
Perl version 5.24.0 documentation - perlop

Page 1http://perldoc.perl.org

NAME
perlop - Perl operators and precedence

DESCRIPTION
In Perl, the operator determines what operation is performed,
 independent of the type of the
operands. For example $x + $y
 is always a numeric addition, and if $x or $y do not contain

numbers, an attempt is made to convert them to numbers first.

This is in contrast to many other dynamic languages, where the
 operation is determined by the type of
the first argument. It also
 means that Perl has two versions of some operators, one for numeric
 and
one for string comparison. For example $x == $y compares
 two numbers for equality, and $x eq
$y compares two strings.

There are a few exceptions though: x can be either string
 repetition or list repetition, depending on the
type of the left
 operand, and &, |, ^ and ~ can be either string or numeric bit
 operations.

Operator Precedence and Associativity
Operator precedence and associativity work in Perl more or less like
 they do in mathematics.

Operator precedence means some operators are evaluated before
 others. For example, in 2 + 4 *
5, the multiplication has higher
 precedence so 4 * 5 is evaluated first yielding 2 + 20 ==
 22 and
not 6 * 5 == 30.

Operator associativity defines what happens if a sequence of the
 same operators is used one after
another: whether the evaluator will
 evaluate the left operations first, or the right first. For example, in 8
 - 4 - 2, subtraction is left associative so Perl evaluates the
 expression left to right. 8 - 4 is
evaluated first making the
 expression 4 - 2 == 2 and not 8 - 2 == 6.

Perl operators have the following associativity and precedence,
 listed from highest precedence to
lowest. Operators borrowed from
 C keep the same precedence relationship with each other, even
where
 C's precedence is slightly screwy. (This makes learning Perl easier
 for C folks.) With very few
exceptions, these all operate on scalar
 values only, not array values.

 left	 terms and list operators (leftward)
 left	 ->
 nonassoc	 ++ --
 right	 **
 right	 ! ~ \ and unary + and -
 left	 =~ !~
 left	 * / % x
 left	 + - .
 left	 << >>
 nonassoc	 named unary operators
 nonassoc	 < > <= >= lt gt le ge
 nonassoc	 == != <=> eq ne cmp ~~
 left	 &
 left	 | ^
 left	 &&
 left	 || //
 nonassoc	
 right	 ?:
 right	 = += -= *= etc. goto last next redo dump
 left	 , =>
 nonassoc	 list operators (rightward)
 right	 not
 left	 and
 left	 or xor

Perl version 5.24.0 documentation - perlop

Page 2http://perldoc.perl.org

In the following sections, these operators are covered in precedence order.

Many operators can be overloaded for objects. See overload.

Terms and List Operators (Leftward)
A TERM has the highest precedence in Perl. They include variables,
 quote and quote-like operators,
any expression in parentheses,
 and any function whose arguments are parenthesized. Actually, there

aren't really functions in this sense, just list operators and unary
 operators behaving as functions
because you put parentheses around
 the arguments. These are all documented in perlfunc.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.)
 is followed by a left
parenthesis as the next token, the operator and
 arguments within parentheses are taken to be of
highest precedence,
 just like a normal function call.

In the absence of parentheses, the precedence of list operators such as print, sort, or chmod is
either very high or very low depending on
 whether you are looking at the left side or the right side of
the operator.
 For example, in

 @ary = (1, 3, sort 4, 2);
 print @ary;		 # prints 1324

the commas on the right of the sort are evaluated before the sort,
 but the commas on the left are
evaluated after. In other words,
 list operators tend to gobble up all arguments that follow, and
 then act
like a simple TERM with regard to the preceding expression.
 Be careful with parentheses:

 # These evaluate exit before doing the print:
 print($foo, exit);	 # Obviously not what you want.
 print $foo, exit;	 # Nor is this.

 # These do the print before evaluating exit:
 (print $foo), exit;	 # This is what you want.
 print($foo), exit;	 # Or this.
 print ($foo), exit;	 # Or even this.

Also note that

 print ($foo & 255) + 1, "\n";

probably doesn't do what you expect at first glance. The parentheses
 enclose the argument list for
print which is evaluated (printing
 the result of $foo & 255). Then one is added to the return value

of print (usually 1). The result is something like this:

 1 + 1, "\n"; # Obviously not what you meant.

To do what you meant properly, you must write:

 print(($foo & 255) + 1, "\n");

See Named Unary Operators for more discussion of this.

Also parsed as terms are the do {} and eval {} constructs, as
 well as subroutine and method
calls, and the anonymous
 constructors [] and {}.

See also Quote and Quote-like Operators toward the end of this section,
 as well as I/O Operators.

Perl version 5.24.0 documentation - perlop

Page 3http://perldoc.perl.org

The Arrow Operator
"->" is an infix dereference operator, just as it is in C
 and C++. If the right side is either a [...],
{...}, or a (...) subscript, then the left side must be either a hard or
 symbolic reference to an
array, a hash, or a subroutine respectively.
 (Or technically speaking, a location capable of holding a
hard
 reference, if it's an array or hash reference being used for
 assignment.) See perlreftut and perlref
.

Otherwise, the right side is a method name or a simple scalar
 variable containing either the method
name or a subroutine reference,
 and the left side must be either an object (a blessed reference)
 or a
class name (that is, a package name). See perlobj.

The dereferencing cases (as opposed to method-calling cases) are
 somewhat extended by the
postderef feature. For the
 details of that feature, consult "Postfix Dereference Syntax" in perlref.

Auto-increment and Auto-decrement
"++" and "--" work as in C. That is, if placed before a variable,
 they increment or decrement the
variable by one before returning the
 value, and if placed after, increment or decrement after returning
the
 value.

 $i = 0; $j = 0;
 print $i++; # prints 0
 print ++$j; # prints 1

Note that just as in C, Perl doesn't define when the variable is
 incremented or decremented. You just
know it will be done sometime
 before or after the value is returned. This also means that modifying
 a
variable twice in the same statement will lead to undefined behavior.
 Avoid statements like:

 $i = $i ++;
 print ++ $i + $i ++;

Perl will not guarantee what the result of the above statements is.

The auto-increment operator has a little extra builtin magic to it. If
 you increment a variable that is
numeric, or that has ever been used in
 a numeric context, you get a normal increment. If, however,
the
 variable has been used in only string contexts since it was set, and
 has a value that is not the
empty string and matches the pattern /^[a-zA-Z]*[0-9]*\z/, the increment is done as a string,
preserving each
 character within its range, with carry:

 print ++($foo = "99");	 # prints "100"
 print ++($foo = "a0");	 # prints "a1"
 print ++($foo = "Az");	 # prints "Ba"
 print ++($foo = "zz");	 # prints "aaa"

undef is always treated as numeric, and in particular is changed
 to 0 before incrementing (so that a
post-increment of an undef value
 will return 0 rather than undef).

The auto-decrement operator is not magical.

Exponentiation
Binary "**" is the exponentiation operator. It binds even more
 tightly than unary minus, so -2**4 is
-(2**4), not (-2)**4.
 (This is
 implemented using C's pow(3) function, which actually works on
doubles
 internally.)

Note that certain exponentiation expressions are ill-defined:
 these include 0**0, 1**Inf, and
Inf**0. Do not expect
 any particular results from these special cases, the results
 are
platform-dependent.

Perl version 5.24.0 documentation - perlop

Page 4http://perldoc.perl.org

Symbolic Unary Operators
Unary "!" performs logical negation, that is, "not". See also not for a lower
 precedence version of
this.

Unary "-" performs arithmetic negation if the operand is numeric,
 including any string that looks like
a number. If the operand is
 an identifier, a string consisting of a minus sign concatenated
 with the
identifier is returned. Otherwise, if the string starts
 with a plus or minus, a string starting with the
opposite sign is
 returned. One effect of these rules is that -bareword is equivalent
 to the string
"-bareword". If, however, the string begins with a
 non-alphabetic character (excluding "+" or "-"),
Perl will attempt
 to convert
 the string to a numeric, and the arithmetic negation is performed. If the

string cannot be cleanly converted to a numeric, Perl will give the warning Argument "the string"
isn't numeric in negation (-) at

Unary "~" performs bitwise negation, that is, 1's complement. For
 example, 0666 & ~027 is 0640.
(See also Integer Arithmetic and Bitwise String Operators.) Note that the width of the result is

platform-dependent: ~0 is 32 bits wide on a 32-bit platform, but 64
 bits wide on a 64-bit platform, so if
you are expecting a certain bit
 width, remember to use the "&" operator to mask off the excess bits.

When complementing strings, if all characters have ordinal values under
 256, then their complements
will, also. But if they do not, all
 characters will be in either 32- or 64-bit complements, depending on
your
 architecture. So for example, ~"\x{3B1}" is "\x{FFFF_FC4E}" on
 32-bit machines and
"\x{FFFF_FFFF_FFFF_FC4E}" on 64-bit machines.

If the experimental "bitwise" feature is enabled via use feature
 'bitwise', then unary "~"
always treats its argument as a number, and an
 alternate form of the operator, "~.", always treats its
argument as a
 string. So ~0 and ~"0" will both give 2**32-1 on 32-bit platforms,
 whereas ~.0 and
~."0" will both yield "\xff". This feature
 produces a warning unless you use no warnings
'experimental::bitwise'.

Unary "+" has no effect whatsoever, even on strings. It is useful
 syntactically for separating a
function name from a parenthesized expression
 that would otherwise be interpreted as the complete
list of function
 arguments. (See examples above under Terms and List Operators (Leftward).)

Unary "\" creates a reference to whatever follows it. See perlreftut
 and perlref. Do not confuse this
behavior with the behavior of
 backslash within a string, although both forms do convey the notion
 of
protecting the next thing from interpolation.

Binding Operators
Binary "=~" binds a scalar expression to a pattern match. Certain operations
 search or modify the
string $_ by default. This operator makes that kind
 of operation work on some other string. The right
argument is a search
 pattern, substitution, or transliteration. The left argument is what is
 supposed to
be searched, substituted, or transliterated instead of the default $_. When used in scalar context, the
return value generally indicates the
 success of the operation. The exceptions are substitution (s///)

and transliteration (y///) with the /r (non-destructive) option,
 which cause the return value to be the
result of the substitution.
 Behavior in list context depends on the particular operator.
 See Regexp
Quote-Like Operators for details and perlretut for
 examples using these operators.

If the right argument is an expression rather than a search pattern,
 substitution, or transliteration, it is
interpreted as a search pattern at run
 time. Note that this means that its
 contents will be interpolated
twice, so

 '\\' =~ q'\\';

is not ok, as the regex engine will end up trying to compile the
 pattern \, which it will consider a
syntax error.

Binary "!~" is just like "=~" except the return value is negated in
 the logical sense.

Binary "!~" with a non-destructive substitution (s///r) or transliteration
 (y///r) is a syntax error.

Perl version 5.24.0 documentation - perlop

Page 5http://perldoc.perl.org

Multiplicative Operators
Binary "*" multiplies two numbers.

Binary "/" divides two numbers.

Binary "%" is the modulo operator, which computes the division
 remainder of its first argument with
respect to its second argument.
 Given integer
 operands $m and $n: If $n is positive, then $m % $n is
$m minus the largest multiple of $n less than or equal to $m. If $n is negative, then $m % $n is $m
minus the
 smallest multiple of $n that is not less than $m (that is, the
 result will be less than or equal
to zero). If the operands $m and $n are floating point values and the absolute value of $n (that is
abs($n)) is less than (UV_MAX + 1), only
 the integer portion of $m and $n will be used in the
operation
 (Note: here UV_MAX means the maximum of the unsigned integer type).
 If the absolute
value of the right operand (abs($n)) is greater than
 or equal to (UV_MAX + 1), "%" computes the
floating-point remainder $r in the equation ($r = $m - $i*$n) where $i is a certain
 integer that
makes $r have the same sign as the right operand $n (not as the left operand $m like C function
fmod())
 and the absolute value less than that of $n.
 Note that when use integer is in scope, "%"
gives you direct access
 to the modulo operator as implemented by your C compiler. This
 operator is
not as well defined for negative operands, but it will
 execute faster.

Binary "x" is the repetition operator. In scalar context or if the left
 operand is not enclosed in
parentheses, it returns a string consisting
 of the left operand repeated the number of times specified
by the right
 operand. In list context, if the left operand is enclosed in
 parentheses or is a list formed by
qw/STRING/, it repeats the list.
 If the right operand is zero or negative (raising a warning on

negative), it returns an empty string
 or an empty list, depending on the context.

 print '-' x 80;		 # print row of dashes

 print "\t" x ($tab/8), ' ' x ($tab%8);	 # tab over

 @ones = (1) x 80;		 # a list of 80 1's
 @ones = (5) x @ones;	 # set all elements to 5

Additive Operators
Binary "+" returns the sum of two numbers.

Binary "-" returns the difference of two numbers.

Binary "." concatenates two strings.

Shift Operators
Binary "<<" returns the value of its left argument shifted left by the
 number of bits specified by the
right argument. Arguments should be
 integers. (See also Integer Arithmetic.)

Binary ">>" returns the value of its left argument shifted right by
 the number of bits specified by the
right argument. Arguments should
 be integers. (See also Integer Arithmetic.)

If use integer (see Integer Arithmetic) is in force then
 signed C integers are used (arithmetic shift),
otherwise unsigned C
 integers are used (logical shift), even for negative shiftees.
 In arithmetic right
shift the sign bit is replicated on the left,
 in logical shift zero bits come in from the left.

Either way, the implementation isn't going to generate results larger
 than the size of the integer type
Perl was built with (32 bits or 64 bits).

Shifting by negative number of bits means the reverse shift: left
 shift becomes right shift, right shift
becomes left shift. This is
 unlike in C, where negative shift is undefined.

Shifting by more bits than the size of the integers means most of the
 time zero (all bits fall off), except
that under use integer
 right overshifting a negative shiftee results in -1. This is unlike
 in C, where

Perl version 5.24.0 documentation - perlop

Page 6http://perldoc.perl.org

shifting by too many bits is undefined. A common C
 behavior is "shift by modulo wordbits", so that for
example

 1 >> 64 == 1 >> (64 % 64) == 1 >> 0 == 1 # Common C behavior.

but that is completely accidental.

If you get tired of being subject to your platform's native integers,
 the use bigint pragma neatly
sidesteps the issue altogether:

 print 20 << 20; # 20971520
 print 20 << 40; # 5120 on 32-bit machines,
 # 21990232555520 on 64-bit machines
 use bigint;
 print 20 << 100; # 25353012004564588029934064107520

Named Unary Operators
The various named unary operators are treated as functions with one
 argument, with optional
parentheses.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.)
 is followed by a left
parenthesis as the next token, the operator and
 arguments within parentheses are taken to be of
highest precedence,
 just like a normal function call. For example,
 because named unary operators
are higher precedence than ||:

 chdir $foo || die;	 # (chdir $foo) || die
 chdir($foo) || die;	 # (chdir $foo) || die
 chdir ($foo) || die;	 # (chdir $foo) || die
 chdir +($foo) || die;	 # (chdir $foo) || die

but, because "*" is higher precedence than named operators:

 chdir $foo * 20;	 # chdir ($foo * 20)
 chdir($foo) * 20;	 # (chdir $foo) * 20
 chdir ($foo) * 20;	 # (chdir $foo) * 20
 chdir +($foo) * 20;	 # chdir ($foo * 20)

 rand 10 * 20;	 # rand (10 * 20)
 rand(10) * 20;	 # (rand 10) * 20
 rand (10) * 20;	 # (rand 10) * 20
 rand +(10) * 20;	 # rand (10 * 20)

Regarding precedence, the filetest operators, like -f, -M, etc. are
 treated like named unary operators,
but they don't follow this functional
 parenthesis rule. That means, for example, that
-f($file).".bak" is
 equivalent to -f "$file.bak".

See also Terms and List Operators (Leftward).

Relational Operators
Perl operators that return true or false generally return values that can be safely used as numbers.
For example, the relational
 operators in this section and the equality operators in the next
 one return
1 for true and a special version of the defined empty
 string, "", which counts as a zero but is exempt
from warnings
 about improper numeric conversions, just as "0 but true" is.

Binary "<" returns true if the left argument is numerically less than
 the right argument.

Binary ">" returns true if the left argument is numerically greater
 than the right argument.

Perl version 5.24.0 documentation - perlop

Page 7http://perldoc.perl.org

Binary "<=" returns true if the left argument is numerically less than
 or equal to the right argument.

Binary ">=" returns true if the left argument is numerically greater
 than or equal to the right
argument.

Binary "lt" returns true if the left argument is stringwise less than
 the right argument.

Binary "gt" returns true if the left argument is stringwise greater
 than the right argument.

Binary "le" returns true if the left argument is stringwise less than
 or equal to the right argument.

Binary "ge" returns true if the left argument is stringwise greater
 than or equal to the right argument.

Equality Operators
Binary "==" returns true if the left argument is numerically equal to
 the right argument.

Binary "!=" returns true if the left argument is numerically not equal
 to the right argument.

Binary "<=>" returns -1, 0, or 1 depending on whether the left
 argument is numerically less than,
equal to, or greater than the right
 argument. If your platform supports NaN's (not-a-numbers) as
numeric
 values, using them with "<=>" returns undef. NaN is not "<", "==", ">", "<=" or ">="
anything
 (even NaN), so those 5 return false. NaN != NaN returns
 true, as does NaN != anything
else. If your platform doesn't
 support NaN's then NaN is just a string with numeric value 0.

 $ perl -le '$x = "NaN"; print "No NaN support here" if $x == $x'
 $ perl -le '$x = "NaN"; print "NaN support here" if $x != $x'

(Note that the bigint, bigrat, and bignum pragmas all
 support "NaN".)

Binary "eq" returns true if the left argument is stringwise equal to
 the right argument.

Binary "ne" returns true if the left argument is stringwise not equal
 to the right argument.

Binary "cmp" returns -1, 0, or 1 depending on whether the left
 argument is stringwise less than, equal
to, or greater than the right
 argument.

Binary "~~" does a smartmatch between its arguments. Smart matching
 is described in the next
section.

"lt", "le", "ge", "gt" and "cmp" use the collation (sort)
 order specified by the current
LC_COLLATE locale if a use
 locale form that includes collation is in effect. See perllocale.
 Do not
mix these with Unicode,
 only use them with legacy 8-bit locale encodings.
 The standard
Unicode::Collate and Unicode::Collate::Locale modules offer much more powerful

solutions to collation issues.

For case-insensitive comparisions, look at the "fc" in perlfunc case-folding
 function, available in Perl
v5.16 or later:

 if (fc($x) eq fc($y)) { ... }

Smartmatch Operator
First available in Perl 5.10.1 (the 5.10.0 version behaved differently),
 binary ~~ does a "smartmatch"
between its arguments. This is mostly
 used implicitly in the when construct described in perlsyn,
although
 not all when clauses call the smartmatch operator. Unique among all of
 Perl's operators, the
smartmatch operator can recurse. The smartmatch
 operator is experimental and its behavior is

subject to change.

It is also unique in that all other Perl operators impose a context
 (usually string or numeric context) on
their operands, autoconverting
 those operands to those imposed contexts. In contrast, smartmatch
infers contexts from the actual types of its operands and uses that
 type information to select a suitable

Perl version 5.24.0 documentation - perlop

Page 8http://perldoc.perl.org

comparison mechanism.

The ~~ operator compares its operands "polymorphically", determining how
 to compare them
according to their actual types (numeric, string, array,
 hash, etc.) Like the equality operators with
which it shares the same
 precedence, ~~ returns 1 for true and "" for false. It is often best
 read aloud
as "in", "inside of", or "is contained in", because the left
 operand is often looked for inside the right
operand. That makes the
 order of the operands to the smartmatch operand often opposite that of
 the
regular match operator. In other words, the "smaller" thing is usually
 placed in the left operand and
the larger one in the right.

The behavior of a smartmatch depends on what type of things its arguments
 are, as determined by
the following table. The first row of the table
 whose types apply determines the smartmatch behavior.
Because what
 actually happens is mostly determined by the type of the second operand,
 the table is
sorted on the right operand instead of on the left.

 Left Right Description and pseudocode
 ===
 Any undef check whether Any is undefined
 like: !defined Any

 Any Object invoke ~~ overloading on Object, or die

 Right operand is an ARRAY:

 Left Right Description and pseudocode
 ===
 ARRAY1 ARRAY2 recurse on paired elements of ARRAY1 and ARRAY2[2]
 like: (ARRAY1[0] ~~ ARRAY2[0])
 && (ARRAY1[1] ~~ ARRAY2[1]) && ...
 HASH ARRAY any ARRAY elements exist as HASH keys
 like: grep { exists HASH->{$_} } ARRAY
 Regexp ARRAY any ARRAY elements pattern match Regexp
 like: grep { /Regexp/ } ARRAY
 undef ARRAY undef in ARRAY
 like: grep { !defined } ARRAY
 Any ARRAY smartmatch each ARRAY element[3]
 like: grep { Any ~~ $_ } ARRAY

 Right operand is a HASH:

 Left Right Description and pseudocode
 ===
 HASH1 HASH2 all same keys in both HASHes
 like: keys HASH1 ==
 grep { exists HASH2->{$_} } keys HASH1
 ARRAY HASH any ARRAY elements exist as HASH keys
 like: grep { exists HASH->{$_} } ARRAY
 Regexp HASH any HASH keys pattern match Regexp
 like: grep { /Regexp/ } keys HASH
 undef HASH always false (undef can't be a key)
 like: 0 == 1
 Any HASH HASH key existence
 like: exists HASH->{Any}

 Right operand is CODE:

Perl version 5.24.0 documentation - perlop

Page 9http://perldoc.perl.org

 Left Right Description and pseudocode
 ===
 ARRAY CODE sub returns true on all ARRAY elements[1]
 like: !grep { !CODE->($_) } ARRAY
 HASH CODE sub returns true on all HASH keys[1]
 like: !grep { !CODE->($_) } keys HASH
 Any CODE sub passed Any returns true
 like: CODE->(Any)

Right operand is a Regexp:

 Left Right Description and pseudocode
 ===
 ARRAY Regexp any ARRAY elements match Regexp
 like: grep { /Regexp/ } ARRAY
 HASH Regexp any HASH keys match Regexp
 like: grep { /Regexp/ } keys HASH
 Any Regexp pattern match
 like: Any =~ /Regexp/

 Other:

 Left Right Description and pseudocode
 ===
 Object Any invoke ~~ overloading on Object,
 or fall back to...

 Any Num numeric equality
 like: Any == Num
 Num nummy[4] numeric equality
 like: Num == nummy
 undef Any check whether undefined
 like: !defined(Any)
 Any Any string equality
 like: Any eq Any

Notes:

1.
 Empty hashes or arrays match.

2.
 That is, each element smartmatches the element of the same index in the other array.[3]

3.
 If a circular reference is found, fall back to referential equality.

4.
 Either an actual number, or a string that looks like one.

The smartmatch implicitly dereferences any non-blessed hash or array
 reference, so the HASH and
ARRAY entries apply in those cases.
 For blessed references, the Object entries apply.
Smartmatches
 involving hashes only consider hash keys, never hash values.

The "like" code entry is not always an exact rendition. For example, the
 smartmatch operator
short-circuits whenever possible, but grep does
 not. Also, grep in scalar context returns the number
of matches, but ~~ returns only true or false.

Unlike most operators, the smartmatch operator knows to treat undef
 specially:

 use v5.10.1;
 @array = (1, 2, 3, undef, 4, 5);

Perl version 5.24.0 documentation - perlop

Page 10http://perldoc.perl.org

 say "some elements undefined" if undef ~~ @array;

Each operand is considered in a modified scalar context, the modification
 being that array and hash
variables are passed by reference to the
 operator, which implicitly dereferences them. Both elements

of each pair are the same:

 use v5.10.1;

 my %hash = (red => 1, blue => 2, green => 3,
 orange => 4, yellow => 5, purple => 6,
 black => 7, grey => 8, white => 9);

 my @array = qw(red blue green);

 say "some array elements in hash keys" if @array ~~ %hash;
 say "some array elements in hash keys" if \@array ~~ \%hash;

 say "red in array" if "red" ~~ @array;
 say "red in array" if "red" ~~ \@array;

 say "some keys end in e" if /e$/ ~~ %hash;
 say "some keys end in e" if /e$/ ~~ \%hash;

Two arrays smartmatch if each element in the first array smartmatches
 (that is, is "in") the
corresponding element in the second array,
 recursively.

 use v5.10.1;
 my @little = qw(red blue green);
 my @bigger = ("red", "blue", ["orange", "green"]);
 if (@little ~~ @bigger) { # true!
 say "little is contained in bigger";
 }

Because the smartmatch operator recurses on nested arrays, this
 will still report that "red" is in the
array.

 use v5.10.1;
 my @array = qw(red blue green);
 my $nested_array = [[[[[[[@array]]]]]]];
 say "red in array" if "red" ~~ $nested_array;

If two arrays smartmatch each other, then they are deep
 copies of each others' values, as this
example reports:

 use v5.12.0;
 my @a = (0, 1, 2, [3, [4, 5], 6], 7);
 my @b = (0, 1, 2, [3, [4, 5], 6], 7);

 if (@a ~~ @b && @b ~~ @a) {
 say "a and b are deep copies of each other";
 }
 elsif (@a ~~ @b) {
 say "a smartmatches in b";
 }

Perl version 5.24.0 documentation - perlop

Page 11http://perldoc.perl.org

 elsif (@b ~~ @a) {
 say "b smartmatches in a";
 }
 else {
 say "a and b don't smartmatch each other at all";
 }

If you were to set $b[3] = 4, then instead of reporting that "a and b
 are deep copies of each other",
it now reports that "b smartmatches in a".
 That's because the corresponding position in @a
contains an array that
 (eventually) has a 4 in it.

Smartmatching one hash against another reports whether both contain the
 same keys, no more and
no less. This could be used to see whether two
 records have the same field names, without caring
what values those fields
 might have. For example:

 use v5.10.1;
 sub make_dogtag {
 state $REQUIRED_FIELDS = { name=>1, rank=>1, serial_num=>1 };

 my ($class, $init_fields) = @_;

 die "Must supply (only) name, rank, and serial number"
 unless $init_fields ~~ $REQUIRED_FIELDS;

 ...
 }

However, this only does what you mean if $init_fields is indeed a hash
 reference. The condition
$init_fields ~~ $REQUIRED_FIELDS also allows the
 strings "name", "rank", "serial_num"
as well as any array reference
 that contains "name" or "rank" or "serial_num" anywhere to pass
through.

The smartmatch operator is most often used as the implicit operator of a when clause. See the
section on "Switch Statements" in perlsyn.

Smartmatching of Objects

To avoid relying on an object's underlying representation, if the
 smartmatch's right operand is an
object that doesn't overload ~~,
 it raises the exception "Smartmatching a non-overloaded
object
 breaks encapsulation". That's because one has no business digging
 around to see
whether something is "in" an object. These are all
 illegal on objects without a ~~ overload:

 %hash ~~ $object
 42 ~~ $object
 "fred" ~~ $object

However, you can change the way an object is smartmatched by overloading
 the ~~ operator. This is
allowed to
 extend the usual smartmatch semantics.
 For objects that do have an ~~ overload, see
overload.

Using an object as the left operand is allowed, although not very useful.
 Smartmatching rules take
precedence over overloading, so even if the
 object in the left operand has smartmatch overloading,
this will be
 ignored. A left operand that is a non-overloaded object falls back on a
 string or numeric
comparison of whatever the ref operator returns. That
 means that

 $object ~~ X

Perl version 5.24.0 documentation - perlop

Page 12http://perldoc.perl.org

does not invoke the overload method with X as an argument.
 Instead the above table is consulted as
normal, and based on the type of X, overloading may or may not be invoked. For simple strings or

numbers, "in" becomes equivalent to this:

 $object ~~ $number ref($object) == $number
 $object ~~ $string ref($object) eq $string

For example, this reports that the handle smells IOish
 (but please don't really do this!):

 use IO::Handle;
 my $fh = IO::Handle->new();
 if ($fh ~~ /\bIO\b/) {
 say "handle smells IOish";
 }

That's because it treats $fh as a string like "IO::Handle=GLOB(0x8039e0)", then pattern
matches against that.

Bitwise And
Binary "&" returns its operands ANDed together bit by bit. Although no
 warning is currently raised,
the result is not well defined when this operation
 is performed on operands that aren't either numbers
(see Integer Arithmetic) nor bitstrings (see Bitwise String Operators).

Note that "&" has lower priority than relational operators, so for example
 the parentheses are
essential in a test like

 print "Even\n" if ($x & 1) == 0;

If the experimental "bitwise" feature is enabled via use feature
 'bitwise', then this operator
always treats its operand as numbers. This
 feature produces a warning unless you also use no
warnings
 'experimental::bitwise'.

Bitwise Or and Exclusive Or
Binary "|" returns its operands ORed together bit by bit.

Binary "^" returns its operands XORed together bit by bit.

Although no warning is currently raised, the results are not well
 defined when these operations are
performed on operands that aren't either
 numbers (see Integer Arithmetic) nor bitstrings (see Bitwise
String Operators).

Note that "|" and "^" have lower priority than relational operators, so
 for example the parentheses
are essential in a test like

 print "false\n" if (8 | 2) != 10;

If the experimental "bitwise" feature is enabled via use feature
 'bitwise', then this operator
always treats its operand as numbers. This
 feature produces a warning unless you also use no
warnings
 'experimental::bitwise'.

C-style Logical And
Binary "&&" performs a short-circuit logical AND operation. That is,
 if the left operand is false, the
right operand is not even evaluated.
 Scalar or list context propagates down to the right operand if it
 is
evaluated.

Perl version 5.24.0 documentation - perlop

Page 13http://perldoc.perl.org

C-style Logical Or
Binary "||" performs a short-circuit logical OR operation. That is,
 if the left operand is true, the right
operand is not even evaluated.
 Scalar or list context propagates down to the right operand if it
 is
evaluated.

Logical Defined-Or
Although it has no direct equivalent in C, Perl's // operator is related
 to its C-style "or". In fact, it's
exactly the same as ||, except that it
 tests the left hand side's definedness instead of its truth. Thus,
EXPR1 // EXPR2 returns the value of EXPR1 if it's defined,
 otherwise, the value of EXPR2 is
returned.
 (EXPR1 is evaluated in scalar context, EXPR2
 in the context of // itself). Usually,
 this is the
same result as defined(EXPR1) ? EXPR1 : EXPR2 (except that
 the ternary-operator form can be
used as a lvalue, while EXPR1 // EXPR2
 cannot). This is very useful for
 providing default values for
variables. If you actually want to test if
 at least one of $x and $y is defined, use defined($x //
$y).

The ||, // and && operators return the last value evaluated
 (unlike C's || and &&, which return 0 or
1). Thus, a reasonably
 portable way to find out the home directory might be:

 $home = $ENV{HOME}
	 // $ENV{LOGDIR}
	 // (getpwuid($<))[7]
	 // die "You're homeless!\n";

In particular, this means that you shouldn't use this
 for selecting between two aggregates for
assignment:

 @a = @b || @c; # This doesn't do the right thing
 @a = scalar(@b) || @c; # because it really means this.
 @a = @b ? @b : @c; # This works fine, though.

As alternatives to && and || when used for
 control flow, Perl provides the and and or operators (see
below).
 The short-circuit behavior is identical. The precedence of "and"
 and "or" is much lower,
however, so that you can safely use them after a
 list operator without the need for parentheses:

 unlink "alpha", "beta", "gamma"
	 or gripe(), next LINE;

With the C-style operators that would have been written like this:

 unlink("alpha", "beta", "gamma")
	 || (gripe(), next LINE);

It would be even more readable to write that this way:

 unless(unlink("alpha", "beta", "gamma")) {
 gripe();
 next LINE;
 }

Using "or" for assignment is unlikely to do what you want; see below.

Range Operators
Binary ".." is the range operator, which is really two different
 operators depending on the context. In
list context, it returns a
 list of values counting (up by ones) from the left value to the right
 value. If the
left value is greater than the right value then it
 returns the empty list. The range operator is useful for
writing foreach (1..10) loops and for doing slice operations on arrays. In
 the current

Perl version 5.24.0 documentation - perlop

Page 14http://perldoc.perl.org

implementation, no temporary array is created when the
 range operator is used as the expression in
foreach loops, but older
 versions of Perl might burn a lot of memory when you write something
 like
this:

 for (1 .. 1_000_000) {
	 # code
 }

The range operator also works on strings, using the magical
 auto-increment, see below.

In scalar context, ".." returns a boolean value. The operator is
 bistable, like a flip-flop, and emulates
the line-range (comma)
 operator of sed, awk, and various editors. Each ".." operator
 maintains its
own boolean state, even across calls to a subroutine
 that contains it. It is false as long as its left
operand is false.
 Once the left operand is true, the range operator stays true until the
 right operand is
true, AFTER which the range operator becomes false
 again. It doesn't become false till the next time
the range operator
 is evaluated. It can test the right operand and become false on the
 same
evaluation it became true (as in awk), but it still returns
 true once. If you don't want it to test the right
operand until the
 next evaluation, as in sed, just use three dots ("...") instead of
 two. In all other
regards, "..." behaves just like ".." does.

The right operand is not evaluated while the operator is in the
 "false" state, and the left operand is not
evaluated while the
 operator is in the "true" state. The precedence is a little lower
 than || and &&. The
value returned is either the empty string for
 false, or a sequence number (beginning with 1) for true.
The sequence
 number is reset for each range encountered. The final sequence number
 in a range
has the string "E0" appended to it, which doesn't affect
 its numeric value, but gives you something to
search for if you want
 to exclude the endpoint. You can exclude the beginning point by
 waiting for the
sequence number to be greater than 1.

If either operand of scalar ".." is a constant expression,
 that operand is considered true if it is equal
(==) to the current
 input line number (the $. variable).

To be pedantic, the comparison is actually int(EXPR) == int(EXPR),
 but that is only an issue if
you use a floating point expression; when
 implicitly using $. as described in the previous paragraph,
the
 comparison is int(EXPR) == int($.) which is only an issue when $.
 is set to a floating point
value and you are not reading from a file.
 Furthermore, "span" .. "spat" or 2.18 .. 3.14 will
not do what
 you want in scalar context because each of the operands are evaluated
 using their
integer representation.

Examples:

As a scalar operator:

 if (101 .. 200) { print; } # print 2nd hundred lines, short for
 # if ($. == 101 .. $. == 200) { print; }

 next LINE if (1 .. /^$/); # skip header lines, short for
 # next LINE if ($. == 1 .. /^$/);
 # (typically in a loop labeled LINE)

 s/^/> / if (/^$/ .. eof()); # quote body

 # parse mail messages
 while (<>) {
 $in_header = 1 .. /^$/;
 $in_body = /^$/ .. eof;
 if ($in_header) {
 # do something

Perl version 5.24.0 documentation - perlop

Page 15http://perldoc.perl.org

 } else { # in body
 # do something else
 }
 } continue {
 close ARGV if eof; # reset $. each file
 }

Here's a simple example to illustrate the difference between
 the two range operators:

 @lines = (" - Foo",
 "01 - Bar",
 "1 - Baz",
 " - Quux");

 foreach (@lines) {
 if (/0/ .. /1/) {
 print "$_\n";
 }
 }

This program will print only the line containing "Bar". If
 the range operator is changed to ..., it will
also print the
 "Baz" line.

And now some examples as a list operator:

 for (101 .. 200) { print } # print $_ 100 times
 @foo = @foo[0 .. $#foo]; # an expensive no-op
 @foo = @foo[$#foo-4 .. $#foo]; # slice last 5 items

The range operator (in list context) makes use of the magical
 auto-increment algorithm if the
operands are strings. You
 can say

 @alphabet = ("A" .. "Z");

to get all normal letters of the English alphabet, or

 $hexdigit = (0 .. 9, "a" .. "f")[$num & 15];

to get a hexadecimal digit, or

 @z2 = ("01" .. "31");
 print $z2[$mday];

to get dates with leading zeros.

If the final value specified is not in the sequence that the magical
 increment would produce, the
sequence goes until the next value would
 be longer than the final value specified.

If the initial value specified isn't part of a magical increment
 sequence (that is, a non-empty string
matching /^[a-zA-Z]*[0-9]*\z/),
 only the initial value will be returned. So the following will only

return an alpha:

 use charnames "greek";
 my @greek_small = ("\N{alpha}" .. "\N{omega}");

To get the 25 traditional lowercase Greek letters, including both sigmas,
 you could use this instead:

Perl version 5.24.0 documentation - perlop

Page 16http://perldoc.perl.org

 use charnames "greek";
 my @greek_small = map { chr } (ord("\N{alpha}")
 ..
 ord("\N{omega}")
);

However, because there are many other lowercase Greek characters than
 just those, to match
lowercase Greek characters in a regular expression,
 you could use the pattern
/(?:(?=\p{Greek})\p{Lower})+/ (or the experimental feature /(?[\p{Greek} &
\p{Lower}])+/).

Because each operand is evaluated in integer form, 2.18 .. 3.14 will
 return two elements in list
context.

 @list = (2.18 .. 3.14); # same as @list = (2 .. 3);

Conditional Operator
Ternary "?:" is the conditional operator, just as in C. It works much
 like an if-then-else. If the
argument before the ? is true, the
 argument before the : is returned, otherwise the argument after the
: is returned. For example:

 printf "I have %d dog%s.\n", $n,
	 ($n == 1) ? "" : "s";

Scalar or list context propagates downward into the 2nd
 or 3rd argument, whichever is selected.

 $x = $ok ? $y : $z; # get a scalar
 @x = $ok ? @y : @z; # get an array
 $x = $ok ? @y : @z; # oops, that's just a count!

The operator may be assigned to if both the 2nd and 3rd arguments are
 legal lvalues (meaning that
you can assign to them):

 ($x_or_y ? $x : $y) = $z;

Because this operator produces an assignable result, using assignments
 without parentheses will get
you in trouble. For example, this:

 $x % 2 ? $x += 10 : $x += 2

Really means this:

 (($x % 2) ? ($x += 10) : $x) += 2

Rather than this:

 ($x % 2) ? ($x += 10) : ($x += 2)

That should probably be written more simply as:

 $x += ($x % 2) ? 10 : 2;

Assignment Operators
"=" is the ordinary assignment operator.

Assignment operators work as in C. That is,

Perl version 5.24.0 documentation - perlop

Page 17http://perldoc.perl.org

 $x += 2;

is equivalent to

 $x = $x + 2;

although without duplicating any side effects that dereferencing the lvalue
 might trigger, such as from
tie(). Other assignment operators work similarly.
 The following are recognized:

 **= += *= &= &.= <<= &&=
 -= /= |= |.= >>= ||=
 .= %= ^= ^.= //=
 x=

Although these are grouped by family, they all have the precedence
 of assignment. These combined
assignment operators can only operate on
 scalars, whereas the ordinary assignment operator can
assign to arrays,
 hashes, lists and even references. (See Context
 and "List value constructors" in
perldata, and "Assigning to References" in perlref.)

Unlike in C, the scalar assignment operator produces a valid lvalue.
 Modifying an assignment is
equivalent to doing the assignment and
 then modifying the variable that was assigned to. This is
useful
 for modifying a copy of something, like this:

 ($tmp = $global) =~ tr/13579/24680/;

Although as of 5.14, that can be also be accomplished this way:

 use v5.14;
 $tmp = ($global =~ tr/13579/24680/r);

Likewise,

 ($x += 2) *= 3;

is equivalent to

 $x += 2;
 $x *= 3;

Similarly, a list assignment in list context produces the list of
 lvalues assigned to, and a list
assignment in scalar context returns
 the number of elements produced by the expression on the right
hand
 side of the assignment.

The three dotted bitwise assignment operators (&.= |.= ^.=) are new in
 Perl 5.22 and experimental.
See Bitwise String Operators.

Comma Operator
Binary "," is the comma operator. In scalar context it evaluates
 its left argument, throws that value
away, then evaluates its right
 argument and returns that value. This is just like C's comma operator.

In list context, it's just the list argument separator, and inserts
 both its arguments into the list. These
arguments are also evaluated
 from left to right.

The => operator (sometimes pronounced "fat comma") is a synonym
 for the comma except that it
causes a
 word on its left to be interpreted as a string if it begins with a letter
 or underscore and is
composed only of letters, digits and underscores.
 This includes operands that might otherwise be
interpreted as operators,
 constants, single number v-strings or function calls. If in doubt about
 this

Perl version 5.24.0 documentation - perlop

Page 18http://perldoc.perl.org

behavior, the left operand can be quoted explicitly.

Otherwise, the => operator behaves exactly as the comma operator
 or list argument separator,
according to context.

For example:

 use constant FOO => "something";

 my %h = (FOO => 23);

is equivalent to:

 my %h = ("FOO", 23);

It is NOT:

 my %h = ("something", 23);

The => operator is helpful in documenting the correspondence
 between keys and values in hashes,
and other paired elements in lists.

 %hash = ($key => $value);
 login($username => $password);

The special quoting behavior ignores precedence, and hence may apply to part of the left operand:

 print time.shift => "bbb";

That example prints something like "1314363215shiftbbb", because the => implicitly quotes the
shift immediately on its left, ignoring
 the fact that time.shift is the entire left operand.

List Operators (Rightward)
On the right side of a list operator, the comma has very low precedence,
 such that it controls all
comma-separated expressions found there.
 The only operators with lower precedence are the logical
operators "and", "or", and "not", which may be used to evaluate calls to list
 operators without the
need for parentheses:

 open HANDLE, "< :utf8", "filename" or die "Can't open: $!\n";

However, some people find that code harder to read than writing
 it with parentheses:

 open(HANDLE, "< :utf8", "filename") or die "Can't open: $!\n";

in which case you might as well just use the more customary "||" operator:

 open(HANDLE, "< :utf8", "filename") || die "Can't open: $!\n";

See also discussion of list operators in Terms and List Operators (Leftward).

Logical Not
Unary "not" returns the logical negation of the expression to its right.
 It's the equivalent of "!"
except for the very low precedence.

Perl version 5.24.0 documentation - perlop

Page 19http://perldoc.perl.org

Logical And
Binary "and" returns the logical conjunction of the two surrounding
 expressions. It's equivalent to &&
except for the very low
 precedence. This means that it short-circuits: the right
 expression is evaluated
only if the left expression is true.

Logical or and Exclusive Or
Binary "or" returns the logical disjunction of the two surrounding
 expressions. It's equivalent to ||
except for the very low precedence.
 This makes it useful for control flow:

 print FH $data		 or die "Can't write to FH: $!";

This means that it short-circuits: the right expression is evaluated
 only if the left expression is false.
Due to its precedence, you must
 be careful to avoid using it as replacement for the || operator.
 It
usually works out better for flow control than in assignments:

 $x = $y or $z; # bug: this is wrong
 ($x = $y) or $z; # really means this
 $x = $y || $z; # better written this way

However, when it's a list-context assignment and you're trying to use || for control flow, you probably
need "or" so that the assignment
 takes higher precedence.

 @info = stat($file) || die; # oops, scalar sense of stat!
 @info = stat($file) or die; # better, now @info gets its due

Then again, you could always use parentheses.

Binary "xor" returns the exclusive-OR of the two surrounding expressions.
 It cannot short-circuit (of
course).

There is no low precedence operator for defined-OR.

C Operators Missing From Perl
Here is what C has that Perl doesn't:

unary &

Address-of operator. (But see the "\" operator for taking a reference.)

unary *

Dereference-address operator. (Perl's prefix dereferencing
 operators are typed: $, @, %
, and &.)

(TYPE)

Type-casting operator.

Quote and Quote-like Operators
While we usually think of quotes as literal values, in Perl they
 function as operators, providing various
kinds of interpolating and
 pattern matching capabilities. Perl provides customary quote characters
 for
these behaviors, but also provides a way for you to choose your
 quote character for any of them. In
the following table, a {} represents
 any pair of delimiters you choose.

 Customary Generic Meaning	 Interpolates
	 ''	 q{}	 Literal		 no
	 ""	 qq{}	 Literal		 yes
	 ``	 qx{}	 Command		 yes*
		 qw{}	 Word list		 no
	 //	 m{}	 Pattern match	 yes*

Perl version 5.24.0 documentation - perlop

Page 20http://perldoc.perl.org

		 qr{}	 Pattern		 yes*
		 s{}{}	 Substitution	 yes*
		 tr{}{}	 Transliteration	 no (but see below)
		 y{}{}	 Transliteration	 no (but see below)
 <<EOF here-doc yes*

	 * unless the delimiter is ''.

Non-bracketing delimiters use the same character fore and aft, but the four
 sorts of ASCII brackets
(round, angle, square, curly) all nest, which means
 that

 q{foo{bar}baz}

is the same as

 'foo{bar}baz'

Note, however, that this does not always work for quoting Perl code:

 $s = q{ if($x eq "}") ... }; # WRONG

is a syntax error. The Text::Balanced module (standard as of v5.8,
 and from CPAN before then) is
able to do this properly.

There can be whitespace between the operator and the quoting
 characters, except when # is being
used as the quoting character. q#foo# is parsed as the string foo, while q #foo# is the
 operator q
followed by a comment. Its argument will be taken
 from the next line. This allows you to write:

 s {foo} # Replace foo
 {bar} # with bar.

The following escape sequences are available in constructs that interpolate,
 and in transliterations:

 Sequence Note Description
 \t tab (HT, TAB)
 \n newline (NL)
 \r return (CR)
 \f form feed (FF)
 \b backspace (BS)
 \a alarm (bell) (BEL)
 \e escape (ESC)
 \x{263A} [1,8] hex char (example: SMILEY)
 \x1b [2,8] restricted range hex char (example: ESC)
 \N{name} [3] named Unicode character or character sequence
 \N{U+263D} [4,8] Unicode character (example: FIRST QUARTER MOON)
 \c[[5] control char (example: chr(27))
 \o{23072} [6,8] octal char (example: SMILEY)
 \033 [7,8] restricted range octal char (example: ESC)

[1]

The result is the character specified by the hexadecimal number between
 the braces. See [8]
below for details on which character.

Only hexadecimal digits are valid between the braces. If an invalid
 character is encountered, a
warning will be issued and the invalid
 character and all subsequent characters (valid or

Perl version 5.24.0 documentation - perlop

Page 21http://perldoc.perl.org

invalid) within the
 braces will be discarded.

If there are no valid digits between the braces, the generated character is
 the NULL character
(\x{00}). However, an explicit empty brace (\x{})
 will not cause a warning (currently).

[2]

The result is the character specified by the hexadecimal number in the range
 0x00 to 0xFF.
See [8] below for details on which character.

Only hexadecimal digits are valid following \x. When \x is followed
 by fewer than two valid
digits, any valid digits will be zero-padded. This
 means that \x7 will be interpreted as \x07,
and a lone "\x" will be
 interpreted as \x00. Except at the end of a string, having fewer than

two valid digits will result in a warning. Note that although the warning
 says the illegal
character is ignored, it is only ignored as part of the
 escape and will still be used as the
subsequent character in the string.
 For example:

 Original Result Warns?
 "\x7" "\x07" no
 "\x" "\x00" no
 "\x7q" "\x07q" yes
 "\xq" "\x00q" yes

[3]

The result is the Unicode character or character sequence given by name.
 See charnames.

[4]

\N{U+hexadecimal number} means the Unicode character whose Unicode code
 point is
hexadecimal number.

[5]

The character following \c is mapped to some other character as shown in the
 table:

 Sequence Value
 \c@ chr(0)
 \cA chr(1)
 \ca chr(1)
 \cB chr(2)
 \cb chr(2)
 ...
 \cZ chr(26)
 \cz chr(26)
 \c[chr(27)
 # See below for chr(28)
 \c] chr(29)
 \c^ chr(30)
 \c_ chr(31)
 \c? chr(127) # (on ASCII platforms; see below for link to
 # EBCDIC discussion)

In other words, it's the character whose code point has had 64 xor'd with
 its uppercase. \c? is
DELETE on ASCII platforms because ord("?") ^ 64 is 127, and \c@ is NULL because the
ord of "@" is 64, so xor'ing 64 itself produces 0.

Also, \c\X yields chr(28) . "X" for any X, but cannot come at the
 end of a string,
because the backslash would be parsed as escaping the end
 quote.

On ASCII platforms, the resulting characters from the list above are the
 complete set of ASCII
controls. This isn't the case on EBCDIC platforms; see "OPERATOR DIFFERENCES" in
perlebcdic for a full discussion of the
 differences between these for ASCII versus EBCDIC

Perl version 5.24.0 documentation - perlop

Page 22http://perldoc.perl.org

platforms.Use of any other character following the "c" besides those listed above is

discouraged, and as of Perl v5.20, the only characters actually allowed
 are the printable ASCII
ones, minus the left brace "{". What happens
 for any of the allowed other characters is that
the value is derived by
 xor'ing with the seventh bit, which is 64, and a warning raised if

enabled. Using the non-allowed characters generates a fatal error.

To get platform independent controls, you can use \N{...}.

[6]

The result is the character specified by the octal number between the braces.
 See [8] below
for details on which character.

If a character that isn't an octal digit is encountered, a warning is raised,
 and the value is
based on the octal digits before it, discarding it and all
 following characters up to the closing
brace. It is a fatal error if there are
 no octal digits at all.

[7]

The result is the character specified by the three-digit octal number in the
 range 000 to 777
(but best to not use above 077, see next paragraph). See [8] below for details on which
character.

Some contexts allow 2 or even 1 digit, but any usage without exactly
 three digits, the first
being a zero, may give unintended results. (For
 example, in a regular expression it may be
confused with a backreference;
 see "Octal escapes" in perlrebackslash.) Starting in Perl 5.14,
you may
 use \o{} instead, which avoids all these problems. Otherwise, it is best to
 use this
construct only for ordinals \077 and below, remembering to pad to
 the left with zeros to make
three digits. For larger ordinals, either use \o{}, or convert to something else, such as to hex
and use \N{U+}
 (which is portable between platforms with different character sets) or \x{}
instead.

[8]

Several constructs above specify a character by a number. That number
 gives the character's
position in the character set encoding (indexed from 0).
 This is called synonymously its
ordinal, code position, or code point. Perl
 works on platforms that have a native encoding
currently of either ASCII/Latin1
 or EBCDIC, each of which allow specification of 256
characters. In general, if
 the number is 255 (0xFF, 0377) or below, Perl interprets this in the
platform's
 native encoding. If the number is 256 (0x100, 0400) or above, Perl interprets
 it as a
Unicode code point and the result is the corresponding Unicode
 character. For example
\x{50} and \o{120} both are the number 80 in
 decimal, which is less than 256, so the
number is interpreted in the native
 character set encoding. In ASCII the character in the 80th
position (indexed
 from 0) is the letter "P", and in EBCDIC it is the ampersand symbol "&".
\x{100} and \o{400} are both 256 in decimal, so the number is interpreted
 as a Unicode
code point no matter what the native encoding is. The name of the
 character in the 256th
position (indexed by 0) in Unicode is LATIN CAPITAL LETTER A WITH MACRON.

There are a couple of exceptions to the above rule. \N{U+hex number} is
 always
interpreted as a Unicode code point, so that \N{U+0050} is "P" even
 on EBCDIC platforms.
And if use encoding is in effect, the
 number is considered to be in that encoding, and is
translated from that into
 the platform's native encoding if there is a corresponding native
character;
 otherwise to Unicode.

NOTE: Unlike C and other languages, Perl has no \v escape sequence for
 the vertical tab (VT, which
is 11 in both ASCII and EBCDIC), but you may
 use \N{VT}, \ck, \N{U+0b}, or \x0b. (\v
 does
have meaning in regular expression patterns in Perl, see perlre.)

The following escape sequences are available in constructs that interpolate,
 but not in transliterations.

 \l		 lowercase next character only
 \u		 titlecase (not uppercase!) next character only

Perl version 5.24.0 documentation - perlop

Page 23http://perldoc.perl.org

 \L		 lowercase all characters till \E or end of string
 \U		 uppercase all characters till \E or end of string
 \F		 foldcase all characters till \E or end of string
 \Q quote (disable) pattern metacharacters till \E or
 end of string
 \E		 end either case modification or quoted section
		 (whichever was last seen)

See "quotemeta" in perlfunc for the exact definition of characters that
 are quoted by \Q.

\L, \U, \F, and \Q can stack, in which case you need one \E for each. For example:

 say"This \Qquoting \ubusiness \Uhere isn't quite\E done yet,\E is it?";
 This quoting\ Business\ HERE\ ISN\'T\ QUITE\ done\ yet\, is it?

If a use locale form that includes LC_CTYPE is in effect (see perllocale), the case map used by \l,
\L, \u, and \U is
 taken from the current locale. If Unicode (for example, \N{} or code
 points of
0x100 or beyond) is being used, the case map used by \l, \L, \u, and \U is as defined by Unicode.
That means that
 case-mapping a single character can sometimes produce a sequence of
 several
characters.
 Under use locale, \F produces the same results as \L
 for all locales but a UTF-8 one,
where it instead uses the Unicode
 definition.

All systems use the virtual "\n" to represent a line terminator,
 called a "newline". There is no such
thing as an unvarying, physical
 newline character. It is only an illusion that the operating system,

device drivers, C libraries, and Perl all conspire to preserve. Not all
 systems read "\r" as ASCII CR
and "\n" as ASCII LF. For example,
 on the ancient Macs (pre-MacOS X) of yesteryear, these used
to be reversed,
 and on systems without a line terminator,
 printing "\n" might emit no actual data. In
general, use "\n" when
 you mean a "newline" for your system, but use the literal ASCII when you

need an exact character. For example, most networking protocols expect
 and prefer a CR+LF (
"\015\012" or "\cM\cJ") for line terminators,
 and although they often accept just "\012", they
seldom tolerate just "\015". If you get in the habit of using "\n" for networking,
 you may be burned
some day.

For constructs that do interpolate, variables beginning with "$"
 or "@" are interpolated. Subscripted
variables such as $a[3] or $href->{key}[0] are also interpolated, as are array and hash slices.

But method calls such as $obj->meth are not.

Interpolating an array or slice interpolates the elements in order,
 separated by the value of $", so is
equivalent to interpolating join $", @array. "Punctuation" arrays such as @* are usually

interpolated only if the name is enclosed in braces @{*}, but the
 arrays @_, @+, and @- are
interpolated even without braces.

For double-quoted strings, the quoting from \Q is applied after
 interpolation and escapes are
processed.

 "abc\Qfoo\tbar$s\Exyz"

is equivalent to

 "abc" . quotemeta("foo\tbar$s") . "xyz"

For the pattern of regex operators (qr//, m// and s///),
 the quoting from \Q is applied after
interpolation is processed,
 but before escapes are processed. This allows the pattern to match
 literally
(except for $ and @). For example, the following matches:

 '\s\t' =~ /\Q\s\t/

Perl version 5.24.0 documentation - perlop

Page 24http://perldoc.perl.org

Because $ or @ trigger interpolation, you'll need to use something
 like /\Quser\E\@\Qhost/ to
match them literally.

Patterns are subject to an additional level of interpretation as a
 regular expression. This is done as a
second pass, after variables are
 interpolated, so that regular expressions may be incorporated into
the
 pattern from the variables. If this is not what you want, use \Q to
 interpolate a variable literally.

Apart from the behavior described above, Perl does not expand
 multiple levels of interpolation. In
particular, contrary to the
 expectations of shell programmers, back-quotes do NOT interpolate
 within
double quotes, nor do single quotes impede evaluation of
 variables when used within double quotes.

Regexp Quote-Like Operators
Here are the quote-like operators that apply to pattern
 matching and related activities.

qr/STRING/msixpodualn

This operator quotes (and possibly compiles) its STRING as a regular
 expression.
STRING is interpolated the same way as PATTERN
 in m/PATTERN/. If "'" is used as
the delimiter, no interpolation
 is done. Returns a Perl value which may be used instead
of the
 corresponding /STRING/msixpodualn expression. The returned value is a

normalized version of the original pattern. It magically differs from
 a string containing
the same characters: ref(qr/x/) returns "Regexp";
 however, dereferencing it is not
well defined (you currently get the normalized version of the original pattern, but this
may change).

For example,

 $rex = qr/my.STRING/is;
 print $rex; # prints (?si-xm:my.STRING)
 s/$rex/foo/;

is equivalent to

 s/my.STRING/foo/is;

The result may be used as a subpattern in a match:

 $re = qr/$pattern/;
 $string =~ /foo${re}bar/;	 # can be interpolated in other
 # patterns
 $string =~ $re;		 # or used standalone
 $string =~ /$re/;		 # or this way

Since Perl may compile the pattern at the moment of execution of the qr()
 operator,
using qr() may have speed advantages in some situations,
 notably if the result of
qr() is used standalone:

 sub match {
	 my $patterns = shift;
	 my @compiled = map qr/$_/i, @$patterns;
	 grep {
	 my $success = 0;
	 foreach my $pat (@compiled) {
		 $success = 1, last if /$pat/;
	 }
	 $success;
	 } @_;
 }

Precompilation of the pattern into an internal representation at
 the moment of qr()
avoids the need to recompile the pattern every
 time a match /$pat/ is attempted.

Perl version 5.24.0 documentation - perlop

Page 25http://perldoc.perl.org

(Perl has many other internal
 optimizations, but none would be triggered in the above
example if
 we did not use qr() operator.)

Options (specified by the following modifiers) are:

 m	 Treat string as multiple lines.
 s	 Treat string as single line. (Make . match a newline)
 i	 Do case-insensitive pattern matching.
 x	 Use extended regular expressions.
 p	 When matching preserve a copy of the matched string so
 that ${^PREMATCH}, ${^MATCH}, ${^POSTMATCH} will be
 defined (ignored starting in v5.20) as these are always
 defined starting in that relese
 o	 Compile pattern only once.
 a ASCII-restrict: Use ASCII for \d, \s, \w; specifying two
 a's further restricts things to that that no ASCII
 character will match a non-ASCII one under /i.
 l Use the current run-time locale's rules.
 u Use Unicode rules.
 d Use Unicode or native charset, as in 5.12 and earlier.
 n Non-capture mode. Don't let () fill in $1, $2, etc...

If a precompiled pattern is embedded in a larger pattern then the effect
 of
"msixpluadn" will be propagated appropriately. The effect that the /o modifier has
is not propagated, being restricted to those patterns
 explicitly using it.

The last four modifiers listed above, added in Perl 5.14,
 control the character set rules,
but /a is the only one you are likely
 to want to specify explicitly; the other three are
selected
 automatically by various pragmas.

See perlre for additional information on valid syntax for STRING, and
 for a detailed
look at the semantics of regular expressions. In
 particular, all modifiers except the
largely obsolete /o are further
 explained in "Modifiers" in perlre. /o is described in the
next section.

m/PATTERN/msixpodualngc

/PATTERN/msixpodualngc

Searches a string for a pattern match, and in scalar context returns
 true if it succeeds,
false if it fails. If no string is specified
 via the =~ or !~ operator, the $_ string is
searched. (The
 string specified with =~ need not be an lvalue--it may be the
 result of
an expression evaluation, but remember the =~ binds
 rather tightly.) See also perlre.

Options are as described in qr// above; in addition, the following match
 process
modifiers are available:

 g Match globally, i.e., find all occurrences.
 c Do not reset search position on a failed match when /g is
 in effect.

If "/" is the delimiter then the initial m is optional. With the m
 you can use any pair of
non-whitespace (ASCII) characters
 as delimiters. This is particularly useful for
matching path names
 that contain "/", to avoid LTS (leaning toothpick syndrome). If
"?" is
 the delimiter, then a match-only-once rule applies,
 described in m?PATTERN?
below. If "'" (single quote) is the delimiter,
 no interpolation is performed on the
PATTERN.
 When using a delimiter character valid in an identifier, whitespace is
required
 after the m.

PATTERN may contain variables, which will be interpolated
 every time the pattern
search is evaluated, except
 for when the delimiter is a single quote. (Note that $(, $),
and $| are not interpolated because they look like end-of-string tests.)
 Perl will not

Perl version 5.24.0 documentation - perlop

Page 26http://perldoc.perl.org

recompile the pattern unless an interpolated
 variable that it contains changes. You can
force Perl to skip the
 test and never recompile by adding a /o (which stands for
"once")
 after the trailing delimiter.
 Once upon a time, Perl would recompile regular
expressions
 unnecessarily, and this modifier was useful to tell it not to do so, in the

interests of speed. But now, the only reasons to use /o are one of:

1 The variables are thousands of characters long and you know that they
 don't
change, and you need to wring out the last little bit of speed by
 having Perl skip
testing for that. (There is a maintenance penalty for
 doing this, as mentioning
/o constitutes a promise that you won't
 change the variables in the pattern. If
you do change them, Perl won't
 even notice.)

2 you want the pattern to use the initial values of the variables
 regardless of
whether they change or not. (But there are saner ways
 of accomplishing this
than using /o.)

3 If the pattern contains embedded code, such as

 use re 'eval';
 $code = 'foo(?{ $x })';
 /$code/

then perl will recompile each time, even though the pattern string hasn't

changed, to ensure that the current value of $x is seen each time.
 Use /o if
you want to avoid this.

The bottom line is that using /o is almost never a good idea.

The empty pattern //

If the PATTERN evaluates to the empty string, the last successfully matched regular
expression is used instead. In this
 case, only the g and c flags on the empty pattern
are honored;
 the other flags are taken from the original pattern. If no match has

previously succeeded, this will (silently) act instead as a genuine
 empty pattern (which
will always match).

Note that it's possible to confuse Perl into thinking // (the empty
 regex) is really //
(the defined-or operator). Perl is usually pretty
 good about this, but some pathological
cases might trigger this, such as $x/// (is that ($x) / (//) or $x // /?) and
print $fh //
 (print $fh(// or print($fh //?). In all of these examples, Perl

will assume you meant defined-or. If you meant the empty regex, just
 use parentheses
or spaces to disambiguate, or even prefix the empty
 regex with an m (so // becomes
m//).

Matching in list context

If the /g option is not used, m// in list context returns a
 list consisting of the
subexpressions matched by the parentheses in the
 pattern, that is, ($1, $2, $3...)
(Note that here $1 etc. are
 also set). When there are no parentheses in the pattern,
the return
 value is the list (1) for success. With or without parentheses, an empty list
is returned upon failure.

Examples:

 open(TTY, "+</dev/tty")
 || die "can't access /dev/tty: $!";

 <TTY> =~ /^y/i && foo();	 # do foo if desired

 if (/Version: *([0-9.]*)/) { $version = $1; }

 next if m#^/usr/spool/uucp#;

Perl version 5.24.0 documentation - perlop

Page 27http://perldoc.perl.org

 # poor man's grep
 $arg = shift;
 while (<>) {
 print if /$arg/o; # compile only once (no longer needed!)
 }

 if (($F1, $F2, $Etc) = ($foo =~ /^(\S+)\s+(\S+)\s*(.*)/))

This last example splits $foo into the first two words and the
 remainder of the line,
and assigns those three fields to $F1, $F2, and $Etc. The conditional is true if any
variables were assigned; that is,
 if the pattern matched.

The /g modifier specifies global pattern matching--that is,
 matching as many times as
possible within the string. How it behaves
 depends on the context. In list context, it
returns a list of the
 substrings matched by any capturing parentheses in the regular

expression. If there are no parentheses, it returns a list of all
 the matched strings, as if
there were parentheses around the whole
 pattern.

In scalar context, each execution of m//g finds the next match,
 returning true if it
matches, and false if there is no further match.
 The position after the last match can be
read or set using the pos()
 function; see "pos" in perlfunc. A failed match normally
resets the
 search position to the beginning of the string, but you can avoid that
 by
adding the /c modifier (for example, m//gc). Modifying the target
 string also resets
the search position.

\G assertion

You can intermix m//g matches with m/\G.../g, where \G is a
 zero-width assertion
that matches the exact position where the
 previous m//g, if any, left off. Without the
/g modifier, the \G assertion still anchors at pos() as it was at the start of
 the
operation (see "pos" in perlfunc), but the match is of course only
 attempted once.
Using \G without /g on a target string that has
 not previously had a /g match applied
to it is the same as using
 the \A assertion to match the beginning of the string. Note
also
 that, currently, \G is only properly supported when anchored at the
 very beginning
of the pattern.

Examples:

 # list context
 ($one,$five,$fifteen) = (`uptime` =~ /(\d+\.\d+)/g);

 # scalar context
 local $/ = "";
 while ($paragraph = <>) {
	 while ($paragraph =~ /\p{Ll}['")]*[.!?]+['")]*\s/g) {
	 $sentences++;
	 }
 }
 say $sentences;

Here's another way to check for sentences in a paragraph:

 my $sentence_rx = qr{
 (?: (?<= ^) | (?<= \s)) # after start-of-string or
 # whitespace
 \p{Lu} # capital letter
 .*? # a bunch of anything
 (?<= \S) # that ends in non-
 # whitespace
 (?<! \b [DMS]r) # but isn't a common abbr.

Perl version 5.24.0 documentation - perlop

Page 28http://perldoc.perl.org

 (?<! \b Mrs)
 (?<! \b Sra)
 (?<! \b St)
 [.?!] # followed by a sentence
 # ender
 (?= $ | \s) # in front of end-of-string
 # or whitespace
 }sx;
 local $/ = "";
 while (my $paragraph = <>) {
 say "NEW PARAGRAPH";
 my $count = 0;
 while ($paragraph =~ /($sentence_rx)/g) {
 printf "\tgot sentence %d: <%s>\n", ++$count, $1;
 }
 }

Here's how to use m//gc with \G:

 $_ = "ppooqppqq";
 while ($i++ < 2) {
 print "1: '";
 print $1 while /(o)/gc; print "', pos=", pos, "\n";
 print "2: '";
 print $1 if /\G(q)/gc; print "', pos=", pos, "\n";
 print "3: '";
 print $1 while /(p)/gc; print "', pos=", pos, "\n";
 }
 print "Final: '$1', pos=",pos,"\n" if /\G(.)/;

The last example should print:

 1: 'oo', pos=4
 2: 'q', pos=5
 3: 'pp', pos=7
 1: '', pos=7
 2: 'q', pos=8
 3: '', pos=8
 Final: 'q', pos=8

Notice that the final match matched q instead of p, which a match
 without the \G
anchor would have done. Also note that the final match
 did not update pos. pos is
only updated on a /g match. If the
 final match did indeed match p, it's a good bet that
you're running a
 very old (pre-5.6.0) version of Perl.

A useful idiom for lex-like scanners is /\G.../gc. You can
 combine several regexps
like this to process a string part-by-part,
 doing different actions depending on which
regexp matched. Each
 regexp tries to match where the previous one leaves off.

 $_ = <<'EOL';
 $url = URI::URL->new("http://example.com/");
 die if $url eq "xXx";
 EOL

 LOOP: {
 print(" digits"), redo LOOP if /\G\d+\b[,.;]?\s*/gc;
 print(" lowercase"), redo LOOP
 if /\G\p{Ll}+\b[,.;]?\s*/gc;
 print(" UPPERCASE"), redo LOOP

Perl version 5.24.0 documentation - perlop

Page 29http://perldoc.perl.org

 if /\G\p{Lu}+\b[,.;]?\s*/gc;
 print(" Capitalized"), redo LOOP
 if /\G\p{Lu}\p{Ll}+\b[,.;]?\s*/gc;
 print(" MiXeD"), redo LOOP if /\G\pL+\b[,.;]?\s*/gc;
 print(" alphanumeric"), redo LOOP
 if /\G[\p{Alpha}\pN]+\b[,.;]?\s*/gc;
 print(" line-noise"), redo LOOP if /\G\W+/gc;
 print ". That's all!\n";
 }

Here is the output (split into several lines):

 line-noise lowercase line-noise UPPERCASE line-noise UPPERCASE
 line-noise lowercase line-noise lowercase line-noise lowercase
 lowercase line-noise lowercase lowercase line-noise lowercase
 lowercase line-noise MiXeD line-noise. That's all!

m?PATTERN?msixpodualngc

?PATTERN?msixpodualngc

This is just like the m/PATTERN/ search, except that it matches
 only once between
calls to the reset() operator. This is a useful
 optimization when you want to see only
the first occurrence of
 something in each file of a set of files, for instance. Only m??

patterns local to the current package are reset.

 while (<>) {
	 if (m?^$?) {
			 # blank line between header and body
	 }
 } continue {
	 reset if eof;	 # clear m?? status for next file
 }

Another example switched the first "latin1" encoding it finds
 to "utf8" in a pod file:

 s//utf8/ if m? ^ =encoding \h+ \K latin1 ?x;

The match-once behavior is controlled by the match delimiter being ?; with any other
delimiter this is the normal m// operator.

In the past, the leading m in m?PATTERN? was optional, but omitting it
 would produce a
deprecation warning. As of v5.22.0, omitting it produces a
 syntax error. If you
encounter this construct in older code, you can just add m.

s/PATTERN/REPLACEMENT/msixpodualngcer

Searches a string for a pattern, and if found, replaces that pattern
 with the replacement
text and returns the number of substitutions
 made. Otherwise it returns false
(specifically, the empty string).

If the /r (non-destructive) option is used then it runs the
 substitution on a copy of the
string and instead of returning the
 number of substitutions, it returns the copy whether
or not a
 substitution occurred. The original string is never changed when /r is used.
The copy will always be a plain string, even if the
 input is an object or a tied variable.

If no string is specified via the =~ or !~ operator, the $_
 variable is searched and
modified. Unless the /r option is used,
 the string specified must be a scalar variable,
an array element, a
 hash element, or an assignment to one of those; that is, some sort
of
 scalar lvalue.

If the delimiter chosen is a single quote, no interpolation is
 done on either the
PATTERN or the REPLACEMENT. Otherwise, if the PATTERN contains a $ that looks

Perl version 5.24.0 documentation - perlop

Page 30http://perldoc.perl.org

like a variable rather than an
 end-of-string test, the variable will be interpolated into the
pattern
 at run-time. If you want the pattern compiled only once the first time
 the
variable is interpolated, use the /o option. If the pattern
 evaluates to the empty string,
the last successfully executed regular
 expression is used instead. See perlre for
further explanation on these.

Options are as with m// with the addition of the following replacement
 specific options:

 e	 Evaluate the right side as an expression.
 ee Evaluate the right side as a string then eval the
 result.
 r Return substitution and leave the original string
 untouched.

Any non-whitespace delimiter may replace the slashes. Add space after
 the s when
using a character allowed in identifiers. If single quotes
 are used, no interpretation is
done on the replacement string (the /e
 modifier overrides this, however). Note that
Perl treats backticks
 as normal delimiters; the replacement text is not evaluated as a
command.
 If the PATTERN is delimited by bracketing quotes, the REPLACEMENT
has
 its own pair of quotes, which may or may not be bracketing quotes, for example,
s(foo)(bar) or s<foo>/bar/. A /e will cause the
 replacement portion to be
treated as a full-fledged Perl expression
 and evaluated right then and there. It is,
however, syntax checked at
 compile-time. A second e modifier will cause the
replacement portion
 to be evaled before being run as a Perl expression.

Examples:

 s/\bgreen\b/mauve/g;	 # don't change wintergreen

 $path =~ s|/usr/bin|/usr/local/bin|;

 s/Login: $foo/Login: $bar/; # run-time pattern

 ($foo = $bar) =~ s/this/that/;	 # copy first, then
 # change
 ($foo = "$bar") =~ s/this/that/;	 # convert to string,
 # copy, then change
 $foo = $bar =~ s/this/that/r;	 # Same as above using /r
 $foo = $bar =~ s/this/that/r
 =~ s/that/the other/r;	 # Chained substitutes
 # using /r
 @foo = map { s/this/that/r } @bar	 # /r is very useful in
 # maps

 $count = ($paragraph =~ s/Mister\b/Mr./g); # get change-cnt

 $_ = 'abc123xyz';
 s/\d+/$&*2/e;		 # yields 'abc246xyz'
 s/\d+/sprintf("%5d",$&)/e;	 # yields 'abc 246xyz'
 s/\w/$& x 2/eg;		 # yields 'aabbcc 224466xxyyzz'

 s/%(.)/$percent{$1}/g;	 # change percent escapes; no /e
 s/%(.)/$percent{$1} || $&/ge;	 # expr now, so /e
 s/^=(\w+)/pod($1)/ge;	 # use function call

 $_ = 'abc123xyz';
 $x = s/abc/def/r; # $x is 'def123xyz' and
 # $_ remains 'abc123xyz'.

Perl version 5.24.0 documentation - perlop

Page 31http://perldoc.perl.org

 # expand variables in $_, but dynamics only, using
 # symbolic dereferencing
 s/\$(\w+)/${$1}/g;

 # Add one to the value of any numbers in the string
 s/(\d+)/1 + $1/eg;

 # Titlecase words in the last 30 characters only
 substr($str, -30) =~ s/\b(\p{Alpha}+)\b/\u\L$1/g;

 # This will expand any embedded scalar variable
 # (including lexicals) in $_ : First $1 is interpolated
 # to the variable name, and then evaluated
 s/(\$\w+)/$1/eeg;

 # Delete (most) C comments.
 $program =~ s {
	 /*	 # Match the opening delimiter.
	 .*?	 # Match a minimal number of characters.
	 */	 # Match the closing delimiter.
 } []gsx;

 s/^\s*(.*?)\s*$/$1/;	 # trim whitespace in $_,
 # expensively

 for ($variable) {		 # trim whitespace in $variable,
 # cheap
	 s/^\s+//;
	 s/\s+$//;
 }

 s/([^]*) *([^]*)/$2 $1/;	 # reverse 1st two fields

Note the use of $ instead of \ in the last example. Unlike sed, we use the \<digit> form
only in the left hand side.
 Anywhere else it's $<digit>.

Occasionally, you can't use just a /g to get all the changes
 to occur that you might
want. Here are two common cases:

 # put commas in the right places in an integer
 1 while s/(\d)(\d\d\d)(?!\d)/$1,$2/g;

 # expand tabs to 8-column spacing
 1 while s/\t+/' ' x (length($&)*8 - length($`)%8)/e;

Quote-Like Operators
q/STRING/

'STRING'

A single-quoted, literal string. A backslash represents a backslash
 unless followed by the
delimiter or another backslash, in which case
 the delimiter or backslash is interpolated.

 $foo = q!I said, "You said, 'She said it.'"!;
 $bar = q('This is it.');
 $baz = '\n';		 # a two-character string

qq/STRING/

Perl version 5.24.0 documentation - perlop

Page 32http://perldoc.perl.org

"STRING"

A double-quoted, interpolated string.

 $_ .= qq
 (*** The previous line contains the naughty word "$1".\n)
		 if /\b(tcl|java|python)\b/i; # :-)
 $baz = "\n";		 # a one-character string

qx/STRING/

`STRING`

A string which is (possibly) interpolated and then executed as a
 system command with /bin/sh
or its equivalent. Shell wildcards,
 pipes, and redirections will be honored. The collected
standard
 output of the command is returned; standard error is unaffected. In
 scalar context, it
comes back as a single (potentially multi-line)
 string, or undef if the command failed. In list
context, returns a
 list of lines (however you've defined lines with $/ or
$INPUT_RECORD_SEPARATOR), or an empty list if the command failed.

Because backticks do not affect standard error, use shell file descriptor
 syntax (assuming the
shell supports this) if you care to address this.
 To capture a command's STDERR and
STDOUT together:

 $output = `cmd 2>&1`;

To capture a command's STDOUT but discard its STDERR:

 $output = `cmd 2>/dev/null`;

To capture a command's STDERR but discard its STDOUT (ordering is
 important here):

 $output = `cmd 2>&1 1>/dev/null`;

To exchange a command's STDOUT and STDERR in order to capture the STDERR
 but leave
its STDOUT to come out the old STDERR:

 $output = `cmd 3>&1 1>&2 2>&3 3>&-`;

To read both a command's STDOUT and its STDERR separately, it's easiest
 to redirect them
separately to files, and then read from those files
 when the program is done:

 system("program args 1>program.stdout 2>program.stderr");

The STDIN filehandle used by the command is inherited from Perl's STDIN.
 For example:

 open(SPLAT, "stuff") || die "can't open stuff: $!";
 open(STDIN, "<&SPLAT") || die "can't dupe SPLAT: $!";
 print STDOUT `sort`;

will print the sorted contents of the file named "stuff".

Using single-quote as a delimiter protects the command from Perl's
 double-quote
interpolation, passing it on to the shell instead:

 $perl_info = qx(ps $$); # that's Perl's $$
 $shell_info = qx'ps $$'; # that's the new shell's $$

How that string gets evaluated is entirely subject to the command
 interpreter on your system.
On most platforms, you will have to protect
 shell metacharacters if you want them treated
literally. This is in
 practice difficult to do, as it's unclear how to escape which characters.
 See
perlsec for a clean and safe example of a manual fork() and exec()
 to emulate backticks
safely.

On some platforms (notably DOS-like ones), the shell may not be
 capable of dealing with

Perl version 5.24.0 documentation - perlop

Page 33http://perldoc.perl.org

multiline commands, so putting newlines in
 the string may not get you what you want. You
may be able to evaluate
 multiple commands in a single line by separating them with the
command
 separator character, if your shell supports that (for example, ; on many Unix shells
and & on the Windows NT cmd shell).

Perl will attempt to flush all files opened for
 output before starting the child process, but this
may not be supported
 on some platforms (see perlport). To be safe, you may need to set $| (
$AUTOFLUSH in English) or call the autoflush() method of IO::Handle on any open
handles.

Beware that some command shells may place restrictions on the length
 of the command line.
You must ensure your strings don't exceed this
 limit after any necessary interpolations. See
the platform-specific
 release notes for more details about your particular environment.

Using this operator can lead to programs that are difficult to port,
 because the shell commands
called vary between systems, and may in
 fact not be present at all. As one example, the type
command under
 the POSIX shell is very different from the type command under DOS.
 That
doesn't mean you should go out of your way to avoid backticks
 when they're the right way to
get something done. Perl was made to be
 a glue language, and one of the things it glues
together is commands.
 Just understand what you're getting yourself into.

Like system, backticks put the child process exit code in $?.
 If you'd like to manually inspect
failure, you can check all possible
 failure modes by inspecting $? like this:

 if ($? == -1) {
 print "failed to execute: $!\n";
 }
 elsif ($? & 127) {
 printf "child died with signal %d, %s coredump\n",
 ($? & 127), ($? & 128) ? 'with' : 'without';
 }
 else {
 printf "child exited with value %d\n", $? >> 8;
 }

See I/O Operators for more discussion.

qw/STRING/

Evaluates to a list of the words extracted out of STRING, using embedded
 whitespace as the
word delimiters. It can be understood as being roughly
 equivalent to:

 split(" ", q/STRING/);

the differences being that it generates a real list at compile time, and
 in scalar context it
returns the last element in the list. So
 this expression:

 qw(foo bar baz)

is semantically equivalent to the list:

 "foo", "bar", "baz"

Some frequently seen examples:

 use POSIX qw(setlocale localeconv)
 @EXPORT = qw(foo bar baz);

A common mistake is to try to separate the words with commas or to
 put comments into a
multi-line qw-string. For this reason, the use warnings pragma and the -w switch (that is,
the $^W variable)
 produces warnings if the STRING contains the "," or the "#" character.

tr/SEARCHLIST/REPLACEMENTLIST/cdsr

Perl version 5.24.0 documentation - perlop

Page 34http://perldoc.perl.org

y/SEARCHLIST/REPLACEMENTLIST/cdsr

Transliterates all occurrences of the characters found in the search list
 with the corresponding
character in the replacement list. It returns
 the number of characters replaced or deleted. If no
string is
 specified via the =~ or !~ operator, the $_ string is transliterated.

If the /r (non-destructive) option is present, a new copy of the string
 is made and its
characters transliterated, and this copy is returned no
 matter whether it was modified or not:
the original string is always
 left unchanged. The new copy is always a plain string, even if the
input
 string is an object or a tied variable.

Unless the /r option is used, the string specified with =~ must be a
 scalar variable, an array
element, a hash element, or an assignment to one
 of those; in other words, an lvalue.

A character range may be specified with a hyphen, so tr/A-J/0-9/
 does the same
replacement as tr/ACEGIBDFHJ/0246813579/.
 For sed devotees, y is provided as a
synonym for tr. If the SEARCHLIST is delimited by bracketing quotes, the
REPLACEMENTLIST has
 its own pair of quotes, which may or may not be bracketing quotes;

for example, tr[aeiouy][yuoiea] or tr(+\-*/)/ABCD/.

Characters may be literals or any of the escape sequences accepted in
 double-quoted strings.
But there is no interpolation, so "$" and "@" are treated as literals. A hyphen at the beginning
or end, or
 preceded by a backslash is considered a literal. Escape sequence
 details are in the
table near the beginning of this section.

Note that tr does not do regular expression character classes such as \d or \pL. The tr
operator is not equivalent to the tr(1)
 utility. If you want to map strings between lower/upper
cases, see "lc" in perlfunc and "uc" in perlfunc, and in general consider using the s
 operator if
you need regular expressions. The \U, \u, \L, and \l string-interpolation escapes on the
right side of a substitution
 operator will perform correct case-mappings, but tr[a-z][A-Z]
will not
 (except sometimes on legacy 7-bit data).

Most ranges are unportable between character sets, but certain ones
 signal Perl to do special
handling to make them portable. There are two
 classes of portable ranges. The first are any
subsets of the ranges A-Z, a-z, and 0-9, when expressed as literal characters.

 tr/h-k/H-K/

capitalizes the letters "h", "i", "j", and "k" and nothing
 else, no matter what the platform's
character set is. In contrast, all
 of

 tr/\x68-\x6B/\x48-\x4B/
 tr/h-\x6B/H-\x4B/
 tr/\x68-k/\x48-K/

do the same capitalizations as the previous example when run on ASCII
 platforms, but
something completely different on EBCDIC ones.

The second class of portable ranges is invoked when one or both of the
 range's end points
are expressed as \N{...}

 $string =~ tr/\N{U+20}-\N{U+7E}//d;

removes from $string all the platform's characters which are
 equivalent to any of Unicode
U+0020, U+0021, ... U+007D, U+007E. This
 is a portable range, and has the same effect on
every platform it is
 run on. It turns out that in this example, these are the ASCII
 printable
characters. So after this is run, $string has only
 controls and characters which have no
ASCII equivalents.

But, even for portable ranges, it is not generally obvious what is
 included without having to
look things up. A sound principle is to use
 only ranges that begin from and end at either ASCII
alphabetics of equal
 case (b-e, b-E), or digits (1-4). Anything else is unclear
 (and unportable
unless \N{...} is used). If in doubt, spell out the
 character sets in full.

Options:

Perl version 5.24.0 documentation - perlop

Page 35http://perldoc.perl.org

 c	 Complement the SEARCHLIST.
 d	 Delete found but unreplaced characters.
 s	 Squash duplicate replaced characters.
 r	 Return the modified string and leave the original string
	 untouched.

If the /c modifier is specified, the SEARCHLIST character set
 is complemented. If the /d
modifier is specified, any characters
 specified by SEARCHLIST not found in
REPLACEMENTLIST are deleted.
 (Note that this is slightly more flexible than the behavior of
some tr programs, which delete anything they find in the SEARCHLIST,
 period.) If the /s
modifier is specified, sequences of characters
 that were transliterated to the same character
are squashed down
 to a single instance of the character.

If the /d modifier is used, the REPLACEMENTLIST is always interpreted
 exactly as specified.
Otherwise, if the REPLACEMENTLIST is shorter
 than the SEARCHLIST, the final character is
replicated till it is long
 enough. If the REPLACEMENTLIST is empty, the SEARCHLIST is
replicated.
 This latter is useful for counting characters in a class or for
 squashing character
sequences in a class.

Examples:

 $ARGV[1] =~ tr/A-Z/a-z/;	 # canonicalize to lower case ASCII

 $cnt = tr/*/*/;		 # count the stars in $_

 $cnt = $sky =~ tr/*/*/;	 # count the stars in $sky

 $cnt = tr/0-9//;		 # count the digits in $_

 tr/a-zA-Z//s;		 # bookkeeper -> bokeper

 ($HOST = $host) =~ tr/a-z/A-Z/;
 $HOST = $host =~ tr/a-z/A-Z/r; # same thing

 $HOST = $host =~ tr/a-z/A-Z/r # chained with s///r
 =~ s/:/ -p/r;

 tr/a-zA-Z/ /cs;		 # change non-alphas to single space

 @stripped = map tr/a-zA-Z/ /csr, @original;
				 # /r with map

 tr [\200-\377]
 [\000-\177];		 # wickedly delete 8th bit

If multiple transliterations are given for a character, only the
 first one is used:

 tr/AAA/XYZ/

will transliterate any A to X.

Because the transliteration table is built at compile time, neither
 the SEARCHLIST nor the
REPLACEMENTLIST are subjected to double quote
 interpolation. That means that if you want
to use variables, you
 must use an eval():

 eval "tr/$oldlist/$newlist/";
 die $@ if $@;

 eval "tr/$oldlist/$newlist/, 1" or die $@;

Perl version 5.24.0 documentation - perlop

Page 36http://perldoc.perl.org

<<EOF

A line-oriented form of quoting is based on the shell "here-document"
 syntax. Following a <<
you specify a string to terminate
 the quoted material, and all lines following the current line
down to
 the terminating string are the value of the item.

The terminating string may be either an identifier (a word), or some
 quoted text. An unquoted
identifier works like double quotes.
 There may not be a space between the << and the
identifier,
 unless the identifier is explicitly quoted. (If you put a space it
 will be treated as a null
identifier, which is valid, and matches the
 first empty line.) The terminating string must appear
by itself
 (unquoted and with no surrounding whitespace) on the terminating line.

If the terminating string is quoted, the type of quotes used determine
 the treatment of the text.

Double Quotes

Double quotes indicate that the text will be interpolated using exactly
 the same rules
as normal double quoted strings.

 print <<EOF;
 The price is $Price.
 EOF

 print << "EOF"; # same as above
 The price is $Price.
 EOF

Single Quotes

Single quotes indicate the text is to be treated literally with no
 interpolation of its
content. This is similar to single quoted
 strings except that backslashes have no
special meaning, with \\
 being treated as two backslashes and not one as they would
in every
 other quoting construct.

Just as in the shell, a backslashed bareword following the <<
 means the same thing as
a single-quoted string does:

	 $cost = <<'VISTA'; # hasta la ...
 That'll be $10 please, ma'am.
 VISTA

	 $cost = <<\VISTA; # Same thing!
 That'll be $10 please, ma'am.
 VISTA

This is the only form of quoting in perl where there is no need
 to worry about escaping
content, something that code generators
 can and do make good use of.

Backticks

The content of the here doc is treated just as it would be if the
 string were embedded
in backticks. Thus the content is interpolated
 as though it were double quoted and then
executed via the shell, with
 the results of the execution returned.

 print << `EOC`; # execute command and get results
 echo hi there
 EOC

It is possible to stack multiple here-docs in a row:

 print <<"foo", <<"bar"; # you can stack them
 I said foo.
 foo
 I said bar.

Perl version 5.24.0 documentation - perlop

Page 37http://perldoc.perl.org

 bar

 myfunc(<< "THIS", 23, <<'THAT');
 Here's a line
 or two.
 THIS
 and here's another.
 THAT

Just don't forget that you have to put a semicolon on the end
 to finish the statement, as Perl
doesn't know you're not going to
 try to do this:

 print <<ABC
 179231
 ABC
 + 20;

If you want to remove the line terminator from your here-docs,
 use chomp().

 chomp($string = <<'END');
 This is a string.
 END

If you want your here-docs to be indented with the rest of the code,
 you'll need to remove
leading whitespace from each line manually:

 ($quote = <<'FINIS') =~ s/^\s+//gm;
 The Road goes ever on and on,
 down from the door where it began.
 FINIS

If you use a here-doc within a delimited construct, such as in s///eg,
 the quoted material
must still come on the line following the <<FOO marker, which means it may be inside the
delimited
 construct:

 s/this/<<E . 'that'
 the other
 E
 . 'more '/eg;

It works this way as of Perl 5.18. Historically, it was inconsistent, and
 you would have to write

 s/this/<<E . 'that'
 . 'more '/eg;
 the other
 E

outside of string evals.

Additionally, quoting rules for the end-of-string identifier are
 unrelated to Perl's quoting rules.
q(), qq(), and the like are not
 supported in place of '' and "", and the only interpolation is
for
 backslashing the quoting character:

 print << "abc\"def";
 testing...
 abc"def

Finally, quoted strings cannot span multiple lines. The general rule is
 that the identifier must
be a string literal. Stick with that, and you
 should be safe.

Perl version 5.24.0 documentation - perlop

Page 38http://perldoc.perl.org

Gory details of parsing quoted constructs
When presented with something that might have several different
 interpretations, Perl uses the DWIM
(that's "Do What I Mean")
 principle to pick the most probable interpretation. This strategy
 is so
successful that Perl programmers often do not suspect the
 ambivalence of what they write. But from
time to time, Perl's
 notions differ substantially from what the author honestly meant.

This section hopes to clarify how Perl handles quoted constructs.
 Although the most common reason
to learn this is to unravel labyrinthine
 regular expressions, because the initial steps of parsing are the

same for all quoting operators, they are all discussed together.

The most important Perl parsing rule is the first one discussed
 below: when processing a quoted
construct, Perl first finds the end
 of that construct, then interprets its contents. If you understand
 this
rule, you may skip the rest of this section on the first
 reading. The other rules are likely to contradict
the user's
 expectations much less frequently than this first one.

Some passes discussed below are performed concurrently, but because
 their results are the same,
we consider them individually. For different
 quoting constructs, Perl performs different numbers of
passes, from
 one to four, but these passes are always performed in the same order.

Finding the end

The first pass is finding the end of the quoted construct. This results
 in saving to a safe
location a copy of the text (between the starting
 and ending delimiters), normalized as
necessary to avoid needing to know
 what the original delimiters were.

If the construct is a here-doc, the ending delimiter is a line
 that has a terminating string as the
content. Therefore <<EOF is
 terminated by EOF immediately followed by "\n" and starting

from the first column of the terminating line.
 When searching for the terminating line of a
here-doc, nothing
 is skipped. In other words, lines after the here-doc syntax
 are compared
with the terminating string line by line.

For the constructs except here-docs, single characters are used as starting
 and ending
delimiters. If the starting delimiter is an opening punctuation
 (that is (, [, {, or <), the ending
delimiter is the
 corresponding closing punctuation (that is),], }, or >).
 If the starting delimiter
is an unpaired character like / or a closing
 punctuation, the ending delimiter is the same as
the starting delimiter.
 Therefore a / terminates a qq// construct, while a] terminates
 both
qq[] and qq]] constructs.

When searching for single-character delimiters, escaped delimiters
 and \\ are skipped. For
example, while searching for terminating /,
 combinations of \\ and \/ are skipped. If the
delimiters are
 bracketing, nested pairs are also skipped. For example, while searching
 for a
closing] paired with the opening [, combinations of \\, \],
 and \[are all skipped, and
nested [and] are skipped as well.
 However, when backslashes are used as the delimiters
(like qq\\ and tr\\\), nothing is skipped.
 During the search for the end, backslashes that
escape delimiters or
 other backslashes are removed (exactly speaking, they are not copied to
the
 safe location).

For constructs with three-part delimiters (s///, y///, and tr///), the search is repeated
once more.
 If the first delimiter is not an opening punctuation, the three delimiters must
 be the
same, such as s!!! and tr))),
 in which case the second delimiter
 terminates the left part
and starts the right part at once.
 If the left part is delimited by bracketing punctuation (that is
(), [], {}, or <>), the right part needs another pair of
 delimiters such as s(){} and tr[]//.
In these cases, whitespace
 and comments are allowed between the two parts, although the
comment must follow
 at least one whitespace character; otherwise a character expected as
the start of the comment may be regarded as the starting delimiter of the right part.

During this search no attention is paid to the semantics of the construct.
 Thus:

 "$hash{"$foo/$bar"}"

or:

Perl version 5.24.0 documentation - perlop

Page 39http://perldoc.perl.org

 m/
 bar	 # NOT a comment, this slash / terminated m//!
 /x

do not form legal quoted expressions. The quoted part ends on the
 first " and /, and the rest
happens to be a syntax error.
 Because the slash that terminated m// was followed by a
SPACE,
 the example above is not m//x, but rather m// with no /x
 modifier. So the embedded
is interpreted as a literal #.

Also no attention is paid to \c\ (multichar control char syntax) during
 this search. Thus the
second \ in qq/\c\/ is interpreted as a part
 of \/, and the following / is not recognized as a
delimiter.
 Instead, use \034 or \x1c at the end of quoted constructs.

Interpolation

The next step is interpolation in the text obtained, which is now
 delimiter-independent. There
are multiple cases.

<<'EOF'

No interpolation is performed.
 Note that the combination \\ is left intact, since
escaped delimiters
 are not available for here-docs.

m'', the pattern of s'''

No interpolation is performed at this stage.
 Any backslashed sequences including \\
are treated at the stage
 to parsing regular expressions.

'', q//, tr''', y''', the replacement of s'''

The only interpolation is removal of \ from pairs of \\.
 Therefore "-" in tr''' and
y''' is treated literally
 as a hyphen and no character range is available. \1 in the
replacement of s''' does not work as $1.

tr///, y///

No variable interpolation occurs. String modifying combinations for
 case and quoting
such as \Q, \U, and \E are not recognized.
 The other escape sequences such as
\200 and \t and backslashed
 characters such as \\ and \- are converted to
appropriate literals.
 The character "-" is treated specially and therefore \- is treated

as a literal "-".

"", ``, qq//, qx//, <file*glob>, <<"EOF"

\Q, \U, \u, \L, \l, \F (possibly paired with \E) are
 converted to corresponding Perl
constructs. Thus, "$foo\Qbaz$bar"
 is converted to $foo . (quotemeta("baz"
. $bar)) internally.
 The other escape sequences such as \200 and \t and
backslashed
 characters such as \\ and \- are replaced with appropriate
 expansions.

Let it be stressed that whatever falls between \Q and \E
 is interpolated in the usual
way. Something like "\Q\\E" has
 no \E inside. Instead, it has \Q, \\, and E, so the

result is the same as for "\\\\E". As a general rule, backslashes
 between \Q and \E
may lead to counterintuitive results. So, "\Q\t\E" is converted to
quotemeta("\t"), which is the same
 as "\\\t" (since TAB is not alphanumeric).
Note also that:

 $str = '\t';
 return "\Q$str";

may be closer to the conjectural intention of the writer of "\Q\t\E".

Interpolated scalars and arrays are converted internally to the join and "."
catenation operations. Thus, "$foo XXX '@arr'" becomes:

 $foo . " XXX '" . (join $", @arr) . "'";

Perl version 5.24.0 documentation - perlop

Page 40http://perldoc.perl.org

All operations above are performed simultaneously, left to right.

Because the result of "\Q STRING \E" has all metacharacters
 quoted, there is no
way to insert a literal $ or @ inside a \Q\E pair. If protected by \, $ will be quoted to
become "\\\$"; if not, it is interpreted as the start of an interpolated
 scalar.

Note also that the interpolation code needs to make a decision on
 where the
interpolated scalar ends. For instance, whether "a $x -> {c}" really means:

 "a " . $x . " -> {c}";

or:

 "a " . $x -> {c};

Most of the time, the longest possible text that does not include
 spaces between
components and which contains matching braces or
 brackets. because the outcome
may be determined by voting based
 on heuristic estimators, the result is not strictly
predictable.
 Fortunately, it's usually correct for ambiguous cases.

the replacement of s///

Processing of \Q, \U, \u, \L, \l, \F and interpolation
 happens as with qq//
constructs.

It is at this step that \1 is begrudgingly converted to $1 in
 the replacement text of
s///, in order to correct the incorrigible sed hackers who haven't picked up the saner
idiom yet. A warning
 is emitted if the use warnings pragma or the -w command-line
flag
 (that is, the $^W variable) was set.

RE in ?RE?, /RE/, m/RE/, s/RE/foo/,

Processing of \Q, \U, \u, \L, \l, \F, \E,
 and interpolation happens (almost) as with
qq// constructs.

Processing of \N{...} is also done here, and compiled into an intermediate
 form for
the regex compiler. (This is because, as mentioned below, the regex
 compilation may
be done at execution time, and \N{...} is a compile-time
 construct.)

However any other combinations of \ followed by a character
 are not substituted but
only skipped, in order to parse them
 as regular expressions at the following step.
 As
\c is skipped at this step, @ of \c@ in RE is possibly
 treated as an array symbol (for
example @foo),
 even though the same text in qq// gives interpolation of \c@.

Code blocks such as (?{BLOCK}) are handled by temporarily passing control
 back to
the perl parser, in a similar way that an interpolated array
 subscript expression such as
"foo$array[1+f("[xyz")]bar" would be.

Moreover, inside (?{BLOCK}), (?# comment), and
 a #-comment in a /x-regular
expression, no processing is
 performed whatsoever. This is the first step at which the
presence
 of the /x modifier is relevant.

Interpolation in patterns has several quirks: $|, $(, $), @+
 and @- are not interpolated,
and constructs $var[SOMETHING] are
 voted (by several different estimators) to be
either an array element
 or $var followed by an RE alternative. This is where the
notation ${arr[$bar]} comes handy: /${arr[0-9]}/ is interpreted as
 array
element -9, not as a regular expression from the variable $arr followed by a digit,
which would be the interpretation of /$arr[0-9]/. Since voting among different
estimators may occur,
 the result is not predictable.

The lack of processing of \\ creates specific restrictions on
 the post-processed text. If
the delimiter is /, one cannot get
 the combination \/ into the result of this step. / will

finish the regular expression, \/ will be stripped to / on
 the previous step, and \\/ will
be left as is. Because / is
 equivalent to \/ inside a regular expression, this does not

matter unless the delimiter happens to be character special to the
 RE engine, such as

Perl version 5.24.0 documentation - perlop

Page 41http://perldoc.perl.org

in s*foo*bar*, m[foo], or ?foo?; or an
 alphanumeric char, as in:

 m m ^ a \s* b mmx;

In the RE above, which is intentionally obfuscated for illustration, the
 delimiter is m, the
modifier is mx, and after delimiter-removal the
 RE is the same as for m/ ^ a \s* b
/mx. There's more than one
 reason you're encouraged to restrict your delimiters to
non-alphanumeric,
 non-whitespace choices.

This step is the last one for all constructs except regular expressions,
 which are processed
further.

parsing regular expressions

Previous steps were performed during the compilation of Perl code,
 but this one happens at
run time, although it may be optimized to
 be calculated at compile time if appropriate. After
preprocessing
 described above, and possibly after evaluation if concatenation,
 joining, casing
translation, or metaquoting are involved, the
 resulting string is passed to the RE engine for
compilation.

Whatever happens in the RE engine might be better discussed in perlre,
 but for the sake of
continuity, we shall do so here.

This is another step where the presence of the /x modifier is
 relevant. The RE engine scans
the string from left to right and
 converts it into a finite automaton.

Backslashed characters are either replaced with corresponding
 literal strings (as with \{), or
else they generate special nodes
 in the finite automaton (as with \b). Characters special to
the
 RE engine (such as |) generate corresponding nodes or groups of
 nodes. (?#...)
comments are ignored. All the rest is either
 converted to literal strings to match, or else is
ignored (as is
 whitespace and #-style comments if /x is present).

Parsing of the bracketed character class construct, [...], is
 rather different than the rule
used for the rest of the pattern.
 The terminator of this construct is found using the same rules
as
 for finding the terminator of a {}-delimited construct, the only
 exception being that]
immediately following [is treated as
 though preceded by a backslash.

The terminator of runtime (?{...}) is found by temporarily switching
 control to the perl
parser, which should stop at the point where the
 logically balancing terminating } is found.

It is possible to inspect both the string given to RE engine and the
 resulting finite automaton.
See the arguments debug/debugcolor
 in the use re pragma, as well as Perl's -Dr
command-line
 switch documented in "Command Switches" in perlrun.

Optimization of regular expressions

This step is listed for completeness only. Since it does not change
 semantics, details of this
step are not documented and are subject
 to change without notice. This step is performed
over the finite
 automaton that was generated during the previous pass.

It is at this stage that split() silently optimizes /^/ to
 mean /^/m.

I/O Operators
There are several I/O operators you should know about.

A string enclosed by backticks (grave accents) first undergoes
 double-quote interpolation. It is then
interpreted as an external
 command, and the output of that command is the value of the
 backtick
string, like in a shell. In scalar context, a single string
 consisting of all output is returned. In list
context, a list of
 values is returned, one per line of output. (You can set $/ to use
 a different line
terminator.) The command is executed each time the
 pseudo-literal is evaluated. The status value of
the command is
 returned in $? (see perlvar for the interpretation of $?).
 Unlike in csh, no translation
is done on the return data--newlines
 remain newlines. Unlike in any of the shells, single quotes do not
hide variable names in the command from interpretation. To pass a
 literal dollar-sign through to the
shell you need to hide it with a
 backslash. The generalized form of backticks is qx//. (Because

Perl version 5.24.0 documentation - perlop

Page 42http://perldoc.perl.org

backticks always undergo shell expansion as well, see perlsec for
 security concerns.)

In scalar context, evaluating a filehandle in angle brackets yields
 the next line from that file (the
newline, if any, included), or undef at end-of-file or on error. When $/ is set to undef
 (sometimes
known as file-slurp mode) and the file is empty, it
 returns '' the first time, followed by undef
subsequently.

Ordinarily you must assign the returned value to a variable, but
 there is one situation where an
automatic assignment happens. If
 and only if the input symbol is the only thing inside the conditional

of a while statement (even if disguised as a for(;;) loop),
 the value is automatically assigned to
the global variable $_,
 destroying whatever was there previously. (This may seem like an
 odd thing to
you, but you'll use the construct in almost every Perl
 script you write.) The $_ variable is not implicitly
localized.
 You'll have to put a local $_; before the loop if you want that
 to happen.

The following lines are equivalent:

 while (defined($_ = <STDIN>)) { print; }
 while ($_ = <STDIN>) { print; }
 while (<STDIN>) { print; }
 for (;<STDIN>;) { print; }
 print while defined($_ = <STDIN>);
 print while ($_ = <STDIN>);
 print while <STDIN>;

This also behaves similarly, but assigns to a lexical variable instead of to $_:

 while (my $line = <STDIN>) { print $line }

In these loop constructs, the assigned value (whether assignment
 is automatic or explicit) is then
tested to see whether it is
 defined. The defined test avoids problems where the line has a string
 value
that would be treated as false by Perl; for example a "" or
 a "0" with no trailing newline. If you really
mean for such values
 to terminate the loop, they should be tested for explicitly:

 while (($_ = <STDIN>) ne '0') { ... }
 while (<STDIN>) { last unless $_; ... }

In other boolean contexts, <FILEHANDLE> without an
 explicit defined test or comparison elicits a
warning if the use warnings pragma or the -w
 command-line switch (the $^W variable) is in effect.

The filehandles STDIN, STDOUT, and STDERR are predefined. (The
 filehandles stdin, stdout,
and stderr will also work except
 in packages, where they would be interpreted as local identifiers

rather than global.) Additional filehandles may be created with
 the open() function, amongst others.
See perlopentut and "open" in perlfunc for details on this.

If a <FILEHANDLE> is used in a context that is looking for
 a list, a list comprising all input lines is
returned, one line per
 list element. It's easy to grow to a rather large data space this
 way, so use with
care.

<FILEHANDLE> may also be spelled readline(*FILEHANDLE).
 See "readline" in perlfunc.

The null filehandle <> is special: it can be used to emulate the
 behavior of sed and awk, and any
other Unix filter program
 that takes a list of filenames, doing the same to each line
 of input from all of
them. Input from <> comes either from
 standard input, or from each file listed on the command line.
Here's
 how it works: the first time <> is evaluated, the @ARGV array is
 checked, and if it is empty,
$ARGV[0] is set to "-", which when opened
 gives you standard input. The @ARGV array is then
processed as a list
 of filenames. The loop

 while (<>) {
	 ...			 # code for each line

Perl version 5.24.0 documentation - perlop

Page 43http://perldoc.perl.org

 }

is equivalent to the following Perl-like pseudo code:

 unshift(@ARGV, '-') unless @ARGV;
 while ($ARGV = shift) {
	 open(ARGV, $ARGV);
	 while (<ARGV>) {
	 ...		 # code for each line
	 }
 }

except that it isn't so cumbersome to say, and will actually work.
 It really does shift the @ARGV array
and put the current filename
 into the $ARGV variable. It also uses filehandle ARGV
 internally. <> is
just a synonym for <ARGV>, which
 is magical. (The pseudo code above doesn't work because it treats
<ARGV> as non-magical.)

Since the null filehandle uses the two argument form of "open" in perlfunc
 it interprets special
characters, so if you have a script like this:

 while (<>) {
 print;
 }

and call it with perl dangerous.pl 'rm -rfv *|', it actually opens a
 pipe, executes the rm
command and reads rm's output from that pipe.
 If you want all items in @ARGV to be interpreted as file
names, you
 can use the module ARGV::readonly from CPAN, or use the double bracket:

 while (<<>>) {
 print;
 }

Using double angle brackets inside of a while causes the open to use the
 three argument form (with
the second argument being <), so all
 arguments in ARGV are treated as literal filenames (including
"-").
 (Note that for convenience, if you use <<>> and if @ARGV is
 empty, it will still read from the
standard input.)

You can modify @ARGV before the first <> as long as the array ends up
 containing the list of filenames
you really want. Line numbers ($.)
 continue as though the input were one big happy file. See the
example
 in "eof" in perlfunc for how to reset line numbers on each file.

If you want to set @ARGV to your own list of files, go right ahead.
 This sets @ARGV to all plain text files
if no @ARGV was given:

 @ARGV = grep { -f && -T } glob('*') unless @ARGV;

You can even set them to pipe commands. For example, this automatically
 filters compressed
arguments through gzip:

 @ARGV = map { /\.(gz|Z)$/ ? "gzip -dc < $_ |" : $_ } @ARGV;

If you want to pass switches into your script, you can use one of the Getopts modules or put a loop
on the front like this:

 while ($_ = $ARGV[0], /^-/) {
	 shift;
 last if /^--$/;

Perl version 5.24.0 documentation - perlop

Page 44http://perldoc.perl.org

	 if (/^-D(.*)/) { $debug = $1 }
	 if (/^-v/) { $verbose++ }
	 # ...		 # other switches
 }

 while (<>) {
	 # ...		 # code for each line
 }

The <> symbol will return undef for end-of-file only once.
 If you call it again after this, it will assume
you are processing another @ARGV list, and if you haven't set @ARGV, will read input from STDIN.

If what the angle brackets contain is a simple scalar variable (for example, $foo), then that variable
contains the name of the
 filehandle to input from, or its typeglob, or a reference to the
 same. For
example:

 $fh = *STDIN;
 $line = <$fh>;

If what's within the angle brackets is neither a filehandle nor a simple
 scalar variable containing a
filehandle name, typeglob, or typeglob
 reference, it is interpreted as a filename pattern to be globbed,
and
 either a list of filenames or the next filename in the list is returned,
 depending on context. This
distinction is determined on syntactic
 grounds alone. That means <$x> is always a readline()
from
 an indirect handle, but <$hash{key}> is always a glob().
 That's because $x is a simple
scalar variable, but $hash{key} is
 not--it's a hash element. Even <$x > (note the extra space)
 is
treated as glob("$x "), not readline($x).

One level of double-quote interpretation is done first, but you can't
 say <$foo> because that's an
indirect filehandle as explained
 in the previous paragraph. (In older versions of Perl, programmers

would insert curly brackets to force interpretation as a filename glob: <${foo}>. These days, it's
considered cleaner to call the
 internal function directly as glob($foo), which is probably the right

way to have done it in the first place.) For example:

 while (<*.c>) {
	 chmod 0644, $_;
 }

is roughly equivalent to:

 open(FOO, "echo *.c | tr -s ' \t\r\f' '\\012\\012\\012\\012'|");
 while (<FOO>) {
	 chomp;
	 chmod 0644, $_;
 }

except that the globbing is actually done internally using the standard File::Glob extension. Of
course, the shortest way to do the above is:

 chmod 0644, <*.c>;

A (file)glob evaluates its (embedded) argument only when it is
 starting a new list. All values must be
read before it will start
 over. In list context, this isn't important because you automatically
 get them all
anyway. However, in scalar context the operator returns
 the next value each time it's called, or undef
when the list has
 run out. As with filehandle reads, an automatic defined is
 generated when the glob
occurs in the test part of a while,
 because legal glob returns (for example,
 a file called 0) would
otherwise
 terminate the loop. Again, undef is returned only once. So if
 you're expecting a single

Perl version 5.24.0 documentation - perlop

Page 45http://perldoc.perl.org

value from a glob, it is much better to
 say

 ($file) = <blurch*>;

than

 $file = <blurch*>;

because the latter will alternate between returning a filename and
 returning false.

If you're trying to do variable interpolation, it's definitely better
 to use the glob() function, because
the older notation can cause people
 to become confused with the indirect filehandle notation.

 @files = glob("$dir/*.[ch]");
 @files = glob($files[$i]);

Constant Folding
Like C, Perl does a certain amount of expression evaluation at
 compile time whenever it determines
that all arguments to an
 operator are static and have no side effects. In particular, string

concatenation happens at compile time between literals that don't do
 variable substitution. Backslash
interpolation also happens at
 compile time. You can say

 'Now is the time for all'
 . "\n"
 . 'good men to come to.'

and this all reduces to one string internally. Likewise, if
 you say

 foreach $file (@filenames) {
	 if (-s $file > 5 + 100 * 2**16) { }
 }

the compiler precomputes the number which that expression
 represents so that the interpreter won't
have to.

No-ops
Perl doesn't officially have a no-op operator, but the bare constants 0 and 1 are special-cased not to
produce a warning in void
 context, so you can for example safely do

 1 while foo();

Bitwise String Operators
Bitstrings of any size may be manipulated by the bitwise operators
 (~ | & ^).

If the operands to a binary bitwise op are strings of different
 sizes, | and ^ ops act as though the
shorter operand had
 additional zero bits on the right, while the & op acts as though
 the longer
operand were truncated to the length of the shorter.
 The granularity for such extension or truncation is
one or more
 bytes.

 # ASCII-based examples
 print "j p \n" ^ " a h"; 	 # prints "JAPH\n"
 print "JA" | " ph\n"; 	 # prints "japh\n"
 print "japh\nJunk" & '_____'; 	 # prints "JAPH\n";
 print 'p N$' ^ " E<H\n";		 # prints "Perl\n";

If you are intending to manipulate bitstrings, be certain that
 you're supplying bitstrings: If an operand

Perl version 5.24.0 documentation - perlop

Page 46http://perldoc.perl.org

is a number, that will imply
 a numeric bitwise operation. You may explicitly show which type of

operation you intend by using "" or 0+, as in the examples below.

 $foo = 150 | 105;	 # yields 255 (0x96 | 0x69 is 0xFF)
 $foo = '150' | 105;	 # yields 255
 $foo = 150 | '105';	 # yields 255
 $foo = '150' | '105';	 # yields string '155' (under ASCII)

 $baz = 0+$foo & 0+$bar;	 # both ops explicitly numeric
 $biz = "$foo" ^ "$bar";	 # both ops explicitly stringy

This somewhat unpredictable behavior can be avoided with the experimental
 "bitwise" feature, new in
Perl 5.22. You can enable it via use feature
 'bitwise'. By default, it will warn unless the
"experimental::bitwise"
 warnings category has been disabled. (use experimental
'bitwise' will
 enable the feature and disable the warning.) Under this feature, the four
 standard
bitwise operators (~ | & ^) are always numeric. Adding a dot
 after each operator (~. |. &. ^.)
forces it to treat its operands as
 strings:

 use experimental "bitwise";
 $foo = 150 | 105;	 # yields 255 (0x96 | 0x69 is 0xFF)
 $foo = '150' | 105;	 # yields 255
 $foo = 150 | '105';	 # yields 255
 $foo = '150' | '105';	 # yields 255
 $foo = 150 |. 105;	 # yields string '155'
 $foo = '150' |. 105;	 # yields string '155'
 $foo = 150 |.'105';	 # yields string '155'
 $foo = '150' |.'105';	 # yields string '155'

 $baz = $foo & $bar;	 # both operands numeric
 $biz = $foo ^. $bar;	 # both operands stringy

The assignment variants of these operators (&= |= ^= &.= |.= ^.=)
 behave likewise under the
feature.

The behavior of these operators is problematic (and subject to change)
 if either or both of the strings
are encoded in UTF-8 (see "Byte and Character Semantics" in perlunicode.

See "vec" in perlfunc for information on how to manipulate individual bits
 in a bit vector.

Integer Arithmetic
By default, Perl assumes that it must do most of its arithmetic in
 floating point. But by saying

 use integer;

you may tell the compiler to use integer operations
 (see integer for a detailed explanation) from here
to the end of
 the enclosing BLOCK. An inner BLOCK may countermand this by saying

 no integer;

which lasts until the end of that BLOCK. Note that this doesn't
 mean everything is an integer, merely
that Perl will use integer
 operations for arithmetic, comparison, and bitwise operators. For
 example,
even under use integer, if you take the sqrt(2), you'll
 still get 1.4142135623731 or so.

Used on numbers, the bitwise operators (& | ^ ~ << >>) always produce integral results. (But see
also Bitwise String Operators.) However, use integer still has meaning for
 them. By default, their
results are interpreted as unsigned integers, but
 if use integer is in effect, their results are

Perl version 5.24.0 documentation - perlop

Page 47http://perldoc.perl.org

interpreted
 as signed integers. For example, ~0 usually evaluates to a large
 integral value. However,
use integer; ~0 is -1 on two's-complement
 machines.

Floating-point Arithmetic

While use integer provides integer-only arithmetic, there is no
 analogous mechanism to provide
automatic rounding or truncation to a
 certain number of decimal places. For rounding to a certain
number
 of digits, sprintf() or printf() is usually the easiest route.
 See perlfaq4.

Floating-point numbers are only approximations to what a mathematician
 would call real numbers.
There are infinitely more reals than floats,
 so some corners must be cut. For example:

 printf "%.20g\n", 123456789123456789;
 # produces 123456789123456784

Testing for exact floating-point equality or inequality is not a
 good idea. Here's a (relatively expensive)
work-around to compare
 whether two floating-point numbers are equal to a particular number of

decimal places. See Knuth, volume II, for a more robust treatment of
 this topic.

 sub fp_equal {
	 my ($X, $Y, $POINTS) = @_;
	 my ($tX, $tY);
	 $tX = sprintf("%.${POINTS}g", $X);
	 $tY = sprintf("%.${POINTS}g", $Y);
	 return $tX eq $tY;
 }

The POSIX module (part of the standard perl distribution) implements ceil(), floor(), and other
mathematical and trigonometric functions.
 The Math::Complex module (part of the standard perl
distribution)
 defines mathematical functions that work on both the reals and the
 imaginary numbers.
Math::Complex is not as efficient as POSIX, but
 POSIX can't work with complex numbers.

Rounding in financial applications can have serious implications, and
 the rounding method used
should be specified precisely. In these
 cases, it probably pays not to trust whichever system rounding
is
 being used by Perl, but to instead implement the rounding function you
 need yourself.

Bigger Numbers
The standard Math::BigInt, Math::BigRat, and Math::BigFloat modules,
 along with the
bignum, bigint, and bigrat pragmas, provide
 variable-precision arithmetic and overloaded
operators, although
 they're currently pretty slow. At the cost of some space and
 considerable speed,
they avoid the normal pitfalls associated with
 limited-precision representations.

	 use 5.010;
	 use bigint; # easy interface to Math::BigInt
	 $x = 123456789123456789;
	 say $x * $x;
 +15241578780673678515622620750190521

Or with rationals:

 use 5.010;
 use bigrat;
 $x = 3/22;
 $y = 4/6;
 say "x/y is ", $x/$y;
 say "x*y is ", $x*$y;

Perl version 5.24.0 documentation - perlop

Page 48http://perldoc.perl.org

 x/y is 9/44
 x*y is 1/11

Several modules let you calculate with unlimited or fixed precision
 (bound only by memory and CPU
time). There
 are also some non-standard modules that
 provide faster implementations via external C
libraries.

Here is a short, but incomplete summary:

 Math::String treat string sequences like numbers
 Math::FixedPrecision calculate with a fixed precision
 Math::Currency for currency calculations
 Bit::Vector manipulate bit vectors fast (uses C)
 Math::BigIntFast Bit::Vector wrapper for big numbers
 Math::Pari provides access to the Pari C library
 Math::Cephes uses the external Cephes C library (no
 big numbers)
 Math::Cephes::Fraction fractions via the Cephes library
 Math::GMP another one using an external C library
 Math::GMPz an alternative interface to libgmp's big ints
 Math::GMPq an interface to libgmp's fraction numbers
 Math::GMPf an interface to libgmp's floating point numbers

Choose wisely.

