
Perl version 5.10.1 documentation - Test::Builder

Page 1http://perldoc.perl.org

NAME
Test::Builder - Backend for building test libraries

SYNOPSIS
 package My::Test::Module;
 use base 'Test::Builder::Module';

 my $CLASS = __PACKAGE__;

 sub ok {
 my($test, $name) = @_;
 my $tb = $CLASS->builder;

 $tb->ok($test, $name);
 }

DESCRIPTION
Test::Simple and Test::More have proven to be popular testing modules,
 but they're not always
flexible enough. Test::Builder provides the a
 building block upon which to write your own test libraries
which can
 work together.

Construction
new

 my $Test = Test::Builder->new;

Returns a Test::Builder object representing the current state of the
 test.

Since you only run one test per program new always returns the same
 Test::Builder object. No
matter how many times you call new(), you're
 getting the same object. This is called a
singleton. This is done so that
 multiple modules share such global information as the test
counter and
 where test output is going.

If you want a completely new Test::Builder object different from the
 singleton, use create.

create

 my $Test = Test::Builder->create;

Ok, so there can be more than one Test::Builder object and this is how
 you get it. You might
use this instead of new() if you're testing
 a Test::Builder based module, but otherwise you
probably want new.

NOTE: the implementation is not complete. level, for example, is
 still shared amongst all
Test::Builder objects, even ones created using
 this method. Also, the method name may
change in the future.

reset

 $Test->reset;

Reinitializes the Test::Builder singleton to its original state.
 Mostly useful for tests run in
persistent environments where the same
 test might be run multiple times in the same process.

Setting up tests
These methods are for setting up tests and declaring how many there
 are. You usually only want to
call one of these methods.

plan

Perl version 5.10.1 documentation - Test::Builder

Page 2http://perldoc.perl.org

 $Test->plan('no_plan');
 $Test->plan(skip_all => $reason);
 $Test->plan(tests => $num_tests);

A convenient way to set up your tests. Call this and Test::Builder
 will print the appropriate
headers and take the appropriate actions.

If you call plan(), don't call any of the other methods below.

expected_tests

 my $max = $Test->expected_tests;
 $Test->expected_tests($max);

Gets/sets the number of tests we expect this test to run and prints out
 the appropriate
headers.

no_plan

 $Test->no_plan;

Declares that this test will run an indeterminate number of tests.

_output_plan

 $tb->_output_plan($max);
 $tb->_output_plan($max, $directive);
 $tb->_output_plan($max, $directive => $reason);

Handles displaying the test plan.

If a $directive and/or $reason are given they will be output with the
 plan. So here's what
skipping all tests looks like:

 $tb->_output_plan(0, "SKIP", "Because I said so");

It sets $tb->{Have_Output_Plan} and will croak if the plan was already
 output.

done_testing

 $Test->done_testing();
 $Test->done_testing($num_tests);

Declares that you are done testing, no more tests will be run after this point.

If a plan has not yet been output, it will do so.

$num_tests is the number of tests you planned to run. If a numbered
 plan was already
declared, and if this contradicts, a failing test
 will be run to reflect the planning mistake. If
no_plan was declared,
 this will override.

If done_testing() is called twice, the second call will issue a
 failing test.

If $num_tests is omitted, the number of tests run will be used, like
 no_plan.

done_testing() is, in effect, used when you'd want to use no_plan, but
 safer. You'd use it
like so:

 $Test->ok($a == $b);
 $Test->done_testing();

Or to plan a variable number of tests:

 for my $test (@tests) {
 $Test->ok($test);
 }
 $Test->done_testing(@tests);

Perl version 5.10.1 documentation - Test::Builder

Page 3http://perldoc.perl.org

has_plan

 $plan = $Test->has_plan

Find out whether a plan has been defined. $plan is either undef (no plan
 has been set),
no_plan (indeterminate # of tests) or an integer (the number
 of expected tests).

skip_all

 $Test->skip_all;
 $Test->skip_all($reason);

Skips all the tests, using the given $reason. Exits immediately with 0.

exported_to

 my $pack = $Test->exported_to;
 $Test->exported_to($pack);

Tells Test::Builder what package you exported your functions to.

This method isn't terribly useful since modules which share the same
 Test::Builder object
might get exported to different packages and only
 the last one will be honored.

Running tests
These actually run the tests, analogous to the functions in Test::More.

They all return true if the test passed, false if the test failed.

$name is always optional.

ok

 $Test->ok($test, $name);

Your basic test. Pass if $test is true, fail if $test is false. Just
 like Test::Simple's ok().

is_eq

 $Test->is_eq($got, $expected, $name);

Like Test::More's is(). Checks if $got eq $expected. This is the
 string version.

is_num

 $Test->is_num($got, $expected, $name);

Like Test::More's is(). Checks if $got == $expected. This is the
 numeric version.

isnt_eq

 $Test->isnt_eq($got, $dont_expect, $name);

Like Test::More's isnt(). Checks if $got ne $dont_expect. This is
 the string version.

isnt_num

 $Test->isnt_num($got, $dont_expect, $name);

Like Test::More's isnt(). Checks if $got ne $dont_expect. This is
 the numeric version.

like

 $Test->like($this, qr/$regex/, $name);
 $Test->like($this, '/$regex/', $name);

Perl version 5.10.1 documentation - Test::Builder

Page 4http://perldoc.perl.org

Like Test::More's like(). Checks if $this matches the given $regex.

You'll want to avoid qr// if you want your tests to work before 5.005.

unlike

 $Test->unlike($this, qr/$regex/, $name);
 $Test->unlike($this, '/$regex/', $name);

Like Test::More's unlike(). Checks if $this does not match the
 given $regex.

cmp_ok

 $Test->cmp_ok($this, $type, $that, $name);

Works just like Test::More's cmp_ok().

 $Test->cmp_ok($big_num, '!=', $other_big_num);

Other Testing Methods
These are methods which are used in the course of writing a test but are not themselves tests.

BAIL_OUT

 $Test->BAIL_OUT($reason);

Indicates to the Test::Harness that things are going so badly all
 testing should terminate. This
includes running any additional test
 scripts.

It will exit with 255.

skip

 $Test->skip;
 $Test->skip($why);

Skips the current test, reporting $why.

todo_skip

 $Test->todo_skip;
 $Test->todo_skip($why);

Like skip(), only it will declare the test as failing and TODO. Similar
 to

 print "not ok $tnum # TODO $why\n";

skip_rest

 $Test->skip_rest;
 $Test->skip_rest($reason);

Like skip(), only it skips all the rest of the tests you plan to run
 and terminates the test.

If you're running under no_plan, it skips once and terminates the
 test.

Test building utility methods
These methods are useful when writing your own test methods.

maybe_regex

 $Test->maybe_regex(qr/$regex/);
 $Test->maybe_regex('/$regex/');

Convenience method for building testing functions that take regular
 expressions as

Perl version 5.10.1 documentation - Test::Builder

Page 5http://perldoc.perl.org

arguments, but need to work before perl 5.005.

Takes a quoted regular expression produced by qr//, or a string
 representing a regular
expression.

Returns a Perl value which may be used instead of the corresponding
 regular expression, or
undef if its argument is not recognised.

For example, a version of like(), sans the useful diagnostic messages,
 could be written as:

 sub laconic_like {
 my ($self, $this, $regex, $name) = @_;
 my $usable_regex = $self->maybe_regex($regex);
 die "expecting regex, found '$regex'\n"
 unless $usable_regex;
 $self->ok($this =~ m/$usable_regex/, $name);
 }

_try

 my $return_from_code = $Test->try(sub { code });
 my($return_from_code, $error) = $Test->try(sub { code });

Works like eval BLOCK except it ensures it has no effect on the rest
 of the test (ie. $@ is not
set) nor is effected by outside
 interference (ie. $SIG{__DIE__}) and works around some
quirks in older
 Perls.

$error is what would normally be in $@.

It is suggested you use this in place of eval BLOCK.

is_fh

 my $is_fh = $Test->is_fh($thing);

Determines if the given $thing can be used as a filehandle.

Test style
level

 $Test->level($how_high);

How far up the call stack should $Test look when reporting where the
 test failed.

Defaults to 1.

Setting $Test::Builder::Level overrides. This is typically useful
 localized:

 sub my_ok {
 my $test = shift;

 local $Test::Builder::Level = $Test::Builder::Level + 1;
 $TB->ok($test);
 }

To be polite to other functions wrapping your own you usually want to increment $Level
rather than set it to a constant.

use_numbers

 $Test->use_numbers($on_or_off);

Whether or not the test should output numbers. That is, this if true:

 ok 1
 ok 2

Perl version 5.10.1 documentation - Test::Builder

Page 6http://perldoc.perl.org

 ok 3

or this if false

 ok
 ok
 ok

Most useful when you can't depend on the test output order, such as
 when threads or forking
is involved.

Defaults to on.

no_diag

 $Test->no_diag($no_diag);

If set true no diagnostics will be printed. This includes calls to diag().

no_ending

 $Test->no_ending($no_ending);

Normally, Test::Builder does some extra diagnostics when the test
 ends. It also changes the
exit code as described below.

If this is true, none of that will be done.

no_header

 $Test->no_header($no_header);

If set to true, no "1..N" header will be printed.

Output
Controlling where the test output goes.

It's ok for your test to change where STDOUT and STDERR point to,
 Test::Builder's default output
settings will not be affected.

diag

 $Test->diag(@msgs);

Prints out the given @msgs. Like print, arguments are simply
 appended together.

Normally, it uses the failure_output() handle, but if this is for a
 TODO test, the
todo_output() handle is used.

Output will be indented and marked with a # so as not to interfere
 with test output. A newline
will be put on the end if there isn't one
 already.

We encourage using this rather than calling print directly.

Returns false. Why? Because diag() is often used in conjunction with
 a failing test (ok()
|| diag()) it "passes through" the failure.

 return ok(...) || diag(...);

note

 $Test->note(@msgs);

Like diag(), but it prints to the output() handle so it will not
 normally be seen by the user
except in verbose mode.

Perl version 5.10.1 documentation - Test::Builder

Page 7http://perldoc.perl.org

explain

 my @dump = $Test->explain(@msgs);

Will dump the contents of any references in a human readable format.
 Handy for things like...

 is_deeply($have, $want) || diag explain $have;

or

 is_deeply($have, $want) || note explain $have;

_print

 $Test->_print(@msgs);

Prints to the output() filehandle.

output

failure_output

todo_output

 my $filehandle = $Test->output;
 $Test->output($filehandle);
 $Test->output($filename);
 $Test->output(\$scalar);

These methods control where Test::Builder will print its output.
 They take either an open
$filehandle, a $filename to open and write to
 or a $scalar reference to append to. It
will always return a $filehandle.

output is where normal "ok/not ok" test output goes.

Defaults to STDOUT.

failure_output is where diagnostic output on test failures and diag() goes. It is normally not
read by Test::Harness and instead is
 displayed to the user.

Defaults to STDERR.

todo_output is used instead of failure_output() for the
 diagnostics of a failing TODO
test. These will not be seen by the
 user.

Defaults to STDOUT.

reset_outputs

 $tb->reset_outputs;

Resets all the output filehandles back to their defaults.

carp

 $tb->carp(@message);

Warns with @message but the message will appear to come from the
 point where the original
test function was called ($tb->caller).

croak

 $tb->croak(@message);

Dies with @message but the message will appear to come from the
 point where the original
test function was called ($tb->caller).

Perl version 5.10.1 documentation - Test::Builder

Page 8http://perldoc.perl.org

Test Status and Info
current_test

 my $curr_test = $Test->current_test;
 $Test->current_test($num);

Gets/sets the current test number we're on. You usually shouldn't
 have to set this.

If set forward, the details of the missing tests are filled in as 'unknown'.
 if set backward, the
details of the intervening tests are deleted. You
 can erase history if you really want to.

summary

 my @tests = $Test->summary;

A simple summary of the tests so far. True for pass, false for fail.
 This is a logical pass/fail, so
todos are passes.

Of course, test #1 is $tests[0], etc...

details

 my @tests = $Test->details;

Like summary(), but with a lot more detail.

 $tests[$test_num - 1] =
 { 'ok' => is the test considered a pass?
 actual_ok => did it literally say 'ok'?
 name => name of the test (if any)
 type => type of test (if any, see below).
 reason => reason for the above (if any)
 };

'ok' is true if Test::Harness will consider the test to be a pass.

'actual_ok' is a reflection of whether or not the test literally
 printed 'ok' or 'not ok'. This is for
examining the result of 'todo'
 tests.

'name' is the name of the test.

'type' indicates if it was a special test. Normal tests have a type
 of ''. Type can be one of the
following:

 skip see skip()
 todo see todo()
 todo_skip see todo_skip()
 unknown see below

Sometimes the Test::Builder test counter is incremented without it
 printing any test output, for
example, when current_test() is changed.
 In these cases, Test::Builder doesn't know the
result of the test, so
 its type is 'unknown'. These details for these tests are filled in.
 They are
considered ok, but the name and actual_ok is left undef.

For example "not ok 23 - hole count # TODO insufficient donuts" would
 result in this structure:

 $tests[22] = # 23 - 1, since arrays start from 0.
 { ok => 1, # logically, the test passed since its todo
 actual_ok => 0, # in absolute terms, it failed
 name => 'hole count',
 type => 'todo',
 reason => 'insufficient donuts'
 };

Perl version 5.10.1 documentation - Test::Builder

Page 9http://perldoc.perl.org

todo

 my $todo_reason = $Test->todo;
 my $todo_reason = $Test->todo($pack);

If the current tests are considered "TODO" it will return the reason,
 if any. This reason can
come from a $TODO variable or the last call
 to todo_start().

Since a TODO test does not need a reason, this function can return an
 empty string even
when inside a TODO block. Use $Test->in_todo
 to determine if you are currently inside a
TODO block.

todo() is about finding the right package to look for $TODO in. It's
 pretty good at guessing the
right package to look at. It first looks for
 the caller based on $Level + 1, since todo() is
usually called inside
 a test function. As a last resort it will use exported_to().

Sometimes there is some confusion about where todo() should be looking
 for the $TODO
variable. If you want to be sure, tell it explicitly
 what $pack to use.

find_TODO

 my $todo_reason = $Test->find_TODO();
 my $todo_reason = $Test->find_TODO($pack):

Like todo() but only returns the value of $TODO ignoring todo_start().

in_todo

 my $in_todo = $Test->in_todo;

Returns true if the test is currently inside a TODO block.

todo_start

 $Test->todo_start();
 $Test->todo_start($message);

This method allows you declare all subsequent tests as TODO tests, up until
 the todo_end
method has been called.

The TODO: and $TODO syntax is generally pretty good about figuring out
 whether or not we're
in a TODO test. However, often we find that this is not
 possible to determine (such as when
we want to use $TODO but
 the tests are being executed in other packages which can't be
inferred
 beforehand).

Note that you can use this to nest "todo" tests

 $Test->todo_start('working on this');
 # lots of code
 $Test->todo_start('working on that');
 # more code
 $Test->todo_end;
 $Test->todo_end;

This is generally not recommended, but large testing systems often have weird
 internal needs.

We've tried to make this also work with the TODO: syntax, but it's not
 guaranteed and its use
is also discouraged:

 TODO: {
 local $TODO = 'We have work to do!';
 $Test->todo_start('working on this');
 # lots of code
 $Test->todo_start('working on that');
 # more code

Perl version 5.10.1 documentation - Test::Builder

Page 10http://perldoc.perl.org

 $Test->todo_end;
 $Test->todo_end;
 }

Pick one style or another of "TODO" to be on the safe side.

todo_end

 $Test->todo_end;

Stops running tests as "TODO" tests. This method is fatal if called without a
 preceding
todo_start method call.

caller

 my $package = $Test->caller;
 my($pack, $file, $line) = $Test->caller;
 my($pack, $file, $line) = $Test->caller($height);

Like the normal caller(), except it reports according to your level().

$height will be added to the level().

If caller() winds up off the top of the stack it report the highest context.

_sanity_check

 $self->_sanity_check();

Runs a bunch of end of test sanity checks to make sure reality came
 through ok. If anything is
wrong it will die with a fairly friendly
 error message.

_whoa

 $self->_whoa($check, $description);

A sanity check, similar to assert(). If the $check is true, something
 has gone horribly
wrong. It will die with the given $description and
 a note to contact the author.

_my_exit

 _my_exit($exit_num);

Perl seems to have some trouble with exiting inside an END block. 5.005_03
 and 5.6.1 both
seem to do odd things. Instead, this function edits $?
 directly. It should only be called from
inside an END block. It
 doesn't actually exit, that's your job.

EXIT CODES
If all your tests passed, Test::Builder will exit with zero (which is
 normal). If anything failed it will exit
with how many failed. If
 you run less (or more) tests than you planned, the missing (or extras)
 will be
considered failures. If no tests were ever run Test::Builder
 will throw a warning and exit with 255. If
the test died, even after
 having successfully completed all its tests, it will still be
 considered a failure
and will exit with 255.

So the exit codes are...

 0 all tests successful
 255 test died or all passed but wrong # of tests run
 any other number how many failed (including missing or extras)

If you fail more than 254 tests, it will be reported as 254.

Perl version 5.10.1 documentation - Test::Builder

Page 11http://perldoc.perl.org

THREADS
In perl 5.8.1 and later, Test::Builder is thread-safe. The test
 number is shared amongst all threads.
This means if one thread sets
 the test number using current_test() they will all be effected.

While versions earlier than 5.8.1 had threads they contain too many
 bugs to support.

Test::Builder is only thread-aware if threads.pm is loaded before
 Test::Builder.

MEMORY
An informative hash, accessable via <details()>, is stored for each
 test you perform. So memory
usage will scale linearly with each test
 run. Although this is not a problem for most test suites, it can

become an issue if you do large (hundred thousands to million)
 combinatorics tests in the same run.

In such cases, you are advised to either split the test file into smaller
 ones, or use a reverse
approach, doing "normal" (code) compares and
 triggering fail() should anything go unexpected.

Future versions of Test::Builder will have a way to turn history off.

EXAMPLES
CPAN can provide the best examples. Test::Simple, Test::More,
 Test::Exception and
Test::Differences all use Test::Builder.

SEE ALSO
Test::Simple, Test::More, Test::Harness

AUTHORS
Original code by chromatic, maintained by Michael G Schwern <schwern@pobox.com>

COPYRIGHT
Copyright 2002-2008 by chromatic <chromatic@wgz.org> and
 Michael G Schwern <
schwern@pobox.com>.

This program is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

See http://www.perl.com/perl/misc/Artistic.html

