@ Pefl Perl version 5.10.1 documentation - Pod::Simple::XHTML
NAME

Pod::Simple::XHTML -- format Pod as validating XHTML

SYNOPSIS
use Pod::Simple:z:XHTML;

my $parser = Pod::Simple: :XHTML->new() ;

$parser->parse_file("path/to/File.pod™);

DESCRIPTION
This class is a formatter that takes Pod and renders it as XHTML validating HTML.

This is a subclass of Pod::Simple::Methody and inherits all its methods. The implementation is entirely
different than Pod::Simple::HTML, but it largely preserves the same interface.

METHODS

Pod::Simple::XHTML offers a number of methods that modify the format of the HTML output. Call
these after creating the parser object, but before the call to parse_file:

my $parser = Pod::PseudoPod: :HTML->new();
$parser->set_optional_param(‘'value');
$parser->parse_file($file);

perldoc_url_prefix

In turning Foo::Bar into http://whatever/Foo%3a%3aBar, what to put before the "Foo%3a%3aBar".
The default value is "http://search.cpan.org/perldoc?".

perldoc_url_postfix
What to put after "Foo%3a%3aBar" in the URL. This option is not set by default.

title_prefix, title_postfix
What to put before and after the title in the head. The values should already be &-escaped.

html_css
$parser->html_css("path/to/style.css");

The URL or relative path of a CSS file to include. This option is not set by default.

html_javascript
The URL or relative path of a JavaScript file to pull in. This option is not set by default.

html_doctype
A document type tag for the file. This option is not set by default.

html_header_tags

Additional arbitrary HTML tags for the header of the document. The default value is just a content type
header tag:

<meta http-equiv=""Content-Type" content=""text/html; charset=1S0-8859-1">

Add additional meta tags here, or blocks of inline CSS or JavaScript (wrapped in the appropriate

http://perldoc.perl.org Page 1

@ Pefl Perl version 5.10.1 documentation - Pod::Simple::XHTML

default_titdgs).

Set a default title for the page if no title can be determined from the content. The value of this string
should already be &-escaped.

force_title

Force a title for the page (don't try to determine it from the content). The value of this string should
already be &-escaped.

html_header, html_footer

index

Set the HTML output at the beginning and end of each file. The default header includes a title, a
doctype tag (if html_doctype is set), a content tag (customized by html_header_tags), a tag for
a CSsSfile (if html_css is set), and a tag for a Javascript file (if html_javascript is set). The
default footer simply closes the html and body tags.

The options listed above customize parts of the default header, but setting html_header or
html_footer completely overrides the built-in header or footer. These may be useful if you want to
use template tags instead of literal HTML headers and footers or are integrating converted POD
pages in a larger website.

If you want no headers or footers output in the HTML, set these options to the empty string.

TODO -- Not implemented.

Whether to add a table-of-contents at the top of each page (called an index for the sake of tradition).

SUBCLASSING

If the standard options aren't enough, you may want to subclass Pod::Simple::XHMTL. These are the
most likely candidates for methods you'll want to override when subclassing.

handle_text

This method handles the body of text within any element: it's the body of a paragraph, or everything
between a "=begin" tag and the corresponding "=end" tag, or the text within an L entity, etc. You
would want to override this if you are adding a custom element type that does more than just display
formatted text. Perhaps adding a way to generate HTML tables from an extended version of POD.

So, let's say you want add a custom element called 'foo'. In your subclass's new method, after calling
SUPER: znew you'd call:

$new->accept_targets_as_text("foo");

Then override the start_for method in the subclass to check for when "$flags->{'target}" is equal
to 'foo’ and set a flag that marks that you're in a foo block (maybe "$self->{'in_foo'} = 1"). Then
override the handle_text method to check for the flag, and pass $text to your custom subroutine to
construct the HTML output for 'foo' elements, something like:

sub handle_text {
my ($self, $text) = @_;
if ($self->{"in_foo"}) {
$self->{"scratch"} .= build_foo_html($text);

} else {
$self->{"scratch"} .= $text;
3

http://perldoc.perl.org Page 2

@ Pefl Perl version 5.10.1 documentation - Pod::Simple::XHTML
SEE ALSO
Pod::Simple, Pod::Simple::Methody

COPYRIGHT
Copyright (c) 2003-2005 Allison Randal.

This library is free software; you can redistribute it and/or modify it under the same terms as Perl
itself. The full text of the license can be found in the LICENSE file included with this module.

This library is distributed in the hope that it will be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a particular purpose.

AUTHOR
Allison Randal <allison@perl.org>

http://perldoc.perl.org Page 3

