
Perl version 5.24.0 documentation - perlobj

Page 1http://perldoc.perl.org

NAME
perlobj - Perl object reference

DESCRIPTION
This document provides a reference for Perl's object orientation
 features. If you're looking for an
introduction to object-oriented
 programming in Perl, please see perlootut.

In order to understand Perl objects, you first need to understand
 references in Perl. See perlref for
details.

This document describes all of Perl's object-oriented (OO) features
 from the ground up. If you're just
looking to write some
 object-oriented code of your own, you are probably better served by
 using one
of the object systems from CPAN described in perlootut.

If you're looking to write your own object system, or you need to
 maintain code which implements
objects from scratch then this document
 will help you understand exactly how Perl does object
orientation.

There are a few basic principles which define object oriented Perl:

1. An object is simply a data structure that knows to which class it
 belongs.

2. A class is simply a package. A class provides methods that expect to
 operate on objects.

3. A method is simply a subroutine that expects a reference to an object
 (or a package name, for
class methods) as the first argument.

Let's look at each of these principles in depth.

An Object is Simply a Data Structure
Unlike many other languages which support object orientation, Perl does
 not provide any special
syntax for constructing an object. Objects are
 merely Perl data structures (hashes, arrays, scalars,
filehandles,
 etc.) that have been explicitly associated with a particular class.

That explicit association is created by the built-in bless function,
 which is typically used within the
constructor subroutine of the
 class.

Here is a simple constructor:

 package File;

 sub new {
 my $class = shift;

 return bless {}, $class;
 }

The name new isn't special. We could name our constructor something
 else:

 package File;

 sub load {
 my $class = shift;

 return bless {}, $class;
 }

The modern convention for OO modules is to always use new as the
 name for the constructor, but

Perl version 5.24.0 documentation - perlobj

Page 2http://perldoc.perl.org

there is no requirement to do so. Any
 subroutine that blesses a data structure into a class is a valid

constructor in Perl.

In the previous examples, the {} code creates a reference to an
 empty anonymous hash. The bless
function then takes that reference
 and associates the hash with the class in $class. In the simplest

case, the $class variable will end up containing the string "File".

We can also use a variable to store a reference to the data structure
 that is being blessed as our
object:

 sub new {
 my $class = shift;

 my $self = {};
 bless $self, $class;

 return $self;
 }

Once we've blessed the hash referred to by $self we can start
 calling methods on it. This is useful if
you want to put object
 initialization in its own separate method:

 sub new {
 my $class = shift;

 my $self = {};
 bless $self, $class;

 $self->_initialize();

 return $self;
 }

Since the object is also a hash, you can treat it as one, using it to
 store data associated with the
object. Typically, code inside the class
 can treat the hash as an accessible data structure, while code
outside
 the class should always treat the object as opaque. This is called encapsulation.
Encapsulation means that the user of an object does
 not have to know how it is implemented. The
user simply calls
 documented methods on the object.

Note, however, that (unlike most other OO languages) Perl does not
 ensure or enforce encapsulation
in any way. If you want objects to
 actually be opaque you need to arrange for that yourself. This can

be done in a variety of ways, including using Inside-Out objects
 or modules from CPAN.

Objects Are Blessed; Variables Are Not

When we bless something, we are not blessing the variable which
 contains a reference to that thing,
nor are we blessing the reference
 that the variable stores; we are blessing the thing that the variable

refers to (sometimes known as the referent). This is best
 demonstrated with this code:

 use Scalar::Util 'blessed';

 my $foo = {};
 my $bar = $foo;

 bless $foo, 'Class';
 print blessed($bar) // 'not blessed'; # prints "Class"

Perl version 5.24.0 documentation - perlobj

Page 3http://perldoc.perl.org

 $bar = "some other value";
 print blessed($bar) // 'not blessed'; # prints "not blessed"

When we call bless on a variable, we are actually blessing the
 underlying data structure that the
variable refers to. We are not
 blessing the reference itself, nor the variable that contains that

reference. That's why the second call to blessed($bar) returns
 false. At that point $bar is no
longer storing a reference to an
 object.

You will sometimes see older books or documentation mention "blessing a
 reference" or describe an
object as a "blessed reference", but this is
 incorrect. It isn't the reference that is blessed as an object;
it's
 the thing the reference refers to (i.e. the referent).

A Class is Simply a Package
Perl does not provide any special syntax for class definitions. A
 package is simply a namespace
containing variables and subroutines. The
 only difference is that in a class, the subroutines may
expect a
 reference to an object or the name of a class as the first argument.
 This is purely a matter of
convention, so a class may contain both
 methods and subroutines which don't operate on an object or
class.

Each package contains a special array called @ISA. The @ISA array
 contains a list of that class's
parent classes, if any. This array is
 examined when Perl does method resolution, which we will cover
later.

It is possible to manually set @ISA, and you may see this in older
 Perl code. Much older code also
uses the base pragma. For new code,
 we recommend that you use the parent pragma to declare your
parents.
 This pragma will take care of setting @ISA. It will also load the
 parent classes and make sure
that the package doesn't inherit from
 itself.

However the parent classes are set, the package's @ISA variable will
 contain a list of those parents.
This is simply a list of scalars, each
 of which is a string that corresponds to a package name.

All classes inherit from the UNIVERSAL class implicitly. The UNIVERSAL class is implemented by the
Perl core, and provides
 several default methods, such as isa(), can(), and VERSION().
 The
UNIVERSAL class will never appear in a package's @ISA
 variable.

Perl only provides method inheritance as a built-in feature.
 Attribute inheritance is left up the class to
implement. See the Writing Accessors section for details.

A Method is Simply a Subroutine
Perl does not provide any special syntax for defining a method. A
 method is simply a regular
subroutine, and is declared with sub.
 What makes a method special is that it expects to receive either
an
 object or a class name as its first argument.

Perl does provide special syntax for method invocation, the -> operator. We will cover this in more
detail later.

Most methods you write will expect to operate on objects:

 sub save {
 my $self = shift;

 open my $fh, '>', $self->path() or die $!;
 print {$fh} $self->data() or die $!;
 close $fh or die $!;
 }

Perl version 5.24.0 documentation - perlobj

Page 4http://perldoc.perl.org

Method Invocation
Calling a method on an object is written as $object->method.

The left hand side of the method invocation (or arrow) operator is the
 object (or class name), and the
right hand side is the method name.

 my $pod = File->new('perlobj.pod', $data);
 $pod->save();

The -> syntax is also used when dereferencing a reference. It
 looks like the same operator, but these
are two different operations.

When you call a method, the thing on the left side of the arrow is
 passed as the first argument to the
method. That means when we call Critter->new(), the new() method receives the string
"Critter"
 as its first argument. When we call $fred->speak(), the $fred
 variable is passed as
the first argument to speak().

Just as with any Perl subroutine, all of the arguments passed in @_
 are aliases to the original
argument. This includes the object itself.
 If you assign directly to $_[0] you will change the contents
of the
 variable that holds the reference to the object. We recommend that you
 don't do this unless you
know exactly what you're doing.

Perl knows what package the method is in by looking at the left side of
 the arrow. If the left hand side
is a package name, it looks for the
 method in that package. If the left hand side is an object, then Perl

looks for the method in the package that the object has been blessed
 into.

If the left hand side is neither a package name nor an object, then the
 method call will cause an error,
but see the section on Method Call Variations for more nuances.

Inheritance
We already talked about the special @ISA array and the parent
 pragma.

When a class inherits from another class, any methods defined in the
 parent class are available to the
child class. If you attempt to call a
 method on an object that isn't defined in its own class, Perl will also
look for that method in any parent classes it may have.

 package File::MP3;
 use parent 'File'; # sets @File::MP3::ISA = ('File');

 my $mp3 = File::MP3->new('Andvari.mp3', $data);
 $mp3->save();

Since we didn't define a save() method in the File::MP3 class,
 Perl will look at the File::MP3
class's parent classes to find the save() method. If Perl cannot find a save() method anywhere in

the inheritance hierarchy, it will die.

In this case, it finds a save() method in the File class. Note
 that the object passed to save() in
this case is still a File::MP3 object, even though the method is found in the File
 class.

We can override a parent's method in a child class. When we do so, we
 can still call the parent class's
method with the SUPER
 pseudo-class.

 sub save {
 my $self = shift;

 say 'Prepare to rock';
 $self->SUPER::save();
 }

Perl version 5.24.0 documentation - perlobj

Page 5http://perldoc.perl.org

The SUPER modifier can only be used for method calls. You can't
 use it for regular subroutine calls or
class methods:

 SUPER::save($thing); # FAIL: looks for save() sub in package SUPER

 SUPER->save($thing); # FAIL: looks for save() method in class
 # SUPER

 $thing->SUPER::save(); # Okay: looks for save() method in parent
 # classes

How SUPER is Resolved

The SUPER pseudo-class is resolved from the package where the call
 is made. It is not resolved
based on the object's class. This is
 important, because it lets methods at different levels within a deep
inheritance hierarchy each correctly call their respective parent
 methods.

 package A;

 sub new {
 return bless {}, shift;
 }

 sub speak {
 my $self = shift;

 say 'A';
 }

 package B;

 use parent -norequire, 'A';

 sub speak {
 my $self = shift;

 $self->SUPER::speak();

 say 'B';
 }

 package C;

 use parent -norequire, 'B';

 sub speak {
 my $self = shift;

 $self->SUPER::speak();

 say 'C';
 }

Perl version 5.24.0 documentation - perlobj

Page 6http://perldoc.perl.org

 my $c = C->new();
 $c->speak();

In this example, we will get the following output:

 A
 B
 C

This demonstrates how SUPER is resolved. Even though the object is
 blessed into the C class, the
speak() method in the B class
 can still call SUPER::speak() and expect it to correctly look in the

parent class of B (i.e the class the method call is in), not in the
 parent class of C (i.e. the class the
object belongs to).

There are rare cases where this package-based resolution can be a
 problem. If you copy a subroutine
from one package to another, SUPER
 resolution will be done based on the original package.

Multiple Inheritance

Multiple inheritance often indicates a design problem, but Perl always
 gives you enough rope to hang
yourself with if you ask for it.

To declare multiple parents, you simply need to pass multiple class
 names to use parent:

 package MultiChild;

 use parent 'Parent1', 'Parent2';

Method Resolution Order

Method resolution order only matters in the case of multiple
 inheritance. In the case of single
inheritance, Perl simply looks up
 the inheritance chain to find a method:

 Grandparent
 |
 Parent
 |
 Child

If we call a method on a Child object and that method is not defined
 in the Child class, Perl will
look for that method in the Parent
 class and then, if necessary, in the Grandparent class.

If Perl cannot find the method in any of these classes, it will die
 with an error message.

When a class has multiple parents, the method lookup order becomes more
 complicated.

By default, Perl does a depth-first left-to-right search for a method.
 That means it starts with the first
parent in the @ISA array, and
 then searches all of its parents, grandparents, etc. If it fails to
 find the
method, it then goes to the next parent in the original
 class's @ISA array and searches from there.

 SharedGreatGrandParent
 / \
 PaternalGrandparent MaternalGrandparent
 \ /
 Father Mother
 \ /
 Child

So given the diagram above, Perl will search Child, Father, PaternalGrandparent,

Perl version 5.24.0 documentation - perlobj

Page 7http://perldoc.perl.org

SharedGreatGrandParent, Mother, and
 finally MaternalGrandparent. This may be a problem
because now we're
 looking in SharedGreatGrandParent before we've checked all its
 derived
classes (i.e. before we tried Mother and MaternalGrandparent).

It is possible to ask for a different method resolution order with the mro pragma.

 package Child;

 use mro 'c3';
 use parent 'Father', 'Mother';

This pragma lets you switch to the "C3" resolution order. In simple
 terms, "C3" order ensures that
shared parent classes are never searched
 before child classes, so Perl will now search: Child,
Father, PaternalGrandparent, Mother MaternalGrandparent, and finally
SharedGreatGrandParent. Note however that this is not
 "breadth-first" searching: All the Father
ancestors (except the
 common ancestor) are searched before any of the Mother ancestors are

considered.

The C3 order also lets you call methods in sibling classes with the next pseudo-class. See the mro
documentation for more details on
 this feature.

Method Resolution Caching

When Perl searches for a method, it caches the lookup so that future
 calls to the method do not need
to search for it again. Changing a
 class's parent class or adding subroutines to a class will invalidate

the cache for that class.

The mro pragma provides some functions for manipulating the method
 cache directly.

Writing Constructors
As we mentioned earlier, Perl provides no special constructor syntax.
 This means that a class must
implement its own constructor. A
 constructor is simply a class method that returns a reference to a
new
 object.

The constructor can also accept additional parameters that define the
 object. Let's write a real
constructor for the File class we used
 earlier:

 package File;

 sub new {
 my $class = shift;
 my ($path, $data) = @_;

 my $self = bless {
 path => $path,
 data => $data,
 }, $class;

 return $self;
 }

As you can see, we've stored the path and file data in the object
 itself. Remember, under the hood,
this object is still just a hash.
 Later, we'll write accessors to manipulate this data.

For our File::MP3 class, we can check to make sure that the path we're
 given ends with ".mp3":

 package File::MP3;

Perl version 5.24.0 documentation - perlobj

Page 8http://perldoc.perl.org

 sub new {
 my $class = shift;
 my ($path, $data) = @_;

 die "You cannot create a File::MP3 without an mp3 extension\n"
 unless $path =~ /\.mp3\z/;

 return $class->SUPER::new(@_);
 }

This constructor lets its parent class do the actual object
 construction.

Attributes
An attribute is a piece of data belonging to a particular object.
 Unlike most object-oriented languages,
Perl provides no special syntax
 or support for declaring and manipulating attributes.

Attributes are often stored in the object itself. For example, if the
 object is an anonymous hash, we
can store the attribute values in the
 hash using the attribute name as the key.

While it's possible to refer directly to these hash keys outside of the
 class, it's considered a best
practice to wrap all access to the
 attribute with accessor methods.

This has several advantages. Accessors make it easier to change the
 implementation of an object
later while still preserving the original
 API.

An accessor lets you add additional code around attribute access. For
 example, you could apply a
default to an attribute that wasn't set in
 the constructor, or you could validate that a new value for the

attribute is acceptable.

Finally, using accessors makes inheritance much simpler. Subclasses can
 use the accessors rather
than having to know how a parent class is
 implemented internally.

Writing Accessors

As with constructors, Perl provides no special accessor declaration
 syntax, so classes must provide
explicitly written accessor methods.
 There are two common types of accessors, read-only and
read-write.

A simple read-only accessor simply gets the value of a single
 attribute:

 sub path {
 my $self = shift;

 return $self->{path};
 }

A read-write accessor will allow the caller to set the value as well as
 get it:

 sub path {
 my $self = shift;

 if (@_) {
 $self->{path} = shift;
 }

 return $self->{path};
 }

Perl version 5.24.0 documentation - perlobj

Page 9http://perldoc.perl.org

An Aside About Smarter and Safer Code
Our constructor and accessors are not very smart. They don't check that
 a $path is defined, nor do
they check that a $path is a valid
 filesystem path.

Doing these checks by hand can quickly become tedious. Writing a bunch
 of accessors by hand is
also incredibly tedious. There are a lot of
 modules on CPAN that can help you write safer and more
concise code,
 including the modules we recommend in perlootut.

Method Call Variations
Perl supports several other ways to call methods besides the $object->method() usage we've
seen so far.

Method Names as Strings

Perl lets you use a scalar variable containing a string as a method
 name:

 my $file = File->new($path, $data);

 my $method = 'save';
 $file->$method();

This works exactly like calling $file->save(). This can be very
 useful for writing dynamic code. For
example, it allows you to pass a
 method name to be called as a parameter to another method.

Class Names as Strings

Perl also lets you use a scalar containing a string as a class name:

 my $class = 'File';

 my $file = $class->new($path, $data);

Again, this allows for very dynamic code.

Subroutine References as Methods

You can also use a subroutine reference as a method:

 my $sub = sub {
 my $self = shift;

 $self->save();
 };

 $file->$sub();

This is exactly equivalent to writing $sub->($file). You may see
 this idiom in the wild combined
with a call to can:

 if (my $meth = $object->can('foo')) {
 $object->$meth();
 }

Deferencing Method Call

Perl also lets you use a dereferenced scalar reference in a method
 call. That's a mouthful, so let's
look at some code:

 $file->${ \'save' };

Perl version 5.24.0 documentation - perlobj

Page 10http://perldoc.perl.org

 $file->${ returns_scalar_ref() };
 $file->${ \(returns_scalar()) };
 $file->${ returns_ref_to_sub_ref() };

This works if the dereference produces a string or a subroutine
 reference.

Method Calls on Filehandles

Under the hood, Perl filehandles are instances of the IO::Handle or IO::File class. Once you
have an open filehandle, you can call
 methods on it. Additionally, you can call methods on the STDIN,
STDOUT, and STDERR filehandles.

 open my $fh, '>', 'path/to/file';
 $fh->autoflush();
 $fh->print('content');

 STDOUT->autoflush();

Invoking Class Methods
Because Perl allows you to use barewords for package names and
 subroutine names, it sometimes
interprets a bareword's meaning
 incorrectly. For example, the construct Class->new() can be

interpreted as either 'Class'->new() or Class()->new().
 In English, that second interpretation
reads as "call a subroutine
 named Class(), then call new() as a method on the return value of

Class()". If there is a subroutine named Class() in the current
 namespace, Perl will always interpret
Class->new() as the second
 alternative: a call to new() on the object returned by a call to
Class()

You can force Perl to use the first interpretation (i.e. as a method
 call on the class named "Class") in
two ways. First, you can append a :: to the class name:

 Class::->new()

Perl will always interpret this as a method call.

Alternatively, you can quote the class name:

 'Class'->new()

Of course, if the class name is in a scalar Perl will do the right
 thing as well:

 my $class = 'Class';
 $class->new();

Indirect Object Syntax

Outside of the file handle case, use of this syntax is discouraged as
 it can confuse the Perl
interpreter. See below for more details.

Perl supports another method invocation syntax called "indirect object"
 notation. This syntax is called
"indirect" because the method comes
 before the object it is being invoked on.

This syntax can be used with any class or object method:

 my $file = new File $path, $data;
 save $file;

We recommend that you avoid this syntax, for several reasons.

Perl version 5.24.0 documentation - perlobj

Page 11http://perldoc.perl.org

First, it can be confusing to read. In the above example, it's not
 clear if save is a method provided by
the File class or simply a
 subroutine that expects a file object as its first argument.

When used with class methods, the problem is even worse. Because Perl
 allows subroutine names to
be written as barewords, Perl has to guess
 whether the bareword after the method is a class name or
subroutine
 name. In other words, Perl can resolve the syntax as either File->new($path, $data
) or new(File($path, $data)).

To parse this code, Perl uses a heuristic based on what package names
 it has seen, what
subroutines exist in the current package, what
 barewords it has previously seen, and other input.
Needless to say,
 heuristics can produce very surprising results!

Older documentation (and some CPAN modules) encouraged this syntax,
 particularly for
constructors, so you may still find it in the wild.
 However, we encourage you to avoid using it in new
code.

You can force Perl to interpret the bareword as a class name by
 appending "::" to it, like we saw
earlier:

 my $file = new File:: $path, $data;

bless, blessed, and ref
As we saw earlier, an object is simply a data structure that has been
 blessed into a class via the
bless function. The bless function
 can take either one or two arguments:

 my $object = bless {}, $class;
 my $object = bless {};

In the first form, the anonymous hash is being blessed into the class
 in $class. In the second form,
the anonymous hash is blessed into
 the current package.

The second form is strongly discouraged, because it breaks the ability
 of a subclass to reuse the
parent's constructor, but you may still run
 across it in existing code.

If you want to know whether a particular scalar refers to an object,
 you can use the blessed function
exported by Scalar::Util, which
 is shipped with the Perl core.

 use Scalar::Util 'blessed';

 if (defined blessed($thing)) { ... }

If $thing refers to an object, then this function returns the name
 of the package the object has been
blessed into. If $thing doesn't
 contain a reference to a blessed object, the blessed function
 returns
undef.

Note that blessed($thing) will also return false if $thing has
 been blessed into a class named
"0". This is a possible, but quite
 pathological. Don't create a class named "0" unless you know what

you're doing.

Similarly, Perl's built-in ref function treats a reference to a
 blessed object specially. If you call
ref($thing) and $thing
 holds a reference to an object, it will return the name of the class
 that the
object has been blessed into.

If you simply want to check that a variable contains an object
 reference, we recommend that you use
defined blessed($object), since ref returns true values for all references, not just objects.

Perl version 5.24.0 documentation - perlobj

Page 12http://perldoc.perl.org

The UNIVERSAL Class
All classes automatically inherit from the UNIVERSAL class, which is
 built-in to the Perl core. This
class provides a number of methods, all
 of which can be called on either a class or an object. You can
also
 choose to override some of these methods in your class. If you do so,
 we recommend that you
follow the built-in semantics described below.

isa($class)

The isa method returns true if the object is a member of the
 class in $class, or a member of
a subclass of $class.

If you override this method, it should never throw an exception.

DOES($role)

The DOES method returns true if its object claims to perform the
 role $role. By default, this is
equivalent to isa. This method is
 provided for use by object system extensions that
implement roles, like Moose and Role::Tiny.

You can also override DOES directly in your own classes. If you
 override this method, it should
never throw an exception.

can($method)

The can method checks to see if the class or object it was called on
 has a method named
$method. This checks for the method in the class
 and all of its parents. If the method exists,
then a reference to the
 subroutine is returned. If it does not then undef is returned.

If your class responds to method calls via AUTOLOAD, you may want to
 overload can to return
a subroutine reference for methods which your AUTOLOAD method handles.

If you override this method, it should never throw an exception.

VERSION($need)

The VERSION method returns the version number of the class
 (package).

If the $need argument is given then it will check that the current
 version (as defined by the
$VERSION variable in the package) is greater
 than or equal to $need; it will die if this is not
the case. This
 method is called automatically by the VERSION form of use.

 use Package 1.2 qw(some imported subs);
 # implies:
 Package->VERSION(1.2);

We recommend that you use this method to access another package's
 version, rather than
looking directly at $Package::VERSION. The
 package you are looking at could have
overridden the VERSION method.

We also recommend using this method to check whether a module has a
 sufficient version.
The internal implementation uses the version
 module to make sure that different types of
version numbers are
 compared correctly.

AUTOLOAD
If you call a method that doesn't exist in a class, Perl will throw an
 error. However, if that class or any
of its parent classes defines an AUTOLOAD method, that AUTOLOAD method is called instead.

AUTOLOAD is called as a regular method, and the caller will not know
 the difference. Whatever value
your AUTOLOAD method returns is
 returned to the caller.

The fully qualified method name that was called is available in the $AUTOLOAD package global for
your class. Since this is a global, if
 you want to refer to do it without a package name prefix under
strict
 'vars', you need to declare it.

 # XXX - this is a terrible way to implement accessors, but it makes

Perl version 5.24.0 documentation - perlobj

Page 13http://perldoc.perl.org

 # for a simple example.
 our $AUTOLOAD;
 sub AUTOLOAD {
 my $self = shift;

 # Remove qualifier from original method name...
 my $called = $AUTOLOAD =~ s/.*:://r;

 # Is there an attribute of that name?
 die "No such attribute: $called"
 unless exists $self->{$called};

 # If so, return it...
 return $self->{$called};
 }

 sub DESTROY { } # see below

Without the our $AUTOLOAD declaration, this code will not compile
 under the strict pragma.

As the comment says, this is not a good way to implement accessors.
 It's slow and too clever by far.
However, you may see this as a way to
 provide accessors in older Perl code. See perlootut for

recommendations on OO coding in Perl.

If your class does have an AUTOLOAD method, we strongly recommend
 that you override can in your
class as well. Your overridden can
 method should return a subroutine reference for any method that
your AUTOLOAD responds to.

Destructors
When the last reference to an object goes away, the object is
 destroyed. If you only have one
reference to an object stored in a
 lexical scalar, the object is destroyed when that scalar goes out of

scope. If you store the object in a package global, that object may not
 go out of scope until the
program exits.

If you want to do something when the object is destroyed, you can
 define a DESTROY method in your
class. This method will always be
 called by Perl at the appropriate time, unless the method is empty.

This is called just like any other method, with the object as the first
 argument. It does not receive any
additional arguments. However, the $_[0] variable will be read-only in the destructor, so you cannot

assign a value to it.

If your DESTROY method throws an error, this error will be ignored.
 It will not be sent to STDERR and it
will not cause the program to
 die. However, if your destructor is running inside an eval {} block,

then the error will change the value of $@.

Because DESTROY methods can be called at any time, you should
 localize any global variables you
might update in your DESTROY. In
 particular, if you use eval {} you should localize $@, and if you

use system or backticks you should localize $?.

If you define an AUTOLOAD in your class, then Perl will call your AUTOLOAD to handle the DESTROY
method. You can prevent this by
 defining an empty DESTROY, like we did in the autoloading example.

You can also check the value of $AUTOLOAD and return without doing
 anything when called to handle
DESTROY.

Global Destruction

The order in which objects are destroyed during the global destruction
 before the program exits is
unpredictable. This means that any objects
 contained by your object may already have been

Perl version 5.24.0 documentation - perlobj

Page 14http://perldoc.perl.org

destroyed. You should
 check that a contained object is defined before calling a method on it:

 sub DESTROY {
 my $self = shift;

 $self->{handle}->close() if $self->{handle};
 }

You can use the ${^GLOBAL_PHASE} variable to detect if you are
 currently in the global destruction
phase:

 sub DESTROY {
 my $self = shift;

 return if ${^GLOBAL_PHASE} eq 'DESTRUCT';

 $self->{handle}->close();
 }

Note that this variable was added in Perl 5.14.0. If you want to detect
 the global destruction phase on
older versions of Perl, you can use the Devel::GlobalDestruction module on CPAN.

If your DESTROY method issues a warning during global destruction,
 the Perl interpreter will append
the string " during global
 destruction" to the warning.

During global destruction, Perl will always garbage collect objects
 before unblessed references. See
"PERL_DESTRUCT_LEVEL" in perlhacktips
 for more information about global destruction.

Non-Hash Objects
All the examples so far have shown objects based on a blessed hash.
 However, it's possible to bless
any type of data structure or referent,
 including scalars, globs, and subroutines. You may see this sort
of
 thing when looking at code in the wild.

Here's an example of a module as a blessed scalar:

 package Time;

 use strict;
 use warnings;

 sub new {
 my $class = shift;

 my $time = time;
 return bless \$time, $class;
 }

 sub epoch {
 my $self = shift;
 return ${ $self };
 }

 my $time = Time->new();
 print $time->epoch();

Perl version 5.24.0 documentation - perlobj

Page 15http://perldoc.perl.org

Inside-Out objects
In the past, the Perl community experimented with a technique called
 "inside-out objects". An
inside-out object stores its data outside of
 the object's reference, indexed on a unique property of the
object,
 such as its memory address, rather than in the object itself. This has
 the advantage of
enforcing the encapsulation of object attributes,
 since their data is not stored in the object itself.

This technique was popular for a while (and was recommended in Damian
 Conway's Perl Best
Practices), but never achieved universal
 adoption. The Object::InsideOut module on CPAN provides a
comprehensive implementation of this technique, and you may see it or
 other inside-out modules in
the wild.

Here is a simple example of the technique, using the Hash::Util::FieldHash core module. This module
was added to the core
 to support inside-out object implementations.

 package Time;

 use strict;
 use warnings;

 use Hash::Util::FieldHash 'fieldhash';

 fieldhash my %time_for;

 sub new {
 my $class = shift;

 my $self = bless \(my $object), $class;

 $time_for{$self} = time;

 return $self;
 }

 sub epoch {
 my $self = shift;

 return $time_for{$self};
 }

 my $time = Time->new;
 print $time->epoch;

Pseudo-hashes
The pseudo-hash feature was an experimental feature introduced in
 earlier versions of Perl and
removed in 5.10.0. A pseudo-hash is an
 array reference which can be accessed using named keys
like a hash. You
 may run in to some code in the wild which uses it. See the fields
 pragma for more
information.

SEE ALSO
A kinder, gentler tutorial on object-oriented programming in Perl can
 be found in perlootut. You should
also check out perlmodlib for
 some style guides on constructing both modules and classes.

