer into
 the
wrong state, so they didn't fully work, and the similar foreach qw(a
 b c) {...} that one might
expect to be permitted never worked at all.

This side effect of qw has now been abolished. It has been deprecated
 since Perl v5.13.11. It is now
necessary to use real parentheses
 everywhere that the grammar calls for them.

Interaction of lexical and default warnings
Turning on any lexical warnings used first to disable all default warnings
 if lexical warnings were not
already enabled:

 $*; # deprecation warning
 use warnings "void";
 $#; # void warning; no deprecation warning

Now, the debugging, deprecated, glob, inplace and malloc warnings
 categories are left on
when turning on lexical warnings (unless they are
 turned off by no warnings, of course).

This may cause deprecation warnings to occur in code that used to be free
 of warnings.

Those are the only categories consisting only of default warnings. Default
 warnings in other
categories are still disabled by use warnings "category",
 as we do not yet have the
infrastructure for controlling
 individual warnings.

state sub and our sub
Due to an accident of history, state sub and our sub were equivalent
 to a plain sub, so one could
even create an anonymous sub with our sub { ... }. These are now disallowed outside of the
"lexical_subs"
 feature. Under the "lexical_subs" feature they have new meanings described
 in "Lexical
Subroutines" in perlsub.

Perl version 5.24.0 documentation - perl5180delta

Page 8http://perldoc.perl.org

Defined values stored in environment are forced to byte strings
A value stored in an environment variable has always been stringified when
 inherited by child
processes.

In this release, when assigning to %ENV, values are immediately stringified,
 and converted to be only
a byte string.

First, it is forced to be a only a string. Then if the string is utf8 and the
 equivalent of
utf8::downgrade() works, that result is used; otherwise, the
 equivalent of utf8::encode() is
used, and a warning is issued about wide
 characters (Diagnostics).

require dies for unreadable files
When require encounters an unreadable file, it now dies. It used to
 ignore the file and continue
searching the directories in @INC
 [perl #113422].

gv_fetchmeth_* and SUPER
The various gv_fetchmeth_* XS functions used to treat a package whose
 named ended with
::SUPER specially. A method lookup on the Foo::SUPER
 package would be treated as a SUPER
method lookup on the Foo package. This
 is no longer the case. To do a SUPER lookup, pass the Foo
stash and the GV_SUPER flag.

split's first argument is more consistently interpreted
After some changes earlier in v5.17, split's behavior has been
 simplified: if the PATTERN argument
evaluates to a string
 containing one space, it is treated the way that a literal string
 containing one
space once was.

Deprecations
Module removals

The following modules will be removed from the core distribution in a future
 release, and will at that
time need to be installed from CPAN. Distributions
 on CPAN which require these modules will need to
list them as prerequisites.

The core versions of these modules will now issue "deprecated"-category
 warnings to alert you to
this fact. To silence these deprecation warnings,
 install the modules in question from CPAN.

Note that these are (with rare exceptions) fine modules that you are encouraged
 to continue to use.
Their disinclusion from core primarily hinges on their
 necessity to bootstrapping a fully functional,
CPAN-capable Perl installation,
 not usually on concerns over their design.

encoding

The use of this pragma is now strongly discouraged. It conflates the encoding
 of source text
with the encoding of I/O data, reinterprets escape sequences in
 source text (a questionable
choice), and introduces the UTF-8 bug to all runtime
 handling of character strings. It is broken
as designed and beyond repair.

For using non-ASCII literal characters in source text, please refer to utf8.
 For dealing with
textual I/O data, please refer to Encode and open.

Archive::Extract

B::Lint

B::Lint::Debug

CPANPLUS and all included CPANPLUS::* modules

Devel::InnerPackage

Log::Message

Log::Message::Config

Perl version 5.24.0 documentation - perl5180delta

Page 9http://perldoc.perl.org

Log::Message::Handlers

Log::Message::Item

Log::Message::Simple

Module::Pluggable

Module::Pluggable::Object

Object::Accessor

Pod::LaTeX

Term::UI

Term::UI::History

Deprecated Utilities
The following utilities will be removed from the core distribution in a
 future release as their associated
modules have been deprecated. They
 will remain available with the applicable CPAN distribution.

cpanp

cpanp-run-perl

cpan2dist

These items are part of the CPANPLUS distribution.

pod2latex

This item is part of the Pod::LaTeX distribution.

PL_sv_objcount
This interpreter-global variable used to track the total number of
 Perl objects in the interpreter. It is no
longer maintained and will
 be removed altogether in Perl v5.20.

Five additional characters should be escaped in patterns with /x
When a regular expression pattern is compiled with /x, Perl treats 6
 characters as white space to
ignore, such as SPACE and TAB. However,
 Unicode recommends 11 characters be treated thusly.
We will conform
 with this in a future Perl version. In the meantime, use of any of the
 missing
characters will raise a deprecation warning, unless turned off.
 The five characters are:

 U+0085 NEXT LINE
 U+200E LEFT-TO-RIGHT MARK
 U+200F RIGHT-TO-LEFT MARK
 U+2028 LINE SEPARATOR
 U+2029 PARAGRAPH SEPARATOR

User-defined charnames with surprising whitespace
A user-defined character name with trailing or multiple spaces in a row is
 likely a typo. This now
generates a warning when defined, on the assumption
 that uses of it will be unlikely to include the
excess whitespace.

Various XS-callable functions are now deprecated
All the functions used to classify characters will be removed from a
 future version of Perl, and should
not be used. With participating C
 compilers (e.g., gcc), compiling any file that uses any of these will

generate a warning. These were not intended for public use; there are
 equivalent, faster, macros for
most of them.

See "Character classes" in perlapi. The complete list is:

is_uni_alnum, is_uni_alnumc, is_uni_alnumc_lc, is_uni_alnum_lc, is_uni_alpha,
is_uni_alpha_lc, is_uni_ascii, is_uni_ascii_lc, is_uni_blank, is_uni_blank_lc,

Perl version 5.24.0 documentation - perl5180delta

Page 10http://perldoc.perl.org

is_uni_cntrl, is_uni_cntrl_lc, is_uni_digit, is_uni_digit_lc, is_uni_graph,
is_uni_graph_lc, is_uni_idfirst, is_uni_idfirst_lc, is_uni_lower,
is_uni_lower_lc, is_uni_print, is_uni_print_lc, is_uni_punct, is_uni_punct_lc,
is_uni_space, is_uni_space_lc, is_uni_upper, is_uni_upper_lc, is_uni_xdigit,
is_uni_xdigit_lc, is_utf8_alnum, is_utf8_alnumc, is_utf8_alpha, is_utf8_ascii,
is_utf8_blank, is_utf8_char, is_utf8_cntrl, is_utf8_digit, is_utf8_graph,
is_utf8_idcont, is_utf8_idfirst, is_utf8_lower, is_utf8_mark,
is_utf8_perl_space, is_utf8_perl_word, is_utf8_posix_digit, is_utf8_print,
is_utf8_punct, is_utf8_space, is_utf8_upper, is_utf8_xdigit, is_utf8_xidcont,
is_utf8_xidfirst.

In addition these three functions that have never worked properly are
 deprecated:
to_uni_lower_lc, to_uni_title_lc, and to_uni_upper_lc.

Certain rare uses of backslashes within regexes are now deprecated
There are three pairs of characters that Perl recognizes as
 metacharacters in regular expression
patterns: {}, [], and ().
 These can be used as well to delimit patterns, as in:

 m{foo}
 s(foo)(bar)

Since they are metacharacters, they have special meaning to regular
 expression patterns, and it turns
out that you can't turn off that
 special meaning by the normal means of preceding them with a
backslash,
 if you use them, paired, within a pattern delimited by them. For
 example, in

 m{foo\{1,3\}}

the backslashes do not change the behavior, and this matches "f o" followed by one to three more
occurrences of "o".

Usages like this, where they are interpreted as metacharacters, are
 exceedingly rare; we think there
are none, for example, in all of CPAN.
 Hence, this deprecation should affect very little code. It does
give
 notice, however, that any such code needs to change, which will in turn
 allow us to change the
behavior in future Perl versions so that the
 backslashes do have an effect, and without fear that we
are silently
 breaking any existing code.

Splitting the tokens (? and (* in regular expressions
A deprecation warning is now raised if the (and ? are separated
 by white space or comments in
(?...) regular expression constructs.
 Similarly, if the (and * are separated in (*VERB...)

constructs.

Pre-PerlIO IO implementations
In theory, you can currently build perl without PerlIO. Instead, you'd use a
 wrapper around stdio or
sfio. In practice, this isn't very useful. It's not
 well tested, and without any support for IO layers or
(thus) Unicode, it's not
 much of a perl. Building without PerlIO will most likely be removed in the
 next
version of perl.

PerlIO supports a stdio layer if stdio use is desired. Similarly a
 sfio layer could be produced in the
future, if needed.

Future Deprecations
Platforms without support infrastructure

Both Windows CE and z/OS have been historically under-maintained, and are
 currently
neither successfully building nor regularly being smoke tested.
 Efforts are underway to change
this situation, but it should not be taken for
 granted that the platforms are safe and supported.
If they do not become
 buildable and regularly smoked, support for them may be actively
removed in
 future releases. If you have an interest in these platforms and you can lend
 your

Perl version 5.24.0 documentation - perl5180delta

Page 11http://perldoc.perl.org

time, expertise, or hardware to help support these platforms, please let
 the perl development
effort know by emailing perl5-porters@perl.org.

Some platforms that appear otherwise entirely dead are also on the short list
 for removal
between now and v5.20.0:

DG/UX

NeXT

We also think it likely that current versions of Perl will no longer
 build AmigaOS, DJGPP,
NetWare (natively), OS/2 and Plan 9. If you
 are using Perl on such a platform and have an
interest in ensuring
 Perl's future on them, please contact us.

We believe that Perl has long been unable to build on mixed endian
 architectures (such as
PDP-11s), and intend to remove any remaining
 support code. Similarly, code supporting the
long umaintained GNU
 dld will be removed soon if no-one makes themselves known as an

active user.

Swapping of $< and $>

Perl has supported the idiom of swapping $< and $> (and likewise $(and
 $)) to temporarily
drop permissions since 5.0, like this:

 ($<, $>) = ($>, $<);

However, this idiom modifies the real user/group id, which can have
 undesirable side-effects,
is no longer useful on any platform perl
 supports and complicates the implementation of these
variables and list
 assignment in general.

As an alternative, assignment only to $> is recommended:

 local $> = $<;

See also: Setuid Demystified.

microperl, long broken and of unclear present purpose, will be removed.

Revamping "\Q" semantics in double-quotish strings when combined with
 other escapes.

There are several bugs and inconsistencies involving combinations
 of \Q and escapes like \x,
\L, etc., within a \Q...\E pair.
 These need to be fixed, and doing so will necessarily change
current
 behavior. The changes have not yet been settled.

Use of $x, where x stands for any actual (non-printing) C0 control
 character will be disallowed
in a future Perl version. Use ${x}
 instead (where again x stands for a control character),
 or
better, $^A , where ^ is a caret (CIRCUMFLEX ACCENT),
 and A stands for any of the
characters listed at the end of "OPERATOR DIFFERENCES" in perlebcdic.

Performance Enhancements
Lists of lexical variable declarations (my($x, $y)) are now optimised
 down to a single op
and are hence faster than before.

A new C preprocessor define NO_TAINT_SUPPORT was added that, if set,
 disables Perl's taint
support altogether. Using the -T or -t command
 line flags will cause a fatal error. Beware that
both core tests as
 well as many a CPAN distribution's tests will fail with this change. On
 the
upside, it provides a small performance benefit due to reduced
 branching.

Do not enable this unless you know exactly what you are getting yourself
 into.

pack with constant arguments is now constant folded in most cases
 [perl #113470].

Speed up in regular expression matching against Unicode properties. The
 largest gain is for
\X, the Unicode "extended grapheme cluster." The
 gain for it is about 35% - 40%. Bracketed
character classes, e.g., [0-9\x{100}] containing code points above 255 are also now

Perl version 5.24.0 documentation - perl5180delta

Page 12http://perldoc.perl.org

faster.On platforms supporting it, several former macros are now implemented as static
 inline
functions. This should speed things up slightly on non-GCC platforms.

The optimisation of hashes in boolean context has been extended to
 affect scalar(%hash),
%hash ? ... : ..., and sub { %hash || ... }.

Filetest operators manage the stack in a fractionally more efficient manner.

Globs used in a numeric context are now numified directly in most cases,
 rather than being
numified via stringification.

The x repetition operator is now folded to a single constant at compile
 time if called in scalar
context with constant operands and no parentheses
 around the left operand.

Modules and Pragmata
New Modules and Pragmata

Config::Perl::V version 0.16 has been added as a dual-lifed module.
 It provides structured
data retrieval of perl -V output including
 information only known to the perl binary and not
available via Config.

Updated Modules and Pragmata
For a complete list of updates, run:

 $ corelist --diff 5.16.0 5.18.0

You can substitute your favorite version in place of 5.16.0, too.

Archive::Extract has been upgraded to 0.68.

Work around an edge case on Linux with Busybox's unzip.

Archive::Tar has been upgraded to 1.90.

ptar now supports the -T option as well as dashless options
 [rt.cpan.org #75473], [rt.cpan.org
#75475].

Auto-encode filenames marked as UTF-8 [rt.cpan.org #75474].

Don't use tell on IO::Zlib handles [rt.cpan.org #64339].

Don't try to chown on symlinks.

autodie has been upgraded to 2.13.

autodie now plays nicely with the 'open' pragma.

B has been upgraded to 1.42.

The stashoff method of COPs has been added. This provides access to an
 internal field
added in perl 5.16 under threaded builds [perl #113034].

B::COP::stashpv now supports UTF-8 package names and embedded NULs.

All CVf_* and GVf_*
 and more SV-related flag values are now provided as constants in the
B::
 namespace and available for export. The default export list has not changed.

This makes the module work with the new pad API.

B::Concise has been upgraded to 0.95.

The -nobanner option has been fixed, and formats can now be dumped.
 When passed a
sub name to dump, it will check also to see whether it
 is the name of a format. If a sub and a
format share the same name,
 it will dump both.

This adds support for the new OpMAYBE_TRUEBOOL and OPpTRUEBOOL flags.

B::Debug has been upgraded to 1.18.

Perl version 5.24.0 documentation - perl5180delta

Page 13http://perldoc.perl.org

This adds support (experimentally) for B::PADLIST, which was
 added in Perl 5.17.4.

B::Deparse has been upgraded to 1.20.

Avoid warning when run under perl -w.

It now deparses
 loop controls with the correct precedence, and multiple statements in a
format line are also now deparsed correctly.

This release suppresses trailing semicolons in formats.

This release adds stub deparsing for lexical subroutines.

It no longer dies when deparsing sort without arguments. It now
 correctly omits the comma
for system $prog @args and exec $prog
 @args.

bignum, bigint and bigrat have been upgraded to 0.33.

The overrides for hex and oct have been rewritten, eliminating
 several problems, and making
one incompatible change:

Formerly, whichever of use bigint or use bigrat was compiled later
 would take
precedence over the other, causing hex and oct not to
 respect the other pragma
when in scope.

Using any of these three pragmata would cause hex and oct anywhere
 else in the
program to evaluate their arguments in list context and prevent
 them from inferring $_
when called without arguments.

Using any of these three pragmata would make oct("1234") return 1234
 (for any
number not beginning with 0) anywhere in the program. Now "1234"
 is translated from
octal to decimal, whether within the pragma's scope or
 not.

The global overrides that facilitate lexical use of hex and oct now
 respect any existing
overrides that were in place before the new overrides
 were installed, falling back to
them outside of the scope of use bignum.

use bignum "hex", use bignum "oct" and similar invocations for bigint
 and
bigrat now export a hex or oct function, instead of providing a
 global override.

Carp has been upgraded to 1.29.

Carp is no longer confused when caller returns undef for a package that
 has been deleted.

The longmess() and shortmess() functions are now documented.

CGI has been upgraded to 3.63.

Unrecognized HTML escape sequences are now handled better, problematic
 trailing newlines
are no longer inserted after <form> tags
 by startform() or start_form(), and bogus
"Insecure Dependency"
 warnings appearing with some versions of perl are now worked
around.

Class::Struct has been upgraded to 0.64.

The constructor now respects overridden accessor methods [perl #29230].

Compress::Raw::Bzip2 has been upgraded to 2.060.

The misuse of Perl's "magic" API has been fixed.

Compress::Raw::Zlib has been upgraded to 2.060.

Upgrade bundled zlib to version 1.2.7.

Fix build failures on Irix, Solaris, and Win32, and also when building as C++
 [rt.cpan.org
#69985], [rt.cpan.org #77030], [rt.cpan.org #75222].

The misuse of Perl's "magic" API has been fixed.

Perl version 5.24.0 documentation - perl5180delta

Page 14http://perldoc.perl.org

compress(), uncompress(), memGzip() and memGunzip() have
 been speeded up by
making parameter validation more efficient.

CPAN::Meta::Requirements has been upgraded to 2.122.

Treat undef requirements to from_string_hash as 0 (with a warning).

Added requirements_for_module method.

CPANPLUS has been upgraded to 0.9135.

Allow adding blib/script to PATH.

Save the history between invocations of the shell.

Handle multiple makemakerargs and makeflags arguments better.

This resolves issues with the SQLite source engine.

Data::Dumper has been upgraded to 2.145.

It has been optimized to only build a seen-scalar hash as necessary,
 thereby speeding up
serialization drastically.

Additional tests were added in order to improve statement, branch, condition
 and subroutine
coverage. On the basis of the coverage analysis, some of the
 internals of Dumper.pm were
refactored. Almost all methods are now
 documented.

DB_File has been upgraded to 1.827.

The main Perl module no longer uses the "@_" construct.

Devel::Peek has been upgraded to 1.11.

This fixes compilation with C++ compilers and makes the module work with
 the new pad API.

Digest::MD5 has been upgraded to 2.52.

Fix Digest::Perl::MD5 OO fallback [rt.cpan.org #66634].

Digest::SHA has been upgraded to 5.84.

This fixes a double-free bug, which might have caused vulnerabilities
 in some cases.

DynaLoader has been upgraded to 1.18.

This is due to a minor code change in the XS for the VMS implementation.

This fixes warnings about using CODE sections without an OUTPUT
 section.

Encode has been upgraded to 2.49.

The Mac alias x-mac-ce has been added, and various bugs have been fixed
 in
Encode::Unicode, Encode::UTF7 and Encode::GSM0338.

Env has been upgraded to 1.04.

Its SPLICE implementation no longer misbehaves in list context.

ExtUtils::CBuilder has been upgraded to 0.280210.

Manifest files are now correctly embedded for those versions of VC++ which
 make use of
them. [perl #111782, #111798].

A list of symbols to export can now be passed to link() when on
 Windows, as on other
OSes [perl #115100].

ExtUtils::ParseXS has been upgraded to 3.18.

The generated C code now avoids unnecessarily incrementing PL_amagic_generation on
Perl versions where it's done automatically
 (or on current Perl where the variable no longer
exists).

Perl version 5.24.0 documentation - perl5180delta

Page 15http://perldoc.perl.org

This avoids a bogus warning for initialised XSUB non-parameters [perl
 #112776].

File::Copy has been upgraded to 2.26.

copy() no longer zeros files when copying into the same directory,
 and also now fails (as it
has long been documented to do) when attempting
 to copy a file over itself.

File::DosGlob has been upgraded to 1.10.

The internal cache of file names that it keeps for each caller is now
 freed when that caller is
freed. This means use File::DosGlob 'glob'; eval 'scalar <*>' no longer leaks
memory.

File::Fetch has been upgraded to 0.38.

Added the 'file_default' option for URLs that do not have a file
 component.

Use File::HomeDir when available, and provide PERL5_CPANPLUS_HOME to
 override the
autodetection.

Always re-fetch CHECKSUMS if fetchdir is set.

File::Find has been upgraded to 1.23.

This fixes inconsistent unixy path handling on VMS.

Individual files may now appear in list of directories to be searched
 [perl #59750].

File::Glob has been upgraded to 1.20.

File::Glob has had exactly the same fix as File::DosGlob. Since it is
 what Perl's own glob
operator itself uses (except on VMS), this means eval 'scalar <*>' no longer leaks.

A space-separated list of patterns return long lists of results no longer
 results in memory
corruption or crashes. This bug was introduced in
 Perl 5.16.0. [perl #114984]

File::Spec::Unix has been upgraded to 3.40.

abs2rel could produce incorrect results when given two relative paths or
 the root directory
twice [perl #111510].

File::stat has been upgraded to 1.07.

File::stat ignores the filetest pragma, and warns when used in
 combination therewith. But
it was not warning for -r. This has been
 fixed [perl #111640].

-p now works, and does not return false for pipes [perl #111638].

Previously File::stat's overloaded -x and -X operators did not give
 the correct results for
directories or executable files when running as
 root. They had been treating executable
permissions for root just like for
 any other user, performing group membership tests etc for
files not owned
 by root. They now follow the correct Unix behaviour - for a directory they
 are
always true, and for a file if any of the three execute permission bits
 are set then they report
that root can execute the file. Perl's builtin -x and -X operators have always been correct.

File::Temp has been upgraded to 0.23

Fixes various bugs involving directory removal. Defers unlinking tempfiles if
 the initial unlink
fails, which fixes problems on NFS.

GDBM_File has been upgraded to 1.15.

The undocumented optional fifth parameter to TIEHASH has been
 removed. This was
intended to provide control of the callback used by gdbm* functions in case of fatal errors
(such as filesystem problems),
 but did not work (and could never have worked). No code on
CPAN even
 attempted to use it. The callback is now always the previous default, croak.
Problems on some platforms with how the C croak function
 is called have also been
resolved.

Perl version 5.24.0 documentation - perl5180delta

Page 16http://perldoc.perl.org

Hash::Util has been upgraded to 0.15.

hash_unlocked and hashref_unlocked now returns true if the hash is
 unlocked, instead
of always returning false [perl #112126].

hash_unlocked, hashref_unlocked, lock_hash_recurse and
unlock_hash_recurse are now exportable [perl #112126].

Two new functions, hash_locked and hashref_locked, have been added.
 Oddly enough,
these two functions were already exported, even though they
 did not exist [perl #112126].

HTTP::Tiny has been upgraded to 0.025.

Add SSL verification features [github #6], [github #9].

Include the final URL in the response hashref.

Add local_address option.

This improves SSL support.

IO has been upgraded to 1.28.

sync() can now be called on read-only file handles [perl #64772].

IO::Socket tries harder to cache or otherwise fetch socket
 information.

IPC::Cmd has been upgraded to 0.80.

Use POSIX::_exit instead of exit in run_forked [rt.cpan.org #76901].

IPC::Open3 has been upgraded to 1.13.

The open3() function no longer uses POSIX::close() to close file
 descriptors since that
breaks the ref-counting of file descriptors done by
 PerlIO in cases where the file descriptors
are shared by PerlIO streams,
 leading to attempts to close the file descriptors a second time
when
 any such PerlIO streams are closed later on.

Locale::Codes has been upgraded to 3.25.

It includes some new codes.

Memoize has been upgraded to 1.03.

Fix the MERGE cache option.

Module::Build has been upgraded to 0.4003.

Fixed bug where modules without $VERSION might have a version of '0' listed
 in 'provides'
metadata, which will be rejected by PAUSE.

Fixed bug in PodParser to allow numerals in module names.

Fixed bug where giving arguments twice led to them becoming arrays, resulting
 in install paths
like ARRAY(0xdeadbeef)/lib/Foo.pm.

A minor bug fix allows markup to be used around the leading "Name" in
 a POD "abstract" line,
and some documentation improvements have been made.

Module::CoreList has been upgraded to 2.90

Version information is now stored as a delta, which greatly reduces the
 size of the
CoreList.pm file.

This restores compatibility with older versions of perl and cleans up
 the corelist data for
various modules.

Module::Load::Conditional has been upgraded to 0.54.

Fix use of requires on perls installed to a path with spaces.

Various enhancements include the new use of Module::Metadata.

Perl version 5.24.0 documentation - perl5180delta

Page 17http://perldoc.perl.org

Module::Metadata has been upgraded to 1.000011.

The creation of a Module::Metadata object for a typical module file has
 been sped up by about
40%, and some spurious warnings about $VERSIONs
 have been suppressed.

Module::Pluggable has been upgraded to 4.7.

Amongst other changes, triggers are now allowed on events, which gives
 a powerful way to
modify behaviour.

Net::Ping has been upgraded to 2.41.

This fixes some test failures on Windows.

Opcode has been upgraded to 1.25.

Reflect the removal of the boolkeys opcode and the addition of the
 clonecv, introcv and padcv
opcodes.

overload has been upgraded to 1.22.

no overload now warns for invalid arguments, just like use overload.

PerlIO::encoding has been upgraded to 0.16.

This is the module implementing the ":encoding(...)" I/O layer. It no
 longer corrupts memory or
crashes when the encoding back-end reallocates
 the buffer or gives it a typeglob or shared
hash key scalar.

PerlIO::scalar has been upgraded to 0.16.

The buffer scalar supplied may now only contain code points 0xFF or
 lower. [perl #109828]

Perl::OSType has been upgraded to 1.003.

This fixes a bug detecting the VOS operating system.

Pod::Html has been upgraded to 1.18.

The option --libpods has been reinstated. It is deprecated, and its use
 does nothing other
than issue a warning that it is no longer supported.

Since the HTML files generated by pod2html claim to have a UTF-8 charset,
 actually write the
files out using UTF-8 [perl #111446].

Pod::Simple has been upgraded to 3.28.

Numerous improvements have been made, mostly to Pod::Simple::XHTML,
 which also has a
compatibility change: the codes_in_verbatim option
 is now disabled by default. See
cpan/Pod-Simple/ChangeLog for the
 full details.

re has been upgraded to 0.23

Single character [class]es like /[s]/ or /[s]/i are now optimized
 as if they did not have the
brackets, i.e. /s/ or /s/i.

See note about op_comp in the Internal Changes section below.

Safe has been upgraded to 2.35.

Fix interactions with Devel::Cover.

Don't eval code under no strict.

Scalar::Util has been upgraded to version 1.27.

Fix an overloading issue with sum.

first and reduce now check the callback first (so &first(1) is
 disallowed).

Fix tainted on magical values [rt.cpan.org #55763].

Fix sum on previously magical values [rt.cpan.org #61118].

Perl version 5.24.0 documentation - perl5180delta

Page 18http://perldoc.perl.org

Fix reading past the end of a fixed buffer [rt.cpan.org #72700].

Search::Dict has been upgraded to 1.07.

No longer require stat on filehandles.

Use fc for casefolding.

Socket has been upgraded to 2.009.

Constants and functions required for IP multicast source group membership
 have been added.

unpack_sockaddr_in() and unpack_sockaddr_in6() now return just the IP
 address in
scalar context, and inet_ntop() now guards against incorrect
 length scalars being passed
in.

This fixes an uninitialized memory read.

Storable has been upgraded to 2.41.

Modifying $_[0] within STORABLE_freeze no longer results in crashes
 [perl #112358].

An object whose class implements STORABLE_attach is now thawed only once
 when there
are multiple references to it in the structure being thawed
 [perl #111918].

Restricted hashes were not always thawed correctly [perl #73972].

Storable would croak when freezing a blessed REF object with a STORABLE_freeze()
method [perl #113880].

It can now freeze and thaw vstrings correctly. This causes a slight
 incompatible change in the
storage format, so the format version has
 increased to 2.9.

This contains various bugfixes, including compatibility fixes for older
 versions of Perl and
vstring handling.

Sys::Syslog has been upgraded to 0.32.

This contains several bug fixes relating to getservbyname(), setlogsock()and log levels
in syslog(), together with fixes for
 Windows, Haiku-OS and GNU/kFreeBSD. See
cpan/Sys-Syslog/Changes
 for the full details.

Term::ANSIColor has been upgraded to 4.02.

Add support for italics.

Improve error handling.

Term::ReadLine has been upgraded to 1.10. This fixes the
 use of the cpan and cpanp shells
on Windows in the event that the current
 drive happens to contain a \dev\tty file.

Test::Harness has been upgraded to 3.26.

Fix glob semantics on Win32 [rt.cpan.org #49732].

Don't use Win32::GetShortPathName when calling perl [rt.cpan.org #47890].

Ignore -T when reading shebang [rt.cpan.org #64404].

Handle the case where we don't know the wait status of the test more
 gracefully.

Make the test summary 'ok' line overridable so that it can be changed to a
 plugin to make the
output of prove idempotent.

Don't run world-writable files.

Text::Tabs and Text::Wrap have been upgraded to
 2012.0818. Support for Unicode combining
characters has been added to them
 both.

threads::shared has been upgraded to 1.31.

This adds the option to warn about or ignore attempts to clone structures
 that can't be cloned,
as opposed to just unconditionally dying in
 that case.

Perl version 5.24.0 documentation - perl5180delta

Page 19http://perldoc.perl.org

This adds support for dual-valued values as created by Scalar::Util::dualvar.

Tie::StdHandle has been upgraded to 4.3.

READ now respects the offset argument to read [perl #112826].

Time::Local has been upgraded to 1.2300.

Seconds values greater than 59 but less than 60 no longer cause timegm() and
timelocal() to croak.

Unicode::UCD has been upgraded to 0.53.

This adds a function all_casefolds()
 that returns all the casefolds.

Win32 has been upgraded to 0.47.

New APIs have been added for getting and setting the current code page.

Removed Modules and Pragmata
Version::Requirements has been removed from the core distribution. It is
 available under a
different name: CPAN::Meta::Requirements.

Documentation
Changes to Existing Documentation
perlcheat

perlcheat has been reorganized, and a few new sections were added.

perldata

Now explicitly documents the behaviour of hash initializer lists that
 contain duplicate keys.

perldiag

The explanation of symbolic references being prevented by "strict refs"
 now doesn't assume
that the reader knows what symbolic references are.

perlfaq

perlfaq has been synchronized with version 5.0150040 from CPAN.

perlfunc

The return value of pipe is now documented.

Clarified documentation of our.

perlop

Loop control verbs (dump, goto, next, last and redo) have always
 had the same
precedence as assignment operators, but this was not documented
 until now.

Diagnostics

The following additions or changes have been made to diagnostic output,
 including warnings and fatal
error messages. For the complete list of
 diagnostic messages, see perldiag.

New Diagnostics
New Errors

Unterminated delimiter for here document

This message now occurs when a here document label has an initial quotation
 mark but the
final quotation mark is missing.

This replaces a bogus and misleading error message about not finding the label
 itself [perl
#114104].

Perl version 5.24.0 documentation - perl5180delta

Page 20http://perldoc.perl.org

panic: child pseudo-process was never scheduled

This error is thrown when a child pseudo-process in the ithreads implementation
 on Windows
was not scheduled within the time period allowed and therefore was
 not able to initialize
properly [perl #88840].

Group name must start with a non-digit word character in regex; marked by <-- HERE in m/%s
/

This error has been added for (?&0), which is invalid. It used to
 produce an incomprehensible
error message [perl #101666].

Can't use an undefined value as a subroutine reference

Calling an undefined value as a subroutine now produces this error message.
 It used to, but
was accidentally disabled, first in Perl 5.004 for
 non-magical variables, and then in Perl v5.14
for magical (e.g., tied)
 variables. It has now been restored. In the mean time, undef was
treated
 as an empty string [perl #113576].

Experimental "%s" subs not enabled

To use lexical subs, you must first enable them:

 no warnings 'experimental::lexical_subs';
 use feature 'lexical_subs';
 my sub foo { ... }

New Warnings

'Strings with code points over 0xFF may not be mapped into in-memory file handles'

'%s' resolved to '\o{%s}%d'

'Trailing white-space in a charnames alias definition is deprecated'

'A sequence of multiple spaces in a charnames alias definition is deprecated'

'Passing malformed UTF-8 to "%s" is deprecated'

Subroutine "&%s" is not available

(W closure) During compilation, an inner named subroutine or eval is
 attempting to capture an
outer lexical subroutine that is not currently
 available. This can happen for one of two reasons.
First, the lexical
 subroutine may be declared in an outer anonymous subroutine that has not

yet been created. (Remember that named subs are created at compile time,
 while anonymous
subs are created at run-time.) For example,

 sub { my sub a {...} sub f { \&a } }

At the time that f is created, it can't capture the current the "a" sub,
 since the anonymous
subroutine hasn't been created yet. Conversely, the
 following won't give a warning since the
anonymous subroutine has by now
 been created and is live:

 sub { my sub a {...} eval 'sub f { \&a }' }->();

The second situation is caused by an eval accessing a variable that has
 gone out of scope, for
example,

 sub f {
 my sub a {...}
 sub { eval '\&a' }
 }
 f()->();

Here, when the '\&a' in the eval is being compiled, f() is not currently
 being executed, so its &a

Perl version 5.24.0 documentation - perl5180delta

Page 21http://perldoc.perl.org

is not available for capture.

"%s" subroutine &%s masks earlier declaration in same %s

(W misc) A "my" or "state" subroutine has been redeclared in the
 current scope or statement,
effectively eliminating all access to
 the previous instance. This is almost always a
typographical error.
 Note that the earlier subroutine will still exist until the end of
 the scope or
until all closure references to it are destroyed.

The %s feature is experimental

(S experimental) This warning is emitted if you enable an experimental
 feature via use
feature. Simply suppress the warning if you want
 to use the feature, but know that in doing
so you are taking the risk
 of using an experimental feature which may change or be removed
in a
 future Perl version:

 no warnings "experimental::lexical_subs";
 use feature "lexical_subs";

sleep(%u) too large

(W overflow) You called sleep with a number that was larger than it can
 reliably handle and
sleep probably slept for less time than requested.

Wide character in setenv

Attempts to put wide characters into environment variables via %ENV now
 provoke this
warning.

"Invalid negative number (%s) in chr"

chr() now warns when passed a negative value [perl #83048].

"Integer overflow in srand"

srand() now warns when passed a value that doesn't fit in a UV (since the
 value will be
truncated rather than overflowing) [perl #40605].

"-i used with no filenames on the command line, reading from STDIN"

Running perl with the -i flag now warns if no input files are provided on
 the command line
[perl #113410].

Changes to Existing Diagnostics
$* is no longer supported

The warning that use of $* and $# is no longer supported is now
 generated for every location
that references them. Previously it would fail
 to be generated if another variable using the
same typeglob was seen first
 (e.g. @* before $*), and would not be generated for the second
and
 subsequent uses. (It's hard to fix the failure to generate warnings at all
 without also
generating them every time, and warning every time is
 consistent with the warnings that $[
used to generate.)

The warnings for \b{ and \B{ were added. They are a deprecation
 warning which should be
turned off by that category. One should not
 have to turn off regular regexp warnings as well to
get rid of these.

Constant(%s): Call to &{$^H{%s}} did not return a defined value

Constant overloading that returns undef results in this error message.
 For numeric constants,
it used to say "Constant(undef)". "undef" has been
 replaced with the number itself.

The error produced when a module cannot be loaded now includes a hint that
 the module may
need to be installed: "Can't locate hopping.pm in @INC (you
 may need to install the hopping
module) (@INC contains: ...)"

Perl version 5.24.0 documentation - perl5180delta

Page 22http://perldoc.perl.org

vector argument not supported with alpha versions

This warning was not suppressible, even with no warnings. Now it is
 suppressible, and has
been moved from the "internal" category to the
 "printf" category.

Can't do {n,m} with n > m in regex; marked by <-- HERE in m/%s/

This fatal error has been turned into a warning that reads:

Quantifier {n,m} with n > m can't match in regex

(W regexp) Minima should be less than or equal to maxima. If you really want
 your regexp to
match something 0 times, just put {0}.

The "Runaway prototype" warning that occurs in bizarre cases has been
 removed as being
unhelpful and inconsistent.

The "Not a format reference" error has been removed, as the only case in
 which it could be
triggered was a bug.

The "Unable to create sub named %s" error has been removed for the same
 reason.

The 'Can't use "my %s" in sort comparison' error has been downgraded to a
 warning, '"my %s"
used in sort comparison' (with 'state' instead of 'my'
 for state variables). In addition, the
heuristics for guessing whether
 lexical $a or $b has been misused have been improved to
generate fewer
 false positives. Lexical $a and $b are no longer disallowed if they are
 outside
the sort block. Also, a named unary or list operator inside the
 sort block no longer causes the
$a or $b to be ignored [perl #86136].

Utility Changes
h2xs

h2xs no longer produces invalid code for empty defines. [perl #20636]

Configuration and Compilation
Added useversionedarchname option to Configure

When set, it includes 'api_versionstring' in 'archname'. E.g.
 x86_64-linux-5.13.6-thread-multi. It
is unset by default.

This feature was requested by Tim Bunce, who observed that INSTALL_BASE creates a
library structure that does not
 differentiate by perl version. Instead, it places architecture

specific files in "$install_base/lib/perl5/$archname". This makes
 it difficult to use a common
INSTALL_BASE library path with
 multiple versions of perl.

By setting -Duseversionedarchname, the $archname will be
 distinct for architecture and
API version, allowing mixed use of INSTALL_BASE.

Add a PERL_NO_INLINE_FUNCTIONS option

If PERL_NO_INLINE_FUNCTIONS is defined, don't include "inline.h"

This permits test code to include the perl headers for definitions without
 creating a link
dependency on the perl library (which may not exist yet).

Configure will honour the external MAILDOMAIN environment variable, if set.

installman no longer ignores the silent option

Both META.yml and META.json files are now included in the distribution.

Configure will now correctly detect isblank() when compiling with a C++
 compiler.

The pager detection in Configure has been improved to allow responses which
 specify options
after the program name, e.g. /usr/bin/less -R, if the user
 accepts the default value. This helps
perldoc when handling ANSI escapes
 [perl #72156].

Perl version 5.24.0 documentation - perl5180delta

Page 23http://perldoc.perl.org

Testing
The test suite now has a section for tests that require very large amounts
 of memory. These
tests won't run by default; they can be enabled by
 setting the PERL_TEST_MEMORY
environment variable to the number of
 gibibytes of memory that may be safely used.

Platform Support
Discontinued Platforms

BeOS

BeOS was an operating system for personal computers developed by Be Inc,
 initially for their
BeBox hardware. The OS Haiku was written as an open
 source replacement for/continuation
of BeOS, and its perl port is current and
 actively maintained.

UTS Global

Support code relating to UTS global has been removed. UTS was a mainframe
 version of
System V created by Amdahl, subsequently sold to UTS Global. The
 port has not been
touched since before Perl v5.8.0, and UTS Global is now
 defunct.

VM/ESA

Support for VM/ESA has been removed. The port was tested on 2.3.0, which
 IBM ended
service on in March 2002. 2.4.0 ended service in June 2003, and
 was superseded by Z/VM.
The current version of Z/VM is V6.2.0, and scheduled
 for end of service on 2015/04/30.

MPE/IX

Support for MPE/IX has been removed.

EPOC

Support code relating to EPOC has been removed. EPOC was a family of
 operating systems
developed by Psion for mobile devices. It was the
 predecessor of Symbian. The port was last
updated in April 2002.

Rhapsody

Support for Rhapsody has been removed.

Platform-Specific Notes
AIX

Configure now always adds -qlanglvl=extc99 to the CC flags on AIX when
 using xlC. This will
make it easier to compile a number of XS-based modules
 that assume C99 [perl #113778].

clang++

There is now a workaround for a compiler bug that prevented compiling
 with clang++ since Perl
v5.15.7 [perl #112786].

C++

When compiling the Perl core as C++ (which is only semi-supported), the
 mathom functions are now
compiled as extern "C", to ensure proper
 binary compatibility. (However, binary compatibility isn't
generally
 guaranteed anyway in the situations where this would matter.)

Darwin

Stop hardcoding an alignment on 8 byte boundaries to fix builds using
 -Dusemorebits.

Haiku

Perl should now work out of the box on Haiku R1 Alpha 4.

Perl version 5.24.0 documentation - perl5180delta

Page 24http://perldoc.perl.org

MidnightBSD

libc_r was removed from recent versions of MidnightBSD and older versions
 work better with
pthread. Threading is now enabled using pthread which
 corrects build errors with threading
enabled on 0.4-CURRENT.

Solaris

In Configure, avoid running sed commands with flags not supported on Solaris.

VMS

Where possible, the case of filenames and command-line arguments is now
 preserved by
enabling the CRTL features DECC$EFS_CASE_PRESERVE and DECC$ARGV_PARSE_STYLE at
start-up time. The latter only takes effect
 when extended parse is enabled in the process from
which Perl is run.

The character set for Extended Filename Syntax (EFS) is now enabled by default
 on VMS.
Among other things, this provides better handling of dots in directory
 names, multiple dots in
filenames, and spaces in filenames. To obtain the old
 behavior, set the logical name
DECC$EFS_CHARSET to DISABLE.

Fixed linking on builds configured with -Dusemymalloc=y.

Experimental support for building Perl with the HP C++ compiler is available
 by configuring
with -Dusecxx.

All C header files from the top-level directory of the distribution are now
 installed on VMS,
providing consistency with a long-standing practice on other
 platforms. Previously only a
subset were installed, which broke non-core
 extension builds for extensions that depended on
the missing include files.

Quotes are now removed from the command verb (but not the parameters) for
 commands
spawned via system, backticks, or a piped open. Previously,
 quotes on the verb were passed
through to DCL, which would fail to recognize
 the command. Also, if the verb is actually a path
to an image or command
 procedure on an ODS-5 volume, quoting it now allows the path to
contain spaces.

The a2p build has been fixed for the HP C++ compiler on OpenVMS.

Win32

Perl can now be built using Microsoft's Visual C++ 2012 compiler by specifying

CCTYPE=MSVC110 (or MSVC110FREE if you are using the free Express edition for

Windows Desktop) in win32/Makefile.

The option to build without USE_SOCKETS_AS_HANDLES has been removed.

Fixed a problem where perl could crash while cleaning up threads (including the
 main thread)
in threaded debugging builds on Win32 and possibly other platforms
 [perl #114496].

A rare race condition that would lead to sleep taking more
 time than requested, and possibly
even hanging, has been fixed [perl #33096].

link on Win32 now attempts to set $! to more appropriate values
 based on the Win32 API
error code. [perl #112272]

Perl no longer mangles the environment block, e.g. when launching a new
 sub-process, when
the environment contains non-ASCII characters. Known
 problems still remain, however, when
the environment contains characters
 outside of the current ANSI codepage (e.g. see the item
about Unicode in %ENV in http://perl5.git.perl.org/perl.git/blob/HEAD:/Porting/todo.pod).
 [perl
#113536]

Building perl with some Windows compilers used to fail due to a problem
 with miniperl's glob

Perl version 5.24.0 documentation - perl5180delta

Page 25http://perldoc.perl.org

operator (which uses the perlglob program)
 deleting the PATH environment variable [perl
#113798].

A new makefile option, USE_64_BIT_INT, has been added to the Windows
 makefiles. Set
this to "define" when building a 32-bit perl if you want
 it to use 64-bit integers.

Machine code size reductions, already made to the DLLs of XS modules in
 Perl v5.17.2, have
now been extended to the perl DLL itself.

Building with VC++ 6.0 was inadvertently broken in Perl v5.17.2 but has
 now been fixed again.

WinCE

Building on WinCE is now possible once again, although more work is required
 to fully restore a clean
build.

Internal Changes
Synonyms for the misleadingly named av_len() have been created: av_top_index() and
av_tindex. All three of these return the
 number of the highest index in the array, not the
number of elements it
 contains.

SvUPGRADE() is no longer an expression. Originally this macro (and its
 underlying function,
sv_upgrade()) were documented as boolean, although
 in reality they always croaked on error
and never returned false. In 2005
 the documentation was updated to specify a void return
value, but
 SvUPGRADE() was left always returning 1 for backwards compatibility. This
 has
now been removed, and SvUPGRADE() is now a statement with no return
 value.

So this is now a syntax error:

 if (!SvUPGRADE(sv)) { croak(...); }

If you have code like that, simply replace it with

 SvUPGRADE(sv);

or to avoid compiler warnings with older perls, possibly

 (void)SvUPGRADE(sv);

Perl has a new copy-on-write mechanism that allows any SvPOK scalar to be
 upgraded to a
copy-on-write scalar. A reference count on the string buffer
 is stored in the string buffer itself.
This feature is not enabled by
 default.

It can be enabled in a perl build by running Configure with
-Accflags=-DPERL_NEW_COPY_ON_WRITE, and we would encourage XS authors
 to try
their code with such an enabled perl, and provide feedback.
 Unfortunately, there is not yet a
good guide to updating XS code to cope
 with COW. Until such a document is available,
consult the perl5-porters
 mailing list.

It breaks a few XS modules by allowing copy-on-write scalars to go
 through code paths that
never encountered them before.

Copy-on-write no longer uses the SvFAKE and SvREADONLY flags. Hence,
 SvREADONLY
indicates a true read-only SV.

Use the SvIsCOW macro (as before) to identify a copy-on-write scalar.

PL_glob_index is gone.

The private Perl_croak_no_modify has had its context parameter removed. It is
 now has a
void prototype. Users of the public API croak_no_modify remain
 unaffected.

Copy-on-write (shared hash key) scalars are no longer marked read-only. SvREADONLY
returns false on such an SV, but SvIsCOW still returns
 true.

Perl version 5.24.0 documentation - perl5180delta

Page 26http://perldoc.perl.org

A new op type, OP_PADRANGE has been introduced. The perl peephole
 optimiser will, where
possible, substitute a single padrange op for a
 pushmark followed by one or more pad ops,
and possibly also skipping list
 and nextstate ops. In addition, the op can carry out the tasks
associated
 with the RHS of a my(...) = @_ assignment, so those ops may be optimised

away too.

Case-insensitive matching inside a [bracketed] character class with a
 multi-character fold no
longer excludes one of the possibilities in the
 circumstances that it used to. [perl #89774].

PL_formfeed has been removed.

The regular expression engine no longer reads one byte past the end of the
 target string.
While for all internally well-formed scalars this should
 never have been a problem, this change
facilitates clever tricks with
 string buffers in CPAN modules. [perl #73542]

Inside a BEGIN block, PL_compcv now points to the currently-compiling
 subroutine, rather
than the BEGIN block itself.

mg_length has been deprecated.

sv_len now always returns a byte count and sv_len_utf8 a character
 count. Previously,
sv_len and sv_len_utf8 were both buggy and would
 sometimes returns bytes and
sometimes characters. sv_len_utf8 no longer
 assumes that its argument is in UTF-8.
Neither of these creates UTF-8 caches
 for tied or overloaded values or for non-PVs any more.

sv_mortalcopy now copies string buffers of shared hash key scalars when
 called from XS
modules [perl #79824].

The new RXf_MODIFIES_VARS flag can be set by custom regular expression
 engines to
indicate that the execution of the regular expression may cause
 variables to be modified. This
lets s/// know to skip certain
 optimisations. Perl's own regular expression engine sets this
flag for the
 special backtracking verbs that set $REGMARK and $REGERROR.

The APIs for accessing lexical pads have changed considerably.

PADLISTs are now longer AVs, but their own type instead. PADLISTs now contain a PAD and
a PADNAMELIST of PADNAMEs,
 rather than AVs for the pad and the list of pad names. PADs,
PADNAMELISTs, and PADNAMEs are to be accessed as such through the
 newly added pad
API instead of the plain AV and SV APIs. See perlapi for details.

In the regex API, the numbered capture callbacks are passed an index
 indicating what match
variable is being accessed. There are special
 index values for the $`, $&, $& variables.
Previously the same three
 values were used to retrieve ${^PREMATCH}, ${^MATCH},
${^POSTMATCH}
 too, but these have now been assigned three separate values. See
"Numbered capture callbacks" in perlreapi.

PL_sawampersand was previously a boolean indicating that any of $`, $&, $& had been
seen; it now contains three one-bit flags
 indicating the presence of each of the variables
individually.

The CV * typemap entry now supports &{} overloading and typeglobs,
 just like &{...} [perl
#96872].

The SVf_AMAGIC flag to indicate overloading is now on the stash, not the
 object. It is now set
automatically whenever a method or @ISA changes, so
 its meaning has changed, too. It now
means "potentially overloaded". When
 the overload table is calculated, the flag is
automatically turned off if
 there is no overloading, so there should be no noticeable slowdown.

The staleness of the overload tables is now checked when overload methods
 are invoked,
rather than during bless.

"A" magic is gone. The changes to the handling of the SVf_AMAGIC flag
 eliminate the need

Perl version 5.24.0 documentation - perl5180delta

Page 27http://perldoc.perl.org

for it.

PL_amagic_generation has been removed as no longer necessary. For XS
 modules, it is
now a macro alias to PL_na.

The fallback overload setting is now stored in a stash entry separate from
 overloadedness
itself.

The character-processing code has been cleaned up in places. The changes
 should be
operationally invisible.

The study function was made a no-op in v5.16. It was simply disabled via
 a return
statement; the code was left in place. Now the code supporting
 what study used to do has
been removed.

Under threaded perls, there is no longer a separate PV allocated for every
 COP to store its
package name (cop->stashpv). Instead, there is an
 offset (cop->stashoff) into the new
PL_stashpad array, which
 holds stash pointers.

In the pluggable regex API, the regexp_engine struct has acquired a new
 field op_comp,
which is currently just for perl's internal use, and
 should be initialized to NULL by other regex
plugin modules.

A new function alloccopstash has been added to the API, but is considered
 experimental.
See perlapi.

Perl used to implement get magic in a way that would sometimes hide bugs in
 code that could
call mg_get() too many times on magical values. This hiding of
 errors no longer occurs, so
long-standing bugs may become visible now. If
 you see magic-related errors in XS code,
check to make sure it, together
 with the Perl API functions it uses, calls mg_get() only once on
SvGMAGICAL()
 values.

OP allocation for CVs now uses a slab allocator. This simplifies
 memory management for OPs
allocated to a CV, so cleaning up after a
 compilation error is simpler and safer [perl
#111462][perl #112312].

PERL_DEBUG_READONLY_OPS has been rewritten to work with the new slab
 allocator,
allowing it to catch more violations than before.

The old slab allocator for ops, which was only enabled for PERL_IMPLICIT_SYS
 and
PERL_DEBUG_READONLY_OPS, has been retired.

Selected Bug Fixes
Here document terminators no longer require a terminating newline character when
 they occur
at the end of a file. This was already the case at the end of a
 string eval [perl #65838].

-DPERL_GLOBAL_STRUCT builds now free the global struct after
 they've finished using it.

A trailing '/' on a path in @INC will no longer have an additional '/'
 appended.

The :crlf layer now works when unread data doesn't fit into its own
 buffer. [perl #112244].

ungetc() now handles UTF-8 encoded data. [perl #116322].

A bug in the core typemap caused any C types that map to the T_BOOL core
 typemap entry
to not be set, updated, or modified when the T_BOOL variable was
 used in an OUTPUT:
section with an exception for RETVAL. T_BOOL in an INPUT:
 section was not affected. Using
a T_BOOL return type for an XSUB (RETVAL)
 was not affected. A side effect of fixing this bug
is, if a T_BOOL is specified
 in the OUTPUT: section (which previous did nothing to the SV),
and a read only
 SV (literal) is passed to the XSUB, croaks like "Modification of a read-only

value attempted" will happen. [perl #115796]

Perl version 5.24.0 documentation - perl5180delta

Page 28http://perldoc.perl.org

On many platforms, providing a directory name as the script name caused perl
 to do nothing
and report success. It should now universally report an error
 and exit nonzero. [perl #61362]

sort {undef} ... under fatal warnings no longer crashes. It had
 begun crashing in Perl
v5.16.

Stashes blessed into each other
 (bless \%Foo::, 'Bar'; bless \%Bar::, 'Foo') no
longer result in double
 frees. This bug started happening in Perl v5.16.

Numerous memory leaks have been fixed, mostly involving fatal warnings and
 syntax errors.

Some failed regular expression matches such as 'f' =~ /../g were not
 resetting pos.
Also, "match-once" patterns (m?...?g) failed to reset
 it, too, when invoked a second time
[perl #23180].

Several bugs involving local *ISA and local *Foo:: causing stale
 MRO caches have
been fixed.

Defining a subroutine when its typeglob has been aliased no longer results
 in stale method
caches. This bug was introduced in Perl v5.10.

Localising a typeglob containing a subroutine when the typeglob's package
 has been deleted
from its parent stash no longer produces an error. This
 bug was introduced in Perl v5.14.

Under some circumstances, local *method=... would fail to reset method
 caches upon
scope exit.

/[.foo.]/ is no longer an error, but produces a warning (as before) and
 is treated as
/[.fo]/ [perl #115818].

goto $tied_var now calls FETCH before deciding what type of goto
 (subroutine or label)
this is.

Renaming packages through glob assignment
 (*Foo:: = *Bar::; *Bar:: = *Baz::) in
combination with m?...? and reset no longer makes threaded builds crash.

A number of bugs related to assigning a list to hash have been fixed. Many of
 these involve
lists with repeated keys like (1, 1, 1, 1).

The expression scalar(%h = (1, 1, 1, 1)) now returns 4, not 2.

The return value of %h = (1, 1, 1) in list context was wrong. Previously
 this would
return (1, undef, 1), now it returns (1, undef).

Perl now issues the same warning on ($s, %h) = (1, {}) as it does for (%h) =
({}), "Reference found where even-sized list expected".

A number of additional edge cases in list assignment to hashes were
 corrected. For
more details see commit 23b7025ebc.

Attributes applied to lexical variables no longer leak memory.
 [perl #114764]

dump, goto, last, next, redo or require followed by a
 bareword (or version) and then an
infix operator is no longer a syntax
 error. It used to be for those infix operators (like +) that
have a
 different meaning where a term is expected. [perl #105924]

require a::b . 1 and require a::b + 1 no longer produce erroneous
 ambiguity
warnings. [perl #107002]

Class method calls are now allowed on any string, and not just strings
 beginning with an
alphanumeric character. [perl #105922]

An empty pattern created with qr// used in m/// no longer triggers
 the "empty pattern

Perl version 5.24.0 documentation - perl5180delta

Page 29http://perldoc.perl.org

reuses last pattern" behaviour. [perl #96230]

Tying a hash during iteration no longer results in a memory leak.

Freeing a tied hash during iteration no longer results in a memory leak.

List assignment to a tied array or hash that dies on STORE no longer
 results in a memory
leak.

If the hint hash (%^H) is tied, compile-time scope entry (which copies
 the hint hash) no longer
leaks memory if FETCH dies. [perl #107000]

Constant folding no longer inappropriately triggers the special split " " behaviour. [perl
#94490]

defined scalar(@array), defined do { &foo }, and similar constructs
 now treat the
argument to defined as a simple scalar. [perl #97466]

Running a custom debugging that defines no *DB::DB glob or provides a
 subroutine stub for
&DB::DB no longer results in a crash, but an error
 instead. [perl #114990]

reset "" now matches its documentation. reset only resets m?...?
 patterns when called
with no argument. An empty string for an argument now
 does nothing. (It used to be treated as
no argument.) [perl #97958]

printf with an argument returning an empty list no longer reads past the
 end of the stack,
resulting in erratic behaviour. [perl #77094]

--subname no longer produces erroneous ambiguity warnings.
 [perl #77240]

v10 is now allowed as a label or package name. This was inadvertently
 broken when v-strings
were added in Perl v5.6. [perl #56880]

length, pos, substr and sprintf could be confused by ties,
 overloading, references and
typeglobs if the stringification of such
 changed the internal representation to or from UTF-8.
[perl #114410]

utf8::encode now calls FETCH and STORE on tied variables. utf8::decode now
 calls STORE
(it was already calling FETCH).

$tied =~ s/$non_utf8/$utf8/ no longer loops infinitely if the tied
 variable returns a
Latin-1 string, shared hash key scalar, or reference or
 typeglob that stringifies as ASCII or
Latin-1. This was a regression from
 v5.12.

s/// without /e is now better at detecting when it needs to forego
 certain optimisations, fixing
some buggy cases:

Match variables in certain constructs (&&, ||, .. and others) in
 the replacement part;
e.g., s/(.)/$l{$a||$1}/g. [perl #26986]

Aliases to match variables in the replacement.

$REGERROR or $REGMARK in the replacement. [perl #49190]

An empty pattern (s//$foo/) that causes the last-successful pattern to
 be used,
when that pattern contains code blocks that modify the variables
 in the replacement.

The taintedness of the replacement string no longer affects the taintedness
 of the return value
of s///e.

The $| autoflush variable is created on-the-fly when needed. If this
 happened (e.g., if it was
mentioned in a module or eval) when the
 currently-selected filehandle was a typeglob with an
empty IO slot, it used
 to crash. [perl #115206]

Perl version 5.24.0 documentation - perl5180delta

Page 30http://perldoc.perl.org

Line numbers at the end of a string eval are no longer off by one.
 [perl #114658]

@INC filters (subroutines returned by subroutines in @INC) that set $_ to a
 copy-on-write
scalar no longer cause the parser to modify that string
 buffer in place.

length($object) no longer returns the undefined value if the object has
 string overloading
that returns undef. [perl #115260]

The use of PL_stashcache, the stash name lookup cache for method calls, has
 been
restored,

Commit da6b625f78f5f133 in August 2011 inadvertently broke the code that looks
 up values in
PL_stashcache. As it's a only cache, quite correctly everything
 carried on working without it.

The error "Can't localize through a reference" had disappeared in v5.16.0
 when local
%$ref appeared on the last line of an lvalue subroutine.
 This error disappeared for \local
%$ref in perl v5.8.1. It has now
 been restored.

The parsing of here-docs has been improved significantly, fixing several
 parsing bugs and
crashes and one memory leak, and correcting wrong
 subsequent line numbers under certain
conditions.

Inside an eval, the error message for an unterminated here-doc no longer
 has a newline in the
middle of it [perl #70836].

A substitution inside a substitution pattern (s/${s|||}//) no longer
 confuses the parser.

It may be an odd place to allow comments, but s//"" # hello/e has
 always worked,
unless there happens to be a null character before the
 first #. Now it works even in the
presence of nulls.

An invalid range in tr/// or y/// no longer results in a memory leak.

String eval no longer treats a semicolon-delimited quote-like operator at
 the very end (eval
'q;;') as a syntax error.

warn {$_ => 1} + 1 is no longer a syntax error. The parser used to
 get confused with
certain list operators followed by an anonymous hash and
 then an infix operator that shares its
form with a unary operator.

(caller $n)[6] (which gives the text of the eval) used to return the
 actual parser buffer.
Modifying it could result in crashes. Now it always
 returns a copy. The string returned no
longer has "\n;" tacked on to the
 end. The returned text also includes here-doc bodies, which
used to be
 omitted.

The UTF-8 position cache is now reset when accessing magical variables, to
 avoid the string
buffer and the UTF-8 position cache getting out of sync
 [perl #114410].

Various cases of get magic being called twice for magical UTF-8
 strings have been fixed.

This code (when not in the presence of $& etc)

 $_ = 'x' x 1_000_000;
 1 while /(.)/;

used to skip the buffer copy for performance reasons, but suffered from $1
 etc changing if the
original string changed. That's now been fixed.

Perl doesn't use PerlIO anymore to report out of memory messages, as PerlIO
 might attempt
to allocate more memory.

In a regular expression, if something is quantified with {n,m} where n > m, it can't possibly
match. Previously this was a fatal
 error, but now is merely a warning (and that something

Perl version 5.24.0 documentation - perl5180delta

Page 31http://perldoc.perl.org

won't match).
 [perl #82954].

It used to be possible for formats defined in subroutines that have
 subsequently been
undefined and redefined to close over variables in the
 wrong pad (the newly-defined enclosing
sub), resulting in crashes or
 "Bizarre copy" errors.

Redefinition of XSUBs at run time could produce warnings with the wrong
 line number.

The %vd sprintf format does not support version objects for alpha versions.
 It used to output
the format itself (%vd) when passed an alpha version, and
 also emit an "Invalid conversion in
printf" warning. It no longer does,
 but produces the empty string in the output. It also no longer
leaks
 memory in this case.

$obj->SUPER::method calls in the main package could fail if the
 SUPER package had
already been accessed by other means.

Stash aliasing (*foo:: = *bar::) no longer causes SUPER calls to ignore
 changes to
methods or @ISA or use the wrong package.

Method calls on packages whose names end in ::SUPER are no longer treated
 as SUPER
method calls, resulting in failure to find the method.
 Furthermore, defining subroutines in such
packages no longer causes them to
 be found by SUPER method calls on the containing
package [perl #114924].

\w now matches the code points U+200C (ZERO WIDTH NON-JOINER) and U+200D
 (ZERO
WIDTH JOINER). \W no longer matches these. This change is because
 Unicode corrected
their definition of what \w should match.

dump LABEL no longer leaks its label.

Constant folding no longer changes the behaviour of functions like stat()
 and truncate()
that can take either filenames or handles. stat 1 ? foo : bar nows treats its argument
as a file name (since it is an
 arbitrary expression), rather than the handle "foo".

truncate FOO, $len no longer falls back to treating "FOO" as a file name if
 the filehandle
has been deleted. This was broken in Perl v5.16.0.

Subroutine redefinitions after sub-to-glob and glob-to-glob assignments no
 longer cause
double frees or panic messages.

s/// now turns vstrings into plain strings when performing a substitution,
 even if the resulting
string is the same (s/a/a/).

Prototype mismatch warnings no longer erroneously treat constant subs as having
 no
prototype when they actually have "".

Constant subroutines and forward declarations no longer prevent prototype
 mismatch
warnings from omitting the sub name.

undef on a subroutine now clears call checkers.

The ref operator started leaking memory on blessed objects in Perl v5.16.0.
 This has been
fixed [perl #114340].

use no longer tries to parse its arguments as a statement, making use constant { () };
a syntax error [perl #114222].

On debugging builds, "uninitialized" warnings inside formats no longer cause
 assertion
failures.

On debugging builds, subroutines nested inside formats no longer cause
 assertion failures
[perl #78550].

Perl version 5.24.0 documentation - perl5180delta

Page 32http://perldoc.perl.org

Formats and use statements are now permitted inside formats.

print $x and sub { print $x }->() now always produce the same output.
 It was
possible for the latter to refuse to close over $x if the variable was
 not active; e.g., if it was
defined outside a currently-running named
 subroutine.

Similarly, print $x and print eval '$x' now produce the same output.
 This also allows
"my $x if 0" variables to be seen in the debugger [perl
 #114018].

Formats called recursively no longer stomp on their own lexical variables, but
 each recursive
call has its own set of lexicals.

Attempting to free an active format or the handle associated with it no longer
 results in a
crash.

Format parsing no longer gets confused by braces, semicolons and low-precedence

operators. It used to be possible to use braces as format delimiters (instead
 of = and .), but
only sometimes. Semicolons and low-precedence operators
 in format argument lines no
longer confuse the parser into ignoring the line's
 return value. In format argument lines, braces
can now be used for anonymous
 hashes, instead of being treated always as do blocks.

Formats can now be nested inside code blocks in regular expressions and other
 quoted
constructs (/(?{...})/ and qq/${...}/) [perl #114040].

Formats are no longer created after compilation errors.

Under debugging builds, the -DA command line option started crashing in Perl
 v5.16.0. It has
been fixed [perl #114368].

A potential deadlock scenario involving the premature termination of a pseudo-
 forked child in
a Windows build with ithreads enabled has been fixed. This
 resolves the common problem of
the t/op/fork.t test hanging on Windows [perl
 #88840].

The code which generates errors from require() could potentially read one or
 two bytes
before the start of the filename for filenames less than three bytes
 long and ending /\.p?\z/
. This has now been fixed. Note that it could
 never have happened with module names given
to use() or require() anyway.

The handling of pathnames of modules given to require() has been made
 thread-safe on
VMS.

Non-blocking sockets have been fixed on VMS.

Pod can now be nested in code inside a quoted construct outside of a string
 eval. This used to
work only within string evals [perl #114040].

goto '' now looks for an empty label, producing the "goto must have
 label" error message,
instead of exiting the program [perl #111794].

goto "\0" now dies with "Can't find label" instead of "goto must have
 label".

The C function hv_store used to result in crashes when used on %^H
 [perl #111000].

A call checker attached to a closure prototype via cv_set_call_checker
 is now copied to
closures cloned from it. So cv_set_call_checker now
 works inside an attribute handler for
a closure.

Writing to $^N used to have no effect. Now it croaks with "Modification
 of a read-only value" by
default, but that can be overridden by a custom
 regular expression engine, as with $1 [perl
#112184].

undef on a control character glob (undef *^H) no longer emits an
 erroneous warning about

Perl version 5.24.0 documentation - perl5180delta

Page 33http://perldoc.perl.org

ambiguity [perl #112456].

For efficiency's sake, many operators and built-in functions return the
 same scalar each time.
Lvalue subroutines and subroutines in the CORE::
 namespace were allowing this
implementation detail to leak through. print &CORE::uc("a"), &CORE::uc("b") used
to print "BB". The same thing
 would happen with an lvalue subroutine returning the return
value of uc.
 Now the value is copied in such cases.

method {} syntax with an empty block or a block returning an empty list
 used to crash or use
some random value left on the stack as its invocant.
 Now it produces an error.

vec now works with extremely large offsets (>2 GB) [perl #111730].

Changes to overload settings now take effect immediately, as do changes to
 inheritance that
affect overloading. They used to take effect only after bless.

Objects that were created before a class had any overloading used to remain
 non-overloaded
even if the class gained overloading through use overload
 or @ISA changes, and even
after bless. This has been fixed
 [perl #112708].

Classes with overloading can now inherit fallback values.

Overloading was not respecting a fallback value of 0 if there were
 overloaded objects on both
sides of an assignment operator like +=
 [perl #111856].

pos now croaks with hash and array arguments, instead of producing
 erroneous warnings.

while(each %h) now implies while(defined($_ = each %h)), like readline and
readdir.

Subs in the CORE:: namespace no longer crash after undef *_ when called
 with no
argument list (&CORE::time with no parentheses).

unpack no longer produces the "'/' must follow a numeric type in unpack"
 error when it is the
data that are at fault [perl #60204].

join and "@array" now call FETCH only once on a tied $"
 [perl #8931].

Some subroutine calls generated by compiling core ops affected by a CORE::GLOBAL
override had op checking performed twice. The checking
 is always idempotent for pure Perl
code, but the double checking can
 matter when custom call checkers are involved.

A race condition used to exist around fork that could cause a signal sent to
 the parent to be
handled by both parent and child. Signals are now blocked
 briefly around fork to prevent this
from happening [perl #82580].

The implementation of code blocks in regular expressions, such as (?{})
 and (??{}), has
been heavily reworked to eliminate a whole slew of bugs.
 The main user-visible changes are:

Code blocks within patterns are now parsed in the same pass as the
 surrounding
code; in particular it is no longer necessary to have balanced
 braces: this now works:

 /(?{ $x='{' })/

This means that this error message is no longer generated:

 Sequence (?{...}) not terminated or not {}-balanced in regex

but a new error may be seen:

 Sequence (?{...}) not terminated with ')'

In addition, literal code blocks within run-time patterns are only
 compiled once, at perl
compile-time:

Perl version 5.24.0 documentation - perl5180delta

Page 34http://perldoc.perl.org

 for my $p (...) {
 # this 'FOO' block of code is compiled once,
	 # at the same time as the surrounding 'for' loop
 /$p{(?{FOO;})/;
 }

Lexical variables are now sane as regards scope, recursion and closure
 behavior. In
particular, /A(?{B})C/ behaves (from a closure viewpoint)
 exactly like /A/ && do
{ B } && /C/, while qr/A(?{B})C/ is like sub {/A/ && do { B } && /C/}.
So this code now works how you might
 expect, creating three regexes that match 0, 1,
and 2:

 for my $i (0..2) {
 push @r, qr/^(??{$i})$/;
 }
 "1" =~ $r[1]; # matches

The use re 'eval' pragma is now only required for code blocks defined
 at runtime;
in particular in the following, the text of the $r pattern is
 still interpolated into the new
pattern and recompiled, but the individual
 compiled code-blocks within $r are reused
rather than being recompiled,
 and use re 'eval' isn't needed any more:

 my $r = qr/abc(?{....})def/;
 /xyz$r/;

Flow control operators no longer crash. Each code block runs in a new
 dynamic scope,
so next etc. will not see
 any enclosing loops. return returns a value
 from the code
block, not from any enclosing subroutine.

Perl normally caches the compilation of run-time patterns, and doesn't
 recompile if the
pattern hasn't changed, but this is now disabled if
 required for the correct behavior of
closures. For example:

 my $code = '(??{$x})';
 for my $x (1..3) {
	 # recompile to see fresh value of $x each time
 $x =~ /$code/;
 }

The /msix and (?msix) etc. flags are now propagated into the return
 value from
(??{}); this now works:

 "AB" =~ /a(??{'b'})/i;

Warnings and errors will appear to come from the surrounding code (or for
 run-time
code blocks, from an eval) rather than from an re_eval:

 use re 'eval'; $c = '(?{ warn "foo" })'; /$c/;
 /(?{ warn "foo" })/;

formerly gave:

 foo at (re_eval 1) line 1.
 foo at (re_eval 2) line 1.

and now gives:

 foo at (eval 1) line 1.
 foo at /some/prog line 2.

Perl version 5.24.0 documentation - perl5180delta

Page 35http://perldoc.perl.org

Perl now can be recompiled to use any Unicode version. In v5.16, it
 worked on Unicodes 6.0
and 6.1, but there were various bugs if earlier
 releases were used; the older the release the
more problems.

vec no longer produces "uninitialized" warnings in lvalue context
 [perl #9423].

An optimization involving fixed strings in regular expressions could cause
 a severe
performance penalty in edge cases. This has been fixed
 [perl #76546].

In certain cases, including empty subpatterns within a regular expression (such
 as (?:) or
(?:|)) could disable some optimizations. This has been fixed.

The "Can't find an opnumber" message that prototype produces when passed
 a string like
"CORE::nonexistent_keyword" now passes UTF-8 and embedded
 NULs through unchanged
[perl #97478].

prototype now treats magical variables like $1 the same way as
 non-magical variables
when checking for the CORE:: prefix, instead of
 treating them as subroutine names.

Under threaded perls, a runtime code block in a regular expression could
 corrupt the package
name stored in the op tree, resulting in bad reads
 in caller, and possibly crashes [perl
#113060].

Referencing a closure prototype (\&{$_[1]} in an attribute handler for a
 closure) no longer
results in a copy of the subroutine (or assertion
 failures on debugging builds).

eval '__PACKAGE__' now returns the right answer on threaded builds if
 the current
package has been assigned over (as in *ThisPackage:: = *ThatPackage::) [perl
#78742].

If a package is deleted by code that it calls, it is possible for caller
 to see a stack frame
belonging to that deleted package. caller could
 crash if the stash's memory address was
reused for a scalar and a
 substitution was performed on the same scalar [perl #113486].

UNIVERSAL::can no longer treats its first argument differently
 depending on whether it is a
string or number internally.

open with <& for the mode checks to see whether the third argument is
 a number, in
determining whether to treat it as a file descriptor or a handle
 name. Magical variables like $1
were always failing the numeric check and
 being treated as handle names.

warn's handling of magical variables ($1, ties) has undergone several
 fixes. FETCH is only
called once now on a tied argument or a tied $@
 [perl #97480]. Tied variables returning objects
that stringify as "" are
 no longer ignored. A tied $@ that happened to return a reference the
previous time it was used is no longer ignored.

warn "" now treats $@ with a number in it the same way, regardless of
 whether it happened
via $@=3 or $@="3". It used to ignore the
 former. Now it appends "\t...caught", as it has
always done with $@="3".

Numeric operators on magical variables (e.g., $1 + 1) used to use
 floating point operations
even where integer operations were more appropriate,
 resulting in loss of accuracy on 64-bit
platforms [perl #109542].

Unary negation no longer treats a string as a number if the string happened
 to be used as a
number at some point. So, if $x contains the string "dogs", -$x returns "-dogs" even if
$y=0+$x has happened at some point.

In Perl v5.14, -'-10' was fixed to return "10", not "+10". But magical
 variables ($1, ties) were
not fixed till now [perl #57706].

Unary negation now treats strings consistently, regardless of the internal UTF8 flag.

Perl version 5.24.0 documentation - perl5180delta

Page 36http://perldoc.perl.org

A regression introduced in Perl v5.16.0 involving tr/SEARCHLIST/REPLACEMENTLIST/ has
been fixed. Only the first
 instance is supposed to be meaningful if a character appears more
than
 once in SEARCHLIST. Under some circumstances, the final instance
 was overriding all
earlier ones. [perl #113584]

Regular expressions like qr/\87/ previously silently inserted a NUL
 character, thus matching
as if it had been written qr/\00087/. Now it
 matches as if it had been written as qr/87/,
with a message that the
 sequence "\8" is unrecognized.

__SUB__ now works in special blocks (BEGIN, END, etc.).

Thread creation on Windows could theoretically result in a crash if done
 inside a BEGIN block.
It still does not work properly, but it no longer
 crashes [perl #111610].

\&{''} (with the empty string) now autovivifies a stub like any other
 sub name, and no longer
produces the "Unable to create sub" error
 [perl #94476].

A regression introduced in v5.14.0 has been fixed, in which some calls
 to the re module
would clobber $_ [perl #113750].

do FILE now always either sets or clears $@, even when the file can't be
 read. This ensures
that testing $@ first (as recommended by the
 documentation) always returns the correct result.

The array iterator used for the each @array construct is now correctly
 reset when @array is
cleared [perl #75596]. This happens, for example, when
 the array is globally assigned to, as in
@array = (...), but not when its values are assigned to. In terms of the XS API, it means
that av_clear()
 will now reset the iterator.

This mirrors the behaviour of the hash iterator when the hash is cleared.

$class->can, $class->isa, and $class->DOES now return
 correct results, regardless of
whether that package referred to by $class
 exists [perl #47113].

Arriving signals no longer clear $@ [perl #45173].

Allow my () declarations with an empty variable list [perl #113554].

During parsing, subs declared after errors no longer leave stubs
 [perl #113712].

Closures containing no string evals no longer hang on to their containing
 subroutines, allowing
variables closed over by outer subroutines to be
 freed when the outer sub is freed, even if the
inner sub still exists
 [perl #89544].

Duplication of in-memory filehandles by opening with a "<&=" or ">&=" mode
 stopped working
properly in v5.16.0. It was causing the new handle to
 reference a different scalar variable. This
has been fixed [perl #113764].

qr// expressions no longer crash with custom regular expression engines
 that do not set
offs at regular expression compilation time
 [perl #112962].

delete local no longer crashes with certain magical arrays and hashes
 [perl #112966].

local on elements of certain magical arrays and hashes used not to
 arrange to have the
element deleted on scope exit, even if the element did
 not exist before local.

scalar(write) no longer returns multiple items [perl #73690].

String to floating point conversions no longer misparse certain strings under use locale
[perl #109318].

@INC filters that die no longer leak memory [perl #92252].

The implementations of overloaded operations are now called in the correct
 context. This

Perl version 5.24.0 documentation - perl5180delta

Page 37http://perldoc.perl.org

allows, among other things, being able to properly override <> [perl #47119].

Specifying only the fallback key when calling use overload now behaves
 properly [perl
#113010].

sub foo { my $a = 0; while ($a) { ... } } and sub foo { while (0) {
... } } now return the same thing [perl #73618].

String negation now behaves the same under use integer; as it does
 without [perl
#113012].

chr now returns the Unicode replacement character (U+FFFD) for -1,
 regardless of the
internal representation. -1 used to wrap if the argument
 was tied or a string internally.

Using a format after its enclosing sub was freed could crash as of
 perl v5.12.0, if the format
referenced lexical variables from the outer sub.

Using a format after its enclosing sub was undefined could crash as of
 perl v5.10.0, if the
format referenced lexical variables from the outer sub.

Using a format defined inside a closure, which format references
 lexical variables from
outside, never really worked unless the write
 call was directly inside the closure. In v5.10.0 it
even started crashing.
 Now the copy of that closure nearest the top of the call stack is used to

find those variables.

Formats that close over variables in special blocks no longer crash if a
 stub exists with the
same name as the special block before the special
 block is compiled.

The parser no longer gets confused, treating eval foo () as a syntax
 error if preceded by
print; [perl #16249].

The return value of syscall is no longer truncated on 64-bit platforms
 [perl #113980].

Constant folding no longer causes print 1 ? FOO : BAR to print to the
 FOO handle [perl
#78064].

do subname now calls the named subroutine and uses the file name it
 returns, instead of
opening a file named "subname".

Subroutines looked up by rv2cv check hooks (registered by XS modules) are
 now taken into
consideration when determining whether foo bar should be
 the sub call foo(bar) or the
method call "bar"->foo.

CORE::foo::bar is no longer treated specially, allowing global overrides
 to be called directly
via CORE::GLOBAL::uc(...) [perl #113016].

Calling an undefined sub whose typeglob has been undefined now produces the
 customary
"Undefined subroutine called" error, instead of "Not a CODE
 reference".

Two bugs involving @ISA have been fixed. *ISA = *glob_without_array and undef
*ISA; @{*ISA} would prevent future modifications to @ISA from
 updating the internal
caches used to look up methods. The
 *glob_without_array case was a regression from Perl
v5.12.

Regular expression optimisations sometimes caused $ with /m to
 produce failed or incorrect
matches [perl #114068].

__SUB__ now works in a sort block when the enclosing subroutine is
 predeclared with sub
foo; syntax [perl #113710].

Unicode properties only apply to Unicode code points, which leads to
 some subtleties when
regular expressions are matched against
 above-Unicode code points. There is a warning

Perl version 5.24.0 documentation - perl5180delta

Page 38http://perldoc.perl.org

generated to draw your
 attention to this. However, this warning was being generated

inappropriately in some cases, such as when a program was being parsed.
 Non-Unicode
matches such as \w and [:word:] should not generate the
 warning, as their definitions don't
limit them to apply to only Unicode
 code points. Now the message is only generated when
matching against \p{} and \P{}. There remains a bug, [perl #114148], for the very
 few
properties in Unicode that match just a single code point. The
 warning is not generated if they
are matched against an above-Unicode
 code point.

Uninitialized warnings mentioning hash elements would only mention the
 element name if it
was not in the first bucket of the hash, due to an
 off-by-one error.

A regular expression optimizer bug could cause multiline "^" to behave
 incorrectly in the
presence of line breaks, such that "/\n\n" =~ m#\A(?:^/$)#im would not match [perl
#115242].

Failed fork in list context no longer corrupts the stack. @a = (1, 2, fork, 3) used to
gobble up the 2 and assign (1, undef, 3)
 if the fork call failed.

Numerous memory leaks have been fixed, mostly involving tied variables that
 die, regular
expression character classes and code blocks, and syntax
 errors.

Assigning a regular expression (${qr//}) to a variable that happens to
 hold a floating point
number no longer causes assertion failures on
 debugging builds.

Assigning a regular expression to a scalar containing a number no longer
 causes subsequent
numification to produce random numbers.

Assigning a regular expression to a magic variable no longer wipes away the
 magic. This was
a regression from v5.10.

Assigning a regular expression to a blessed scalar no longer results in
 crashes. This was also
a regression from v5.10.

Regular expression can now be assigned to tied hash and array elements with
 flattening into
strings.

Numifying a regular expression no longer results in an uninitialized
 warning.

Negative array indices no longer cause EXISTS methods of tied variables to
 be ignored. This
was a regression from v5.12.

Negative array indices no longer result in crashes on arrays tied to
 non-objects.

$byte_overload .= $utf8 no longer results in doubly-encoded UTF-8 if the
 left-hand
scalar happened to have produced a UTF-8 string the last time
 overloading was invoked.

goto &sub now uses the current value of @_, instead of using the array
 the subroutine was
originally called with. This means local @_ = (...); goto &sub now works [perl
#43077].

If a debugger is invoked recursively, it no longer stomps on its own
 lexical variables. Formerly
under recursion all calls would share the same
 set of lexical variables [perl #115742].

*_{ARRAY} returned from a subroutine no longer spontaneously
 becomes empty.

When using say to print to a tied filehandle, the value of $\ is
 correctly localized, even if it
was previously undef. [perl #119927]

Known Problems
UTF8-flagged strings in %ENV on HP-UX 11.00 are buggy

The interaction of UTF8-flagged strings and %ENV on HP-UX 11.00 is
 currently dodgy in some

Perl version 5.24.0 documentation - perl5180delta

Page 39http://perldoc.perl.org

not-yet-fully-diagnosed way. Expect test
 failures in t/op/magic.t, followed by unknown behavior
when storing
 wide characters in the environment.

Obituary
Hojung Yoon (AMORETTE), 24, of Seoul, South Korea, went to his long rest
 on May 8, 2013 with
llama figurine and autographed TIMTOADY card. He
 was a brilliant young Perl 5 & 6 hacker and a
devoted member of
 Seoul.pm. He programmed Perl, talked Perl, ate Perl, and loved Perl. We
 believe
that he is still programming in Perl with his broken IBM laptop
 somewhere. He will be missed.

Acknowledgements
Perl v5.18.0 represents approximately 12 months of development since
 Perl v5.16.0 and contains
approximately 400,000 lines of changes across
 2,100 files from 113 authors.

Perl continues to flourish into its third decade thanks to a vibrant
 community of users and developers.
The following people are known to
 have contributed the improvements that became Perl v5.18.0:

Aaron Crane, Aaron Trevena, Abhijit Menon-Sen, Adrian M. Enache, Alan
 Haggai Alavi, Alexandr
Ciornii, Andrew Tam, Andy Dougherty, Anton Nikishaev,
 Aristotle Pagaltzis, Augustina Blair, Bob
Ernst, Brad Gilbert, Breno G. de
 Oliveira, Brian Carlson, Brian Fraser, Charlie Gonzalez, Chip
Salzenberg, Chris
 'BinGOs' Williams, Christian Hansen, Colin Kuskie, Craig A. Berry, Dagfinn
 Ilmari
MannsÃ¥ker, Daniel Dragan, Daniel Perrett, Darin McBride, Dave Rolsky,
 David Golden, David
Leadbeater, David Mitchell, David Nicol, Dominic
 Hargreaves, E. Choroba, Eric Brine, Evan Miller,
Father Chrysostomos, Florian
 Ragwitz, FranÃ§ois Perrad, George Greer, Goro Fuji, H.Merijn Brand,
Herbert
 Breunung, Hugo van der Sanden, Igor Zaytsev, James E Keenan, Jan Dubois,
 Jasmine
Ahuja, Jerry D. Hedden, Jess Robinson, Jesse Luehrs, Joaquin Ferrero,
 Joel Berger, John Goodyear,
John Peacock, Karen Etheridge, Karl Williamson,
 Karthik Rajagopalan, Kent Fredric, Leon
Timmermans, Lucas Holt, Lukas Mai,
 Marcus Holland-Moritz, Markus Jansen, Martin Hasch, Matthew
Horsfall, Max
 Maischein, Michael G Schwern, Michael Schroeder, Moritz Lenz, Nicholas Clark,
 Niko
Tyni, Oleg Nesterov, Patrik HÃ¤gglund, Paul Green, Paul Johnson, Paul
 Marquess, Peter Martini,
Rafael Garcia-Suarez, Reini Urban, Renee Baecker,
 Rhesa Rozendaal, Ricardo Signes, Robin
Barker, Ronald J. Kimball, Ruslan
 Zakirov, Salvador FandiÃ±o, Sawyer X, Scott Lanning, Sergey
Alekseev, Shawn M
 Moore, Shirakata Kentaro, Shlomi Fish, Sisyphus, Smylers, Steffen MÃ¼ller,

Steve Hay, Steve Peters, Steven Schubiger, Sullivan Beck, Sven Strickroth,
 SÃ©bastien
Aperghis-Tramoni, Thomas Sibley, Tobias Leich, Tom Wyant, Tony Cook,
 Vadim Konovalov, Vincent
Pit, Volker Schatz, Walt Mankowski, Yves Orton,
 Zefram.

The list above is almost certainly incomplete as it is automatically generated
 from version control
history. In particular, it does not include the names of
 the (very much appreciated) contributors who
reported issues to the Perl bug
 tracker.

Many of the changes included in this version originated in the CPAN modules
 included in Perl's core.
We're grateful to the entire CPAN community for
 helping Perl to flourish.

For a more complete list of all of Perl's historical contributors, please see
 the AUTHORS file in the
Perl source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently
 posted to the
comp.lang.perl.misc newsgroup and the perl bug database at
 http://rt.perl.org/perlbug/ . There may
also be information at
 http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program
 included with your
release. Be sure to trim your bug down to a tiny but
 sufficient test case. Your bug report, along with
the output of perl -V,
 will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications, which make it
 inappropriate to send to a publicly
archived mailing list, then please send it
 to perl5-security-report@perl.org. This points to a closed
subscription
 unarchived mailing list, which includes all the core committers, who will be
 able to help

Perl version 5.24.0 documentation - perl5180delta

Page 40http://perldoc.perl.org

assess the impact of issues, figure out a resolution, and help
 co-ordinate the release of patches to
mitigate or fix the problem across all
 platforms on which Perl is supported. Please only use this
address for
 security issues in the Perl core, not for modules independently distributed on
 CPAN.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on
 what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

