
Perl version 5.24.0 documentation - IO::Socket

Page 1http://perldoc.perl.org

NAME
IO::Socket - Object interface to socket communications

SYNOPSIS
 use IO::Socket;

DESCRIPTION
IO::Socket provides an object interface to creating and using sockets. It
 is built upon the
IO::Handle interface and inherits all the methods defined
 by IO::Handle.

IO::Socket only defines methods for those operations which are common to all
 types of socket.
Operations which are specified to a socket in a particular domain have methods defined in sub
classes of IO::Socket

IO::Socket will export all functions (and constants) defined by Socket.

CONSTRUCTOR
new ([ARGS])

Creates an IO::Socket, which is a reference to a
 newly created symbol (see the Symbol
package). new
 optionally takes arguments, these arguments are in key-value pairs. new only
looks for one key Domain which tells new which domain
 the socket will be in. All other
arguments will be passed to the
 configuration method of the package for that domain, See
below.

 NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE

As of VERSION 1.18 all IO::Socket objects have autoflush turned on
 by default. This was not
the case with earlier releases.

 NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE

METHODS
See perlfunc for complete descriptions of each of the following
 supported IO::Socket methods,
which are just front ends for the
 corresponding built-in functions:

 socket
 socketpair
 bind
 listen
 accept
 send
 recv
 peername (getpeername)
 sockname (getsockname)
 shutdown

Some methods take slightly different arguments to those defined in perlfunc
 in attempt to make the
interface more flexible. These are

accept([PKG])

perform the system call accept on the socket and return a new
 object. The new object will be
created in the same class as the listen
 socket, unless PKG is specified. This object can be
used to
 communicate with the client that was trying to connect.

In a scalar context the new socket is returned, or undef upon
 failure. In a list context a
two-element array is returned containing
 the new socket and the peer address; the list will be
empty upon
 failure.

Perl version 5.24.0 documentation - IO::Socket

Page 2http://perldoc.perl.org

The timeout in the [PKG] can be specified as zero to effect a "poll",
 but you shouldn't do that
because a new IO::Select object will be
 created behind the scenes just to do the single poll.
This is
 horrendously inefficient. Use rather true select() with a zero
 timeout on the handle, or
non-blocking IO.

socketpair(DOMAIN, TYPE, PROTOCOL)

Call socketpair and return a list of two sockets created, or an
 empty list on failure.

Additional methods that are provided are:

atmark

True if the socket is currently positioned at the urgent data mark,
 false otherwise.

 use IO::Socket;

 my $sock = IO::Socket::INET->new('some_server');
 $sock->read($data, 1024) until $sock->atmark;

Note: this is a reasonably new addition to the family of socket
 functions, so all systems may
not support this yet. If it is
 unsupported by the system, an attempt to use this method will
 abort
the program.

The atmark() functionality is also exportable as sockatmark() function:

	 use IO::Socket 'sockatmark';

This allows for a more traditional use of sockatmark() as a procedural
 socket function. If your
system does not support sockatmark(), the use declaration will fail at compile time.

connected

If the socket is in a connected state, the peer address is returned. If the
 socket is not in a
connected state, undef is returned.

Note that connected() considers a half-open TCP socket to be "in a connected
 state".
Specifically, connected() does not distinguish between the ESTABLISHED and CLOSE-WAIT
TCP states; it returns the peer address,
 rather than undef, in either case. Thus, in general,
connected() cannot
 be used to reliably learn whether the peer has initiated a graceful
shutdown
 because in most cases (see below) the local TCP state machine remains in
CLOSE-WAIT until the local application calls shutdown() or close();
 only at that point does
connected() return undef.

The "in most cases" hedge is because local TCP state machine behavior may
 depend on the
peer's socket options. In particular, if the peer socket has
 SO_LINGER enabled with a zero
timeout, then the peer's close() will generate
 a RST segment, upon receipt of which the local
TCP transitions immediately to CLOSED, and in that state, connected() will return undef.

protocol

Returns the numerical number for the protocol being used on the socket, if
 known. If the
protocol is unknown, as with an AF_UNIX socket, zero
 is returned.

sockdomain

Returns the numerical number for the socket domain type. For example, for
 an AF_INET
socket the value of &AF_INET will be returned.

sockopt(OPT [, VAL])

Unified method to both set and get options in the SOL_SOCKET level. If called
 with one
argument then getsockopt is called, otherwise setsockopt is called.

getsockopt(LEVEL, OPT)

Get option associated with the socket. Other levels than SOL_SOCKET
 may be specified

Perl version 5.24.0 documentation - IO::Socket

Page 3http://perldoc.perl.org

here.setsockopt(LEVEL, OPT, VAL)

Set option associated with the socket. Other levels than SOL_SOCKET
 may be specified
here.

socktype

Returns the numerical number for the socket type. For example, for
 a SOCK_STREAM socket
the value of &SOCK_STREAM will be returned.

timeout([VAL])

Set or get the timeout value (in seconds) associated with this socket.
 If called without any
arguments then the current setting is returned. If
 called with an argument the current setting is
changed and the previous
 value returned.

LIMITATIONS
On some systems, for an IO::Socket object created with new_from_fd(),
 or created with accept() from
such an object, the protocol(),
 sockdomain() and socktype() methods may return undef.

SEE ALSO
Socket, IO::Handle, IO::Socket::INET, IO::Socket::UNIX

AUTHOR
Graham Barr. atmark() by Lincoln Stein. Currently maintained by the
 Perl Porters. Please report all
bugs to <perlbug@perl.org>.

COPYRIGHT
Copyright (c) 1997-8 Graham Barr <gbarr@pobox.com>. All rights reserved.
 This program is free
software; you can redistribute it and/or
 modify it under the same terms as Perl itself.

The atmark() implementation: Copyright 2001, Lincoln Stein <lstein@cshl.org>.
 This module is
distributed under the same terms as Perl itself.
 Feel free to use, modify and redistribute it as long as
you retain
 the correct attribution.

