
Perl version 5.24.0 documentation - List::Util

Page 1http://perldoc.perl.org

NAME
List::Util - A selection of general-utility list subroutines

SYNOPSIS
 use List::Util qw(first max maxstr min minstr reduce shuffle sum);

DESCRIPTION
List::Util contains a selection of subroutines that people have expressed
 would be nice to have
in the perl core, but the usage would not really be high
 enough to warrant the use of a keyword, and
the size so small such that being
 individual extensions would be wasteful.

By default List::Util does not export any subroutines.

LIST-REDUCTION FUNCTIONS
The following set of functions all reduce a list down to a single value.

$result = reduce { BLOCK } @list
Reduces @list by calling BLOCK in a scalar context multiple times,
 setting $a and $b each time. The
first call will be with $a and $b
 set to the first two elements of the list, subsequent calls will be done by
setting $a to the result of the previous call and $b to the next element
 in the list.

Returns the result of the last call to the BLOCK. If @list is empty then undef is returned. If @list
only contains one element then that element
 is returned and BLOCK is not executed.

The following examples all demonstrate how reduce could be used to implement
 the other
list-reduction functions in this module. (They are not in fact
 implemented like this, but instead in a
more efficient manner in individual C
 functions).

 $foo = reduce { defined($a) ? $a :
 $code->(local $_ = $b) ? $b :
 undef } undef, @list # first

 $foo = reduce { $a > $b ? $a : $b } 1..10 # max
 $foo = reduce { $a gt $b ? $a : $b } 'A'..'Z' # maxstr
 $foo = reduce { $a < $b ? $a : $b } 1..10 # min
 $foo = reduce { $a lt $b ? $a : $b } 'aa'..'zz' # minstr
 $foo = reduce { $a + $b } 1 .. 10 # sum
 $foo = reduce { $a . $b } @bar # concat

 $foo = reduce { $a || $code->(local $_ = $b) } 0, @bar # any
 $foo = reduce { $a && $code->(local $_ = $b) } 1, @bar # all
 $foo = reduce { $a && !$code->(local $_ = $b) } 1, @bar # none
 $foo = reduce { $a || !$code->(local $_ = $b) } 0, @bar # notall
 # Note that these implementations do not fully short-circuit

If your algorithm requires that reduce produce an identity value, then make
 sure that you always
pass that identity value as the first argument to prevent undef being returned

 $foo = reduce { $a + $b } 0, @values; # sum with 0 identity
value

The remaining list-reduction functions are all specialisations of this generic
 idea.

Perl version 5.24.0 documentation - List::Util

Page 2http://perldoc.perl.org

any
 my $bool = any { BLOCK } @list;

Since version 1.33.

Similar to grep in that it evaluates BLOCK setting $_ to each element
 of @list in turn. any returns
true if any element makes the BLOCK
 return a true value. If BLOCK never returns true or @list was
empty then
 it returns false.

Many cases of using grep in a conditional can be written using any
 instead, as it can short-circuit
after the first true result.

 if(any { length > 10 } @strings) {
 # at least one string has more than 10 characters
 }

all
 my $bool = all { BLOCK } @list;

Since version 1.33.

Similar to any, except that it requires all elements of the @list to
 make the BLOCK return true. If any
element returns false, then it returns
 false. If the BLOCK never returns false or the @list was empty
then it
 returns true.

none
notall

 my $bool = none { BLOCK } @list;

 my $bool = notall { BLOCK } @list;

Since version 1.33.

Similar to any and all, but with the return sense inverted. none
 returns true only if no value in the
@list causes the BLOCK to return
 true, and notall returns true only if not all of the values do.

first
 my $val = first { BLOCK } @list;

Similar to grep in that it evaluates BLOCK setting $_ to each element
 of @list in turn. first returns
the first element where the result from BLOCK is a true value. If BLOCK never returns true or @list
was empty
 then undef is returned.

 $foo = first { defined($_) } @list # first defined value in @list
 $foo = first { $_ > $value } @list # first value in @list which
 # is greater than $value

max
 my $num = max @list;

Returns the entry in the list with the highest numerical value. If the list is
 empty then undef is
returned.

 $foo = max 1..10 # 10

Perl version 5.24.0 documentation - List::Util

Page 3http://perldoc.perl.org

 $foo = max 3,9,12 # 12
 $foo = max @bar, @baz # whatever

maxstr
 my $str = maxstr @list;

Similar to max, but treats all the entries in the list as strings and
 returns the highest string as defined
by the gt operator. If the list is
 empty then undef is returned.

 $foo = maxstr 'A'..'Z' # 'Z'
 $foo = maxstr "hello","world" # "world"
 $foo = maxstr @bar, @baz # whatever

min
 my $num = min @list;

Similar to max but returns the entry in the list with the lowest numerical
 value. If the list is empty then
undef is returned.

 $foo = min 1..10 # 1
 $foo = min 3,9,12 # 3
 $foo = min @bar, @baz # whatever

minstr
 my $str = minstr @list;

Similar to min, but treats all the entries in the list as strings and
 returns the lowest string as defined by
the lt operator. If the list is
 empty then undef is returned.

 $foo = minstr 'A'..'Z' # 'A'
 $foo = minstr "hello","world" # "hello"
 $foo = minstr @bar, @baz # whatever

product
 my $num = product @list;

Since version 1.35.

Returns the numerical product of all the elements in @list. If @list is
 empty then 1 is returned.

 $foo = product 1..10 # 3628800
 $foo = product 3,9,12 # 324

sum
 my $num_or_undef = sum @list;

Returns the numerical sum of all the elements in @list. For backwards
 compatibility, if @list is
empty then undef is returned.

 $foo = sum 1..10 # 55
 $foo = sum 3,9,12 # 24
 $foo = sum @bar, @baz # whatever

Perl version 5.24.0 documentation - List::Util

Page 4http://perldoc.perl.org

sum0
 my $num = sum0 @list;

Since version 1.26.

Similar to sum, except this returns 0 when given an empty list, rather
 than undef.

KEY/VALUE PAIR LIST FUNCTIONS
The following set of functions, all inspired by List::Pairwise, consume an
 even-sized list of pairs. The
pairs may be key/value associations from a hash,
 or just a list of values. The functions will all
preserve the original ordering
 of the pairs, and will not be confused by multiple pairs having the same
"key"
 value - nor even do they require that the first of each pair be a plain string.

NOTE: At the time of writing, the following pair* functions that take a
 block do not modify the value
of $_ within the block, and instead operate
 using the $a and $b globals instead. This has turned out
to be a poor
 design, as it precludes the ability to provide a pairsort function. Better
 would be to
pass pair-like objects as 2-element array references in $_, in
 a style similar to the return value of the
pairs function. At some future
 version this behaviour may be added.

Until then, users are alerted NOT to rely on the value of $_ remaining
 unmodified between the outside
and the inside of the control block. In
 particular, the following example is UNSAFE:

 my @kvlist = ...

 foreach (qw(some keys here)) {
 my @items = pairgrep { $a eq $_ } @kvlist;
 ...
 }

Instead, write this using a lexical variable:

 foreach my $key (qw(some keys here)) {
 my @items = pairgrep { $a eq $key } @kvlist;
 ...
 }

pairs
 my @pairs = pairs @kvlist;

Since version 1.29.

A convenient shortcut to operating on even-sized lists of pairs, this function
 returns a list of ARRAY
references, each containing two items from the given
 list. It is a more efficient version of

 @pairs = pairmap { [$a, $b] } @kvlist

It is most convenient to use in a foreach loop, for example:

 foreach my $pair (pairs @KVLIST) {
 my ($key, $value) = @$pair;
 ...
 }

Since version 1.39 these ARRAY references are blessed objects, recognising
 the two methods key
and value. The following code is equivalent:

Perl version 5.24.0 documentation - List::Util

Page 5http://perldoc.perl.org

 foreach my $pair (pairs @KVLIST) {
 my $key = $pair->key;
 my $value = $pair->value;
 ...
 }

unpairs
 my @kvlist = unpairs @pairs

Since version 1.42.

The inverse function to pairs; this function takes a list of ARRAY
 references containing two
elements each, and returns a flattened list of the
 two values from each of the pairs, in order. This is
notionally equivalent to

 my @kvlist = map { @{$_}[0,1] } @pairs

except that it is implemented more efficiently internally. Specifically, for
 any input item it will extract
exactly two values for the output list; using undef if the input array references are short.

Between pairs and unpairs, a higher-order list function can be used to
 operate on the pairs as
single scalars; such as the following near-equivalents
 of the other pair* higher-order functions:

 @kvlist = unpairs grep { FUNC } pairs @kvlist
 # Like pairgrep, but takes $_ instead of $a and $b

 @kvlist = unpairs map { FUNC } pairs @kvlist
 # Like pairmap, but takes $_ instead of $a and $b

Note however that these versions will not behave as nicely in scalar context.

Finally, this technique can be used to implement a sort on a keyvalue pair
 list; e.g.:

 @kvlist = unpairs sort { $a->key cmp $b->key } pairs @kvlist

pairkeys
 my @keys = pairkeys @kvlist;

Since version 1.29.

A convenient shortcut to operating on even-sized lists of pairs, this function
 returns a list of the the
first values of each of the pairs in the given list.
 It is a more efficient version of

 @keys = pairmap { $a } @kvlist

pairvalues
 my @values = pairvalues @kvlist;

Since version 1.29.

A convenient shortcut to operating on even-sized lists of pairs, this function
 returns a list of the the
second values of each of the pairs in the given list.
 It is a more efficient version of

 @values = pairmap { $b } @kvlist

Perl version 5.24.0 documentation - List::Util

Page 6http://perldoc.perl.org

pairgrep
 my @kvlist = pairgrep { BLOCK } @kvlist;

 my $count = pairgrep { BLOCK } @kvlist;

Since version 1.29.

Similar to perl's grep keyword, but interprets the given list as an
 even-sized list of pairs. It invokes the
BLOCK multiple times, in scalar
 context, with $a and $b set to successive pairs of values from the
@kvlist.

Returns an even-sized list of those pairs for which the BLOCK returned true
 in list context, or the count
of the number of pairs in scalar context.
 (Note, therefore, in scalar context that it returns a number
half the size of
 the count of items it would have returned in list context).

 @subset = pairgrep { $a =~ m/^[[:upper:]]+$/ } @kvlist

As with grep aliasing $_ to list elements, pairgrep aliases $a and $b to elements of the given list.
Any modifications of it by the code block
 will be visible to the caller.

pairfirst
 my ($key, $val) = pairfirst { BLOCK } @kvlist;

 my $found = pairfirst { BLOCK } @kvlist;

Since version 1.30.

Similar to the first function, but interprets the given list as an
 even-sized list of pairs. It invokes the
BLOCK multiple times, in scalar
 context, with $a and $b set to successive pairs of values from the
@kvlist.

Returns the first pair of values from the list for which the BLOCK returned
 true in list context, or an
empty list of no such pair was found. In scalar
 context it returns a simple boolean value, rather than
either the key or the
 value found.

 ($key, $value) = pairfirst { $a =~ m/^[[:upper:]]+$/ } @kvlist

As with grep aliasing $_ to list elements, pairfirst aliases $a and $b to elements of the given list.
Any modifications of it by the code block
 will be visible to the caller.

pairmap
 my @list = pairmap { BLOCK } @kvlist;

 my $count = pairmap { BLOCK } @kvlist;

Since version 1.29.

Similar to perl's map keyword, but interprets the given list as an
 even-sized list of pairs. It invokes the
BLOCK multiple times, in list
 context, with $a and $b set to successive pairs of values from the
@kvlist.

Returns the concatenation of all the values returned by the BLOCK in list
 context, or the count of the
number of items that would have been returned in
 scalar context.

 @result = pairmap { "The key $a has value $b" } @kvlist

Perl version 5.24.0 documentation - List::Util

Page 7http://perldoc.perl.org

As with map aliasing $_ to list elements, pairmap aliases $a and $b to elements of the given list.
Any modifications of it by the code block
 will be visible to the caller.

See KNOWN BUGS for a known-bug with pairmap, and a workaround.

OTHER FUNCTIONS
shuffle

 my @values = shuffle @values;

Returns the values of the input in a random order

 @cards = shuffle 0..51 # 0..51 in a random order

KNOWN BUGS
RT #95409

https://rt.cpan.org/Ticket/Display.html?id=95409

If the block of code given to pairmap contains lexical variables that are
 captured by a returned
closure, and the closure is executed after the block
 has been re-used for the next iteration, these
lexicals will not see the
 correct values. For example:

 my @subs = pairmap {
 my $var = "$a is $b";
 sub { print "$var\n" };
 } one => 1, two => 2, three => 3;

 $_->() for @subs;

Will incorrectly print

 three is 3
 three is 3
 three is 3

This is due to the performance optimisation of using MULTICALL for the code
 block, which means that
fresh SVs do not get allocated for each call to the
 block. Instead, the same SV is re-assigned for each
iteration, and all the
 closures will share the value seen on the final iteration.

To work around this bug, surround the code with a second set of braces. This
 creates an inner block
that defeats the MULTICALL logic, and does get fresh
 SVs allocated each time:

 my @subs = pairmap {
 {
 my $var = "$a is $b";
 sub { print "$var\n"; }
 }
 } one => 1, two => 2, three => 3;

This bug only affects closures that are generated by the block but used
 afterwards. Lexical variables
that are only used during the lifetime of the
 block's execution will take their individual values for each
invocation, as
 normal.

SUGGESTED ADDITIONS
The following are additions that have been requested, but I have been reluctant
 to add due to them
being very simple to implement in perl

Perl version 5.24.0 documentation - List::Util

Page 8http://perldoc.perl.org

 # How many elements are true

 sub true { scalar grep { $_ } @_ }

 # How many elements are false

 sub false { scalar grep { !$_ } @_ }

SEE ALSO
Scalar::Util, List::MoreUtils

COPYRIGHT
Copyright (c) 1997-2007 Graham Barr <gbarr@pobox.com>. All rights reserved.
 This program is free
software; you can redistribute it and/or
 modify it under the same terms as Perl itself.

Recent additions and current maintenance by
 Paul Evans, <leonerd@leonerd.org.uk>.

