
Perl version 5.24.0 documentation - perl5240delta

Page 1http://perldoc.perl.org

NAME
perldelta - what is new for perl v5.24.0

DESCRIPTION
This document describes the differences between the 5.22.0 release and the
 5.24.0 release.

Core Enhancements
Postfix dereferencing is no longer experimental

Using the postderef and postderef_qq features no longer emits a
 warning. Existing code that
disables the experimental::postderef warning
 category that they previously used will continue
to work. The postderef
 feature has no effect; all Perl code can use postfix dereferencing,

regardless of what feature declarations are in scope. The 5.24 feature
 bundle now includes the
postderef_qq feature.

Unicode 8.0 is now supported
For details on what is in this release, see http://www.unicode.org/versions/Unicode8.0.0/.

perl will now croak when closing an in-place output file fails
Until now, failure to close the output file for an in-place edit was not
 detected, meaning that the input
file could be clobbered without the edit being
 successfully completed. Now, when the output file
cannot be closed
 successfully, an exception is raised.

New \b{lb} boundary in regular expressions
lb stands for Line Break. It is a Unicode property
 that determines where a line of text is suitable to
break (typically so
 that it can be output without overflowing the available horizontal
 space). This
capability has long been furnished by the Unicode::LineBreak module, but now a light-weight,
non-customizable
 version that is suitable for many purposes is in core Perl.

qr/(?[])/ now works in UTF-8 locales
Extended Bracketed Character Classes
 now will successfully compile when use locale is in effect.
The compiled
 pattern will use standard Unicode rules. If the runtime locale is not a
 UTF-8 one, a
warning is raised and standard Unicode rules are used
 anyway. No tainting is done since the outcome
does not actually depend
 on the locale.

Integer shift (<< and >>) now more explicitly defined
Negative shifts are reverse shifts: left shift becomes right shift,
 and right shift becomes left shift.

Shifting by the number of bits in a native integer (or more) is zero,
 except when the "overshift" is right
shifting a negative value under use integer, in which case the result is -1 (arithmetic shift).

Until now negative shifting and overshifting have been undefined
 because they have relied on
whatever the C implementation happens
 to do. For example, for the overshift a common C behavior is
"modulo shift":

 1 >> 64 == 1 >> (64 % 64) == 1 >> 0 == 1 # Common C behavior.

 # And the same for <<, while Perl now produces 0 for both.

Now these behaviors are well-defined under Perl, regardless of what
 the underlying C implementation
does. Note, however, that you are still
 constrained by the native integer width: you need to know how
far left you
 can go. You can use for example:

 use Config;
 my $wordbits = $Config{uvsize} * 8; # Or $Config{uvsize} << 3.

If you need a more bits on the left shift, you can use for example
 the bigint pragma, or the

Perl version 5.24.0 documentation - perl5240delta

Page 2http://perldoc.perl.org

Bit::Vector module from CPAN.

printf and sprintf now allow reordered precision arguments
That is, sprintf '|%.*2$d|', 2, 3 now returns |002|. This extends
 the existing reordering
mechanism (which allows reordering for arguments
 that are used as format fields, widths, and vector
separators).

More fields provided to sigaction callback with SA_SIGINFO
When passing the SA_SIGINFO flag to sigaction, the errno, status, uid, pid, addr and band
fields are now
 included in the hash passed to the handler, if supported by the
 platform.

Hashbang redirection to Perl 6
Previously perl would redirect to another interpreter if it found a
 hashbang path unless the path
contains "perl" (see perlrun). To improve
 compatability with Perl 6 this behavior has been extended to
also redirect
 if "perl" is followed by "6".

Security
Set proper umask before calling mkstemp(3)

In 5.22 perl started setting umask to 0600 before calling mkstemp(3)
 and restoring it afterwards.
This wrongfully tells open(2) to strip
 the owner read and write bits from the given mode before
applying it,
 rather than the intended negation of leaving only those bits in place.

Systems that use mode 0666 in mkstemp(3) (like old versions of
 glibc) create a file with permissions
0066, leaving world read and
 write permissions regardless of current umask.

This has been fixed by using umask 0177 instead. [perl #127322]

Fix out of boundary access in Win32 path handling
This is CVE-2015-8608. For more information see [perl #126755]

Fix loss of taint in canonpath
This is CVE-2015-8607. For more information see [perl #126862]

Avoid accessing uninitialized memory in win32 crypt()
Added validation that will detect both a short salt and invalid characters
 in the salt. [perl #126922]

Remove duplicate environment variables from environ
Previously, if an environment variable appeared more than once in environ[], %ENV would contain
the last entry for that name,
 while a typical getenv() would return the first entry. We now
 make sure
%ENV contains the same as what getenv returns.

Second, we remove duplicates from environ[], so if a setting
 with that name is set in %ENV, we
won't pass an unsafe value
 to a child process.

[CVE-2016-2381]

Incompatible Changes
The autoderef feature has been removed

The experimental autoderef feature (which allowed calling push, pop, shift, unshift, splice,
keys, values, and each on
 a scalar argument) has been deemed unsuccessful. It has now been
removed;
 trying to use the feature (or to disable the experimental::autoderef
 warning it
previously triggered) now yields an exception.

Lexical $_ has been removed
my $_ was introduced in Perl 5.10, and subsequently caused much confusion
 with no obvious
solution. In Perl 5.18.0, it was made experimental on the
 theory that it would either be removed or
redesigned in a less confusing (but
 backward-incompatible) way. Over the following years, no

Perl version 5.24.0 documentation - perl5240delta

Page 3http://perldoc.perl.org

alternatives were
 proposed. The feature has now been removed and will fail to compile.

qr/\b{wb}/ is now tailored to Perl expectations
This is now more suited to be a drop-in replacement for plain \b, but
 giving better results for parsing
natural language. Previously it
 strictly followed the current Unicode rules which calls for it to match

between each white space character. Now it doesn't generally match
 within spans of white space,
behaving like \b does. See "\b{wb}" in perlrebackslash

Regular expression compilation errors
Some regular expression patterns that had runtime errors now
 don't compile at all.

Almost all Unicode properties using the \p{} and \P{} regular
 expression pattern constructs are
now checked for validity at pattern
 compilation time, and invalid ones will cause the program to not

compile. In earlier releases, this check was often deferred until run
 time. Whenever an error check is
moved from run- to compile time,
 erroneous code is caught 100% of the time, whereas before it would
only
 get caught if and when the offending portion actually gets executed,
 which for unreachable code
might be never.

qr/\N{}/ now disallowed under use re "strict"
An empty \N{} makes no sense, but for backwards compatibility is
 accepted as doing nothing,
though a deprecation warning is raised by
 default. But now this is a fatal error under the experimental
feature "'strict' mode" in re.

Nested declarations are now disallowed
A my, our, or state declaration is no longer allowed inside
 of another my, our, or state
declaration.

For example, these are now fatal:

 my ($x, my($y));
 our (my $x);

[perl #125587]

[perl #121058]

The /\C/ character class has been removed.
This regular expression character class was deprecated in v5.20.0 and has
 produced a deprecation
warning since v5.22.0. It is now a compile-time
 error. If you need to examine the individual bytes that
make up a
 UTF8-encoded character, then use utf8::encode() on the string (or a
 copy) first.

chdir('') no longer chdirs home
Using chdir('') or chdir(undef) to chdir home has been deprecated since
 perl v5.8, and will
now fail. Use chdir() instead.

ASCII characters in variable names must now be all visible
It was legal until now on ASCII platforms for variable names to contain
 non-graphical ASCII control
characters (ordinals 0 through 31, and 127,
 which are the C0 controls and DELETE). This usage has
been
 deprecated since v5.20, and as of now causes a syntax error. The
 variables these names
referred to are special, reserved by Perl for
 whatever use it may choose, now, or in the future. Each
such variable
 has an alternative way of spelling it. Instead of the single
 non-graphic control character,
a two character sequence beginning with a
 caret is used, like $^] and ${^GLOBAL_PHASE}. Details
are at perlvar. It remains legal, though unwise and deprecated (raising a
 deprecation warning), to use
certain non-graphic non-ASCII characters in
 variables names when not under use utf8. No code
should do this,
 as all such variables are reserved by Perl, and Perl doesn't currently
 define any of
them (but could at any time, without notice).

Perl version 5.24.0 documentation - perl5240delta

Page 4http://perldoc.perl.org

An off by one issue in $Carp::MaxArgNums has been fixed
$Carp::MaxArgNums is supposed to be the number of arguments to display.
 Prior to this version, it
was instead showing $Carp::MaxArgNums + 1 arguments,
 contrary to the documentation.

Only blanks and tabs are now allowed within [...] within (?[...]).
The experimental Extended Bracketed Character Classes can contain regular
 bracketed character
classes within them. These differ from regular ones in
 that white space is generally ignored, unless
escaped by preceding it with a
 backslash. The white space that is ignored is now limited to just tab \t
and SPACE characters. Previously, it was any white space. See "Extended Bracketed Character
Classes" in perlrecharclass.

Deprecations
Using code points above the platform's IV_MAX is now deprecated

Unicode defines code points in the range 0..0x10FFFF. Some standards
 at one time defined them
up to 2**31 - 1, but Perl has allowed them to
 be as high as anything that will fit in a word on the
platform being
 used. However, use of those above the platform's IV_MAX is broken in
 some
constructs, notably tr///, regular expression patterns involving
 quantifiers, and in some arithmetic
and comparison operations, such as
 being the upper limit of a loop. Now the use of such code points
raises
 a deprecation warning, unless that warning category is turned off. IV_MAX is typically 2**31 -1
on 32-bit platforms, and 2**63-1 on
 64-bit ones.

Doing bitwise operations on strings containing code points above
 0xFF is deprecated
The string bitwise operators treat their operands as strings of bytes,
 and values beyond 0xFF are
nonsensical in this context. To operate on
 encoded bytes, first encode the strings. To operate on code
points'
 numeric values, use split and map ord. In the future, this
 warning will be replaced by an
exception.

sysread(), syswrite(), recv() and send() are deprecated on
 :utf8 handles
The sysread(), recv(), syswrite() and send() operators
 are deprecated on handles that have
the :utf8 layer, either
 explicitly, or implicitly, eg., with the :encoding(UTF-16LE) layer.

Both sysread() and recv() currently use only the :utf8 flag for the
 stream, ignoring the actual
layers. Since sysread() and recv() do no
 UTF-8 validation they can end up creating invalidly
encoded scalars.

Similarly, syswrite() and send() use only the :utf8 flag, otherwise
 ignoring any layers. If the
flag is set, both write the value UTF-8
 encoded, even if the layer is some different encoding, such as
the
 example above.

Ideally, all of these operators would completely ignore the :utf8
 state, working only with bytes, but
this would result in silently
 breaking existing code. To avoid this a future version of perl will
 throw an
exception when any of sysread(), recv(), syswrite() or send()
 are called on handle with the
:utf8 layer.

Performance Enhancements
The overhead of scope entry and exit has been considerably reduced, so
 for example
subroutine calls, loops and basic blocks are all faster now.
 This empty function call now takes
about a third less time to execute:

 sub f{} f();

Many languages, such as Chinese, are caseless. Perl now knows about
 most common ones,
and skips much of the work when
 a program tries to change case in them (like ucfirst()) or
match
 caselessly (qr//i). This will speed up a program, such as a web
 server, that can
operate on multiple languages, while it is operating on a
 caseless one.

/fixed-substr/ has been made much faster.

Perl version 5.24.0 documentation - perl5240delta

Page 5http://perldoc.perl.org

On platforms with a libc memchr() implementation which makes good use of
 underlying
hardware support, patterns which include fixed substrings will now
 often be much faster; for
example with glibc on a recent x86_64 CPU, this:

 $s = "a" x 1000 . "wxyz";
 $s =~ /wxyz/ for 1..30000

is now about 7 times faster. On systems with slow memchr(), e.g. 32-bit ARM
 Raspberry Pi,
there will be a small or little speedup. Conversely, some
 pathological cases, such as "ab" x
1000 =~ /aa/ will be slower now; up to 3
 times slower on the rPi, 1.5x slower on x86_64.

Faster addition, subtraction and multiplication.

Since 5.8.0, arithmetic became slower due to the need to support
 64-bit integers. To deal with
64-bit integers, a lot more corner
 cases need to be checked, which adds time. We now detect
common
 cases where there is no need to check for those corner cases,
 and special-case
them.

Preincrement, predecrement, postincrement, and postdecrement have been
 made faster by
internally splitting the functions which handled multiple
 cases into different functions.

Creating Perl debugger data structures (see "Debugger Internals" in perldebguts)
 for XSUBs
and const subs has been removed. This removed one glob/scalar combo
 for each unique .c
file that XSUBs and const subs came from. On startup
 (perl -e"0") about half a dozen
glob/scalar debugger combos were created.
 Loading XS modules created more glob/scalar
combos. These things were
 being created regardless of whether the perl debugger was being
used,
 and despite the fact that it can't debug C code anyway

On Win32, stating or -Xing a path, if the file or directory does not
 exist, is now 3.5x faster
than before.

Single arguments in list assign are now slightly faster:

 ($x) = (...);
 (...) = ($x);

Less peak memory is now used when compiling regular expression patterns.

Modules and Pragmata
Updated Modules and Pragmata

arybase has been upgraded from version 0.10 to 0.11.

Attribute::Handlers has been upgraded from version 0.97 to 0.99.

autodie has been upgraded from version 2.26 to 2.29.

autouse has been upgraded from version 1.08 to 1.11.

B has been upgraded from version 1.58 to 1.62.

B::Deparse has been upgraded from version 1.35 to 1.37.

base has been upgraded from version 2.22 to 2.23.

Benchmark has been upgraded from version 1.2 to 1.22.

bignum has been upgraded from version 0.39 to 0.42.

bytes has been upgraded from version 1.04 to 1.05.

Carp has been upgraded from version 1.36 to 1.40.

Compress::Raw::Bzip2 has been upgraded from version 2.068 to 2.069.

Perl version 5.24.0 documentation - perl5240delta

Page 6http://perldoc.perl.org

Compress::Raw::Zlib has been upgraded from version 2.068 to 2.069.

Config::Perl::V has been upgraded from version 0.24 to 0.25.

CPAN::Meta has been upgraded from version 2.150001 to 2.150005.

CPAN::Meta::Requirements has been upgraded from version 2.132 to 2.140.

CPAN::Meta::YAML has been upgraded from version 0.012 to 0.018.

Data::Dumper has been upgraded from version 2.158 to 2.160.

Devel::Peek has been upgraded from version 1.22 to 1.23.

Devel::PPPort has been upgraded from version 3.31 to 3.32.

Dumpvalue has been upgraded from version 1.17 to 1.18.

DynaLoader has been upgraded from version 1.32 to 1.38.

Encode has been upgraded from version 2.72 to 2.80.

encoding has been upgraded from version 2.14 to 2.17.

encoding::warnings has been upgraded from version 0.11 to 0.12.

English has been upgraded from version 1.09 to 1.10.

Errno has been upgraded from version 1.23 to 1.25.

experimental has been upgraded from version 0.013 to 0.016.

ExtUtils::CBuilder has been upgraded from version 0.280221 to 0.280225.

ExtUtils::Embed has been upgraded from version 1.32 to 1.33.

ExtUtils::MakeMaker has been upgraded from version 7.04_01 to 7.10_01.

ExtUtils::ParseXS has been upgraded from version 3.28 to 3.31.

ExtUtils::Typemaps has been upgraded from version 3.28 to 3.31.

feature has been upgraded from version 1.40 to 1.42.

fields has been upgraded from version 2.17 to 2.23.

File::Copy has been upgraded from version 2.30 to 2.31.

File::Find has been upgraded from version 1.29 to 1.34.

File::Glob has been upgraded from version 1.24 to 1.26.

File::Path has been upgraded from version 2.09 to 2.12_01.

File::Spec has been upgraded from version 3.56 to 3.63.

Filter::Util::Call has been upgraded from version 1.54 to 1.55.

Getopt::Long has been upgraded from version 2.45 to 2.48.

Hash::Util has been upgraded from version 0.18 to 0.19.

Hash::Util::FieldHash has been upgraded from version 1.15 to 1.19.

HTTP::Tiny has been upgraded from version 0.054 to 0.056.

I18N::Langinfo has been upgraded from version 0.12 to 0.13.

Perl version 5.24.0 documentation - perl5240delta

Page 7http://perldoc.perl.org

if has been upgraded from version 0.0604 to 0.0606.

IO has been upgraded from version 1.35 to 1.36.

IO-Compress has been upgraded from version 2.068 to 2.069.

IPC::Open3 has been upgraded from version 1.18 to 1.20.

IPC::SysV has been upgraded from version 2.04 to 2.06_01.

List::Util has been upgraded from version 1.41 to 1.42_02.

locale has been upgraded from version 1.06 to 1.08.

Locale::Codes has been upgraded from version 3.34 to 3.37.

Math::BigInt has been upgraded from version 1.9997 to 1.999715.

Math::BigInt::FastCalc has been upgraded from version 0.31 to 0.40.

Math::BigRat has been upgraded from version 0.2608 to 0.260802.

Module::CoreList has been upgraded from version 5.20150520 to 5.20160506.

Module::Metadata has been upgraded from version 1.000026 to 1.000031.

mro has been upgraded from version 1.17 to 1.18.

ODBM_File has been upgraded from version 1.12 to 1.14.

Opcode has been upgraded from version 1.32 to 1.34.

parent has been upgraded from version 0.232 to 0.234.

Parse::CPAN::Meta has been upgraded from version 1.4414 to 1.4417.

Perl::OSType has been upgraded from version 1.008 to 1.009.

perlfaq has been upgraded from version 5.021009 to 5.021010.

PerlIO::encoding has been upgraded from version 0.21 to 0.24.

PerlIO::mmap has been upgraded from version 0.014 to 0.016.

PerlIO::scalar has been upgraded from version 0.22 to 0.24.

PerlIO::via has been upgraded from version 0.15 to 0.16.

podlators has been upgraded from version 2.28 to 4.07.

Pod::Functions has been upgraded from version 1.09 to 1.10.

Pod::Perldoc has been upgraded from version 3.25 to 3.25_02.

Pod::Simple has been upgraded from version 3.29 to 3.32.

Pod::Usage has been upgraded from version 1.64 to 1.68.

POSIX has been upgraded from version 1.53 to 1.65.

Scalar::Util has been upgraded from version 1.41 to 1.42_02.

SDBM_File has been upgraded from version 1.13 to 1.14.

SelfLoader has been upgraded from version 1.22 to 1.23.

Socket has been upgraded from version 2.018 to 2.020_03.

Perl version 5.24.0 documentation - perl5240delta

Page 8http://perldoc.perl.org

Storable has been upgraded from version 2.53 to 2.56.

strict has been upgraded from version 1.09 to 1.11.

Term::ANSIColor has been upgraded from version 4.03 to 4.04.

Term::Cap has been upgraded from version 1.15 to 1.17.

Test has been upgraded from version 1.26 to 1.28.

Test::Harness has been upgraded from version 3.35 to 3.36.

Thread::Queue has been upgraded from version 3.05 to 3.09.

threads has been upgraded from version 2.01 to 2.07.

threads::shared has been upgraded from version 1.48 to 1.51.

Tie::File has been upgraded from version 1.01 to 1.02.

Tie::Scalar has been upgraded from version 1.03 to 1.04.

Time::HiRes has been upgraded from version 1.9726 to 1.9733.

Time::Piece has been upgraded from version 1.29 to 1.31.

Unicode::Collate has been upgraded from version 1.12 to 1.14.

Unicode::Normalize has been upgraded from version 1.18 to 1.25.

Unicode::UCD has been upgraded from version 0.61 to 0.64.

UNIVERSAL has been upgraded from version 1.12 to 1.13.

utf8 has been upgraded from version 1.17 to 1.19.

version has been upgraded from version 0.9909 to 0.9916.

warnings has been upgraded from version 1.32 to 1.36.

Win32 has been upgraded from version 0.51 to 0.52.

Win32API::File has been upgraded from version 0.1202 to 0.1203.

XS::Typemap has been upgraded from version 0.13 to 0.14.

XSLoader has been upgraded from version 0.20 to 0.21.

Documentation
Changes to Existing Documentation
perlapi

The process of using undocumented globals has been documented, namely, that one
 should
send email to perl5-porters@perl.org
 first to get the go-ahead for documenting and using an
undocumented function or
 global variable.

perlcall

A number of cleanups have been made to perlcall, including:

use EXTEND(SP, n) and PUSHs() instead of XPUSHs() where applicable
 and
update prose to match

add POPu, POPul and POPpbytex to the "complete list of POP macros"
 and clarify the
documentation for some of the existing entries, and
 a note about side-effects

Perl version 5.24.0 documentation - perl5240delta

Page 9http://perldoc.perl.org

add API documentation for POPu and POPul

use ERRSV more efficiently

approaches to thread-safety storage of SVs.

perlfunc

The documentation of hex has been revised to clarify valid inputs.

Better explain meaning of negative PIDs in waitpid. [perl #127080]

General cleanup: there's more consistency now (in POD usage, grammar, code
 examples),
better practices in code examples (use of my, removal of bareword
 filehandles, dropped usage
of & when calling subroutines, ...), etc.

perlguts

A new section has been added, "Dynamic Scope and the Context Stack" in perlguts, which
explains how the perl context stack works.

perllocale

A stronger caution about using locales in threaded applications is
 given. Locales are not
thread-safe, and you can get wrong results or
 even segfaults if you use them there.

perlmodlib

We now recommend contacting the module-authors list or PAUSE in seeking
 guidance on the
naming of modules.

perlop

The documentation of qx// now describes how $? is affected.

perlpolicy

This note has been added to perlpolicy:

 While civility is required, kindness is encouraged; if you have any
 doubt about whether you are being civil, simply ask yourself, "Am I
 being kind?" and aspire to that.

perlreftut

Fix some examples to be strict clean.

perlrebackslash

Clarify that in languages like Japanese and Thai, dictionary lookup
 is required to determine
word boundaries.

perlsub

Updated to note that anonymous subroutines can have signatures.

perlsyn

Fixed a broken example where = was used instead of == in conditional in do/while example.

perltie

The usage of FIRSTKEY and NEXTKEY has been clarified.

perlunicode

Discourage use of 'In' as a prefix signifying the Unicode Block property.

Perl version 5.24.0 documentation - perl5240delta

Page 10http://perldoc.perl.org

perlvar

The documentation of $@ was reworded to clarify that it is not just for
 syntax errors in eval.
[perl #124034]

The specific true value of $!{E...} is now documented, noting that it is
 subject to change
and not guaranteed.

Use of $OLD_PERL_VERSION is now discouraged.

perlxs

The documentation of PROTOTYPES has been corrected; they are disabled
 by default, not
enabled.

Diagnostics
The following additions or changes have been made to diagnostic output,
 including warnings and fatal
error messages. For the complete list of
 diagnostic messages, see perldiag.

New Diagnostics
New Errors

%s must not be a named sequence in transliteration operator

Can't find Unicode property definition "%s" in regex;

Can't redeclare "%s" in "%s"

Character following \p must be '{' or a single-character Unicode property name in regex;

Empty \%c in regex; marked by <-- HERE in m/%s/

Illegal user-defined property name

Invalid number '%s' for -C option.

Sequence (?... not terminated in regex; marked by <-- HERE in m/%s/

Sequence (?P<... not terminated in regex; marked by <-- HERE in m/%s/

Sequence (?P>... not terminated in regex; marked by <-- HERE in m/%s/

New Warnings

Assuming NOT a POSIX class since %s in regex; marked by <-- HERE in m/%s/

%s() is deprecated on :utf8 handles

Changes to Existing Diagnostics
Accessing the IO part of a glob as FILEHANDLE instead of IO is no
 longer deprecated. It is
discouraged to encourage uniformity (so that, for
 example, one can grep more easily) but it
will not be removed. [perl #127060]

The diagnostic Hexadecimal float: internal error has been changed to
Hexadecimal float: internal error (%s) to include more information.

Can't modify non-lvalue subroutine call of &%s

This error now reports the name of the non-lvalue subroutine you attempted to
 use as an
lvalue.

When running out of memory during an attempt the increase the stack
 size, previously, perl
would die using the cryptic message panic: av_extend_guts() negative count
(-9223372036854775681).
 This has been fixed to show the prettier message: Out of
memory during stack extend

Perl version 5.24.0 documentation - perl5240delta

Page 11http://perldoc.perl.org

Configuration and Compilation
Configure now acts as if the -O option is always passed, allowing command
 line options to
override saved configuration. This should eliminate confusion
 when command line options are
ignored for no obvious reason. -O is now
 permitted, but ignored.

Bison 3.0 is now supported.

Configure no longer probes for libnm by default. Originally
 this was the "New Math" library, but
the name has been re-used by the
 GNOME NetworkManager. [perl #127131]

Added Configure probes for newlocale, freelocale, and uselocale.

PPPort.so/PPPort.dll no longer get installed, as they are
 not used by PPPort.pm, only
by its test files.

It is now possible to specify which compilation date to show on perl -V output, by setting the
macro PERL_BUILD_DATE.

Using the NO_HASH_SEED define in combination with the default hash algorithm
PERL_HASH_FUNC_ONE_AT_A_TIME_HARD resulted in a fatal error while compiling
 the
interpreter, since Perl 5.17.10. This has been fixed.

Configure should handle spaces in paths a little better.

No longer generate EBCDIC POSIX-BC tables. We don't believe anyone is
 using Perl and
POSIX-BC at this time, and by not generating these tables
 it saves time during development,
and makes the resulting tar ball smaller.

The GNU Make makefile for Win32 now supports parallel builds. [perl #126632]

You can now build perl with MSVC++ on Win32 using GNU Make. [perl #126632]

The Win32 miniperl now has a real getcwd which increases build performance
 resulting in
getcwd() being 605x faster in Win32 miniperl.

Configure now takes -Dusequadmath into account when calculating the alignbytes
configuration variable. Previously the mis-calculated alignbytes could cause alignment
errors on debugging builds. [perl
 #127894]

Testing
A new test (t/op/aassign.t) has been added to test the list assignment operator OP_AASSIGN.

Parallel building has been added to the dmake makefile.mk makefile. All
 Win32 compilers
are supported.

Platform Support
Platform-Specific Notes

AmigaOS

The AmigaOS port has been reintegrated into the main tree, based off of
 Perl 5.22.1.

Cygwin

Tests are more robust against unusual cygdrive prefixes. [perl #126834]

EBCDIC

UTF-EBCDIC extended

UTF-EBCDIC is like UTF-8, but for EBCDIC platforms. It now has been
 extended so
that it can represent code points up to 2 ** 64 - 1 on
 platforms with 64-bit words. This
brings it into parity with UTF-8.
 This enhancement requires an incompatible change to
the representation
 of code points in the range 2 ** 30 to 2 ** 31 -1 (the latter was the

Perl version 5.24.0 documentation - perl5240delta

Page 12http://perldoc.perl.org

previous maximum representable code point). This means that a file that
 contains one
of these code points, written out with previous versions of
 perl cannot be read in,
without conversion, by a perl containing this
 change. We do not believe any such files
are in existence, but if you
 do have one, submit a ticket at perlbug@perl.org,
 and we
will write a conversion script for you.

EBCDIC cmp() and sort() fixed for UTF-EBCDIC strings

Comparing two strings that were both encoded in UTF-8 (or more
 precisely,
UTF-EBCDIC) did not work properly until now. Since sort()
 uses cmp(), this fixes
that as well.

EBCDIC tr/// and y/// fixed for \N{}, and use utf8 ranges

Perl v5.22 introduced the concept of portable ranges to regular
 expression patterns. A
portable range matches the same set of
 characters no matter what platform is being
run on. This concept is now
 extended to tr///. See tr///.

There were also some problems with these operations under use
 utf8, which are
now fixed

FreeBSD

Use the fdclose() function from FreeBSD if it is available. [perl #126847]

IRIX

Under some circumstances IRIX stdio fgetc() and fread() set the errno to
ENOENT, which made no sense according to either IRIX or POSIX docs. Errno
 is now
cleared in such cases. [perl #123977]

Problems when multiplying long doubles by infinity have been fixed. [perl #126396]

MacOS X

Until now OS X builds of perl have specified a link target of 10.3 (Panther,
 2003) but
have not specified a compiler target. From now on, builds of perl on
 OS X 10.6 or later
(Snow Leopard, 2008) by default capture the current OS X
 version and specify that as
the explicit build target in both compiler and
 linker flags, thus preserving binary
compatibility for extensions built later
 regardless of changes in OS X, SDK, or compiler
and linker versions. To
 override the default value used in the build and preserved in
the flags,
 specify export MACOSX_DEPLOYMENT_TARGET=10.N before configuring
and building
 perl, where 10.N is the version of OS X you wish to target. In OS X 10.5
or
 earlier there is no change to the behavior present when those systems were
 current;
the link target is still OS X 10.3 and there is no explicit compiler
 target.

Builds with both -DDEBUGGING and threading enabled would fail with a
 "panic: free
from wrong pool" error when built or tested from Terminal
 on OS X. This was caused
by perl's internal management of the
 environment conflicting with an atfork handler
using the libc setenv() function to update the environment.

Perl now uses setenv()/unsetenv() to update the environment on OS X. [perl
#126240]

Solaris

All Solaris variants now build a shared libperl

Solaris and variants like OpenIndiana now always build with the shared
 Perl library
(Configure -Duseshrplib). This was required for the
 OpenIndiana builds, but this has
also been the setting for Oracle/Sun
 Perl builds for several years.

Tru64

Workaround where Tru64 balks when prototypes are listed as PERL_STATIC_INLINE
, but where the test is build with -DPERL_NO_INLINE_FUNCTIONS.

Perl version 5.24.0 documentation - perl5240delta

Page 13http://perldoc.perl.org

VMS

On VMS, the math function prototypes in math.h are now visible under C++.
 Now
building the POSIX extension with C++ will no longer crash.

VMS has had setenv/unsetenv since v7.0 (released in 1996), Perl_vmssetenv
now always uses setenv/unsetenv.

Perl now implements its own killpg by scanning for processes in the
 specified
process group, which may not mean exactly the same thing as a Unix
 process group,
but allows us to send a signal to a parent (or master) process
 and all of its
sub-processes. At the perl level, this means we can now send a
 negative pid like so:

 kill SIGKILL, -$pid;

to signal all processes in the same group as $pid.

For those %ENV elements based on the CRTL environ array, we've always
 preserved
case when setting them but did look-ups only after upcasing the
 key first, which made
lower- or mixed-case entries go missing. This problem
 has been corrected by making
%ENV elements derived from the environ array
 case-sensitive on look-up as well as
case-preserving on store.

Environment look-ups for PERL5LIB and PERLLIB previously only
 considered logical
names, but now consider all sources of %ENV as
 determined by PERL_ENV_TABLES
and as documented in "%ENV" in perlvms.

The minimum supported version of VMS is now v7.3-2, released in 2003. As a
 side
effect of this change, VAX is no longer supported as the terminal
 release of OpenVMS
VAX was v7.3 in 2001.

Win32

A new build option USE_NO_REGISTRY has been added to the makefiles. This
 option
is off by default, meaning the default is to do Windows registry
 lookups. This option
stops Perl from looking inside the registry for anything.
 For what values are looked up
in the registry see perlwin32. Internally, in
 C, the name of this option is
WIN32_NO_REGISTRY.

The behavior of Perl using HKEY_CURRENT_USER\Software\Perl and
HKEY_LOCAL_MACHINE\Software\Perl to lookup certain values, including %ENV

vars starting with PERL has changed. Previously, the 2 keys were checked
 for entries
at all times through the perl process's life time even if
 they did not
 exist. For
performance reasons, now, if the root key (i.e.
HKEY_CURRENT_USER\Software\Perl or
HKEY_LOCAL_MACHINE\Software\Perl) does
 not exist at process start time, it will
not be checked again for %ENV
 override entries for the remainder of the perl process's
life. This more
 closely matches Unix behavior in that the environment is copied or
inherited
 on startup and changing the variable in the parent process or another
process
 or editing .bashrc will not change the environmental variable in other
 existing,
running, processes.

One glob fetch was removed for each -X or stat call whether done from
 Perl code or
internally from Perl's C code. The glob being looked up was
${^WIN32_SLOPPY_STAT} which is a special variable. This makes -X and stat
slightly faster.

During miniperl's process startup, during the build process, 4 to 8 IO calls
 related to
the process starting .pl and the buildcustomize.pl file were
 removed from the code
opening and executing the first 1 or 2 .pl files.

Perl version 5.24.0 documentation - perl5240delta

Page 14http://perldoc.perl.org

Builds using Microsoft Visual C++ 2003 and earlier no longer produce
 an "INTERNAL
COMPILER ERROR" message. [perl #126045]

Visual C++ 2013 builds will now execute on XP and higher. Previously they would
 only
execute on Vista and higher.

You can now build perl with GNU Make and GCC. [perl #123440]

truncate($filename, $size) now works for files over 4GB in size.
 [perl
#125347]

Parallel building has been added to the dmake makefile.mk makefile. All
 Win32
compilers are supported.

Building a 64-bit perl with a 64-bit GCC but a 32-bit gmake would
 result in an invalid
$Config{archname} for the resulting perl.
 [perl #127584]

Errors set by Winsock functions are now put directly into $^E, and the
 relevant WSAE*
error codes are now exported from the Errno and POSIX
 modules for testing this
against.

The previous behavior of putting the errors (converted to POSIX-style E*
 error codes
since Perl 5.20.0) into $! was buggy due to the non-equivalence
 of like-named
Winsock and POSIX error constants, a relationship between which
 has unfortunately
been established in one way or another since Perl 5.8.0.

The new behavior provides a much more robust solution for checking Winsock
 errors
in portable software without accidentally matching POSIX tests that were
 intended for
other OSes and may have different meanings for Winsock.

The old behavior is currently retained, warts and all, for backwards
 compatibility, but
users are encouraged to change any code that tests $!
 against E* constants for
Winsock errors to instead test $^E against WSAE* constants. After a suitable
deprecation period, the old behavior may
 be removed, leaving $! unchanged after
Winsock function calls, to avoid any
 possible confusion over which error variable to
check.

ppc64el

floating point

The floating point format of ppc64el (Debian naming for little-endian
 PowerPC) is now
detected correctly.

Internal Changes
The implementation of perl's context stack system, and its internal API,
 have been heavily
reworked. Note that no significant changes have been
 made to any external APIs, but XS
code which relies on such internal
 details may need to be fixed. The main changes are:

The PUSHBLOCK(), POPSUB() etc. macros have been replaced with static
 inline
functions such as cx_pushblock(), cx_popsub() etc. These use
 function args
rather than implicitly relying on local vars such as gimme and newsp being available.
Also their functionality has
 changed: in particular, cx_popblock() no longer
decrements cxstack_ix. The ordering of the steps in the pp_leave* functions

involving cx_popblock(), cx_popsub() etc. has changed. See the new

documentation, "Dynamic Scope and the Context Stack" in perlguts, for
 details on how
to use them.

Various macros, which now consistently have a CX_ prefix, have been added:

 CX_CUR(), CX_LEAVE_SCOPE(), CX_POP()

or renamed:

Perl version 5.24.0 documentation - perl5240delta

Page 15http://perldoc.perl.org

 CX_POP_SAVEARRAY(), CX_DEBUG(), CX_PUSHSUBST(), CX_POPSUBST()

cx_pushblock() now saves PL_savestack_ix and PL_tmps_floor, so
pp_enter* and pp_leave* no longer do

 ENTER; SAVETMPS;; LEAVE

cx_popblock() now also restores PL_curpm.

In dounwind() for every context type, the current savestack frame is
 now processed
before each context is popped; formerly this was only done
 for sub-like context frames.
This action has been removed from cx_popsub() and placed into its own macro,
CX_LEAVE_SCOPE(cx), which
 must be called before cx_popsub() etc.

dounwind() now also does a cx_popblock() on the last popped frame
 (formerly it
only did the cx_popsub() etc. actions on each frame).

The temps stack is now freed on scope exit; previously, temps created
 during the last
statement of a block wouldn't be freed until the next nextstate following the block
(apart from an existing hack that did
 this for recursive subs in scalar context); and in
something like f(g()), the temps created by the last statement in g() would
 formerly
not be freed until the statement following the return from f().

Most values that were saved on the savestack on scope entry are now
 saved in
suitable new fields in the context struct, and saved and
 restored directly by
cx_pushfoo() and cx_popfoo(), which is much
 faster.

Various context struct fields have been added, removed or modified.

The handling of @_ in cx_pushsub() and cx_popsub() has been
 considerably
tidied up, including removing the argarray field from the
 context struct, and
extracting out some common (but rarely used) code into
 a separate function,
clear_defarray(). Also, useful subsets of cx_popsub() which had been unrolled
in places like pp_goto have been
 gathered into the new functions
cx_popsub_args() and cx_popsub_common().

pp_leavesub and pp_leavesublv now use the same function as the rest
 of the
pp_leave*'s to process return args.

CXp_FOR_PAD and CXp_FOR_GV flags have been added, and CXt_LOOP_FOR has
been split into CXt_LOOP_LIST, CXt_LOOP_ARY.

Some variables formerly declared by dMULTICALL (but not documented) have
 been
removed.

The obscure PL_timesbuf variable, effectively a vestige of Perl 1, has
 been removed. It was
documented as deprecated in Perl 5.20, with a statement
 that it would be removed early in the
5.21.x series; that has now finally
 happened. [perl #121351]

An unwarranted assertion in Perl_newATTRSUB_x() has been removed. If
 a stub subroutine
definition with a prototype has been seen, then any subsequent stub (or
 definition) of the
same subroutine with an attribute was causing an assertion
 failure because of a null pointer.
[perl #126845]

:: has been replaced by __ in ExtUtils::ParseXS, like it's done for
 parameters/return
values. This is more consistent, and simplifies writing XS
 code wrapping C++ classes into a
nested Perl namespace (it requires only
 a typedef for Foo__Bar rather than two, one for
Foo_Bar and the other
 for Foo::Bar).

The to_utf8_case() function is now deprecated. Instead use toUPPER_utf8,

Perl version 5.24.0 documentation - perl5240delta

Page 16http://perldoc.perl.org

toTITLE_utf8, toLOWER_utf8, and toFOLD_utf8.
 (See
http://nntp.perl.org/group/perl.perl5.porters/233287.)

Perl core code and the threads extension have been annotated so that,
 if Perl is configured to
use threads, then during compile-time clang (3.6
 or later) will warn about suspicious uses of
mutexes.
 See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html for more
 information.

The signbit() emulation has been enhanced. This will help older
 and/or more exotic
platforms or configurations.

Most EBCDIC-specific code in the core has been unified with non-EBCDIC
 code, to avoid
repetition and make maintenance easier.

MSWin32 code for $^X has been moved out of the win32 directory to caretx.c, where other
operating systems set that variable.

sv_ref() is now part of the API.

"sv_backoff" in perlapi had its return type changed from int to void. It
 previously has always
returned 0 since Perl 5.000 stable but that was
 undocumented. Although sv_backoff is
marked as public API, XS code is not
 expected to be impacted since the proper API call would
be through public API sv_setsv(sv, &PL_sv_undef), or quasi-public SvOOK_off, or
non-public SvOK_off calls, and the return value of sv_backoff was previously a

meaningless constant that can be rewritten as (sv_backoff(sv),0).

The EXTEND and MEXTEND macros have been improved to avoid various issues
 with integer
truncation and wrapping. In particular, some casts formerly used
 within the macros have been
removed. This means for example that passing an
 unsigned nitems argument is likely to
raise a compiler warning now
 (it's always been documented to require a signed value; formerly
int,
 lately SSize_t).

PL_sawalias and GPf_ALIASED_SV have been removed.

GvASSIGN_GENERATION and GvASSIGN_GENERATION_set have been removed.

Selected Bug Fixes
It now works properly to specify a user-defined property, such as

 qr/\p{mypkg1::IsMyProperty}/i

with /i caseless matching, an explicit package name, and IsMyProperty not defined at the
time of the pattern compilation.

Perl's memcpy(), memmove(), memset() and memcmp() fallbacks are now
 more compatible
with the originals. [perl #127619]

Fixed the issue where a s///r) with -DPERL_NO_COW attempts
 to modify the source SV,
resulting in the program dying. [perl #127635]

Fixed an EBCDIC-platform-only case where a pattern could fail to match. This
 occurred when
matching characters from the set of C1 controls when the
 target matched string was in UTF-8.

Narrow the filename check in strict.pm and warnings.pm. Previously,
 it assumed that if the
filename (without the .pmc? extension) differed
 from the package name, if was a misspelled
use statement (i.e. use Strict
 instead of use strict). We now check whether there's
really a miscapitalization happening, and not some other issue.

Turn an assertion into a more user friendly failure when parsing
 regexes. [perl #127599]

Correctly raise an error when trying to compile patterns with unterminated character classes
while there are trailing backslashes.
 [perl #126141].

Perl version 5.24.0 documentation - perl5240delta

Page 17http://perldoc.perl.org

Line numbers larger than 2**31-1 but less than 2**32 are no longer
 returned by caller() as
negative numbers. [perl #126991]

unless (assignment) now properly warns when syntax
 warnings are enabled. [perl
#127122]

Setting an ISA glob to an array reference now properly adds isaelem magic to any existing
elements. Previously modifying such
 an element would not update the ISA cache, so method
calls would call
 the wrong function. Perl would also crash if the ISA glob was
 destroyed, since
new code added in 5.23.7 would try to release the isaelem magic from the elements. [perl
#127351]

If a here-doc was found while parsing another operator, the parser had
 already read end of
file, and the here-doc was not terminated, perl
 could produce an assertion or a segmentation
fault. This now reliably
 complains about the unterminated here-doc. [perl #125540]

untie() would sometimes return the last value returned by the UNTIE()
 handler as well as
it's normal value, messing up the stack. [perl
 #126621]

Fixed an operator precedence problem when castflags & 2 is true.
 [perl #127474]

Caching of DESTROY methods could result in a non-pointer or a
 non-STASH stored in the
SvSTASH() slot of a stash, breaking the B STASH() method. The DESTROY method is now
cached in the MRO metadata
 for the stash. [perl #126410]

The AUTOLOAD method is now called when searching for a DESTROY method,
 and correctly
sets $AUTOLOAD too. [perl #124387] [perl #127494]

Avoid parsing beyond the end of the buffer when processing a #line
 directive with no
filename. [perl #127334]

Perl now raises a warning when a regular expression pattern looks like
 it was supposed to
contain a POSIX class, like qr/[[:alpha:]]/, but
 there was some slight defect in its
specification which causes it to
 instead be treated as a regular bracketed character class. An
example
 would be missing the second colon in the above like this: qr/[[:alpha]]/. This
compiles to match a sequence of two characters.
 The second is "]", and the first is any of:
"[", ":", "a", "h", "l", or "p". This is unlikely to be the intended
 meaning, and now a
warning is raised. No warning is raised unless the
 specification is very close to one of the 14
legal POSIX classes. (See "POSIX Character Classes" in perlrecharclass.)
 [perl #8904]

Certain regex patterns involving a complemented POSIX class in an
 inverted bracketed
character class, and matching something else
 optionally would improperly fail to match. An
example of one that could
 fail is qr/_?[^\Wbar]\x{100}/. This has been fixed.
 [perl
#127537]

Perl 5.22 added support to the C99 hexadecimal floating point notation,
 but sometimes
misparses hex floats. This has been fixed.
 [perl #127183]

A regression that allowed undeclared barewords in hash keys to work despite
 strictures has
been fixed. [perl #126981]

Calls to the placeholder &PL_sv_yes used internally when an import()
 or unimport()
method isn't found now correctly handle scalar context. [perl #126042]

Report more context when we see an array where we expect to see an
 operator and avoid an
assertion failure. [perl #123737]

Modifying an array that was previously a package @ISA no longer
 causes assertion failures or
crashes. [perl #123788]

Retain binary compatibility across plain and DEBUGGING perl builds. [perl #127212]

Perl version 5.24.0 documentation - perl5240delta

Page 18http://perldoc.perl.org

Avoid leaking memory when setting $ENV{foo} on darwin. [perl #126240]

/...\G/ no longer crashes on utf8 strings. When \G is a fixed number
 of characters from the
start of the regex, perl needs to count back that
 many characters from the current pos()
position and start matching from
 there. However, it was counting back bytes rather than
characters, which
 could lead to panics on utf8 strings.

In some cases operators that return integers would return negative
 integers as large positive
integers. [perl #126635]

The pipe() operator would assert for DEBUGGING builds instead of
 producing the correct
error message. The condition asserted on is
 detected and reported on correctly without the
assertions, so the
 assertions were removed. [perl #126480]

In some cases, failing to parse a here-doc would attempt to use freed
 memory. This was
caused by a pointer not being restored correctly. [perl #126443]

@x = sort { *a = 0; $a <=> $b } 0 .. 1 no longer frees the GP
 for *a before
restoring its SV slot. [perl #124097]

Multiple problems with the new hexadecimal floating point printf
 format %a were fixed: [perl
#126582], [perl #126586], [perl #126822]

Calling mg_set() in leave_scope() no longer leaks.

A regression from Perl v5.20 was fixed in which debugging output of regular
 expression
compilation was wrong. (The pattern was correctly compiled, but
 what got displayed for it was
wrong.)

\b{sb} works much better. In Perl v5.22.0, this new construct didn't
 seem to give the
expected results, yet passed all the tests in the
 extensive suite furnished by Unicode. It turns
out that it was because
 these were short input strings, and the failures had to do with longer

inputs.

Certain syntax errors in "Extended Bracketed Character Classes" in perlrecharclass caused
panics
 instead of the proper error message. This has now been fixed. [perl
 #126481]

Perl 5.20 added a message when a quantifier in a regular
 expression was useless, but then
caused the parser to skip it;
 this caused the surplus quantifier to be silently ignored, instead
 of
throwing an error. This is now fixed. [perl #126253]

The switch to building non-XS modules last in win32/makefile.mk (introduced
 by design as
part of the changes to enable parallel building) caused the
 build of POSIX to break due to
problems with the version module. This
 is now fixed.

Improved parsing of hex float constants.

Fixed an issue with pack where pack "H" (and pack "h")
 could read past the source when
given a non-utf8 source, and a utf8 target.
 [perl #126325]

Fixed several cases where perl would abort due to a segmentation fault,
 or a C-level assert.
[perl #126615], [perl #126602], [perl #126193].

There were places in regular expression patterns where comments ((?#...))
 weren't
allowed, but should have been. This is now fixed. [perl #116639]

Some regressions from Perl 5.20 have been fixed, in which some syntax errors in (?[...])
constructs
 within regular expression patterns could cause a segfault instead of a proper
 error
message. [perl #126180] [perl #126404]

Another problem with (?[...])
 constructs has been fixed wherein things like \c] could
cause panics. [perl #126181]

Perl version 5.24.0 documentation - perl5240delta

Page 19http://perldoc.perl.org

Some problems with attempting to extend the perl stack to around 2G or 4G
 entries have been
fixed. This was particularly an issue on 32-bit perls built
 to use 64-bit integers, and was easily
noticeable with the list repetition
 operator, e.g.

 @a = (1) x $big_number

Formerly perl may have crashed, depending on the exact value of $big_number;
 now it will
typically raise an exception. [perl #125937]

In a regex conditional expression (?(condition)yes-pattern|no-pattern), if
 the
condition is (?!) then perl failed the match outright instead of
 matching the no-pattern. This
has been fixed. [perl #126222]

The special backtracking control verbs (*VERB:ARG) now all allow an optional
 argument and
set REGERROR/REGMARK appropriately as well. [perl #126186]

Several bugs, including a segmentation fault, have been fixed with the boundary
 checking
constructs (introduced in Perl 5.22) \b{gcb}, \b{sb}, \b{wb}, \B{gcb}, \B{sb}, and
\B{wb}. All the \B{} ones now match an empty
 string; none of the \b{} ones do. [perl
#126319]

Duplicating a closed file handle for write no longer creates a
 filename of the form
GLOB(0xXXXXXXXX). [perl #125115]

Warning fatality is now ignored when rewinding the stack. This
 prevents infinite recursion
when the now fatal error also causes
 rewinding of the stack. [perl #123398]

In perl v5.22.0, the logic changed when parsing a numeric parameter to the -C
 option, such
that the successfully parsed number was not saved as the option
 value if it parsed to the end
of the argument. [perl #125381]

The PadlistNAMES macro is an lvalue again.

Zero -DPERL_TRACE_OPS memory for sub-threads.

perl_clone_using() was missing Zero init of PL_op_exec_cnt[]. This
 caused sub-threads
in threaded -DPERL_TRACE_OPS builds to spew exceedingly
 large op-counts at destruct.
These counts would print %x as "ABABABAB",
 clearly a mem-poison value.

A leak in the XS typemap caused one scalar to be leaked each time a FILE *
 or a PerlIO *
was OUTPUT:ed or imported to Perl, since perl 5.000. These
 particular typemap entries are
thought to be extremely rarely used by XS
 modules. [perl #124181]

alarm() and sleep() will now warn if the argument is a negative number
 and return undef.
Previously they would pass the negative value to the
 underlying C function which may have
set up a timer with a surprising value.

Perl can again be compiled with any Unicode version. This used to
 (mostly) work, but was lost
in v5.18 through v5.20. The property Name_Alias did not exist prior to Unicode 5.0.
Unicode::UCD
 incorrectly said it did. This has been fixed.

Very large code-points (beyond Unicode) in regular expressions no
 longer cause a buffer
overflow in some cases when converted to UTF-8. [perl #125826]

The integer overflow check for the range operator (...) in list
 context now correctly handles the
case where the size of the range is
 larger than the address space. This could happen on
32-bits with
 -Duse64bitint. [perl #125781]

A crash with %::=(); J->${\"::"} has been fixed. [perl #125541]

qr/(?[()])/ no longer segfaults, giving a syntax error message instead.
 [perl #125805]

Regular expression possessive quantifier v5.20 regression now fixed. qr/PAT{min,max}+/

Perl version 5.24.0 documentation - perl5240delta

Page 20http://perldoc.perl.org

is supposed to behave identically
 to qr/(?>PAT{min,max})/. Since v5.20, this didn't
 work if
min and max were equal. [perl #125825]

BEGIN <> no longer segfaults and properly produces an error
 message. [perl #125341]

In tr/// an illegal backwards range like tr/\x{101}-\x{100}// was
 not always detected,
giving incorrect results. This is now fixed.

Known Problems
Some modules have been broken by the context stack rework.
 These modules were relying
on non-guaranteed implementation details in perl.
 Their maintainers have been informed, and
should contact perl5-porters for
 advice if needed. Below is a subset of these modules:

Algorithm::Permute

Coro

Coro and perl v5.22.0 were already incompatible due to a change in the perl,
 and the
reworking on the perl context stack creates a further incompatibility.
 perl5-porters has
discussed the issue on the mailing list.

Data::Alias

RPerl

Scope::Upper

TryCatch

The module lexical::underscore no longer works on perl v5.24.0, because perl
 no longer has a
lexical $_!

mod_perl has been patched for compatibility for v5.22.0 and later but no
 release has been
made. The relevant patch (and other changes) can be found in
 their source code repository,
mirrored at GitHub.

Acknowledgements
Perl 5.24.0 represents approximately 11 months of development since Perl 5.22.0
 and contains
approximately 360,000 lines of changes across 1,800 files from 77
 authors.

Excluding auto-generated files, documentation and release tools, there were
 approximately 250,000
lines of changes to 1,200 .pm, .t, .c and .h files.

Perl continues to flourish into its third decade thanks to a vibrant community
 of users and developers.
The following people are known to have contributed the
 improvements that became Perl 5.24.0:

Aaron Crane, Aaron Priven, Abigail, Achim Gratz, Alexander D'Archangel, Alex
 Vandiver, Andreas
KÃ¶nig, Andy Broad, Andy Dougherty, Aristotle Pagaltzis,
 Chase Whitener, Chas. Owens, Chris
'BinGOs' Williams, Craig A. Berry, Dagfinn
 Ilmari MannsÃ¥ker, Dan Collins, Daniel Dragan, David
Golden, David Mitchell,
 Dominic Hargreaves, Doug Bell, Dr.Ruud, Ed Avis, Ed J, Father
Chrysostomos,
 Herbert Breunung, H.Merijn Brand, Hugo van der Sanden, Ivan Pozdeev, James E

Keenan, Jan Dubois, Jarkko Hietaniemi, Jerry D. Hedden, Jim Cromie, John
 Peacock, John SJ
Anderson, Karen Etheridge, Karl Williamson, kmx, Leon
 Timmermans, Ludovic E. R.
Tolhurst-Cleaver, Lukas Mai, Martijn Lievaart,
 Matthew Horsfall, Mattia Barbon, Max Maischein,
Mohammed El-Afifi, Nicholas
 Clark, Nicolas R., Niko Tyni, Peter John Acklam, Peter Martini, Peter

Rabbitson, Pip Cet, Rafael Garcia-Suarez, Reini Urban, Renee Baecker, Ricardo
 Signes, Sawyer X,
Shlomi Fish, Sisyphus, Stanislaw Pusep, Steffen MÃ¼ller,
 Stevan Little, Steve Hay, Sullivan Beck,
Thomas Sibley, Todd Rinaldo, Tom
 Hukins, Tony Cook, Unicode Consortium, Victor Adam, Vincent
Pit, Vladimir
 Timofeev, Yves Orton, Zachary Storer, Zefram.

The list above is almost certainly incomplete as it is automatically generated
 from version control
history. In particular, it does not include the names of
 the (very much appreciated) contributors who
reported issues to the Perl bug
 tracker.

Perl version 5.24.0 documentation - perl5240delta

Page 21http://perldoc.perl.org

Many of the changes included in this version originated in the CPAN modules
 included in Perl's core.
We're grateful to the entire CPAN community for
 helping Perl to flourish.

For a more complete list of all of Perl's historical contributors, please see
 the AUTHORS file in the
Perl source distribution.

Reporting Bugs
If you find what you think is a bug, you might check the articles recently
 posted to the
comp.lang.perl.misc newsgroup and the perl bug database at
 https://rt.perl.org/ . There may also be
information at
 http://www.perl.org/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug program
 included with your
release. Be sure to trim your bug down to a tiny but
 sufficient test case. Your bug report, along with
the output of perl -V,
 will be sent off to perlbug@perl.org to be analysed by the Perl porting team.

If the bug you are reporting has security implications which make it
 inappropriate to send to a publicly
archived mailing list, then see "SECURITY VULNERABILITY CONTACT INFORMATION" in perlsec

for details of how to report the issue.

SEE ALSO
The Changes file for an explanation of how to view exhaustive details on
 what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

