
Perl version 5.24.0 documentation - perlxstypemap

Page 1http://perldoc.perl.org

NAME
perlxstypemap - Perl XS C/Perl type mapping

DESCRIPTION
The more you think about interfacing between two languages, the more
 you'll realize that the majority
of programmer effort has to go into
 converting between the data structures that are native to either of

the languages involved. This trumps other matter such as differing
 calling conventions because the
problem space is so much greater.
 There are simply more ways to shove data into memory than there
are
 ways to implement a function call.

Perl XS' attempt at a solution to this is the concept of typemaps.
 At an abstract level, a Perl XS
typemap is nothing but a recipe for
 converting from a certain Perl data structure to a certain C
 data
structure and vice versa. Since there can be C types that
 are sufficiently similar to one another to
warrant converting with
 the same logic, XS typemaps are represented by a unique identifier,

henceforth called an XS type in this document. You can then tell
 the XS compiler that multiple C
types are to be mapped with the same
 XS typemap.

In your XS code, when you define an argument with a C type or when
 you are using a CODE: and an
OUTPUT: section together with a
 C return type of your XSUB, it'll be the typemapping mechanism that
makes this easy.

Anatomy of a typemap
In more practical terms, the typemap is a collection of code
 fragments which are used by the xsubpp
compiler to map C function
 parameters and values to Perl values. The typemap file may consist
 of
three sections labelled TYPEMAP, INPUT, and OUTPUT.
 An unlabelled initial section is assumed to be
a TYPEMAP section.
 The INPUT section tells the compiler how to translate Perl values
 into variables
of certain C types. The OUTPUT section tells the
 compiler how to translate the values from certain C
types into values
 Perl can understand. The TYPEMAP section tells the compiler which
 of the INPUT
and OUTPUT code fragments should be used to map a given
 C type to a Perl value. The section
labels TYPEMAP, INPUT, or OUTPUT must begin in the first column on a line by themselves,
 and must
be in uppercase.

Each type of section can appear an arbitrary number of times
 and does not have to appear at all. For
example, a typemap may
 commonly lack INPUT and OUTPUT sections if all it needs to
 do is associate
additional C types with core XS types like T_PTROBJ.
 Lines that start with a hash # are considered
comments and ignored
 in the TYPEMAP section, but are considered significant in INPUT
 and OUTPUT.
Blank lines are generally ignored.

Traditionally, typemaps needed to be written to a separate file,
 conventionally called typemap in a
CPAN distribution. With
 ExtUtils::ParseXS (the XS compiler) version 3.12 or better which
 comes with
perl 5.16, typemaps can also be embedded directly into
 XS code using a HERE-doc like syntax:

 TYPEMAP: <<HERE
 ...
 HERE

where HERE can be replaced by other identifiers like with normal
 Perl HERE-docs. All details below
about the typemap textual format
 remain valid.

The TYPEMAP section should contain one pair of C type and
 XS type per line as follows. An example
from the core typemap file:

 TYPEMAP
 # all variants of char* is handled by the T_PV typemap
 char * T_PV
 const char * T_PV
 unsigned char * T_PV
 ...

Perl version 5.24.0 documentation - perlxstypemap

Page 2http://perldoc.perl.org

The INPUT and OUTPUT sections have identical formats, that is,
 each unindented line starts a new in-
or output map respectively.
 A new in- or output map must start with the name of the XS type to
 map
on a line by itself, followed by the code that implements it
 indented on the following lines. Example:

 INPUT
 T_PV
 $var = ($type)SvPV_nolen($arg)
 T_PTR
 $var = INT2PTR($type,SvIV($arg))

We'll get to the meaning of those Perlish-looking variables in a
 little bit.

Finally, here's an example of the full typemap file for mapping C
 strings of the char * type to Perl
scalars/strings:

 TYPEMAP
 char * T_PV

 INPUT
 T_PV
 $var = ($type)SvPV_nolen($arg)

 OUTPUT
 T_PV
 sv_setpv((SV*)$arg, $var);

Here's a more complicated example: suppose that you wanted struct netconfig to be blessed
into the class Net::Config.
 One way to do this is to use underscores (_) to separate package

names, as follows:

 typedef struct netconfig * Net_Config;

And then provide a typemap entry T_PTROBJ_SPECIAL that maps
 underscores to double-colons (::),
and declare Net_Config to be of
 that type:

 TYPEMAP
 Net_Config T_PTROBJ_SPECIAL

 INPUT
 T_PTROBJ_SPECIAL
 if (sv_derived_from($arg, \"${(my $ntt=$ntype)=~s/_/::/g;\$ntt}\")){
 IV tmp = SvIV((SV*)SvRV($arg));
 $var = INT2PTR($type, tmp);
 }
 else
 croak(\"$var is not of type ${(my $ntt=$ntype)=~s/_/::/g;\$ntt}\")

 OUTPUT
 T_PTROBJ_SPECIAL
 sv_setref_pv($arg, \"${(my $ntt=$ntype)=~s/_/::/g;\$ntt}\",
 (void*)$var);

The INPUT and OUTPUT sections substitute underscores for double-colons
 on the fly, giving the
desired effect. This example demonstrates some
 of the power and versatility of the typemap facility.

Perl version 5.24.0 documentation - perlxstypemap

Page 3http://perldoc.perl.org

The INT2PTR macro (defined in perl.h) casts an integer to a pointer
 of a given type, taking care of the
possible different size of integers
 and pointers. There are also PTR2IV, PTR2UV, PTR2NV macros,
 to
map the other way, which may be useful in OUTPUT sections.

The Role of the typemap File in Your Distribution
The default typemap in the lib/ExtUtils directory of the Perl source
 contains many useful types which
can be used by Perl extensions. Some
 extensions define additional typemaps which they keep in their
own directory.
 These additional typemaps may reference INPUT and OUTPUT maps in the main

typemap. The xsubpp compiler will allow the extension's own typemap to
 override any mappings
which are in the default typemap. Instead of using
 an additional typemap file, typemaps may be
embedded verbatim in XS
 with a heredoc-like syntax. See the documentation on the TYPEMAP: XS

keyword.

For CPAN distributions, you can assume that the XS types defined by
 the perl core are already
available. Additionally, the core typemap
 has default XS types for a large number of C types. For
example, if
 you simply return a char * from your XSUB, the core typemap will
 have this C type
associated with the T_PV XS type. That means your
 C string will be copied into the PV (pointer value)
slot of a new scalar
 that will be returned from your XSUB to Perl.

If you're developing a CPAN distribution using XS, you may add your own
 file called typemap to the
distribution. That file may contain
 typemaps that either map types that are specific to your code or that
override the core typemap file's mappings for common C types.

Sharing typemaps Between CPAN Distributions
Starting with ExtUtils::ParseXS version 3.13_01 (comes with perl 5.16
 and better), it is rather easy to
share typemap code between multiple
 CPAN distributions. The general idea is to share it as a module
that
 offers a certain API and have the dependent modules declare that as a
 built-time requirement
and import the typemap into the XS. An example
 of such a typemap-sharing module on CPAN is
ExtUtils::Typemaps::Basic. Two steps to getting that module's
 typemaps available in your
code:

Declare ExtUtils::Typemaps::Basic as a build-time dependency
 in Makefile.PL (use
BUILD_REQUIRES), or in your Build.PL
 (use build_requires).

Include the following line in the XS section of your XS file:
 (don't break the line)

 INCLUDE_COMMAND: $^X -MExtUtils::Typemaps::Cmd
 -e "print embeddable_typemap(q{Basic})"

Writing typemap Entries
Each INPUT or OUTPUT typemap entry is a double-quoted Perl string that
 will be evaluated in the
presence of certain variables to get the
 final C code for mapping a certain C type.

This means that you can embed Perl code in your typemap (C) code using
 constructs such as ${
perl code that evaluates to scalar reference here }. A common
 use case is to
generate error messages that refer to the true function
 name even when using the ALIAS XS feature:

 ${ $ALIAS ? \q[GvNAME(CvGV(cv))] : \qq[\"$pname\"] }

For many typemap examples, refer to the core typemap file that can be
 found in the perl source tree
at lib/ExtUtils/typemap.

The Perl variables that are available for interpolation into typemaps
 are the following:

$var - the name of the input or output variable, eg. RETVAL for
 return values.

$type - the raw C type of the parameter, any : replaced with _.
 e.g. for a type of Foo::Bar,
$type is Foo__Bar

Perl version 5.24.0 documentation - perlxstypemap

Page 4http://perldoc.perl.org

$ntype - the supplied type with * replaced with Ptr.
 e.g. for a type of Foo*, $ntype is FooPtr

$arg - the stack entry, that the parameter is input from or output
 to, e.g. ST(0)

$argoff - the argument stack offset of the argument. ie. 0 for the
 first argument, etc.

$pname - the full name of the XSUB, with including the PACKAGE
 name, with any PREFIX
stripped. This is the non-ALIAS name.

$Package - the package specified by the most recent PACKAGE
 keyword.

$ALIAS - non-zero if the current XSUB has any aliases declared with ALIAS.

Full Listing of Core Typemaps
Each C type is represented by an entry in the typemap file that
 is responsible for converting perl
variables (SV, AV, HV, CV, etc.)
 to and from that type. The following sections list all XS types
 that
come with perl by default.

T_SV

This simply passes the C representation of the Perl variable (an SV*)
 in and out of the XS
layer. This can be used if the C code wants
 to deal directly with the Perl variable.

T_SVREF

Used to pass in and return a reference to an SV.

Note that this typemap does not decrement the reference count
 when returning the reference
to an SV*.
 See also: T_SVREF_REFCOUNT_FIXED

T_SVREF_FIXED

Used to pass in and return a reference to an SV.
 This is a fixed
 variant of T_SVREF that
decrements the refcount appropriately
 when returning a reference to an SV*. Introduced in
perl 5.15.4.

T_AVREF

From the perl level this is a reference to a perl array.
 From the C level this is a pointer to an
AV.

Note that this typemap does not decrement the reference count
 when returning an AV*. See
also: T_AVREF_REFCOUNT_FIXED

T_AVREF_REFCOUNT_FIXED

From the perl level this is a reference to a perl array.
 From the C level this is a pointer to an
AV. This is a fixed
 variant of T_AVREF that decrements the refcount appropriately
 when
returning an AV*. Introduced in perl 5.15.4.

T_HVREF

From the perl level this is a reference to a perl hash.
 From the C level this is a pointer to an
HV.

Note that this typemap does not decrement the reference count
 when returning an HV*. See
also: T_HVREF_REFCOUNT_FIXED

T_HVREF_REFCOUNT_FIXED

From the perl level this is a reference to a perl hash.
 From the C level this is a pointer to an
HV. This is a fixed
 variant of T_HVREF that decrements the refcount appropriately
 when
returning an HV*. Introduced in perl 5.15.4.

T_CVREF

From the perl level this is a reference to a perl subroutine
 (e.g. $sub = sub { 1 };). From the C
level this is a pointer
 to a CV.

Perl version 5.24.0 documentation - perlxstypemap

Page 5http://perldoc.perl.org

Note that this typemap does not decrement the reference count
 when returning an HV*. See
also: T_HVREF_REFCOUNT_FIXED

T_CVREF_REFCOUNT_FIXED

From the perl level this is a reference to a perl subroutine
 (e.g. $sub = sub { 1 };). From the C
level this is a pointer
 to a CV.

This is a fixed
 variant of T_HVREF that decrements the refcount appropriately
 when returning
an HV*. Introduced in perl 5.15.4.

T_SYSRET

The T_SYSRET typemap is used to process return values from system calls.
 It is only
meaningful when passing values from C to perl (there is
 no concept of passing a system
return value from Perl to C).

System calls return -1 on error (setting ERRNO with the reason)
 and (usually) 0 on success. If
the return value is -1 this typemap
 returns undef. If the return value is not -1, this typemap

translates a 0 (perl false) to "0 but true" (which
 is perl true) or returns the value itself, to
indicate that the
 command succeeded.

The POSIX module makes extensive use of this type.

T_UV

An unsigned integer.

T_IV

A signed integer. This is cast to the required integer type when
 passed to C and converted to
an IV when passed back to Perl.

T_INT

A signed integer. This typemap converts the Perl value to a native
 integer type (the int type
on the current platform). When returning
 the value to perl it is processed in the same way as
for T_IV.

Its behaviour is identical to using an int type in XS with T_IV.

T_ENUM

An enum value. Used to transfer an enum component
 from C. There is no reason to pass an
enum value to C since
 it is stored as an IV inside perl.

T_BOOL

A boolean type. This can be used to pass true and false values to and
 from C.

T_U_INT

This is for unsigned integers. It is equivalent to using T_UV
 but explicitly casts the variable to
type unsigned int.
 The default type for unsigned int is T_UV.

T_SHORT

Short integers. This is equivalent to T_IV but explicitly casts
 the return to type short. The
default typemap for short
 is T_IV.

T_U_SHORT

Unsigned short integers. This is equivalent to T_UV but explicitly
 casts the return to type
unsigned short. The default typemap for unsigned short is T_UV.

T_U_SHORT is used for type U16 in the standard typemap.

T_LONG

Long integers. This is equivalent to T_IV but explicitly casts
 the return to type long. The

Perl version 5.24.0 documentation - perlxstypemap

Page 6http://perldoc.perl.org

default typemap for long
 is T_IV.

T_U_LONG

Unsigned long integers. This is equivalent to T_UV but explicitly
 casts the return to type
unsigned long. The default typemap for unsigned long is T_UV.

T_U_LONG is used for type U32 in the standard typemap.

T_CHAR

Single 8-bit characters.

T_U_CHAR

An unsigned byte.

T_FLOAT

A floating point number. This typemap guarantees to return a variable
 cast to a float.

T_NV

A Perl floating point number. Similar to T_IV and T_UV in that the
 return type is cast to the
requested numeric type rather than
 to a specific type.

T_DOUBLE

A double precision floating point number. This typemap guarantees to
 return a variable cast to
a double.

T_PV

A string (char *).

T_PTR

A memory address (pointer). Typically associated with a void *
 type.

T_PTRREF

Similar to T_PTR except that the pointer is stored in a scalar and the
 reference to that scalar
is returned to the caller. This can be used
 to hide the actual pointer value from the
programmer since it is usually
 not required directly from within perl.

The typemap checks that a scalar reference is passed from perl to XS.

T_PTROBJ

Similar to T_PTRREF except that the reference is blessed into a class.
 This allows the pointer
to be used as an object. Most commonly used to
 deal with C structs. The typemap checks that
the perl object passed
 into the XS routine is of the correct class (or part of a subclass).

The pointer is blessed into a class that is derived from the name
 of type of the pointer but with
all '*' in the name replaced with
 'Ptr'.

For DESTROY XSUBs only, a T_PTROBJ is optimized to a T_PTRREF. This means
 the class
check is skipped.

T_REF_IV_REF

NOT YET

T_REF_IV_PTR

Similar to T_PTROBJ in that the pointer is blessed into a scalar object.
 The difference is that
when the object is passed back into XS it must be
 of the correct type (inheritance is not
supported) while T_PTROBJ supports
 inheritance.

The pointer is blessed into a class that is derived from the name
 of type of the pointer but with
all '*' in the name replaced with
 'Ptr'.

Perl version 5.24.0 documentation - perlxstypemap

Page 7http://perldoc.perl.org

For DESTROY XSUBs only, a T_REF_IV_PTR is optimized to a T_PTRREF. This
 means the
class check is skipped.

T_PTRDESC

NOT YET

T_REFREF

Similar to T_PTRREF, except the pointer stored in the referenced scalar
 is dereferenced and
copied to the output variable. This means that
 T_REFREF is to T_PTRREF as T_OPAQUE is
to T_OPAQUEPTR. All clear?

Only the INPUT part of this is implemented (Perl to XSUB) and there
 are no known users in
core or on CPAN.

T_REFOBJ

Like T_REFREF, except it does strict type checking (inheritance is not
 supported).

For DESTROY XSUBs only, a T_REFOBJ is optimized to a T_REFREF. This means
 the class
check is skipped.

T_OPAQUEPTR

This can be used to store bytes in the string component of the
 SV. Here the representation of
the data is irrelevant to perl and the
 bytes themselves are just stored in the SV. It is assumed
that the C
 variable is a pointer (the bytes are copied from that memory
 location). If the pointer
is pointing to something that is
 represented by 8 bytes then those 8 bytes are stored in the SV
(and
 length() will report a value of 8). This entry is similar to T_OPAQUE.

In principle the unpack() command can be used to convert the bytes
 back to a number (if the
underlying type is known to be a number).

This entry can be used to store a C structure (the number
 of bytes to be copied is calculated
using the C sizeof function)
 and can be used as an alternative to T_PTRREF without having
to worry
 about a memory leak (since Perl will clean up the SV).

T_OPAQUE

This can be used to store data from non-pointer types in the string
 part of an SV. It is similar to
T_OPAQUEPTR except that the
 typemap retrieves the pointer directly rather than assuming it

is being supplied. For example, if an integer is imported into
 Perl using T_OPAQUE rather
than T_IV the underlying bytes representing
 the integer will be stored in the SV but the actual
integer value will
 not be available. i.e. The data is opaque to perl.

The data may be retrieved using the unpack function if the
 underlying type of the byte stream
is known.

T_OPAQUE supports input and output of simple types.
 T_OPAQUEPTR can be used to pass
these bytes back into C if a pointer
 is acceptable.

Implicit array

xsubpp supports a special syntax for returning
 packed C arrays to perl. If the XS return type is
given as

 array(type, nelem)

xsubpp will copy the contents of nelem * sizeof(type) bytes from
 RETVAL to an SV and
push it onto the stack. This is only really useful
 if the number of items to be returned is known
at compile time and you
 don't mind having a string of bytes in your SV. Use T_ARRAY to push
a
 variable number of arguments onto the return stack (they won't be
 packed as a single string
though).

This is similar to using T_OPAQUEPTR but can be used to process more
 than one element.

T_PACKED

Perl version 5.24.0 documentation - perlxstypemap

Page 8http://perldoc.perl.org

Calls user-supplied functions for conversion. For OUTPUT
 (XSUB to Perl), a function named
XS_pack_$ntype is called
 with the output Perl scalar and the C variable to convert from.
$ntype is the normalized C type that is to be mapped to
 Perl. Normalized means that all *
are replaced by the
 string Ptr. The return value of the function is ignored.

Conversely for INPUT (Perl to XSUB) mapping, the
 function named XS_unpack_$ntype is
called with the input Perl
 scalar as argument and the return value is cast to the mapped
 C type
and assigned to the output C variable.

An example conversion function for a typemapped struct foo_t * might be:

 static void
 XS_pack_foo_tPtr(SV *out, foo_t *in)
 {
 dTHX; /* alas, signature does not include pTHX_ */
 HV* hash = newHV();
 hv_stores(hash, "int_member", newSViv(in->int_member));
 hv_stores(hash, "float_member", newSVnv(in->float_member));
 /* ... */

 /* mortalize as thy stack is not refcounted */
 sv_setsv(out, sv_2mortal(newRV_noinc((SV*)hash)));
 }

The conversion from Perl to C is left as an exercise to the reader,
 but the prototype would be:

 static foo_t *
 XS_unpack_foo_tPtr(SV *in);

Instead of an actual C function that has to fetch the thread context
 using dTHX, you can define
macros of the same name and avoid the
 overhead. Also, keep in mind to possibly free the
memory allocated by XS_unpack_foo_tPtr.

T_PACKEDARRAY

T_PACKEDARRAY is similar to T_PACKED. In fact, the INPUT (Perl
 to XSUB) typemap is
identical, but the OUTPUT typemap passes
 an additional argument to the XS_pack_$ntype
function. This
 third parameter indicates the number of elements in the output
 so that the
function can handle C arrays sanely. The variable
 needs to be declared by the user and must
have the name count_$ntype where $ntype is the normalized C type name
 as explained
above. The signature of the function would be for
 the example above and foo_t **:

 static void
 XS_pack_foo_tPtrPtr(SV *out, foo_t *in, UV count_foo_tPtrPtr);

The type of the third parameter is arbitrary as far as the typemap
 is concerned. It just has to
be in line with the declared variable.

Of course, unless you know the number of elements in the sometype ** C array, within your
XSUB, the return value from foo_t ** XS_unpack_foo_tPtrPtr(...) will be hard to
decipher.
 Since the details are all up to the XS author (the typemap user),
 there are several
solutions, none of which particularly elegant.
 The most commonly seen solution has been to
allocate memory for
 N+1 pointers and assign NULL to the (N+1)th to facilitate
 iteration.

Alternatively, using a customized typemap for your purposes in
 the first place is probably
preferable.

T_DATAUNIT

NOT YET

T_CALLBACK

NOT YET

Perl version 5.24.0 documentation - perlxstypemap

Page 9http://perldoc.perl.org

T_ARRAY

This is used to convert the perl argument list to a C array
 and for pushing the contents of a C
array onto the perl
 argument stack.

The usual calling signature is

 @out = array_func(@in);

Any number of arguments can occur in the list before the array but
 the input and output arrays
must be the last elements in the list.

When used to pass a perl list to C the XS writer must provide a
 function (named after the array
type but with 'Ptr' substituted for
 '*') to allocate the memory required to hold the list. A pointer

should be returned. It is up to the XS writer to free the memory on
 exit from the function. The
variable ix_$var is set to the number
 of elements in the new array.

When returning a C array to Perl the XS writer must provide an integer
 variable called
size_$var containing the number of elements in the
 array. This is used to determine how
many elements should be pushed
 onto the return argument stack. This is not required on input
since
 Perl knows how many arguments are on the stack when the routine is
 called. Ordinarily
this variable would be called size_RETVAL.

Additionally, the type of each element is determined from the type of
 the array. If the array
uses type intArray * xsubpp will
 automatically work out that it contains variables of type
int and
 use that typemap entry to perform the copy of each element. All
 pointer '*' and 'Array'
tags are removed from the name to determine
 the subtype.

T_STDIO

This is used for passing perl filehandles to and from C using FILE * structures.

T_INOUT

This is used for passing perl filehandles to and from C using PerlIO * structures. The file
handle can used for reading and
 writing. This corresponds to the +< mode, see also T_IN
 and
T_OUT.

See perliol for more information on the Perl IO abstraction
 layer. Perl must have been built
with -Duseperlio.

There is no check to assert that the filehandle passed from Perl
 to C was created with the right
open() mode.

Hint: The perlxstut tutorial covers the T_INOUT, T_IN, and T_OUT
 XS types nicely.

T_IN

Same as T_INOUT, but the filehandle that is returned from C to Perl
 can only be used for
reading (mode <).

T_OUT

Same as T_INOUT, but the filehandle that is returned from C to Perl
 is set to use the open
mode +>.

