Exporter - Implements default import method for modules
In module YourModule.pm:
- package YourModule;
- require Exporter;
- @ISA = qw(Exporter);
- @EXPORT_OK = qw(munge frobnicate); # symbols to export on request
or
- package YourModule;
- use Exporter 'import'; # gives you Exporter's import() method directly
- @EXPORT_OK = qw(munge frobnicate); # symbols to export on request
In other files which wish to use YourModule:
- use ModuleName qw(frobnicate); # import listed symbols
- frobnicate ($left, $right) # calls YourModule::frobnicate
The Exporter module implements an import
method which allows a module
to export functions and variables to its users' namespaces. Many modules
use Exporter rather than implementing their own import
method because
Exporter provides a highly flexible interface, with an implementation optimised
for the common case.
Perl automatically calls the import
method when processing a
use
statement for a module. Modules and use
are documented
in perlfunc and perlmod. Understanding the concept of
modules and how the use
statement operates is important to
understanding the Exporter.
The arrays @EXPORT
and @EXPORT_OK
in a module hold lists of
symbols that are going to be exported into the users name space by
default, or which they can request to be exported, respectively. The
symbols can represent functions, scalars, arrays, hashes, or typeglobs.
The symbols must be given by full name with the exception that the
ampersand in front of a function is optional, e.g.
- @EXPORT = qw(afunc $scalar @array); # afunc is a function
- @EXPORT_OK = qw(&bfunc %hash *typeglob); # explicit prefix on &bfunc
If you are only exporting function names it is recommended to omit the ampersand, as the implementation is faster this way.
Do not export method names!
Do not export anything else by default without a good reason!
Exports pollute the namespace of the module user. If you must export try to use @EXPORT_OK in preference to @EXPORT and avoid short or common symbol names to reduce the risk of name clashes.
Generally anything not exported is still accessible from outside the module using the ModuleName::item_name (or $blessed_ref->method) syntax. By convention you can use a leading underscore on names to informally indicate that they are 'internal' and not for public use.
(It is actually possible to get private functions by saying:
However if you use them for methods it is up to you to figure out how to make inheritance work.)
As a general rule, if the module is trying to be object oriented then export nothing. If it's just a collection of functions then @EXPORT_OK anything but use @EXPORT with caution. For function and method names use barewords in preference to names prefixed with ampersands for the export lists.
Other module design guidelines can be found in perlmod.
In other files which wish to use your module there are three basic ways for them to load your module and import its symbols:
use ModuleName;
This imports all the symbols from ModuleName's @EXPORT into the namespace
of the use
statement.
use ModuleName ();
This causes perl to load your module but does not import any symbols.
use ModuleName qw(...);
This imports only the symbols listed by the caller into their namespace. All listed symbols must be in your @EXPORT or @EXPORT_OK, else an error occurs. The advanced export features of Exporter are accessed like this, but with list entries that are syntactically distinct from symbol names.
Unless you want to use its advanced features, this is probably all you need to know to use Exporter.
If any of the entries in an import list begins with !, : or / then the list is treated as a series of specifications which either add to or delete from the list of names to import. They are processed left to right. Specifications are in the form:
- [!]name This name only
- [!]:DEFAULT All names in @EXPORT
- [!]:tag All names in $EXPORT_TAGS{tag} anonymous list
- [!]/pattern/ All names in @EXPORT and @EXPORT_OK which match
A leading ! indicates that matching names should be deleted from the list of names to import. If the first specification is a deletion it is treated as though preceded by :DEFAULT. If you just want to import extra names in addition to the default set you will still need to include :DEFAULT explicitly.
e.g., Module.pm defines:
- @EXPORT = qw(A1 A2 A3 A4 A5);
- @EXPORT_OK = qw(B1 B2 B3 B4 B5);
- %EXPORT_TAGS = (T1 => [qw(A1 A2 B1 B2)], T2 => [qw(A1 A2 B3 B4)]);
- Note that you cannot use tags in @EXPORT or @EXPORT_OK.
- Names in EXPORT_TAGS must also appear in @EXPORT or @EXPORT_OK.
An application using Module can say something like:
- use Module qw(:DEFAULT :T2 !B3 A3);
Other examples include:
Remember that most patterns (using //) will need to be anchored
with a leading ^, e.g., /^EXIT/
rather than /EXIT/
.
You can say BEGIN { $Exporter::Verbose=1 }
to see how the
specifications are being processed and what is actually being imported
into modules.
Exporter has a special method, 'export_to_level' which is used in situations where you can't directly call Exporter's import method. The export_to_level method looks like:
- MyPackage->export_to_level($where_to_export, $package, @what_to_export);
where $where_to_export is an integer telling how far up the calling stack to export your symbols, and @what_to_export is an array telling what symbols *to* export (usually this is @_). The $package argument is currently unused.
For example, suppose that you have a module, A, which already has an import function:
and you want to Export symbol $A::b back to the module that called package A. Since Exporter relies on the import method to work, via inheritance, as it stands Exporter::import() will never get called. Instead, say the following:
This will export the symbols one level 'above' the current package - ie: to the program or module that used package A.
Note: Be careful not to modify @_
at all before you call export_to_level
- or people using your package will get very unexplained results!
By including Exporter in your @ISA you inherit an Exporter's import() method but you also inherit several other helper methods which you probably don't want. To avoid this you can do
- package YourModule;
- use Exporter qw( import );
which will export Exporter's own import() method into YourModule. Everything will work as before but you won't need to include Exporter in @YourModule::ISA.
The Exporter module will convert an attempt to import a number from a module into a call to $module_name->require_version($value). This can be used to validate that the version of the module being used is greater than or equal to the required version.
The Exporter module supplies a default require_version method which checks the value of $VERSION in the exporting module.
Since the default require_version method treats the $VERSION number as a simple numeric value it will regard version 1.10 as lower than 1.9. For this reason it is strongly recommended that you use numbers with at least two decimal places, e.g., 1.09.
In some situations you may want to prevent certain symbols from being exported. Typically this applies to extensions which have functions or constants that may not exist on some systems.
The names of any symbols that cannot be exported should be listed
in the @EXPORT_FAIL
array.
If a module attempts to import any of these symbols the Exporter will give the module an opportunity to handle the situation before generating an error. The Exporter will call an export_fail method with a list of the failed symbols:
- @failed_symbols = $module_name->export_fail(@failed_symbols);
If the export_fail method returns an empty list then no error is recorded and all the requested symbols are exported. If the returned list is not empty then an error is generated for each symbol and the export fails. The Exporter provides a default export_fail method which simply returns the list unchanged.
Uses for the export_fail method include giving better error messages for some symbols and performing lazy architectural checks (put more symbols into @EXPORT_FAIL by default and then take them out if someone actually tries to use them and an expensive check shows that they are usable on that platform).
Since the symbols listed within %EXPORT_TAGS must also appear in either @EXPORT or @EXPORT_OK, two utility functions are provided which allow you to easily add tagged sets of symbols to @EXPORT or @EXPORT_OK:
- %EXPORT_TAGS = (foo => [qw(aa bb cc)], bar => [qw(aa cc dd)]);
- Exporter::export_tags('foo'); # add aa, bb and cc to @EXPORT
- Exporter::export_ok_tags('bar'); # add aa, cc and dd to @EXPORT_OK
Any names which are not tags are added to @EXPORT or @EXPORT_OK
unchanged but will trigger a warning (with -w
) to avoid misspelt tags
names being silently added to @EXPORT or @EXPORT_OK. Future versions
may make this a fatal error.
If several symbol categories exist in %EXPORT_TAGS, it's usually useful to create the utility ":all" to simplify "use" statements.
The simplest way to do this is:
CGI.pm creates an ":all" tag which contains some (but not really all) of its categories. That could be done with one small change:
Note that the tag names in %EXPORT_TAGS don't have the leading ':'.
AUTOLOAD
ed ConstantsMany modules make use of AUTOLOAD
ing for constant subroutines to
avoid having to compile and waste memory on rarely used values (see
perlsub for details on constant subroutines). Calls to such
constant subroutines are not optimized away at compile time because
they can't be checked at compile time for constancy.
Even if a prototype is available at compile time, the body of the
subroutine is not (it hasn't been AUTOLOAD
ed yet). perl needs to
examine both the ()
prototype and the body of a subroutine at
compile time to detect that it can safely replace calls to that
subroutine with the constant value.
A workaround for this is to call the constants once in a BEGIN
block:
- package My ;
- use Socket ;
- foo( SO_LINGER ); ## SO_LINGER NOT optimized away; called at runtime
- BEGIN { SO_LINGER }
- foo( SO_LINGER ); ## SO_LINGER optimized away at compile time.
This forces the AUTOLOAD
for SO_LINGER
to take place before
SO_LINGER is encountered later in My
package.
If you are writing a package that AUTOLOAD
s, consider forcing
an AUTOLOAD
for any constants explicitly imported by other packages
or which are usually used when your package is use
d.