
Perl version 5.10.1 documentation - ExtUtils::Installed

Page 1http://perldoc.perl.org

NAME
ExtUtils::Installed - Inventory management of installed modules

SYNOPSIS
 use ExtUtils::Installed;
 my ($inst) = ExtUtils::Installed->new();
 my (@modules) = $inst->modules();
 my (@missing) = $inst->validate("DBI");
 my $all_files = $inst->files("DBI");
 my $files_below_usr_local = $inst->files("DBI", "all", "/usr/local");
 my $all_dirs = $inst->directories("DBI");
 my $dirs_below_usr_local = $inst->directory_tree("DBI", "prog");
 my $packlist = $inst->packlist("DBI");

DESCRIPTION
ExtUtils::Installed provides a standard way to find out what core and module
 files have been installed.
It uses the information stored in .packlist files
 created during installation to provide this information. In
addition it
 provides facilities to classify the installed files and to extract directory
 information from the
.packlist files.

USAGE
The new() function searches for all the installed .packlists on the system, and
 stores their contents.
The .packlists can be queried with the functions
 described below. Where it searches by default is
determined by the settings found
 in %Config::Config, and what the value is of the PERL5LIB
environment variable.

METHODS
Unless specified otherwise all method can be called as class methods, or as object
 methods. If called
as class methods then the "default" object will be used, and if
 necessary created using the current
processes %Config and @INC. See the
 'default' option to new() for details.

new()

This takes optional named parameters. Without parameters, this
 searches for all the installed
.packlists on the system using
 information from %Config::Config and the default module
search
 paths @INC. The packlists are read using the ExtUtils::Packlist module.

If the named parameter config_override is specified,
 it should be a reference to a hash
which contains all information
 usually found in %Config::Config. For example, you can
obtain
 the configuration information for a separate perl installation and
 pass that in.

 my $yoda_cfg = get_fake_config('yoda');
 my $yoda_inst =
ExtUtils::Installed->new(config_override=>$yoda_cfg);

Similarly, the parameter inc_override may be a reference to an
 array which is used in
place of the default module search paths
 from @INC.

 use Config;
 my @dirs = split(/\Q$Config{path_sep}\E/, $ENV{PERL5LIB});
 my $p5libs = ExtUtils::Installed->new(inc_override=>\@dirs);

Note: You probably do not want to use these options alone, almost always
 you will want to set
both together.

The parameter c<extra_libs> can be used to specify additional paths to
 search for installed
modules. For instance

 my $installed =

Perl version 5.10.1 documentation - ExtUtils::Installed

Page 2http://perldoc.perl.org

ExtUtils::Installed->new(extra_libs=>["/my/lib/path"]);This should only be
necessary if /my/lib/path is not in PERL5LIB.

Finally there is the 'default', and the related 'default_get' and 'default_set'
 options. These
options control the "default" object which is provided by the
 class interface to the methods.
Setting default_get to true tells the constructor
 to return the default object if it is defined.
Setting default_set to true tells
 the constructor to make the default object the constructed
object. Setting the default option is like setting both to true. This is used primarily internally

and probably isn't interesting to any real user.

modules()

This returns a list of the names of all the installed modules. The perl 'core'
 is given the special
name 'Perl'.

files()

This takes one mandatory parameter, the name of a module. It returns a list of
 all the
filenames from the package. To obtain a list of core perl files, use
 the module name 'Perl'.
Additional parameters are allowed. The first is one
 of the strings "prog", "doc" or "all", to select
either just program files,
 just manual files or all files. The remaining parameters are a list of

directories. The filenames returned will be restricted to those under the
 specified directories.

directories()

This takes one mandatory parameter, the name of a module. It returns a list of
 all the
directories from the package. Additional parameters are allowed. The
 first is one of the strings
"prog", "doc" or "all", to select either just
 program directories, just manual directories or all
directories. The remaining
 parameters are a list of directories. The directories returned will be

restricted to those under the specified directories. This method returns only
 the leaf directories
that contain files from the specified module.

directory_tree()

This is identical in operation to directories(), except that it includes all the
 intermediate
directories back up to the specified directories.

validate()

This takes one mandatory parameter, the name of a module. It checks that all
 the files listed in
the modules .packlist actually exist, and returns a list of
 any missing files. If an optional
second argument which evaluates to true is
 given any missing files will be removed from the
.packlist

packlist()

This returns the ExtUtils::Packlist object for the specified module.

version()

This returns the version number for the specified module.

EXAMPLE
See the example in ExtUtils::Packlist.

AUTHOR
Alan Burlison <Alan.Burlison@uk.sun.com>

